4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 struct wb_completion
{
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work
{
47 struct super_block
*sb
;
48 unsigned long *older_than_this
;
49 enum writeback_sync_modes sync_mode
;
50 unsigned int tagged_writepages
:1;
51 unsigned int for_kupdate
:1;
52 unsigned int range_cyclic
:1;
53 unsigned int for_background
:1;
54 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free
:1; /* free on completion */
56 enum wb_reason reason
; /* why was writeback initiated? */
58 struct list_head list
; /* pending work list */
59 struct wb_completion
*done
; /* set if the caller waits */
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
85 unsigned int dirtytime_expire_interval
= 12 * 60 * 60;
87 static inline struct inode
*wb_inode(struct list_head
*head
)
89 return list_entry(head
, struct inode
, i_io_list
);
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage
);
102 static bool wb_io_lists_populated(struct bdi_writeback
*wb
)
104 if (wb_has_dirty_io(wb
)) {
107 set_bit(WB_has_dirty_io
, &wb
->state
);
108 WARN_ON_ONCE(!wb
->avg_write_bandwidth
);
109 atomic_long_add(wb
->avg_write_bandwidth
,
110 &wb
->bdi
->tot_write_bandwidth
);
115 static void wb_io_lists_depopulated(struct bdi_writeback
*wb
)
117 if (wb_has_dirty_io(wb
) && list_empty(&wb
->b_dirty
) &&
118 list_empty(&wb
->b_io
) && list_empty(&wb
->b_more_io
)) {
119 clear_bit(WB_has_dirty_io
, &wb
->state
);
120 WARN_ON_ONCE(atomic_long_sub_return(wb
->avg_write_bandwidth
,
121 &wb
->bdi
->tot_write_bandwidth
) < 0);
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io}
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
135 static bool inode_io_list_move_locked(struct inode
*inode
,
136 struct bdi_writeback
*wb
,
137 struct list_head
*head
)
139 assert_spin_locked(&wb
->list_lock
);
141 list_move(&inode
->i_io_list
, head
);
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head
!= &wb
->b_dirty_time
)
145 return wb_io_lists_populated(wb
);
147 wb_io_lists_depopulated(wb
);
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
159 static void inode_io_list_del_locked(struct inode
*inode
,
160 struct bdi_writeback
*wb
)
162 assert_spin_locked(&wb
->list_lock
);
164 list_del_init(&inode
->i_io_list
);
165 wb_io_lists_depopulated(wb
);
168 static void wb_wakeup(struct bdi_writeback
*wb
)
170 spin_lock_bh(&wb
->work_lock
);
171 if (test_bit(WB_registered
, &wb
->state
))
172 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
173 spin_unlock_bh(&wb
->work_lock
);
176 static void wb_queue_work(struct bdi_writeback
*wb
,
177 struct wb_writeback_work
*work
)
179 trace_writeback_queue(wb
, work
);
181 spin_lock_bh(&wb
->work_lock
);
182 if (!test_bit(WB_registered
, &wb
->state
))
185 atomic_inc(&work
->done
->cnt
);
186 list_add_tail(&work
->list
, &wb
->work_list
);
187 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
189 spin_unlock_bh(&wb
->work_lock
);
193 * wb_wait_for_completion - wait for completion of bdi_writeback_works
194 * @bdi: bdi work items were issued to
195 * @done: target wb_completion
197 * Wait for one or more work items issued to @bdi with their ->done field
198 * set to @done, which should have been defined with
199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
200 * work items are completed. Work items which are waited upon aren't freed
201 * automatically on completion.
203 static void wb_wait_for_completion(struct backing_dev_info
*bdi
,
204 struct wb_completion
*done
)
206 atomic_dec(&done
->cnt
); /* put down the initial count */
207 wait_event(bdi
->wb_waitq
, !atomic_read(&done
->cnt
));
210 #ifdef CONFIG_CGROUP_WRITEBACK
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 /* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
222 /* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 /* one round can affect upto 5 slots */
226 void __inode_attach_wb(struct inode
*inode
, struct page
*page
)
228 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
229 struct bdi_writeback
*wb
= NULL
;
231 if (inode_cgwb_enabled(inode
)) {
232 struct cgroup_subsys_state
*memcg_css
;
235 memcg_css
= mem_cgroup_css_from_page(page
);
236 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
238 /* must pin memcg_css, see wb_get_create() */
239 memcg_css
= task_get_css(current
, memory_cgrp_id
);
240 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
249 * There may be multiple instances of this function racing to
250 * update the same inode. Use cmpxchg() to tell the winner.
252 if (unlikely(cmpxchg(&inode
->i_wb
, NULL
, wb
)))
257 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258 * @inode: inode of interest with i_lock held
260 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
261 * held on entry and is released on return. The returned wb is guaranteed
262 * to stay @inode's associated wb until its list_lock is released.
264 static struct bdi_writeback
*
265 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
266 __releases(&inode
->i_lock
)
267 __acquires(&wb
->list_lock
)
270 struct bdi_writeback
*wb
= inode_to_wb(inode
);
273 * inode_to_wb() association is protected by both
274 * @inode->i_lock and @wb->list_lock but list_lock nests
275 * outside i_lock. Drop i_lock and verify that the
276 * association hasn't changed after acquiring list_lock.
