1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum
= 8;
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum
= 32;
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39 static struct blkcg_policy blkcg_policy_throtl
;
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct
*kthrotld_workqueue
;
45 * To implement hierarchical throttling, throtl_grps form a tree and bios
46 * are dispatched upwards level by level until they reach the top and get
47 * issued. When dispatching bios from the children and local group at each
48 * level, if the bios are dispatched into a single bio_list, there's a risk
49 * of a local or child group which can queue many bios at once filling up
50 * the list starving others.
52 * To avoid such starvation, dispatched bios are queued separately
53 * according to where they came from. When they are again dispatched to
54 * the parent, they're popped in round-robin order so that no single source
55 * hogs the dispatch window.
57 * throtl_qnode is used to keep the queued bios separated by their sources.
58 * Bios are queued to throtl_qnode which in turn is queued to
59 * throtl_service_queue and then dispatched in round-robin order.
61 * It's also used to track the reference counts on blkg's. A qnode always
62 * belongs to a throtl_grp and gets queued on itself or the parent, so
63 * incrementing the reference of the associated throtl_grp when a qnode is
64 * queued and decrementing when dequeued is enough to keep the whole blkg
65 * tree pinned while bios are in flight.
68 struct list_head node
; /* service_queue->queued[] */
69 struct bio_list bios
; /* queued bios */
70 struct throtl_grp
*tg
; /* tg this qnode belongs to */
73 struct throtl_service_queue
{
74 struct throtl_service_queue
*parent_sq
; /* the parent service_queue */
77 * Bios queued directly to this service_queue or dispatched from
78 * children throtl_grp's.
80 struct list_head queued
[2]; /* throtl_qnode [READ/WRITE] */
81 unsigned int nr_queued
[2]; /* number of queued bios */
84 * RB tree of active children throtl_grp's, which are sorted by
87 struct rb_root pending_tree
; /* RB tree of active tgs */
88 struct rb_node
*first_pending
; /* first node in the tree */
89 unsigned int nr_pending
; /* # queued in the tree */
90 unsigned long first_pending_disptime
; /* disptime of the first tg */
91 struct timer_list pending_timer
; /* fires on first_pending_disptime */
95 THROTL_TG_PENDING
= 1 << 0, /* on parent's pending tree */
96 THROTL_TG_WAS_EMPTY
= 1 << 1, /* bio_lists[] became non-empty */
99 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
108 /* must be the first member */
109 struct blkg_policy_data pd
;
111 /* active throtl group service_queue member */
112 struct rb_node rb_node
;
114 /* throtl_data this group belongs to */
115 struct throtl_data
*td
;
117 /* this group's service queue */
118 struct throtl_service_queue service_queue
;
121 * qnode_on_self is used when bios are directly queued to this
122 * throtl_grp so that local bios compete fairly with bios
123 * dispatched from children. qnode_on_parent is used when bios are
124 * dispatched from this throtl_grp into its parent and will compete
125 * with the sibling qnode_on_parents and the parent's
128 struct throtl_qnode qnode_on_self
[2];
129 struct throtl_qnode qnode_on_parent
[2];
132 * Dispatch time in jiffies. This is the estimated time when group
133 * will unthrottle and is ready to dispatch more bio. It is used as
134 * key to sort active groups in service tree.
136 unsigned long disptime
;
140 /* are there any throtl rules between this group and td? */
143 /* internally used bytes per second rate limits */
144 uint64_t bps
[2][LIMIT_CNT
];
145 /* user configured bps limits */
146 uint64_t bps_conf
[2][LIMIT_CNT
];
148 /* internally used IOPS limits */
149 unsigned int iops
[2][LIMIT_CNT
];
150 /* user configured IOPS limits */
151 unsigned int iops_conf
[2][LIMIT_CNT
];
153 /* Number of bytes disptached in current slice */
154 uint64_t bytes_disp
[2];
155 /* Number of bio's dispatched in current slice */
156 unsigned int io_disp
[2];
158 unsigned long last_low_overflow_time
[2];
160 uint64_t last_bytes_disp
[2];
161 unsigned int last_io_disp
[2];
163 unsigned long last_check_time
;
165 unsigned long latency_target
; /* us */
166 unsigned long latency_target_conf
; /* us */
167 /* When did we start a new slice */
168 unsigned long slice_start
[2];
169 unsigned long slice_end
[2];
171 unsigned long last_finish_time
; /* ns / 1024 */
172 unsigned long checked_last_finish_time
; /* ns / 1024 */
173 unsigned long avg_idletime
; /* ns / 1024 */
174 unsigned long idletime_threshold
; /* us */
175 unsigned long idletime_threshold_conf
; /* us */
177 unsigned int bio_cnt
; /* total bios */
178 unsigned int bad_bio_cnt
; /* bios exceeding latency threshold */
179 unsigned long bio_cnt_reset_time
;
182 /* We measure latency for request size from <= 4k to >= 1M */
183 #define LATENCY_BUCKET_SIZE 9
185 struct latency_bucket
{
186 unsigned long total_latency
; /* ns / 1024 */
190 struct avg_latency_bucket
{
191 unsigned long latency
; /* ns / 1024 */
197 /* service tree for active throtl groups */
198 struct throtl_service_queue service_queue
;
200 struct request_queue
*queue
;
202 /* Total Number of queued bios on READ and WRITE lists */
203 unsigned int nr_queued
[2];
205 unsigned int throtl_slice
;
207 /* Work for dispatching throttled bios */
208 struct work_struct dispatch_work
;
209 unsigned int limit_index
;
210 bool limit_valid
[LIMIT_CNT
];
212 unsigned long low_upgrade_time
;
213 unsigned long low_downgrade_time
;
217 struct latency_bucket tmp_buckets
[2][LATENCY_BUCKET_SIZE
];
218 struct avg_latency_bucket avg_buckets
[2][LATENCY_BUCKET_SIZE
];
219 struct latency_bucket __percpu
*latency_buckets
[2];
220 unsigned long last_calculate_time
;
221 unsigned long filtered_latency
;
223 bool track_bio_latency
;
226 static void throtl_pending_timer_fn(struct timer_list
*t
);
228 static inline struct throtl_grp
*pd_to_tg(struct blkg_policy_data
*pd
)
230 return pd
? container_of(pd
, struct throtl_grp
, pd
) : NULL
;
233 static inline struct throtl_grp
*blkg_to_tg(struct blkcg_gq
*blkg
)
235 return pd_to_tg(blkg_to_pd(blkg
, &blkcg_policy_throtl
));
238 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
240 return pd_to_blkg(&tg
->pd
);
244 * sq_to_tg - return the throl_grp the specified service queue belongs to
245 * @sq: the throtl_service_queue of interest
247 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
248 * embedded in throtl_data, %NULL is returned.
250 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
252 if (sq
&& sq
->parent_sq
)
253 return container_of(sq
, struct throtl_grp
, service_queue
);
259 * sq_to_td - return throtl_data the specified service queue belongs to
260 * @sq: the throtl_service_queue of interest
262 * A service_queue can be embedded in either a throtl_grp or throtl_data.
263 * Determine the associated throtl_data accordingly and return it.
265 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
267 struct throtl_grp
*tg
= sq_to_tg(sq
);
272 return container_of(sq
, struct throtl_data
, service_queue
);
276 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
277 * make the IO dispatch more smooth.
278 * Scale up: linearly scale up according to lapsed time since upgrade. For
279 * every throtl_slice, the limit scales up 1/2 .low limit till the
280 * limit hits .max limit
281 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
283 static uint64_t throtl_adjusted_limit(uint64_t low
, struct throtl_data
*td
)
285 /* arbitrary value to avoid too big scale */
286 if (td
->scale
< 4096 && time_after_eq(jiffies
,
287 td
->low_upgrade_time
+ td
->scale
* td
->throtl_slice
))
288 td
->scale
= (jiffies
- td
->low_upgrade_time
) / td
->throtl_slice
;
290 return low
+ (low
>> 1) * td
->scale
;
293 static uint64_t tg_bps_limit(struct throtl_grp
*tg
, int rw
)
295 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
296 struct throtl_data
*td
;
299 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
303 ret
= tg
->bps
[rw
][td
->limit_index
];
304 if (ret
== 0 && td
->limit_index
== LIMIT_LOW
) {
305 /* intermediate node or iops isn't 0 */
306 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
307 tg
->iops
[rw
][td
->limit_index
])
310 return MIN_THROTL_BPS
;
313 if (td
->limit_index
== LIMIT_MAX
&& tg
->bps
[rw
][LIMIT_LOW
] &&
314 tg
->bps
[rw
][LIMIT_LOW
] != tg
->bps
[rw
][LIMIT_MAX
]) {
317 adjusted
= throtl_adjusted_limit(tg
->bps
[rw
][LIMIT_LOW
], td
);
318 ret
= min(tg
->bps
[rw
][LIMIT_MAX
], adjusted
);
323 static unsigned int tg_iops_limit(struct throtl_grp
*tg
, int rw
)
325 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
326 struct throtl_data
*td
;
329 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
333 ret
= tg
->iops
[rw
][td
->limit_index
];
334 if (ret
== 0 && tg
->td
->limit_index
== LIMIT_LOW
) {
335 /* intermediate node or bps isn't 0 */
336 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
337 tg
->bps
[rw
][td
->limit_index
])
340 return MIN_THROTL_IOPS
;
343 if (td
->limit_index
== LIMIT_MAX
&& tg
->iops
[rw
][LIMIT_LOW
] &&
344 tg
->iops
[rw
][LIMIT_LOW
] != tg
->iops
[rw
][LIMIT_MAX
]) {
347 adjusted
= throtl_adjusted_limit(tg
->iops
[rw
][LIMIT_LOW
], td
);
348 if (adjusted
> UINT_MAX
)
350 ret
= min_t(unsigned int, tg
->iops
[rw
][LIMIT_MAX
], adjusted
);
355 #define request_bucket_index(sectors) \
356 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
359 * throtl_log - log debug message via blktrace
360 * @sq: the service_queue being reported
361 * @fmt: printf format string
364 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
365 * throtl_grp; otherwise, just "throtl".
