2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry
*blk_debugfs_root
;
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
57 DEFINE_IDA(blk_queue_ida
);
60 * For the allocated request tables
62 struct kmem_cache
*request_cachep
;
65 * For queue allocation
67 struct kmem_cache
*blk_requestq_cachep
;
70 * Controlling structure to kblockd
72 static struct workqueue_struct
*kblockd_workqueue
;
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
79 void blk_queue_flag_set(unsigned int flag
, struct request_queue
*q
)
83 spin_lock_irqsave(q
->queue_lock
, flags
);
84 queue_flag_set(flag
, q
);
85 spin_unlock_irqrestore(q
->queue_lock
, flags
);
87 EXPORT_SYMBOL(blk_queue_flag_set
);
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
94 void blk_queue_flag_clear(unsigned int flag
, struct request_queue
*q
)
98 spin_lock_irqsave(q
->queue_lock
, flags
);
99 queue_flag_clear(flag
, q
);
100 spin_unlock_irqrestore(q
->queue_lock
, flags
);
102 EXPORT_SYMBOL(blk_queue_flag_clear
);
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
112 bool blk_queue_flag_test_and_set(unsigned int flag
, struct request_queue
*q
)
117 spin_lock_irqsave(q
->queue_lock
, flags
);
118 res
= queue_flag_test_and_set(flag
, q
);
119 spin_unlock_irqrestore(q
->queue_lock
, flags
);
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set
);
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
133 bool blk_queue_flag_test_and_clear(unsigned int flag
, struct request_queue
*q
)
138 spin_lock_irqsave(q
->queue_lock
, flags
);
139 res
= queue_flag_test_and_clear(flag
, q
);
140 spin_unlock_irqrestore(q
->queue_lock
, flags
);
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear
);
146 static void blk_clear_congested(struct request_list
*rl
, int sync
)
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl
->blkg
->wb_congested
, sync
);
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
155 if (rl
== &rl
->q
->root_rl
)
156 clear_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
160 static void blk_set_congested(struct request_list
*rl
, int sync
)
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl
->blkg
->wb_congested
, sync
);
165 /* see blk_clear_congested() */
166 if (rl
== &rl
->q
->root_rl
)
167 set_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
171 void blk_queue_congestion_threshold(struct request_queue
*q
)
175 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
176 if (nr
> q
->nr_requests
)
178 q
->nr_congestion_on
= nr
;
180 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
183 q
->nr_congestion_off
= nr
;
186 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
188 memset(rq
, 0, sizeof(*rq
));
190 INIT_LIST_HEAD(&rq
->queuelist
);
191 INIT_LIST_HEAD(&rq
->timeout_list
);
194 rq
->__sector
= (sector_t
) -1;
195 INIT_HLIST_NODE(&rq
->hash
);
196 RB_CLEAR_NODE(&rq
->rb_node
);
198 rq
->internal_tag
= -1;
199 rq
->start_time_ns
= ktime_get_ns();
201 refcount_set(&rq
->ref
, 1);
203 EXPORT_SYMBOL(blk_rq_init
);
205 static const struct {
209 [BLK_STS_OK
] = { 0, "" },
210 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
211 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
212 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
213 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
214 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
215 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
216 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
217 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
218 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
219 [BLK_STS_DEV_RESOURCE
] = { -EBUSY
, "device resource" },
220 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
222 /* device mapper special case, should not leak out: */
223 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
225 /* everything else not covered above: */
226 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
229 blk_status_t
errno_to_blk_status(int errno
)
233 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
234 if (blk_errors
[i
].errno
== errno
)
235 return (__force blk_status_t
)i
;
238 return BLK_STS_IOERR
;
240 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
242 int blk_status_to_errno(blk_status_t status
)
244 int idx
= (__force
int)status
;
246 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
248 return blk_errors
[idx
].errno
;
250 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
252 static void print_req_error(struct request
*req
, blk_status_t status
)
254 int idx
= (__force
int)status
;
256 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
259 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu\n",
260 __func__
, blk_errors
[idx
].name
, req
->rq_disk
?
261 req
->rq_disk
->disk_name
: "?",
262 (unsigned long long)blk_rq_pos(req
));
265 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
266 unsigned int nbytes
, blk_status_t error
)
269 bio
->bi_status
= error
;
271 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
272 bio_set_flag(bio
, BIO_QUIET
);
274 bio_advance(bio
, nbytes
);
276 /* don't actually finish bio if it's part of flush sequence */
277 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
281 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
283 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
284 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
285 (unsigned long long) rq
->cmd_flags
);
287 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
288 (unsigned long long)blk_rq_pos(rq
),
289 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
290 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
291 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
293 EXPORT_SYMBOL(blk_dump_rq_flags
);
295 static void blk_delay_work(struct work_struct
*work
)
297 struct request_queue
*q
;
299 q
= container_of(work
, struct request_queue
, delay_work
.work
);
300 spin_lock_irq(q
->queue_lock
);
302 spin_unlock_irq(q
->queue_lock
);
306 * blk_delay_queue - restart queueing after defined interval
307 * @q: The &struct request_queue in question
308 * @msecs: Delay in msecs
311 * Sometimes queueing needs to be postponed for a little while, to allow
312 * resources to come back. This function will make sure that queueing is
313 * restarted around the specified time.
315 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
317 lockdep_assert_held(q
->queue_lock
);
318 WARN_ON_ONCE(q
->mq_ops
);
320 if (likely(!blk_queue_dead(q
)))
321 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
322 msecs_to_jiffies(msecs
));
324 EXPORT_SYMBOL(blk_delay_queue
);
327 * blk_start_queue_async - asynchronously restart a previously stopped queue
328 * @q: The &struct request_queue in question
331 * blk_start_queue_async() will clear the stop flag on the queue, and
332 * ensure that the request_fn for the queue is run from an async
335 void blk_start_queue_async(struct request_queue
*q
)
337 lockdep_assert_held(q
->queue_lock
);
338 WARN_ON_ONCE(q
->mq_ops
);
340 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
341 blk_run_queue_async(q
);
343 EXPORT_SYMBOL(blk_start_queue_async
);
346 * blk_start_queue - restart a previously stopped queue
347 * @q: The &struct request_queue in question
350 * blk_start_queue() will clear the stop flag on the queue, and call
351 * the request_fn for the queue if it was in a stopped state when
352 * entered. Also see blk_stop_queue().
354 void blk_start_queue(struct request_queue
*q
)
356 lockdep_assert_held(q
->queue_lock
);
357 WARN_ON_ONCE(q
->mq_ops
);
359 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
362 EXPORT_SYMBOL(blk_start_queue
);
365 * blk_stop_queue - stop a queue
366 * @q: The &struct request_queue in question
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
376 * blk_start_queue() to restart queue operations.
378 void blk_stop_queue(struct request_queue
*q
)
380 lockdep_assert_held(q
->queue_lock
);
381 WARN_ON_ONCE(q
->mq_ops
);
383 cancel_delayed_work(&q
->delay_work
);
384 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
386 EXPORT_SYMBOL(blk_stop_queue
);
389 * blk_sync_queue - cancel any pending callbacks on a queue
393 * The block layer may perform asynchronous callback activity
394 * on a queue, such as calling the unplug function after a timeout.
395 * A block device may call blk_sync_queue to ensure that any
396 * such activity is cancelled, thus allowing it to release resources
397 * that the callbacks might use. The caller must already have made sure
398 * that its ->make_request_fn will not re-add plugging prior to calling
401 * This function does not cancel any asynchronous activity arising
402 * out of elevator or throttling code. That would require elevator_exit()
403 * and blkcg_exit_queue() to be called with queue lock initialized.
406 void blk_sync_queue(struct request_queue
*q
)
408 del_timer_sync(&q
->timeout
);
409 cancel_work_sync(&q
->timeout_work
);
412 struct blk_mq_hw_ctx
*hctx
;
415 queue_for_each_hw_ctx(q
, hctx
, i
)
416 cancel_delayed_work_sync(&hctx
->run_work
);
418 cancel_delayed_work_sync(&q
->delay_work
);
421 EXPORT_SYMBOL(blk_sync_queue
);
424 * blk_set_pm_only - increment pm_only counter
425 * @q: request queue pointer
427 void blk_set_pm_only(struct request_queue
*q
)
429 atomic_inc(&q
->pm_only
);
431 EXPORT_SYMBOL_GPL(blk_set_pm_only
);
433 void blk_clear_pm_only(struct request_queue
*q
)
437 pm_only
= atomic_dec_return(&q
->pm_only
);
438 WARN_ON_ONCE(pm_only
< 0);
440 wake_up_all(&q
->mq_freeze_wq
);
442 EXPORT_SYMBOL_GPL(blk_clear_pm_only
);
445 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
446 * @q: The queue to run
449 * Invoke request handling on a queue if there are any pending requests.
450 * May be used to restart request handling after a request has completed.
451 * This variant runs the queue whether or not the queue has been
452 * stopped. Must be called with the queue lock held and interrupts
453 * disabled. See also @blk_run_queue.
455 inline void __blk_run_queue_uncond(struct request_queue
*q
)
457 lockdep_assert_held(q
->queue_lock
);
458 WARN_ON_ONCE(q
->mq_ops
);
460 if (unlikely(blk_queue_dead(q
)))
464 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
465 * the queue lock internally. As a result multiple threads may be
466 * running such a request function concurrently. Keep track of the
467 * number of active request_fn invocations such that blk_drain_queue()
468 * can wait until all these request_fn calls have finished.
470 q
->request_fn_active
++;
472 q
->request_fn_active
--;
474 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond
);
477 * __blk_run_queue - run a single device queue
478 * @q: The queue to run
481 * See @blk_run_queue.
483 void __blk_run_queue(struct request_queue
*q
)
485 lockdep_assert_held(q
->queue_lock
);
486 WARN_ON_ONCE(q
->mq_ops
);
488 if (unlikely(blk_queue_stopped(q
)))
491 __blk_run_queue_uncond(q
);
493 EXPORT_SYMBOL(__blk_run_queue
);
496 * blk_run_queue_async - run a single device queue in workqueue context
497 * @q: The queue to run
500 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
504 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
505 * has canceled q->delay_work, callers must hold the queue lock to avoid
506 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
508 void blk_run_queue_async(struct request_queue
*q
)
510 lockdep_assert_held(q
->queue_lock
);
511 WARN_ON_ONCE(q
->mq_ops
);
513 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
514 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
516 EXPORT_SYMBOL(blk_run_queue_async
);
519 * blk_run_queue - run a single device queue
520 * @q: The queue to run
523 * Invoke request handling on this queue, if it has pending work to do.
524 * May be used to restart queueing when a request has completed.
526 void blk_run_queue(struct request_queue
*q
)
530 WARN_ON_ONCE(q
->mq_ops
);
532 spin_lock_irqsave(q
->queue_lock
, flags
);
534 spin_unlock_irqrestore(q
->queue_lock
, flags
);
536 EXPORT_SYMBOL(blk_run_queue
);
538 void blk_put_queue(struct request_queue
*q
)
540 kobject_put(&q
->kobj
);
542 EXPORT_SYMBOL(blk_put_queue
);
545 * __blk_drain_queue - drain requests from request_queue
547 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
549 * Drain requests from @q. If @drain_all is set, all requests are drained.
550 * If not, only ELVPRIV requests are drained. The caller is responsible
551 * for ensuring that no new requests which need to be drained are queued.
553 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
554 __releases(q
->queue_lock
)
555 __acquires(q
->queue_lock
)
559 lockdep_assert_held(q
->queue_lock
);
560 WARN_ON_ONCE(q
->mq_ops
);
566 * The caller might be trying to drain @q before its
567 * elevator is initialized.
570 elv_drain_elevator(q
);
572 blkcg_drain_queue(q
);
575 * This function might be called on a queue which failed
576 * driver init after queue creation or is not yet fully
577 * active yet. Some drivers (e.g. fd and loop) get unhappy
578 * in such cases. Kick queue iff dispatch queue has
579 * something on it and @q has request_fn set.
581 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
584 drain
|= q
->nr_rqs_elvpriv
;
585 drain
|= q
->request_fn_active
;
588 * Unfortunately, requests are queued at and tracked from
589 * multiple places and there's no single counter which can
590 * be drained. Check all the queues and counters.
593 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
594 drain
|= !list_empty(&q
->queue_head
);
595 for (i
= 0; i
< 2; i
++) {
596 drain
|= q
->nr_rqs
[i
];
597 drain
|= q
->in_flight
[i
];
599 drain
|= !list_empty(&fq
->flush_queue
[i
]);
606 spin_unlock_irq(q
->queue_lock
);
610 spin_lock_irq(q
->queue_lock
);
614 * With queue marked dead, any woken up waiter will fail the
615 * allocation path, so the wakeup chaining is lost and we're
616 * left with hung waiters. We need to wake up those waiters.
