2 * vrf.c: device driver to encapsulate a VRF space
4 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
5 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
6 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8 * Based on dummy, team and ipvlan drivers
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/netdevice.h>
19 #include <linux/etherdevice.h>
21 #include <linux/init.h>
22 #include <linux/moduleparam.h>
23 #include <linux/netfilter.h>
24 #include <linux/rtnetlink.h>
25 #include <net/rtnetlink.h>
26 #include <linux/u64_stats_sync.h>
27 #include <linux/hashtable.h>
29 #include <linux/inetdevice.h>
32 #include <net/ip_fib.h>
33 #include <net/ip6_fib.h>
34 #include <net/ip6_route.h>
35 #include <net/rtnetlink.h>
36 #include <net/route.h>
37 #include <net/addrconf.h>
38 #include <net/l3mdev.h>
40 #define RT_FL_TOS(oldflp4) \
41 ((oldflp4)->flowi4_tos & (IPTOS_RT_MASK | RTO_ONLINK))
43 #define DRV_NAME "vrf"
44 #define DRV_VERSION "1.0"
46 #define vrf_master_get_rcu(dev) \
47 ((struct net_device *)rcu_dereference(dev->rx_handler_data))
50 struct list_head list
;
51 struct net_device
*dev
;
55 struct list_head all_slaves
;
59 struct slave_queue queue
;
71 struct u64_stats_sync syncp
;
74 static struct dst_entry
*vrf_ip_check(struct dst_entry
*dst
, u32 cookie
)
79 static int vrf_ip_local_out(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
81 return ip_local_out(net
, sk
, skb
);
84 static unsigned int vrf_v4_mtu(const struct dst_entry
*dst
)
86 /* TO-DO: return max ethernet size? */
90 static void vrf_dst_destroy(struct dst_entry
*dst
)
92 /* our dst lives forever - or until the device is closed */
95 static unsigned int vrf_default_advmss(const struct dst_entry
*dst
)
100 static struct dst_ops vrf_dst_ops
= {
102 .local_out
= vrf_ip_local_out
,
103 .check
= vrf_ip_check
,
105 .destroy
= vrf_dst_destroy
,
106 .default_advmss
= vrf_default_advmss
,
109 /* neighbor handling is done with actual device; do not want
110 * to flip skb->dev for those ndisc packets. This really fails
111 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
114 #if IS_ENABLED(CONFIG_IPV6)
115 static bool check_ipv6_frame(const struct sk_buff
*skb
)
117 const struct ipv6hdr
*ipv6h
= (struct ipv6hdr
*)skb
->data
;
118 size_t hlen
= sizeof(*ipv6h
);
124 if (ipv6h
->nexthdr
== NEXTHDR_ICMP
) {
125 const struct icmp6hdr
*icmph
;
127 if (skb
->len
< hlen
+ sizeof(*icmph
))
130 icmph
= (struct icmp6hdr
*)(skb
->data
+ sizeof(*ipv6h
));
131 switch (icmph
->icmp6_type
) {
132 case NDISC_ROUTER_SOLICITATION
:
133 case NDISC_ROUTER_ADVERTISEMENT
:
134 case NDISC_NEIGHBOUR_SOLICITATION
:
135 case NDISC_NEIGHBOUR_ADVERTISEMENT
:
146 static bool check_ipv6_frame(const struct sk_buff
*skb
)
152 static bool is_ip_rx_frame(struct sk_buff
*skb
)
154 switch (skb
->protocol
) {
155 case htons(ETH_P_IP
):
157 case htons(ETH_P_IPV6
):
158 return check_ipv6_frame(skb
);
163 static void vrf_tx_error(struct net_device
*vrf_dev
, struct sk_buff
*skb
)
165 vrf_dev
->stats
.tx_errors
++;
169 /* note: already called with rcu_read_lock */
