iwlwifi: mvm: fix version check for GEO_TX_POWER_LIMIT support
[linux/fpc-iii.git] / block / blk-core.c
blob4a3e1f41788045d9de5e02f95f8968edb50a9d26
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
57 DEFINE_IDA(blk_queue_ida);
60 * For the allocated request tables
62 struct kmem_cache *request_cachep;
65 * For queue allocation
67 struct kmem_cache *blk_requestq_cachep;
70 * Controlling structure to kblockd
72 static struct workqueue_struct *kblockd_workqueue;
74 /**
75 * blk_queue_flag_set - atomically set a queue flag
76 * @flag: flag to be set
77 * @q: request queue
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 unsigned long flags;
83 spin_lock_irqsave(q->queue_lock, flags);
84 queue_flag_set(flag, q);
85 spin_unlock_irqrestore(q->queue_lock, flags);
87 EXPORT_SYMBOL(blk_queue_flag_set);
89 /**
90 * blk_queue_flag_clear - atomically clear a queue flag
91 * @flag: flag to be cleared
92 * @q: request queue
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
96 unsigned long flags;
98 spin_lock_irqsave(q->queue_lock, flags);
99 queue_flag_clear(flag, q);
100 spin_unlock_irqrestore(q->queue_lock, flags);
102 EXPORT_SYMBOL(blk_queue_flag_clear);
105 * blk_queue_flag_test_and_set - atomically test and set a queue flag
106 * @flag: flag to be set
107 * @q: request queue
109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110 * the flag was already set.
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
114 unsigned long flags;
115 bool res;
117 spin_lock_irqsave(q->queue_lock, flags);
118 res = queue_flag_test_and_set(flag, q);
119 spin_unlock_irqrestore(q->queue_lock, flags);
121 return res;
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127 * @flag: flag to be cleared
128 * @q: request queue
130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131 * the flag was set.
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
135 unsigned long flags;
136 bool res;
138 spin_lock_irqsave(q->queue_lock, flags);
139 res = queue_flag_test_and_clear(flag, q);
140 spin_unlock_irqrestore(q->queue_lock, flags);
142 return res;
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
146 static void blk_clear_congested(struct request_list *rl, int sync)
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 * flip its congestion state for events on other blkcgs.
155 if (rl == &rl->q->root_rl)
156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
160 static void blk_set_congested(struct request_list *rl, int sync)
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 /* see blk_clear_congested() */
166 if (rl == &rl->q->root_rl)
167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
171 void blk_queue_congestion_threshold(struct request_queue *q)
173 int nr;
175 nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 if (nr > q->nr_requests)
177 nr = q->nr_requests;
178 q->nr_congestion_on = nr;
180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 if (nr < 1)
182 nr = 1;
183 q->nr_congestion_off = nr;
186 void blk_rq_init(struct request_queue *q, struct request *rq)
188 memset(rq, 0, sizeof(*rq));
190 INIT_LIST_HEAD(&rq->queuelist);
191 INIT_LIST_HEAD(&rq->timeout_list);
192 rq->cpu = -1;
193 rq->q = q;
194 rq->__sector = (sector_t) -1;
195 INIT_HLIST_NODE(&rq->hash);
196 RB_CLEAR_NODE(&rq->rb_node);
197 rq->tag = -1;
198 rq->internal_tag = -1;
199 rq->start_time_ns = ktime_get_ns();
200 rq->part = NULL;
201 refcount_set(&rq->ref, 1);
203 EXPORT_SYMBOL(blk_rq_init);
205 static const struct {
206 int errno;
207 const char *name;
208 } blk_errors[] = {
209 [BLK_STS_OK] = { 0, "" },
210 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" },
211 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" },
212 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" },
213 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" },
214 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" },
215 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" },
216 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" },
217 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" },
218 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" },
219 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" },
220 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" },
222 /* device mapper special case, should not leak out: */
223 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" },
225 /* everything else not covered above: */
226 [BLK_STS_IOERR] = { -EIO, "I/O" },
229 blk_status_t errno_to_blk_status(int errno)
231 int i;
233 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
234 if (blk_errors[i].errno == errno)
235 return (__force blk_status_t)i;
238 return BLK_STS_IOERR;
240 EXPORT_SYMBOL_GPL(errno_to_blk_status);
242 int blk_status_to_errno(blk_status_t status)
244 int idx = (__force int)status;
246 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
247 return -EIO;
248 return blk_errors[idx].errno;
250 EXPORT_SYMBOL_GPL(blk_status_to_errno);
252 static void print_req_error(struct request *req, blk_status_t status)
254 int idx = (__force int)status;
256 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
257 return;
259 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
260 __func__, blk_errors[idx].name, req->rq_disk ?
261 req->rq_disk->disk_name : "?",
262 (unsigned long long)blk_rq_pos(req));
265 static void req_bio_endio(struct request *rq, struct bio *bio,
266 unsigned int nbytes, blk_status_t error)
268 if (error)
269 bio->bi_status = error;
271 if (unlikely(rq->rq_flags & RQF_QUIET))
272 bio_set_flag(bio, BIO_QUIET);
274 bio_advance(bio, nbytes);
276 /* don't actually finish bio if it's part of flush sequence */
277 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
278 bio_endio(bio);
281 void blk_dump_rq_flags(struct request *rq, char *msg)
283 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
284 rq->rq_disk ? rq->rq_disk->disk_name : "?",
285 (unsigned long long) rq->cmd_flags);
287 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
288 (unsigned long long)blk_rq_pos(rq),
289 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
290 printk(KERN_INFO " bio %p, biotail %p, len %u\n",
291 rq->bio, rq->biotail, blk_rq_bytes(rq));
293 EXPORT_SYMBOL(blk_dump_rq_flags);
295 static void blk_delay_work(struct work_struct *work)
297 struct request_queue *q;
299 q = container_of(work, struct request_queue, delay_work.work);
300 spin_lock_irq(q->queue_lock);
301 __blk_run_queue(q);
302 spin_unlock_irq(q->queue_lock);
306 * blk_delay_queue - restart queueing after defined interval
307 * @q: The &struct request_queue in question
308 * @msecs: Delay in msecs
310 * Description:
311 * Sometimes queueing needs to be postponed for a little while, to allow
312 * resources to come back. This function will make sure that queueing is
313 * restarted around the specified time.
315 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
317 lockdep_assert_held(q->queue_lock);
318 WARN_ON_ONCE(q->mq_ops);
320 if (likely(!blk_queue_dead(q)))
321 queue_delayed_work(kblockd_workqueue, &q->delay_work,
322 msecs_to_jiffies(msecs));
324 EXPORT_SYMBOL(blk_delay_queue);
327 * blk_start_queue_async - asynchronously restart a previously stopped queue
328 * @q: The &struct request_queue in question
330 * Description:
331 * blk_start_queue_async() will clear the stop flag on the queue, and
332 * ensure that the request_fn for the queue is run from an async
333 * context.
335 void blk_start_queue_async(struct request_queue *q)
337 lockdep_assert_held(q->queue_lock);
338 WARN_ON_ONCE(q->mq_ops);
340 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
341 blk_run_queue_async(q);
343 EXPORT_SYMBOL(blk_start_queue_async);
346 * blk_start_queue - restart a previously stopped queue
347 * @q: The &struct request_queue in question
349 * Description:
350 * blk_start_queue() will clear the stop flag on the queue, and call
351 * the request_fn for the queue if it was in a stopped state when
352 * entered. Also see blk_stop_queue().
354 void blk_start_queue(struct request_queue *q)
356 lockdep_assert_held(q->queue_lock);
357 WARN_ON_ONCE(q->mq_ops);
359 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
360 __blk_run_queue(q);
362 EXPORT_SYMBOL(blk_start_queue);
365 * blk_stop_queue - stop a queue
366 * @q: The &struct request_queue in question
368 * Description:
369 * The Linux block layer assumes that a block driver will consume all
370 * entries on the request queue when the request_fn strategy is called.
371 * Often this will not happen, because of hardware limitations (queue
372 * depth settings). If a device driver gets a 'queue full' response,
373 * or if it simply chooses not to queue more I/O at one point, it can
374 * call this function to prevent the request_fn from being called until
375 * the driver has signalled it's ready to go again. This happens by calling
376 * blk_start_queue() to restart queue operations.
378 void blk_stop_queue(struct request_queue *q)
380 lockdep_assert_held(q->queue_lock);
381 WARN_ON_ONCE(q->mq_ops);
383 cancel_delayed_work(&q->delay_work);
384 queue_flag_set(QUEUE_FLAG_STOPPED, q);
386 EXPORT_SYMBOL(blk_stop_queue);
389 * blk_sync_queue - cancel any pending callbacks on a queue
390 * @q: the queue
392 * Description:
393 * The block layer may perform asynchronous callback activity
394 * on a queue, such as calling the unplug function after a timeout.
395 * A block device may call blk_sync_queue to ensure that any
396 * such activity is cancelled, thus allowing it to release resources
397 * that the callbacks might use. The caller must already have made sure
398 * that its ->make_request_fn will not re-add plugging prior to calling
399 * this function.
401 * This function does not cancel any asynchronous activity arising
402 * out of elevator or throttling code. That would require elevator_exit()
403 * and blkcg_exit_queue() to be called with queue lock initialized.
406 void blk_sync_queue(struct request_queue *q)
408 del_timer_sync(&q->timeout);
409 cancel_work_sync(&q->timeout_work);
411 if (q->mq_ops) {
412 struct blk_mq_hw_ctx *hctx;
413 int i;
415 queue_for_each_hw_ctx(q, hctx, i)
416 cancel_delayed_work_sync(&hctx->run_work);
417 } else {
418 cancel_delayed_work_sync(&q->delay_work);
421 EXPORT_SYMBOL(blk_sync_queue);
424 * blk_set_pm_only - increment pm_only counter
425 * @q: request queue pointer
427 void blk_set_pm_only(struct request_queue *q)
429 atomic_inc(&q->pm_only);
431 EXPORT_SYMBOL_GPL(blk_set_pm_only);
433 void blk_clear_pm_only(struct request_queue *q)
435 int pm_only;
437 pm_only = atomic_dec_return(&q->pm_only);
438 WARN_ON_ONCE(pm_only < 0);
439 if (pm_only == 0)
440 wake_up_all(&q->mq_freeze_wq);
442 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
445 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
446 * @q: The queue to run
448 * Description:
449 * Invoke request handling on a queue if there are any pending requests.
450 * May be used to restart request handling after a request has completed.
451 * This variant runs the queue whether or not the queue has been
452 * stopped. Must be called with the queue lock held and interrupts
453 * disabled. See also @blk_run_queue.
455 inline void __blk_run_queue_uncond(struct request_queue *q)
457 lockdep_assert_held(q->queue_lock);
458 WARN_ON_ONCE(q->mq_ops);
460 if (unlikely(blk_queue_dead(q)))
461 return;
464 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
465 * the queue lock internally. As a result multiple threads may be
466 * running such a request function concurrently. Keep track of the
467 * number of active request_fn invocations such that blk_drain_queue()
468 * can wait until all these request_fn calls have finished.
470 q->request_fn_active++;
471 q->request_fn(q);
472 q->request_fn_active--;
474 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
477 * __blk_run_queue - run a single device queue
478 * @q: The queue to run
480 * Description:
481 * See @blk_run_queue.
483 void __blk_run_queue(struct request_queue *q)
485 lockdep_assert_held(q->queue_lock);
486 WARN_ON_ONCE(q->mq_ops);
488 if (unlikely(blk_queue_stopped(q)))
489 return;
491 __blk_run_queue_uncond(q);
493 EXPORT_SYMBOL(__blk_run_queue);
496 * blk_run_queue_async - run a single device queue in workqueue context
497 * @q: The queue to run
499 * Description:
500 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
501 * of us.
503 * Note:
504 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
505 * has canceled q->delay_work, callers must hold the queue lock to avoid
506 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
508 void blk_run_queue_async(struct request_queue *q)
510 lockdep_assert_held(q->queue_lock);
511 WARN_ON_ONCE(q->mq_ops);
513 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
514 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
516 EXPORT_SYMBOL(blk_run_queue_async);
519 * blk_run_queue - run a single device queue
520 * @q: The queue to run
522 * Description:
523 * Invoke request handling on this queue, if it has pending work to do.
524 * May be used to restart queueing when a request has completed.
526 void blk_run_queue(struct request_queue *q)
528 unsigned long flags;
530 WARN_ON_ONCE(q->mq_ops);
532 spin_lock_irqsave(q->queue_lock, flags);
533 __blk_run_queue(q);
534 spin_unlock_irqrestore(q->queue_lock, flags);
536 EXPORT_SYMBOL(blk_run_queue);
538 void blk_put_queue(struct request_queue *q)
540 kobject_put(&q->kobj);
542 EXPORT_SYMBOL(blk_put_queue);
545 * __blk_drain_queue - drain requests from request_queue
546 * @q: queue to drain
547 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
549 * Drain requests from @q. If @drain_all is set, all requests are drained.
550 * If not, only ELVPRIV requests are drained. The caller is responsible
551 * for ensuring that no new requests which need to be drained are queued.
553 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
554 __releases(q->queue_lock)
555 __acquires(q->queue_lock)
557 int i;
559 lockdep_assert_held(q->queue_lock);
560 WARN_ON_ONCE(q->mq_ops);
562 while (true) {
563 bool drain = false;
566 * The caller might be trying to drain @q before its
567 * elevator is initialized.
569 if (q->elevator)
570 elv_drain_elevator(q);
572 blkcg_drain_queue(q);
575 * This function might be called on a queue which failed
576 * driver init after queue creation or is not yet fully
577 * active yet. Some drivers (e.g. fd and loop) get unhappy
578 * in such cases. Kick queue iff dispatch queue has
579 * something on it and @q has request_fn set.