279 spin_unlock(&inode
->i_lock
);
280 spin_lock(&wb
->list_lock
);
281 wb_put(wb
); /* not gonna deref it anymore */
283 /* i_wb may have changed inbetween, can't use inode_to_wb() */
284 if (likely(wb
== inode
->i_wb
))
285 return wb
; /* @inode already has ref */
287 spin_unlock(&wb
->list_lock
);
289 spin_lock(&inode
->i_lock
);
294 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295 * @inode: inode of interest
297 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
300 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
301 __acquires(&wb
->list_lock
)
303 spin_lock(&inode
->i_lock
);
304 return locked_inode_to_wb_and_lock_list(inode
);
307 struct inode_switch_wbs_context
{
309 struct bdi_writeback
*new_wb
;
311 struct rcu_head rcu_head
;
312 struct work_struct work
;
315 static void inode_switch_wbs_work_fn(struct work_struct
*work
)
317 struct inode_switch_wbs_context
*isw
=
318 container_of(work
, struct inode_switch_wbs_context
, work
);
319 struct inode
*inode
= isw
->inode
;
320 struct address_space
*mapping
= inode
->i_mapping
;
321 struct bdi_writeback
*old_wb
= inode
->i_wb
;
322 struct bdi_writeback
*new_wb
= isw
->new_wb
;
323 struct radix_tree_iter iter
;
324 bool switched
= false;
328 * By the time control reaches here, RCU grace period has passed
329 * since I_WB_SWITCH assertion and all wb stat update transactions
330 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
331 * synchronizing against mapping->tree_lock.
333 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
334 * gives us exclusion against all wb related operations on @inode
335 * including IO list manipulations and stat updates.
337 if (old_wb
< new_wb
) {
338 spin_lock(&old_wb
->list_lock
);
339 spin_lock_nested(&new_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
341 spin_lock(&new_wb
->list_lock
);
342 spin_lock_nested(&old_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
344 spin_lock(&inode
->i_lock
);
345 spin_lock_irq(&mapping
->tree_lock
);
348 * Once I_FREEING is visible under i_lock, the eviction path owns
349 * the inode and we shouldn't modify ->i_io_list.
351 if (unlikely(inode
->i_state
& I_FREEING
))
355 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
356 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
357 * pages actually under underwriteback.
359 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
360 PAGECACHE_TAG_DIRTY
) {
361 struct page
*page
= radix_tree_deref_slot_protected(slot
,
362 &mapping
->tree_lock
);
363 if (likely(page
) && PageDirty(page
)) {
364 __dec_wb_stat(old_wb
, WB_RECLAIMABLE
);
365 __inc_wb_stat(new_wb
, WB_RECLAIMABLE
);
369 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
370 PAGECACHE_TAG_WRITEBACK
) {
371 struct page
*page
= radix_tree_deref_slot_protected(slot
,
372 &mapping
->tree_lock
);
374 WARN_ON_ONCE(!PageWriteback(page
));
375 __dec_wb_stat(old_wb
, WB_WRITEBACK
);
376 __inc_wb_stat(new_wb
, WB_WRITEBACK
);
383 * Transfer to @new_wb's IO list if necessary. The specific list
384 * @inode was on is ignored and the inode is put on ->b_dirty which
385 * is always correct including from ->b_dirty_time. The transfer
386 * preserves @inode->dirtied_when ordering.
388 if (!list_empty(&inode
->i_io_list
)) {
391 inode_io_list_del_locked(inode
, old_wb
);
392 inode
->i_wb
= new_wb
;
393 list_for_each_entry(pos
, &new_wb
->b_dirty
, i_io_list
)
394 if (time_after_eq(inode
->dirtied_when
,
397 inode_io_list_move_locked(inode
, new_wb
, pos
->i_io_list
.prev
);
399 inode
->i_wb
= new_wb
;
402 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
403 inode
->i_wb_frn_winner
= 0;
404 inode
->i_wb_frn_avg_time
= 0;
405 inode
->i_wb_frn_history
= 0;
409 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
410 * ensures that the new wb is visible if they see !I_WB_SWITCH.
412 smp_store_release(&inode
->i_state
, inode
->i_state
& ~I_WB_SWITCH
);
414 spin_unlock_irq(&mapping
->tree_lock
);
415 spin_unlock(&inode
->i_lock
);
416 spin_unlock(&new_wb
->list_lock
);
417 spin_unlock(&old_wb
->list_lock
);
429 static void inode_switch_wbs_rcu_fn(struct rcu_head
*rcu_head
)
431 struct inode_switch_wbs_context
*isw
= container_of(rcu_head
,
432 struct inode_switch_wbs_context
, rcu_head
);
434 /* needs to grab bh-unsafe locks, bounce to work item */
435 INIT_WORK(&isw
->work
, inode_switch_wbs_work_fn
);
436 schedule_work(&isw
->work
);
440 * inode_switch_wbs - change the wb association of an inode
441 * @inode: target inode
442 * @new_wb_id: ID of the new wb
444 * Switch @inode's wb association to the wb identified by @new_wb_id. The
445 * switching is performed asynchronously and may fail silently.
447 static void inode_switch_wbs(struct inode
*inode
, int new_wb_id
)
449 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
450 struct cgroup_subsys_state
*memcg_css
;
451 struct inode_switch_wbs_context
*isw
;
453 /* noop if seems to be already in progress */
454 if (inode
->i_state
& I_WB_SWITCH
)
457 isw
= kzalloc(sizeof(*isw
), GFP_ATOMIC
);
461 /* find and pin the new wb */
463 memcg_css
= css_from_id(new_wb_id
, &memory_cgrp_subsys
);
465 isw
->new_wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
470 /* while holding I_WB_SWITCH, no one else can update the association */
471 spin_lock(&inode
->i_lock
);
472 if (inode
->i_state
& (I_WB_SWITCH
| I_FREEING
) ||
473 inode_to_wb(inode
) == isw
->new_wb
) {
474 spin_unlock(&inode
->i_lock
);
477 inode
->i_state
|= I_WB_SWITCH
;
478 spin_unlock(&inode
->i_lock
);
484 * In addition to synchronizing among switchers, I_WB_SWITCH tells
485 * the RCU protected stat update paths to grab the mapping's
486 * tree_lock so that stat transfer can synchronize against them.
487 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
489 call_rcu(&isw
->rcu_head
, inode_switch_wbs_rcu_fn
);
499 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
500 * @wbc: writeback_control of interest
501 * @inode: target inode
503 * @inode is locked and about to be written back under the control of @wbc.