170 static rx_handler_result_t
vrf_handle_frame(struct sk_buff
**pskb
)
172 struct sk_buff
*skb
= *pskb
;
174 if (is_ip_rx_frame(skb
)) {
175 struct net_device
*dev
= vrf_master_get_rcu(skb
->dev
);
176 struct pcpu_dstats
*dstats
= this_cpu_ptr(dev
->dstats
);
178 u64_stats_update_begin(&dstats
->syncp
);
180 dstats
->rx_bytes
+= skb
->len
;
181 u64_stats_update_end(&dstats
->syncp
);
185 return RX_HANDLER_ANOTHER
;
187 return RX_HANDLER_PASS
;
190 static struct rtnl_link_stats64
*vrf_get_stats64(struct net_device
*dev
,
191 struct rtnl_link_stats64
*stats
)
195 for_each_possible_cpu(i
) {
196 const struct pcpu_dstats
*dstats
;
197 u64 tbytes
, tpkts
, tdrops
, rbytes
, rpkts
;
200 dstats
= per_cpu_ptr(dev
->dstats
, i
);
202 start
= u64_stats_fetch_begin_irq(&dstats
->syncp
);
203 tbytes
= dstats
->tx_bytes
;
204 tpkts
= dstats
->tx_pkts
;
205 tdrops
= dstats
->tx_drps
;
206 rbytes
= dstats
->rx_bytes
;
207 rpkts
= dstats
->rx_pkts
;
208 } while (u64_stats_fetch_retry_irq(&dstats
->syncp
, start
));
209 stats
->tx_bytes
+= tbytes
;
210 stats
->tx_packets
+= tpkts
;
211 stats
->tx_dropped
+= tdrops
;
212 stats
->rx_bytes
+= rbytes
;
213 stats
->rx_packets
+= rpkts
;
218 #if IS_ENABLED(CONFIG_IPV6)
219 static netdev_tx_t
vrf_process_v6_outbound(struct sk_buff
*skb
,
220 struct net_device
*dev
)
222 const struct ipv6hdr
*iph
= ipv6_hdr(skb
);
223 struct net
*net
= dev_net(skb
->dev
);
224 struct flowi6 fl6
= {
225 /* needed to match OIF rule */
226 .flowi6_oif
= dev
->ifindex
,
227 .flowi6_iif
= LOOPBACK_IFINDEX
,
230 .flowlabel
= ip6_flowinfo(iph
),
231 .flowi6_mark
= skb
->mark
,
232 .flowi6_proto
= iph
->nexthdr
,
233 .flowi6_flags
= FLOWI_FLAG_L3MDEV_SRC
| FLOWI_FLAG_SKIP_NH_OIF
,
235 int ret
= NET_XMIT_DROP
;
236 struct dst_entry
*dst
;
237 struct dst_entry
*dst_null
= &net
->ipv6
.ip6_null_entry
->dst
;
239 dst
= ip6_route_output(net
, NULL
, &fl6
);
244 skb_dst_set(skb
, dst
);
246 ret
= ip6_local_out(net
, skb
->sk
, skb
);
247 if (unlikely(net_xmit_eval(ret
)))
248 dev
->stats
.tx_errors
++;
250 ret
= NET_XMIT_SUCCESS
;
254 vrf_tx_error(dev
, skb
);
255 return NET_XMIT_DROP
;
258 static netdev_tx_t
vrf_process_v6_outbound(struct sk_buff
*skb
,
259 struct net_device
*dev
)
261 vrf_tx_error(dev
, skb
);
262 return NET_XMIT_DROP
;
266 static int vrf_send_v4_prep(struct sk_buff
*skb
, struct flowi4
*fl4
,
267 struct net_device
*vrf_dev
)
272 rt
= ip_route_output_flow(dev_net(vrf_dev
), fl4
, NULL
);
276 /* TO-DO: what about broadcast ? */
277 if (rt
->rt_type
!= RTN_UNICAST
&& rt
->rt_type
!= RTN_LOCAL
) {
283 skb_dst_set(skb
, &rt
->dst
);
289 static netdev_tx_t
vrf_process_v4_outbound(struct sk_buff
*skb
,
290 struct net_device
*vrf_dev
)
292 struct iphdr
*ip4h
= ip_hdr(skb
);
293 int ret
= NET_XMIT_DROP
;
294 struct flowi4 fl4
= {
295 /* needed to match OIF rule */
296 .flowi4_oif
= vrf_dev
->ifindex
,
297 .flowi4_iif
= LOOPBACK_IFINDEX
,
298 .flowi4_tos
= RT_TOS(ip4h
->tos
),
299 .flowi4_flags
= FLOWI_FLAG_ANYSRC
| FLOWI_FLAG_L3MDEV_SRC
|
300 FLOWI_FLAG_SKIP_NH_OIF
,