619 struct request_list
*rl
;
621 blk_queue_for_each_rl(rl
, q
)
622 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
623 wake_up_all(&rl
->wait
[i
]);
627 void blk_drain_queue(struct request_queue
*q
)
629 spin_lock_irq(q
->queue_lock
);
630 __blk_drain_queue(q
, true);
631 spin_unlock_irq(q
->queue_lock
);
635 * blk_queue_bypass_start - enter queue bypass mode
636 * @q: queue of interest
638 * In bypass mode, only the dispatch FIFO queue of @q is used. This
639 * function makes @q enter bypass mode and drains all requests which were
640 * throttled or issued before. On return, it's guaranteed that no request
641 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
642 * inside queue or RCU read lock.
644 void blk_queue_bypass_start(struct request_queue
*q
)
646 WARN_ON_ONCE(q
->mq_ops
);
648 spin_lock_irq(q
->queue_lock
);
650 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
651 spin_unlock_irq(q
->queue_lock
);
654 * Queues start drained. Skip actual draining till init is
655 * complete. This avoids lenghty delays during queue init which
656 * can happen many times during boot.
658 if (blk_queue_init_done(q
)) {
659 spin_lock_irq(q
->queue_lock
);
660 __blk_drain_queue(q
, false);
661 spin_unlock_irq(q
->queue_lock
);
663 /* ensure blk_queue_bypass() is %true inside RCU read lock */
667 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
670 * blk_queue_bypass_end - leave queue bypass mode
671 * @q: queue of interest
673 * Leave bypass mode and restore the normal queueing behavior.
675 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
676 * this function is called for both blk-sq and blk-mq queues.
678 void blk_queue_bypass_end(struct request_queue
*q
)
680 spin_lock_irq(q
->queue_lock
);
681 if (!--q
->bypass_depth
)
682 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
683 WARN_ON_ONCE(q
->bypass_depth
< 0);
684 spin_unlock_irq(q
->queue_lock
);
686 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
688 void blk_set_queue_dying(struct request_queue
*q
)
690 blk_queue_flag_set(QUEUE_FLAG_DYING
, q
);
693 * When queue DYING flag is set, we need to block new req
694 * entering queue, so we call blk_freeze_queue_start() to
695 * prevent I/O from crossing blk_queue_enter().
697 blk_freeze_queue_start(q
);
700 blk_mq_wake_waiters(q
);
702 struct request_list
*rl
;
704 spin_lock_irq(q
->queue_lock
);
705 blk_queue_for_each_rl(rl
, q
) {
707 wake_up_all(&rl
->wait
[BLK_RW_SYNC
]);
708 wake_up_all(&rl
->wait
[BLK_RW_ASYNC
]);
711 spin_unlock_irq(q
->queue_lock
);
714 /* Make blk_queue_enter() reexamine the DYING flag. */
715 wake_up_all(&q
->mq_freeze_wq
);
717 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
719 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
720 void blk_exit_queue(struct request_queue
*q
)
723 * Since the I/O scheduler exit code may access cgroup information,
724 * perform I/O scheduler exit before disassociating from the block
729 elevator_exit(q
, q
->elevator
);
734 * Remove all references to @q from the block cgroup controller before
735 * restoring @q->queue_lock to avoid that restoring this pointer causes
736 * e.g. blkcg_print_blkgs() to crash.
741 * Since the cgroup code may dereference the @q->backing_dev_info
742 * pointer, only decrease its reference count after having removed the
743 * association with the block cgroup controller.
745 bdi_put(q
->backing_dev_info
);
749 * blk_cleanup_queue - shutdown a request queue
750 * @q: request queue to shutdown
752 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
753 * put it. All future requests will be failed immediately with -ENODEV.
755 void blk_cleanup_queue(struct request_queue
*q
)
757 spinlock_t
*lock
= q
->queue_lock
;
759 /* mark @q DYING, no new request or merges will be allowed afterwards */
760 mutex_lock(&q
->sysfs_lock
);
761 blk_set_queue_dying(q
);
765 * A dying queue is permanently in bypass mode till released. Note
766 * that, unlike blk_queue_bypass_start(), we aren't performing
767 * synchronize_rcu() after entering bypass mode to avoid the delay
768 * as some drivers create and destroy a lot of queues while
769 * probing. This is still safe because blk_release_queue() will be
770 * called only after the queue refcnt drops to zero and nothing,
771 * RCU or not, would be traversing the queue by then.
774 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
776 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
777 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
778 queue_flag_set(QUEUE_FLAG_DYING
, q
);
779 spin_unlock_irq(lock
);
780 mutex_unlock(&q
->sysfs_lock
);
783 * Drain all requests queued before DYING marking. Set DEAD flag to
784 * prevent that q->request_fn() gets invoked after draining finished.
788 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
789 spin_unlock_irq(lock
);
792 * make sure all in-progress dispatch are completed because
793 * blk_freeze_queue() can only complete all requests, and
794 * dispatch may still be in-progress since we dispatch requests
795 * from more than one contexts.
797 * We rely on driver to deal with the race in case that queue
798 * initialization isn't done.
800 if (q
->mq_ops
&& blk_queue_init_done(q
))
801 blk_mq_quiesce_queue(q
);
803 /* for synchronous bio-based driver finish in-flight integrity i/o */
804 blk_flush_integrity();
806 /* @q won't process any more request, flush async actions */
807 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
811 * I/O scheduler exit is only safe after the sysfs scheduler attribute
814 WARN_ON_ONCE(q
->kobj
.state_in_sysfs
);
819 blk_mq_free_queue(q
);
820 percpu_ref_exit(&q
->q_usage_counter
);
823 if (q
->queue_lock
!= &q
->__queue_lock
)
824 q
->queue_lock
= &q
->__queue_lock
;
825 spin_unlock_irq(lock
);
827 /* @q is and will stay empty, shutdown and put */
830 EXPORT_SYMBOL(blk_cleanup_queue
);
832 /* Allocate memory local to the request queue */
833 static void *alloc_request_simple(gfp_t gfp_mask
, void *data
)
835 struct request_queue
*q
= data
;
837 return kmem_cache_alloc_node(request_cachep
, gfp_mask
, q
->node
);
840 static void free_request_simple(void *element
, void *data
)
842 kmem_cache_free(request_cachep
, element
);
845 static void *alloc_request_size(gfp_t gfp_mask
, void *data
)
847 struct request_queue
*q
= data
;
850 rq
= kmalloc_node(sizeof(struct request
) + q
->cmd_size
, gfp_mask
,
852 if (rq
&& q
->init_rq_fn
&& q
->init_rq_fn(q
, rq
, gfp_mask
) < 0) {
859 static void free_request_size(void *element
, void *data
)
861 struct request_queue
*q
= data
;
864 q
->exit_rq_fn(q
, element
);
868 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
871 if (unlikely(rl
->rq_pool
) || q
->mq_ops
)
875 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
876 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
877 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
878 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
881 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
882 alloc_request_size
, free_request_size
,
883 q
, gfp_mask
, q
->node
);
885 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
886 alloc_request_simple
, free_request_simple
,
887 q
, gfp_mask
, q
->node
);
892 if (rl
!= &q
->root_rl
)
893 WARN_ON_ONCE(!blk_get_queue(q
));
898 void blk_exit_rl(struct request_queue
*q
, struct request_list
*rl
)
901 mempool_destroy(rl
->rq_pool
);
902 if (rl
!= &q
->root_rl
)
907 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
909 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
, NULL
);
911 EXPORT_SYMBOL(blk_alloc_queue
);
914 * blk_queue_enter() - try to increase q->q_usage_counter
915 * @q: request queue pointer
916 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
918 int blk_queue_enter(struct request_queue
*q
, blk_mq_req_flags_t flags
)
920 const bool pm
= flags
& BLK_MQ_REQ_PREEMPT
;
923 bool success
= false;
926 if (percpu_ref_tryget_live(&q
->q_usage_counter
)) {
928 * The code that increments the pm_only counter is
929 * responsible for ensuring that that counter is
930 * globally visible before the queue is unfrozen.
932 if (pm
|| !blk_queue_pm_only(q
)) {
935 percpu_ref_put(&q
->q_usage_counter
);
943 if (flags
& BLK_MQ_REQ_NOWAIT
)
947 * read pair of barrier in blk_freeze_queue_start(),
948 * we need to order reading __PERCPU_REF_DEAD flag of
949 * .q_usage_counter and reading .mq_freeze_depth or
950 * queue dying flag, otherwise the following wait may
951 * never return if the two reads are reordered.
955 wait_event(q
->mq_freeze_wq
,
956 (atomic_read(&q
->mq_freeze_depth
) == 0 &&
957 (pm
|| !blk_queue_pm_only(q
))) ||
959 if (blk_queue_dying(q
))
964 void blk_queue_exit(struct request_queue
*q
)
966 percpu_ref_put(&q
->q_usage_counter
);
969 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
971 struct request_queue
*q
=
972 container_of(ref
, struct request_queue
, q_usage_counter
);
974 wake_up_all(&q
->mq_freeze_wq
);
977 static void blk_rq_timed_out_timer(struct timer_list
*t
)
979 struct request_queue
*q
= from_timer(q
, t
, timeout
);
981 kblockd_schedule_work(&q
->timeout_work
);
984 static void blk_timeout_work_dummy(struct work_struct
*work
)
989 * blk_alloc_queue_node - allocate a request queue
990 * @gfp_mask: memory allocation flags
991 * @node_id: NUMA node to allocate memory from
992 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
993 * serialize calls to the legacy .request_fn() callback. Ignored for
994 * blk-mq request queues.
996 * Note: pass the queue lock as the third argument to this function instead of
997 * setting the queue lock pointer explicitly to avoid triggering a sporadic
998 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
999 * the queue lock pointer must be set before blkcg_init_queue() is called.
1001 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
,
1004 struct request_queue
*q
;
1007 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
1008 gfp_mask
| __GFP_ZERO
, node_id
);
1012 INIT_LIST_HEAD(&q
->queue_head
);
1013 q
->last_merge
= NULL
;
1015 q
->boundary_rq
= NULL
;
1017 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
1021 ret
= bioset_init(&q
->bio_split
, BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
1025 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
1026 if (!q
->backing_dev_info
)
1029 q
->stats
= blk_alloc_queue_stats();
1033 q
->backing_dev_info
->ra_pages
=
1034 (VM_MAX_READAHEAD
* 1024) / PAGE_SIZE
;
1035 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
1036 q
->backing_dev_info
->name
= "block";
1039 timer_setup(&q
->backing_dev_info
->laptop_mode_wb_timer
,
1040 laptop_mode_timer_fn
, 0);
1041 timer_setup(&q
->timeout
, blk_rq_timed_out_timer
, 0);
1042 INIT_WORK(&q
->timeout_work
, blk_timeout_work_dummy
);
1043 INIT_LIST_HEAD(&q
->timeout_list
);
1044 INIT_LIST_HEAD(&q
->icq_list
);
1045 #ifdef CONFIG_BLK_CGROUP
1046 INIT_LIST_HEAD(&q
->blkg_list
);
1048 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
1050 kobject_init(&q
->kobj
, &blk_queue_ktype
);
1052 #ifdef CONFIG_BLK_DEV_IO_TRACE
1053 mutex_init(&q
->blk_trace_mutex
);
1055 mutex_init(&q
->sysfs_lock
);
1056 spin_lock_init(&q
->__queue_lock
);
1059 q
->queue_lock
= lock
? : &q
->__queue_lock
;
1062 * A queue starts its life with bypass turned on to avoid
1063 * unnecessary bypass on/off overhead and nasty surprises during
1064 * init. The initial bypass will be finished when the queue is
1065 * registered by blk_register_queue().
1067 q
->bypass_depth
= 1;
1068 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS
, q
);
1070 init_waitqueue_head(&q
->mq_freeze_wq
);
1073 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1074 * See blk_register_queue() for details.
1076 if (percpu_ref_init(&q
->q_usage_counter
,
1077 blk_queue_usage_counter_release
,
1078 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1081 if (blkcg_init_queue(q
))
1087 percpu_ref_exit(&q
->q_usage_counter
);
1089 blk_free_queue_stats(q
->stats
);
1091 bdi_put(q
->backing_dev_info
);
1093 bioset_exit(&q
->bio_split
);
1095 ida_simple_remove(&blk_queue_ida
, q
->id
);
1097 kmem_cache_free(blk_requestq_cachep
, q
);
1100 EXPORT_SYMBOL(blk_alloc_queue_node
);
1103 * blk_init_queue - prepare a request queue for use with a block device
1104 * @rfn: The function to be called to process requests that have been
1105 * placed on the queue.