581 if (!list_empty(&q->queue_head) && q->request_fn)
582 __blk_run_queue(q);
584 drain |= q->nr_rqs_elvpriv;
585 drain |= q->request_fn_active;
588 * Unfortunately, requests are queued at and tracked from
589 * multiple places and there's no single counter which can
590 * be drained. Check all the queues and counters.
592 if (drain_all) {
593 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
594 drain |= !list_empty(&q->queue_head);
595 for (i = 0; i < 2; i++) {
596 drain |= q->nr_rqs[i];
597 drain |= q->in_flight[i];
598 if (fq)
599 drain |= !list_empty(&fq->flush_queue[i]);
603 if (!drain)
604 break;
606 spin_unlock_irq(q->queue_lock);
608 msleep(10);
610 spin_lock_irq(q->queue_lock);
614 * With queue marked dead, any woken up waiter will fail the
615 * allocation path, so the wakeup chaining is lost and we're
616 * left with hung waiters. We need to wake up those waiters.
618 if (q->request_fn) {
619 struct request_list *rl;
621 blk_queue_for_each_rl(rl, q)
622 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
623 wake_up_all(&rl->wait[i]);
627 void blk_drain_queue(struct request_queue *q)
629 spin_lock_irq(q->queue_lock);
630 __blk_drain_queue(q, true);
631 spin_unlock_irq(q->queue_lock);
635 * blk_queue_bypass_start - enter queue bypass mode
636 * @q: queue of interest
638 * In bypass mode, only the dispatch FIFO queue of @q is used. This
639 * function makes @q enter bypass mode and drains all requests which were
640 * throttled or issued before. On return, it's guaranteed that no request
641 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
642 * inside queue or RCU read lock.
644 void blk_queue_bypass_start(struct request_queue *q)
646 WARN_ON_ONCE(q->mq_ops);
648 spin_lock_irq(q->queue_lock);
649 q->bypass_depth++;
650 queue_flag_set(QUEUE_FLAG_BYPASS, q);
651 spin_unlock_irq(q->queue_lock);
654 * Queues start drained. Skip actual draining till init is
655 * complete. This avoids lenghty delays during queue init which
656 * can happen many times during boot.
658 if (blk_queue_init_done(q)) {
659 spin_lock_irq(q->queue_lock);
660 __blk_drain_queue(q, false);
661 spin_unlock_irq(q->queue_lock);
663 /* ensure blk_queue_bypass() is %true inside RCU read lock */
664 synchronize_rcu();
667 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
670 * blk_queue_bypass_end - leave queue bypass mode
671 * @q: queue of interest
673 * Leave bypass mode and restore the normal queueing behavior.
675 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
676 * this function is called for both blk-sq and blk-mq queues.
678 void blk_queue_bypass_end(struct request_queue *q)
680 spin_lock_irq(q->queue_lock);
681 if (!--q->bypass_depth)
682 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
683 WARN_ON_ONCE(q->bypass_depth < 0);
684 spin_unlock_irq(q->queue_lock);
686 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
688 void blk_set_queue_dying(struct request_queue *q)
690 blk_queue_flag_set(QUEUE_FLAG_DYING, q);
693 * When queue DYING flag is set, we need to block new req
694 * entering queue, so we call blk_freeze_queue_start() to
695 * prevent I/O from crossing blk_queue_enter().
697 blk_freeze_queue_start(q);
699 if (q->mq_ops)
700 blk_mq_wake_waiters(q);
701 else {
702 struct request_list *rl;
704 spin_lock_irq(q->queue_lock);
705 blk_queue_for_each_rl(rl, q) {
706 if (rl->rq_pool) {
707 wake_up_all(&rl->wait[BLK_RW_SYNC]);
708 wake_up_all(&rl->wait[BLK_RW_ASYNC]);
711 spin_unlock_irq(q->queue_lock);
714 /* Make blk_queue_enter() reexamine the DYING flag. */
715 wake_up_all(&q->mq_freeze_wq);
717 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
719 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
720 void blk_exit_queue(struct request_queue *q)
723 * Since the I/O scheduler exit code may access cgroup information,
724 * perform I/O scheduler exit before disassociating from the block
725 * cgroup controller.
727 if (q->elevator) {
728 ioc_clear_queue(q);
729 elevator_exit(q, q->elevator);
730 q->elevator = NULL;
734 * Remove all references to @q from the block cgroup controller before
735 * restoring @q->queue_lock to avoid that restoring this pointer causes
736 * e.g. blkcg_print_blkgs() to crash.
738 blkcg_exit_queue(q);
741 * Since the cgroup code may dereference the @q->backing_dev_info
742 * pointer, only decrease its reference count after having removed the
743 * association with the block cgroup controller.
745 bdi_put(q->backing_dev_info);
749 * blk_cleanup_queue - shutdown a request queue
750 * @q: request queue to shutdown
752 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
753 * put it. All future requests will be failed immediately with -ENODEV.
755 void blk_cleanup_queue(struct request_queue *q)
757 spinlock_t *lock = q->queue_lock;
759 /* mark @q DYING, no new request or merges will be allowed afterwards */
760 mutex_lock(&q->sysfs_lock);
761 blk_set_queue_dying(q);
762 spin_lock_irq(lock);
765 * A dying queue is permanently in bypass mode till released. Note
766 * that, unlike blk_queue_bypass_start(), we aren't performing
767 * synchronize_rcu() after entering bypass mode to avoid the delay
768 * as some drivers create and destroy a lot of queues while
769 * probing. This is still safe because blk_release_queue() will be
770 * called only after the queue refcnt drops to zero and nothing,
771 * RCU or not, would be traversing the queue by then.
773 q->bypass_depth++;
774 queue_flag_set(QUEUE_FLAG_BYPASS, q);
776 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
777 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
778 queue_flag_set(QUEUE_FLAG_DYING, q);
779 spin_unlock_irq(lock);
780 mutex_unlock(&q->sysfs_lock);
783 * Drain all requests queued before DYING marking. Set DEAD flag to
784 * prevent that q->request_fn() gets invoked after draining finished.
786 blk_freeze_queue(q);
787 spin_lock_irq(lock);
788 queue_flag_set(QUEUE_FLAG_DEAD, q);
789 spin_unlock_irq(lock);
792 * make sure all in-progress dispatch are completed because
793 * blk_freeze_queue() can only complete all requests, and
794 * dispatch may still be in-progress since we dispatch requests
795 * from more than one contexts.
797 * We rely on driver to deal with the race in case that queue
798 * initialization isn't done.
800 if (q->mq_ops && blk_queue_init_done(q))
801 blk_mq_quiesce_queue(q);
803 /* for synchronous bio-based driver finish in-flight integrity i/o */
804 blk_flush_integrity();
806 /* @q won't process any more request, flush async actions */
807 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
808 blk_sync_queue(q);
811 * I/O scheduler exit is only safe after the sysfs scheduler attribute
812 * has been removed.
814 WARN_ON_ONCE(q->kobj.state_in_sysfs);
816 blk_exit_queue(q);
818 if (q->mq_ops)
819 blk_mq_free_queue(q);
820 percpu_ref_exit(&q->q_usage_counter);
822 spin_lock_irq(lock);
823 if (q->queue_lock != &q->__queue_lock)
824 q->queue_lock = &q->__queue_lock;
825 spin_unlock_irq(lock);
827 /* @q is and will stay empty, shutdown and put */
828 blk_put_queue(q);
830 EXPORT_SYMBOL(blk_cleanup_queue);
832 /* Allocate memory local to the request queue */
833 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
835 struct request_queue *q = data;
837 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
840 static void free_request_simple(void *element, void *data)
842 kmem_cache_free(request_cachep, element);
845 static void *alloc_request_size(gfp_t gfp_mask, void *data)
847 struct request_queue *q = data;
848 struct request *rq;
850 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
851 q->node);
852 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
853 kfree(rq);
854 rq = NULL;
856 return rq;
859 static void free_request_size(void *element, void *data)
861 struct request_queue *q = data;
863 if (q->exit_rq_fn)
864 q->exit_rq_fn(q, element);
865 kfree(element);
868 int blk_init_rl(struct request_list *rl, struct request_queue *q,
869 gfp_t gfp_mask)
871 if (unlikely(rl->rq_pool) || q->mq_ops)
872 return 0;
874 rl->q = q;
875 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
876 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
877 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
878 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
880 if (q->cmd_size) {
881 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
882 alloc_request_size, free_request_size,
883 q, gfp_mask, q->node);
884 } else {
885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 alloc_request_simple, free_request_simple,
887 q, gfp_mask, q->node);
889 if (!rl->rq_pool)
890 return -ENOMEM;
892 if (rl != &q->root_rl)
893 WARN_ON_ONCE(!blk_get_queue(q));
895 return 0;
898 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
900 if (rl->rq_pool) {
901 mempool_destroy(rl->rq_pool);
902 if (rl != &q->root_rl)
903 blk_put_queue(q);
907 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
909 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
911 EXPORT_SYMBOL(blk_alloc_queue);
914 * blk_queue_enter() - try to increase q->q_usage_counter
915 * @q: request queue pointer
916 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
918 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
920 const bool pm = flags & BLK_MQ_REQ_PREEMPT;
922 while (true) {
923 bool success = false;
925 rcu_read_lock();
926 if (percpu_ref_tryget_live(&q->q_usage_counter)) {
928 * The code that increments the pm_only counter is
929 * responsible for ensuring that that counter is
930 * globally visible before the queue is unfrozen.
932 if (pm || !blk_queue_pm_only(q)) {
933 success = true;
934 } else {
935 percpu_ref_put(&q->q_usage_counter);
938 rcu_read_unlock();
940 if (success)
941 return 0;
943 if (flags & BLK_MQ_REQ_NOWAIT)
944 return -EBUSY;
947 * read pair of barrier in blk_freeze_queue_start(),
948 * we need to order reading __PERCPU_REF_DEAD flag of
949 * .q_usage_counter and reading .mq_freeze_depth or
950 * queue dying flag, otherwise the following wait may
951 * never return if the two reads are reordered.
953 smp_rmb();
955 wait_event(q->mq_freeze_wq,
956 (atomic_read(&q->mq_freeze_depth) == 0 &&
957 (pm || !blk_queue_pm_only(q))) ||
958 blk_queue_dying(q));
959 if (blk_queue_dying(q))
960 return -ENODEV;
964 void blk_queue_exit(struct request_queue *q)
966 percpu_ref_put(&q->q_usage_counter);
969 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
971 struct request_queue *q =
972 container_of(ref, struct request_queue, q_usage_counter);
974 wake_up_all(&q->mq_freeze_wq);
977 static void blk_rq_timed_out_timer(struct timer_list *t)
979 struct request_queue *q = from_timer(q, t, timeout);
981 kblockd_schedule_work(&q->timeout_work);
984 static void blk_timeout_work_dummy(struct work_struct *work)
989 * blk_alloc_queue_node - allocate a request queue
990 * @gfp_mask: memory allocation flags
991 * @node_id: NUMA node to allocate memory from
992 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
993 * serialize calls to the legacy .request_fn() callback. Ignored for
994 * blk-mq request queues.
996 * Note: pass the queue lock as the third argument to this function instead of
997 * setting the queue lock pointer explicitly to avoid triggering a sporadic
998 * crash in the blkcg code. This function namely calls blkcg_init_queue() and
999 * the queue lock pointer must be set before blkcg_init_queue() is called.
1001 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
1002 spinlock_t *lock)
1004 struct request_queue *q;
1005 int ret;
1007 q = kmem_cache_alloc_node(blk_requestq_cachep,
1008 gfp_mask | __GFP_ZERO, node_id);
1009 if (!q)
1010 return NULL;
1012 INIT_LIST_HEAD(&q->queue_head);
1013 q->last_merge = NULL;
1014 q->end_sector = 0;
1015 q->boundary_rq = NULL;
1017 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1018 if (q->id < 0)
1019 goto fail_q;
1021 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1022 if (ret)
1023 goto fail_id;
1025 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1026 if (!q->backing_dev_info)
1027 goto fail_split;
1029 q->stats = blk_alloc_queue_stats();
1030 if (!q->stats)
1031 goto fail_stats;
1033 q->backing_dev_info->ra_pages =
1034 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1035 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1036 q->backing_dev_info->name = "block";
1037 q->node = node_id;
1039 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1040 laptop_mode_timer_fn, 0);
1041 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1042 INIT_WORK(&q->timeout_work, blk_timeout_work_dummy);
1043 INIT_LIST_HEAD(&q->timeout_list);
1044 INIT_LIST_HEAD(&q->icq_list);
1045 #ifdef CONFIG_BLK_CGROUP
1046 INIT_LIST_HEAD(&q->blkg_list);
1047 #endif
1048 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1050 kobject_init(&q->kobj, &blk_queue_ktype);
1052 #ifdef CONFIG_BLK_DEV_IO_TRACE
1053 mutex_init(&q->blk_trace_mutex);
1054 #endif
1055 mutex_init(&q->sysfs_lock);
1056 spin_lock_init(&q->__queue_lock);
1058 if (!q->mq_ops)
1059 q->queue_lock = lock ? : &q->__queue_lock;
1062 * A queue starts its life with bypass turned on to avoid
1063 * unnecessary bypass on/off overhead and nasty surprises during
1064 * init. The initial bypass will be finished when the queue is
1065 * registered by blk_register_queue().
1067 q->bypass_depth = 1;
1068 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1070 init_waitqueue_head(&q->mq_freeze_wq);
1073 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1074 * See blk_register_queue() for details.