504 * Record @inode's writeback context into @wbc and unlock the i_lock. On
505 * writeback completion, wbc_detach_inode() should be called. This is used
506 * to track the cgroup writeback context.
508 void wbc_attach_and_unlock_inode(struct writeback_control
*wbc
,
511 if (!inode_cgwb_enabled(inode
)) {
512 spin_unlock(&inode
->i_lock
);
516 wbc
->wb
= inode_to_wb(inode
);
519 wbc
->wb_id
= wbc
->wb
->memcg_css
->id
;
520 wbc
->wb_lcand_id
= inode
->i_wb_frn_winner
;
521 wbc
->wb_tcand_id
= 0;
523 wbc
->wb_lcand_bytes
= 0;
524 wbc
->wb_tcand_bytes
= 0;
527 spin_unlock(&inode
->i_lock
);
530 * A dying wb indicates that the memcg-blkcg mapping has changed
531 * and a new wb is already serving the memcg. Switch immediately.
533 if (unlikely(wb_dying(wbc
->wb
)))
534 inode_switch_wbs(inode
, wbc
->wb_id
);
538 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
539 * @wbc: writeback_control of the just finished writeback
541 * To be called after a writeback attempt of an inode finishes and undoes
542 * wbc_attach_and_unlock_inode(). Can be called under any context.
544 * As concurrent write sharing of an inode is expected to be very rare and
545 * memcg only tracks page ownership on first-use basis severely confining
546 * the usefulness of such sharing, cgroup writeback tracks ownership
547 * per-inode. While the support for concurrent write sharing of an inode
548 * is deemed unnecessary, an inode being written to by different cgroups at
549 * different points in time is a lot more common, and, more importantly,
550 * charging only by first-use can too readily lead to grossly incorrect
551 * behaviors (single foreign page can lead to gigabytes of writeback to be
552 * incorrectly attributed).
554 * To resolve this issue, cgroup writeback detects the majority dirtier of
555 * an inode and transfers the ownership to it. To avoid unnnecessary
556 * oscillation, the detection mechanism keeps track of history and gives
557 * out the switch verdict only if the foreign usage pattern is stable over
558 * a certain amount of time and/or writeback attempts.
560 * On each writeback attempt, @wbc tries to detect the majority writer
561 * using Boyer-Moore majority vote algorithm. In addition to the byte
562 * count from the majority voting, it also counts the bytes written for the
563 * current wb and the last round's winner wb (max of last round's current
564 * wb, the winner from two rounds ago, and the last round's majority
565 * candidate). Keeping track of the historical winner helps the algorithm
566 * to semi-reliably detect the most active writer even when it's not the
569 * Once the winner of the round is determined, whether the winner is
570 * foreign or not and how much IO time the round consumed is recorded in
571 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
572 * over a certain threshold, the switch verdict is given.
574 void wbc_detach_inode(struct writeback_control
*wbc
)
576 struct bdi_writeback
*wb
= wbc
->wb
;
577 struct inode
*inode
= wbc
->inode
;
578 unsigned long avg_time
, max_bytes
, max_time
;
585 history
= inode
->i_wb_frn_history
;
586 avg_time
= inode
->i_wb_frn_avg_time
;
588 /* pick the winner of this round */
589 if (wbc
->wb_bytes
>= wbc
->wb_lcand_bytes
&&
590 wbc
->wb_bytes
>= wbc
->wb_tcand_bytes
) {
592 max_bytes
= wbc
->wb_bytes
;
593 } else if (wbc
->wb_lcand_bytes
>= wbc
->wb_tcand_bytes
) {
594 max_id
= wbc
->wb_lcand_id
;
595 max_bytes
= wbc
->wb_lcand_bytes
;
597 max_id
= wbc
->wb_tcand_id
;
598 max_bytes
= wbc
->wb_tcand_bytes
;
602 * Calculate the amount of IO time the winner consumed and fold it
603 * into the running average kept per inode. If the consumed IO
604 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
605 * deciding whether to switch or not. This is to prevent one-off
606 * small dirtiers from skewing the verdict.
608 max_time
= DIV_ROUND_UP((max_bytes
>> PAGE_SHIFT
) << WB_FRN_TIME_SHIFT
,
609 wb
->avg_write_bandwidth
);
611 avg_time
+= (max_time
>> WB_FRN_TIME_AVG_SHIFT
) -
612 (avg_time
>> WB_FRN_TIME_AVG_SHIFT
);
614 avg_time
= max_time
; /* immediate catch up on first run */
616 if (max_time
>= avg_time
/ WB_FRN_TIME_CUT_DIV
) {
620 * The switch verdict is reached if foreign wb's consume
621 * more than a certain proportion of IO time in a
622 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
623 * history mask where each bit represents one sixteenth of
624 * the period. Determine the number of slots to shift into
625 * history from @max_time.
627 slots
= min(DIV_ROUND_UP(max_time
, WB_FRN_HIST_UNIT
),
628 (unsigned long)WB_FRN_HIST_MAX_SLOTS
);
630 if (wbc
->wb_id
!= max_id
)
631 history
|= (1U << slots
) - 1;
634 * Switch if the current wb isn't the consistent winner.
635 * If there are multiple closely competing dirtiers, the
636 * inode may switch across them repeatedly over time, which
637 * is okay. The main goal is avoiding keeping an inode on
638 * the wrong wb for an extended period of time.
640 if (hweight32(history
) > WB_FRN_HIST_THR_SLOTS
)
641 inode_switch_wbs(inode
, max_id
);
645 * Multiple instances of this function may race to update the
646 * following fields but we don't mind occassional inaccuracies.
648 inode
->i_wb_frn_winner
= max_id
;
649 inode
->i_wb_frn_avg_time
= min(avg_time
, (unsigned long)U16_MAX
);
650 inode
->i_wb_frn_history
= history
;
657 * wbc_account_io - account IO issued during writeback
658 * @wbc: writeback_control of the writeback in progress
659 * @page: page being written out
660 * @bytes: number of bytes being written out
662 * @bytes from @page are about to written out during the writeback
663 * controlled by @wbc. Keep the book for foreign inode detection. See
664 * wbc_detach_inode().