1106 * @lock: Request queue spin lock
1109 * If a block device wishes to use the standard request handling procedures,
1110 * which sorts requests and coalesces adjacent requests, then it must
1111 * call blk_init_queue(). The function @rfn will be called when there
1112 * are requests on the queue that need to be processed. If the device
1113 * supports plugging, then @rfn may not be called immediately when requests
1114 * are available on the queue, but may be called at some time later instead.
1115 * Plugged queues are generally unplugged when a buffer belonging to one
1116 * of the requests on the queue is needed, or due to memory pressure.
1118 * @rfn is not required, or even expected, to remove all requests off the
1119 * queue, but only as many as it can handle at a time. If it does leave
1120 * requests on the queue, it is responsible for arranging that the requests
1121 * get dealt with eventually.
1123 * The queue spin lock must be held while manipulating the requests on the
1124 * request queue; this lock will be taken also from interrupt context, so irq
1125 * disabling is needed for it.
1127 * Function returns a pointer to the initialized request queue, or %NULL if
1128 * it didn't succeed.
1131 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1132 * when the block device is deactivated (such as at module unload).
1135 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
1137 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
1139 EXPORT_SYMBOL(blk_init_queue
);
1141 struct request_queue
*
1142 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
1144 struct request_queue
*q
;
1146 q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
, lock
);
1150 q
->request_fn
= rfn
;
1151 if (blk_init_allocated_queue(q
) < 0) {
1152 blk_cleanup_queue(q
);
1158 EXPORT_SYMBOL(blk_init_queue_node
);
1160 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
);
1163 int blk_init_allocated_queue(struct request_queue
*q
)
1165 WARN_ON_ONCE(q
->mq_ops
);
1167 q
->fq
= blk_alloc_flush_queue(q
, NUMA_NO_NODE
, q
->cmd_size
);
1171 if (q
->init_rq_fn
&& q
->init_rq_fn(q
, q
->fq
->flush_rq
, GFP_KERNEL
))
1172 goto out_free_flush_queue
;
1174 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
1175 goto out_exit_flush_rq
;
1177 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
1178 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
1181 * This also sets hw/phys segments, boundary and size
1183 blk_queue_make_request(q
, blk_queue_bio
);
1185 q
->sg_reserved_size
= INT_MAX
;
1187 if (elevator_init(q
))
1188 goto out_exit_flush_rq
;
1193 q
->exit_rq_fn(q
, q
->fq
->flush_rq
);
1194 out_free_flush_queue
:
1195 blk_free_flush_queue(q
->fq
);
1199 EXPORT_SYMBOL(blk_init_allocated_queue
);
1201 bool blk_get_queue(struct request_queue
*q
)
1203 if (likely(!blk_queue_dying(q
))) {
1210 EXPORT_SYMBOL(blk_get_queue
);
1212 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
1214 if (rq
->rq_flags
& RQF_ELVPRIV
) {
1215 elv_put_request(rl
->q
, rq
);
1217 put_io_context(rq
->elv
.icq
->ioc
);
1220 mempool_free(rq
, rl
->rq_pool
);
1224 * ioc_batching returns true if the ioc is a valid batching request and
1225 * should be given priority access to a request.
1227 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
1233 * Make sure the process is able to allocate at least 1 request
1234 * even if the batch times out, otherwise we could theoretically
1237 return ioc
->nr_batch_requests
== q
->nr_batching
||
1238 (ioc
->nr_batch_requests
> 0
1239 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1243 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1244 * will cause the process to be a "batcher" on all queues in the system. This
1245 * is the behaviour we want though - once it gets a wakeup it should be given
1248 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
1250 if (!ioc
|| ioc_batching(q
, ioc
))
1253 ioc
->nr_batch_requests
= q
->nr_batching
;
1254 ioc
->last_waited
= jiffies
;
1257 static void __freed_request(struct request_list
*rl
, int sync
)
1259 struct request_queue
*q
= rl
->q
;
1261 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
1262 blk_clear_congested(rl
, sync
);
1264 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
1265 if (waitqueue_active(&rl
->wait
[sync
]))
1266 wake_up(&rl
->wait
[sync
]);
1268 blk_clear_rl_full(rl
, sync
);
1273 * A request has just been released. Account for it, update the full and
1274 * congestion status, wake up any waiters. Called under q->queue_lock.
1276 static void freed_request(struct request_list
*rl
, bool sync
,
1277 req_flags_t rq_flags
)
1279 struct request_queue
*q
= rl
->q
;
1283 if (rq_flags
& RQF_ELVPRIV
)
1284 q
->nr_rqs_elvpriv
--;
1286 __freed_request(rl
, sync
);
1288 if (unlikely(rl
->starved
[sync
^ 1]))
1289 __freed_request(rl
, sync
^ 1);
1292 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
1294 struct request_list
*rl
;
1295 int on_thresh
, off_thresh
;
1297 WARN_ON_ONCE(q
->mq_ops
);
1299 spin_lock_irq(q
->queue_lock
);
1300 q
->nr_requests
= nr
;
1301 blk_queue_congestion_threshold(q
);
1302 on_thresh
= queue_congestion_on_threshold(q
);
1303 off_thresh
= queue_congestion_off_threshold(q
);
1305 blk_queue_for_each_rl(rl
, q
) {
1306 if (rl
->count
[BLK_RW_SYNC
] >= on_thresh
)
1307 blk_set_congested(rl
, BLK_RW_SYNC
);
1308 else if (rl
->count
[BLK_RW_SYNC
] < off_thresh
)
1309 blk_clear_congested(rl
, BLK_RW_SYNC
);
1311 if (rl
->count
[BLK_RW_ASYNC
] >= on_thresh
)
1312 blk_set_congested(rl
, BLK_RW_ASYNC
);
1313 else if (rl
->count
[BLK_RW_ASYNC
] < off_thresh
)
1314 blk_clear_congested(rl
, BLK_RW_ASYNC
);
1316 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
1317 blk_set_rl_full(rl
, BLK_RW_SYNC
);
1319 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
1320 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
1323 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
1324 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
1326 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
1327 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
1331 spin_unlock_irq(q
->queue_lock
);
1336 * __get_request - get a free request
1337 * @rl: request list to allocate from
1338 * @op: operation and flags
1339 * @bio: bio to allocate request for (can be %NULL)
1340 * @flags: BLQ_MQ_REQ_* flags
1341 * @gfp_mask: allocator flags
1343 * Get a free request from @q. This function may fail under memory
1344 * pressure or if @q is dead.
1346 * Must be called with @q->queue_lock held and,
1347 * Returns ERR_PTR on failure, with @q->queue_lock held.
1348 * Returns request pointer on success, with @q->queue_lock *not held*.
1350 static struct request
*__get_request(struct request_list
*rl
, unsigned int op
,
1351 struct bio
*bio
, blk_mq_req_flags_t flags
, gfp_t gfp_mask
)
1353 struct request_queue
*q
= rl
->q
;
1355 struct elevator_type
*et
= q
->elevator
->type
;
1356 struct io_context
*ioc
= rq_ioc(bio
);
1357 struct io_cq
*icq
= NULL
;
1358 const bool is_sync
= op_is_sync(op
);
1360 req_flags_t rq_flags
= RQF_ALLOCED
;
1362 lockdep_assert_held(q
->queue_lock
);
1364 if (unlikely(blk_queue_dying(q
)))
1365 return ERR_PTR(-ENODEV
);
1367 may_queue
= elv_may_queue(q
, op
);
1368 if (may_queue
== ELV_MQUEUE_NO
)
1371 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
1372 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
1374 * The queue will fill after this allocation, so set
1375 * it as full, and mark this process as "batching".
1376 * This process will be allowed to complete a batch of
1377 * requests, others will be blocked.
1379 if (!blk_rl_full(rl
, is_sync
)) {
1380 ioc_set_batching(q
, ioc
);
1381 blk_set_rl_full(rl
, is_sync
);
1383 if (may_queue
!= ELV_MQUEUE_MUST
1384 && !ioc_batching(q
, ioc
)) {
1386 * The queue is full and the allocating
1387 * process is not a "batcher", and not
1388 * exempted by the IO scheduler
1390 return ERR_PTR(-ENOMEM
);
1394 blk_set_congested(rl
, is_sync
);
1398 * Only allow batching queuers to allocate up to 50% over the defined
1399 * limit of requests, otherwise we could have thousands of requests
1400 * allocated with any setting of ->nr_requests
1402 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
1403 return ERR_PTR(-ENOMEM
);
1405 q
->nr_rqs
[is_sync
]++;
1406 rl
->count
[is_sync
]++;
1407 rl
->starved
[is_sync
] = 0;
1410 * Decide whether the new request will be managed by elevator. If
1411 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1412 * prevent the current elevator from being destroyed until the new
1413 * request is freed. This guarantees icq's won't be destroyed and
1414 * makes creating new ones safe.
1416 * Flush requests do not use the elevator so skip initialization.
1417 * This allows a request to share the flush and elevator data.
1419 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1420 * it will be created after releasing queue_lock.
1422 if (!op_is_flush(op
) && !blk_queue_bypass(q
)) {
1423 rq_flags
|= RQF_ELVPRIV
;
1424 q
->nr_rqs_elvpriv
++;
1425 if (et
->icq_cache
&& ioc
)
1426 icq
= ioc_lookup_icq(ioc
, q
);
1429 if (blk_queue_io_stat(q
))
1430 rq_flags
|= RQF_IO_STAT
;
1431 spin_unlock_irq(q
->queue_lock
);
1433 /* allocate and init request */
1434 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1439 blk_rq_set_rl(rq
, rl
);
1441 rq
->rq_flags
= rq_flags
;
1442 if (flags
& BLK_MQ_REQ_PREEMPT
)
1443 rq
->rq_flags
|= RQF_PREEMPT
;
1446 if (rq_flags
& RQF_ELVPRIV
) {
1447 if (unlikely(et
->icq_cache
&& !icq
)) {
1449 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1455 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1458 /* @rq->elv.icq holds io_context until @rq is freed */
1460 get_io_context(icq
->ioc
);
1464 * ioc may be NULL here, and ioc_batching will be false. That's
1465 * OK, if the queue is under the request limit then requests need
1466 * not count toward the nr_batch_requests limit. There will always
1467 * be some limit enforced by BLK_BATCH_TIME.
1469 if (ioc_batching(q
, ioc
))
1470 ioc
->nr_batch_requests
--;
1472 trace_block_getrq(q
, bio
, op
);
1477 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1478 * and may fail indefinitely under memory pressure and thus
1479 * shouldn't stall IO. Treat this request as !elvpriv. This will
1480 * disturb iosched and blkcg but weird is bettern than dead.
1482 printk_ratelimited(KERN_WARNING
"%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1483 __func__
, dev_name(q
->backing_dev_info
->dev
));
1485 rq
->rq_flags
&= ~RQF_ELVPRIV
;
1488 spin_lock_irq(q
->queue_lock
);
1489 q
->nr_rqs_elvpriv
--;
1490 spin_unlock_irq(q
->queue_lock
);
1495 * Allocation failed presumably due to memory. Undo anything we
1496 * might have messed up.
1498 * Allocating task should really be put onto the front of the wait
1499 * queue, but this is pretty rare.
1501 spin_lock_irq(q
->queue_lock
);
1502 freed_request(rl
, is_sync
, rq_flags
);
1505 * in the very unlikely event that allocation failed and no
1506 * requests for this direction was pending, mark us starved so that
1507 * freeing of a request in the other direction will notice
1508 * us. another possible fix would be to split the rq mempool into
1512 if (unlikely(rl
->count
[is_sync
] == 0))
1513 rl
->starved
[is_sync
] = 1;
1514 return ERR_PTR(-ENOMEM
);
1518 * get_request - get a free request
1519 * @q: request_queue to allocate request from
1520 * @op: operation and flags
1521 * @bio: bio to allocate request for (can be %NULL)
1522 * @flags: BLK_MQ_REQ_* flags.
1523 * @gfp: allocator flags
1525 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1526 * this function keeps retrying under memory pressure and fails iff @q is dead.
1528 * Must be called with @q->queue_lock held and,
1529 * Returns ERR_PTR on failure, with @q->queue_lock held.
1530 * Returns request pointer on success, with @q->queue_lock *not held*.