367 #define throtl_log(sq, fmt, args...) do { \
368 struct throtl_grp *__tg = sq_to_tg((sq)); \
369 struct throtl_data *__td = sq_to_td((sq)); \
372 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
375 blk_add_cgroup_trace_msg(__td->queue, \
376 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
378 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
382 static inline unsigned int throtl_bio_data_size(struct bio
*bio
)
384 /* assume it's one sector */
385 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
))
387 return bio
->bi_iter
.bi_size
;
390 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
392 INIT_LIST_HEAD(&qn
->node
);
393 bio_list_init(&qn
->bios
);
398 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
399 * @bio: bio being added
400 * @qn: qnode to add bio to
401 * @queued: the service_queue->queued[] list @qn belongs to
403 * Add @bio to @qn and put @qn on @queued if it's not already on.
404 * @qn->tg's reference count is bumped when @qn is activated. See the
405 * comment on top of throtl_qnode definition for details.
407 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
408 struct list_head
*queued
)
410 bio_list_add(&qn
->bios
, bio
);
411 if (list_empty(&qn
->node
)) {
412 list_add_tail(&qn
->node
, queued
);
413 blkg_get(tg_to_blkg(qn
->tg
));
418 * throtl_peek_queued - peek the first bio on a qnode list
419 * @queued: the qnode list to peek
421 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
423 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
426 if (list_empty(queued
))
429 bio
= bio_list_peek(&qn
->bios
);
435 * throtl_pop_queued - pop the first bio form a qnode list
436 * @queued: the qnode list to pop a bio from
437 * @tg_to_put: optional out argument for throtl_grp to put
439 * Pop the first bio from the qnode list @queued. After popping, the first
440 * qnode is removed from @queued if empty or moved to the end of @queued so
441 * that the popping order is round-robin.
443 * When the first qnode is removed, its associated throtl_grp should be put
444 * too. If @tg_to_put is NULL, this function automatically puts it;
445 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
446 * responsible for putting it.
448 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
449 struct throtl_grp
**tg_to_put
)
451 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
454 if (list_empty(queued
))
457 bio
= bio_list_pop(&qn
->bios
);
460 if (bio_list_empty(&qn
->bios
)) {
461 list_del_init(&qn
->node
);
465 blkg_put(tg_to_blkg(qn
->tg
));
467 list_move_tail(&qn
->node
, queued
);
473 /* init a service_queue, assumes the caller zeroed it */
474 static void throtl_service_queue_init(struct throtl_service_queue
*sq
)
476 INIT_LIST_HEAD(&sq
->queued
[0]);
477 INIT_LIST_HEAD(&sq
->queued
[1]);
478 sq
->pending_tree
= RB_ROOT
;
479 timer_setup(&sq
->pending_timer
, throtl_pending_timer_fn
, 0);
482 static struct blkg_policy_data
*throtl_pd_alloc(gfp_t gfp
, int node
)
484 struct throtl_grp
*tg
;
487 tg
= kzalloc_node(sizeof(*tg
), gfp
, node
);
491 throtl_service_queue_init(&tg
->service_queue
);
493 for (rw
= READ
; rw
<= WRITE
; rw
++) {
494 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
495 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
498 RB_CLEAR_NODE(&tg
->rb_node
);
499 tg
->bps
[READ
][LIMIT_MAX
] = U64_MAX
;
500 tg
->bps
[WRITE
][LIMIT_MAX
] = U64_MAX
;
501 tg
->iops
[READ
][LIMIT_MAX
] = UINT_MAX
;
502 tg
->iops
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
503 tg
->bps_conf
[READ
][LIMIT_MAX
] = U64_MAX
;
504 tg
->bps_conf
[WRITE
][LIMIT_MAX
] = U64_MAX
;
505 tg
->iops_conf
[READ
][LIMIT_MAX
] = UINT_MAX
;
506 tg
->iops_conf
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
507 /* LIMIT_LOW will have default value 0 */
509 tg
->latency_target
= DFL_LATENCY_TARGET
;
510 tg
->latency_target_conf
= DFL_LATENCY_TARGET
;
511 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
512 tg
->idletime_threshold_conf
= DFL_IDLE_THRESHOLD
;
517 static void throtl_pd_init(struct blkg_policy_data
*pd
)
519 struct throtl_grp
*tg
= pd_to_tg(pd
);
520 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
521 struct throtl_data
*td
= blkg
->q
->td
;
522 struct throtl_service_queue
*sq
= &tg
->service_queue
;
525 * If on the default hierarchy, we switch to properly hierarchical
526 * behavior where limits on a given throtl_grp are applied to the
527 * whole subtree rather than just the group itself. e.g. If 16M
528 * read_bps limit is set on the root group, the whole system can't
529 * exceed 16M for the device.
531 * If not on the default hierarchy, the broken flat hierarchy
532 * behavior is retained where all throtl_grps are treated as if
533 * they're all separate root groups right below throtl_data.
534 * Limits of a group don't interact with limits of other groups
535 * regardless of the position of the group in the hierarchy.
537 sq
->parent_sq
= &td
->service_queue
;
538 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && blkg
->parent
)
539 sq
->parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
544 * Set has_rules[] if @tg or any of its parents have limits configured.
545 * This doesn't require walking up to the top of the hierarchy as the
546 * parent's has_rules[] is guaranteed to be correct.
548 static void tg_update_has_rules(struct throtl_grp
*tg
)
550 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
551 struct throtl_data
*td
= tg
->td
;
554 for (rw
= READ
; rw
<= WRITE
; rw
++)
555 tg
->has_rules
[rw
] = (parent_tg
&& parent_tg
->has_rules
[rw
]) ||
556 (td
->limit_valid
[td
->limit_index
] &&
557 (tg_bps_limit(tg
, rw
) != U64_MAX
||
558 tg_iops_limit(tg
, rw
) != UINT_MAX
));
561 static void throtl_pd_online(struct blkg_policy_data
*pd
)
563 struct throtl_grp
*tg
= pd_to_tg(pd
);
565 * We don't want new groups to escape the limits of its ancestors.
566 * Update has_rules[] after a new group is brought online.