301 .daddr
= ip4h
->daddr
,
304 if (vrf_send_v4_prep(skb
, &fl4
, vrf_dev
))
308 ip4h
->saddr
= inet_select_addr(skb_dst(skb
)->dev
, 0,
312 ret
= ip_local_out(dev_net(skb_dst(skb
)->dev
), skb
->sk
, skb
);
313 if (unlikely(net_xmit_eval(ret
)))
314 vrf_dev
->stats
.tx_errors
++;
316 ret
= NET_XMIT_SUCCESS
;
321 vrf_tx_error(vrf_dev
, skb
);
325 static netdev_tx_t
is_ip_tx_frame(struct sk_buff
*skb
, struct net_device
*dev
)
327 /* strip the ethernet header added for pass through VRF device */
328 __skb_pull(skb
, skb_network_offset(skb
));
330 switch (skb
->protocol
) {
331 case htons(ETH_P_IP
):
332 return vrf_process_v4_outbound(skb
, dev
);
333 case htons(ETH_P_IPV6
):
334 return vrf_process_v6_outbound(skb
, dev
);
336 vrf_tx_error(dev
, skb
);
337 return NET_XMIT_DROP
;
341 static netdev_tx_t
vrf_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
343 netdev_tx_t ret
= is_ip_tx_frame(skb
, dev
);
345 if (likely(ret
== NET_XMIT_SUCCESS
|| ret
== NET_XMIT_CN
)) {
346 struct pcpu_dstats
*dstats
= this_cpu_ptr(dev
->dstats
);
348 u64_stats_update_begin(&dstats
->syncp
);
350 dstats
->tx_bytes
+= skb
->len
;
351 u64_stats_update_end(&dstats
->syncp
);
353 this_cpu_inc(dev
->dstats
->tx_drps
);
359 #if IS_ENABLED(CONFIG_IPV6)
360 static struct dst_entry
*vrf_ip6_check(struct dst_entry
*dst
, u32 cookie
)
365 static struct dst_ops vrf_dst_ops6
= {
367 .local_out
= ip6_local_out
,
368 .check
= vrf_ip6_check
,
370 .destroy
= vrf_dst_destroy
,
371 .default_advmss
= vrf_default_advmss
,
374 static int init_dst_ops6_kmem_cachep(void)
376 vrf_dst_ops6
.kmem_cachep
= kmem_cache_create("vrf_ip6_dst_cache",
377 sizeof(struct rt6_info
),
382 if (!vrf_dst_ops6
.kmem_cachep
)
388 static void free_dst_ops6_kmem_cachep(void)
390 kmem_cache_destroy(vrf_dst_ops6
.kmem_cachep
);
393 static int vrf_input6(struct sk_buff
*skb
)
395 skb
->dev
->stats
.rx_errors
++;
400 /* modelled after ip6_finish_output2 */
401 static int vrf_finish_output6(struct net
*net
, struct sock
*sk
,
404 struct dst_entry
*dst
= skb_dst(skb
);
405 struct net_device
*dev
= dst
->dev
;
406 struct neighbour
*neigh
;
407 struct in6_addr
*nexthop
;
410 skb
->protocol
= htons(ETH_P_IPV6
);
414 nexthop
= rt6_nexthop((struct rt6_info
*)dst
, &ipv6_hdr(skb
)->daddr
);
415 neigh
= __ipv6_neigh_lookup_noref(dst
->dev
, nexthop
);
416 if (unlikely(!neigh
))
417 neigh
= __neigh_create(&nd_tbl
, nexthop
, dst
->dev
, false);
418 if (!IS_ERR(neigh
)) {
419 ret
= dst_neigh_output(dst
, neigh
, skb
);
420 rcu_read_unlock_bh();
423 rcu_read_unlock_bh();
425 IP6_INC_STATS(dev_net(dst
->dev
),
426 ip6_dst_idev(dst
), IPSTATS_MIB_OUTNOROUTES
);
431 /* modelled after ip6_output */
432 static int vrf_output6(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
434 return NF_HOOK_COND(NFPROTO_IPV6
, NF_INET_POST_ROUTING
,
435 net
, sk
, skb
, NULL
, skb_dst(skb
)->dev
,
437 !(IP6CB(skb
)->flags
& IP6SKB_REROUTED
));
440 static void vrf_rt6_destroy(struct net_vrf
*vrf
)
442 dst_destroy(&vrf
->rt6
->dst
);
443 free_percpu(vrf
->rt6
->rt6i_pcpu
);