666 void wbc_account_io(struct writeback_control
*wbc
, struct page
*page
,
672 * pageout() path doesn't attach @wbc to the inode being written
673 * out. This is intentional as we don't want the function to block
674 * behind a slow cgroup. Ultimately, we want pageout() to kick off
675 * regular writeback instead of writing things out itself.
681 id
= mem_cgroup_css_from_page(page
)->id
;
684 if (id
== wbc
->wb_id
) {
685 wbc
->wb_bytes
+= bytes
;
689 if (id
== wbc
->wb_lcand_id
)
690 wbc
->wb_lcand_bytes
+= bytes
;
692 /* Boyer-Moore majority vote algorithm */
693 if (!wbc
->wb_tcand_bytes
)
694 wbc
->wb_tcand_id
= id
;
695 if (id
== wbc
->wb_tcand_id
)
696 wbc
->wb_tcand_bytes
+= bytes
;
698 wbc
->wb_tcand_bytes
-= min(bytes
, wbc
->wb_tcand_bytes
);
700 EXPORT_SYMBOL_GPL(wbc_account_io
);
703 * inode_congested - test whether an inode is congested
704 * @inode: inode to test for congestion (may be NULL)
705 * @cong_bits: mask of WB_[a]sync_congested bits to test
707 * Tests whether @inode is congested. @cong_bits is the mask of congestion
708 * bits to test and the return value is the mask of set bits.
710 * If cgroup writeback is enabled for @inode, the congestion state is
711 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
712 * associated with @inode is congested; otherwise, the root wb's congestion
715 * @inode is allowed to be NULL as this function is often called on
716 * mapping->host which is NULL for the swapper space.
718 int inode_congested(struct inode
*inode
, int cong_bits
)
721 * Once set, ->i_wb never becomes NULL while the inode is alive.
722 * Start transaction iff ->i_wb is visible.
724 if (inode
&& inode_to_wb_is_valid(inode
)) {
725 struct bdi_writeback
*wb
;
726 bool locked
, congested
;
728 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
729 congested
= wb_congested(wb
, cong_bits
);
730 unlocked_inode_to_wb_end(inode
, locked
);
734 return wb_congested(&inode_to_bdi(inode
)->wb
, cong_bits
);
736 EXPORT_SYMBOL_GPL(inode_congested
);
739 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
740 * @wb: target bdi_writeback to split @nr_pages to
741 * @nr_pages: number of pages to write for the whole bdi
743 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
744 * relation to the total write bandwidth of all wb's w/ dirty inodes on
747 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
749 unsigned long this_bw
= wb
->avg_write_bandwidth
;
750 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
752 if (nr_pages
== LONG_MAX
)
756 * This may be called on clean wb's and proportional distribution
757 * may not make sense, just use the original @nr_pages in those
758 * cases. In general, we wanna err on the side of writing more.
760 if (!tot_bw
|| this_bw
>= tot_bw
)
763 return DIV_ROUND_UP_ULL((u64
)nr_pages
* this_bw
, tot_bw
);
767 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
768 * @bdi: target backing_dev_info
769 * @base_work: wb_writeback_work to issue
770 * @skip_if_busy: skip wb's which already have writeback in progress
772 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
773 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
774 * distributed to the busy wbs according to each wb's proportion in the
775 * total active write bandwidth of @bdi.
777 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
778 struct wb_writeback_work
*base_work
,
781 struct bdi_writeback
*last_wb
= NULL
;
782 struct bdi_writeback
*wb
= list_entry(&bdi
->wb_list
,
783 struct bdi_writeback
, bdi_node
);
788 list_for_each_entry_continue_rcu(wb
, &bdi
->wb_list
, bdi_node
) {
789 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done
);
790 struct wb_writeback_work fallback_work
;
791 struct wb_writeback_work
*work
;
799 /* SYNC_ALL writes out I_DIRTY_TIME too */
800 if (!wb_has_dirty_io(wb
) &&
801 (base_work
->sync_mode
== WB_SYNC_NONE
||
802 list_empty(&wb
->b_dirty_time
)))
804 if (skip_if_busy
&& writeback_in_progress(wb
))
807 nr_pages
= wb_split_bdi_pages(wb
, base_work
->nr_pages
);
809 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
812 work
->nr_pages
= nr_pages
;
814 wb_queue_work(wb
, work
);
818 /* alloc failed, execute synchronously using on-stack fallback */
819 work
= &fallback_work
;
821 work
->nr_pages
= nr_pages
;
823 work
->done
= &fallback_work_done
;
825 wb_queue_work(wb
, work
);
828 * Pin @wb so that it stays on @bdi->wb_list. This allows
829 * continuing iteration from @wb after dropping and
830 * regrabbing rcu read lock.
836 wb_wait_for_completion(bdi
, &fallback_work_done
);
845 #else /* CONFIG_CGROUP_WRITEBACK */
847 static struct bdi_writeback
*
848 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
849 __releases(&inode
->i_lock
)
850 __acquires(&wb
->list_lock
)
852 struct bdi_writeback
*wb
= inode_to_wb(inode
);
854 spin_unlock(&inode
->i_lock
);
855 spin_lock(&wb
->list_lock
);
859 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
860 __acquires(&wb
->list_lock
)
862 struct bdi_writeback
*wb
= inode_to_wb(inode
);
864 spin_lock(&wb
->list_lock
);
868 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
873 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
874 struct wb_writeback_work
*base_work
,
879 if (!skip_if_busy
|| !writeback_in_progress(&bdi
->wb
)) {
880 base_work
->auto_free
= 0;
881 wb_queue_work(&bdi
->wb
, base_work
);
885 #endif /* CONFIG_CGROUP_WRITEBACK */
887 void wb_start_writeback(struct bdi_writeback
*wb
, long nr_pages
,
888 bool range_cyclic
, enum wb_reason reason
)
890 struct wb_writeback_work
*work
;
892 if (!wb_has_dirty_io(wb
))
896 * This is WB_SYNC_NONE writeback, so if allocation fails just
897 * wakeup the thread for old dirty data writeback
899 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
901 trace_writeback_nowork(wb
);
906 work
->sync_mode
= WB_SYNC_NONE
;
907 work
->nr_pages
= nr_pages
;
908 work
->range_cyclic
= range_cyclic
;
909 work
->reason
= reason
;
912 wb_queue_work(wb
, work
);
916 * wb_start_background_writeback - start background writeback
917 * @wb: bdi_writback to write from
920 * This makes sure WB_SYNC_NONE background writeback happens. When
921 * this function returns, it is only guaranteed that for given wb
922 * some IO is happening if we are over background dirty threshold.