1532 static struct request
*get_request(struct request_queue
*q
, unsigned int op
,
1533 struct bio
*bio
, blk_mq_req_flags_t flags
, gfp_t gfp
)
1535 const bool is_sync
= op_is_sync(op
);
1537 struct request_list
*rl
;
1540 lockdep_assert_held(q
->queue_lock
);
1541 WARN_ON_ONCE(q
->mq_ops
);
1543 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1545 rq
= __get_request(rl
, op
, bio
, flags
, gfp
);
1549 if (op
& REQ_NOWAIT
) {
1551 return ERR_PTR(-EAGAIN
);
1554 if ((flags
& BLK_MQ_REQ_NOWAIT
) || unlikely(blk_queue_dying(q
))) {
1559 /* wait on @rl and retry */
1560 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1561 TASK_UNINTERRUPTIBLE
);
1563 trace_block_sleeprq(q
, bio
, op
);
1565 spin_unlock_irq(q
->queue_lock
);
1569 * After sleeping, we become a "batching" process and will be able
1570 * to allocate at least one request, and up to a big batch of them
1571 * for a small period time. See ioc_batching, ioc_set_batching
1573 ioc_set_batching(q
, current
->io_context
);
1575 spin_lock_irq(q
->queue_lock
);
1576 finish_wait(&rl
->wait
[is_sync
], &wait
);
1581 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1582 static struct request
*blk_old_get_request(struct request_queue
*q
,
1583 unsigned int op
, blk_mq_req_flags_t flags
)
1586 gfp_t gfp_mask
= flags
& BLK_MQ_REQ_NOWAIT
? GFP_ATOMIC
: GFP_NOIO
;
1589 WARN_ON_ONCE(q
->mq_ops
);
1591 /* create ioc upfront */
1592 create_io_context(gfp_mask
, q
->node
);
1594 ret
= blk_queue_enter(q
, flags
);
1596 return ERR_PTR(ret
);
1597 spin_lock_irq(q
->queue_lock
);
1598 rq
= get_request(q
, op
, NULL
, flags
, gfp_mask
);
1600 spin_unlock_irq(q
->queue_lock
);
1605 /* q->queue_lock is unlocked at this point */
1607 rq
->__sector
= (sector_t
) -1;
1608 rq
->bio
= rq
->biotail
= NULL
;
1613 * blk_get_request - allocate a request
1614 * @q: request queue to allocate a request for
1615 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1616 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1618 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
1619 blk_mq_req_flags_t flags
)
1621 struct request
*req
;
1623 WARN_ON_ONCE(op
& REQ_NOWAIT
);
1624 WARN_ON_ONCE(flags
& ~(BLK_MQ_REQ_NOWAIT
| BLK_MQ_REQ_PREEMPT
));
1627 req
= blk_mq_alloc_request(q
, op
, flags
);
1628 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
1629 q
->mq_ops
->initialize_rq_fn(req
);
1631 req
= blk_old_get_request(q
, op
, flags
);
1632 if (!IS_ERR(req
) && q
->initialize_rq_fn
)
1633 q
->initialize_rq_fn(req
);
1638 EXPORT_SYMBOL(blk_get_request
);
1641 * blk_requeue_request - put a request back on queue
1642 * @q: request queue where request should be inserted
1643 * @rq: request to be inserted
1646 * Drivers often keep queueing requests until the hardware cannot accept
1647 * more, when that condition happens we need to put the request back
1648 * on the queue. Must be called with queue lock held.
1650 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1652 lockdep_assert_held(q
->queue_lock
);
1653 WARN_ON_ONCE(q
->mq_ops
);
1655 blk_delete_timer(rq
);
1656 blk_clear_rq_complete(rq
);
1657 trace_block_rq_requeue(q
, rq
);
1658 rq_qos_requeue(q
, rq
);
1660 if (rq
->rq_flags
& RQF_QUEUED
)
1661 blk_queue_end_tag(q
, rq
);
1663 BUG_ON(blk_queued_rq(rq
));
1665 elv_requeue_request(q
, rq
);
1667 EXPORT_SYMBOL(blk_requeue_request
);
1669 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1672 blk_account_io_start(rq
, true);
1673 __elv_add_request(q
, rq
, where
);
1676 static void part_round_stats_single(struct request_queue
*q
, int cpu
,
1677 struct hd_struct
*part
, unsigned long now
,
1678 unsigned int inflight
)
1681 __part_stat_add(cpu
, part
, time_in_queue
,
1682 inflight
* (now
- part
->stamp
));
1683 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1689 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1690 * @q: target block queue
1691 * @cpu: cpu number for stats access
1692 * @part: target partition
1694 * The average IO queue length and utilisation statistics are maintained
1695 * by observing the current state of the queue length and the amount of
1696 * time it has been in this state for.
1698 * Normally, that accounting is done on IO completion, but that can result
1699 * in more than a second's worth of IO being accounted for within any one
1700 * second, leading to >100% utilisation. To deal with that, we call this
1701 * function to do a round-off before returning the results when reading
1702 * /proc/diskstats. This accounts immediately for all queue usage up to
1703 * the current jiffies and restarts the counters again.
1705 void part_round_stats(struct request_queue
*q
, int cpu
, struct hd_struct
*part
)
1707 struct hd_struct
*part2
= NULL
;
1708 unsigned long now
= jiffies
;
1709 unsigned int inflight
[2];
1712 if (part
->stamp
!= now
)
1716 part2
= &part_to_disk(part
)->part0
;
1717 if (part2
->stamp
!= now
)
1724 part_in_flight(q
, part
, inflight
);
1727 part_round_stats_single(q
, cpu
, part2
, now
, inflight
[1]);
1729 part_round_stats_single(q
, cpu
, part
, now
, inflight
[0]);
1731 EXPORT_SYMBOL_GPL(part_round_stats
);
1734 static void blk_pm_put_request(struct request
*rq
)
1736 if (rq
->q
->dev
&& !(rq
->rq_flags
& RQF_PM
) && !--rq
->q
->nr_pending
)
1737 pm_runtime_mark_last_busy(rq
->q
->dev
);
1740 static inline void blk_pm_put_request(struct request
*rq
) {}
1743 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1745 req_flags_t rq_flags
= req
->rq_flags
;
1751 blk_mq_free_request(req
);
1755 lockdep_assert_held(q
->queue_lock
);
1757 blk_req_zone_write_unlock(req
);
1758 blk_pm_put_request(req
);
1760 elv_completed_request(q
, req
);
1762 /* this is a bio leak */
1763 WARN_ON(req
->bio
!= NULL
);
1765 rq_qos_done(q
, req
);
1768 * Request may not have originated from ll_rw_blk. if not,
1769 * it didn't come out of our reserved rq pools
1771 if (rq_flags
& RQF_ALLOCED
) {
1772 struct request_list
*rl
= blk_rq_rl(req
);
1773 bool sync
= op_is_sync(req
->cmd_flags
);
1775 BUG_ON(!list_empty(&req
->queuelist
));
1776 BUG_ON(ELV_ON_HASH(req
));
1778 blk_free_request(rl
, req
);
1779 freed_request(rl
, sync
, rq_flags
);
1784 EXPORT_SYMBOL_GPL(__blk_put_request
);
1786 void blk_put_request(struct request
*req
)
1788 struct request_queue
*q
= req
->q
;
1791 blk_mq_free_request(req
);
1793 unsigned long flags
;
1795 spin_lock_irqsave(q
->queue_lock
, flags
);
1796 __blk_put_request(q
, req
);
1797 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1800 EXPORT_SYMBOL(blk_put_request
);
1802 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1805 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1807 if (!ll_back_merge_fn(q
, req
, bio
))
1810 trace_block_bio_backmerge(q
, req
, bio
);
1812 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1813 blk_rq_set_mixed_merge(req
);
1815 req
->biotail
->bi_next
= bio
;
1817 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1818 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1820 blk_account_io_start(req
, false);
1824 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1827 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1829 if (!ll_front_merge_fn(q
, req
, bio
))
1832 trace_block_bio_frontmerge(q
, req
, bio
);
1834 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1835 blk_rq_set_mixed_merge(req
);
1837 bio
->bi_next
= req
->bio
;
1840 req
->__sector
= bio
->bi_iter
.bi_sector
;
1841 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1842 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1844 blk_account_io_start(req
, false);
1848 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
1851 unsigned short segments
= blk_rq_nr_discard_segments(req
);
1853 if (segments
>= queue_max_discard_segments(q
))
1855 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
1856 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
1859 req
->biotail
->bi_next
= bio
;
1861 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1862 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1863 req
->nr_phys_segments
= segments
+ 1;
1865 blk_account_io_start(req
, false);
1868 req_set_nomerge(q
, req
);
1873 * blk_attempt_plug_merge - try to merge with %current's plugged list
1874 * @q: request_queue new bio is being queued at
1875 * @bio: new bio being queued
1876 * @request_count: out parameter for number of traversed plugged requests
1877 * @same_queue_rq: pointer to &struct request that gets filled in when
1878 * another request associated with @q is found on the plug list
1879 * (optional, may be %NULL)
1881 * Determine whether @bio being queued on @q can be merged with a request
1882 * on %current's plugged list. Returns %true if merge was successful,
1885 * Plugging coalesces IOs from the same issuer for the same purpose without
1886 * going through @q->queue_lock. As such it's more of an issuing mechanism
1887 * than scheduling, and the request, while may have elvpriv data, is not
1888 * added on the elevator at this point. In addition, we don't have
1889 * reliable access to the elevator outside queue lock. Only check basic
1890 * merging parameters without querying the elevator.
1892 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1894 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1895 unsigned int *request_count
,
1896 struct request
**same_queue_rq
)
1898 struct blk_plug
*plug
;
1900 struct list_head
*plug_list
;
1902 plug
= current
->plug
;
1908 plug_list
= &plug
->mq_list
;
1910 plug_list
= &plug
->list
;
1912 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1913 bool merged
= false;
1918 * Only blk-mq multiple hardware queues case checks the
1919 * rq in the same queue, there should be only one such
1923 *same_queue_rq
= rq
;
1926 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1929 switch (blk_try_merge(rq
, bio
)) {
1930 case ELEVATOR_BACK_MERGE
:
1931 merged
= bio_attempt_back_merge(q
, rq
, bio
);
1933 case ELEVATOR_FRONT_MERGE
:
1934 merged
= bio_attempt_front_merge(q
, rq
, bio
);
1936 case ELEVATOR_DISCARD_MERGE
:
1937 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
1950 unsigned int blk_plug_queued_count(struct request_queue
*q
)
1952 struct blk_plug
*plug
;
1954 struct list_head
*plug_list
;
1955 unsigned int ret
= 0;
1957 plug
= current
->plug
;
1962 plug_list
= &plug
->mq_list
;
1964 plug_list
= &plug
->list
;
1966 list_for_each_entry(rq
, plug_list
, queuelist
) {
1974 void blk_init_request_from_bio(struct request
*req
, struct bio
*bio
)
1976 struct io_context
*ioc
= rq_ioc(bio
);
1978 if (bio
->bi_opf
& REQ_RAHEAD
)
1979 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1981 req
->__sector
= bio
->bi_iter
.bi_sector
;
1982 if (ioprio_valid(bio_prio(bio
)))
1983 req
->ioprio
= bio_prio(bio
);
1985 req
->ioprio
= ioc
->ioprio
;
1987 req
->ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1988 req
->write_hint
= bio
->bi_write_hint
;
1989 blk_rq_bio_prep(req
->q
, req
, bio
);
1991 EXPORT_SYMBOL_GPL(blk_init_request_from_bio
);
1993 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1995 struct blk_plug
*plug
;
1996 int where
= ELEVATOR_INSERT_SORT
;
1997 struct request
*req
, *free
;
1998 unsigned int request_count
= 0;
2001 * low level driver can indicate that it wants pages above a
2002 * certain limit bounced to low memory (ie for highmem, or even
2003 * ISA dma in theory)
2005 blk_queue_bounce(q
, &bio
);
2007 blk_queue_split(q
, &bio
);
2009 if (!bio_integrity_prep(bio
))
2010 return BLK_QC_T_NONE
;
2012 if (op_is_flush(bio
->bi_opf
)) {
2013 spin_lock_irq(q
->queue_lock
);
2014 where
= ELEVATOR_INSERT_FLUSH
;
2019 * Check if we can merge with the plugged list before grabbing
2022 if (!blk_queue_nomerges(q
)) {
2023 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
2024 return BLK_QC_T_NONE
;
2026 request_count
= blk_plug_queued_count(q
);
2028 spin_lock_irq(q
->queue_lock
);
2030 switch (elv_merge(q
, &req
, bio
)) {
2031 case ELEVATOR_BACK_MERGE
:
2032 if (!bio_attempt_back_merge(q
, req
, bio
))
2034 elv_bio_merged(q
, req
, bio
);
2035 free
= attempt_back_merge(q
, req
);
2037 __blk_put_request(q
, free
);
2039 elv_merged_request(q
, req
, ELEVATOR_BACK_MERGE
);
2041 case ELEVATOR_FRONT_MERGE
:
2042 if (!bio_attempt_front_merge(q
, req
, bio
))
2044 elv_bio_merged(q
, req
, bio
);
2045 free
= attempt_front_merge(q
, req
);
2047 __blk_put_request(q
, free
);
2049 elv_merged_request(q
, req
, ELEVATOR_FRONT_MERGE
);
2056 rq_qos_throttle(q
, bio
, q
->queue_lock
);
2059 * Grab a free request. This is might sleep but can not fail.