447 static int vrf_rt6_create(struct net_device
*dev
)
449 struct net_vrf
*vrf
= netdev_priv(dev
);
450 struct dst_entry
*dst
;
451 struct rt6_info
*rt6
;
455 rt6
= dst_alloc(&vrf_dst_ops6
, dev
, 0,
457 (DST_HOST
| DST_NOPOLICY
| DST_NOXFRM
));
463 rt6
->rt6i_pcpu
= alloc_percpu_gfp(struct rt6_info
*, GFP_KERNEL
);
464 if (!rt6
->rt6i_pcpu
) {
468 for_each_possible_cpu(cpu
) {
469 struct rt6_info
**p
= per_cpu_ptr(rt6
->rt6i_pcpu
, cpu
);
473 memset(dst
+ 1, 0, sizeof(*rt6
) - sizeof(*dst
));
475 INIT_LIST_HEAD(&rt6
->rt6i_siblings
);
476 INIT_LIST_HEAD(&rt6
->rt6i_uncached
);
478 rt6
->dst
.input
= vrf_input6
;
479 rt6
->dst
.output
= vrf_output6
;
481 rt6
->rt6i_table
= fib6_get_table(dev_net(dev
), vrf
->tb_id
);
483 atomic_set(&rt6
->dst
.__refcnt
, 2);
491 static int init_dst_ops6_kmem_cachep(void)
496 static void free_dst_ops6_kmem_cachep(void)
500 static void vrf_rt6_destroy(struct net_vrf
*vrf
)
504 static int vrf_rt6_create(struct net_device
*dev
)
510 /* modelled after ip_finish_output2 */
511 static int vrf_finish_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
513 struct dst_entry
*dst
= skb_dst(skb
);
514 struct rtable
*rt
= (struct rtable
*)dst
;
515 struct net_device
*dev
= dst
->dev
;
516 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
517 struct neighbour
*neigh
;
521 /* Be paranoid, rather than too clever. */
522 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
523 struct sk_buff
*skb2
;
525 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
531 skb_set_owner_w(skb2
, skb
->sk
);
539 nexthop
= (__force u32
)rt_nexthop(rt
, ip_hdr(skb
)->daddr
);
540 neigh
= __ipv4_neigh_lookup_noref(dev
, nexthop
);
541 if (unlikely(!neigh
))
542 neigh
= __neigh_create(&arp_tbl
, &nexthop
, dev
, false);
544 ret
= dst_neigh_output(dst
, neigh
, skb
);
546 rcu_read_unlock_bh();
548 if (unlikely(ret
< 0))
549 vrf_tx_error(skb
->dev
, skb
);
553 static int vrf_output(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
555 struct net_device
*dev
= skb_dst(skb
)->dev
;
557 IP_UPD_PO_STATS(net
, IPSTATS_MIB_OUT
, skb
->len
);
560 skb
->protocol
= htons(ETH_P_IP
);
562 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
563 net
, sk
, skb
, NULL
, dev
,
565 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
568 static void vrf_rtable_destroy(struct net_vrf
*vrf
)
570 struct dst_entry
*dst
= (struct dst_entry
*)vrf
->rth
;
576 static struct rtable
*vrf_rtable_create(struct net_device
*dev
)
578 struct net_vrf
*vrf
= netdev_priv(dev
);
581 rth
= dst_alloc(&vrf_dst_ops
, dev
, 2,
583 (DST_HOST
| DST_NOPOLICY
| DST_NOXFRM
));
585 rth
->dst
.output
= vrf_output
;
586 rth
->rt_genid
= rt_genid_ipv4(dev_net(dev
));
588 rth
->rt_type
= RTN_UNICAST
;
589 rth
->rt_is_input
= 0;
593 rth
->rt_uses_gateway
= 0;
594 rth
->rt_table_id
= vrf
->tb_id
;
595 INIT_LIST_HEAD(&rth
->rt_uncached
);
596 rth
->rt_uncached_list
= NULL
;
602 /**************************** device handling ********************/
604 /* cycle interface to flush neighbor cache and move routes across tables */