1076 if (percpu_ref_init(&q->q_usage_counter,
1077 blk_queue_usage_counter_release,
1078 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1079 goto fail_bdi;
1081 if (blkcg_init_queue(q))
1082 goto fail_ref;
1084 return q;
1086 fail_ref:
1087 percpu_ref_exit(&q->q_usage_counter);
1088 fail_bdi:
1089 blk_free_queue_stats(q->stats);
1090 fail_stats:
1091 bdi_put(q->backing_dev_info);
1092 fail_split:
1093 bioset_exit(&q->bio_split);
1094 fail_id:
1095 ida_simple_remove(&blk_queue_ida, q->id);
1096 fail_q:
1097 kmem_cache_free(blk_requestq_cachep, q);
1098 return NULL;
1100 EXPORT_SYMBOL(blk_alloc_queue_node);
1103 * blk_init_queue - prepare a request queue for use with a block device
1104 * @rfn: The function to be called to process requests that have been
1105 * placed on the queue.
1106 * @lock: Request queue spin lock
1108 * Description:
1109 * If a block device wishes to use the standard request handling procedures,
1110 * which sorts requests and coalesces adjacent requests, then it must
1111 * call blk_init_queue(). The function @rfn will be called when there
1112 * are requests on the queue that need to be processed. If the device
1113 * supports plugging, then @rfn may not be called immediately when requests
1114 * are available on the queue, but may be called at some time later instead.
1115 * Plugged queues are generally unplugged when a buffer belonging to one
1116 * of the requests on the queue is needed, or due to memory pressure.
1118 * @rfn is not required, or even expected, to remove all requests off the
1119 * queue, but only as many as it can handle at a time. If it does leave
1120 * requests on the queue, it is responsible for arranging that the requests
1121 * get dealt with eventually.
1123 * The queue spin lock must be held while manipulating the requests on the
1124 * request queue; this lock will be taken also from interrupt context, so irq
1125 * disabling is needed for it.
1127 * Function returns a pointer to the initialized request queue, or %NULL if
1128 * it didn't succeed.
1130 * Note:
1131 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1132 * when the block device is deactivated (such as at module unload).
1135 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1137 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1139 EXPORT_SYMBOL(blk_init_queue);
1141 struct request_queue *
1142 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1144 struct request_queue *q;
1146 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1147 if (!q)
1148 return NULL;
1150 q->request_fn = rfn;
1151 if (blk_init_allocated_queue(q) < 0) {
1152 blk_cleanup_queue(q);
1153 return NULL;
1156 return q;
1158 EXPORT_SYMBOL(blk_init_queue_node);
1160 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1163 int blk_init_allocated_queue(struct request_queue *q)
1165 WARN_ON_ONCE(q->mq_ops);
1167 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1168 if (!q->fq)
1169 return -ENOMEM;
1171 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1172 goto out_free_flush_queue;
1174 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1175 goto out_exit_flush_rq;
1177 INIT_WORK(&q->timeout_work, blk_timeout_work);
1178 q->queue_flags |= QUEUE_FLAG_DEFAULT;
1181 * This also sets hw/phys segments, boundary and size
1183 blk_queue_make_request(q, blk_queue_bio);
1185 q->sg_reserved_size = INT_MAX;
1187 if (elevator_init(q))
1188 goto out_exit_flush_rq;
1189 return 0;
1191 out_exit_flush_rq:
1192 if (q->exit_rq_fn)
1193 q->exit_rq_fn(q, q->fq->flush_rq);
1194 out_free_flush_queue:
1195 blk_free_flush_queue(q->fq);
1196 q->fq = NULL;
1197 return -ENOMEM;
1199 EXPORT_SYMBOL(blk_init_allocated_queue);
1201 bool blk_get_queue(struct request_queue *q)
1203 if (likely(!blk_queue_dying(q))) {
1204 __blk_get_queue(q);
1205 return true;
1208 return false;
1210 EXPORT_SYMBOL(blk_get_queue);
1212 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1214 if (rq->rq_flags & RQF_ELVPRIV) {
1215 elv_put_request(rl->q, rq);
1216 if (rq->elv.icq)
1217 put_io_context(rq->elv.icq->ioc);
1220 mempool_free(rq, rl->rq_pool);
1224 * ioc_batching returns true if the ioc is a valid batching request and
1225 * should be given priority access to a request.
1227 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1229 if (!ioc)
1230 return 0;
1233 * Make sure the process is able to allocate at least 1 request
1234 * even if the batch times out, otherwise we could theoretically
1235 * lose wakeups.
1237 return ioc->nr_batch_requests == q->nr_batching ||
1238 (ioc->nr_batch_requests > 0
1239 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1243 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1244 * will cause the process to be a "batcher" on all queues in the system. This
1245 * is the behaviour we want though - once it gets a wakeup it should be given
1246 * a nice run.
1248 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1250 if (!ioc || ioc_batching(q, ioc))
1251 return;
1253 ioc->nr_batch_requests = q->nr_batching;
1254 ioc->last_waited = jiffies;
1257 static void __freed_request(struct request_list *rl, int sync)
1259 struct request_queue *q = rl->q;
1261 if (rl->count[sync] < queue_congestion_off_threshold(q))
1262 blk_clear_congested(rl, sync);
1264 if (rl->count[sync] + 1 <= q->nr_requests) {
1265 if (waitqueue_active(&rl->wait[sync]))
1266 wake_up(&rl->wait[sync]);
1268 blk_clear_rl_full(rl, sync);
1273 * A request has just been released. Account for it, update the full and
1274 * congestion status, wake up any waiters. Called under q->queue_lock.
1276 static void freed_request(struct request_list *rl, bool sync,
1277 req_flags_t rq_flags)
1279 struct request_queue *q = rl->q;
1281 q->nr_rqs[sync]--;
1282 rl->count[sync]--;
1283 if (rq_flags & RQF_ELVPRIV)
1284 q->nr_rqs_elvpriv--;
1286 __freed_request(rl, sync);
1288 if (unlikely(rl->starved[sync ^ 1]))
1289 __freed_request(rl, sync ^ 1);
1292 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1294 struct request_list *rl;
1295 int on_thresh, off_thresh;
1297 WARN_ON_ONCE(q->mq_ops);
1299 spin_lock_irq(q->queue_lock);
1300 q->nr_requests = nr;
1301 blk_queue_congestion_threshold(q);
1302 on_thresh = queue_congestion_on_threshold(q);
1303 off_thresh = queue_congestion_off_threshold(q);
1305 blk_queue_for_each_rl(rl, q) {
1306 if (rl->count[BLK_RW_SYNC] >= on_thresh)
1307 blk_set_congested(rl, BLK_RW_SYNC);
1308 else if (rl->count[BLK_RW_SYNC] < off_thresh)
1309 blk_clear_congested(rl, BLK_RW_SYNC);
1311 if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1312 blk_set_congested(rl, BLK_RW_ASYNC);
1313 else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1314 blk_clear_congested(rl, BLK_RW_ASYNC);
1316 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1317 blk_set_rl_full(rl, BLK_RW_SYNC);
1318 } else {
1319 blk_clear_rl_full(rl, BLK_RW_SYNC);
1320 wake_up(&rl->wait[BLK_RW_SYNC]);
1323 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1324 blk_set_rl_full(rl, BLK_RW_ASYNC);
1325 } else {
1326 blk_clear_rl_full(rl, BLK_RW_ASYNC);
1327 wake_up(&rl->wait[BLK_RW_ASYNC]);
1331 spin_unlock_irq(q->queue_lock);
1332 return 0;
1336 * __get_request - get a free request
1337 * @rl: request list to allocate from
1338 * @op: operation and flags
1339 * @bio: bio to allocate request for (can be %NULL)
1340 * @flags: BLQ_MQ_REQ_* flags
1341 * @gfp_mask: allocator flags
1343 * Get a free request from @q. This function may fail under memory
1344 * pressure or if @q is dead.
1346 * Must be called with @q->queue_lock held and,
1347 * Returns ERR_PTR on failure, with @q->queue_lock held.
1348 * Returns request pointer on success, with @q->queue_lock *not held*.
1350 static struct request *__get_request(struct request_list *rl, unsigned int op,
1351 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1353 struct request_queue *q = rl->q;
1354 struct request *rq;
1355 struct elevator_type *et = q->elevator->type;
1356 struct io_context *ioc = rq_ioc(bio);
1357 struct io_cq *icq = NULL;
1358 const bool is_sync = op_is_sync(op);
1359 int may_queue;
1360 req_flags_t rq_flags = RQF_ALLOCED;
1362 lockdep_assert_held(q->queue_lock);
1364 if (unlikely(blk_queue_dying(q)))
1365 return ERR_PTR(-ENODEV);
1367 may_queue = elv_may_queue(q, op);
1368 if (may_queue == ELV_MQUEUE_NO)
1369 goto rq_starved;
1371 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1372 if (rl->count[is_sync]+1 >= q->nr_requests) {
1374 * The queue will fill after this allocation, so set
1375 * it as full, and mark this process as "batching".
1376 * This process will be allowed to complete a batch of
1377 * requests, others will be blocked.
1379 if (!blk_rl_full(rl, is_sync)) {
1380 ioc_set_batching(q, ioc);
1381 blk_set_rl_full(rl, is_sync);
1382 } else {
1383 if (may_queue != ELV_MQUEUE_MUST
1384 && !ioc_batching(q, ioc)) {
1386 * The queue is full and the allocating
1387 * process is not a "batcher", and not
1388 * exempted by the IO scheduler
1390 return ERR_PTR(-ENOMEM);
1394 blk_set_congested(rl, is_sync);
1398 * Only allow batching queuers to allocate up to 50% over the defined
1399 * limit of requests, otherwise we could have thousands of requests
1400 * allocated with any setting of ->nr_requests
1402 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1403 return ERR_PTR(-ENOMEM);
1405 q->nr_rqs[is_sync]++;
1406 rl->count[is_sync]++;
1407 rl->starved[is_sync] = 0;
1410 * Decide whether the new request will be managed by elevator. If
1411 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1412 * prevent the current elevator from being destroyed until the new
1413 * request is freed. This guarantees icq's won't be destroyed and
1414 * makes creating new ones safe.
1416 * Flush requests do not use the elevator so skip initialization.
1417 * This allows a request to share the flush and elevator data.
1419 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1420 * it will be created after releasing queue_lock.
1422 if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1423 rq_flags |= RQF_ELVPRIV;
1424 q->nr_rqs_elvpriv++;
1425 if (et->icq_cache && ioc)
1426 icq = ioc_lookup_icq(ioc, q);
1429 if (blk_queue_io_stat(q))
1430 rq_flags |= RQF_IO_STAT;
1431 spin_unlock_irq(q->queue_lock);
1433 /* allocate and init request */
1434 rq = mempool_alloc(rl->rq_pool, gfp_mask);
1435 if (!rq)
1436 goto fail_alloc;
1438 blk_rq_init(q, rq);
1439 blk_rq_set_rl(rq, rl);
1440 rq->cmd_flags = op;
1441 rq->rq_flags = rq_flags;
1442 if (flags & BLK_MQ_REQ_PREEMPT)
1443 rq->rq_flags |= RQF_PREEMPT;
1445 /* init elvpriv */
1446 if (rq_flags & RQF_ELVPRIV) {
1447 if (unlikely(et->icq_cache && !icq)) {
1448 if (ioc)
1449 icq = ioc_create_icq(ioc, q, gfp_mask);
1450 if (!icq)
1451 goto fail_elvpriv;
1454 rq->elv.icq = icq;
1455 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1456 goto fail_elvpriv;
1458 /* @rq->elv.icq holds io_context until @rq is freed */
1459 if (icq)
1460 get_io_context(icq->ioc);
1462 out:
1464 * ioc may be NULL here, and ioc_batching will be false. That's
1465 * OK, if the queue is under the request limit then requests need
1466 * not count toward the nr_batch_requests limit. There will always
1467 * be some limit enforced by BLK_BATCH_TIME.
1469 if (ioc_batching(q, ioc))
1470 ioc->nr_batch_requests--;
1472 trace_block_getrq(q, bio, op);
1473 return rq;
1475 fail_elvpriv:
1477 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1478 * and may fail indefinitely under memory pressure and thus
1479 * shouldn't stall IO. Treat this request as !elvpriv. This will
1480 * disturb iosched and blkcg but weird is bettern than dead.
1482 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1483 __func__, dev_name(q->backing_dev_info->dev));
1485 rq->rq_flags &= ~RQF_ELVPRIV;
1486 rq->elv.icq = NULL;
1488 spin_lock_irq(q->queue_lock);
1489 q->nr_rqs_elvpriv--;
1490 spin_unlock_irq(q->queue_lock);
1491 goto out;
1493 fail_alloc:
1495 * Allocation failed presumably due to memory. Undo anything we
1496 * might have messed up.
1498 * Allocating task should really be put onto the front of the wait
1499 * queue, but this is pretty rare.
1501 spin_lock_irq(q->queue_lock);
1502 freed_request(rl, is_sync, rq_flags);
1505 * in the very unlikely event that allocation failed and no
1506 * requests for this direction was pending, mark us starved so that
1507 * freeing of a request in the other direction will notice
1508 * us. another possible fix would be to split the rq mempool into
1509 * READ and WRITE
1511 rq_starved:
1512 if (unlikely(rl->count[is_sync] == 0))
1513 rl->starved[is_sync] = 1;
1514 return ERR_PTR(-ENOMEM);
1518 * get_request - get a free request
1519 * @q: request_queue to allocate request from
1520 * @op: operation and flags
1521 * @bio: bio to allocate request for (can be %NULL)
1522 * @flags: BLK_MQ_REQ_* flags.
1523 * @gfp: allocator flags
1525 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags,
1526 * this function keeps retrying under memory pressure and fails iff @q is dead.
1528 * Must be called with @q->queue_lock held and,
1529 * Returns ERR_PTR on failure, with @q->queue_lock held.
1530 * Returns request pointer on success, with @q->queue_lock *not held*.
