iwlwifi: mvm: fix version check for GEO_TX_POWER_LIMIT support
[linux/fpc-iii.git] / block / blk-mq.c
blob70d839b9c3b09cdde54bf3606d0dd638cc7c97cc
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-stat.h"
37 #include "blk-mq-sched.h"
38 #include "blk-rq-qos.h"
40 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie);
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 int ddir, bytes, bucket;
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
51 bucket = ddir + 2*(ilog2(bytes) - 9);
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 return bucket;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
77 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
78 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
81 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
82 struct blk_mq_ctx *ctx)
84 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
87 struct mq_inflight {
88 struct hd_struct *part;
89 unsigned int *inflight;
92 static void blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
93 struct request *rq, void *priv,
94 bool reserved)
96 struct mq_inflight *mi = priv;
99 * index[0] counts the specific partition that was asked for. index[1]
100 * counts the ones that are active on the whole device, so increment
101 * that if mi->part is indeed a partition, and not a whole device.
103 if (rq->part == mi->part)
104 mi->inflight[0]++;
105 if (mi->part->partno)
106 mi->inflight[1]++;
109 void blk_mq_in_flight(struct request_queue *q, struct hd_struct *part,
110 unsigned int inflight[2])
112 struct mq_inflight mi = { .part = part, .inflight = inflight, };
114 inflight[0] = inflight[1] = 0;
115 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118 static void blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
119 struct request *rq, void *priv,
120 bool reserved)
122 struct mq_inflight *mi = priv;
124 if (rq->part == mi->part)
125 mi->inflight[rq_data_dir(rq)]++;
128 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
129 unsigned int inflight[2])
131 struct mq_inflight mi = { .part = part, .inflight = inflight, };
133 inflight[0] = inflight[1] = 0;
134 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
137 void blk_freeze_queue_start(struct request_queue *q)
139 int freeze_depth;
141 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
142 if (freeze_depth == 1) {
143 percpu_ref_kill(&q->q_usage_counter);
144 if (q->mq_ops)
145 blk_mq_run_hw_queues(q, false);
148 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
150 void blk_mq_freeze_queue_wait(struct request_queue *q)
152 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
154 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
156 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
157 unsigned long timeout)
159 return wait_event_timeout(q->mq_freeze_wq,
160 percpu_ref_is_zero(&q->q_usage_counter),
161 timeout);
163 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
166 * Guarantee no request is in use, so we can change any data structure of
167 * the queue afterward.
169 void blk_freeze_queue(struct request_queue *q)
172 * In the !blk_mq case we are only calling this to kill the
173 * q_usage_counter, otherwise this increases the freeze depth
174 * and waits for it to return to zero. For this reason there is
175 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
176 * exported to drivers as the only user for unfreeze is blk_mq.
178 blk_freeze_queue_start(q);
179 if (!q->mq_ops)
180 blk_drain_queue(q);
181 blk_mq_freeze_queue_wait(q);
184 void blk_mq_freeze_queue(struct request_queue *q)
187 * ...just an alias to keep freeze and unfreeze actions balanced
188 * in the blk_mq_* namespace
190 blk_freeze_queue(q);
192 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
194 void blk_mq_unfreeze_queue(struct request_queue *q)
196 int freeze_depth;
198 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
199 WARN_ON_ONCE(freeze_depth < 0);
200 if (!freeze_depth) {
201 percpu_ref_reinit(&q->q_usage_counter);
202 wake_up_all(&q->mq_freeze_wq);
205 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
208 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
209 * mpt3sas driver such that this function can be removed.
211 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
215 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
218 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
219 * @q: request queue.
221 * Note: this function does not prevent that the struct request end_io()
222 * callback function is invoked. Once this function is returned, we make
223 * sure no dispatch can happen until the queue is unquiesced via
224 * blk_mq_unquiesce_queue().
226 void blk_mq_quiesce_queue(struct request_queue *q)
228 struct blk_mq_hw_ctx *hctx;
229 unsigned int i;
230 bool rcu = false;
232 blk_mq_quiesce_queue_nowait(q);
234 queue_for_each_hw_ctx(q, hctx, i) {
235 if (hctx->flags & BLK_MQ_F_BLOCKING)
236 synchronize_srcu(hctx->srcu);
237 else
238 rcu = true;
240 if (rcu)
241 synchronize_rcu();
243 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
246 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
247 * @q: request queue.
249 * This function recovers queue into the state before quiescing
250 * which is done by blk_mq_quiesce_queue.
252 void blk_mq_unquiesce_queue(struct request_queue *q)
254 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
256 /* dispatch requests which are inserted during quiescing */
257 blk_mq_run_hw_queues(q, true);
259 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
261 void blk_mq_wake_waiters(struct request_queue *q)
263 struct blk_mq_hw_ctx *hctx;
264 unsigned int i;
266 queue_for_each_hw_ctx(q, hctx, i)
267 if (blk_mq_hw_queue_mapped(hctx))
268 blk_mq_tag_wakeup_all(hctx->tags, true);
271 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
273 return blk_mq_has_free_tags(hctx->tags);
275 EXPORT_SYMBOL(blk_mq_can_queue);
277 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
278 unsigned int tag, unsigned int op)
280 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
281 struct request *rq = tags->static_rqs[tag];
282 req_flags_t rq_flags = 0;
284 if (data->flags & BLK_MQ_REQ_INTERNAL) {
285 rq->tag = -1;
286 rq->internal_tag = tag;
287 } else {
288 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
289 rq_flags = RQF_MQ_INFLIGHT;
290 atomic_inc(&data->hctx->nr_active);
292 rq->tag = tag;
293 rq->internal_tag = -1;
294 data->hctx->tags->rqs[rq->tag] = rq;
297 /* csd/requeue_work/fifo_time is initialized before use */
298 rq->q = data->q;
299 rq->mq_ctx = data->ctx;
300 rq->rq_flags = rq_flags;
301 rq->cpu = -1;
302 rq->cmd_flags = op;
303 if (data->flags & BLK_MQ_REQ_PREEMPT)
304 rq->rq_flags |= RQF_PREEMPT;
305 if (blk_queue_io_stat(data->q))
306 rq->rq_flags |= RQF_IO_STAT;
307 INIT_LIST_HEAD(&rq->queuelist);
308 INIT_HLIST_NODE(&rq->hash);
309 RB_CLEAR_NODE(&rq->rb_node);
310 rq->rq_disk = NULL;
311 rq->part = NULL;
312 rq->start_time_ns = ktime_get_ns();
313 rq->io_start_time_ns = 0;
314 rq->nr_phys_segments = 0;
315 #if defined(CONFIG_BLK_DEV_INTEGRITY)
316 rq->nr_integrity_segments = 0;
317 #endif
318 rq->special = NULL;
319 /* tag was already set */
320 rq->extra_len = 0;
321 rq->__deadline = 0;
323 INIT_LIST_HEAD(&rq->timeout_list);
324 rq->timeout = 0;
326 rq->end_io = NULL;
327 rq->end_io_data = NULL;
328 rq->next_rq = NULL;
330 #ifdef CONFIG_BLK_CGROUP
331 rq->rl = NULL;
332 #endif
334 data->ctx->rq_dispatched[op_is_sync(op)]++;
335 refcount_set(&rq->ref, 1);
336 return rq;
339 static struct request *blk_mq_get_request(struct request_queue *q,
340 struct bio *bio, unsigned int op,
341 struct blk_mq_alloc_data *data)
343 struct elevator_queue *e = q->elevator;
344 struct request *rq;
345 unsigned int tag;
346 bool put_ctx_on_error = false;
348 blk_queue_enter_live(q);
349 data->q = q;
350 if (likely(!data->ctx)) {
351 data->ctx = blk_mq_get_ctx(q);
352 put_ctx_on_error = true;
354 if (likely(!data->hctx))
355 data->hctx = blk_mq_map_queue(q, data->ctx->cpu);
356 if (op & REQ_NOWAIT)
357 data->flags |= BLK_MQ_REQ_NOWAIT;
359 if (e) {
360 data->flags |= BLK_MQ_REQ_INTERNAL;
363 * Flush requests are special and go directly to the
364 * dispatch list. Don't include reserved tags in the
365 * limiting, as it isn't useful.
367 if (!op_is_flush(op) && e->type->ops.mq.limit_depth &&
368 !(data->flags & BLK_MQ_REQ_RESERVED))
369 e->type->ops.mq.limit_depth(op, data);
370 } else {
371 blk_mq_tag_busy(data->hctx);
374 tag = blk_mq_get_tag(data);
375 if (tag == BLK_MQ_TAG_FAIL) {
376 if (put_ctx_on_error) {
377 blk_mq_put_ctx(data->ctx);
378 data->ctx = NULL;
380 blk_queue_exit(q);
381 return NULL;
384 rq = blk_mq_rq_ctx_init(data, tag, op);
385 if (!op_is_flush(op)) {
386 rq->elv.icq = NULL;
387 if (e && e->type->ops.mq.prepare_request) {
388 if (e->type->icq_cache && rq_ioc(bio))
389 blk_mq_sched_assign_ioc(rq, bio);
391 e->type->ops.mq.prepare_request(rq, bio);
392 rq->rq_flags |= RQF_ELVPRIV;
395 data->hctx->queued++;
396 return rq;
399 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
400 blk_mq_req_flags_t flags)
402 struct blk_mq_alloc_data alloc_data = { .flags = flags };
403 struct request *rq;
404 int ret;
406 ret = blk_queue_enter(q, flags);
407 if (ret)
408 return ERR_PTR(ret);
410 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
411 blk_queue_exit(q);
413 if (!rq)
414 return ERR_PTR(-EWOULDBLOCK);
416 blk_mq_put_ctx(alloc_data.ctx);
418 rq->__data_len = 0;
419 rq->__sector = (sector_t) -1;
420 rq->bio = rq->biotail = NULL;
421 return rq;
423 EXPORT_SYMBOL(blk_mq_alloc_request);
425 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
426 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
428 struct blk_mq_alloc_data alloc_data = { .flags = flags };
429 struct request *rq;
430 unsigned int cpu;
431 int ret;
434 * If the tag allocator sleeps we could get an allocation for a
435 * different hardware context. No need to complicate the low level
436 * allocator for this for the rare use case of a command tied to
437 * a specific queue.