568 tg_update_has_rules(tg
);
571 static void blk_throtl_update_limit_valid(struct throtl_data
*td
)
573 struct cgroup_subsys_state
*pos_css
;
574 struct blkcg_gq
*blkg
;
575 bool low_valid
= false;
578 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
579 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
581 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->bps
[WRITE
][LIMIT_LOW
] ||
582 tg
->iops
[READ
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
]) {
589 td
->limit_valid
[LIMIT_LOW
] = low_valid
;
592 static void throtl_upgrade_state(struct throtl_data
*td
);
593 static void throtl_pd_offline(struct blkg_policy_data
*pd
)
595 struct throtl_grp
*tg
= pd_to_tg(pd
);
597 tg
->bps
[READ
][LIMIT_LOW
] = 0;
598 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
599 tg
->iops
[READ
][LIMIT_LOW
] = 0;
600 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
602 blk_throtl_update_limit_valid(tg
->td
);
604 if (!tg
->td
->limit_valid
[tg
->td
->limit_index
])
605 throtl_upgrade_state(tg
->td
);
608 static void throtl_pd_free(struct blkg_policy_data
*pd
)
610 struct throtl_grp
*tg
= pd_to_tg(pd
);
612 del_timer_sync(&tg
->service_queue
.pending_timer
);
616 static struct throtl_grp
*
617 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
619 /* Service tree is empty */
620 if (!parent_sq
->nr_pending
)
623 if (!parent_sq
->first_pending
)
624 parent_sq
->first_pending
= rb_first(&parent_sq
->pending_tree
);
626 if (parent_sq
->first_pending
)
627 return rb_entry_tg(parent_sq
->first_pending
);
632 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
638 static void throtl_rb_erase(struct rb_node
*n
,
639 struct throtl_service_queue
*parent_sq
)
641 if (parent_sq
->first_pending
== n
)
642 parent_sq
->first_pending
= NULL
;
643 rb_erase_init(n
, &parent_sq
->pending_tree
);
644 --parent_sq
->nr_pending
;
647 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
649 struct throtl_grp
*tg
;
651 tg
= throtl_rb_first(parent_sq
);
655 parent_sq
->first_pending_disptime
= tg
->disptime
;
658 static void tg_service_queue_add(struct throtl_grp
*tg
)
660 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
661 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_node
;
662 struct rb_node
*parent
= NULL
;
663 struct throtl_grp
*__tg
;
664 unsigned long key
= tg
->disptime
;
667 while (*node
!= NULL
) {
669 __tg
= rb_entry_tg(parent
);
671 if (time_before(key
, __tg
->disptime
))
672 node
= &parent
->rb_left
;
674 node
= &parent
->rb_right
;
680 parent_sq
->first_pending
= &tg
->rb_node
;
682 rb_link_node(&tg
->rb_node
, parent
, node
);
683 rb_insert_color(&tg
->rb_node
, &parent_sq
->pending_tree
);
686 static void __throtl_enqueue_tg(struct throtl_grp
*tg
)
688 tg_service_queue_add(tg
);
689 tg
->flags
|= THROTL_TG_PENDING
;
690 tg
->service_queue
.parent_sq
->nr_pending
++;
693 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
695 if (!(tg
->flags
& THROTL_TG_PENDING
))
696 __throtl_enqueue_tg(tg
);
699 static void __throtl_dequeue_tg(struct throtl_grp
*tg
)
701 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
702 tg
->flags
&= ~THROTL_TG_PENDING
;
705 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
707 if (tg
->flags
& THROTL_TG_PENDING
)
708 __throtl_dequeue_tg(tg
);
711 /* Call with queue lock held */
712 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
713 unsigned long expires
)
715 unsigned long max_expire
= jiffies
+ 8 * sq_to_td(sq
)->throtl_slice
;
718 * Since we are adjusting the throttle limit dynamically, the sleep
719 * time calculated according to previous limit might be invalid. It's
720 * possible the cgroup sleep time is very long and no other cgroups
721 * have IO running so notify the limit changes. Make sure the cgroup
722 * doesn't sleep too long to avoid the missed notification.
724 if (time_after(expires
, max_expire
))
725 expires
= max_expire
;
726 mod_timer(&sq
->pending_timer
, expires
);
727 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
728 expires
- jiffies
, jiffies
);
732 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
733 * @sq: the service_queue to schedule dispatch for
734 * @force: force scheduling
736 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
737 * dispatch time of the first pending child. Returns %true if either timer
738 * is armed or there's no pending child left. %false if the current
739 * dispatch window is still open and the caller should continue
742 * If @force is %true, the dispatch timer is always scheduled and this
743 * function is guaranteed to return %true. This is to be used when the
744 * caller can't dispatch itself and needs to invoke pending_timer
745 * unconditionally. Note that forced scheduling is likely to induce short
746 * delay before dispatch starts even if @sq->first_pending_disptime is not
747 * in the future and thus shouldn't be used in hot paths.
749 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
752 /* any pending children left? */
756 update_min_dispatch_time(sq
);
758 /* is the next dispatch time in the future? */
759 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
760 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
764 /* tell the caller to continue dispatching */
768 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
769 bool rw
, unsigned long start
)
771 tg
->bytes_disp
[rw
] = 0;
775 * Previous slice has expired. We must have trimmed it after last
776 * bio dispatch. That means since start of last slice, we never used
777 * that bandwidth. Do try to make use of that bandwidth while giving
780 if (time_after_eq(start
, tg
->slice_start
[rw
]))
781 tg
->slice_start
[rw
] = start
;
783 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
784 throtl_log(&tg
->service_queue
,
785 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
786 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
787 tg
->slice_end
[rw
], jiffies
);
790 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
)
792 tg
->bytes_disp
[rw
] = 0;
794 tg
->slice_start
[rw
] = jiffies
;
795 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
796 throtl_log(&tg
->service_queue
,
797 "[%c] new slice start=%lu end=%lu jiffies=%lu",
798 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
799 tg
->slice_end
[rw
], jiffies
);
802 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
803 unsigned long jiffy_end
)
805 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
808 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
809 unsigned long jiffy_end
)
811 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
812 throtl_log(&tg
->service_queue
,
813 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
814 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
815 tg
->slice_end
[rw
], jiffies
);
818 /* Determine if previously allocated or extended slice is complete or not */
819 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
821 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
827 /* Trim the used slices and adjust slice start accordingly */
828 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
830 unsigned long nr_slices
, time_elapsed
, io_trim
;
833 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
836 * If bps are unlimited (-1), then time slice don't get
837 * renewed. Don't try to trim the slice if slice is used. A new
838 * slice will start when appropriate.
840 if (throtl_slice_used(tg
, rw
))
844 * A bio has been dispatched. Also adjust slice_end. It might happen
845 * that initially cgroup limit was very low resulting in high
846 * slice_end, but later limit was bumped up and bio was dispached
847 * sooner, then we need to reduce slice_end. A high bogus slice_end
848 * is bad because it does not allow new slice to start.
851 throtl_set_slice_end(tg
, rw
, jiffies
+ tg
->td
->throtl_slice
);
853 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
855 nr_slices
= time_elapsed
/ tg
->td
->throtl_slice
;
859 tmp
= tg_bps_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
;
863 io_trim
= (tg_iops_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
) /
866 if (!bytes_trim
&& !io_trim
)
869 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
870 tg
->bytes_disp
[rw
] -= bytes_trim
;
872 tg
->bytes_disp
[rw
] = 0;
874 if (tg
->io_disp
[rw
] >= io_trim
)
875 tg
->io_disp
[rw
] -= io_trim
;
879 tg
->slice_start
[rw
] += nr_slices
* tg
->td
->throtl_slice
;
881 throtl_log(&tg
->service_queue
,
882 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
883 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
884 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
887 static bool tg_with_in_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
890 bool rw
= bio_data_dir(bio
);
891 unsigned int io_allowed
;
892 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
895 jiffy_elapsed
= jiffies
- tg
->slice_start
[rw
];
897 /* Round up to the next throttle slice, wait time must be nonzero */
898 jiffy_elapsed_rnd
= roundup(jiffy_elapsed
+ 1, tg
->td
->throtl_slice
);
901 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
902 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
903 * will allow dispatch after 1 second and after that slice should
907 tmp
= (u64
)tg_iops_limit(tg
, rw
) * jiffy_elapsed_rnd
;
911 io_allowed
= UINT_MAX
;
915 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
921 /* Calc approx time to dispatch */
922 jiffy_wait
= jiffy_elapsed_rnd
- jiffy_elapsed
;
929 static bool tg_with_in_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
932 bool rw
= bio_data_dir(bio
);
933 u64 bytes_allowed
, extra_bytes
, tmp
;
934 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
935 unsigned int bio_size
= throtl_bio_data_size(bio
);
937 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
939 /* Slice has just started. Consider one slice interval */
941 jiffy_elapsed_rnd
= tg
->td
->throtl_slice
;
943 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, tg
->td
->throtl_slice
);
945 tmp
= tg_bps_limit(tg
, rw
) * jiffy_elapsed_rnd
;
949 if (tg
->bytes_disp
[rw
] + bio_size
<= bytes_allowed
) {
955 /* Calc approx time to dispatch */
956 extra_bytes
= tg
->bytes_disp
[rw
] + bio_size
- bytes_allowed
;
957 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg_bps_limit(tg
, rw
));
963 * This wait time is without taking into consideration the rounding
964 * up we did. Add that time also.
966 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
973 * Returns whether one can dispatch a bio or not. Also returns approx number
974 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
976 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
979 bool rw
= bio_data_dir(bio
);
980 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
983 * Currently whole state machine of group depends on first bio
984 * queued in the group bio list. So one should not be calling
985 * this function with a different bio if there are other bios
988 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
989 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
991 /* If tg->bps = -1, then BW is unlimited */
992 if (tg_bps_limit(tg
, rw
) == U64_MAX
&&
993 tg_iops_limit(tg
, rw
) == UINT_MAX
) {
1000 * If previous slice expired, start a new one otherwise renew/extend
1001 * existing slice to make sure it is at least throtl_slice interval
1002 * long since now. New slice is started only for empty throttle group.
1003 * If there is queued bio, that means there should be an active
1004 * slice and it should be extended instead.
1006 if (throtl_slice_used(tg
, rw
) && !(tg
->service_queue
.nr_queued
[rw
]))
1007 throtl_start_new_slice(tg
, rw
);
1009 if (time_before(tg
->slice_end
[rw
],
1010 jiffies
+ tg
->td
->throtl_slice
))
1011 throtl_extend_slice(tg
, rw
,
1012 jiffies
+ tg
->td
->throtl_slice
);
1015 if (tg_with_in_bps_limit(tg
, bio
, &bps_wait
) &&
1016 tg_with_in_iops_limit(tg
, bio
, &iops_wait
)) {
1022 max_wait
= max(bps_wait
, iops_wait
);
1027 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
1028 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
1033 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
1035 bool rw
= bio_data_dir(bio
);
1036 unsigned int bio_size
= throtl_bio_data_size(bio
);
1038 /* Charge the bio to the group */
1039 tg
->bytes_disp
[rw
] += bio_size
;
1041 tg
->last_bytes_disp
[rw
] += bio_size
;
1042 tg
->last_io_disp
[rw
]++;
1045 * BIO_THROTTLED is used to prevent the same bio to be throttled
1046 * more than once as a throttled bio will go through blk-throtl the
1047 * second time when it eventually gets issued. Set it when a bio
1048 * is being charged to a tg.