1532 static struct request *get_request(struct request_queue *q, unsigned int op,
1533 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1535 const bool is_sync = op_is_sync(op);
1536 DEFINE_WAIT(wait);
1537 struct request_list *rl;
1538 struct request *rq;
1540 lockdep_assert_held(q->queue_lock);
1541 WARN_ON_ONCE(q->mq_ops);
1543 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1544 retry:
1545 rq = __get_request(rl, op, bio, flags, gfp);
1546 if (!IS_ERR(rq))
1547 return rq;
1549 if (op & REQ_NOWAIT) {
1550 blk_put_rl(rl);
1551 return ERR_PTR(-EAGAIN);
1554 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1555 blk_put_rl(rl);
1556 return rq;
1559 /* wait on @rl and retry */
1560 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1561 TASK_UNINTERRUPTIBLE);
1563 trace_block_sleeprq(q, bio, op);
1565 spin_unlock_irq(q->queue_lock);
1566 io_schedule();
1569 * After sleeping, we become a "batching" process and will be able
1570 * to allocate at least one request, and up to a big batch of them
1571 * for a small period time. See ioc_batching, ioc_set_batching
1573 ioc_set_batching(q, current->io_context);
1575 spin_lock_irq(q->queue_lock);
1576 finish_wait(&rl->wait[is_sync], &wait);
1578 goto retry;
1581 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1582 static struct request *blk_old_get_request(struct request_queue *q,
1583 unsigned int op, blk_mq_req_flags_t flags)
1585 struct request *rq;
1586 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1587 int ret = 0;
1589 WARN_ON_ONCE(q->mq_ops);
1591 /* create ioc upfront */
1592 create_io_context(gfp_mask, q->node);
1594 ret = blk_queue_enter(q, flags);
1595 if (ret)
1596 return ERR_PTR(ret);
1597 spin_lock_irq(q->queue_lock);
1598 rq = get_request(q, op, NULL, flags, gfp_mask);
1599 if (IS_ERR(rq)) {
1600 spin_unlock_irq(q->queue_lock);
1601 blk_queue_exit(q);
1602 return rq;
1605 /* q->queue_lock is unlocked at this point */
1606 rq->__data_len = 0;
1607 rq->__sector = (sector_t) -1;
1608 rq->bio = rq->biotail = NULL;
1609 return rq;
1613 * blk_get_request - allocate a request
1614 * @q: request queue to allocate a request for
1615 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1616 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1618 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1619 blk_mq_req_flags_t flags)
1621 struct request *req;
1623 WARN_ON_ONCE(op & REQ_NOWAIT);
1624 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1626 if (q->mq_ops) {
1627 req = blk_mq_alloc_request(q, op, flags);
1628 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1629 q->mq_ops->initialize_rq_fn(req);
1630 } else {
1631 req = blk_old_get_request(q, op, flags);
1632 if (!IS_ERR(req) && q->initialize_rq_fn)
1633 q->initialize_rq_fn(req);
1636 return req;
1638 EXPORT_SYMBOL(blk_get_request);
1641 * blk_requeue_request - put a request back on queue
1642 * @q: request queue where request should be inserted
1643 * @rq: request to be inserted
1645 * Description:
1646 * Drivers often keep queueing requests until the hardware cannot accept
1647 * more, when that condition happens we need to put the request back
1648 * on the queue. Must be called with queue lock held.
1650 void blk_requeue_request(struct request_queue *q, struct request *rq)
1652 lockdep_assert_held(q->queue_lock);
1653 WARN_ON_ONCE(q->mq_ops);
1655 blk_delete_timer(rq);
1656 blk_clear_rq_complete(rq);
1657 trace_block_rq_requeue(q, rq);
1658 rq_qos_requeue(q, rq);
1660 if (rq->rq_flags & RQF_QUEUED)
1661 blk_queue_end_tag(q, rq);
1663 BUG_ON(blk_queued_rq(rq));
1665 elv_requeue_request(q, rq);
1667 EXPORT_SYMBOL(blk_requeue_request);
1669 static void add_acct_request(struct request_queue *q, struct request *rq,
1670 int where)
1672 blk_account_io_start(rq, true);
1673 __elv_add_request(q, rq, where);
1676 static void part_round_stats_single(struct request_queue *q, int cpu,
1677 struct hd_struct *part, unsigned long now,
1678 unsigned int inflight)
1680 if (inflight) {
1681 __part_stat_add(cpu, part, time_in_queue,
1682 inflight * (now - part->stamp));
1683 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1685 part->stamp = now;
1689 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1690 * @q: target block queue
1691 * @cpu: cpu number for stats access
1692 * @part: target partition
1694 * The average IO queue length and utilisation statistics are maintained
1695 * by observing the current state of the queue length and the amount of
1696 * time it has been in this state for.
1698 * Normally, that accounting is done on IO completion, but that can result
1699 * in more than a second's worth of IO being accounted for within any one
1700 * second, leading to >100% utilisation. To deal with that, we call this
1701 * function to do a round-off before returning the results when reading
1702 * /proc/diskstats. This accounts immediately for all queue usage up to
1703 * the current jiffies and restarts the counters again.
1705 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1707 struct hd_struct *part2 = NULL;
1708 unsigned long now = jiffies;
1709 unsigned int inflight[2];
1710 int stats = 0;
1712 if (part->stamp != now)
1713 stats |= 1;
1715 if (part->partno) {
1716 part2 = &part_to_disk(part)->part0;
1717 if (part2->stamp != now)
1718 stats |= 2;
1721 if (!stats)
1722 return;
1724 part_in_flight(q, part, inflight);
1726 if (stats & 2)
1727 part_round_stats_single(q, cpu, part2, now, inflight[1]);
1728 if (stats & 1)
1729 part_round_stats_single(q, cpu, part, now, inflight[0]);
1731 EXPORT_SYMBOL_GPL(part_round_stats);
1733 #ifdef CONFIG_PM
1734 static void blk_pm_put_request(struct request *rq)
1736 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1737 pm_runtime_mark_last_busy(rq->q->dev);
1739 #else
1740 static inline void blk_pm_put_request(struct request *rq) {}
1741 #endif
1743 void __blk_put_request(struct request_queue *q, struct request *req)
1745 req_flags_t rq_flags = req->rq_flags;
1747 if (unlikely(!q))
1748 return;
1750 if (q->mq_ops) {
1751 blk_mq_free_request(req);
1752 return;
1755 lockdep_assert_held(q->queue_lock);
1757 blk_req_zone_write_unlock(req);
1758 blk_pm_put_request(req);
1760 elv_completed_request(q, req);
1762 /* this is a bio leak */
1763 WARN_ON(req->bio != NULL);
1765 rq_qos_done(q, req);
1768 * Request may not have originated from ll_rw_blk. if not,
1769 * it didn't come out of our reserved rq pools
1771 if (rq_flags & RQF_ALLOCED) {
1772 struct request_list *rl = blk_rq_rl(req);
1773 bool sync = op_is_sync(req->cmd_flags);
1775 BUG_ON(!list_empty(&req->queuelist));
1776 BUG_ON(ELV_ON_HASH(req));
1778 blk_free_request(rl, req);
1779 freed_request(rl, sync, rq_flags);
1780 blk_put_rl(rl);
1781 blk_queue_exit(q);
1784 EXPORT_SYMBOL_GPL(__blk_put_request);
1786 void blk_put_request(struct request *req)
1788 struct request_queue *q = req->q;
1790 if (q->mq_ops)
1791 blk_mq_free_request(req);
1792 else {
1793 unsigned long flags;
1795 spin_lock_irqsave(q->queue_lock, flags);
1796 __blk_put_request(q, req);
1797 spin_unlock_irqrestore(q->queue_lock, flags);
1800 EXPORT_SYMBOL(blk_put_request);
1802 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1803 struct bio *bio)
1805 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1807 if (!ll_back_merge_fn(q, req, bio))
1808 return false;
1810 trace_block_bio_backmerge(q, req, bio);
1812 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1813 blk_rq_set_mixed_merge(req);
1815 req->biotail->bi_next = bio;
1816 req->biotail = bio;
1817 req->__data_len += bio->bi_iter.bi_size;
1818 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1820 blk_account_io_start(req, false);
1821 return true;
1824 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1825 struct bio *bio)
1827 const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1829 if (!ll_front_merge_fn(q, req, bio))
1830 return false;
1832 trace_block_bio_frontmerge(q, req, bio);
1834 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1835 blk_rq_set_mixed_merge(req);
1837 bio->bi_next = req->bio;
1838 req->bio = bio;
1840 req->__sector = bio->bi_iter.bi_sector;
1841 req->__data_len += bio->bi_iter.bi_size;
1842 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1844 blk_account_io_start(req, false);
1845 return true;
1848 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1849 struct bio *bio)
1851 unsigned short segments = blk_rq_nr_discard_segments(req);
1853 if (segments >= queue_max_discard_segments(q))
1854 goto no_merge;
1855 if (blk_rq_sectors(req) + bio_sectors(bio) >
1856 blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1857 goto no_merge;
1859 req->biotail->bi_next = bio;
1860 req->biotail = bio;
1861 req->__data_len += bio->bi_iter.bi_size;
1862 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1863 req->nr_phys_segments = segments + 1;
1865 blk_account_io_start(req, false);
1866 return true;
1867 no_merge:
1868 req_set_nomerge(q, req);
1869 return false;
1873 * blk_attempt_plug_merge - try to merge with %current's plugged list
1874 * @q: request_queue new bio is being queued at
1875 * @bio: new bio being queued
1876 * @request_count: out parameter for number of traversed plugged requests
1877 * @same_queue_rq: pointer to &struct request that gets filled in when
1878 * another request associated with @q is found on the plug list
1879 * (optional, may be %NULL)
1881 * Determine whether @bio being queued on @q can be merged with a request
1882 * on %current's plugged list. Returns %true if merge was successful,
1883 * otherwise %false.
1885 * Plugging coalesces IOs from the same issuer for the same purpose without
1886 * going through @q->queue_lock. As such it's more of an issuing mechanism
1887 * than scheduling, and the request, while may have elvpriv data, is not
1888 * added on the elevator at this point. In addition, we don't have
1889 * reliable access to the elevator outside queue lock. Only check basic
1890 * merging parameters without querying the elevator.
1892 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1894 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1895 unsigned int *request_count,
1896 struct request **same_queue_rq)
1898 struct blk_plug *plug;
1899 struct request *rq;
1900 struct list_head *plug_list;
1902 plug = current->plug;
1903 if (!plug)
1904 return false;
1905 *request_count = 0;
1907 if (q->mq_ops)
1908 plug_list = &plug->mq_list;
1909 else
1910 plug_list = &plug->list;
1912 list_for_each_entry_reverse(rq, plug_list, queuelist) {
1913 bool merged = false;
1915 if (rq->q == q) {
1916 (*request_count)++;
1918 * Only blk-mq multiple hardware queues case checks the
1919 * rq in the same queue, there should be only one such
1920 * rq in a queue
1922 if (same_queue_rq)
1923 *same_queue_rq = rq;
1926 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1927 continue;
1929 switch (blk_try_merge(rq, bio)) {
1930 case ELEVATOR_BACK_MERGE:
1931 merged = bio_attempt_back_merge(q, rq, bio);
1932 break;
1933 case ELEVATOR_FRONT_MERGE:
1934 merged = bio_attempt_front_merge(q, rq, bio);
1935 break;
1936 case ELEVATOR_DISCARD_MERGE:
1937 merged = bio_attempt_discard_merge(q, rq, bio);
1938 break;
1939 default:
1940 break;
1943 if (merged)
1944 return true;
1947 return false;
1950 unsigned int blk_plug_queued_count(struct request_queue *q)
1952 struct blk_plug *plug;
1953 struct request *rq;
1954 struct list_head *plug_list;
1955 unsigned int ret = 0;
1957 plug = current->plug;
1958 if (!plug)
1959 goto out;
1961 if (q->mq_ops)
1962 plug_list = &plug->mq_list;
1963 else
1964 plug_list = &plug->list;
1966 list_for_each_entry(rq, plug_list, queuelist) {
1967 if (rq->q == q)
1968 ret++;
1970 out:
1971 return ret;
1974 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1976 struct io_context *ioc = rq_ioc(bio);
1978 if (bio->bi_opf & REQ_RAHEAD)
1979 req->cmd_flags |= REQ_FAILFAST_MASK;
1981 req->__sector = bio->bi_iter.bi_sector;
1982 if (ioprio_valid(bio_prio(bio)))
1983 req->ioprio = bio_prio(bio);
1984 else if (ioc)
1985 req->ioprio = ioc->ioprio;
1986 else
1987 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1988 req->write_hint = bio->bi_write_hint;
1989 blk_rq_bio_prep(req->q, req, bio);
1991 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1993 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1995 struct blk_plug *plug;
1996 int where = ELEVATOR_INSERT_SORT;
1997 struct request *req, *free;
1998 unsigned int request_count = 0;
2001 * low level driver can indicate that it wants pages above a
2002 * certain limit bounced to low memory (ie for highmem, or even
2003 * ISA dma in theory)
2005 blk_queue_bounce(q, &bio);
2007 blk_queue_split(q, &bio);
2009 if (!bio_integrity_prep(bio))
2010 return BLK_QC_T_NONE;
2012 if (op_is_flush(bio->bi_opf)) {
2013 spin_lock_irq(q->queue_lock);
2014 where = ELEVATOR_INSERT_FLUSH;
2015 goto get_rq;
2019 * Check if we can merge with the plugged list before grabbing
2020 * any locks.