605 static void cycle_netdev(struct net_device
*dev
)
607 unsigned int flags
= dev
->flags
;
610 if (!netif_running(dev
))
613 ret
= dev_change_flags(dev
, flags
& ~IFF_UP
);
615 ret
= dev_change_flags(dev
, flags
);
619 "Failed to cycle device %s; route tables might be wrong!\n",
624 static struct slave
*__vrf_find_slave_dev(struct slave_queue
*queue
,
625 struct net_device
*dev
)
627 struct list_head
*head
= &queue
->all_slaves
;
630 list_for_each_entry(slave
, head
, list
) {
631 if (slave
->dev
== dev
)
638 /* inverse of __vrf_insert_slave */
639 static void __vrf_remove_slave(struct slave_queue
*queue
, struct slave
*slave
)
641 list_del(&slave
->list
);
644 static void __vrf_insert_slave(struct slave_queue
*queue
, struct slave
*slave
)
646 list_add(&slave
->list
, &queue
->all_slaves
);
649 static int do_vrf_add_slave(struct net_device
*dev
, struct net_device
*port_dev
)
651 struct slave
*slave
= kzalloc(sizeof(*slave
), GFP_KERNEL
);
652 struct net_vrf
*vrf
= netdev_priv(dev
);
653 struct slave_queue
*queue
= &vrf
->queue
;
659 slave
->dev
= port_dev
;
661 /* register the packet handler for slave ports */
662 ret
= netdev_rx_handler_register(port_dev
, vrf_handle_frame
, dev
);
665 "Device %s failed to register rx_handler\n",
670 ret
= netdev_master_upper_dev_link(port_dev
, dev
);
674 port_dev
->priv_flags
|= IFF_L3MDEV_SLAVE
;
675 __vrf_insert_slave(queue
, slave
);
676 cycle_netdev(port_dev
);
681 netdev_rx_handler_unregister(port_dev
);
687 static int vrf_add_slave(struct net_device
*dev
, struct net_device
*port_dev
)
689 if (netif_is_l3_master(port_dev
) || netif_is_l3_slave(port_dev
))
692 return do_vrf_add_slave(dev
, port_dev
);
695 /* inverse of do_vrf_add_slave */
696 static int do_vrf_del_slave(struct net_device
*dev
, struct net_device
*port_dev
)
698 struct net_vrf
*vrf
= netdev_priv(dev
);
699 struct slave_queue
*queue
= &vrf
->queue
;
702 netdev_upper_dev_unlink(port_dev
, dev
);
703 port_dev
->priv_flags
&= ~IFF_L3MDEV_SLAVE
;
705 netdev_rx_handler_unregister(port_dev
);
707 cycle_netdev(port_dev
);
709 slave
= __vrf_find_slave_dev(queue
, port_dev
);
711 __vrf_remove_slave(queue
, slave
);
718 static int vrf_del_slave(struct net_device
*dev
, struct net_device
*port_dev
)
720 return do_vrf_del_slave(dev
, port_dev
);
723 static void vrf_dev_uninit(struct net_device
*dev
)
725 struct net_vrf
*vrf
= netdev_priv(dev
);
726 struct slave_queue
*queue
= &vrf
->queue
;
727 struct list_head
*head
= &queue
->all_slaves
;
728 struct slave
*slave
, *next
;
730 vrf_rtable_destroy(vrf
);
731 vrf_rt6_destroy(vrf
);
733 list_for_each_entry_safe(slave
, next
, head
, list
)
734 vrf_del_slave(dev
, slave
->dev
);
736 free_percpu(dev
->dstats
);
740 static int vrf_dev_init(struct net_device
*dev
)
742 struct net_vrf
*vrf
= netdev_priv(dev
);
744 INIT_LIST_HEAD(&vrf
->queue
.all_slaves
);
746 dev
->dstats
= netdev_alloc_pcpu_stats(struct pcpu_dstats
);
750 /* create the default dst which points back to us */
751 vrf
->rth
= vrf_rtable_create(dev
);
755 if (vrf_rt6_create(dev
) != 0)
758 dev
->flags