439 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
440 return ERR_PTR(-EINVAL);
442 if (hctx_idx >= q->nr_hw_queues)
443 return ERR_PTR(-EIO);
445 ret = blk_queue_enter(q, flags);
446 if (ret)
447 return ERR_PTR(ret);
450 * Check if the hardware context is actually mapped to anything.
451 * If not tell the caller that it should skip this queue.
453 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
454 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
455 blk_queue_exit(q);
456 return ERR_PTR(-EXDEV);
458 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
459 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
461 rq = blk_mq_get_request(q, NULL, op, &alloc_data);
462 blk_queue_exit(q);
464 if (!rq)
465 return ERR_PTR(-EWOULDBLOCK);
467 return rq;
469 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
471 static void __blk_mq_free_request(struct request *rq)
473 struct request_queue *q = rq->q;
474 struct blk_mq_ctx *ctx = rq->mq_ctx;
475 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
476 const int sched_tag = rq->internal_tag;
478 if (rq->tag != -1)
479 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
480 if (sched_tag != -1)
481 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
482 blk_mq_sched_restart(hctx);
483 blk_queue_exit(q);
486 void blk_mq_free_request(struct request *rq)
488 struct request_queue *q = rq->q;
489 struct elevator_queue *e = q->elevator;
490 struct blk_mq_ctx *ctx = rq->mq_ctx;
491 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
493 if (rq->rq_flags & RQF_ELVPRIV) {
494 if (e && e->type->ops.mq.finish_request)
495 e->type->ops.mq.finish_request(rq);
496 if (rq->elv.icq) {
497 put_io_context(rq->elv.icq->ioc);
498 rq->elv.icq = NULL;
502 ctx->rq_completed[rq_is_sync(rq)]++;
503 if (rq->rq_flags & RQF_MQ_INFLIGHT)
504 atomic_dec(&hctx->nr_active);
506 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
507 laptop_io_completion(q->backing_dev_info);
509 rq_qos_done(q, rq);
511 if (blk_rq_rl(rq))
512 blk_put_rl(blk_rq_rl(rq));
514 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
515 if (refcount_dec_and_test(&rq->ref))
516 __blk_mq_free_request(rq);
518 EXPORT_SYMBOL_GPL(blk_mq_free_request);
520 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
522 u64 now = ktime_get_ns();
524 if (rq->rq_flags & RQF_STATS) {
525 blk_mq_poll_stats_start(rq->q);
526 blk_stat_add(rq, now);
529 blk_account_io_done(rq, now);
531 if (rq->end_io) {
532 rq_qos_done(rq->q, rq);
533 rq->end_io(rq, error);
534 } else {
535 if (unlikely(blk_bidi_rq(rq)))
536 blk_mq_free_request(rq->next_rq);
537 blk_mq_free_request(rq);
540 EXPORT_SYMBOL(__blk_mq_end_request);
542 void blk_mq_end_request(struct request *rq, blk_status_t error)
544 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
545 BUG();
546 __blk_mq_end_request(rq, error);
548 EXPORT_SYMBOL(blk_mq_end_request);
550 static void __blk_mq_complete_request_remote(void *data)
552 struct request *rq = data;
554 rq->q->softirq_done_fn(rq);
557 static void __blk_mq_complete_request(struct request *rq)
559 struct blk_mq_ctx *ctx = rq->mq_ctx;
560 bool shared = false;
561 int cpu;
563 if (!blk_mq_mark_complete(rq))
564 return;
565 if (rq->internal_tag != -1)
566 blk_mq_sched_completed_request(rq);
568 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
569 rq->q->softirq_done_fn(rq);
570 return;
573 cpu = get_cpu();
574 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
575 shared = cpus_share_cache(cpu, ctx->cpu);
577 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
578 rq->csd.func = __blk_mq_complete_request_remote;
579 rq->csd.info = rq;
580 rq->csd.flags = 0;
581 smp_call_function_single_async(ctx->cpu, &rq->csd);
582 } else {
583 rq->q->softirq_done_fn(rq);
585 put_cpu();
588 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
589 __releases(hctx->srcu)
591 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
592 rcu_read_unlock();
593 else
594 srcu_read_unlock(hctx->srcu, srcu_idx);
597 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
598 __acquires(hctx->srcu)
600 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
601 /* shut up gcc false positive */
602 *srcu_idx = 0;
603 rcu_read_lock();
604 } else
605 *srcu_idx = srcu_read_lock(hctx->srcu);
609 * blk_mq_complete_request - end I/O on a request
610 * @rq: the request being processed
612 * Description:
613 * Ends all I/O on a request. It does not handle partial completions.
614 * The actual completion happens out-of-order, through a IPI handler.
616 void blk_mq_complete_request(struct request *rq)
618 if (unlikely(blk_should_fake_timeout(rq->q)))
619 return;
620 __blk_mq_complete_request(rq);
622 EXPORT_SYMBOL(blk_mq_complete_request);
624 int blk_mq_request_started(struct request *rq)
626 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
628 EXPORT_SYMBOL_GPL(blk_mq_request_started);
630 void blk_mq_start_request(struct request *rq)
632 struct request_queue *q = rq->q;
634 blk_mq_sched_started_request(rq);
636 trace_block_rq_issue(q, rq);
638 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
639 rq->io_start_time_ns = ktime_get_ns();
640 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
641 rq->throtl_size = blk_rq_sectors(rq);
642 #endif
643 rq->rq_flags |= RQF_STATS;
644 rq_qos_issue(q, rq);
647 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
649 blk_add_timer(rq);
650 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
652 if (q->dma_drain_size && blk_rq_bytes(rq)) {
654 * Make sure space for the drain appears. We know we can do
655 * this because max_hw_segments has been adjusted to be one
656 * fewer than the device can handle.
658 rq->nr_phys_segments++;
661 EXPORT_SYMBOL(blk_mq_start_request);
663 static void __blk_mq_requeue_request(struct request *rq)
665 struct request_queue *q = rq->q;
667 blk_mq_put_driver_tag(rq);
669 trace_block_rq_requeue(q, rq);
670 rq_qos_requeue(q, rq);
672 if (blk_mq_request_started(rq)) {
673 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
674 rq->rq_flags &= ~RQF_TIMED_OUT;
675 if (q->dma_drain_size && blk_rq_bytes(rq))
676 rq->nr_phys_segments--;
680 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
682 __blk_mq_requeue_request(rq);
684 /* this request will be re-inserted to io scheduler queue */
685 blk_mq_sched_requeue_request(rq);
687 BUG_ON(blk_queued_rq(rq));
688 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
690 EXPORT_SYMBOL(blk_mq_requeue_request);
692 static void blk_mq_requeue_work(struct work_struct *work)
694 struct request_queue *q =
695 container_of(work, struct request_queue, requeue_work.work);
696 LIST_HEAD(rq_list);
697 struct request *rq, *next;
699 spin_lock_irq(&q->requeue_lock);
700 list_splice_init(&q->requeue_list, &rq_list);
701 spin_unlock_irq(&q->requeue_lock);
703 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
704 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
705 continue;
707 rq->rq_flags &= ~RQF_SOFTBARRIER;
708 list_del_init(&rq->queuelist);
710 * If RQF_DONTPREP, rq has contained some driver specific
711 * data, so insert it to hctx dispatch list to avoid any
712 * merge.
714 if (rq->rq_flags & RQF_DONTPREP)
715 blk_mq_request_bypass_insert(rq, false);
716 else
717 blk_mq_sched_insert_request(rq, true, false, false);
720 while (!list_empty(&rq_list)) {
721 rq = list_entry(rq_list.next, struct request, queuelist);
722 list_del_init(&rq->queuelist);
723 blk_mq_sched_insert_request(rq, false, false, false);
726 blk_mq_run_hw_queues(q, false);
729 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
730 bool kick_requeue_list)
732 struct request_queue *q = rq->q;
733 unsigned long flags;
736 * We abuse this flag that is otherwise used by the I/O scheduler to
737 * request head insertion from the workqueue.
739 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
741 spin_lock_irqsave(&q->requeue_lock, flags);
742 if (at_head) {
743 rq->rq_flags |= RQF_SOFTBARRIER;
744 list_add(&rq->queuelist, &q->requeue_list);
745 } else {
746 list_add_tail(&rq->queuelist, &q->requeue_list);
748 spin_unlock_irqrestore(&q->requeue_lock, flags);
750 if (kick_requeue_list)
751 blk_mq_kick_requeue_list(q);
753 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
755 void blk_mq_kick_requeue_list(struct request_queue *q)
757 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
759 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
761 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
762 unsigned long msecs)
764 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
765 msecs_to_jiffies(msecs));
767 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
769 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
771 if (tag < tags->nr_tags) {
772 prefetch(tags->rqs[tag]);
773 return tags->rqs[tag];
776 return NULL;
778 EXPORT_SYMBOL(blk_mq_tag_to_rq);
780 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
782 req->rq_flags |= RQF_TIMED_OUT;
783 if (req->q->mq_ops->timeout) {
784 enum blk_eh_timer_return ret;
786 ret = req->q->mq_ops->timeout(req, reserved);
787 if (ret == BLK_EH_DONE)
788 return;
789 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
792 blk_add_timer(req);
795 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
797 unsigned long deadline;
799 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
800 return false;
801 if (rq->rq_flags & RQF_TIMED_OUT)
802 return false;
804 deadline = blk_rq_deadline(rq);
805 if (time_after_eq(jiffies, deadline))
806 return true;
808 if (*next == 0)
809 *next = deadline;
810 else if (time_after(*next, deadline))
811 *next = deadline;
812 return false;
815 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
816 struct request *rq, void *priv, bool reserved)
818 unsigned long *next = priv;
821 * Just do a quick check if it is expired before locking the request in
822 * so we're not unnecessarilly synchronizing across CPUs.
824 if (!blk_mq_req_expired(rq, next))
825 return;
828 * We have reason to believe the request may be expired. Take a
829 * reference on the request to lock this request lifetime into its
830 * currently allocated context to prevent it from being reallocated in
831 * the event the completion by-passes this timeout handler.
833 * If the reference was already released, then the driver beat the
834 * timeout handler to posting a natural completion.
836 if (!refcount_inc_not_zero(&rq->ref))
837 return;
840 * The request is now locked and cannot be reallocated underneath the
841 * timeout handler's processing. Re-verify this exact request is truly
842 * expired; if it is not expired, then the request was completed and
843 * reallocated as a new request.