1050 if (!bio_flagged(bio
, BIO_THROTTLED
))
1051 bio_set_flag(bio
, BIO_THROTTLED
);
1055 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1058 * @tg: the target throtl_grp
1060 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1061 * tg->qnode_on_self[] is used.
1063 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
1064 struct throtl_grp
*tg
)
1066 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1067 bool rw
= bio_data_dir(bio
);
1070 qn
= &tg
->qnode_on_self
[rw
];
1073 * If @tg doesn't currently have any bios queued in the same
1074 * direction, queueing @bio can change when @tg should be
1075 * dispatched. Mark that @tg was empty. This is automatically
1076 * cleaered on the next tg_update_disptime().
1078 if (!sq
->nr_queued
[rw
])
1079 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
1081 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
1083 sq
->nr_queued
[rw
]++;
1084 throtl_enqueue_tg(tg
);
1087 static void tg_update_disptime(struct throtl_grp
*tg
)
1089 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1090 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
1093 bio
= throtl_peek_queued(&sq
->queued
[READ
]);
1095 tg_may_dispatch(tg
, bio
, &read_wait
);
1097 bio
= throtl_peek_queued(&sq
->queued
[WRITE
]);
1099 tg_may_dispatch(tg
, bio
, &write_wait
);
1101 min_wait
= min(read_wait
, write_wait
);
1102 disptime
= jiffies
+ min_wait
;
1104 /* Update dispatch time */
1105 throtl_dequeue_tg(tg
);
1106 tg
->disptime
= disptime
;
1107 throtl_enqueue_tg(tg
);
1109 /* see throtl_add_bio_tg() */
1110 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
1113 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
1114 struct throtl_grp
*parent_tg
, bool rw
)
1116 if (throtl_slice_used(parent_tg
, rw
)) {
1117 throtl_start_new_slice_with_credit(parent_tg
, rw
,
1118 child_tg
->slice_start
[rw
]);
1123 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
1125 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1126 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
1127 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
1128 struct throtl_grp
*tg_to_put
= NULL
;
1132 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1133 * from @tg may put its reference and @parent_sq might end up
1134 * getting released prematurely. Remember the tg to put and put it
1135 * after @bio is transferred to @parent_sq.
1137 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
1138 sq
->nr_queued
[rw
]--;
1140 throtl_charge_bio(tg
, bio
);
1143 * If our parent is another tg, we just need to transfer @bio to
1144 * the parent using throtl_add_bio_tg(). If our parent is
1145 * @td->service_queue, @bio is ready to be issued. Put it on its
1146 * bio_lists[] and decrease total number queued. The caller is
1147 * responsible for issuing these bios.
1150 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
1151 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
1153 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
1154 &parent_sq
->queued
[rw
]);
1155 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
1156 tg
->td
->nr_queued
[rw
]--;
1159 throtl_trim_slice(tg
, rw
);
1162 blkg_put(tg_to_blkg(tg_to_put
));
1165 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
1167 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1168 unsigned int nr_reads
= 0, nr_writes
= 0;
1169 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
1170 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
1173 /* Try to dispatch 75% READS and 25% WRITES */
1175 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
1176 tg_may_dispatch(tg
, bio
, NULL
)) {
1178 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1181 if (nr_reads
>= max_nr_reads
)
1185 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
1186 tg_may_dispatch(tg
, bio
, NULL
)) {
1188 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1191 if (nr_writes
>= max_nr_writes
)
1195 return nr_reads
+ nr_writes
;
1198 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
1200 unsigned int nr_disp
= 0;
1203 struct throtl_grp
*tg
= throtl_rb_first(parent_sq
);
1204 struct throtl_service_queue
*sq
;
1209 if (time_before(jiffies
, tg
->disptime
))
1212 throtl_dequeue_tg(tg
);
1214 nr_disp
+= throtl_dispatch_tg(tg
);
1216 sq
= &tg
->service_queue
;
1217 if (sq
->nr_queued
[0] || sq
->nr_queued
[1])
1218 tg_update_disptime(tg
);
1220 if (nr_disp
>= throtl_quantum
)
1227 static bool throtl_can_upgrade(struct throtl_data
*td
,
1228 struct throtl_grp
*this_tg
);
1230 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1231 * @arg: the throtl_service_queue being serviced
1233 * This timer is armed when a child throtl_grp with active bio's become
1234 * pending and queued on the service_queue's pending_tree and expires when
1235 * the first child throtl_grp should be dispatched. This function
1236 * dispatches bio's from the children throtl_grps to the parent
1239 * If the parent's parent is another throtl_grp, dispatching is propagated
1240 * by either arming its pending_timer or repeating dispatch directly. If
1241 * the top-level service_tree is reached, throtl_data->dispatch_work is
1242 * kicked so that the ready bio's are issued.
1244 static void throtl_pending_timer_fn(struct timer_list
*t
)
1246 struct throtl_service_queue
*sq
= from_timer(sq
, t
, pending_timer
);
1247 struct throtl_grp
*tg
= sq_to_tg(sq
);
1248 struct throtl_data
*td
= sq_to_td(sq
);
1249 struct request_queue
*q
= td
->queue
;
1250 struct throtl_service_queue
*parent_sq
;
1254 spin_lock_irq(q
->queue_lock
);
1255 if (throtl_can_upgrade(td
, NULL
))
1256 throtl_upgrade_state(td
);
1259 parent_sq
= sq
->parent_sq
;
1263 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1264 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1265 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1267 ret
= throtl_select_dispatch(sq
);
1269 throtl_log(sq
, "bios disp=%u", ret
);
1273 if (throtl_schedule_next_dispatch(sq
, false))
1276 /* this dispatch windows is still open, relax and repeat */
1277 spin_unlock_irq(q
->queue_lock
);
1279 spin_lock_irq(q
->queue_lock
);
1286 /* @parent_sq is another throl_grp, propagate dispatch */
1287 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1288 tg_update_disptime(tg
);
1289 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1290 /* window is already open, repeat dispatching */
1297 /* reached the top-level, queue issueing */
1298 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1301 spin_unlock_irq(q
->queue_lock
);
1305 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1306 * @work: work item being executed
1308 * This function is queued for execution when bio's reach the bio_lists[]
1309 * of throtl_data->service_queue. Those bio's are ready and issued by this
1312 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1314 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1316 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1317 struct request_queue
*q
= td
->queue
;
1318 struct bio_list bio_list_on_stack
;
1320 struct blk_plug plug
;
1323 bio_list_init(&bio_list_on_stack
);
1325 spin_lock_irq(q
->queue_lock
);
1326 for (rw
= READ
; rw
<= WRITE
; rw
++)
1327 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1328 bio_list_add(&bio_list_on_stack
, bio
);
1329 spin_unlock_irq(q
->queue_lock
);
1331 if (!bio_list_empty(&bio_list_on_stack
)) {
1332 blk_start_plug(&plug
);
1333 while((bio
= bio_list_pop(&bio_list_on_stack
)))
1334 generic_make_request(bio
);
1335 blk_finish_plug(&plug
);
1339 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1342 struct throtl_grp
*tg
= pd_to_tg(pd
);
1343 u64 v
= *(u64
*)((void *)tg
+ off
);
1347 return __blkg_prfill_u64(sf
, pd
, v
);
1350 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1353 struct throtl_grp
*tg
= pd_to_tg(pd
);
1354 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1358 return __blkg_prfill_u64(sf
, pd
, v
);
1361 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1363 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1364 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1368 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1370 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1371 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1375 static void tg_conf_updated(struct throtl_grp
*tg
, bool global
)
1377 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1378 struct cgroup_subsys_state
*pos_css
;
1379 struct blkcg_gq
*blkg
;
1381 throtl_log(&tg
->service_queue
,
1382 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1383 tg_bps_limit(tg
, READ
), tg_bps_limit(tg
, WRITE
),
1384 tg_iops_limit(tg
, READ
), tg_iops_limit(tg
, WRITE
));
1387 * Update has_rules[] flags for the updated tg's subtree. A tg is
1388 * considered to have rules if either the tg itself or any of its
1389 * ancestors has rules. This identifies groups without any
1390 * restrictions in the whole hierarchy and allows them to bypass
1393 blkg_for_each_descendant_pre(blkg
, pos_css
,
1394 global
? tg
->td
->queue
->root_blkg
: tg_to_blkg(tg
)) {
1395 struct throtl_grp
*this_tg
= blkg_to_tg(blkg
);
1396 struct throtl_grp
*parent_tg
;
1398 tg_update_has_rules(this_tg
);
1399 /* ignore root/second level */
1400 if (!cgroup_subsys_on_dfl(io_cgrp_subsys
) || !blkg
->parent
||
1401 !blkg
->parent
->parent
)
1403 parent_tg
= blkg_to_tg(blkg
->parent
);
1405 * make sure all children has lower idle time threshold and
1406 * higher latency target
1408 this_tg
->idletime_threshold
= min(this_tg
->idletime_threshold
,
1409 parent_tg
->idletime_threshold
);
1410 this_tg
->latency_target
= max(this_tg
->latency_target
,
1411 parent_tg
->latency_target
);
1415 * We're already holding queue_lock and know @tg is valid. Let's
1416 * apply the new config directly.