2060 * Returns with the queue unlocked.
2062 blk_queue_enter_live(q
);
2063 req
= get_request(q
, bio
->bi_opf
, bio
, 0, GFP_NOIO
);
2066 rq_qos_cleanup(q
, bio
);
2067 if (PTR_ERR(req
) == -ENOMEM
)
2068 bio
->bi_status
= BLK_STS_RESOURCE
;
2070 bio
->bi_status
= BLK_STS_IOERR
;
2075 rq_qos_track(q
, req
, bio
);
2078 * After dropping the lock and possibly sleeping here, our request
2079 * may now be mergeable after it had proven unmergeable (above).
2080 * We don't worry about that case for efficiency. It won't happen
2081 * often, and the elevators are able to handle it.
2083 blk_init_request_from_bio(req
, bio
);
2085 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
2086 req
->cpu
= raw_smp_processor_id();
2088 plug
= current
->plug
;
2091 * If this is the first request added after a plug, fire
2094 * @request_count may become stale because of schedule
2095 * out, so check plug list again.
2097 if (!request_count
|| list_empty(&plug
->list
))
2098 trace_block_plug(q
);
2100 struct request
*last
= list_entry_rq(plug
->list
.prev
);
2101 if (request_count
>= BLK_MAX_REQUEST_COUNT
||
2102 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
) {
2103 blk_flush_plug_list(plug
, false);
2104 trace_block_plug(q
);
2107 list_add_tail(&req
->queuelist
, &plug
->list
);
2108 blk_account_io_start(req
, true);
2110 spin_lock_irq(q
->queue_lock
);
2111 add_acct_request(q
, req
, where
);
2114 spin_unlock_irq(q
->queue_lock
);
2117 return BLK_QC_T_NONE
;
2120 static void handle_bad_sector(struct bio
*bio
, sector_t maxsector
)
2122 char b
[BDEVNAME_SIZE
];
2124 printk(KERN_INFO
"attempt to access beyond end of device\n");
2125 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
2126 bio_devname(bio
, b
), bio
->bi_opf
,
2127 (unsigned long long)bio_end_sector(bio
),
2128 (long long)maxsector
);
2131 #ifdef CONFIG_FAIL_MAKE_REQUEST
2133 static DECLARE_FAULT_ATTR(fail_make_request
);
2135 static int __init
setup_fail_make_request(char *str
)
2137 return setup_fault_attr(&fail_make_request
, str
);
2139 __setup("fail_make_request=", setup_fail_make_request
);
2141 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
2143 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
2146 static int __init
fail_make_request_debugfs(void)
2148 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
2149 NULL
, &fail_make_request
);
2151 return PTR_ERR_OR_ZERO(dir
);
2154 late_initcall(fail_make_request_debugfs
);
2156 #else /* CONFIG_FAIL_MAKE_REQUEST */
2158 static inline bool should_fail_request(struct hd_struct
*part
,
2164 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2166 static inline bool bio_check_ro(struct bio
*bio
, struct hd_struct
*part
)
2168 const int op
= bio_op(bio
);
2170 if (part
->policy
&& op_is_write(op
)) {
2171 char b
[BDEVNAME_SIZE
];
2173 if (op_is_flush(bio
->bi_opf
) && !bio_sectors(bio
))
2177 "generic_make_request: Trying to write "
2178 "to read-only block-device %s (partno %d)\n",
2179 bio_devname(bio
, b
), part
->partno
);
2180 /* Older lvm-tools actually trigger this */
2187 static noinline
int should_fail_bio(struct bio
*bio
)
2189 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
2193 ALLOW_ERROR_INJECTION(should_fail_bio
, ERRNO
);
2196 * Check whether this bio extends beyond the end of the device or partition.
2197 * This may well happen - the kernel calls bread() without checking the size of
2198 * the device, e.g., when mounting a file system.
2200 static inline int bio_check_eod(struct bio
*bio
, sector_t maxsector
)
2202 unsigned int nr_sectors
= bio_sectors(bio
);
2204 if (nr_sectors
&& maxsector
&&
2205 (nr_sectors
> maxsector
||
2206 bio
->bi_iter
.bi_sector
> maxsector
- nr_sectors
)) {
2207 handle_bad_sector(bio
, maxsector
);
2214 * Remap block n of partition p to block n+start(p) of the disk.
2216 static inline int blk_partition_remap(struct bio
*bio
)
2218 struct hd_struct
*p
;
2222 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
2225 if (unlikely(should_fail_request(p
, bio
->bi_iter
.bi_size
)))
2227 if (unlikely(bio_check_ro(bio
, p
)))
2231 * Zone reset does not include bi_size so bio_sectors() is always 0.
2232 * Include a test for the reset op code and perform the remap if needed.
2234 if (bio_sectors(bio
) || bio_op(bio
) == REQ_OP_ZONE_RESET
) {
2235 if (bio_check_eod(bio
, part_nr_sects_read(p
)))
2237 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
2238 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
2239 bio
->bi_iter
.bi_sector
- p
->start_sect
);
2248 static noinline_for_stack
bool
2249 generic_make_request_checks(struct bio
*bio
)
2251 struct request_queue
*q
;
2252 int nr_sectors
= bio_sectors(bio
);
2253 blk_status_t status
= BLK_STS_IOERR
;
2254 char b
[BDEVNAME_SIZE
];
2258 q
= bio
->bi_disk
->queue
;
2261 "generic_make_request: Trying to access "
2262 "nonexistent block-device %s (%Lu)\n",
2263 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
2268 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2269 * if queue is not a request based queue.
2271 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_rq_based(q
))
2274 if (should_fail_bio(bio
))
2277 if (bio
->bi_partno
) {
2278 if (unlikely(blk_partition_remap(bio
)))
2281 if (unlikely(bio_check_ro(bio
, &bio
->bi_disk
->part0
)))
2283 if (unlikely(bio_check_eod(bio
, get_capacity(bio
->bi_disk
))))
2288 * Filter flush bio's early so that make_request based
2289 * drivers without flush support don't have to worry
2292 if (op_is_flush(bio
->bi_opf
) &&
2293 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
2294 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
2296 status
= BLK_STS_OK
;
2301 switch (bio_op(bio
)) {
2302 case REQ_OP_DISCARD
:
2303 if (!blk_queue_discard(q
))
2306 case REQ_OP_SECURE_ERASE
:
2307 if (!blk_queue_secure_erase(q
))
2310 case REQ_OP_WRITE_SAME
:
2311 if (!q
->limits
.max_write_same_sectors
)
2314 case REQ_OP_ZONE_REPORT
:
2315 case REQ_OP_ZONE_RESET
:
2316 if (!blk_queue_is_zoned(q
))
2319 case REQ_OP_WRITE_ZEROES
:
2320 if (!q
->limits
.max_write_zeroes_sectors
)
2328 * Various block parts want %current->io_context and lazy ioc
2329 * allocation ends up trading a lot of pain for a small amount of
2330 * memory. Just allocate it upfront. This may fail and block
2331 * layer knows how to live with it.
2333 create_io_context(GFP_ATOMIC
, q
->node
);
2335 if (!blkcg_bio_issue_check(q
, bio
))
2338 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
2339 trace_block_bio_queue(q
, bio
);
2340 /* Now that enqueuing has been traced, we need to trace
2341 * completion as well.
2343 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
2348 status
= BLK_STS_NOTSUPP
;
2350 bio
->bi_status
= status
;
2356 * generic_make_request - hand a buffer to its device driver for I/O
2357 * @bio: The bio describing the location in memory and on the device.
2359 * generic_make_request() is used to make I/O requests of block
2360 * devices. It is passed a &struct bio, which describes the I/O that needs
2363 * generic_make_request() does not return any status. The
2364 * success/failure status of the request, along with notification of
2365 * completion, is delivered asynchronously through the bio->bi_end_io
2366 * function described (one day) else where.
2368 * The caller of generic_make_request must make sure that bi_io_vec
2369 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2370 * set to describe the device address, and the
2371 * bi_end_io and optionally bi_private are set to describe how
2372 * completion notification should be signaled.
2374 * generic_make_request and the drivers it calls may use bi_next if this
2375 * bio happens to be merged with someone else, and may resubmit the bio to
2376 * a lower device by calling into generic_make_request recursively, which
2377 * means the bio should NOT be touched after the call to ->make_request_fn.
2379 blk_qc_t
generic_make_request(struct bio
*bio
)
2382 * bio_list_on_stack[0] contains bios submitted by the current
2384 * bio_list_on_stack[1] contains bios that were submitted before
2385 * the current make_request_fn, but that haven't been processed
2388 struct bio_list bio_list_on_stack
[2];
2389 blk_mq_req_flags_t flags
= 0;
2390 struct request_queue
*q
= bio
->bi_disk
->queue
;
2391 blk_qc_t ret
= BLK_QC_T_NONE
;
2393 if (bio
->bi_opf
& REQ_NOWAIT
)
2394 flags
= BLK_MQ_REQ_NOWAIT
;
2395 if (bio_flagged(bio
, BIO_QUEUE_ENTERED
))
2396 blk_queue_enter_live(q
);
2397 else if (blk_queue_enter(q
, flags
) < 0) {
2398 if (!blk_queue_dying(q
) && (bio
->bi_opf
& REQ_NOWAIT
))
2399 bio_wouldblock_error(bio
);
2405 if (!generic_make_request_checks(bio
))
2409 * We only want one ->make_request_fn to be active at a time, else
2410 * stack usage with stacked devices could be a problem. So use
2411 * current->bio_list to keep a list of requests submited by a
2412 * make_request_fn function. current->bio_list is also used as a
2413 * flag to say if generic_make_request is currently active in this
2414 * task or not. If it is NULL, then no make_request is active. If
2415 * it is non-NULL, then a make_request is active, and new requests
2416 * should be added at the tail
2418 if (current
->bio_list
) {
2419 bio_list_add(¤t
->bio_list
[0], bio
);
2423 /* following loop may be a bit non-obvious, and so deserves some
2425 * Before entering the loop, bio->bi_next is NULL (as all callers
2426 * ensure that) so we have a list with a single bio.
2427 * We pretend that we have just taken it off a longer list, so
2428 * we assign bio_list to a pointer to the bio_list_on_stack,
2429 * thus initialising the bio_list of new bios to be
2430 * added. ->make_request() may indeed add some more bios
2431 * through a recursive call to generic_make_request. If it
2432 * did, we find a non-NULL value in bio_list and re-enter the loop
2433 * from the top. In this case we really did just take the bio
2434 * of the top of the list (no pretending) and so remove it from
2435 * bio_list, and call into ->make_request() again.
2437 BUG_ON(bio
->bi_next
);
2438 bio_list_init(&bio_list_on_stack
[0]);
2439 current
->bio_list
= bio_list_on_stack
;
2441 bool enter_succeeded
= true;
2443 if (unlikely(q
!= bio
->bi_disk
->queue
)) {
2446 q
= bio
->bi_disk
->queue
;
2448 if (bio
->bi_opf
& REQ_NOWAIT
)
2449 flags
= BLK_MQ_REQ_NOWAIT
;
2450 if (blk_queue_enter(q
, flags
) < 0)
2451 enter_succeeded
= false;
2454 if (enter_succeeded
) {
2455 struct bio_list lower
, same
;
2457 /* Create a fresh bio_list for all subordinate requests */
2458 bio_list_on_stack
[1] = bio_list_on_stack
[0];
2459 bio_list_init(&bio_list_on_stack
[0]);
2460 ret
= q
->make_request_fn(q
, bio
);
2462 /* sort new bios into those for a lower level
2463 * and those for the same level
2465 bio_list_init(&lower
);
2466 bio_list_init(&same
);
2467 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
2468 if (q
== bio
->bi_disk
->queue
)
2469 bio_list_add(&same
, bio
);
2471 bio_list_add(&lower
, bio
);
2472 /* now assemble so we handle the lowest level first */
2473 bio_list_merge(&bio_list_on_stack
[0], &lower
);
2474 bio_list_merge(&bio_list_on_stack
[0], &same
);
2475 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
2477 if (unlikely(!blk_queue_dying(q
) &&
2478 (bio
->bi_opf
& REQ_NOWAIT
)))
2479 bio_wouldblock_error(bio
);
2484 bio
= bio_list_pop(&bio_list_on_stack
[0]);
2486 current
->bio_list
= NULL
; /* deactivate */
2493 EXPORT_SYMBOL(generic_make_request
);
2496 * direct_make_request - hand a buffer directly to its device driver for I/O
2497 * @bio: The bio describing the location in memory and on the device.