845 if (blk_mq_req_expired(rq, next))
846 blk_mq_rq_timed_out(rq, reserved);
847 if (refcount_dec_and_test(&rq->ref))
848 __blk_mq_free_request(rq);
851 static void blk_mq_timeout_work(struct work_struct *work)
853 struct request_queue *q =
854 container_of(work, struct request_queue, timeout_work);
855 unsigned long next = 0;
856 struct blk_mq_hw_ctx *hctx;
857 int i;
859 /* A deadlock might occur if a request is stuck requiring a
860 * timeout at the same time a queue freeze is waiting
861 * completion, since the timeout code would not be able to
862 * acquire the queue reference here.
864 * That's why we don't use blk_queue_enter here; instead, we use
865 * percpu_ref_tryget directly, because we need to be able to
866 * obtain a reference even in the short window between the queue
867 * starting to freeze, by dropping the first reference in
868 * blk_freeze_queue_start, and the moment the last request is
869 * consumed, marked by the instant q_usage_counter reaches
870 * zero.
872 if (!percpu_ref_tryget(&q->q_usage_counter))
873 return;
875 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
877 if (next != 0) {
878 mod_timer(&q->timeout, next);
879 } else {
881 * Request timeouts are handled as a forward rolling timer. If
882 * we end up here it means that no requests are pending and
883 * also that no request has been pending for a while. Mark
884 * each hctx as idle.
886 queue_for_each_hw_ctx(q, hctx, i) {
887 /* the hctx may be unmapped, so check it here */
888 if (blk_mq_hw_queue_mapped(hctx))
889 blk_mq_tag_idle(hctx);
892 blk_queue_exit(q);
895 struct flush_busy_ctx_data {
896 struct blk_mq_hw_ctx *hctx;
897 struct list_head *list;
900 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
902 struct flush_busy_ctx_data *flush_data = data;
903 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
904 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
906 spin_lock(&ctx->lock);
907 list_splice_tail_init(&ctx->rq_list, flush_data->list);
908 sbitmap_clear_bit(sb, bitnr);
909 spin_unlock(&ctx->lock);
910 return true;
914 * Process software queues that have been marked busy, splicing them
915 * to the for-dispatch
917 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
919 struct flush_busy_ctx_data data = {
920 .hctx = hctx,
921 .list = list,
924 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
926 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
928 struct dispatch_rq_data {
929 struct blk_mq_hw_ctx *hctx;
930 struct request *rq;
933 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
934 void *data)
936 struct dispatch_rq_data *dispatch_data = data;
937 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
938 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
940 spin_lock(&ctx->lock);
941 if (!list_empty(&ctx->rq_list)) {
942 dispatch_data->rq = list_entry_rq(ctx->rq_list.next);
943 list_del_init(&dispatch_data->rq->queuelist);
944 if (list_empty(&ctx->rq_list))
945 sbitmap_clear_bit(sb, bitnr);
947 spin_unlock(&ctx->lock);
949 return !dispatch_data->rq;
952 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
953 struct blk_mq_ctx *start)
955 unsigned off = start ? start->index_hw : 0;
956 struct dispatch_rq_data data = {
957 .hctx = hctx,
958 .rq = NULL,
961 __sbitmap_for_each_set(&hctx->ctx_map, off,
962 dispatch_rq_from_ctx, &data);
964 return data.rq;
967 static inline unsigned int queued_to_index(unsigned int queued)
969 if (!queued)
970 return 0;
972 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
975 bool blk_mq_get_driver_tag(struct request *rq)
977 struct blk_mq_alloc_data data = {
978 .q = rq->q,
979 .hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu),
980 .flags = BLK_MQ_REQ_NOWAIT,
982 bool shared;
984 if (rq->tag != -1)
985 goto done;
987 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
988 data.flags |= BLK_MQ_REQ_RESERVED;
990 shared = blk_mq_tag_busy(data.hctx);
991 rq->tag = blk_mq_get_tag(&data);
992 if (rq->tag >= 0) {
993 if (shared) {
994 rq->rq_flags |= RQF_MQ_INFLIGHT;
995 atomic_inc(&data.hctx->nr_active);
997 data.hctx->tags->rqs[rq->tag] = rq;
1000 done:
1001 return rq->tag != -1;
1004 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1005 int flags, void *key)
1007 struct blk_mq_hw_ctx *hctx;
1009 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1011 spin_lock(&hctx->dispatch_wait_lock);
1012 list_del_init(&wait->entry);
1013 spin_unlock(&hctx->dispatch_wait_lock);
1015 blk_mq_run_hw_queue(hctx, true);
1016 return 1;
1020 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1021 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1022 * restart. For both cases, take care to check the condition again after
1023 * marking us as waiting.
1025 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1026 struct request *rq)
1028 struct wait_queue_head *wq;
1029 wait_queue_entry_t *wait;
1030 bool ret;
1032 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1033 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1034 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1037 * It's possible that a tag was freed in the window between the
1038 * allocation failure and adding the hardware queue to the wait
1039 * queue.
1041 * Don't clear RESTART here, someone else could have set it.
1042 * At most this will cost an extra queue run.
1044 return blk_mq_get_driver_tag(rq);
1047 wait = &hctx->dispatch_wait;
1048 if (!list_empty_careful(&wait->entry))
1049 return false;
1051 wq = &bt_wait_ptr(&hctx->tags->bitmap_tags, hctx)->wait;
1053 spin_lock_irq(&wq->lock);
1054 spin_lock(&hctx->dispatch_wait_lock);
1055 if (!list_empty(&wait->entry)) {
1056 spin_unlock(&hctx->dispatch_wait_lock);
1057 spin_unlock_irq(&wq->lock);
1058 return false;
1061 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1062 __add_wait_queue(wq, wait);
1065 * It's possible that a tag was freed in the window between the
1066 * allocation failure and adding the hardware queue to the wait
1067 * queue.
1069 ret = blk_mq_get_driver_tag(rq);
1070 if (!ret) {
1071 spin_unlock(&hctx->dispatch_wait_lock);
1072 spin_unlock_irq(&wq->lock);
1073 return false;
1077 * We got a tag, remove ourselves from the wait queue to ensure
1078 * someone else gets the wakeup.
1080 list_del_init(&wait->entry);
1081 spin_unlock(&hctx->dispatch_wait_lock);
1082 spin_unlock_irq(&wq->lock);
1084 return true;
1087 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1088 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1090 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1091 * - EWMA is one simple way to compute running average value
1092 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1093 * - take 4 as factor for avoiding to get too small(0) result, and this
1094 * factor doesn't matter because EWMA decreases exponentially
1096 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1098 unsigned int ewma;
1100 if (hctx->queue->elevator)
1101 return;
1103 ewma = hctx->dispatch_busy;
1105 if (!ewma && !busy)
1106 return;
1108 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1109 if (busy)
1110 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1111 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1113 hctx->dispatch_busy = ewma;
1116 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1119 * Returns true if we did some work AND can potentially do more.
1121 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1122 bool got_budget)
1124 struct blk_mq_hw_ctx *hctx;
1125 struct request *rq, *nxt;
1126 bool no_tag = false;
1127 int errors, queued;
1128 blk_status_t ret = BLK_STS_OK;
1130 if (list_empty(list))
1131 return false;
1133 WARN_ON(!list_is_singular(list) && got_budget);
1136 * Now process all the entries, sending them to the driver.
1138 errors = queued = 0;
1139 do {
1140 struct blk_mq_queue_data bd;
1142 rq = list_first_entry(list, struct request, queuelist);
1144 hctx = blk_mq_map_queue(rq->q, rq->mq_ctx->cpu);
1145 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1146 break;
1148 if (!blk_mq_get_driver_tag(rq)) {
1150 * The initial allocation attempt failed, so we need to
1151 * rerun the hardware queue when a tag is freed. The
1152 * waitqueue takes care of that. If the queue is run
1153 * before we add this entry back on the dispatch list,
1154 * we'll re-run it below.
1156 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1157 blk_mq_put_dispatch_budget(hctx);
1159 * For non-shared tags, the RESTART check
1160 * will suffice.
1162 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1163 no_tag = true;
1164 break;
1168 list_del_init(&rq->queuelist);
1170 bd.rq = rq;
1173 * Flag last if we have no more requests, or if we have more
1174 * but can't assign a driver tag to it.
1176 if (list_empty(list))
1177 bd.last = true;
1178 else {
1179 nxt = list_first_entry(list, struct request, queuelist);
1180 bd.last = !blk_mq_get_driver_tag(nxt);
1183 ret = q->mq_ops->queue_rq(hctx, &bd);
1184 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1186 * If an I/O scheduler has been configured and we got a
1187 * driver tag for the next request already, free it
1188 * again.
1190 if (!list_empty(list)) {
1191 nxt = list_first_entry(list, struct request, queuelist);
1192 blk_mq_put_driver_tag(nxt);
1194 list_add(&rq->queuelist, list);
1195 __blk_mq_requeue_request(rq);
1196 break;
1199 if (unlikely(ret != BLK_STS_OK)) {
1200 errors++;
1201 blk_mq_end_request(rq, BLK_STS_IOERR);
1202 continue;
1205 queued++;
1206 } while (!list_empty(list));
1208 hctx->dispatched[queued_to_index(queued)]++;
1211 * Any items that need requeuing? Stuff them into hctx->dispatch,
1212 * that is where we will continue on next queue run.
1214 if (!list_empty(list)) {
1215 bool needs_restart;
1217 spin_lock(&hctx->lock);
1218 list_splice_init(list, &hctx->dispatch);
1219 spin_unlock(&hctx->lock);
1222 * If SCHED_RESTART was set by the caller of this function and
1223 * it is no longer set that means that it was cleared by another
1224 * thread and hence that a queue rerun is needed.
1226 * If 'no_tag' is set, that means that we failed getting
1227 * a driver tag with an I/O scheduler attached. If our dispatch
1228 * waitqueue is no longer active, ensure that we run the queue
1229 * AFTER adding our entries back to the list.
1231 * If no I/O scheduler has been configured it is possible that
1232 * the hardware queue got stopped and restarted before requests
1233 * were pushed back onto the dispatch list. Rerun the queue to
1234 * avoid starvation. Notes:
1235 * - blk_mq_run_hw_queue() checks whether or not a queue has
1236 * been stopped before rerunning a queue.