= IFF_MASTER
| IFF_NOARP
;
763 vrf_rtable_destroy(vrf
);
765 free_percpu(dev
->dstats
);
771 static const struct net_device_ops vrf_netdev_ops
= {
772 .ndo_init
= vrf_dev_init
,
773 .ndo_uninit
= vrf_dev_uninit
,
774 .ndo_start_xmit
= vrf_xmit
,
775 .ndo_get_stats64
= vrf_get_stats64
,
776 .ndo_add_slave
= vrf_add_slave
,
777 .ndo_del_slave
= vrf_del_slave
,
780 static u32
vrf_fib_table(const struct net_device
*dev
)
782 struct net_vrf
*vrf
= netdev_priv(dev
);
787 static struct rtable
*vrf_get_rtable(const struct net_device
*dev
,
788 const struct flowi4
*fl4
)
790 struct rtable
*rth
= NULL
;
792 if (!(fl4
->flowi4_flags
& FLOWI_FLAG_L3MDEV_SRC
)) {
793 struct net_vrf
*vrf
= netdev_priv(dev
);
796 atomic_inc(&rth
->dst
.__refcnt
);
802 /* called under rcu_read_lock */
803 static void vrf_get_saddr(struct net_device
*dev
, struct flowi4
*fl4
)
805 struct fib_result res
= { .tclassid
= 0 };
806 struct net
*net
= dev_net(dev
);
807 u32 orig_tos
= fl4
->flowi4_tos
;
808 u8 flags
= fl4
->flowi4_flags
;
809 u8 scope
= fl4
->flowi4_scope
;
810 u8 tos
= RT_FL_TOS(fl4
);
812 if (unlikely(!fl4
->daddr
))
815 fl4
->flowi4_flags
|= FLOWI_FLAG_SKIP_NH_OIF
;
816 fl4
->flowi4_iif
= LOOPBACK_IFINDEX
;
817 fl4
->flowi4_tos
= tos
& IPTOS_RT_MASK
;
818 fl4
->flowi4_scope
= ((tos
& RTO_ONLINK
) ?
819 RT_SCOPE_LINK
: RT_SCOPE_UNIVERSE
);
821 if (!fib_lookup(net
, fl4
, &res
, 0)) {
822 if (res
.type
== RTN_LOCAL
)
823 fl4
->saddr
= res
.fi
->fib_prefsrc
? : fl4
->daddr
;
825 fib_select_path(net
, &res
, fl4
, -1);
828 fl4
->flowi4_flags
= flags
;
829 fl4
->flowi4_tos
= orig_tos
;
830 fl4
->flowi4_scope
= scope
;
833 #if IS_ENABLED(CONFIG_IPV6)
834 static struct dst_entry
*vrf_get_rt6_dst(const struct net_device
*dev
,
835 const struct flowi6
*fl6
)
837 struct rt6_info
*rt
= NULL
;
839 if (!(fl6
->flowi6_flags
& FLOWI_FLAG_L3MDEV_SRC
)) {
840 struct net_vrf
*vrf
= netdev_priv(dev
);
843 atomic_inc(&rt
->dst
.__refcnt
);
846 return (struct dst_entry
*)rt
;
850 static const struct l3mdev_ops vrf_l3mdev_ops
= {
851 .l3mdev_fib_table
= vrf_fib_table
,
852 .l3mdev_get_rtable
= vrf_get_rtable
,
853 .l3mdev_get_saddr
= vrf_get_saddr
,
854 #if IS_ENABLED(CONFIG_IPV6)
855 .l3mdev_get_rt6_dst
= vrf_get_rt6_dst
,
859 static void vrf_get_drvinfo(struct net_device
*dev
,
860 struct ethtool_drvinfo
*info
)
862 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
863 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
866 static const struct ethtool_ops vrf_ethtool_ops
= {
867 .get_drvinfo
= vrf_get_drvinfo
,
870 static void vrf_setup(struct net_device
*dev
)
874 /* Initialize the device structure. */
875 dev
->netdev_ops
= &vrf_netdev_ops
;
876 dev
->l3mdev_ops
= &vrf_l3mdev_ops
;
877 dev
->ethtool_ops
= &vrf_ethtool_ops
;
878 dev
->destructor
= free_netdev
;
880 /* Fill in device structure with ethernet-generic values. */
881 eth_hw_addr_random(dev
);
883 /* don't acquire vrf device's netif_tx_lock when transmitting */
884 dev
->features
|= NETIF_F_LLTX
;
886 /* don't allow vrf devices to change network namespaces. */