2499 * This function behaves like generic_make_request(), but does not protect
2500 * against recursion. Must only be used if the called driver is known
2501 * to not call generic_make_request (or direct_make_request) again from
2502 * its make_request function. (Calling direct_make_request again from
2503 * a workqueue is perfectly fine as that doesn't recurse).
2505 blk_qc_t
direct_make_request(struct bio
*bio
)
2507 struct request_queue
*q
= bio
->bi_disk
->queue
;
2508 bool nowait
= bio
->bi_opf
& REQ_NOWAIT
;
2511 if (!generic_make_request_checks(bio
))
2512 return BLK_QC_T_NONE
;
2514 if (unlikely(blk_queue_enter(q
, nowait
? BLK_MQ_REQ_NOWAIT
: 0))) {
2515 if (nowait
&& !blk_queue_dying(q
))
2516 bio
->bi_status
= BLK_STS_AGAIN
;
2518 bio
->bi_status
= BLK_STS_IOERR
;
2520 return BLK_QC_T_NONE
;
2523 ret
= q
->make_request_fn(q
, bio
);
2527 EXPORT_SYMBOL_GPL(direct_make_request
);
2530 * submit_bio - submit a bio to the block device layer for I/O
2531 * @bio: The &struct bio which describes the I/O
2533 * submit_bio() is very similar in purpose to generic_make_request(), and
2534 * uses that function to do most of the work. Both are fairly rough
2535 * interfaces; @bio must be presetup and ready for I/O.
2538 blk_qc_t
submit_bio(struct bio
*bio
)
2541 * If it's a regular read/write or a barrier with data attached,
2542 * go through the normal accounting stuff before submission.
2544 if (bio_has_data(bio
)) {
2547 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
2548 count
= queue_logical_block_size(bio
->bi_disk
->queue
) >> 9;
2550 count
= bio_sectors(bio
);
2552 if (op_is_write(bio_op(bio
))) {
2553 count_vm_events(PGPGOUT
, count
);
2555 task_io_account_read(bio
->bi_iter
.bi_size
);
2556 count_vm_events(PGPGIN
, count
);
2559 if (unlikely(block_dump
)) {
2560 char b
[BDEVNAME_SIZE
];
2561 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
2562 current
->comm
, task_pid_nr(current
),
2563 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
2564 (unsigned long long)bio
->bi_iter
.bi_sector
,
2565 bio_devname(bio
, b
), count
);
2569 return generic_make_request(bio
);
2571 EXPORT_SYMBOL(submit_bio
);
2573 bool blk_poll(struct request_queue
*q
, blk_qc_t cookie
)
2575 if (!q
->poll_fn
|| !blk_qc_t_valid(cookie
))
2579 blk_flush_plug_list(current
->plug
, false);
2580 return q
->poll_fn(q
, cookie
);
2582 EXPORT_SYMBOL_GPL(blk_poll
);
2585 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2586 * for new the queue limits
2588 * @rq: the request being checked
2591 * @rq may have been made based on weaker limitations of upper-level queues
2592 * in request stacking drivers, and it may violate the limitation of @q.
2593 * Since the block layer and the underlying device driver trust @rq
2594 * after it is inserted to @q, it should be checked against @q before
2595 * the insertion using this generic function.
2597 * Request stacking drivers like request-based dm may change the queue
2598 * limits when retrying requests on other queues. Those requests need
2599 * to be checked against the new queue limits again during dispatch.
2601 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
2604 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
2605 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2610 * queue's settings related to segment counting like q->bounce_pfn
2611 * may differ from that of other stacking queues.
2612 * Recalculate it to check the request correctly on this queue's
2615 blk_recalc_rq_segments(rq
);
2616 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2617 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2625 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2626 * @q: the queue to submit the request
2627 * @rq: the request being queued
2629 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2631 unsigned long flags
;
2632 int where
= ELEVATOR_INSERT_BACK
;
2634 if (blk_cloned_rq_check_limits(q
, rq
))
2635 return BLK_STS_IOERR
;
2638 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2639 return BLK_STS_IOERR
;
2642 if (blk_queue_io_stat(q
))
2643 blk_account_io_start(rq
, true);
2645 * Since we have a scheduler attached on the top device,
2646 * bypass a potential scheduler on the bottom device for
2649 return blk_mq_request_issue_directly(rq
);
2652 spin_lock_irqsave(q
->queue_lock
, flags
);
2653 if (unlikely(blk_queue_dying(q
))) {
2654 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2655 return BLK_STS_IOERR
;
2659 * Submitting request must be dequeued before calling this function
2660 * because it will be linked to another request_queue
2662 BUG_ON(blk_queued_rq(rq
));
2664 if (op_is_flush(rq
->cmd_flags
))
2665 where
= ELEVATOR_INSERT_FLUSH
;
2667 add_acct_request(q
, rq
, where
);
2668 if (where
== ELEVATOR_INSERT_FLUSH
)
2670 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2674 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2677 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2678 * @rq: request to examine
2681 * A request could be merge of IOs which require different failure
2682 * handling. This function determines the number of bytes which
2683 * can be failed from the beginning of the request without
2684 * crossing into area which need to be retried further.
2687 * The number of bytes to fail.
2689 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2691 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2692 unsigned int bytes
= 0;
2695 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
2696 return blk_rq_bytes(rq
);
2699 * Currently the only 'mixing' which can happen is between
2700 * different fastfail types. We can safely fail portions
2701 * which have all the failfast bits that the first one has -
2702 * the ones which are at least as eager to fail as the first
2705 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2706 if ((bio
->bi_opf
& ff
) != ff
)
2708 bytes
+= bio
->bi_iter
.bi_size
;
2711 /* this could lead to infinite loop */
2712 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2715 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2717 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2719 if (blk_do_io_stat(req
)) {
2720 const int sgrp
= op_stat_group(req_op(req
));
2721 struct hd_struct
*part
;
2724 cpu
= part_stat_lock();
2726 part_stat_add(cpu
, part
, sectors
[sgrp
], bytes
>> 9);
2731 void blk_account_io_done(struct request
*req
, u64 now
)
2734 * Account IO completion. flush_rq isn't accounted as a
2735 * normal IO on queueing nor completion. Accounting the
2736 * containing request is enough.
2738 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
2739 const int sgrp
= op_stat_group(req_op(req
));
2740 struct hd_struct
*part
;
2743 cpu
= part_stat_lock();
2746 part_stat_inc(cpu
, part
, ios
[sgrp
]);
2747 part_stat_add(cpu
, part
, nsecs
[sgrp
], now
- req
->start_time_ns
);
2748 part_round_stats(req
->q
, cpu
, part
);
2749 part_dec_in_flight(req
->q
, part
, rq_data_dir(req
));
2751 hd_struct_put(part
);
2758 * Don't process normal requests when queue is suspended
2759 * or in the process of suspending/resuming
2761 static bool blk_pm_allow_request(struct request
*rq
)
2763 switch (rq
->q
->rpm_status
) {
2765 case RPM_SUSPENDING
:
2766 return rq
->rq_flags
& RQF_PM
;
2774 static bool blk_pm_allow_request(struct request
*rq
)
2780 void blk_account_io_start(struct request
*rq
, bool new_io
)
2782 struct hd_struct
*part
;
2783 int rw
= rq_data_dir(rq
);
2786 if (!blk_do_io_stat(rq
))
2789 cpu
= part_stat_lock();
2793 part_stat_inc(cpu
, part
, merges
[rw
]);
2795 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2796 if (!hd_struct_try_get(part
)) {
2798 * The partition is already being removed,
2799 * the request will be accounted on the disk only
2801 * We take a reference on disk->part0 although that
2802 * partition will never be deleted, so we can treat
2803 * it as any other partition.
2805 part
= &rq
->rq_disk
->part0
;
2806 hd_struct_get(part
);
2808 part_round_stats(rq
->q
, cpu
, part
);
2809 part_inc_in_flight(rq
->q
, part
, rw
);
2816 static struct request
*elv_next_request(struct request_queue
*q
)
2819 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
2821 WARN_ON_ONCE(q
->mq_ops
);
2824 list_for_each_entry(rq
, &q
->queue_head
, queuelist
) {
2825 if (blk_pm_allow_request(rq
))
2828 if (rq
->rq_flags
& RQF_SOFTBARRIER
)
2833 * Flush request is running and flush request isn't queueable
2834 * in the drive, we can hold the queue till flush request is
2835 * finished. Even we don't do this, driver can't dispatch next
2836 * requests and will requeue them. And this can improve
2837 * throughput too. For example, we have request flush1, write1,
2838 * flush 2. flush1 is dispatched, then queue is hold, write1
2839 * isn't inserted to queue. After flush1 is finished, flush2
2840 * will be dispatched. Since disk cache is already clean,
2841 * flush2 will be finished very soon, so looks like flush2 is
2843 * Since the queue is hold, a flag is set to indicate the queue
2844 * should be restarted later. Please see flush_end_io() for
2847 if (fq
->flush_pending_idx
!= fq
->flush_running_idx
&&
2848 !queue_flush_queueable(q
)) {
2849 fq
->flush_queue_delayed
= 1;
2852 if (unlikely(blk_queue_bypass(q
)) ||
2853 !q
->elevator
->type
->ops
.sq
.elevator_dispatch_fn(q
, 0))
2859 * blk_peek_request - peek at the top of a request queue
2860 * @q: request queue to peek at
2863 * Return the request at the top of @q. The returned request
2864 * should be started using blk_start_request() before LLD starts
2868 * Pointer to the request at the top of @q if available. Null
2871 struct request
*blk_peek_request(struct request_queue
*q
)
2876 lockdep_assert_held(q
->queue_lock
);
2877 WARN_ON_ONCE(q
->mq_ops
);
2879 while ((rq
= elv_next_request(q
)) != NULL
) {
2880 if (!(rq
->rq_flags
& RQF_STARTED
)) {
2882 * This is the first time the device driver
2883 * sees this request (possibly after
2884 * requeueing). Notify IO scheduler.
2886 if (rq
->rq_flags
& RQF_SORTED
)
2887 elv_activate_rq(q
, rq
);
2890 * just mark as started even if we don't start
2891 * it, a request that has been delayed should
2892 * not be passed by new incoming requests
2894 rq
->rq_flags
|= RQF_STARTED
;
2895 trace_block_rq_issue(q
, rq
);
2898 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2899 q
->end_sector
= rq_end_sector(rq
);
2900 q
->boundary_rq
= NULL
;
2903 if (rq
->rq_flags
& RQF_DONTPREP
)
2906 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2908 * make sure space for the drain appears we
2909 * know we can do this because max_hw_segments
2910 * has been adjusted to be one fewer than the
2913 rq
->nr_phys_segments
++;
2919 ret
= q
->prep_rq_fn(q
, rq
);
2920 if (ret
== BLKPREP_OK
) {
2922 } else if (ret
== BLKPREP_DEFER
) {
2924 * the request may have been (partially) prepped.
2925 * we need to keep this request in the front to
2926 * avoid resource deadlock. RQF_STARTED will
2927 * prevent other fs requests from passing this one.
2929 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2930 !(rq
->rq_flags
& RQF_DONTPREP
)) {
2932 * remove the space for the drain we added
2933 * so that we don't add it again
2935 --rq
->nr_phys_segments
;
2940 } else if (ret
== BLKPREP_KILL
|| ret
== BLKPREP_INVALID
) {
2941 rq
->rq_flags
|= RQF_QUIET
;
2943 * Mark this request as started so we don't trigger
2944 * any debug logic in the end I/O path.
2946 blk_start_request(rq
);
2947 __blk_end_request_all(rq
, ret
== BLKPREP_INVALID
?