1237 * - Some but not all block drivers stop a queue before
1238 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1239 * and dm-rq.
1241 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1242 * bit is set, run queue after a delay to avoid IO stalls
1243 * that could otherwise occur if the queue is idle.
1245 needs_restart = blk_mq_sched_needs_restart(hctx);
1246 if (!needs_restart ||
1247 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1248 blk_mq_run_hw_queue(hctx, true);
1249 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1250 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1252 blk_mq_update_dispatch_busy(hctx, true);
1253 return false;
1254 } else
1255 blk_mq_update_dispatch_busy(hctx, false);
1258 * If the host/device is unable to accept more work, inform the
1259 * caller of that.
1261 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1262 return false;
1264 return (queued + errors) != 0;
1267 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1269 int srcu_idx;
1272 * We should be running this queue from one of the CPUs that
1273 * are mapped to it.
1275 * There are at least two related races now between setting
1276 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1277 * __blk_mq_run_hw_queue():
1279 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1280 * but later it becomes online, then this warning is harmless
1281 * at all
1283 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1284 * but later it becomes offline, then the warning can't be
1285 * triggered, and we depend on blk-mq timeout handler to
1286 * handle dispatched requests to this hctx
1288 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1289 cpu_online(hctx->next_cpu)) {
1290 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1291 raw_smp_processor_id(),
1292 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1293 dump_stack();
1297 * We can't run the queue inline with ints disabled. Ensure that
1298 * we catch bad users of this early.
1300 WARN_ON_ONCE(in_interrupt());
1302 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1304 hctx_lock(hctx, &srcu_idx);
1305 blk_mq_sched_dispatch_requests(hctx);
1306 hctx_unlock(hctx, srcu_idx);
1309 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1311 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1313 if (cpu >= nr_cpu_ids)
1314 cpu = cpumask_first(hctx->cpumask);
1315 return cpu;
1319 * It'd be great if the workqueue API had a way to pass
1320 * in a mask and had some smarts for more clever placement.
1321 * For now we just round-robin here, switching for every
1322 * BLK_MQ_CPU_WORK_BATCH queued items.
1324 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1326 bool tried = false;
1327 int next_cpu = hctx->next_cpu;
1329 if (hctx->queue->nr_hw_queues == 1)
1330 return WORK_CPU_UNBOUND;
1332 if (--hctx->next_cpu_batch <= 0) {
1333 select_cpu:
1334 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1335 cpu_online_mask);
1336 if (next_cpu >= nr_cpu_ids)
1337 next_cpu = blk_mq_first_mapped_cpu(hctx);
1338 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1342 * Do unbound schedule if we can't find a online CPU for this hctx,
1343 * and it should only happen in the path of handling CPU DEAD.
1345 if (!cpu_online(next_cpu)) {
1346 if (!tried) {
1347 tried = true;
1348 goto select_cpu;
1352 * Make sure to re-select CPU next time once after CPUs
1353 * in hctx->cpumask become online again.
1355 hctx->next_cpu = next_cpu;
1356 hctx->next_cpu_batch = 1;
1357 return WORK_CPU_UNBOUND;
1360 hctx->next_cpu = next_cpu;
1361 return next_cpu;
1364 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1365 unsigned long msecs)
1367 if (unlikely(blk_mq_hctx_stopped(hctx)))
1368 return;
1370 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1371 int cpu = get_cpu();
1372 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1373 __blk_mq_run_hw_queue(hctx);
1374 put_cpu();
1375 return;
1378 put_cpu();
1381 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1382 msecs_to_jiffies(msecs));
1385 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1387 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1389 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1391 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1393 int srcu_idx;
1394 bool need_run;
1397 * When queue is quiesced, we may be switching io scheduler, or
1398 * updating nr_hw_queues, or other things, and we can't run queue
1399 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1401 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1402 * quiesced.
1404 hctx_lock(hctx, &srcu_idx);
1405 need_run = !blk_queue_quiesced(hctx->queue) &&
1406 blk_mq_hctx_has_pending(hctx);
1407 hctx_unlock(hctx, srcu_idx);
1409 if (need_run) {
1410 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1411 return true;
1414 return false;
1416 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1418 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1420 struct blk_mq_hw_ctx *hctx;
1421 int i;
1423 queue_for_each_hw_ctx(q, hctx, i) {
1424 if (blk_mq_hctx_stopped(hctx))
1425 continue;
1427 blk_mq_run_hw_queue(hctx, async);
1430 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1433 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1434 * @q: request queue.
1436 * The caller is responsible for serializing this function against
1437 * blk_mq_{start,stop}_hw_queue().
1439 bool blk_mq_queue_stopped(struct request_queue *q)
1441 struct blk_mq_hw_ctx *hctx;
1442 int i;
1444 queue_for_each_hw_ctx(q, hctx, i)
1445 if (blk_mq_hctx_stopped(hctx))
1446 return true;
1448 return false;
1450 EXPORT_SYMBOL(blk_mq_queue_stopped);
1453 * This function is often used for pausing .queue_rq() by driver when
1454 * there isn't enough resource or some conditions aren't satisfied, and
1455 * BLK_STS_RESOURCE is usually returned.
1457 * We do not guarantee that dispatch can be drained or blocked
1458 * after blk_mq_stop_hw_queue() returns. Please use
1459 * blk_mq_quiesce_queue() for that requirement.
1461 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1463 cancel_delayed_work(&hctx->run_work);
1465 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1467 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1470 * This function is often used for pausing .queue_rq() by driver when
1471 * there isn't enough resource or some conditions aren't satisfied, and
1472 * BLK_STS_RESOURCE is usually returned.
1474 * We do not guarantee that dispatch can be drained or blocked
1475 * after blk_mq_stop_hw_queues() returns. Please use
1476 * blk_mq_quiesce_queue() for that requirement.
1478 void blk_mq_stop_hw_queues(struct request_queue *q)
1480 struct blk_mq_hw_ctx *hctx;
1481 int i;
1483 queue_for_each_hw_ctx(q, hctx, i)
1484 blk_mq_stop_hw_queue(hctx);
1486 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1488 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1490 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1492 blk_mq_run_hw_queue(hctx, false);
1494 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1496 void blk_mq_start_hw_queues(struct request_queue *q)
1498 struct blk_mq_hw_ctx *hctx;
1499 int i;
1501 queue_for_each_hw_ctx(q, hctx, i)
1502 blk_mq_start_hw_queue(hctx);
1504 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1506 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1508 if (!blk_mq_hctx_stopped(hctx))
1509 return;
1511 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1512 blk_mq_run_hw_queue(hctx, async);
1514 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1516 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1518 struct blk_mq_hw_ctx *hctx;
1519 int i;
1521 queue_for_each_hw_ctx(q, hctx, i)
1522 blk_mq_start_stopped_hw_queue(hctx, async);
1524 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1526 static void blk_mq_run_work_fn(struct work_struct *work)
1528 struct blk_mq_hw_ctx *hctx;
1530 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1533 * If we are stopped, don't run the queue.
1535 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1536 return;
1538 __blk_mq_run_hw_queue(hctx);
1541 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1542 struct request *rq,
1543 bool at_head)
1545 struct blk_mq_ctx *ctx = rq->mq_ctx;
1547 lockdep_assert_held(&ctx->lock);
1549 trace_block_rq_insert(hctx->queue, rq);
1551 if (at_head)
1552 list_add(&rq->queuelist, &ctx->rq_list);
1553 else
1554 list_add_tail(&rq->queuelist, &ctx->rq_list);
1557 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1558 bool at_head)
1560 struct blk_mq_ctx *ctx = rq->mq_ctx;
1562 lockdep_assert_held(&ctx->lock);
1564 __blk_mq_insert_req_list(hctx, rq, at_head);
1565 blk_mq_hctx_mark_pending(hctx, ctx);
1569 * Should only be used carefully, when the caller knows we want to
1570 * bypass a potential IO scheduler on the target device.
1572 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1574 struct blk_mq_ctx *ctx = rq->mq_ctx;
1575 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1577 spin_lock(&hctx->lock);
1578 list_add_tail(&rq->queuelist, &hctx->dispatch);
1579 spin_unlock(&hctx->lock);
1581 if (run_queue)
1582 blk_mq_run_hw_queue(hctx, false);
1585 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1586 struct list_head *list)
1589 struct request *rq;
1592 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1593 * offline now
1595 list_for_each_entry(rq, list, queuelist) {
1596 BUG_ON(rq->mq_ctx != ctx);
1597 trace_block_rq_insert(hctx->queue, rq);
1600 spin_lock(&ctx->lock);
1601 list_splice_tail_init(list, &ctx->rq_list);
1602 blk_mq_hctx_mark_pending(hctx, ctx);
1603 spin_unlock(&ctx->lock);
1606 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1608 struct request *rqa = container_of(a, struct request, queuelist);
1609 struct request *rqb = container_of(b, struct request, queuelist);
1611 return !(rqa->mq_ctx < rqb->mq_ctx ||
1612 (rqa->mq_ctx == rqb->mq_ctx &&
1613 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1616 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1618 struct blk_mq_ctx *this_ctx;
1619 struct request_queue *this_q;
1620 struct request *rq;
1621 LIST_HEAD(list);
1622 LIST_HEAD(ctx_list);
1623 unsigned int depth;
1625 list_splice_init(&plug->mq_list, &list);
1627 list_sort(NULL, &list, plug_ctx_cmp);
1629 this_q = NULL;
1630 this_ctx = NULL;
1631 depth = 0;
1633 while (!list_empty(&list)) {
1634 rq = list_entry_rq(list.next);
1635 list_del_init(&rq->queuelist);
1636 BUG_ON(!rq->q);
1637 if (rq->mq_ctx != this_ctx) {
1638 if (this_ctx) {
1639 trace_block_unplug(this_q, depth, !from_schedule);
1640 blk_mq_sched_insert_requests(this_q, this_ctx,
1641 &ctx_list,
1642 from_schedule);
1645 this_ctx = rq->mq_ctx;
1646 this_q = rq->q;
1647 depth = 0;
1650 depth++;
1651 list_add_tail(&rq->queuelist, &ctx_list);
1655 * If 'this_ctx' is set, we know we have entries to complete
1656 * on 'ctx_list'. Do those.