887 dev
->features
|= NETIF_F_NETNS_LOCAL
;
890 static int vrf_validate(struct nlattr
*tb
[], struct nlattr
*data
[])
892 if (tb
[IFLA_ADDRESS
]) {
893 if (nla_len(tb
[IFLA_ADDRESS
]) != ETH_ALEN
)
895 if (!is_valid_ether_addr(nla_data(tb
[IFLA_ADDRESS
])))
896 return -EADDRNOTAVAIL
;
901 static void vrf_dellink(struct net_device
*dev
, struct list_head
*head
)
903 unregister_netdevice_queue(dev
, head
);
906 static int vrf_newlink(struct net
*src_net
, struct net_device
*dev
,
907 struct nlattr
*tb
[], struct nlattr
*data
[])
909 struct net_vrf
*vrf
= netdev_priv(dev
);
911 if (!data
|| !data
[IFLA_VRF_TABLE
])
914 vrf
->tb_id
= nla_get_u32(data
[IFLA_VRF_TABLE
]);
916 dev
->priv_flags
|= IFF_L3MDEV_MASTER
;
918 return register_netdevice(dev
);
921 static size_t vrf_nl_getsize(const struct net_device
*dev
)
923 return nla_total_size(sizeof(u32
)); /* IFLA_VRF_TABLE */
926 static int vrf_fillinfo(struct sk_buff
*skb
,
927 const struct net_device
*dev
)
929 struct net_vrf
*vrf
= netdev_priv(dev
);
931 return nla_put_u32(skb
, IFLA_VRF_TABLE
, vrf
->tb_id
);
934 static const struct nla_policy vrf_nl_policy
[IFLA_VRF_MAX
+ 1] = {
935 [IFLA_VRF_TABLE
] = { .type
= NLA_U32
},
938 static struct rtnl_link_ops vrf_link_ops __read_mostly
= {
940 .priv_size
= sizeof(struct net_vrf
),
942 .get_size
= vrf_nl_getsize
,
943 .policy
= vrf_nl_policy
,
944 .validate
= vrf_validate
,
945 .fill_info
= vrf_fillinfo
,
947 .newlink
= vrf_newlink
,
948 .dellink
= vrf_dellink
,
950 .maxtype
= IFLA_VRF_MAX
,
953 static int vrf_device_event(struct notifier_block
*unused
,
954 unsigned long event
, void *ptr
)
956 struct net_device
*dev
= netdev_notifier_info_to_dev(ptr
);
958 /* only care about unregister events to drop slave references */
959 if (event
== NETDEV_UNREGISTER
) {
960 struct net_device
*vrf_dev
;
962 if (!netif_is_l3_slave(dev
))
965 vrf_dev
= netdev_master_upper_dev_get(dev
);
966 vrf_del_slave(vrf_dev
, dev
);
972 static struct notifier_block vrf_notifier_block __read_mostly
= {
973 .notifier_call
= vrf_device_event
,
976 static int __init
vrf_init_module(void)
980 vrf_dst_ops
.kmem_cachep
=
981 kmem_cache_create("vrf_ip_dst_cache",
982 sizeof(struct rtable
), 0,
986 if (!vrf_dst_ops
.kmem_cachep
)
989 rc
= init_dst_ops6_kmem_cachep();
993 register_netdevice_notifier(&vrf_notifier_block
);
995 rc
= rtnl_link_register(&vrf_link_ops
);
1002 unregister_netdevice_notifier(&vrf_notifier_block
);
1003 free_dst_ops6_kmem_cachep();
1005 kmem_cache_destroy(vrf_dst_ops
.kmem_cachep
);
1009 static void __exit
vrf_cleanup_module(void)
1011 rtnl_link_unregister(&vrf_link_ops
);
1012 unregister_netdevice_notifier(&vrf_notifier_block
);
1013 kmem_cache_destroy(vrf_dst_ops
.kmem_cachep
);
1014 free_dst_ops6_kmem_cachep();
1017 module_init(vrf_init_module
);
1018 module_exit(vrf_cleanup_module
);
1019 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
1020 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
1021 MODULE_LICENSE("GPL");
1022 MODULE_ALIAS_RTNL_LINK(DRV_NAME
);
1023 MODULE_VERSION(DRV_VERSION
);