2948 BLK_STS_TARGET
: BLK_STS_IOERR
);
2950 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2957 EXPORT_SYMBOL(blk_peek_request
);
2959 static void blk_dequeue_request(struct request
*rq
)
2961 struct request_queue
*q
= rq
->q
;
2963 BUG_ON(list_empty(&rq
->queuelist
));
2964 BUG_ON(ELV_ON_HASH(rq
));
2966 list_del_init(&rq
->queuelist
);
2969 * the time frame between a request being removed from the lists
2970 * and to it is freed is accounted as io that is in progress at
2973 if (blk_account_rq(rq
))
2974 q
->in_flight
[rq_is_sync(rq
)]++;
2978 * blk_start_request - start request processing on the driver
2979 * @req: request to dequeue
2982 * Dequeue @req and start timeout timer on it. This hands off the
2983 * request to the driver.
2985 void blk_start_request(struct request
*req
)
2987 lockdep_assert_held(req
->q
->queue_lock
);
2988 WARN_ON_ONCE(req
->q
->mq_ops
);
2990 blk_dequeue_request(req
);
2992 if (test_bit(QUEUE_FLAG_STATS
, &req
->q
->queue_flags
)) {
2993 req
->io_start_time_ns
= ktime_get_ns();
2994 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2995 req
->throtl_size
= blk_rq_sectors(req
);
2997 req
->rq_flags
|= RQF_STATS
;
2998 rq_qos_issue(req
->q
, req
);
3001 BUG_ON(blk_rq_is_complete(req
));
3004 EXPORT_SYMBOL(blk_start_request
);
3007 * blk_fetch_request - fetch a request from a request queue
3008 * @q: request queue to fetch a request from
3011 * Return the request at the top of @q. The request is started on
3012 * return and LLD can start processing it immediately.
3015 * Pointer to the request at the top of @q if available. Null
3018 struct request
*blk_fetch_request(struct request_queue
*q
)
3022 lockdep_assert_held(q
->queue_lock
);
3023 WARN_ON_ONCE(q
->mq_ops
);
3025 rq
= blk_peek_request(q
);
3027 blk_start_request(rq
);
3030 EXPORT_SYMBOL(blk_fetch_request
);
3033 * Steal bios from a request and add them to a bio list.
3034 * The request must not have been partially completed before.
3036 void blk_steal_bios(struct bio_list
*list
, struct request
*rq
)
3040 list
->tail
->bi_next
= rq
->bio
;
3042 list
->head
= rq
->bio
;
3043 list
->tail
= rq
->biotail
;
3051 EXPORT_SYMBOL_GPL(blk_steal_bios
);
3054 * blk_update_request - Special helper function for request stacking drivers
3055 * @req: the request being processed
3056 * @error: block status code
3057 * @nr_bytes: number of bytes to complete @req
3060 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3061 * the request structure even if @req doesn't have leftover.
3062 * If @req has leftover, sets it up for the next range of segments.
3064 * This special helper function is only for request stacking drivers
3065 * (e.g. request-based dm) so that they can handle partial completion.
3066 * Actual device drivers should use blk_end_request instead.
3068 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3069 * %false return from this function.
3072 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3073 * blk_rq_bytes() and in blk_update_request().
3076 * %false - this request doesn't have any more data
3077 * %true - this request has more data
3079 bool blk_update_request(struct request
*req
, blk_status_t error
,
3080 unsigned int nr_bytes
)
3084 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
3089 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
3090 !(req
->rq_flags
& RQF_QUIET
)))
3091 print_req_error(req
, error
);
3093 blk_account_io_completion(req
, nr_bytes
);
3097 struct bio
*bio
= req
->bio
;
3098 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
3100 if (bio_bytes
== bio
->bi_iter
.bi_size
)
3101 req
->bio
= bio
->bi_next
;
3103 /* Completion has already been traced */
3104 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
3105 req_bio_endio(req
, bio
, bio_bytes
, error
);
3107 total_bytes
+= bio_bytes
;
3108 nr_bytes
-= bio_bytes
;
3119 * Reset counters so that the request stacking driver
3120 * can find how many bytes remain in the request
3123 req
->__data_len
= 0;
3127 req
->__data_len
-= total_bytes
;
3129 /* update sector only for requests with clear definition of sector */
3130 if (!blk_rq_is_passthrough(req
))
3131 req
->__sector
+= total_bytes
>> 9;
3133 /* mixed attributes always follow the first bio */
3134 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
3135 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
3136 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
3139 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
3141 * If total number of sectors is less than the first segment
3142 * size, something has gone terribly wrong.
3144 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
3145 blk_dump_rq_flags(req
, "request botched");
3146 req
->__data_len
= blk_rq_cur_bytes(req
);
3149 /* recalculate the number of segments */
3150 blk_recalc_rq_segments(req
);
3155 EXPORT_SYMBOL_GPL(blk_update_request
);
3157 static bool blk_update_bidi_request(struct request
*rq
, blk_status_t error
,
3158 unsigned int nr_bytes
,
3159 unsigned int bidi_bytes
)
3161 if (blk_update_request(rq
, error
, nr_bytes
))
3164 /* Bidi request must be completed as a whole */
3165 if (unlikely(blk_bidi_rq(rq
)) &&
3166 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
3169 if (blk_queue_add_random(rq
->q
))
3170 add_disk_randomness(rq
->rq_disk
);
3176 * blk_unprep_request - unprepare a request
3179 * This function makes a request ready for complete resubmission (or
3180 * completion). It happens only after all error handling is complete,
3181 * so represents the appropriate moment to deallocate any resources
3182 * that were allocated to the request in the prep_rq_fn. The queue
3183 * lock is held when calling this.
3185 void blk_unprep_request(struct request
*req
)
3187 struct request_queue
*q
= req
->q
;
3189 req
->rq_flags
&= ~RQF_DONTPREP
;
3190 if (q
->unprep_rq_fn
)
3191 q
->unprep_rq_fn(q
, req
);
3193 EXPORT_SYMBOL_GPL(blk_unprep_request
);
3195 void blk_finish_request(struct request
*req
, blk_status_t error
)
3197 struct request_queue
*q
= req
->q
;
3198 u64 now
= ktime_get_ns();
3200 lockdep_assert_held(req
->q
->queue_lock
);
3201 WARN_ON_ONCE(q
->mq_ops
);
3203 if (req
->rq_flags
& RQF_STATS
)
3204 blk_stat_add(req
, now
);
3206 if (req
->rq_flags
& RQF_QUEUED
)
3207 blk_queue_end_tag(q
, req
);
3209 BUG_ON(blk_queued_rq(req
));
3211 if (unlikely(laptop_mode
) && !blk_rq_is_passthrough(req
))
3212 laptop_io_completion(req
->q
->backing_dev_info
);
3214 blk_delete_timer(req
);
3216 if (req
->rq_flags
& RQF_DONTPREP
)
3217 blk_unprep_request(req
);
3219 blk_account_io_done(req
, now
);
3222 rq_qos_done(q
, req
);
3223 req
->end_io(req
, error
);
3225 if (blk_bidi_rq(req
))
3226 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
3228 __blk_put_request(q
, req
);
3231 EXPORT_SYMBOL(blk_finish_request
);
3234 * blk_end_bidi_request - Complete a bidi request
3235 * @rq: the request to complete
3236 * @error: block status code
3237 * @nr_bytes: number of bytes to complete @rq
3238 * @bidi_bytes: number of bytes to complete @rq->next_rq
3241 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3242 * Drivers that supports bidi can safely call this member for any
3243 * type of request, bidi or uni. In the later case @bidi_bytes is
3247 * %false - we are done with this request
3248 * %true - still buffers pending for this request
3250 static bool blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3251 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3253 struct request_queue
*q
= rq
->q
;
3254 unsigned long flags
;
3256 WARN_ON_ONCE(q
->mq_ops
);
3258 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3261 spin_lock_irqsave(q
->queue_lock
, flags
);
3262 blk_finish_request(rq
, error
);
3263 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3269 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3270 * @rq: the request to complete
3271 * @error: block status code
3272 * @nr_bytes: number of bytes to complete @rq
3273 * @bidi_bytes: number of bytes to complete @rq->next_rq
3276 * Identical to blk_end_bidi_request() except that queue lock is
3277 * assumed to be locked on entry and remains so on return.
3280 * %false - we are done with this request
3281 * %true - still buffers pending for this request
3283 static bool __blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
3284 unsigned int nr_bytes
, unsigned int bidi_bytes
)
3286 lockdep_assert_held(rq
->q
->queue_lock
);
3287 WARN_ON_ONCE(rq
->q
->mq_ops
);
3289 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
3292 blk_finish_request(rq
, error
);
3298 * blk_end_request - Helper function for drivers to complete the request.
3299 * @rq: the request being processed
3300 * @error: block status code
3301 * @nr_bytes: number of bytes to complete
3304 * Ends I/O on a number of bytes attached to @rq.
3305 * If @rq has leftover, sets it up for the next range of segments.
3308 * %false - we are done with this request
3309 * %true - still buffers pending for this request
3311 bool blk_end_request(struct request
*rq
, blk_status_t error
,
3312 unsigned int nr_bytes
)
3314 WARN_ON_ONCE(rq
->q
->mq_ops
);
3315 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3317 EXPORT_SYMBOL(blk_end_request
);
3320 * blk_end_request_all - Helper function for drives to finish the request.
3321 * @rq: the request to finish
3322 * @error: block status code
3325 * Completely finish @rq.
3327 void blk_end_request_all(struct request
*rq
, blk_status_t error
)
3330 unsigned int bidi_bytes
= 0;
3332 if (unlikely(blk_bidi_rq(rq
)))
3333 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3335 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3338 EXPORT_SYMBOL(blk_end_request_all
);
3341 * __blk_end_request - Helper function for drivers to complete the request.
3342 * @rq: the request being processed
3343 * @error: block status code
3344 * @nr_bytes: number of bytes to complete
3347 * Must be called with queue lock held unlike blk_end_request().
3350 * %false - we are done with this request
3351 * %true - still buffers pending for this request
3353 bool __blk_end_request(struct request
*rq
, blk_status_t error
,
3354 unsigned int nr_bytes
)
3356 lockdep_assert_held(rq
->q
->queue_lock
);
3357 WARN_ON_ONCE(rq
->q
->mq_ops
);
3359 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
3361 EXPORT_SYMBOL(__blk_end_request
);
3364 * __blk_end_request_all - Helper function for drives to finish the request.
3365 * @rq: the request to finish
3366 * @error: block status code
3369 * Completely finish @rq. Must be called with queue lock held.
3371 void __blk_end_request_all(struct request
*rq
, blk_status_t error
)
3374 unsigned int bidi_bytes
= 0;
3376 lockdep_assert_held(rq
->q
->queue_lock
);
3377 WARN_ON_ONCE(rq
->q
->mq_ops
);
3379 if (unlikely(blk_bidi_rq(rq
)))
3380 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3382 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3385 EXPORT_SYMBOL(__blk_end_request_all
);
3388 * __blk_end_request_cur - Helper function to finish the current request chunk.
3389 * @rq: the request to finish the current chunk for
3390 * @error: block status code
3393 * Complete the current consecutively mapped chunk from @rq. Must
3394 * be called with queue lock held.
3397 * %false - we are done with this request
3398 * %true - still buffers pending for this request
3400 bool __blk_end_request_cur(struct request
*rq
, blk_status_t error
)
3402 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
3404 EXPORT_SYMBOL(__blk_end_request_cur
);
3406 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3409 if (bio_has_data(bio
))
3410 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3411 else if (bio_op(bio
) == REQ_OP_DISCARD
)
3412 rq
->nr_phys_segments
= 1;
3414 rq
->__data_len
= bio
->bi_iter
.bi_size
;
3415 rq
->bio
= rq
->biotail
= bio
;
3418 rq
->rq_disk
= bio
->bi_disk
;
3421 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3423 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3424 * @rq: the request to be flushed
3427 * Flush all pages in @rq.
3429 void rq_flush_dcache_pages(struct request
*rq
)
3431 struct req_iterator iter
;
3432 struct bio_vec bvec
;
3434 rq_for_each_segment(bvec
, rq
, iter
)
3435 flush_dcache_page(bvec
.bv_page
);
3437 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
3441 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3442 * @q : the queue of the device being checked
3445 * Check if underlying low-level drivers of a device are busy.
3446 * If the drivers want to export their busy state, they must set own
3447 * exporting function using blk_queue_lld_busy() first.
3449 * Basically, this function is used only by request stacking drivers
3450 * to stop dispatching requests to underlying devices when underlying
3451 * devices are busy. This behavior helps more I/O merging on the queue
3452 * of the request stacking driver and prevents I/O throughput regression
3453 * on burst I/O load.