923 * Caller need not hold sb s_umount semaphore.
925 void wb_start_background_writeback(struct bdi_writeback
*wb
)
928 * We just wake up the flusher thread. It will perform background
929 * writeback as soon as there is no other work to do.
931 trace_writeback_wake_background(wb
);
936 * Remove the inode from the writeback list it is on.
938 void inode_io_list_del(struct inode
*inode
)
940 struct bdi_writeback
*wb
;
942 wb
= inode_to_wb_and_lock_list(inode
);
943 inode_io_list_del_locked(inode
, wb
);
944 spin_unlock(&wb
->list_lock
);
948 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
949 * furthest end of its superblock's dirty-inode list.
951 * Before stamping the inode's ->dirtied_when, we check to see whether it is
952 * already the most-recently-dirtied inode on the b_dirty list. If that is
953 * the case then the inode must have been redirtied while it was being written
954 * out and we don't reset its dirtied_when.
956 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
958 if (!list_empty(&wb
->b_dirty
)) {
961 tail
= wb_inode(wb
->b_dirty
.next
);
962 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
963 inode
->dirtied_when
= jiffies
;
965 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty
);
969 * requeue inode for re-scanning after bdi->b_io list is exhausted.
971 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
973 inode_io_list_move_locked(inode
, wb
, &wb
->b_more_io
);
976 static void inode_sync_complete(struct inode
*inode
)
978 inode
->i_state
&= ~I_SYNC
;
979 /* If inode is clean an unused, put it into LRU now... */
980 inode_add_lru(inode
);
981 /* Waiters must see I_SYNC cleared before being woken up */
983 wake_up_bit(&inode
->i_state
, __I_SYNC
);
986 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
988 bool ret
= time_after(inode
->dirtied_when
, t
);
991 * For inodes being constantly redirtied, dirtied_when can get stuck.
992 * It _appears_ to be in the future, but is actually in distant past.
993 * This test is necessary to prevent such wrapped-around relative times
994 * from permanently stopping the whole bdi writeback.
996 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
1001 #define EXPIRE_DIRTY_ATIME 0x0001
1004 * Move expired (dirtied before work->older_than_this) dirty inodes from
1005 * @delaying_queue to @dispatch_queue.
1007 static int move_expired_inodes(struct list_head
*delaying_queue
,
1008 struct list_head
*dispatch_queue
,
1010 struct wb_writeback_work
*work
)
1012 unsigned long *older_than_this
= NULL
;
1013 unsigned long expire_time
;
1015 struct list_head
*pos
, *node
;
1016 struct super_block
*sb
= NULL
;
1017 struct inode
*inode
;
1021 if ((flags
& EXPIRE_DIRTY_ATIME
) == 0)
1022 older_than_this
= work
->older_than_this
;
1023 else if (!work
->for_sync
) {
1024 expire_time
= jiffies
- (dirtytime_expire_interval
* HZ
);
1025 older_than_this
= &expire_time
;
1027 while (!list_empty(delaying_queue
)) {
1028 inode
= wb_inode(delaying_queue
->prev
);
1029 if (older_than_this
&&
1030 inode_dirtied_after(inode
, *older_than_this
))
1032 list_move(&inode
->i_io_list
, &tmp
);
1034 if (flags
& EXPIRE_DIRTY_ATIME
)
1035 set_bit(__I_DIRTY_TIME_EXPIRED
, &inode
->i_state
);
1036 if (sb_is_blkdev_sb(inode
->i_sb
))
1038 if (sb
&& sb
!= inode
->i_sb
)
1043 /* just one sb in list, splice to dispatch_queue and we're done */
1045 list_splice(&tmp
, dispatch_queue
);
1049 /* Move inodes from one superblock together */
1050 while (!list_empty(&tmp
)) {
1051 sb
= wb_inode(tmp
.prev
)->i_sb
;
1052 list_for_each_prev_safe(pos
, node
, &tmp
) {
1053 inode
= wb_inode(pos
);
1054 if (inode
->i_sb
== sb
)
1055 list_move(&inode
->i_io_list
, dispatch_queue
);
1063 * Queue all expired dirty inodes for io, eldest first.
1065 * newly dirtied b_dirty b_io b_more_io
1066 * =============> gf edc BA
1068 * newly dirtied b_dirty b_io b_more_io
1069 * =============> g fBAedc
1071 * +--> dequeue for IO
1073 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
1077 assert_spin_locked(&wb
->list_lock
);
1078 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
1079 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, 0, work
);
1080 moved
+= move_expired_inodes(&wb
->b_dirty_time
, &wb
->b_io
,
1081 EXPIRE_DIRTY_ATIME
, work
);
1083 wb_io_lists_populated(wb
);
1084 trace_writeback_queue_io(wb
, work
, moved
);
1087 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1091 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
1092 trace_writeback_write_inode_start(inode
, wbc
);
1093 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
1094 trace_writeback_write_inode(inode
, wbc
);
1101 * Wait for writeback on an inode to complete. Called with i_lock held.