2022 if (!blk_queue_nomerges(q)) {
2023 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2024 return BLK_QC_T_NONE;
2025 } else
2026 request_count = blk_plug_queued_count(q);
2028 spin_lock_irq(q->queue_lock);
2030 switch (elv_merge(q, &req, bio)) {
2031 case ELEVATOR_BACK_MERGE:
2032 if (!bio_attempt_back_merge(q, req, bio))
2033 break;
2034 elv_bio_merged(q, req, bio);
2035 free = attempt_back_merge(q, req);
2036 if (free)
2037 __blk_put_request(q, free);
2038 else
2039 elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2040 goto out_unlock;
2041 case ELEVATOR_FRONT_MERGE:
2042 if (!bio_attempt_front_merge(q, req, bio))
2043 break;
2044 elv_bio_merged(q, req, bio);
2045 free = attempt_front_merge(q, req);
2046 if (free)
2047 __blk_put_request(q, free);
2048 else
2049 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2050 goto out_unlock;
2051 default:
2052 break;
2055 get_rq:
2056 rq_qos_throttle(q, bio, q->queue_lock);
2059 * Grab a free request. This is might sleep but can not fail.
2060 * Returns with the queue unlocked.
2062 blk_queue_enter_live(q);
2063 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2064 if (IS_ERR(req)) {
2065 blk_queue_exit(q);
2066 rq_qos_cleanup(q, bio);
2067 if (PTR_ERR(req) == -ENOMEM)
2068 bio->bi_status = BLK_STS_RESOURCE;
2069 else
2070 bio->bi_status = BLK_STS_IOERR;
2071 bio_endio(bio);
2072 goto out_unlock;
2075 rq_qos_track(q, req, bio);
2078 * After dropping the lock and possibly sleeping here, our request
2079 * may now be mergeable after it had proven unmergeable (above).
2080 * We don't worry about that case for efficiency. It won't happen
2081 * often, and the elevators are able to handle it.
2083 blk_init_request_from_bio(req, bio);
2085 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2086 req->cpu = raw_smp_processor_id();
2088 plug = current->plug;
2089 if (plug) {
2091 * If this is the first request added after a plug, fire
2092 * of a plug trace.
2094 * @request_count may become stale because of schedule
2095 * out, so check plug list again.
2097 if (!request_count || list_empty(&plug->list))
2098 trace_block_plug(q);
2099 else {
2100 struct request *last = list_entry_rq(plug->list.prev);
2101 if (request_count >= BLK_MAX_REQUEST_COUNT ||
2102 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2103 blk_flush_plug_list(plug, false);
2104 trace_block_plug(q);
2107 list_add_tail(&req->queuelist, &plug->list);
2108 blk_account_io_start(req, true);
2109 } else {
2110 spin_lock_irq(q->queue_lock);
2111 add_acct_request(q, req, where);
2112 __blk_run_queue(q);
2113 out_unlock:
2114 spin_unlock_irq(q->queue_lock);
2117 return BLK_QC_T_NONE;
2120 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2122 char b[BDEVNAME_SIZE];
2124 printk(KERN_INFO "attempt to access beyond end of device\n");
2125 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2126 bio_devname(bio, b), bio->bi_opf,
2127 (unsigned long long)bio_end_sector(bio),
2128 (long long)maxsector);
2131 #ifdef CONFIG_FAIL_MAKE_REQUEST
2133 static DECLARE_FAULT_ATTR(fail_make_request);
2135 static int __init setup_fail_make_request(char *str)
2137 return setup_fault_attr(&fail_make_request, str);
2139 __setup("fail_make_request=", setup_fail_make_request);
2141 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2143 return part->make_it_fail && should_fail(&fail_make_request, bytes);
2146 static int __init fail_make_request_debugfs(void)
2148 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2149 NULL, &fail_make_request);
2151 return PTR_ERR_OR_ZERO(dir);
2154 late_initcall(fail_make_request_debugfs);
2156 #else /* CONFIG_FAIL_MAKE_REQUEST */
2158 static inline bool should_fail_request(struct hd_struct *part,
2159 unsigned int bytes)
2161 return false;
2164 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2166 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2168 const int op = bio_op(bio);
2170 if (part->policy && op_is_write(op)) {
2171 char b[BDEVNAME_SIZE];
2173 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2174 return false;
2176 WARN_ONCE(1,
2177 "generic_make_request: Trying to write "
2178 "to read-only block-device %s (partno %d)\n",
2179 bio_devname(bio, b), part->partno);
2180 /* Older lvm-tools actually trigger this */
2181 return false;
2184 return false;
2187 static noinline int should_fail_bio(struct bio *bio)
2189 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2190 return -EIO;
2191 return 0;
2193 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2196 * Check whether this bio extends beyond the end of the device or partition.
2197 * This may well happen - the kernel calls bread() without checking the size of
2198 * the device, e.g., when mounting a file system.
2200 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2202 unsigned int nr_sectors = bio_sectors(bio);
2204 if (nr_sectors && maxsector &&
2205 (nr_sectors > maxsector ||
2206 bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2207 handle_bad_sector(bio, maxsector);
2208 return -EIO;
2210 return 0;
2214 * Remap block n of partition p to block n+start(p) of the disk.
2216 static inline int blk_partition_remap(struct bio *bio)
2218 struct hd_struct *p;
2219 int ret = -EIO;
2221 rcu_read_lock();
2222 p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2223 if (unlikely(!p))
2224 goto out;
2225 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2226 goto out;
2227 if (unlikely(bio_check_ro(bio, p)))
2228 goto out;
2231 * Zone reset does not include bi_size so bio_sectors() is always 0.
2232 * Include a test for the reset op code and perform the remap if needed.
2234 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2235 if (bio_check_eod(bio, part_nr_sects_read(p)))
2236 goto out;
2237 bio->bi_iter.bi_sector += p->start_sect;
2238 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2239 bio->bi_iter.bi_sector - p->start_sect);
2241 bio->bi_partno = 0;
2242 ret = 0;
2243 out:
2244 rcu_read_unlock();
2245 return ret;
2248 static noinline_for_stack bool
2249 generic_make_request_checks(struct bio *bio)
2251 struct request_queue *q;
2252 int nr_sectors = bio_sectors(bio);
2253 blk_status_t status = BLK_STS_IOERR;
2254 char b[BDEVNAME_SIZE];
2256 might_sleep();
2258 q = bio->bi_disk->queue;
2259 if (unlikely(!q)) {
2260 printk(KERN_ERR
2261 "generic_make_request: Trying to access "
2262 "nonexistent block-device %s (%Lu)\n",
2263 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2264 goto end_io;
2268 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2269 * if queue is not a request based queue.
2271 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2272 goto not_supported;
2274 if (should_fail_bio(bio))
2275 goto end_io;
2277 if (bio->bi_partno) {
2278 if (unlikely(blk_partition_remap(bio)))
2279 goto end_io;
2280 } else {
2281 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2282 goto end_io;
2283 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2284 goto end_io;
2288 * Filter flush bio's early so that make_request based
2289 * drivers without flush support don't have to worry
2290 * about them.
2292 if (op_is_flush(bio->bi_opf) &&
2293 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2294 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2295 if (!nr_sectors) {
2296 status = BLK_STS_OK;
2297 goto end_io;
2301 switch (bio_op(bio)) {
2302 case REQ_OP_DISCARD:
2303 if (!blk_queue_discard(q))
2304 goto not_supported;
2305 break;
2306 case REQ_OP_SECURE_ERASE:
2307 if (!blk_queue_secure_erase(q))
2308 goto not_supported;
2309 break;
2310 case REQ_OP_WRITE_SAME:
2311 if (!q->limits.max_write_same_sectors)
2312 goto not_supported;
2313 break;
2314 case REQ_OP_ZONE_REPORT:
2315 case REQ_OP_ZONE_RESET:
2316 if (!blk_queue_is_zoned(q))
2317 goto not_supported;
2318 break;
2319 case REQ_OP_WRITE_ZEROES:
2320 if (!q->limits.max_write_zeroes_sectors)
2321 goto not_supported;
2322 break;
2323 default:
2324 break;
2328 * Various block parts want %current->io_context and lazy ioc
2329 * allocation ends up trading a lot of pain for a small amount of
2330 * memory. Just allocate it upfront. This may fail and block
2331 * layer knows how to live with it.
2333 create_io_context(GFP_ATOMIC, q->node);
2335 if (!blkcg_bio_issue_check(q, bio))
2336 return false;
2338 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2339 trace_block_bio_queue(q, bio);
2340 /* Now that enqueuing has been traced, we need to trace
2341 * completion as well.
2343 bio_set_flag(bio, BIO_TRACE_COMPLETION);
2345 return true;
2347 not_supported:
2348 status = BLK_STS_NOTSUPP;
2349 end_io:
2350 bio->bi_status = status;
2351 bio_endio(bio);
2352 return false;
2356 * generic_make_request - hand a buffer to its device driver for I/O
2357 * @bio: The bio describing the location in memory and on the device.
2359 * generic_make_request() is used to make I/O requests of block
2360 * devices. It is passed a &struct bio, which describes the I/O that needs
2361 * to be done.
2363 * generic_make_request() does not return any status. The
2364 * success/failure status of the request, along with notification of
2365 * completion, is delivered asynchronously through the bio->bi_end_io
2366 * function described (one day) else where.
2368 * The caller of generic_make_request must make sure that bi_io_vec
2369 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2370 * set to describe the device address, and the
2371 * bi_end_io and optionally bi_private are set to describe how
2372 * completion notification should be signaled.
2374 * generic_make_request and the drivers it calls may use bi_next if this
2375 * bio happens to be merged with someone else, and may resubmit the bio to
2376 * a lower device by calling into generic_make_request recursively, which
2377 * means the bio should NOT be touched after the call to ->make_request_fn.
2379 blk_qc_t generic_make_request(struct bio *bio)
2382 * bio_list_on_stack[0] contains bios submitted by the current
2383 * make_request_fn.
2384 * bio_list_on_stack[1] contains bios that were submitted before
2385 * the current make_request_fn, but that haven't been processed
2386 * yet.
2388 struct bio_list bio_list_on_stack[2];
2389 blk_mq_req_flags_t flags = 0;
2390 struct request_queue *q = bio->bi_disk->queue;
2391 blk_qc_t ret = BLK_QC_T_NONE;
2393 if (bio->bi_opf & REQ_NOWAIT)
2394 flags = BLK_MQ_REQ_NOWAIT;
2395 if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2396 blk_queue_enter_live(q);
2397 else if (blk_queue_enter(q, flags) < 0) {
2398 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2399 bio_wouldblock_error(bio);
2400 else
2401 bio_io_error(bio);
2402 return ret;
2405 if (!generic_make_request_checks(bio))
2406 goto out;
2409 * We only want one ->make_request_fn to be active at a time, else
2410 * stack usage with stacked devices could be a problem. So use
2411 * current->bio_list to keep a list of requests submited by a
2412 * make_request_fn function. current->bio_list is also used as a
2413 * flag to say if generic_make_request is currently active in this
2414 * task or not. If it is NULL, then no make_request is active. If
2415 * it is non-NULL, then a make_request is active, and new requests
2416 * should be added at the tail
2418 if (current->bio_list) {
2419 bio_list_add(&current->bio_list[0], bio);
2420 goto out;
2423 /* following loop may be a bit non-obvious, and so deserves some
2424 * explanation.
2425 * Before entering the loop, bio->bi_next is NULL (as all callers
2426 * ensure that) so we have a list with a single bio.
2427 * We pretend that we have just taken it off a longer list, so
2428 * we assign bio_list to a pointer to the bio_list_on_stack,
2429 * thus initialising the bio_list of new bios to be
2430 * added. ->make_request() may indeed add some more bios
2431 * through a recursive call to generic_make_request. If it
2432 * did, we find a non-NULL value in bio_list and re-enter the loop
2433 * from the top. In this case we really did just take the bio
2434 * of the top of the list (no pretending) and so remove it from
2435 * bio_list, and call into ->make_request() again.
2437 BUG_ON(bio->bi_next);
2438 bio_list_init(&bio_list_on_stack[0]);
2439 current->bio_list = bio_list_on_stack;
2440 do {
2441 bool enter_succeeded = true;
2443 if (unlikely(q != bio->bi_disk->queue)) {
2444 if (q)
2445 blk_queue_exit(q);
2446 q = bio->bi_disk->queue;
2447 flags = 0;
2448 if (bio->bi_opf & REQ_NOWAIT)
2449 flags = BLK_MQ_REQ_NOWAIT;
2450 if (blk_queue_enter(q, flags) < 0)
2451 enter_succeeded = false;
2454 if (enter_succeeded) {
2455 struct bio_list lower, same;
2457 /* Create a fresh bio_list for all subordinate requests */
2458 bio_list_on_stack[1] = bio_list_on_stack[0];
2459 bio_list_init(&bio_list_on_stack[0]);
2460 ret = q->make_request_fn(q, bio);
2462 /* sort new bios into those for a lower level
2463 * and those for the same level
2465 bio_list_init(&lower);
2466 bio_list_init(&same);
2467 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2468 if (q == bio->bi_disk->queue)
2469 bio_list_add(&same, bio);
2470 else
2471 bio_list_add(&lower, bio);
2472 /* now assemble so we handle the lowest level first */
2473 bio_list_merge(&bio_list_on_stack[0], &lower);
2474 bio_list_merge(&bio_list_on_stack[0], &same);
2475 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2476 } else {
2477 if (unlikely(!blk_queue_dying(q) &&
2478 (bio->bi_opf & REQ_NOWAIT)))
2479 bio_wouldblock_error(bio);
2480 else
2481 bio_io_error(bio);
2482 q = NULL;
2484 bio = bio_list_pop(&bio_list_on_stack[0]);
2485 } while (bio);
2486 current->bio_list = NULL; /* deactivate */
2488 out:
2489 if (q)
2490 blk_queue_exit(q);
2491 return ret;
2493 EXPORT_SYMBOL(generic_make_request);
2496 * direct_make_request - hand a buffer directly to its device driver for I/O
2497 * @bio: The bio describing the location in memory and on the device.