1418 * Restart the slices for both READ and WRITES. It might happen
1419 * that a group's limit are dropped suddenly and we don't want to
1420 * account recently dispatched IO with new low rate.
1422 throtl_start_new_slice(tg
, 0);
1423 throtl_start_new_slice(tg
, 1);
1425 if (tg
->flags
& THROTL_TG_PENDING
) {
1426 tg_update_disptime(tg
);
1427 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1431 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1432 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1434 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1435 struct blkg_conf_ctx ctx
;
1436 struct throtl_grp
*tg
;
1440 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1445 if (sscanf(ctx
.body
, "%llu", &v
) != 1)
1450 tg
= blkg_to_tg(ctx
.blkg
);
1453 *(u64
*)((void *)tg
+ of_cft(of
)->private) = v
;
1455 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = v
;
1457 tg_conf_updated(tg
, false);
1460 blkg_conf_finish(&ctx
);
1461 return ret
?: nbytes
;
1464 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1465 char *buf
, size_t nbytes
, loff_t off
)
1467 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1470 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1471 char *buf
, size_t nbytes
, loff_t off
)
1473 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1476 static struct cftype throtl_legacy_files
[] = {
1478 .name
= "throttle.read_bps_device",
1479 .private = offsetof(struct throtl_grp
, bps
[READ
][LIMIT_MAX
]),
1480 .seq_show
= tg_print_conf_u64
,
1481 .write
= tg_set_conf_u64
,
1484 .name
= "throttle.write_bps_device",
1485 .private = offsetof(struct throtl_grp
, bps
[WRITE
][LIMIT_MAX
]),
1486 .seq_show
= tg_print_conf_u64
,
1487 .write
= tg_set_conf_u64
,
1490 .name
= "throttle.read_iops_device",
1491 .private = offsetof(struct throtl_grp
, iops
[READ
][LIMIT_MAX
]),
1492 .seq_show
= tg_print_conf_uint
,
1493 .write
= tg_set_conf_uint
,
1496 .name
= "throttle.write_iops_device",
1497 .private = offsetof(struct throtl_grp
, iops
[WRITE
][LIMIT_MAX
]),
1498 .seq_show
= tg_print_conf_uint
,
1499 .write
= tg_set_conf_uint
,
1502 .name
= "throttle.io_service_bytes",
1503 .private = (unsigned long)&blkcg_policy_throtl
,
1504 .seq_show
= blkg_print_stat_bytes
,
1507 .name
= "throttle.io_service_bytes_recursive",
1508 .private = (unsigned long)&blkcg_policy_throtl
,
1509 .seq_show
= blkg_print_stat_bytes_recursive
,
1512 .name
= "throttle.io_serviced",
1513 .private = (unsigned long)&blkcg_policy_throtl
,
1514 .seq_show
= blkg_print_stat_ios
,
1517 .name
= "throttle.io_serviced_recursive",
1518 .private = (unsigned long)&blkcg_policy_throtl
,
1519 .seq_show
= blkg_print_stat_ios_recursive
,
1524 static u64
tg_prfill_limit(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1527 struct throtl_grp
*tg
= pd_to_tg(pd
);
1528 const char *dname
= blkg_dev_name(pd
->blkg
);
1529 char bufs
[4][21] = { "max", "max", "max", "max" };
1531 unsigned int iops_dft
;
1532 char idle_time
[26] = "";
1533 char latency_time
[26] = "";
1538 if (off
== LIMIT_LOW
) {
1543 iops_dft
= UINT_MAX
;
1546 if (tg
->bps_conf
[READ
][off
] == bps_dft
&&
1547 tg
->bps_conf
[WRITE
][off
] == bps_dft
&&
1548 tg
->iops_conf
[READ
][off
] == iops_dft
&&
1549 tg
->iops_conf
[WRITE
][off
] == iops_dft
&&
1550 (off
!= LIMIT_LOW
||
1551 (tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
&&
1552 tg
->latency_target_conf
== DFL_LATENCY_TARGET
)))
1555 if (tg
->bps_conf
[READ
][off
] != U64_MAX
)
1556 snprintf(bufs
[0], sizeof(bufs
[0]), "%llu",
1557 tg
->bps_conf
[READ
][off
]);
1558 if (tg
->bps_conf
[WRITE
][off
] != U64_MAX
)
1559 snprintf(bufs
[1], sizeof(bufs
[1]), "%llu",
1560 tg
->bps_conf
[WRITE
][off
]);
1561 if (tg
->iops_conf
[READ
][off
] != UINT_MAX
)
1562 snprintf(bufs
[2], sizeof(bufs
[2]), "%u",
1563 tg
->iops_conf
[READ
][off
]);
1564 if (tg
->iops_conf
[WRITE
][off
] != UINT_MAX
)
1565 snprintf(bufs
[3], sizeof(bufs
[3]), "%u",
1566 tg
->iops_conf
[WRITE
][off
]);
1567 if (off
== LIMIT_LOW
) {
1568 if (tg
->idletime_threshold_conf
== ULONG_MAX
)
1569 strcpy(idle_time
, " idle=max");
1571 snprintf(idle_time
, sizeof(idle_time
), " idle=%lu",
1572 tg
->idletime_threshold_conf
);
1574 if (tg
->latency_target_conf
== ULONG_MAX
)
1575 strcpy(latency_time
, " latency=max");
1577 snprintf(latency_time
, sizeof(latency_time
),
1578 " latency=%lu", tg
->latency_target_conf
);
1581 seq_printf(sf
, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1582 dname
, bufs
[0], bufs
[1], bufs
[2], bufs
[3], idle_time
,
1587 static int tg_print_limit(struct seq_file
*sf
, void *v
)
1589 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_limit
,
1590 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1594 static ssize_t
tg_set_limit(struct kernfs_open_file
*of
,
1595 char *buf
, size_t nbytes
, loff_t off
)
1597 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1598 struct blkg_conf_ctx ctx
;
1599 struct throtl_grp
*tg
;
1601 unsigned long idle_time
;
1602 unsigned long latency_time
;
1604 int index
= of_cft(of
)->private;
1606 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1610 tg
= blkg_to_tg(ctx
.blkg
);
1612 v
[0] = tg
->bps_conf
[READ
][index
];
1613 v
[1] = tg
->bps_conf
[WRITE
][index
];
1614 v
[2] = tg
->iops_conf
[READ
][index
];
1615 v
[3] = tg
->iops_conf
[WRITE
][index
];
1617 idle_time
= tg
->idletime_threshold_conf
;
1618 latency_time
= tg
->latency_target_conf
;
1620 char tok
[27]; /* wiops=18446744073709551616 */
1625 if (sscanf(ctx
.body
, "%26s%n", tok
, &len
) != 1)
1634 if (!p
|| (sscanf(p
, "%llu", &val
) != 1 && strcmp(p
, "max")))
1642 if (!strcmp(tok
, "rbps"))
1644 else if (!strcmp(tok
, "wbps"))
1646 else if (!strcmp(tok
, "riops"))
1647 v
[2] = min_t(u64
, val
, UINT_MAX
);
1648 else if (!strcmp(tok
, "wiops"))
1649 v
[3] = min_t(u64
, val
, UINT_MAX
);
1650 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "idle"))
1652 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "latency"))
1658 tg
->bps_conf
[READ
][index
] = v
[0];
1659 tg
->bps_conf
[WRITE
][index
] = v
[1];
1660 tg
->iops_conf
[READ
][index
] = v
[2];
1661 tg
->iops_conf
[WRITE
][index
] = v
[3];
1663 if (index
== LIMIT_MAX
) {
1664 tg
->bps
[READ
][index
] = v
[0];
1665 tg
->bps
[WRITE
][index
] = v
[1];
1666 tg
->iops
[READ
][index
] = v
[2];
1667 tg
->iops
[WRITE
][index
] = v
[3];
1669 tg
->bps
[READ
][LIMIT_LOW
] = min(tg
->bps_conf
[READ
][LIMIT_LOW
],
1670 tg
->bps_conf
[READ
][LIMIT_MAX
]);
1671 tg
->bps
[WRITE
][LIMIT_LOW
] = min(tg
->bps_conf
[WRITE
][LIMIT_LOW
],
1672 tg
->bps_conf
[WRITE
][LIMIT_MAX
]);
1673 tg
->iops
[READ
][LIMIT_LOW
] = min(tg
->iops_conf
[READ
][LIMIT_LOW
],
1674 tg
->iops_conf
[READ
][LIMIT_MAX
]);
1675 tg
->iops
[WRITE
][LIMIT_LOW
] = min(tg
->iops_conf
[WRITE
][LIMIT_LOW
],
1676 tg
->iops_conf
[WRITE
][LIMIT_MAX
]);
1677 tg
->idletime_threshold_conf
= idle_time
;
1678 tg
->latency_target_conf
= latency_time
;
1680 /* force user to configure all settings for low limit */
1681 if (!(tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
] ||
1682 tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
]) ||