1102 * Caller must make sure inode cannot go away when we drop i_lock.
1104 static void __inode_wait_for_writeback(struct inode
*inode
)
1105 __releases(inode
->i_lock
)
1106 __acquires(inode
->i_lock
)
1108 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
1109 wait_queue_head_t
*wqh
;
1111 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1112 while (inode
->i_state
& I_SYNC
) {
1113 spin_unlock(&inode
->i_lock
);
1114 __wait_on_bit(wqh
, &wq
, bit_wait
,
1115 TASK_UNINTERRUPTIBLE
);
1116 spin_lock(&inode
->i_lock
);
1121 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1123 void inode_wait_for_writeback(struct inode
*inode
)
1125 spin_lock(&inode
->i_lock
);
1126 __inode_wait_for_writeback(inode
);
1127 spin_unlock(&inode
->i_lock
);
1131 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1132 * held and drops it. It is aimed for callers not holding any inode reference
1133 * so once i_lock is dropped, inode can go away.
1135 static void inode_sleep_on_writeback(struct inode
*inode
)
1136 __releases(inode
->i_lock
)
1139 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1142 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
1143 sleep
= inode
->i_state
& I_SYNC
;
1144 spin_unlock(&inode
->i_lock
);
1147 finish_wait(wqh
, &wait
);
1151 * Find proper writeback list for the inode depending on its current state and
1152 * possibly also change of its state while we were doing writeback. Here we
1153 * handle things such as livelock prevention or fairness of writeback among
1154 * inodes. This function can be called only by flusher thread - noone else
1155 * processes all inodes in writeback lists and requeueing inodes behind flusher
1156 * thread's back can have unexpected consequences.
1158 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1159 struct writeback_control
*wbc
)
1161 if (inode
->i_state
& I_FREEING
)
1165 * Sync livelock prevention. Each inode is tagged and synced in one
1166 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1167 * the dirty time to prevent enqueue and sync it again.
1169 if ((inode
->i_state
& I_DIRTY
) &&
1170 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
1171 inode
->dirtied_when
= jiffies
;
1173 if (wbc
->pages_skipped
) {
1175 * writeback is not making progress due to locked
1176 * buffers. Skip this inode for now.
1178 redirty_tail(inode
, wb
);
1182 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
1184 * We didn't write back all the pages. nfs_writepages()
1185 * sometimes bales out without doing anything.
1187 if (wbc
->nr_to_write
<= 0) {
1188 /* Slice used up. Queue for next turn. */
1189 requeue_io(inode
, wb
);
1192 * Writeback blocked by something other than
1193 * congestion. Delay the inode for some time to
1194 * avoid spinning on the CPU (100% iowait)
1195 * retrying writeback of the dirty page/inode
1196 * that cannot be performed immediately.
1198 redirty_tail(inode
, wb
);
1200 } else if (inode
->i_state
& I_DIRTY
) {
1202 * Filesystems can dirty the inode during writeback operations,
1203 * such as delayed allocation during submission or metadata
1204 * updates after data IO completion.
1206 redirty_tail(inode
, wb
);
1207 } else if (inode
->i_state
& I_DIRTY_TIME
) {
1208 inode
->dirtied_when
= jiffies
;
1209 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty_time
);
1211 /* The inode is clean. Remove from writeback lists. */
1212 inode_io_list_del_locked(inode
, wb
);
1217 * Write out an inode and its dirty pages. Do not update the writeback list
1218 * linkage. That is left to the caller. The caller is also responsible for
1219 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1222 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1224 struct address_space
*mapping
= inode
->i_mapping
;
1225 long nr_to_write
= wbc
->nr_to_write
;
1229 WARN_ON(!(inode
->i_state
& I_SYNC
));
1231 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
1233 ret
= do_writepages(mapping
, wbc
);
1236 * Make sure to wait on the data before writing out the metadata.
1237 * This is important for filesystems that modify metadata on data
1238 * I/O completion. We don't do it for sync(2) writeback because it has a
1239 * separate, external IO completion path and ->sync_fs for guaranteeing
1240 * inode metadata is written back correctly.
1242 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
1243 int err
= filemap_fdatawait(mapping
);
1249 * Some filesystems may redirty the inode during the writeback
1250 * due to delalloc, clear dirty metadata flags right before
1253 spin_lock(&inode
->i_lock
);
1255 dirty
= inode
->i_state
& I_DIRTY
;
1256 if (inode
->i_state
& I_DIRTY_TIME
) {
1257 if ((dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
1258 unlikely(inode
->i_state
& I_DIRTY_TIME_EXPIRED
) ||
1259 unlikely(time_after(jiffies
,
1260 (inode
->dirtied_time_when
+
1261 dirtytime_expire_interval
* HZ
)))) {
1262 dirty
|= I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
;
1263 trace_writeback_lazytime(inode
);
1266 inode
->i_state
&= ~I_DIRTY_TIME_EXPIRED
;
1267 inode
->i_state
&= ~dirty
;
1270 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1271 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1272 * either they see the I_DIRTY bits cleared or we see the dirtied
1275 * I_DIRTY_PAGES is always cleared together above even if @mapping
1276 * still has dirty pages. The flag is reinstated after smp_mb() if
1277 * necessary. This guarantees that either __mark_inode_dirty()
1278 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1282 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
1283 inode
->i_state
|= I_DIRTY_PAGES
;
1285 spin_unlock(&inode
->i_lock
);
1287 if (dirty
& I_DIRTY_TIME
)
1288 mark_inode_dirty_sync(inode
);
1289 /* Don't write the inode if only I_DIRTY_PAGES was set */
1290 if (dirty
& ~I_DIRTY_PAGES
) {
1291 int err
= write_inode(inode
, wbc
);
1295 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
1300 * Write out an inode's dirty pages. Either the caller has an active reference
1301 * on the inode or the inode has I_WILL_FREE set.