2499 * This function behaves like generic_make_request(), but does not protect
2500 * against recursion. Must only be used if the called driver is known
2501 * to not call generic_make_request (or direct_make_request) again from
2502 * its make_request function. (Calling direct_make_request again from
2503 * a workqueue is perfectly fine as that doesn't recurse).
2505 blk_qc_t direct_make_request(struct bio *bio)
2507 struct request_queue *q = bio->bi_disk->queue;
2508 bool nowait = bio->bi_opf & REQ_NOWAIT;
2509 blk_qc_t ret;
2511 if (!generic_make_request_checks(bio))
2512 return BLK_QC_T_NONE;
2514 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2515 if (nowait && !blk_queue_dying(q))
2516 bio->bi_status = BLK_STS_AGAIN;
2517 else
2518 bio->bi_status = BLK_STS_IOERR;
2519 bio_endio(bio);
2520 return BLK_QC_T_NONE;
2523 ret = q->make_request_fn(q, bio);
2524 blk_queue_exit(q);
2525 return ret;
2527 EXPORT_SYMBOL_GPL(direct_make_request);
2530 * submit_bio - submit a bio to the block device layer for I/O
2531 * @bio: The &struct bio which describes the I/O
2533 * submit_bio() is very similar in purpose to generic_make_request(), and
2534 * uses that function to do most of the work. Both are fairly rough
2535 * interfaces; @bio must be presetup and ready for I/O.
2538 blk_qc_t submit_bio(struct bio *bio)
2541 * If it's a regular read/write or a barrier with data attached,
2542 * go through the normal accounting stuff before submission.
2544 if (bio_has_data(bio)) {
2545 unsigned int count;
2547 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2548 count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2549 else
2550 count = bio_sectors(bio);
2552 if (op_is_write(bio_op(bio))) {
2553 count_vm_events(PGPGOUT, count);
2554 } else {
2555 task_io_account_read(bio->bi_iter.bi_size);
2556 count_vm_events(PGPGIN, count);
2559 if (unlikely(block_dump)) {
2560 char b[BDEVNAME_SIZE];
2561 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2562 current->comm, task_pid_nr(current),
2563 op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2564 (unsigned long long)bio->bi_iter.bi_sector,
2565 bio_devname(bio, b), count);
2569 return generic_make_request(bio);
2571 EXPORT_SYMBOL(submit_bio);
2573 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2575 if (!q->poll_fn || !blk_qc_t_valid(cookie))
2576 return false;
2578 if (current->plug)
2579 blk_flush_plug_list(current->plug, false);
2580 return q->poll_fn(q, cookie);
2582 EXPORT_SYMBOL_GPL(blk_poll);
2585 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2586 * for new the queue limits
2587 * @q: the queue
2588 * @rq: the request being checked
2590 * Description:
2591 * @rq may have been made based on weaker limitations of upper-level queues
2592 * in request stacking drivers, and it may violate the limitation of @q.
2593 * Since the block layer and the underlying device driver trust @rq
2594 * after it is inserted to @q, it should be checked against @q before
2595 * the insertion using this generic function.
2597 * Request stacking drivers like request-based dm may change the queue
2598 * limits when retrying requests on other queues. Those requests need
2599 * to be checked against the new queue limits again during dispatch.
2601 static int blk_cloned_rq_check_limits(struct request_queue *q,
2602 struct request *rq)
2604 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2605 printk(KERN_ERR "%s: over max size limit.\n", __func__);
2606 return -EIO;
2610 * queue's settings related to segment counting like q->bounce_pfn
2611 * may differ from that of other stacking queues.
2612 * Recalculate it to check the request correctly on this queue's
2613 * limitation.
2615 blk_recalc_rq_segments(rq);
2616 if (rq->nr_phys_segments > queue_max_segments(q)) {
2617 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2618 return -EIO;
2621 return 0;
2625 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2626 * @q: the queue to submit the request
2627 * @rq: the request being queued
2629 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2631 unsigned long flags;
2632 int where = ELEVATOR_INSERT_BACK;
2634 if (blk_cloned_rq_check_limits(q, rq))
2635 return BLK_STS_IOERR;
2637 if (rq->rq_disk &&
2638 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2639 return BLK_STS_IOERR;
2641 if (q->mq_ops) {
2642 if (blk_queue_io_stat(q))
2643 blk_account_io_start(rq, true);
2645 * Since we have a scheduler attached on the top device,
2646 * bypass a potential scheduler on the bottom device for
2647 * insert.
2649 return blk_mq_request_issue_directly(rq);
2652 spin_lock_irqsave(q->queue_lock, flags);
2653 if (unlikely(blk_queue_dying(q))) {
2654 spin_unlock_irqrestore(q->queue_lock, flags);
2655 return BLK_STS_IOERR;
2659 * Submitting request must be dequeued before calling this function
2660 * because it will be linked to another request_queue
2662 BUG_ON(blk_queued_rq(rq));
2664 if (op_is_flush(rq->cmd_flags))
2665 where = ELEVATOR_INSERT_FLUSH;
2667 add_acct_request(q, rq, where);
2668 if (where == ELEVATOR_INSERT_FLUSH)
2669 __blk_run_queue(q);
2670 spin_unlock_irqrestore(q->queue_lock, flags);
2672 return BLK_STS_OK;
2674 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2677 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2678 * @rq: request to examine
2680 * Description:
2681 * A request could be merge of IOs which require different failure
2682 * handling. This function determines the number of bytes which
2683 * can be failed from the beginning of the request without
2684 * crossing into area which need to be retried further.
2686 * Return:
2687 * The number of bytes to fail.
2689 unsigned int blk_rq_err_bytes(const struct request *rq)
2691 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2692 unsigned int bytes = 0;
2693 struct bio *bio;
2695 if (!(rq->rq_flags & RQF_MIXED_MERGE))
2696 return blk_rq_bytes(rq);
2699 * Currently the only 'mixing' which can happen is between
2700 * different fastfail types. We can safely fail portions
2701 * which have all the failfast bits that the first one has -
2702 * the ones which are at least as eager to fail as the first
2703 * one.
2705 for (bio = rq->bio; bio; bio = bio->bi_next) {
2706 if ((bio->bi_opf & ff) != ff)
2707 break;
2708 bytes += bio->bi_iter.bi_size;
2711 /* this could lead to infinite loop */
2712 BUG_ON(blk_rq_bytes(rq) && !bytes);
2713 return bytes;
2715 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2717 void blk_account_io_completion(struct request *req, unsigned int bytes)
2719 if (blk_do_io_stat(req)) {
2720 const int sgrp = op_stat_group(req_op(req));
2721 struct hd_struct *part;
2722 int cpu;
2724 cpu = part_stat_lock();
2725 part = req->part;
2726 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2727 part_stat_unlock();
2731 void blk_account_io_done(struct request *req, u64 now)
2734 * Account IO completion. flush_rq isn't accounted as a
2735 * normal IO on queueing nor completion. Accounting the
2736 * containing request is enough.
2738 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2739 const int sgrp = op_stat_group(req_op(req));
2740 struct hd_struct *part;
2741 int cpu;
2743 cpu = part_stat_lock();
2744 part = req->part;
2746 part_stat_inc(cpu, part, ios[sgrp]);
2747 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns);
2748 part_round_stats(req->q, cpu, part);
2749 part_dec_in_flight(req->q, part, rq_data_dir(req));
2751 hd_struct_put(part);
2752 part_stat_unlock();
2756 #ifdef CONFIG_PM
2758 * Don't process normal requests when queue is suspended
2759 * or in the process of suspending/resuming
2761 static bool blk_pm_allow_request(struct request *rq)
2763 switch (rq->q->rpm_status) {
2764 case RPM_RESUMING:
2765 case RPM_SUSPENDING:
2766 return rq->rq_flags & RQF_PM;
2767 case RPM_SUSPENDED:
2768 return false;
2769 default:
2770 return true;
2773 #else
2774 static bool blk_pm_allow_request(struct request *rq)
2776 return true;
2778 #endif
2780 void blk_account_io_start(struct request *rq, bool new_io)
2782 struct hd_struct *part;
2783 int rw = rq_data_dir(rq);
2784 int cpu;
2786 if (!blk_do_io_stat(rq))
2787 return;
2789 cpu = part_stat_lock();
2791 if (!new_io) {
2792 part = rq->part;
2793 part_stat_inc(cpu, part, merges[rw]);
2794 } else {
2795 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2796 if (!hd_struct_try_get(part)) {
2798 * The partition is already being removed,
2799 * the request will be accounted on the disk only
2801 * We take a reference on disk->part0 although that
2802 * partition will never be deleted, so we can treat
2803 * it as any other partition.
2805 part = &rq->rq_disk->part0;
2806 hd_struct_get(part);
2808 part_round_stats(rq->q, cpu, part);
2809 part_inc_in_flight(rq->q, part, rw);
2810 rq->part = part;
2813 part_stat_unlock();
2816 static struct request *elv_next_request(struct request_queue *q)
2818 struct request *rq;
2819 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2821 WARN_ON_ONCE(q->mq_ops);
2823 while (1) {
2824 list_for_each_entry(rq, &q->queue_head, queuelist) {
2825 if (blk_pm_allow_request(rq))
2826 return rq;
2828 if (rq->rq_flags & RQF_SOFTBARRIER)
2829 break;
2833 * Flush request is running and flush request isn't queueable
2834 * in the drive, we can hold the queue till flush request is
2835 * finished. Even we don't do this, driver can't dispatch next
2836 * requests and will requeue them. And this can improve
2837 * throughput too. For example, we have request flush1, write1,
2838 * flush 2. flush1 is dispatched, then queue is hold, write1
2839 * isn't inserted to queue. After flush1 is finished, flush2
2840 * will be dispatched. Since disk cache is already clean,
2841 * flush2 will be finished very soon, so looks like flush2 is
2842 * folded to flush1.
2843 * Since the queue is hold, a flag is set to indicate the queue
2844 * should be restarted later. Please see flush_end_io() for
2845 * details.
2847 if (fq->flush_pending_idx != fq->flush_running_idx &&
2848 !queue_flush_queueable(q)) {
2849 fq->flush_queue_delayed = 1;
2850 return NULL;
2852 if (unlikely(blk_queue_bypass(q)) ||
2853 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2854 return NULL;
2859 * blk_peek_request - peek at the top of a request queue
2860 * @q: request queue to peek at
2862 * Description:
2863 * Return the request at the top of @q. The returned request
2864 * should be started using blk_start_request() before LLD starts
2865 * processing it.
2867 * Return:
2868 * Pointer to the request at the top of @q if available. Null
2869 * otherwise.
2871 struct request *blk_peek_request(struct request_queue *q)
2873 struct request *rq;
2874 int ret;
2876 lockdep_assert_held(q->queue_lock);
2877 WARN_ON_ONCE(q->mq_ops);
2879 while ((rq = elv_next_request(q)) != NULL) {
2880 if (!(rq->rq_flags & RQF_STARTED)) {
2882 * This is the first time the device driver
2883 * sees this request (possibly after
2884 * requeueing). Notify IO scheduler.
2886 if (rq->rq_flags & RQF_SORTED)
2887 elv_activate_rq(q, rq);
2890 * just mark as started even if we don't start
2891 * it, a request that has been delayed should
2892 * not be passed by new incoming requests
2894 rq->rq_flags |= RQF_STARTED;
2895 trace_block_rq_issue(q, rq);
2898 if (!q->boundary_rq || q->boundary_rq == rq) {
2899 q->end_sector = rq_end_sector(rq);
2900 q->boundary_rq = NULL;
2903 if (rq->rq_flags & RQF_DONTPREP)
2904 break;
2906 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2908 * make sure space for the drain appears we
2909 * know we can do this because max_hw_segments
2910 * has been adjusted to be one fewer than the
2911 * device can handle
2913 rq->nr_phys_segments++;
2916 if (!q->prep_rq_fn)
2917 break;
2919 ret = q->prep_rq_fn(q, rq);
2920 if (ret == BLKPREP_OK) {
2921 break;
2922 } else if (ret == BLKPREP_DEFER) {
2924 * the request may have been (partially) prepped.
2925 * we need to keep this request in the front to
2926 * avoid resource deadlock. RQF_STARTED will
2927 * prevent other fs requests from passing this one.
2929 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2930 !(rq->rq_flags & RQF_DONTPREP)) {
2932 * remove the space for the drain we added
2933 * so that we don't add it again
2935 --rq->nr_phys_segments;
2938 rq = NULL;
2939 break;
2940 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2941 rq->rq_flags |= RQF_QUIET;
2943 * Mark this request as started so we don't trigger
2944 * any debug logic in the end I/O path.
2946 blk_start_request(rq);
2947 __blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2948 BLK_STS_TARGET : BLK_STS_IOERR);
2949 } else {
2950 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2951 break;
2955 return rq;
2957 EXPORT_SYMBOL(blk_peek_request);
2959 static void blk_dequeue_request(struct request *rq)
2961 struct request_queue *q = rq->q;
2963 BUG_ON(list_empty(&rq->queuelist));
2964 BUG_ON(ELV_ON_HASH(rq));
2966 list_del_init(&rq->queuelist);
2969 * the time frame between a request being removed from the lists
2970 * and to it is freed is accounted as io that is in progress at
2971 * the driver side.
2973 if (blk_account_rq(rq))
2974 q->in_flight[rq_is_sync(rq)]++;
2978 * blk_start_request - start request processing on the driver
2979 * @req: request to dequeue
2981 * Description:
2982 * Dequeue @req and start timeout timer on it. This hands off the
2983 * request to the driver.