1658 if (this_ctx) {
1659 trace_block_unplug(this_q, depth, !from_schedule);
1660 blk_mq_sched_insert_requests(this_q, this_ctx, &ctx_list,
1661 from_schedule);
1665 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1667 blk_init_request_from_bio(rq, bio);
1669 blk_rq_set_rl(rq, blk_get_rl(rq->q, bio));
1671 blk_account_io_start(rq, true);
1674 static blk_qc_t request_to_qc_t(struct blk_mq_hw_ctx *hctx, struct request *rq)
1676 if (rq->tag != -1)
1677 return blk_tag_to_qc_t(rq->tag, hctx->queue_num, false);
1679 return blk_tag_to_qc_t(rq->internal_tag, hctx->queue_num, true);
1682 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1683 struct request *rq,
1684 blk_qc_t *cookie)
1686 struct request_queue *q = rq->q;
1687 struct blk_mq_queue_data bd = {
1688 .rq = rq,
1689 .last = true,
1691 blk_qc_t new_cookie;
1692 blk_status_t ret;
1694 new_cookie = request_to_qc_t(hctx, rq);
1697 * For OK queue, we are done. For error, caller may kill it.
1698 * Any other error (busy), just add it to our list as we
1699 * previously would have done.
1701 ret = q->mq_ops->queue_rq(hctx, &bd);
1702 switch (ret) {
1703 case BLK_STS_OK:
1704 blk_mq_update_dispatch_busy(hctx, false);
1705 *cookie = new_cookie;
1706 break;
1707 case BLK_STS_RESOURCE:
1708 case BLK_STS_DEV_RESOURCE:
1709 blk_mq_update_dispatch_busy(hctx, true);
1710 __blk_mq_requeue_request(rq);
1711 break;
1712 default:
1713 blk_mq_update_dispatch_busy(hctx, false);
1714 *cookie = BLK_QC_T_NONE;
1715 break;
1718 return ret;
1721 static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1722 struct request *rq,
1723 blk_qc_t *cookie,
1724 bool bypass_insert)
1726 struct request_queue *q = rq->q;
1727 bool run_queue = true;
1730 * RCU or SRCU read lock is needed before checking quiesced flag.
1732 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1733 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1734 * and avoid driver to try to dispatch again.
1736 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
1737 run_queue = false;
1738 bypass_insert = false;
1739 goto insert;
1742 if (q->elevator && !bypass_insert)
1743 goto insert;
1745 if (!blk_mq_get_dispatch_budget(hctx))
1746 goto insert;
1748 if (!blk_mq_get_driver_tag(rq)) {
1749 blk_mq_put_dispatch_budget(hctx);
1750 goto insert;
1753 return __blk_mq_issue_directly(hctx, rq, cookie);
1754 insert:
1755 if (bypass_insert)
1756 return BLK_STS_RESOURCE;
1758 blk_mq_request_bypass_insert(rq, run_queue);
1759 return BLK_STS_OK;
1762 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1763 struct request *rq, blk_qc_t *cookie)
1765 blk_status_t ret;
1766 int srcu_idx;
1768 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1770 hctx_lock(hctx, &srcu_idx);
1772 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false);
1773 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1774 blk_mq_request_bypass_insert(rq, true);
1775 else if (ret != BLK_STS_OK)
1776 blk_mq_end_request(rq, ret);
1778 hctx_unlock(hctx, srcu_idx);
1781 blk_status_t blk_mq_request_issue_directly(struct request *rq)
1783 blk_status_t ret;
1784 int srcu_idx;
1785 blk_qc_t unused_cookie;
1786 struct blk_mq_ctx *ctx = rq->mq_ctx;
1787 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(rq->q, ctx->cpu);
1789 hctx_lock(hctx, &srcu_idx);
1790 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true);
1791 hctx_unlock(hctx, srcu_idx);
1793 return ret;
1796 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1797 struct list_head *list)
1799 while (!list_empty(list)) {
1800 blk_status_t ret;
1801 struct request *rq = list_first_entry(list, struct request,
1802 queuelist);
1804 list_del_init(&rq->queuelist);
1805 ret = blk_mq_request_issue_directly(rq);
1806 if (ret != BLK_STS_OK) {
1807 if (ret == BLK_STS_RESOURCE ||
1808 ret == BLK_STS_DEV_RESOURCE) {
1809 blk_mq_request_bypass_insert(rq,
1810 list_empty(list));
1811 break;
1813 blk_mq_end_request(rq, ret);
1818 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1820 const int is_sync = op_is_sync(bio->bi_opf);
1821 const int is_flush_fua = op_is_flush(bio->bi_opf);
1822 struct blk_mq_alloc_data data = { .flags = 0 };
1823 struct request *rq;
1824 unsigned int request_count = 0;
1825 struct blk_plug *plug;
1826 struct request *same_queue_rq = NULL;
1827 blk_qc_t cookie;
1829 blk_queue_bounce(q, &bio);
1831 blk_queue_split(q, &bio);
1833 if (!bio_integrity_prep(bio))
1834 return BLK_QC_T_NONE;
1836 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1837 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1838 return BLK_QC_T_NONE;
1840 if (blk_mq_sched_bio_merge(q, bio))
1841 return BLK_QC_T_NONE;
1843 rq_qos_throttle(q, bio, NULL);
1845 trace_block_getrq(q, bio, bio->bi_opf);
1847 rq = blk_mq_get_request(q, bio, bio->bi_opf, &data);
1848 if (unlikely(!rq)) {
1849 rq_qos_cleanup(q, bio);
1850 if (bio->bi_opf & REQ_NOWAIT)
1851 bio_wouldblock_error(bio);
1852 return BLK_QC_T_NONE;
1855 rq_qos_track(q, rq, bio);
1857 cookie = request_to_qc_t(data.hctx, rq);
1859 plug = current->plug;
1860 if (unlikely(is_flush_fua)) {
1861 blk_mq_put_ctx(data.ctx);
1862 blk_mq_bio_to_request(rq, bio);
1864 /* bypass scheduler for flush rq */
1865 blk_insert_flush(rq);
1866 blk_mq_run_hw_queue(data.hctx, true);
1867 } else if (plug && q->nr_hw_queues == 1) {
1868 struct request *last = NULL;
1870 blk_mq_put_ctx(data.ctx);
1871 blk_mq_bio_to_request(rq, bio);
1874 * @request_count may become stale because of schedule
1875 * out, so check the list again.
1877 if (list_empty(&plug->mq_list))
1878 request_count = 0;
1879 else if (blk_queue_nomerges(q))
1880 request_count = blk_plug_queued_count(q);
1882 if (!request_count)
1883 trace_block_plug(q);
1884 else
1885 last = list_entry_rq(plug->mq_list.prev);
1887 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1888 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1889 blk_flush_plug_list(plug, false);
1890 trace_block_plug(q);
1893 list_add_tail(&rq->queuelist, &plug->mq_list);
1894 } else if (plug && !blk_queue_nomerges(q)) {
1895 blk_mq_bio_to_request(rq, bio);
1898 * We do limited plugging. If the bio can be merged, do that.
1899 * Otherwise the existing request in the plug list will be
1900 * issued. So the plug list will have one request at most
1901 * The plug list might get flushed before this. If that happens,
1902 * the plug list is empty, and same_queue_rq is invalid.
1904 if (list_empty(&plug->mq_list))
1905 same_queue_rq = NULL;
1906 if (same_queue_rq)
1907 list_del_init(&same_queue_rq->queuelist);
1908 list_add_tail(&rq->queuelist, &plug->mq_list);
1910 blk_mq_put_ctx(data.ctx);
1912 if (same_queue_rq) {
1913 data.hctx = blk_mq_map_queue(q,
1914 same_queue_rq->mq_ctx->cpu);
1915 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
1916 &cookie);
1918 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
1919 !data.hctx->dispatch_busy)) {
1920 blk_mq_put_ctx(data.ctx);
1921 blk_mq_bio_to_request(rq, bio);
1922 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
1923 } else {
1924 blk_mq_put_ctx(data.ctx);
1925 blk_mq_bio_to_request(rq, bio);
1926 blk_mq_sched_insert_request(rq, false, true, true);
1929 return cookie;
1932 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
1933 unsigned int hctx_idx)
1935 struct page *page;
1937 if (tags->rqs && set->ops->exit_request) {
1938 int i;
1940 for (i = 0; i < tags->nr_tags; i++) {
1941 struct request *rq = tags->static_rqs[i];
1943 if (!rq)
1944 continue;
1945 set->ops->exit_request(set, rq, hctx_idx);
1946 tags->static_rqs[i] = NULL;
1950 while (!list_empty(&tags->page_list)) {
1951 page = list_first_entry(&tags->page_list, struct page, lru);
1952 list_del_init(&page->lru);
1954 * Remove kmemleak object previously allocated in
1955 * blk_mq_init_rq_map().
1957 kmemleak_free(page_address(page));
1958 __free_pages(page, page->private);
1962 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
1964 kfree(tags->rqs);
1965 tags->rqs = NULL;
1966 kfree(tags->static_rqs);
1967 tags->static_rqs = NULL;
1969 blk_mq_free_tags(tags);
1972 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
1973 unsigned int hctx_idx,
1974 unsigned int nr_tags,
1975 unsigned int reserved_tags)
1977 struct blk_mq_tags *tags;
1978 int node;
1980 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
1981 if (node == NUMA_NO_NODE)
1982 node = set->numa_node;
1984 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
1985 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1986 if (!tags)
1987 return NULL;
1989 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1990 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1991 node);
1992 if (!tags->rqs) {
1993 blk_mq_free_tags(tags);
1994 return NULL;
1997 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
1998 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1999 node);
2000 if (!tags->static_rqs) {
2001 kfree(tags->rqs);
2002 blk_mq_free_tags(tags);
2003 return NULL;
2006 return tags;
2009 static size_t order_to_size(unsigned int order)
2011 return (size_t)PAGE_SIZE << order;
2014 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2015 unsigned int hctx_idx, int node)
2017 int ret;
2019 if (set->ops->init_request) {
2020 ret = set->ops->init_request(set, rq, hctx_idx, node);
2021 if (ret)
2022 return ret;
2025 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2026 return 0;
2029 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2030 unsigned int hctx_idx, unsigned int depth)
2032 unsigned int i, j, entries_per_page, max_order = 4;
2033 size_t rq_size, left;
2034 int node;
2036 node = blk_mq_hw_queue_to_node(set->mq_map, hctx_idx);
2037 if (node == NUMA_NO_NODE)
2038 node = set->numa_node;
2040 INIT_LIST_HEAD(&tags->page_list);
2043 * rq_size is the size of the request plus driver payload, rounded
2044 * to the cacheline size
2046 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2047 cache_line_size());
2048 left = rq_size * depth;
2050 for (i = 0; i < depth; ) {
2051 int this_order = max_order;
2052 struct page *page;
2053 int to_do;
2054 void *p;
2056 while (this_order && left < order_to_size(this_order - 1))
2057 this_order--;
2059 do {
2060 page = alloc_pages_node(node,
2061 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2062 this_order);
2063 if (page)
2064 break;
2065 if (!this_order--)
2066 break;
2067 if (order_to_size(this_order) < rq_size)
2068 break;
2069 } while (1);
2071 if (!page)
2072 goto fail;
2074 page->private = this_order;
2075 list_add_tail(&page->lru, &tags->page_list);
2077 p = page_address(page);
2079 * Allow kmemleak to scan these pages as they contain pointers
2080 * to additional allocations like via ops->init_request().