3456 * 0 - Not busy (The request stacking driver should dispatch request)
3457 * 1 - Busy (The request stacking driver should stop dispatching request)
3459 int blk_lld_busy(struct request_queue
*q
)
3462 return q
->lld_busy_fn(q
);
3466 EXPORT_SYMBOL_GPL(blk_lld_busy
);
3469 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3470 * @rq: the clone request to be cleaned up
3473 * Free all bios in @rq for a cloned request.
3475 void blk_rq_unprep_clone(struct request
*rq
)
3479 while ((bio
= rq
->bio
) != NULL
) {
3480 rq
->bio
= bio
->bi_next
;
3485 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3488 * Copy attributes of the original request to the clone request.
3489 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3491 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
3493 dst
->cpu
= src
->cpu
;
3494 dst
->__sector
= blk_rq_pos(src
);
3495 dst
->__data_len
= blk_rq_bytes(src
);
3496 if (src
->rq_flags
& RQF_SPECIAL_PAYLOAD
) {
3497 dst
->rq_flags
|= RQF_SPECIAL_PAYLOAD
;
3498 dst
->special_vec
= src
->special_vec
;
3500 dst
->nr_phys_segments
= src
->nr_phys_segments
;
3501 dst
->ioprio
= src
->ioprio
;
3502 dst
->extra_len
= src
->extra_len
;
3506 * blk_rq_prep_clone - Helper function to setup clone request
3507 * @rq: the request to be setup
3508 * @rq_src: original request to be cloned
3509 * @bs: bio_set that bios for clone are allocated from
3510 * @gfp_mask: memory allocation mask for bio
3511 * @bio_ctr: setup function to be called for each clone bio.
3512 * Returns %0 for success, non %0 for failure.
3513 * @data: private data to be passed to @bio_ctr
3516 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3517 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3518 * are not copied, and copying such parts is the caller's responsibility.
3519 * Also, pages which the original bios are pointing to are not copied
3520 * and the cloned bios just point same pages.
3521 * So cloned bios must be completed before original bios, which means
3522 * the caller must complete @rq before @rq_src.
3524 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3525 struct bio_set
*bs
, gfp_t gfp_mask
,
3526 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3529 struct bio
*bio
, *bio_src
;
3534 __rq_for_each_bio(bio_src
, rq_src
) {
3535 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
3539 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3543 rq
->biotail
->bi_next
= bio
;
3546 rq
->bio
= rq
->biotail
= bio
;
3549 __blk_rq_prep_clone(rq
, rq_src
);
3556 blk_rq_unprep_clone(rq
);
3560 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3562 int kblockd_schedule_work(struct work_struct
*work
)
3564 return queue_work(kblockd_workqueue
, work
);
3566 EXPORT_SYMBOL(kblockd_schedule_work
);
3568 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
3570 return queue_work_on(cpu
, kblockd_workqueue
, work
);
3572 EXPORT_SYMBOL(kblockd_schedule_work_on
);
3574 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3575 unsigned long delay
)
3577 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3579 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
3582 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3583 * @plug: The &struct blk_plug that needs to be initialized
3586 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3587 * pending I/O should the task end up blocking between blk_start_plug() and
3588 * blk_finish_plug(). This is important from a performance perspective, but
3589 * also ensures that we don't deadlock. For instance, if the task is blocking
3590 * for a memory allocation, memory reclaim could end up wanting to free a
3591 * page belonging to that request that is currently residing in our private
3592 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3593 * this kind of deadlock.
3595 void blk_start_plug(struct blk_plug
*plug
)
3597 struct task_struct
*tsk
= current
;
3600 * If this is a nested plug, don't actually assign it.
3605 INIT_LIST_HEAD(&plug
->list
);
3606 INIT_LIST_HEAD(&plug
->mq_list
);
3607 INIT_LIST_HEAD(&plug
->cb_list
);
3609 * Store ordering should not be needed here, since a potential
3610 * preempt will imply a full memory barrier
3614 EXPORT_SYMBOL(blk_start_plug
);
3616 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3618 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3619 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3621 return !(rqa
->q
< rqb
->q
||
3622 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3626 * If 'from_schedule' is true, then postpone the dispatch of requests
3627 * until a safe kblockd context. We due this to avoid accidental big
3628 * additional stack usage in driver dispatch, in places where the originally
3629 * plugger did not intend it.
3631 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3633 __releases(q
->queue_lock
)
3635 lockdep_assert_held(q
->queue_lock
);
3637 trace_block_unplug(q
, depth
, !from_schedule
);
3640 blk_run_queue_async(q
);
3643 spin_unlock_irq(q
->queue_lock
);
3646 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3648 LIST_HEAD(callbacks
);
3650 while (!list_empty(&plug
->cb_list
)) {
3651 list_splice_init(&plug
->cb_list
, &callbacks
);
3653 while (!list_empty(&callbacks
)) {
3654 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3657 list_del(&cb
->list
);
3658 cb
->callback(cb
, from_schedule
);
3663 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3666 struct blk_plug
*plug
= current
->plug
;
3667 struct blk_plug_cb
*cb
;
3672 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3673 if (cb
->callback
== unplug
&& cb
->data
== data
)
3676 /* Not currently on the callback list */
3677 BUG_ON(size
< sizeof(*cb
));
3678 cb
= kzalloc(size
, GFP_ATOMIC
);
3681 cb
->callback
= unplug
;
3682 list_add(&cb
->list
, &plug
->cb_list
);
3686 EXPORT_SYMBOL(blk_check_plugged
);
3688 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3690 struct request_queue
*q
;
3695 flush_plug_callbacks(plug
, from_schedule
);
3697 if (!list_empty(&plug
->mq_list
))
3698 blk_mq_flush_plug_list(plug
, from_schedule
);
3700 if (list_empty(&plug
->list
))
3703 list_splice_init(&plug
->list
, &list
);
3705 list_sort(NULL
, &list
, plug_rq_cmp
);
3710 while (!list_empty(&list
)) {
3711 rq
= list_entry_rq(list
.next
);
3712 list_del_init(&rq
->queuelist
);
3716 * This drops the queue lock
3719 queue_unplugged(q
, depth
, from_schedule
);
3722 spin_lock_irq(q
->queue_lock
);
3726 * Short-circuit if @q is dead
3728 if (unlikely(blk_queue_dying(q
))) {
3729 __blk_end_request_all(rq
, BLK_STS_IOERR
);
3734 * rq is already accounted, so use raw insert
3736 if (op_is_flush(rq
->cmd_flags
))
3737 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3739 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3745 * This drops the queue lock
3748 queue_unplugged(q
, depth
, from_schedule
);
3751 void blk_finish_plug(struct blk_plug
*plug
)
3753 if (plug
!= current
->plug
)
3755 blk_flush_plug_list(plug
, false);
3757 current
->plug
= NULL
;
3759 EXPORT_SYMBOL(blk_finish_plug
);
3763 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3764 * @q: the queue of the device
3765 * @dev: the device the queue belongs to
3768 * Initialize runtime-PM-related fields for @q and start auto suspend for
3769 * @dev. Drivers that want to take advantage of request-based runtime PM
3770 * should call this function after @dev has been initialized, and its
3771 * request queue @q has been allocated, and runtime PM for it can not happen
3772 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3773 * cases, driver should call this function before any I/O has taken place.
3775 * This function takes care of setting up using auto suspend for the device,
3776 * the autosuspend delay is set to -1 to make runtime suspend impossible
3777 * until an updated value is either set by user or by driver. Drivers do
3778 * not need to touch other autosuspend settings.
3780 * The block layer runtime PM is request based, so only works for drivers
3781 * that use request as their IO unit instead of those directly use bio's.
3783 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3785 /* Don't enable runtime PM for blk-mq until it is ready */
3787 pm_runtime_disable(dev
);
3792 q
->rpm_status
= RPM_ACTIVE
;
3793 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3794 pm_runtime_use_autosuspend(q
->dev
);
3796 EXPORT_SYMBOL(blk_pm_runtime_init
);
3799 * blk_pre_runtime_suspend - Pre runtime suspend check
3800 * @q: the queue of the device
3803 * This function will check if runtime suspend is allowed for the device
3804 * by examining if there are any requests pending in the queue. If there
3805 * are requests pending, the device can not be runtime suspended; otherwise,
3806 * the queue's status will be updated to SUSPENDING and the driver can
3807 * proceed to suspend the device.
3809 * For the not allowed case, we mark last busy for the device so that
3810 * runtime PM core will try to autosuspend it some time later.
3812 * This function should be called near the start of the device's
3813 * runtime_suspend callback.
3816 * 0 - OK to runtime suspend the device
3817 * -EBUSY - Device should not be runtime suspended
3819 int blk_pre_runtime_suspend(struct request_queue
*q
)
3826 spin_lock_irq(q
->queue_lock
);
3827 if (q
->nr_pending
) {
3829 pm_runtime_mark_last_busy(q
->dev
);
3831 q
->rpm_status
= RPM_SUSPENDING
;
3833 spin_unlock_irq(q
->queue_lock
);
3836 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3839 * blk_post_runtime_suspend - Post runtime suspend processing
3840 * @q: the queue of the device
3841 * @err: return value of the device's runtime_suspend function
3844 * Update the queue's runtime status according to the return value of the
3845 * device's runtime suspend function and mark last busy for the device so
3846 * that PM core will try to auto suspend the device at a later time.
3848 * This function should be called near the end of the device's
3849 * runtime_suspend callback.
3851 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3856 spin_lock_irq(q
->queue_lock
);
3858 q
->rpm_status
= RPM_SUSPENDED
;
3860 q
->rpm_status
= RPM_ACTIVE
;
3861 pm_runtime_mark_last_busy(q
->dev
);
3863 spin_unlock_irq(q
->queue_lock
);
3865 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3868 * blk_pre_runtime_resume - Pre runtime resume processing
3869 * @q: the queue of the device
3872 * Update the queue's runtime status to RESUMING in preparation for the
3873 * runtime resume of the device.
3875 * This function should be called near the start of the device's
3876 * runtime_resume callback.
3878 void blk_pre_runtime_resume(struct request_queue
*q
)
3883 spin_lock_irq(q
->queue_lock
);
3884 q
->rpm_status
= RPM_RESUMING
;
3885 spin_unlock_irq(q
->queue_lock
);
3887 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3890 * blk_post_runtime_resume - Post runtime resume processing
3891 * @q: the queue of the device
3892 * @err: return value of the device's runtime_resume function
3895 * Update the queue's runtime status according to the return value of the
3896 * device's runtime_resume function. If it is successfully resumed, process
3897 * the requests that are queued into the device's queue when it is resuming
3898 * and then mark last busy and initiate autosuspend for it.
3900 * This function should be called near the end of the device's
3901 * runtime_resume callback.
3903 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3908 spin_lock_irq(q
->queue_lock
);
3910 q
->rpm_status
= RPM_ACTIVE
;
3912 pm_runtime_mark_last_busy(q
->dev
);
3913 pm_request_autosuspend(q
->dev
);
3915 q
->rpm_status
= RPM_SUSPENDED
;
3917 spin_unlock_irq(q
->queue_lock
);
3919 EXPORT_SYMBOL(blk_post_runtime_resume
);
3922 * blk_set_runtime_active - Force runtime status of the queue to be active
3923 * @q: the queue of the device
3925 * If the device is left runtime suspended during system suspend the resume
3926 * hook typically resumes the device and corrects runtime status
3927 * accordingly. However, that does not affect the queue runtime PM status
3928 * which is still "suspended". This prevents processing requests from the
3931 * This function can be used in driver's resume hook to correct queue
3932 * runtime PM status and re-enable peeking requests from the queue. It
3933 * should be called before first request is added to the queue.
3935 void blk_set_runtime_active(struct request_queue
*q
)
3937 spin_lock_irq(q
->queue_lock
);
3938 q
->rpm_status
= RPM_ACTIVE
;
3939 pm_runtime_mark_last_busy(q
->dev
);
3940 pm_request_autosuspend(q
->dev
);
3941 spin_unlock_irq(q
->queue_lock
);
3943 EXPORT_SYMBOL(blk_set_runtime_active
);
3946 int __init
blk_dev_init(void)
3948 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
3949 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3950 FIELD_SIZEOF(struct request
, cmd_flags
));
3951 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3952 FIELD_SIZEOF(struct bio
, bi_opf
));
3954 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3955 kblockd_workqueue
= alloc_workqueue("kblockd",
3956 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3957 if (!kblockd_workqueue
)
3958 panic("Failed to create kblockd\n");
3960 request_cachep
= kmem_cache_create("blkdev_requests",
3961 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3963 blk_requestq_cachep
= kmem_cache_create("request_queue",
3964 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3966 #ifdef CONFIG_DEBUG_FS
3967 blk_debugfs_root
= debugfs_create_dir("block", NULL
);