2985 void blk_start_request(struct request *req)
2987 lockdep_assert_held(req->q->queue_lock);
2988 WARN_ON_ONCE(req->q->mq_ops);
2990 blk_dequeue_request(req);
2992 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2993 req->io_start_time_ns = ktime_get_ns();
2994 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2995 req->throtl_size = blk_rq_sectors(req);
2996 #endif
2997 req->rq_flags |= RQF_STATS;
2998 rq_qos_issue(req->q, req);
3001 BUG_ON(blk_rq_is_complete(req));
3002 blk_add_timer(req);
3004 EXPORT_SYMBOL(blk_start_request);
3007 * blk_fetch_request - fetch a request from a request queue
3008 * @q: request queue to fetch a request from
3010 * Description:
3011 * Return the request at the top of @q. The request is started on
3012 * return and LLD can start processing it immediately.
3014 * Return:
3015 * Pointer to the request at the top of @q if available. Null
3016 * otherwise.
3018 struct request *blk_fetch_request(struct request_queue *q)
3020 struct request *rq;
3022 lockdep_assert_held(q->queue_lock);
3023 WARN_ON_ONCE(q->mq_ops);
3025 rq = blk_peek_request(q);
3026 if (rq)
3027 blk_start_request(rq);
3028 return rq;
3030 EXPORT_SYMBOL(blk_fetch_request);
3033 * Steal bios from a request and add them to a bio list.
3034 * The request must not have been partially completed before.
3036 void blk_steal_bios(struct bio_list *list, struct request *rq)
3038 if (rq->bio) {
3039 if (list->tail)
3040 list->tail->bi_next = rq->bio;
3041 else
3042 list->head = rq->bio;
3043 list->tail = rq->biotail;
3045 rq->bio = NULL;
3046 rq->biotail = NULL;
3049 rq->__data_len = 0;
3051 EXPORT_SYMBOL_GPL(blk_steal_bios);
3054 * blk_update_request - Special helper function for request stacking drivers
3055 * @req: the request being processed
3056 * @error: block status code
3057 * @nr_bytes: number of bytes to complete @req
3059 * Description:
3060 * Ends I/O on a number of bytes attached to @req, but doesn't complete
3061 * the request structure even if @req doesn't have leftover.
3062 * If @req has leftover, sets it up for the next range of segments.
3064 * This special helper function is only for request stacking drivers
3065 * (e.g. request-based dm) so that they can handle partial completion.
3066 * Actual device drivers should use blk_end_request instead.
3068 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3069 * %false return from this function.
3071 * Note:
3072 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3073 * blk_rq_bytes() and in blk_update_request().
3075 * Return:
3076 * %false - this request doesn't have any more data
3077 * %true - this request has more data
3079 bool blk_update_request(struct request *req, blk_status_t error,
3080 unsigned int nr_bytes)
3082 int total_bytes;
3084 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3086 if (!req->bio)
3087 return false;
3089 if (unlikely(error && !blk_rq_is_passthrough(req) &&
3090 !(req->rq_flags & RQF_QUIET)))
3091 print_req_error(req, error);
3093 blk_account_io_completion(req, nr_bytes);
3095 total_bytes = 0;
3096 while (req->bio) {
3097 struct bio *bio = req->bio;
3098 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3100 if (bio_bytes == bio->bi_iter.bi_size)
3101 req->bio = bio->bi_next;
3103 /* Completion has already been traced */
3104 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3105 req_bio_endio(req, bio, bio_bytes, error);
3107 total_bytes += bio_bytes;
3108 nr_bytes -= bio_bytes;
3110 if (!nr_bytes)
3111 break;
3115 * completely done
3117 if (!req->bio) {
3119 * Reset counters so that the request stacking driver
3120 * can find how many bytes remain in the request
3121 * later.
3123 req->__data_len = 0;
3124 return false;
3127 req->__data_len -= total_bytes;
3129 /* update sector only for requests with clear definition of sector */
3130 if (!blk_rq_is_passthrough(req))
3131 req->__sector += total_bytes >> 9;
3133 /* mixed attributes always follow the first bio */
3134 if (req->rq_flags & RQF_MIXED_MERGE) {
3135 req->cmd_flags &= ~REQ_FAILFAST_MASK;
3136 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3139 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3141 * If total number of sectors is less than the first segment
3142 * size, something has gone terribly wrong.
3144 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3145 blk_dump_rq_flags(req, "request botched");
3146 req->__data_len = blk_rq_cur_bytes(req);
3149 /* recalculate the number of segments */
3150 blk_recalc_rq_segments(req);
3153 return true;
3155 EXPORT_SYMBOL_GPL(blk_update_request);
3157 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3158 unsigned int nr_bytes,
3159 unsigned int bidi_bytes)
3161 if (blk_update_request(rq, error, nr_bytes))
3162 return true;
3164 /* Bidi request must be completed as a whole */
3165 if (unlikely(blk_bidi_rq(rq)) &&
3166 blk_update_request(rq->next_rq, error, bidi_bytes))
3167 return true;
3169 if (blk_queue_add_random(rq->q))
3170 add_disk_randomness(rq->rq_disk);
3172 return false;
3176 * blk_unprep_request - unprepare a request
3177 * @req: the request
3179 * This function makes a request ready for complete resubmission (or
3180 * completion). It happens only after all error handling is complete,
3181 * so represents the appropriate moment to deallocate any resources
3182 * that were allocated to the request in the prep_rq_fn. The queue
3183 * lock is held when calling this.
3185 void blk_unprep_request(struct request *req)
3187 struct request_queue *q = req->q;
3189 req->rq_flags &= ~RQF_DONTPREP;
3190 if (q->unprep_rq_fn)
3191 q->unprep_rq_fn(q, req);
3193 EXPORT_SYMBOL_GPL(blk_unprep_request);
3195 void blk_finish_request(struct request *req, blk_status_t error)
3197 struct request_queue *q = req->q;
3198 u64 now = ktime_get_ns();
3200 lockdep_assert_held(req->q->queue_lock);
3201 WARN_ON_ONCE(q->mq_ops);
3203 if (req->rq_flags & RQF_STATS)
3204 blk_stat_add(req, now);
3206 if (req->rq_flags & RQF_QUEUED)
3207 blk_queue_end_tag(q, req);
3209 BUG_ON(blk_queued_rq(req));
3211 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3212 laptop_io_completion(req->q->backing_dev_info);
3214 blk_delete_timer(req);
3216 if (req->rq_flags & RQF_DONTPREP)
3217 blk_unprep_request(req);
3219 blk_account_io_done(req, now);
3221 if (req->end_io) {
3222 rq_qos_done(q, req);
3223 req->end_io(req, error);
3224 } else {
3225 if (blk_bidi_rq(req))
3226 __blk_put_request(req->next_rq->q, req->next_rq);
3228 __blk_put_request(q, req);
3231 EXPORT_SYMBOL(blk_finish_request);
3234 * blk_end_bidi_request - Complete a bidi request
3235 * @rq: the request to complete
3236 * @error: block status code
3237 * @nr_bytes: number of bytes to complete @rq
3238 * @bidi_bytes: number of bytes to complete @rq->next_rq
3240 * Description:
3241 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3242 * Drivers that supports bidi can safely call this member for any
3243 * type of request, bidi or uni. In the later case @bidi_bytes is
3244 * just ignored.
3246 * Return:
3247 * %false - we are done with this request
3248 * %true - still buffers pending for this request
3250 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3251 unsigned int nr_bytes, unsigned int bidi_bytes)
3253 struct request_queue *q = rq->q;
3254 unsigned long flags;
3256 WARN_ON_ONCE(q->mq_ops);
3258 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3259 return true;
3261 spin_lock_irqsave(q->queue_lock, flags);
3262 blk_finish_request(rq, error);
3263 spin_unlock_irqrestore(q->queue_lock, flags);
3265 return false;
3269 * __blk_end_bidi_request - Complete a bidi request with queue lock held
3270 * @rq: the request to complete
3271 * @error: block status code
3272 * @nr_bytes: number of bytes to complete @rq
3273 * @bidi_bytes: number of bytes to complete @rq->next_rq
3275 * Description:
3276 * Identical to blk_end_bidi_request() except that queue lock is
3277 * assumed to be locked on entry and remains so on return.
3279 * Return:
3280 * %false - we are done with this request
3281 * %true - still buffers pending for this request
3283 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3284 unsigned int nr_bytes, unsigned int bidi_bytes)
3286 lockdep_assert_held(rq->q->queue_lock);
3287 WARN_ON_ONCE(rq->q->mq_ops);
3289 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3290 return true;
3292 blk_finish_request(rq, error);
3294 return false;
3298 * blk_end_request - Helper function for drivers to complete the request.
3299 * @rq: the request being processed
3300 * @error: block status code
3301 * @nr_bytes: number of bytes to complete
3303 * Description:
3304 * Ends I/O on a number of bytes attached to @rq.
3305 * If @rq has leftover, sets it up for the next range of segments.
3307 * Return:
3308 * %false - we are done with this request
3309 * %true - still buffers pending for this request
3311 bool blk_end_request(struct request *rq, blk_status_t error,
3312 unsigned int nr_bytes)
3314 WARN_ON_ONCE(rq->q->mq_ops);
3315 return blk_end_bidi_request(rq, error, nr_bytes, 0);
3317 EXPORT_SYMBOL(blk_end_request);
3320 * blk_end_request_all - Helper function for drives to finish the request.
3321 * @rq: the request to finish
3322 * @error: block status code
3324 * Description:
3325 * Completely finish @rq.
3327 void blk_end_request_all(struct request *rq, blk_status_t error)
3329 bool pending;
3330 unsigned int bidi_bytes = 0;
3332 if (unlikely(blk_bidi_rq(rq)))
3333 bidi_bytes = blk_rq_bytes(rq->next_rq);
3335 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3336 BUG_ON(pending);
3338 EXPORT_SYMBOL(blk_end_request_all);
3341 * __blk_end_request - Helper function for drivers to complete the request.
3342 * @rq: the request being processed
3343 * @error: block status code
3344 * @nr_bytes: number of bytes to complete
3346 * Description:
3347 * Must be called with queue lock held unlike blk_end_request().
3349 * Return:
3350 * %false - we are done with this request
3351 * %true - still buffers pending for this request
3353 bool __blk_end_request(struct request *rq, blk_status_t error,
3354 unsigned int nr_bytes)
3356 lockdep_assert_held(rq->q->queue_lock);
3357 WARN_ON_ONCE(rq->q->mq_ops);
3359 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3361 EXPORT_SYMBOL(__blk_end_request);
3364 * __blk_end_request_all - Helper function for drives to finish the request.
3365 * @rq: the request to finish
3366 * @error: block status code
3368 * Description:
3369 * Completely finish @rq. Must be called with queue lock held.
3371 void __blk_end_request_all(struct request *rq, blk_status_t error)
3373 bool pending;
3374 unsigned int bidi_bytes = 0;
3376 lockdep_assert_held(rq->q->queue_lock);
3377 WARN_ON_ONCE(rq->q->mq_ops);
3379 if (unlikely(blk_bidi_rq(rq)))
3380 bidi_bytes = blk_rq_bytes(rq->next_rq);
3382 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3383 BUG_ON(pending);
3385 EXPORT_SYMBOL(__blk_end_request_all);
3388 * __blk_end_request_cur - Helper function to finish the current request chunk.
3389 * @rq: the request to finish the current chunk for
3390 * @error: block status code
3392 * Description:
3393 * Complete the current consecutively mapped chunk from @rq. Must
3394 * be called with queue lock held.
3396 * Return:
3397 * %false - we are done with this request
3398 * %true - still buffers pending for this request
3400 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3402 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3404 EXPORT_SYMBOL(__blk_end_request_cur);
3406 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3407 struct bio *bio)
3409 if (bio_has_data(bio))
3410 rq->nr_phys_segments = bio_phys_segments(q, bio);
3411 else if (bio_op(bio) == REQ_OP_DISCARD)
3412 rq->nr_phys_segments = 1;
3414 rq->__data_len = bio->bi_iter.bi_size;
3415 rq->bio = rq->biotail = bio;
3417 if (bio->bi_disk)
3418 rq->rq_disk = bio->bi_disk;
3421 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3423 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3424 * @rq: the request to be flushed
3426 * Description:
3427 * Flush all pages in @rq.
3429 void rq_flush_dcache_pages(struct request *rq)
3431 struct req_iterator iter;
3432 struct bio_vec bvec;
3434 rq_for_each_segment(bvec, rq, iter)
3435 flush_dcache_page(bvec.bv_page);
3437 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3438 #endif
3441 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3442 * @q : the queue of the device being checked
3444 * Description:
3445 * Check if underlying low-level drivers of a device are busy.
3446 * If the drivers want to export their busy state, they must set own
3447 * exporting function using blk_queue_lld_busy() first.
3449 * Basically, this function is used only by request stacking drivers
3450 * to stop dispatching requests to underlying devices when underlying
3451 * devices are busy. This behavior helps more I/O merging on the queue
3452 * of the request stacking driver and prevents I/O throughput regression
3453 * on burst I/O load.
3455 * Return:
3456 * 0 - Not busy (The request stacking driver should dispatch request)
3457 * 1 - Busy (The request stacking driver should stop dispatching request)
3459 int blk_lld_busy(struct request_queue *q)
3461 if (q->lld_busy_fn)
3462 return q->lld_busy_fn(q);
3464 return 0;
3466 EXPORT_SYMBOL_GPL(blk_lld_busy);
3469 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3470 * @rq: the clone request to be cleaned up
3472 * Description:
3473 * Free all bios in @rq for a cloned request.
3475 void blk_rq_unprep_clone(struct request *rq)
3477 struct bio *bio;
3479 while ((bio = rq->bio) != NULL) {
3480 rq->bio = bio->bi_next;
3482 bio_put(bio);
3485 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3488 * Copy attributes of the original request to the clone request.