2082 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2083 entries_per_page = order_to_size(this_order) / rq_size;
2084 to_do = min(entries_per_page, depth - i);
2085 left -= to_do * rq_size;
2086 for (j = 0; j < to_do; j++) {
2087 struct request *rq = p;
2089 tags->static_rqs[i] = rq;
2090 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2091 tags->static_rqs[i] = NULL;
2092 goto fail;
2095 p += rq_size;
2096 i++;
2099 return 0;
2101 fail:
2102 blk_mq_free_rqs(set, tags, hctx_idx);
2103 return -ENOMEM;
2107 * 'cpu' is going away. splice any existing rq_list entries from this
2108 * software queue to the hw queue dispatch list, and ensure that it
2109 * gets run.
2111 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2113 struct blk_mq_hw_ctx *hctx;
2114 struct blk_mq_ctx *ctx;
2115 LIST_HEAD(tmp);
2117 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2118 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2120 spin_lock(&ctx->lock);
2121 if (!list_empty(&ctx->rq_list)) {
2122 list_splice_init(&ctx->rq_list, &tmp);
2123 blk_mq_hctx_clear_pending(hctx, ctx);
2125 spin_unlock(&ctx->lock);
2127 if (list_empty(&tmp))
2128 return 0;
2130 spin_lock(&hctx->lock);
2131 list_splice_tail_init(&tmp, &hctx->dispatch);
2132 spin_unlock(&hctx->lock);
2134 blk_mq_run_hw_queue(hctx, true);
2135 return 0;
2138 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2140 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2141 &hctx->cpuhp_dead);
2144 /* hctx->ctxs will be freed in queue's release handler */
2145 static void blk_mq_exit_hctx(struct request_queue *q,
2146 struct blk_mq_tag_set *set,
2147 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2149 blk_mq_debugfs_unregister_hctx(hctx);
2151 if (blk_mq_hw_queue_mapped(hctx))
2152 blk_mq_tag_idle(hctx);
2154 if (set->ops->exit_request)
2155 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2157 if (set->ops->exit_hctx)
2158 set->ops->exit_hctx(hctx, hctx_idx);
2160 if (hctx->flags & BLK_MQ_F_BLOCKING)
2161 cleanup_srcu_struct(hctx->srcu);
2163 blk_mq_remove_cpuhp(hctx);
2164 blk_free_flush_queue(hctx->fq);
2165 sbitmap_free(&hctx->ctx_map);
2168 static void blk_mq_exit_hw_queues(struct request_queue *q,
2169 struct blk_mq_tag_set *set, int nr_queue)
2171 struct blk_mq_hw_ctx *hctx;
2172 unsigned int i;
2174 queue_for_each_hw_ctx(q, hctx, i) {
2175 if (i == nr_queue)
2176 break;
2177 blk_mq_exit_hctx(q, set, hctx, i);
2181 static int blk_mq_init_hctx(struct request_queue *q,
2182 struct blk_mq_tag_set *set,
2183 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2185 int node;
2187 node = hctx->numa_node;
2188 if (node == NUMA_NO_NODE)
2189 node = hctx->numa_node = set->numa_node;
2191 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2192 spin_lock_init(&hctx->lock);
2193 INIT_LIST_HEAD(&hctx->dispatch);
2194 hctx->queue = q;
2195 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2197 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2199 hctx->tags = set->tags[hctx_idx];
2202 * Allocate space for all possible cpus to avoid allocation at
2203 * runtime
2205 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2206 GFP_KERNEL, node);
2207 if (!hctx->ctxs)
2208 goto unregister_cpu_notifier;
2210 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
2211 node))
2212 goto free_ctxs;
2214 hctx->nr_ctx = 0;
2216 spin_lock_init(&hctx->dispatch_wait_lock);
2217 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2218 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2220 if (set->ops->init_hctx &&
2221 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2222 goto free_bitmap;
2224 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
2225 if (!hctx->fq)
2226 goto exit_hctx;
2228 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2229 goto free_fq;
2231 if (hctx->flags & BLK_MQ_F_BLOCKING)
2232 init_srcu_struct(hctx->srcu);
2234 blk_mq_debugfs_register_hctx(q, hctx);
2236 return 0;
2238 free_fq:
2239 blk_free_flush_queue(hctx->fq);
2240 exit_hctx:
2241 if (set->ops->exit_hctx)
2242 set->ops->exit_hctx(hctx, hctx_idx);
2243 free_bitmap:
2244 sbitmap_free(&hctx->ctx_map);
2245 free_ctxs:
2246 kfree(hctx->ctxs);
2247 unregister_cpu_notifier:
2248 blk_mq_remove_cpuhp(hctx);
2249 return -1;
2252 static void blk_mq_init_cpu_queues(struct request_queue *q,
2253 unsigned int nr_hw_queues)
2255 unsigned int i;
2257 for_each_possible_cpu(i) {
2258 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2259 struct blk_mq_hw_ctx *hctx;
2261 __ctx->cpu = i;
2262 spin_lock_init(&__ctx->lock);
2263 INIT_LIST_HEAD(&__ctx->rq_list);
2264 __ctx->queue = q;
2267 * Set local node, IFF we have more than one hw queue. If
2268 * not, we remain on the home node of the device
2270 hctx = blk_mq_map_queue(q, i);
2271 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2272 hctx->numa_node = local_memory_node(cpu_to_node(i));
2276 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2278 int ret = 0;
2280 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2281 set->queue_depth, set->reserved_tags);
2282 if (!set->tags[hctx_idx])
2283 return false;
2285 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2286 set->queue_depth);
2287 if (!ret)
2288 return true;
2290 blk_mq_free_rq_map(set->tags[hctx_idx]);
2291 set->tags[hctx_idx] = NULL;
2292 return false;
2295 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2296 unsigned int hctx_idx)
2298 if (set->tags[hctx_idx]) {
2299 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2300 blk_mq_free_rq_map(set->tags[hctx_idx]);
2301 set->tags[hctx_idx] = NULL;
2305 static void blk_mq_map_swqueue(struct request_queue *q)
2307 unsigned int i, hctx_idx;
2308 struct blk_mq_hw_ctx *hctx;
2309 struct blk_mq_ctx *ctx;
2310 struct blk_mq_tag_set *set = q->tag_set;
2313 * Avoid others reading imcomplete hctx->cpumask through sysfs
2315 mutex_lock(&q->sysfs_lock);
2317 queue_for_each_hw_ctx(q, hctx, i) {
2318 cpumask_clear(hctx->cpumask);
2319 hctx->nr_ctx = 0;
2320 hctx->dispatch_from = NULL;
2324 * Map software to hardware queues.
2326 * If the cpu isn't present, the cpu is mapped to first hctx.
2328 for_each_possible_cpu(i) {
2329 hctx_idx = q->mq_map[i];
2330 /* unmapped hw queue can be remapped after CPU topo changed */
2331 if (!set->tags[hctx_idx] &&
2332 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2334 * If tags initialization fail for some hctx,
2335 * that hctx won't be brought online. In this
2336 * case, remap the current ctx to hctx[0] which
2337 * is guaranteed to always have tags allocated
2339 q->mq_map[i] = 0;
2342 ctx = per_cpu_ptr(q->queue_ctx, i);
2343 hctx = blk_mq_map_queue(q, i);
2345 cpumask_set_cpu(i, hctx->cpumask);
2346 ctx->index_hw = hctx->nr_ctx;
2347 hctx->ctxs[hctx->nr_ctx++] = ctx;
2350 mutex_unlock(&q->sysfs_lock);
2352 queue_for_each_hw_ctx(q, hctx, i) {
2354 * If no software queues are mapped to this hardware queue,
2355 * disable it and free the request entries.
2357 if (!hctx->nr_ctx) {
2358 /* Never unmap queue 0. We need it as a
2359 * fallback in case of a new remap fails
2360 * allocation
2362 if (i && set->tags[i])
2363 blk_mq_free_map_and_requests(set, i);
2365 hctx->tags = NULL;
2366 continue;
2369 hctx->tags = set->tags[i];
2370 WARN_ON(!hctx->tags);
2373 * Set the map size to the number of mapped software queues.
2374 * This is more accurate and more efficient than looping
2375 * over all possibly mapped software queues.
2377 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2380 * Initialize batch roundrobin counts
2382 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2383 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2388 * Caller needs to ensure that we're either frozen/quiesced, or that
2389 * the queue isn't live yet.
2391 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2393 struct blk_mq_hw_ctx *hctx;
2394 int i;
2396 queue_for_each_hw_ctx(q, hctx, i) {
2397 if (shared)
2398 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2399 else
2400 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2404 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2405 bool shared)
2407 struct request_queue *q;
2409 lockdep_assert_held(&set->tag_list_lock);
2411 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2412 blk_mq_freeze_queue(q);
2413 queue_set_hctx_shared(q, shared);
2414 blk_mq_unfreeze_queue(q);
2418 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2420 struct blk_mq_tag_set *set = q->tag_set;
2422 mutex_lock(&set->tag_list_lock);
2423 list_del_rcu(&q->tag_set_list);
2424 if (list_is_singular(&set->tag_list)) {
2425 /* just transitioned to unshared */
2426 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2427 /* update existing queue */
2428 blk_mq_update_tag_set_depth(set, false);
2430 mutex_unlock(&set->tag_list_lock);
2431 INIT_LIST_HEAD(&q->tag_set_list);
2434 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2435 struct request_queue *q)
2437 q->tag_set = set;
2439 mutex_lock(&set->tag_list_lock);
2442 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2444 if (!list_empty(&set->tag_list) &&
2445 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2446 set->flags |= BLK_MQ_F_TAG_SHARED;
2447 /* update existing queue */
2448 blk_mq_update_tag_set_depth(set, true);
2450 if (set->flags & BLK_MQ_F_TAG_SHARED)
2451 queue_set_hctx_shared(q, true);
2452 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2454 mutex_unlock(&set->tag_list_lock);
2458 * It is the actual release handler for mq, but we do it from
2459 * request queue's release handler for avoiding use-after-free
2460 * and headache because q->mq_kobj shouldn't have been introduced,
2461 * but we can't group ctx/kctx kobj without it.