1303 * This function is designed to be called for writing back one inode which
1304 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1305 * and does more profound writeback list handling in writeback_sb_inodes().
1308 writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1309 struct writeback_control
*wbc
)
1313 spin_lock(&inode
->i_lock
);
1314 if (!atomic_read(&inode
->i_count
))
1315 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
1317 WARN_ON(inode
->i_state
& I_WILL_FREE
);
1319 if (inode
->i_state
& I_SYNC
) {
1320 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
1323 * It's a data-integrity sync. We must wait. Since callers hold
1324 * inode reference or inode has I_WILL_FREE set, it cannot go
1327 __inode_wait_for_writeback(inode
);
1329 WARN_ON(inode
->i_state
& I_SYNC
);
1331 * Skip inode if it is clean and we have no outstanding writeback in
1332 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1333 * function since flusher thread may be doing for example sync in
1334 * parallel and if we move the inode, it could get skipped. So here we
1335 * make sure inode is on some writeback list and leave it there unless
1336 * we have completely cleaned the inode.
1338 if (!(inode
->i_state
& I_DIRTY_ALL
) &&
1339 (wbc
->sync_mode
!= WB_SYNC_ALL
||
1340 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
1342 inode
->i_state
|= I_SYNC
;
1343 wbc_attach_and_unlock_inode(wbc
, inode
);
1345 ret
= __writeback_single_inode(inode
, wbc
);
1347 wbc_detach_inode(wbc
);
1348 spin_lock(&wb
->list_lock
);
1349 spin_lock(&inode
->i_lock
);
1351 * If inode is clean, remove it from writeback lists. Otherwise don't
1352 * touch it. See comment above for explanation.
1354 if (!(inode
->i_state
& I_DIRTY_ALL
))
1355 inode_io_list_del_locked(inode
, wb
);
1356 spin_unlock(&wb
->list_lock
);
1357 inode_sync_complete(inode
);
1359 spin_unlock(&inode
->i_lock
);
1363 static long writeback_chunk_size(struct bdi_writeback
*wb
,
1364 struct wb_writeback_work
*work
)
1369 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1370 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1371 * here avoids calling into writeback_inodes_wb() more than once.
1373 * The intended call sequence for WB_SYNC_ALL writeback is:
1376 * writeback_sb_inodes() <== called only once
1377 * write_cache_pages() <== called once for each inode
1378 * (quickly) tag currently dirty pages
1379 * (maybe slowly) sync all tagged pages
1381 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
1384 pages
= min(wb
->avg_write_bandwidth
/ 2,
1385 global_wb_domain
.dirty_limit
/ DIRTY_SCOPE
);
1386 pages
= min(pages
, work
->nr_pages
);
1387 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
1388 MIN_WRITEBACK_PAGES
);
1395 * Write a portion of b_io inodes which belong to @sb.
1397 * Return the number of pages and/or inodes written.
1399 * NOTE! This is called with wb->list_lock held, and will
1400 * unlock and relock that for each inode it ends up doing
1403 static long writeback_sb_inodes(struct super_block
*sb
,
1404 struct bdi_writeback
*wb
,
1405 struct wb_writeback_work
*work
)
1407 struct writeback_control wbc
= {
1408 .sync_mode
= work
->sync_mode
,
1409 .tagged_writepages
= work
->tagged_writepages
,
1410 .for_kupdate
= work
->for_kupdate
,
1411 .for_background
= work
->for_background
,
1412 .for_sync
= work
->for_sync
,
1413 .range_cyclic
= work
->range_cyclic
,
1415 .range_end
= LLONG_MAX
,
1417 unsigned long start_time
= jiffies
;
1419 long wrote
= 0; /* count both pages and inodes */
1421 while (!list_empty(&wb
->b_io
)) {
1422 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1424 if (inode
->i_sb
!= sb
) {
1427 * We only want to write back data for this
1428 * superblock, move all inodes not belonging
1429 * to it back onto the dirty list.
1431 redirty_tail(inode
, wb
);
1436 * The inode belongs to a different superblock.
1437 * Bounce back to the caller to unpin this and
1438 * pin the next superblock.
1444 * Don't bother with new inodes or inodes being freed, first
1445 * kind does not need periodic writeout yet, and for the latter
1446 * kind writeout is handled by the freer.
1448 spin_lock(&inode
->i_lock
);
1449 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
1450 spin_unlock(&inode
->i_lock
);
1451 redirty_tail(inode
, wb
);
1454 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
1456 * If this inode is locked for writeback and we are not
1457 * doing writeback-for-data-integrity, move it to
1458 * b_more_io so that writeback can proceed with the
1459 * other inodes on s_io.
1461 * We'll have another go at writing back this inode
1462 * when we completed a full scan of b_io.
1464 spin_unlock(&inode
->i_lock
);
1465 requeue_io(inode
, wb
);
1466 trace_writeback_sb_inodes_requeue(inode
);
1469 spin_unlock(&wb
->list_lock
);
1472 * We already requeued the inode if it had I_SYNC set and we
1473 * are doing WB_SYNC_NONE writeback. So this catches only the
1476 if (inode
->i_state
& I_SYNC
) {
1477 /* Wait for I_SYNC. This function drops i_lock... */
1478 inode_sleep_on_writeback(inode
);
1479 /* Inode may be gone, start again */
1480 spin_lock(&wb
->list_lock
);
1483 inode
->i_state
|= I_SYNC
;
1484 wbc_attach_and_unlock_inode(&wbc
, inode
);
1486 write_chunk
= writeback_chunk_size(wb
, work
);
1487 wbc
.nr_to_write
= write_chunk
;
1488 wbc
.pages_skipped
= 0;
1491 * We use I_SYNC to pin the inode in memory. While it is set
1492 * evict_inode() will wait so the inode cannot be freed.