1683 tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
||
1684 tg
->latency_target_conf
== DFL_LATENCY_TARGET
) {
1685 tg
->bps
[READ
][LIMIT_LOW
] = 0;
1686 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
1687 tg
->iops
[READ
][LIMIT_LOW
] = 0;
1688 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
1689 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
1690 tg
->latency_target
= DFL_LATENCY_TARGET
;
1691 } else if (index
== LIMIT_LOW
) {
1692 tg
->idletime_threshold
= tg
->idletime_threshold_conf
;
1693 tg
->latency_target
= tg
->latency_target_conf
;
1696 blk_throtl_update_limit_valid(tg
->td
);
1697 if (tg
->td
->limit_valid
[LIMIT_LOW
]) {
1698 if (index
== LIMIT_LOW
)
1699 tg
->td
->limit_index
= LIMIT_LOW
;
1701 tg
->td
->limit_index
= LIMIT_MAX
;
1702 tg_conf_updated(tg
, index
== LIMIT_LOW
&&
1703 tg
->td
->limit_valid
[LIMIT_LOW
]);
1706 blkg_conf_finish(&ctx
);
1707 return ret
?: nbytes
;
1710 static struct cftype throtl_files
[] = {
1711 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1714 .flags
= CFTYPE_NOT_ON_ROOT
,
1715 .seq_show
= tg_print_limit
,
1716 .write
= tg_set_limit
,
1717 .private = LIMIT_LOW
,
1722 .flags
= CFTYPE_NOT_ON_ROOT
,
1723 .seq_show
= tg_print_limit
,
1724 .write
= tg_set_limit
,
1725 .private = LIMIT_MAX
,
1730 static void throtl_shutdown_wq(struct request_queue
*q
)
1732 struct throtl_data
*td
= q
->td
;
1734 cancel_work_sync(&td
->dispatch_work
);
1737 static struct blkcg_policy blkcg_policy_throtl
= {
1738 .dfl_cftypes
= throtl_files
,
1739 .legacy_cftypes
= throtl_legacy_files
,
1741 .pd_alloc_fn
= throtl_pd_alloc
,
1742 .pd_init_fn
= throtl_pd_init
,
1743 .pd_online_fn
= throtl_pd_online
,
1744 .pd_offline_fn
= throtl_pd_offline
,
1745 .pd_free_fn
= throtl_pd_free
,
1748 static unsigned long __tg_last_low_overflow_time(struct throtl_grp
*tg
)
1750 unsigned long rtime
= jiffies
, wtime
= jiffies
;
1752 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
])
1753 rtime
= tg
->last_low_overflow_time
[READ
];
1754 if (tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
])
1755 wtime
= tg
->last_low_overflow_time
[WRITE
];
1756 return min(rtime
, wtime
);
1759 /* tg should not be an intermediate node */
1760 static unsigned long tg_last_low_overflow_time(struct throtl_grp
*tg
)
1762 struct throtl_service_queue
*parent_sq
;
1763 struct throtl_grp
*parent
= tg
;
1764 unsigned long ret
= __tg_last_low_overflow_time(tg
);
1767 parent_sq
= parent
->service_queue
.parent_sq
;
1768 parent
= sq_to_tg(parent_sq
);
1773 * The parent doesn't have low limit, it always reaches low
1774 * limit. Its overflow time is useless for children
1776 if (!parent
->bps
[READ
][LIMIT_LOW
] &&
1777 !parent
->iops
[READ
][LIMIT_LOW
] &&
1778 !parent
->bps
[WRITE
][LIMIT_LOW
] &&
1779 !parent
->iops
[WRITE
][LIMIT_LOW
])
1781 if (time_after(__tg_last_low_overflow_time(parent
), ret
))
1782 ret
= __tg_last_low_overflow_time(parent
);
1787 static bool throtl_tg_is_idle(struct throtl_grp
*tg
)
1790 * cgroup is idle if:
1791 * - single idle is too long, longer than a fixed value (in case user
1792 * configure a too big threshold) or 4 times of idletime threshold
1793 * - average think time is more than threshold
1794 * - IO latency is largely below threshold
1799 time
= min_t(unsigned long, MAX_IDLE_TIME
, 4 * tg
->idletime_threshold
);
1800 ret
= tg
->latency_target
== DFL_LATENCY_TARGET
||
1801 tg
->idletime_threshold
== DFL_IDLE_THRESHOLD
||
1802 (ktime_get_ns() >> 10) - tg
->last_finish_time
> time
||
1803 tg
->avg_idletime
> tg
->idletime_threshold
||
1804 (tg
->latency_target
&& tg
->bio_cnt
&&
1805 tg
->bad_bio_cnt
* 5 < tg
->bio_cnt
);
1806 throtl_log(&tg
->service_queue
,
1807 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1808 tg
->avg_idletime
, tg
->idletime_threshold
, tg
->bad_bio_cnt
,
1809 tg
->bio_cnt
, ret
, tg
->td
->scale
);
1813 static bool throtl_tg_can_upgrade(struct throtl_grp
*tg
)
1815 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1816 bool read_limit
, write_limit
;
1819 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1820 * reaches), it's ok to upgrade to next limit
1822 read_limit
= tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
];
1823 write_limit
= tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
];
1824 if (!read_limit
&& !write_limit
)
1826 if (read_limit
&& sq
->nr_queued
[READ
] &&
1827 (!write_limit
|| sq
->nr_queued
[WRITE
]))
1829 if (write_limit
&& sq
->nr_queued
[WRITE
] &&
1830 (!read_limit
|| sq
->nr_queued
[READ
]))
1833 if (time_after_eq(jiffies
,
1834 tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
) &&
1835 throtl_tg_is_idle(tg
))
1840 static bool throtl_hierarchy_can_upgrade(struct throtl_grp
*tg
)
1843 if (throtl_tg_can_upgrade(tg
))
1845 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1846 if (!tg
|| !tg_to_blkg(tg
)->parent
)
1852 static bool throtl_can_upgrade(struct throtl_data
*td
,
1853 struct throtl_grp
*this_tg
)
1855 struct cgroup_subsys_state
*pos_css
;
1856 struct blkcg_gq
*blkg
;
1858 if (td
->limit_index
!= LIMIT_LOW
)
1861 if (time_before(jiffies
, td
->low_downgrade_time
+ td
->throtl_slice
))
1865 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1866 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1870 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
1872 if (!throtl_hierarchy_can_upgrade(tg
)) {
1881 static void throtl_upgrade_check(struct throtl_grp
*tg
)
1883 unsigned long now
= jiffies
;
1885 if (tg
->td
->limit_index
!= LIMIT_LOW
)
1888 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
1891 tg
->last_check_time
= now
;
1893 if (!time_after_eq(now
,
1894 __tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
))
1897 if (throtl_can_upgrade(tg
->td
, NULL
))
1898 throtl_upgrade_state(tg
->td
);
1901 static void throtl_upgrade_state(struct throtl_data
*td
)
1903 struct cgroup_subsys_state
*pos_css
;
1904 struct blkcg_gq
*blkg
;
1906 throtl_log(&td
->service_queue
, "upgrade to max");
1907 td
->limit_index
= LIMIT_MAX
;
1908 td
->low_upgrade_time
= jiffies
;
1911 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1912 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1913 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1915 tg
->disptime
= jiffies
- 1;
1916 throtl_select_dispatch(sq
);
1917 throtl_schedule_next_dispatch(sq
, true);
1920 throtl_select_dispatch(&td
->service_queue
);
1921 throtl_schedule_next_dispatch(&td
->service_queue
, true);
1922 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1925 static void throtl_downgrade_state(struct throtl_data
*td
, int new)
1929 throtl_log(&td
->service_queue
, "downgrade, scale %d", td
->scale
);
1931 td
->low_upgrade_time
= jiffies
- td
->scale
* td
->throtl_slice
;
1935 td
->limit_index
= new;
1936 td
->low_downgrade_time
= jiffies
;
1939 static bool throtl_tg_can_downgrade(struct throtl_grp
*tg
)
1941 struct throtl_data
*td
= tg
->td
;
1942 unsigned long now
= jiffies
;
1945 * If cgroup is below low limit, consider downgrade and throttle other
1948 if (time_after_eq(now
, td
->low_upgrade_time
+ td
->throtl_slice
) &&
1949 time_after_eq(now
, tg_last_low_overflow_time(tg