3489 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3491 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3493 dst->cpu = src->cpu;
3494 dst->__sector = blk_rq_pos(src);
3495 dst->__data_len = blk_rq_bytes(src);
3496 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3497 dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3498 dst->special_vec = src->special_vec;
3500 dst->nr_phys_segments = src->nr_phys_segments;
3501 dst->ioprio = src->ioprio;
3502 dst->extra_len = src->extra_len;
3506 * blk_rq_prep_clone - Helper function to setup clone request
3507 * @rq: the request to be setup
3508 * @rq_src: original request to be cloned
3509 * @bs: bio_set that bios for clone are allocated from
3510 * @gfp_mask: memory allocation mask for bio
3511 * @bio_ctr: setup function to be called for each clone bio.
3512 * Returns %0 for success, non %0 for failure.
3513 * @data: private data to be passed to @bio_ctr
3515 * Description:
3516 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3517 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3518 * are not copied, and copying such parts is the caller's responsibility.
3519 * Also, pages which the original bios are pointing to are not copied
3520 * and the cloned bios just point same pages.
3521 * So cloned bios must be completed before original bios, which means
3522 * the caller must complete @rq before @rq_src.
3524 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3525 struct bio_set *bs, gfp_t gfp_mask,
3526 int (*bio_ctr)(struct bio *, struct bio *, void *),
3527 void *data)
3529 struct bio *bio, *bio_src;
3531 if (!bs)
3532 bs = &fs_bio_set;
3534 __rq_for_each_bio(bio_src, rq_src) {
3535 bio = bio_clone_fast(bio_src, gfp_mask, bs);
3536 if (!bio)
3537 goto free_and_out;
3539 if (bio_ctr && bio_ctr(bio, bio_src, data))
3540 goto free_and_out;
3542 if (rq->bio) {
3543 rq->biotail->bi_next = bio;
3544 rq->biotail = bio;
3545 } else
3546 rq->bio = rq->biotail = bio;
3549 __blk_rq_prep_clone(rq, rq_src);
3551 return 0;
3553 free_and_out:
3554 if (bio)
3555 bio_put(bio);
3556 blk_rq_unprep_clone(rq);
3558 return -ENOMEM;
3560 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3562 int kblockd_schedule_work(struct work_struct *work)
3564 return queue_work(kblockd_workqueue, work);
3566 EXPORT_SYMBOL(kblockd_schedule_work);
3568 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3570 return queue_work_on(cpu, kblockd_workqueue, work);
3572 EXPORT_SYMBOL(kblockd_schedule_work_on);
3574 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3575 unsigned long delay)
3577 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3579 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3582 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3583 * @plug: The &struct blk_plug that needs to be initialized
3585 * Description:
3586 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3587 * pending I/O should the task end up blocking between blk_start_plug() and
3588 * blk_finish_plug(). This is important from a performance perspective, but
3589 * also ensures that we don't deadlock. For instance, if the task is blocking
3590 * for a memory allocation, memory reclaim could end up wanting to free a
3591 * page belonging to that request that is currently residing in our private
3592 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3593 * this kind of deadlock.
3595 void blk_start_plug(struct blk_plug *plug)
3597 struct task_struct *tsk = current;
3600 * If this is a nested plug, don't actually assign it.
3602 if (tsk->plug)
3603 return;
3605 INIT_LIST_HEAD(&plug->list);
3606 INIT_LIST_HEAD(&plug->mq_list);
3607 INIT_LIST_HEAD(&plug->cb_list);
3609 * Store ordering should not be needed here, since a potential
3610 * preempt will imply a full memory barrier
3612 tsk->plug = plug;
3614 EXPORT_SYMBOL(blk_start_plug);
3616 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3618 struct request *rqa = container_of(a, struct request, queuelist);
3619 struct request *rqb = container_of(b, struct request, queuelist);
3621 return !(rqa->q < rqb->q ||
3622 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3626 * If 'from_schedule' is true, then postpone the dispatch of requests
3627 * until a safe kblockd context. We due this to avoid accidental big
3628 * additional stack usage in driver dispatch, in places where the originally
3629 * plugger did not intend it.
3631 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3632 bool from_schedule)
3633 __releases(q->queue_lock)
3635 lockdep_assert_held(q->queue_lock);
3637 trace_block_unplug(q, depth, !from_schedule);
3639 if (from_schedule)
3640 blk_run_queue_async(q);
3641 else
3642 __blk_run_queue(q);
3643 spin_unlock_irq(q->queue_lock);
3646 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3648 LIST_HEAD(callbacks);
3650 while (!list_empty(&plug->cb_list)) {
3651 list_splice_init(&plug->cb_list, &callbacks);
3653 while (!list_empty(&callbacks)) {
3654 struct blk_plug_cb *cb = list_first_entry(&callbacks,
3655 struct blk_plug_cb,
3656 list);
3657 list_del(&cb->list);
3658 cb->callback(cb, from_schedule);
3663 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3664 int size)
3666 struct blk_plug *plug = current->plug;
3667 struct blk_plug_cb *cb;
3669 if (!plug)
3670 return NULL;
3672 list_for_each_entry(cb, &plug->cb_list, list)
3673 if (cb->callback == unplug && cb->data == data)
3674 return cb;
3676 /* Not currently on the callback list */
3677 BUG_ON(size < sizeof(*cb));
3678 cb = kzalloc(size, GFP_ATOMIC);
3679 if (cb) {
3680 cb->data = data;
3681 cb->callback = unplug;
3682 list_add(&cb->list, &plug->cb_list);
3684 return cb;
3686 EXPORT_SYMBOL(blk_check_plugged);
3688 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3690 struct request_queue *q;
3691 struct request *rq;
3692 LIST_HEAD(list);
3693 unsigned int depth;
3695 flush_plug_callbacks(plug, from_schedule);
3697 if (!list_empty(&plug->mq_list))
3698 blk_mq_flush_plug_list(plug, from_schedule);
3700 if (list_empty(&plug->list))
3701 return;
3703 list_splice_init(&plug->list, &list);
3705 list_sort(NULL, &list, plug_rq_cmp);
3707 q = NULL;
3708 depth = 0;
3710 while (!list_empty(&list)) {
3711 rq = list_entry_rq(list.next);
3712 list_del_init(&rq->queuelist);
3713 BUG_ON(!rq->q);
3714 if (rq->q != q) {
3716 * This drops the queue lock
3718 if (q)
3719 queue_unplugged(q, depth, from_schedule);
3720 q = rq->q;
3721 depth = 0;
3722 spin_lock_irq(q->queue_lock);
3726 * Short-circuit if @q is dead
3728 if (unlikely(blk_queue_dying(q))) {
3729 __blk_end_request_all(rq, BLK_STS_IOERR);
3730 continue;
3734 * rq is already accounted, so use raw insert
3736 if (op_is_flush(rq->cmd_flags))
3737 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3738 else
3739 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3741 depth++;
3745 * This drops the queue lock
3747 if (q)
3748 queue_unplugged(q, depth, from_schedule);
3751 void blk_finish_plug(struct blk_plug *plug)
3753 if (plug != current->plug)
3754 return;
3755 blk_flush_plug_list(plug, false);
3757 current->plug = NULL;
3759 EXPORT_SYMBOL(blk_finish_plug);
3761 #ifdef CONFIG_PM
3763 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3764 * @q: the queue of the device
3765 * @dev: the device the queue belongs to
3767 * Description:
3768 * Initialize runtime-PM-related fields for @q and start auto suspend for
3769 * @dev. Drivers that want to take advantage of request-based runtime PM
3770 * should call this function after @dev has been initialized, and its
3771 * request queue @q has been allocated, and runtime PM for it can not happen
3772 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3773 * cases, driver should call this function before any I/O has taken place.
3775 * This function takes care of setting up using auto suspend for the device,
3776 * the autosuspend delay is set to -1 to make runtime suspend impossible
3777 * until an updated value is either set by user or by driver. Drivers do
3778 * not need to touch other autosuspend settings.
3780 * The block layer runtime PM is request based, so only works for drivers
3781 * that use request as their IO unit instead of those directly use bio's.
3783 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3785 /* Don't enable runtime PM for blk-mq until it is ready */
3786 if (q->mq_ops) {
3787 pm_runtime_disable(dev);
3788 return;
3791 q->dev = dev;
3792 q->rpm_status = RPM_ACTIVE;
3793 pm_runtime_set_autosuspend_delay(q->dev, -1);
3794 pm_runtime_use_autosuspend(q->dev);
3796 EXPORT_SYMBOL(blk_pm_runtime_init);
3799 * blk_pre_runtime_suspend - Pre runtime suspend check
3800 * @q: the queue of the device
3802 * Description:
3803 * This function will check if runtime suspend is allowed for the device
3804 * by examining if there are any requests pending in the queue. If there
3805 * are requests pending, the device can not be runtime suspended; otherwise,
3806 * the queue's status will be updated to SUSPENDING and the driver can
3807 * proceed to suspend the device.
3809 * For the not allowed case, we mark last busy for the device so that
3810 * runtime PM core will try to autosuspend it some time later.
3812 * This function should be called near the start of the device's
3813 * runtime_suspend callback.
3815 * Return:
3816 * 0 - OK to runtime suspend the device
3817 * -EBUSY - Device should not be runtime suspended
3819 int blk_pre_runtime_suspend(struct request_queue *q)
3821 int ret = 0;
3823 if (!q->dev)
3824 return ret;
3826 spin_lock_irq(q->queue_lock);
3827 if (q->nr_pending) {
3828 ret = -EBUSY;
3829 pm_runtime_mark_last_busy(q->dev);
3830 } else {
3831 q->rpm_status = RPM_SUSPENDING;
3833 spin_unlock_irq(q->queue_lock);
3834 return ret;
3836 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3839 * blk_post_runtime_suspend - Post runtime suspend processing
3840 * @q: the queue of the device
3841 * @err: return value of the device's runtime_suspend function
3843 * Description:
3844 * Update the queue's runtime status according to the return value of the
3845 * device's runtime suspend function and mark last busy for the device so
3846 * that PM core will try to auto suspend the device at a later time.
3848 * This function should be called near the end of the device's
3849 * runtime_suspend callback.
3851 void blk_post_runtime_suspend(struct request_queue *q, int err)
3853 if (!q->dev)
3854 return;
3856 spin_lock_irq(q->queue_lock);
3857 if (!err) {
3858 q->rpm_status = RPM_SUSPENDED;
3859 } else {
3860 q->rpm_status = RPM_ACTIVE;
3861 pm_runtime_mark_last_busy(q->dev);
3863 spin_unlock_irq(q->queue_lock);
3865 EXPORT_SYMBOL(blk_post_runtime_suspend);
3868 * blk_pre_runtime_resume - Pre runtime resume processing
3869 * @q: the queue of the device
3871 * Description:
3872 * Update the queue's runtime status to RESUMING in preparation for the
3873 * runtime resume of the device.
3875 * This function should be called near the start of the device's
3876 * runtime_resume callback.
3878 void blk_pre_runtime_resume(struct request_queue *q)
3880 if (!q->dev)
3881 return;
3883 spin_lock_irq(q->queue_lock);
3884 q->rpm_status = RPM_RESUMING;
3885 spin_unlock_irq(q->queue_lock);
3887 EXPORT_SYMBOL(blk_pre_runtime_resume);
3890 * blk_post_runtime_resume - Post runtime resume processing
3891 * @q: the queue of the device
3892 * @err: return value of the device's runtime_resume function
3894 * Description:
3895 * Update the queue's runtime status according to the return value of the
3896 * device's runtime_resume function. If it is successfully resumed, process
3897 * the requests that are queued into the device's queue when it is resuming
3898 * and then mark last busy and initiate autosuspend for it.
3900 * This function should be called near the end of the device's
3901 * runtime_resume callback.
3903 void blk_post_runtime_resume(struct request_queue *q, int err)
3905 if (!q->dev)
3906 return;
3908 spin_lock_irq(q->queue_lock);
3909 if (!err) {
3910 q->rpm_status = RPM_ACTIVE;
3911 __blk_run_queue(q);
3912 pm_runtime_mark_last_busy(q->dev);
3913 pm_request_autosuspend(q->dev);
3914 } else {
3915 q->rpm_status = RPM_SUSPENDED;
3917 spin_unlock_irq(q->queue_lock);
3919 EXPORT_SYMBOL(blk_post_runtime_resume);
3922 * blk_set_runtime_active - Force runtime status of the queue to be active
3923 * @q: the queue of the device
3925 * If the device is left runtime suspended during system suspend the resume
3926 * hook typically resumes the device and corrects runtime status
3927 * accordingly. However, that does not affect the queue runtime PM status
3928 * which is still "suspended". This prevents processing requests from the
3929 * queue.
3931 * This function can be used in driver's resume hook to correct queue
3932 * runtime PM status and re-enable peeking requests from the queue. It
3933 * should be called before first request is added to the queue.
3935 void blk_set_runtime_active(struct request_queue *q)
3937 spin_lock_irq(q->queue_lock);
3938 q->rpm_status = RPM_ACTIVE;
3939 pm_runtime_mark_last_busy(q->dev);
3940 pm_request_autosuspend(q->dev);
3941 spin_unlock_irq(q->queue_lock);
3943 EXPORT_SYMBOL(blk_set_runtime_active);
3944 #endif
3946 int __init blk_dev_init(void)
3948 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3949 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3950 FIELD_SIZEOF(struct request, cmd_flags));
3951 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3952 FIELD_SIZEOF(struct bio, bi_opf));
3954 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3955 kblockd_workqueue = alloc_workqueue("kblockd",
3956 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3957 if (!kblockd_workqueue)
3958 panic("Failed to create kblockd\n");
3960 request_cachep = kmem_cache_create("blkdev_requests",
3961 sizeof(struct request), 0, SLAB_PANIC, NULL);
3963 blk_requestq_cachep = kmem_cache_create("request_queue",
3964 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3966 #ifdef CONFIG_DEBUG_FS
3967 blk_debugfs_root = debugfs_create_dir("block", NULL);
3968 #endif
3970 return 0;