2463 void blk_mq_release(struct request_queue *q)
2465 struct blk_mq_hw_ctx *hctx;
2466 unsigned int i;
2468 cancel_delayed_work_sync(&q->requeue_work);
2470 /* hctx kobj stays in hctx */
2471 queue_for_each_hw_ctx(q, hctx, i) {
2472 if (!hctx)
2473 continue;
2474 kobject_put(&hctx->kobj);
2477 q->mq_map = NULL;
2479 kfree(q->queue_hw_ctx);
2482 * release .mq_kobj and sw queue's kobject now because
2483 * both share lifetime with request queue.
2485 blk_mq_sysfs_deinit(q);
2487 free_percpu(q->queue_ctx);
2490 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2492 struct request_queue *uninit_q, *q;
2494 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node, NULL);
2495 if (!uninit_q)
2496 return ERR_PTR(-ENOMEM);
2498 q = blk_mq_init_allocated_queue(set, uninit_q);
2499 if (IS_ERR(q))
2500 blk_cleanup_queue(uninit_q);
2502 return q;
2504 EXPORT_SYMBOL(blk_mq_init_queue);
2506 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2508 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2510 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2511 __alignof__(struct blk_mq_hw_ctx)) !=
2512 sizeof(struct blk_mq_hw_ctx));
2514 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2515 hw_ctx_size += sizeof(struct srcu_struct);
2517 return hw_ctx_size;
2520 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2521 struct request_queue *q)
2523 int i, j;
2524 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2526 blk_mq_sysfs_unregister(q);
2528 /* protect against switching io scheduler */
2529 mutex_lock(&q->sysfs_lock);
2530 for (i = 0; i < set->nr_hw_queues; i++) {
2531 int node;
2533 if (hctxs[i])
2534 continue;
2536 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2537 hctxs[i] = kzalloc_node(blk_mq_hw_ctx_size(set),
2538 GFP_KERNEL, node);
2539 if (!hctxs[i])
2540 break;
2542 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2543 node)) {
2544 kfree(hctxs[i]);
2545 hctxs[i] = NULL;
2546 break;
2549 atomic_set(&hctxs[i]->nr_active, 0);
2550 hctxs[i]->numa_node = node;
2551 hctxs[i]->queue_num = i;
2553 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2554 free_cpumask_var(hctxs[i]->cpumask);
2555 kfree(hctxs[i]);
2556 hctxs[i] = NULL;
2557 break;
2559 blk_mq_hctx_kobj_init(hctxs[i]);
2561 for (j = i; j < q->nr_hw_queues; j++) {
2562 struct blk_mq_hw_ctx *hctx = hctxs[j];
2564 if (hctx) {
2565 if (hctx->tags)
2566 blk_mq_free_map_and_requests(set, j);
2567 blk_mq_exit_hctx(q, set, hctx, j);
2568 kobject_put(&hctx->kobj);
2569 hctxs[j] = NULL;
2573 q->nr_hw_queues = i;
2574 mutex_unlock(&q->sysfs_lock);
2575 blk_mq_sysfs_register(q);
2578 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2579 struct request_queue *q)
2581 /* mark the queue as mq asap */
2582 q->mq_ops = set->ops;
2584 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2585 blk_mq_poll_stats_bkt,
2586 BLK_MQ_POLL_STATS_BKTS, q);
2587 if (!q->poll_cb)
2588 goto err_exit;
2590 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2591 if (!q->queue_ctx)
2592 goto err_exit;
2594 /* init q->mq_kobj and sw queues' kobjects */
2595 blk_mq_sysfs_init(q);
2597 q->queue_hw_ctx = kcalloc_node(nr_cpu_ids, sizeof(*(q->queue_hw_ctx)),
2598 GFP_KERNEL, set->numa_node);
2599 if (!q->queue_hw_ctx)
2600 goto err_percpu;
2602 q->mq_map = set->mq_map;
2604 blk_mq_realloc_hw_ctxs(set, q);
2605 if (!q->nr_hw_queues)
2606 goto err_hctxs;
2608 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2609 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2611 q->nr_queues = nr_cpu_ids;
2613 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2615 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2616 queue_flag_set_unlocked(QUEUE_FLAG_NO_SG_MERGE, q);
2618 q->sg_reserved_size = INT_MAX;
2620 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2621 INIT_LIST_HEAD(&q->requeue_list);
2622 spin_lock_init(&q->requeue_lock);
2624 blk_queue_make_request(q, blk_mq_make_request);
2625 if (q->mq_ops->poll)
2626 q->poll_fn = blk_mq_poll;
2629 * Do this after blk_queue_make_request() overrides it...
2631 q->nr_requests = set->queue_depth;
2634 * Default to classic polling
2636 q->poll_nsec = -1;
2638 if (set->ops->complete)
2639 blk_queue_softirq_done(q, set->ops->complete);
2641 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2642 blk_mq_add_queue_tag_set(set, q);
2643 blk_mq_map_swqueue(q);
2645 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2646 int ret;
2648 ret = elevator_init_mq(q);
2649 if (ret)
2650 return ERR_PTR(ret);
2653 return q;
2655 err_hctxs:
2656 kfree(q->queue_hw_ctx);
2657 err_percpu:
2658 free_percpu(q->queue_ctx);
2659 err_exit:
2660 q->mq_ops = NULL;
2661 return ERR_PTR(-ENOMEM);
2663 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2665 void blk_mq_free_queue(struct request_queue *q)
2667 struct blk_mq_tag_set *set = q->tag_set;
2669 blk_mq_del_queue_tag_set(q);
2670 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2673 /* Basically redo blk_mq_init_queue with queue frozen */
2674 static void blk_mq_queue_reinit(struct request_queue *q)
2676 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2678 blk_mq_debugfs_unregister_hctxs(q);
2679 blk_mq_sysfs_unregister(q);
2682 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2683 * we should change hctx numa_node according to the new topology (this
2684 * involves freeing and re-allocating memory, worth doing?)
2686 blk_mq_map_swqueue(q);
2688 blk_mq_sysfs_register(q);
2689 blk_mq_debugfs_register_hctxs(q);
2692 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2694 int i;
2696 for (i = 0; i < set->nr_hw_queues; i++)
2697 if (!__blk_mq_alloc_rq_map(set, i))
2698 goto out_unwind;
2700 return 0;
2702 out_unwind:
2703 while (--i >= 0)
2704 blk_mq_free_rq_map(set->tags[i]);
2706 return -ENOMEM;
2710 * Allocate the request maps associated with this tag_set. Note that this
2711 * may reduce the depth asked for, if memory is tight. set->queue_depth
2712 * will be updated to reflect the allocated depth.
2714 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2716 unsigned int depth;
2717 int err;
2719 depth = set->queue_depth;
2720 do {
2721 err = __blk_mq_alloc_rq_maps(set);
2722 if (!err)
2723 break;
2725 set->queue_depth >>= 1;
2726 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2727 err = -ENOMEM;
2728 break;
2730 } while (set->queue_depth);
2732 if (!set->queue_depth || err) {
2733 pr_err("blk-mq: failed to allocate request map\n");
2734 return -ENOMEM;
2737 if (depth != set->queue_depth)
2738 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2739 depth, set->queue_depth);
2741 return 0;
2744 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2746 if (set->ops->map_queues) {
2748 * transport .map_queues is usually done in the following
2749 * way:
2751 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2752 * mask = get_cpu_mask(queue)
2753 * for_each_cpu(cpu, mask)
2754 * set->mq_map[cpu] = queue;
2757 * When we need to remap, the table has to be cleared for
2758 * killing stale mapping since one CPU may not be mapped
2759 * to any hw queue.
2761 blk_mq_clear_mq_map(set);
2763 return set->ops->map_queues(set);
2764 } else
2765 return blk_mq_map_queues(set);
2769 * Alloc a tag set to be associated with one or more request queues.
2770 * May fail with EINVAL for various error conditions. May adjust the
2771 * requested depth down, if it's too large. In that case, the set
2772 * value will be stored in set->queue_depth.
2774 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2776 int ret;
2778 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2780 if (!set->nr_hw_queues)
2781 return -EINVAL;
2782 if (!set->queue_depth)
2783 return -EINVAL;
2784 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2785 return -EINVAL;
2787 if (!set->ops->queue_rq)
2788 return -EINVAL;
2790 if (!set->ops->get_budget ^ !set->ops->put_budget)
2791 return -EINVAL;
2793 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2794 pr_info("blk-mq: reduced tag depth to %u\n",
2795 BLK_MQ_MAX_DEPTH);
2796 set->queue_depth = BLK_MQ_MAX_DEPTH;
2800 * If a crashdump is active, then we are potentially in a very
2801 * memory constrained environment. Limit us to 1 queue and
2802 * 64 tags to prevent using too much memory.
2804 if (is_kdump_kernel()) {
2805 set->nr_hw_queues = 1;
2806 set->queue_depth = min(64U, set->queue_depth);
2809 * There is no use for more h/w queues than cpus.