) +
1950 td
->throtl_slice
) &&
1951 (!throtl_tg_is_idle(tg
) ||
1952 !list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
)))
1957 static bool throtl_hierarchy_can_downgrade(struct throtl_grp
*tg
)
1960 if (!throtl_tg_can_downgrade(tg
))
1962 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1963 if (!tg
|| !tg_to_blkg(tg
)->parent
)
1969 static void throtl_downgrade_check(struct throtl_grp
*tg
)
1973 unsigned long elapsed_time
;
1974 unsigned long now
= jiffies
;
1976 if (tg
->td
->limit_index
!= LIMIT_MAX
||
1977 !tg
->td
->limit_valid
[LIMIT_LOW
])
1979 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
1981 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
1984 elapsed_time
= now
- tg
->last_check_time
;
1985 tg
->last_check_time
= now
;
1987 if (time_before(now
, tg_last_low_overflow_time(tg
) +
1988 tg
->td
->throtl_slice
))
1991 if (tg
->bps
[READ
][LIMIT_LOW
]) {
1992 bps
= tg
->last_bytes_disp
[READ
] * HZ
;
1993 do_div(bps
, elapsed_time
);
1994 if (bps
>= tg
->bps
[READ
][LIMIT_LOW
])
1995 tg
->last_low_overflow_time
[READ
] = now
;
1998 if (tg
->bps
[WRITE
][LIMIT_LOW
]) {
1999 bps
= tg
->last_bytes_disp
[WRITE
] * HZ
;
2000 do_div(bps
, elapsed_time
);
2001 if (bps
>= tg
->bps
[WRITE
][LIMIT_LOW
])
2002 tg
->last_low_overflow_time
[WRITE
] = now
;
2005 if (tg
->iops
[READ
][LIMIT_LOW
]) {
2006 iops
= tg
->last_io_disp
[READ
] * HZ
/ elapsed_time
;
2007 if (iops
>= tg
->iops
[READ
][LIMIT_LOW
])
2008 tg
->last_low_overflow_time
[READ
] = now
;
2011 if (tg
->iops
[WRITE
][LIMIT_LOW
]) {
2012 iops
= tg
->last_io_disp
[WRITE
] * HZ
/ elapsed_time
;
2013 if (iops
>= tg
->iops
[WRITE
][LIMIT_LOW
])
2014 tg
->last_low_overflow_time
[WRITE
] = now
;
2018 * If cgroup is below low limit, consider downgrade and throttle other
2021 if (throtl_hierarchy_can_downgrade(tg
))
2022 throtl_downgrade_state(tg
->td
, LIMIT_LOW
);
2024 tg
->last_bytes_disp
[READ
] = 0;
2025 tg
->last_bytes_disp
[WRITE
] = 0;
2026 tg
->last_io_disp
[READ
] = 0;
2027 tg
->last_io_disp
[WRITE
] = 0;
2030 static void blk_throtl_update_idletime(struct throtl_grp
*tg
)
2032 unsigned long now
= ktime_get_ns() >> 10;
2033 unsigned long last_finish_time
= tg
->last_finish_time
;
2035 if (now
<= last_finish_time
|| last_finish_time
== 0 ||
2036 last_finish_time
== tg
->checked_last_finish_time
)
2039 tg
->avg_idletime
= (tg
->avg_idletime
* 7 + now
- last_finish_time
) >> 3;
2040 tg
->checked_last_finish_time
= last_finish_time
;
2043 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2044 static void throtl_update_latency_buckets(struct throtl_data
*td
)
2046 struct avg_latency_bucket avg_latency
[2][LATENCY_BUCKET_SIZE
];
2048 unsigned long last_latency
[2] = { 0 };
2049 unsigned long latency
[2];
2051 if (!blk_queue_nonrot(td
->queue
))
2053 if (time_before(jiffies
, td
->last_calculate_time
+ HZ
))
2055 td
->last_calculate_time
= jiffies
;
2057 memset(avg_latency
, 0, sizeof(avg_latency
));
2058 for (rw
= READ
; rw
<= WRITE
; rw
++) {
2059 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2060 struct latency_bucket
*tmp
= &td
->tmp_buckets
[rw
][i
];
2062 for_each_possible_cpu(cpu
) {
2063 struct latency_bucket
*bucket
;
2065 /* this isn't race free, but ok in practice */
2066 bucket
= per_cpu_ptr(td
->latency_buckets
[rw
],
2068 tmp
->total_latency
+= bucket
[i
].total_latency
;
2069 tmp
->samples
+= bucket
[i
].samples
;
2070 bucket
[i
].total_latency
= 0;
2071 bucket
[i
].samples
= 0;
2074 if (tmp
->samples
>= 32) {
2075 int samples
= tmp
->samples
;
2077 latency
[rw
] = tmp
->total_latency
;
2079 tmp
->total_latency
= 0;
2081 latency
[rw
] /= samples
;
2082 if (latency
[rw
] == 0)
2084 avg_latency
[rw
][i
].latency
= latency
[rw
];
2089 for (rw
= READ
; rw
<= WRITE
; rw
++) {
2090 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2091 if (!avg_latency
[rw
][i
].latency
) {
2092 if (td
->avg_buckets
[rw
][i
].latency
< last_latency
[rw
])
2093 td
->avg_buckets
[rw
][i
].latency
=
2098 if (!td
->avg_buckets
[rw
][i
].valid
)
2099 latency
[rw
] = avg_latency
[rw
][i
].latency
;
2101 latency
[rw
] = (td
->avg_buckets
[rw
][i
].latency
* 7 +
2102 avg_latency
[rw
][i
].latency
) >> 3;
2104 td
->avg_buckets
[rw
][i
].latency
= max(latency
[rw
],
2106 td
->avg_buckets
[rw
][i
].valid
= true;
2107 last_latency
[rw
] = td
->avg_buckets
[rw
][i
].latency
;
2111 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++)
2112 throtl_log(&td
->service_queue
,
2113 "Latency bucket %d: read latency=%ld, read valid=%d, "
2114 "write latency=%ld, write valid=%d", i
,
2115 td
->avg_buckets
[READ
][i
].latency
,
2116 td
->avg_buckets
[READ
][i
].valid
,
2117 td
->avg_buckets
[WRITE
][i
].latency
,
2118 td
->avg_buckets
[WRITE
][i
].valid
);
2121 static inline void throtl_update_latency_buckets(struct throtl_data
*td
)
2126 static void blk_throtl_assoc_bio(struct throtl_grp
*tg
, struct bio
*bio
)
2128 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2129 /* fallback to root_blkg if we fail to get a blkg ref */
2130 if (bio
->bi_css
&& (bio_associate_blkg(bio
, tg_to_blkg(tg
)) == -ENODEV
))
2131 bio_associate_blkg(bio
, bio
->bi_disk
->queue
->root_blkg
);
2132 bio_issue_init(&bio
->bi_issue
, bio_sectors(bio
));
2136 bool blk_throtl_bio(struct request_queue
*q
, struct blkcg_gq
*blkg
,
2139 struct throtl_qnode
*qn
= NULL
;
2140 struct throtl_grp
*tg
= blkg_to_tg(blkg
?: q
->root_blkg
);
2141 struct throtl_service_queue
*sq
;
2142 bool rw
= bio_data_dir(bio
);
2143 bool throttled
= false;
2144 struct throtl_data
*td
= tg
->td
;
2146 WARN_ON_ONCE(!rcu_read_lock_held());
2148 /* see throtl_charge_bio() */
2149 if (bio_flagged(bio
, BIO_THROTTLED
) || !tg
->has_rules
[rw
])
2152 spin_lock_irq(q
->queue_lock
);
2154 throtl_update_latency_buckets(td
);
2156 if (unlikely(blk_queue_bypass(q
)))
2159 blk_throtl_assoc_bio(tg
, bio
);
2160 blk_throtl_update_idletime(tg
);
2162 sq
= &tg
->service_queue
;
2166 if (tg
->last_low_overflow_time
[rw
] == 0)
2167 tg
->last_low_overflow_time
[rw
] = jiffies
;
2168 throtl_downgrade_check(tg
);
2169 throtl_upgrade_check(tg
);
2170 /* throtl is FIFO - if bios are already queued, should queue */
2171 if (sq
->nr_queued
[rw
])
2174 /* if above limits, break to queue */
2175 if (!tg_may_dispatch(tg
, bio
, NULL
)) {
2176 tg
->last_low_overflow_time
[rw
] = jiffies
;
2177 if (throtl_can_upgrade(td
, tg
)) {
2178 throtl_upgrade_state(td
);
2184 /* within limits, let's charge and dispatch directly */
2185 throtl_charge_bio(tg
, bio
);
2188 * We need to trim slice even when bios are not being queued
2189 * otherwise it might happen that a bio is not queued for
2190 * a long time and slice keeps on extending and trim is not
2191 * called for a long time. Now if limits are reduced suddenly
2192 * we take into account all the IO dispatched so far at new
2193 * low rate and * newly queued IO gets a really long dispatch
2196 * So keep on trimming slice even if bio is not queued.
2198 throtl_trim_slice(tg
, rw
);
2201 * @bio passed through this layer without being throttled.
2202 * Climb up the ladder. If we''re already at the top, it
2203 * can be executed directly.