2811 if (set->nr_hw_queues > nr_cpu_ids)
2812 set->nr_hw_queues = nr_cpu_ids;
2814 set->tags = kcalloc_node(nr_cpu_ids, sizeof(struct blk_mq_tags *),
2815 GFP_KERNEL, set->numa_node);
2816 if (!set->tags)
2817 return -ENOMEM;
2819 ret = -ENOMEM;
2820 set->mq_map = kcalloc_node(nr_cpu_ids, sizeof(*set->mq_map),
2821 GFP_KERNEL, set->numa_node);
2822 if (!set->mq_map)
2823 goto out_free_tags;
2825 ret = blk_mq_update_queue_map(set);
2826 if (ret)
2827 goto out_free_mq_map;
2829 ret = blk_mq_alloc_rq_maps(set);
2830 if (ret)
2831 goto out_free_mq_map;
2833 mutex_init(&set->tag_list_lock);
2834 INIT_LIST_HEAD(&set->tag_list);
2836 return 0;
2838 out_free_mq_map:
2839 kfree(set->mq_map);
2840 set->mq_map = NULL;
2841 out_free_tags:
2842 kfree(set->tags);
2843 set->tags = NULL;
2844 return ret;
2846 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2848 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2850 int i;
2852 for (i = 0; i < nr_cpu_ids; i++)
2853 blk_mq_free_map_and_requests(set, i);
2855 kfree(set->mq_map);
2856 set->mq_map = NULL;
2858 kfree(set->tags);
2859 set->tags = NULL;
2861 EXPORT_SYMBOL(blk_mq_free_tag_set);
2863 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2865 struct blk_mq_tag_set *set = q->tag_set;
2866 struct blk_mq_hw_ctx *hctx;
2867 int i, ret;
2869 if (!set)
2870 return -EINVAL;
2872 blk_mq_freeze_queue(q);
2873 blk_mq_quiesce_queue(q);
2875 ret = 0;
2876 queue_for_each_hw_ctx(q, hctx, i) {
2877 if (!hctx->tags)
2878 continue;
2880 * If we're using an MQ scheduler, just update the scheduler
2881 * queue depth. This is similar to what the old code would do.
2883 if (!hctx->sched_tags) {
2884 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
2885 false);
2886 } else {
2887 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
2888 nr, true);
2890 if (ret)
2891 break;
2892 if (q->elevator && q->elevator->type->ops.mq.depth_updated)
2893 q->elevator->type->ops.mq.depth_updated(hctx);
2896 if (!ret)
2897 q->nr_requests = nr;
2899 blk_mq_unquiesce_queue(q);
2900 blk_mq_unfreeze_queue(q);
2902 return ret;
2906 * request_queue and elevator_type pair.
2907 * It is just used by __blk_mq_update_nr_hw_queues to cache
2908 * the elevator_type associated with a request_queue.
2910 struct blk_mq_qe_pair {
2911 struct list_head node;
2912 struct request_queue *q;
2913 struct elevator_type *type;
2917 * Cache the elevator_type in qe pair list and switch the
2918 * io scheduler to 'none'
2920 static bool blk_mq_elv_switch_none(struct list_head *head,
2921 struct request_queue *q)
2923 struct blk_mq_qe_pair *qe;
2925 if (!q->elevator)
2926 return true;
2928 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2929 if (!qe)
2930 return false;
2932 INIT_LIST_HEAD(&qe->node);
2933 qe->q = q;
2934 qe->type = q->elevator->type;
2935 list_add(&qe->node, head);
2937 mutex_lock(&q->sysfs_lock);
2939 * After elevator_switch_mq, the previous elevator_queue will be
2940 * released by elevator_release. The reference of the io scheduler
2941 * module get by elevator_get will also be put. So we need to get
2942 * a reference of the io scheduler module here to prevent it to be
2943 * removed.
2945 __module_get(qe->type->elevator_owner);
2946 elevator_switch_mq(q, NULL);
2947 mutex_unlock(&q->sysfs_lock);
2949 return true;
2952 static void blk_mq_elv_switch_back(struct list_head *head,
2953 struct request_queue *q)
2955 struct blk_mq_qe_pair *qe;
2956 struct elevator_type *t = NULL;
2958 list_for_each_entry(qe, head, node)
2959 if (qe->q == q) {
2960 t = qe->type;
2961 break;
2964 if (!t)
2965 return;
2967 list_del(&qe->node);
2968 kfree(qe);
2970 mutex_lock(&q->sysfs_lock);
2971 elevator_switch_mq(q, t);
2972 mutex_unlock(&q->sysfs_lock);
2975 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
2976 int nr_hw_queues)
2978 struct request_queue *q;
2979 LIST_HEAD(head);
2981 lockdep_assert_held(&set->tag_list_lock);
2983 if (nr_hw_queues > nr_cpu_ids)
2984 nr_hw_queues = nr_cpu_ids;
2985 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2986 return;
2988 list_for_each_entry(q, &set->tag_list, tag_set_list)
2989 blk_mq_freeze_queue(q);
2991 * Sync with blk_mq_queue_tag_busy_iter.
2993 synchronize_rcu();
2995 * Switch IO scheduler to 'none', cleaning up the data associated
2996 * with the previous scheduler. We will switch back once we are done
2997 * updating the new sw to hw queue mappings.
2999 list_for_each_entry(q, &set->tag_list, tag_set_list)
3000 if (!blk_mq_elv_switch_none(&head, q))
3001 goto switch_back;
3003 set->nr_hw_queues = nr_hw_queues;
3004 blk_mq_update_queue_map(set);
3005 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3006 blk_mq_realloc_hw_ctxs(set, q);
3007 blk_mq_queue_reinit(q);
3010 switch_back:
3011 list_for_each_entry(q, &set->tag_list, tag_set_list)
3012 blk_mq_elv_switch_back(&head, q);
3014 list_for_each_entry(q, &set->tag_list, tag_set_list)
3015 blk_mq_unfreeze_queue(q);
3018 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3020 mutex_lock(&set->tag_list_lock);
3021 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3022 mutex_unlock(&set->tag_list_lock);
3024 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3026 /* Enable polling stats and return whether they were already enabled. */
3027 static bool blk_poll_stats_enable(struct request_queue *q)
3029 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3030 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3031 return true;
3032 blk_stat_add_callback(q, q->poll_cb);
3033 return false;
3036 static void blk_mq_poll_stats_start(struct request_queue *q)
3039 * We don't arm the callback if polling stats are not enabled or the
3040 * callback is already active.
3042 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3043 blk_stat_is_active(q->poll_cb))
3044 return;
3046 blk_stat_activate_msecs(q->poll_cb, 100);
3049 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3051 struct request_queue *q = cb->data;
3052 int bucket;
3054 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3055 if (cb->stat[bucket].nr_samples)
3056 q->poll_stat[bucket] = cb->stat[bucket];
3060 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3061 struct blk_mq_hw_ctx *hctx,
3062 struct request *rq)
3064 unsigned long ret = 0;
3065 int bucket;
3068 * If stats collection isn't on, don't sleep but turn it on for
3069 * future users
3071 if (!blk_poll_stats_enable(q))
3072 return 0;
3075 * As an optimistic guess, use half of the mean service time
3076 * for this type of request. We can (and should) make this smarter.
3077 * For instance, if the completion latencies are tight, we can
3078 * get closer than just half the mean. This is especially
3079 * important on devices where the completion latencies are longer
3080 * than ~10 usec. We do use the stats for the relevant IO size
3081 * if available which does lead to better estimates.
3083 bucket = blk_mq_poll_stats_bkt(rq);
3084 if (bucket < 0)
3085 return ret;
3087 if (q->poll_stat[bucket].nr_samples)
3088 ret = (q->poll_stat[bucket].mean + 1) / 2;
3090 return ret;
3093 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3094 struct blk_mq_hw_ctx *hctx,
3095 struct request *rq)
3097 struct hrtimer_sleeper hs;
3098 enum hrtimer_mode mode;
3099 unsigned int nsecs;
3100 ktime_t kt;
3102 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3103 return false;
3106 * poll_nsec can be:
3108 * -1: don't ever hybrid sleep
3109 * 0: use half of prev avg
3110 * >0: use this specific value
3112 if (q->poll_nsec == -1)
3113 return false;
3114 else if (q->poll_nsec > 0)
3115 nsecs = q->poll_nsec;
3116 else
3117 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3119 if (!nsecs)
3120 return false;
3122 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3125 * This will be replaced with the stats tracking code, using
3126 * 'avg_completion_time / 2' as the pre-sleep target.
3128 kt = nsecs;
3130 mode = HRTIMER_MODE_REL;
3131 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3132 hrtimer_set_expires(&hs.timer, kt);
3134 hrtimer_init_sleeper(&hs, current);
3135 do {
3136 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3137 break;
3138 set_current_state(TASK_UNINTERRUPTIBLE);
3139 hrtimer_start_expires(&hs.timer, mode);
3140 if (hs.task)
3141 io_schedule();
3142 hrtimer_cancel(&hs.timer);
3143 mode = HRTIMER_MODE_ABS;
3144 } while (hs.task && !signal_pending(current));
3146 __set_current_state(TASK_RUNNING);
3147 destroy_hrtimer_on_stack(&hs.timer);
3148 return true;
3151 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
3153 struct request_queue *q = hctx->queue;
3154 long state;
3157 * If we sleep, have the caller restart the poll loop to reset
3158 * the state. Like for the other success return cases, the
3159 * caller is responsible for checking if the IO completed. If
3160 * the IO isn't complete, we'll get called again and will go
3161 * straight to the busy poll loop.
3163 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
3164 return true;
3166 hctx->poll_considered++;
3168 state = current->state;
3169 while (!need_resched()) {
3170 int ret;
3172 hctx->poll_invoked++;
3174 ret = q->mq_ops->poll(hctx, rq->tag);
3175 if (ret > 0) {
3176 hctx->poll_success++;
3177 set_current_state(TASK_RUNNING);
3178 return true;
3181 if (signal_pending_state(state, current))
3182 set_current_state(TASK_RUNNING);
3184 if (current->state == TASK_RUNNING)
3185 return true;
3186 if (ret < 0)
3187 break;
3188 cpu_relax();
3191 __set_current_state(TASK_RUNNING);
3192 return false;
3195 static bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
3197 struct blk_mq_hw_ctx *hctx;
3198 struct request *rq;
3200 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3201 return false;
3203 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3204 if (!blk_qc_t_is_internal(cookie))
3205 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3206 else {
3207 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3209 * With scheduling, if the request has completed, we'll
3210 * get a NULL return here, as we clear the sched tag when
3211 * that happens. The request still remains valid, like always,
3212 * so we should be safe with just the NULL check.
3214 if (!rq)
3215 return false;
3218 return __blk_mq_poll(hctx, rq);
3221 static int __init blk_mq_init(void)
3223 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3224 blk_mq_hctx_notify_dead);
3225 return 0;
3227 subsys_initcall(blk_mq_init);