2205 qn
= &tg
->qnode_on_parent
[rw
];
2212 /* out-of-limit, queue to @tg */
2213 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2214 rw
== READ
? 'R' : 'W',
2215 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
,
2216 tg_bps_limit(tg
, rw
),
2217 tg
->io_disp
[rw
], tg_iops_limit(tg
, rw
),
2218 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
2220 tg
->last_low_overflow_time
[rw
] = jiffies
;
2222 td
->nr_queued
[rw
]++;
2223 throtl_add_bio_tg(bio
, qn
, tg
);
2227 * Update @tg's dispatch time and force schedule dispatch if @tg
2228 * was empty before @bio. The forced scheduling isn't likely to
2229 * cause undue delay as @bio is likely to be dispatched directly if
2230 * its @tg's disptime is not in the future.
2232 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
2233 tg_update_disptime(tg
);
2234 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
2238 spin_unlock_irq(q
->queue_lock
);
2240 bio_set_flag(bio
, BIO_THROTTLED
);
2242 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2243 if (throttled
|| !td
->track_bio_latency
)
2244 bio
->bi_issue
.value
|= BIO_ISSUE_THROTL_SKIP_LATENCY
;
2249 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2250 static void throtl_track_latency(struct throtl_data
*td
, sector_t size
,
2251 int op
, unsigned long time
)
2253 struct latency_bucket
*latency
;
2256 if (!td
|| td
->limit_index
!= LIMIT_LOW
||
2257 !(op
== REQ_OP_READ
|| op
== REQ_OP_WRITE
) ||
2258 !blk_queue_nonrot(td
->queue
))
2261 index
= request_bucket_index(size
);
2263 latency
= get_cpu_ptr(td
->latency_buckets
[op
]);
2264 latency
[index
].total_latency
+= time
;
2265 latency
[index
].samples
++;
2266 put_cpu_ptr(td
->latency_buckets
[op
]);
2269 void blk_throtl_stat_add(struct request
*rq
, u64 time_ns
)
2271 struct request_queue
*q
= rq
->q
;
2272 struct throtl_data
*td
= q
->td
;
2274 throtl_track_latency(td
, rq
->throtl_size
, req_op(rq
), time_ns
>> 10);
2277 void blk_throtl_bio_endio(struct bio
*bio
)
2279 struct blkcg_gq
*blkg
;
2280 struct throtl_grp
*tg
;
2282 unsigned long finish_time
;
2283 unsigned long start_time
;
2285 int rw
= bio_data_dir(bio
);
2287 blkg
= bio
->bi_blkg
;
2290 tg
= blkg_to_tg(blkg
);
2292 finish_time_ns
= ktime_get_ns();
2293 tg
->last_finish_time
= finish_time_ns
>> 10;
2295 start_time
= bio_issue_time(&bio
->bi_issue
) >> 10;
2296 finish_time
= __bio_issue_time(finish_time_ns
) >> 10;
2297 if (!start_time
|| finish_time
<= start_time
)
2300 lat
= finish_time
- start_time
;
2301 /* this is only for bio based driver */
2302 if (!(bio
->bi_issue
.value
& BIO_ISSUE_THROTL_SKIP_LATENCY
))
2303 throtl_track_latency(tg
->td
, bio_issue_size(&bio
->bi_issue
),
2306 if (tg
->latency_target
&& lat
>= tg
->td
->filtered_latency
) {
2308 unsigned int threshold
;
2310 bucket
= request_bucket_index(bio_issue_size(&bio
->bi_issue
));
2311 threshold
= tg
->td
->avg_buckets
[rw
][bucket
].latency
+
2313 if (lat
> threshold
)
2316 * Not race free, could get wrong count, which means cgroups
2322 if (time_after(jiffies
, tg
->bio_cnt_reset_time
) || tg
->bio_cnt
> 1024) {
2323 tg
->bio_cnt_reset_time
= tg
->td
->throtl_slice
+ jiffies
;
2325 tg
->bad_bio_cnt
/= 2;
2331 * Dispatch all bios from all children tg's queued on @parent_sq. On
2332 * return, @parent_sq is guaranteed to not have any active children tg's
2333 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2335 static void tg_drain_bios(struct throtl_service_queue
*parent_sq
)
2337 struct throtl_grp
*tg
;
2339 while ((tg
= throtl_rb_first(parent_sq
))) {
2340 struct throtl_service_queue
*sq
= &tg
->service_queue
;
2343 throtl_dequeue_tg(tg
);
2345 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
2346 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2347 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
2348 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2353 * blk_throtl_drain - drain throttled bios
2354 * @q: request_queue to drain throttled bios for
2356 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2358 void blk_throtl_drain(struct request_queue
*q
)
2359 __releases(q
->queue_lock
) __acquires(q
->queue_lock
)
2361 struct throtl_data
*td
= q
->td
;
2362 struct blkcg_gq
*blkg
;
2363 struct cgroup_subsys_state
*pos_css
;
2367 queue_lockdep_assert_held(q
);
2371 * Drain each tg while doing post-order walk on the blkg tree, so
2372 * that all bios are propagated to td->service_queue. It'd be
2373 * better to walk service_queue tree directly but blkg walk is
2376 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
)
2377 tg_drain_bios(&blkg_to_tg(blkg
)->service_queue
);
2379 /* finally, transfer bios from top-level tg's into the td */
2380 tg_drain_bios(&td
->service_queue
);
2383 spin_unlock_irq(q
->queue_lock
);
2385 /* all bios now should be in td->service_queue, issue them */
2386 for (rw
= READ
; rw
<= WRITE
; rw
++)
2387 while ((bio
= throtl_pop_queued(&td
->service_queue
.queued
[rw
],
2389 generic_make_request(bio
);
2391 spin_lock_irq(q
->queue_lock
);
2394 int blk_throtl_init(struct request_queue
*q
)
2396 struct throtl_data
*td
;
2399 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
2402 td
->latency_buckets
[READ
] = __alloc_percpu(sizeof(struct latency_bucket
) *
2403 LATENCY_BUCKET_SIZE
, __alignof__(u64
));
2404 if (!td
->latency_buckets
[READ
]) {
2408 td
->latency_buckets
[WRITE
] = __alloc_percpu(sizeof(struct latency_bucket
) *
2409 LATENCY_BUCKET_SIZE
, __alignof__(u64
));
2410 if (!td
->latency_buckets
[WRITE
]) {
2411 free_percpu(td
->latency_buckets
[READ
]);
2416 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
2417 throtl_service_queue_init(&td
->service_queue
);
2422 td
->limit_valid
[LIMIT_MAX
] = true;
2423 td
->limit_index
= LIMIT_MAX
;
2424 td
->low_upgrade_time
= jiffies
;
2425 td
->low_downgrade_time
= jiffies
;
2427 /* activate policy */
2428 ret
= blkcg_activate_policy(q
, &blkcg_policy_throtl
);
2430 free_percpu(td
->latency_buckets
[READ
]);
2431 free_percpu(td
->latency_buckets
[WRITE
]);
2437 void blk_throtl_exit(struct request_queue
*q
)
2440 throtl_shutdown_wq(q
);
2441 blkcg_deactivate_policy(q
, &blkcg_policy_throtl
);
2442 free_percpu(q
->td
->latency_buckets
[READ
]);
2443 free_percpu(q
->td
->latency_buckets
[WRITE
]);
2447 void blk_throtl_register_queue(struct request_queue
*q
)
2449 struct throtl_data
*td
;
2455 if (blk_queue_nonrot(q
)) {
2456 td
->throtl_slice
= DFL_THROTL_SLICE_SSD
;
2457 td
->filtered_latency
= LATENCY_FILTERED_SSD
;
2459 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2460 td
->filtered_latency
= LATENCY_FILTERED_HD
;
2461 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2462 td
->avg_buckets
[READ
][i
].latency
= DFL_HD_BASELINE_LATENCY
;
2463 td
->avg_buckets
[WRITE
][i
].latency
= DFL_HD_BASELINE_LATENCY
;
2466 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2467 /* if no low limit, use previous default */
2468 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2471 td
->track_bio_latency
= !queue_is_rq_based(q
);
2472 if (!td
->track_bio_latency
)
2473 blk_stat_enable_accounting(q
);
2476 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2477 ssize_t
blk_throtl_sample_time_show(struct request_queue
*q
, char *page
)
2481 return sprintf(page
, "%u\n", jiffies_to_msecs(q
->td
->throtl_slice
));
2484 ssize_t
blk_throtl_sample_time_store(struct request_queue
*q
,
2485 const char *page
, size_t count
)
2492 if (kstrtoul(page
, 10, &v
))
2494 t
= msecs_to_jiffies(v
);
2495 if (t
== 0 || t
> MAX_THROTL_SLICE
)
2497 q
->td
->throtl_slice
= t
;
2502 static int __init
throtl_init(void)
2504 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
2505 if (!kthrotld_workqueue
)
2506 panic("Failed to create kthrotld\n");
2508 return blkcg_policy_register(&blkcg_policy_throtl
);
2511 module_init(throtl_init
);