1494 __writeback_single_inode(inode
, &wbc
);
1496 wbc_detach_inode(&wbc
);
1497 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
1498 wrote
+= write_chunk
- wbc
.nr_to_write
;
1500 if (need_resched()) {
1502 * We're trying to balance between building up a nice
1503 * long list of IOs to improve our merge rate, and
1504 * getting those IOs out quickly for anyone throttling
1505 * in balance_dirty_pages(). cond_resched() doesn't
1506 * unplug, so get our IOs out the door before we
1509 blk_flush_plug(current
);
1514 spin_lock(&wb
->list_lock
);
1515 spin_lock(&inode
->i_lock
);
1516 if (!(inode
->i_state
& I_DIRTY_ALL
))
1518 requeue_inode(inode
, wb
, &wbc
);
1519 inode_sync_complete(inode
);
1520 spin_unlock(&inode
->i_lock
);
1523 * bail out to wb_writeback() often enough to check
1524 * background threshold and other termination conditions.
1527 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1529 if (work
->nr_pages
<= 0)
1536 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
1537 struct wb_writeback_work
*work
)
1539 unsigned long start_time
= jiffies
;
1542 while (!list_empty(&wb
->b_io
)) {
1543 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1544 struct super_block
*sb
= inode
->i_sb
;
1546 if (!trylock_super(sb
)) {
1548 * trylock_super() may fail consistently due to
1549 * s_umount being grabbed by someone else. Don't use
1550 * requeue_io() to avoid busy retrying the inode/sb.
1552 redirty_tail(inode
, wb
);
1555 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
1556 up_read(&sb
->s_umount
);
1558 /* refer to the same tests at the end of writeback_sb_inodes */
1560 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1562 if (work
->nr_pages
<= 0)
1566 /* Leave any unwritten inodes on b_io */
1570 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
1571 enum wb_reason reason
)
1573 struct wb_writeback_work work
= {
1574 .nr_pages
= nr_pages
,
1575 .sync_mode
= WB_SYNC_NONE
,
1579 struct blk_plug plug
;
1581 blk_start_plug(&plug
);
1582 spin_lock(&wb
->list_lock
);
1583 if (list_empty(&wb
->b_io
))
1584 queue_io(wb
, &work
);
1585 __writeback_inodes_wb(wb
, &work
);
1586 spin_unlock(&wb
->list_lock
);
1587 blk_finish_plug(&plug
);
1589 return nr_pages
- work
.nr_pages
;
1593 * Explicit flushing or periodic writeback of "old" data.
1595 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1596 * dirtying-time in the inode's address_space. So this periodic writeback code
1597 * just walks the superblock inode list, writing back any inodes which are
1598 * older than a specific point in time.
1600 * Try to run once per dirty_writeback_interval. But if a writeback event
1601 * takes longer than a dirty_writeback_interval interval, then leave a
1604 * older_than_this takes precedence over nr_to_write. So we'll only write back
1605 * all dirty pages if they are all attached to "old" mappings.
1607 static long wb_writeback(struct bdi_writeback
*wb
,
1608 struct wb_writeback_work
*work
)
1610 unsigned long wb_start
= jiffies
;
1611 long nr_pages
= work
->nr_pages
;
1612 unsigned long oldest_jif
;
1613 struct inode
*inode
;
1615 struct blk_plug plug
;
1617 oldest_jif
= jiffies
;
1618 work
->older_than_this
= &oldest_jif
;
1620 blk_start_plug(&plug
);
1621 spin_lock(&wb
->list_lock
);
1624 * Stop writeback when nr_pages has been consumed
1626 if (work
->nr_pages
<= 0)
1630 * Background writeout and kupdate-style writeback may
1631 * run forever. Stop them if there is other work to do
1632 * so that e.g. sync can proceed. They'll be restarted
1633 * after the other works are all done.
1635 if ((work
->for_background
|| work
->for_kupdate
) &&
1636 !list_empty(&wb
->work_list
))
1640 * For background writeout, stop when we are below the
1641 * background dirty threshold
1643 if (work
->for_background
&& !wb_over_bg_thresh(wb
))
1647 * Kupdate and background works are special and we want to
1648 * include all inodes that need writing. Livelock avoidance is
1649 * handled by these works yielding to any other work so we are
1652 if (work
->for_kupdate
) {
1653 oldest_jif
= jiffies
-
1654 msecs_to_jiffies(dirty_expire_interval
* 10);
1655 } else if (work
->for_background
)
1656 oldest_jif
= jiffies
;
1658 trace_writeback_start(wb
, work
);
1659 if (list_empty(&wb
->b_io
))
1662 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
1664 progress
= __writeback_inodes_wb(wb
, work
);
1665 trace_writeback_written(wb
, work
);
1667 wb_update_bandwidth(wb
, wb_start
);
1670 * Did we write something? Try for more
1672 * Dirty inodes are moved to b_io for writeback in batches.
1673 * The completion of the current batch does not necessarily
1674 * mean the overall work is done. So we keep looping as long
1675 * as made some progress on cleaning pages or inodes.
1680 * No more inodes for IO, bail
1682 if (list_empty(&wb
->b_more_io
))
1685 * Nothing written. Wait for some inode to
1686 * become available for writeback. Otherwise
1687 * we'll just busyloop.
1689 if (!list_empty(&wb
->b_more_io
)) {
1690 trace_writeback_wait(wb
, work
);
1691 inode
= wb_inode(wb
->b_more_io
.prev
);
1692 spin_lock(&inode
->i_lock
);
1693 spin_unlock(&wb
->list_lock
);
1694 /* This function drops i_lock... */
1695 inode_sleep_on_writeback(inode
);
1696 spin_lock(&wb
->list_lock
);
1699 spin_unlock(&wb
->list_lock
);
1700 blk_finish_plug(&plug
);
1702 return nr_pages
- work
->nr_pages
;
1706 * Return the next wb_writeback_work struct that hasn't been processed yet.
1708 static struct wb_writeback_work
*get_next_work_item(struct bdi_writeback
*wb
)
1710 struct wb_writeback_work
*work
= NULL
;
1712 spin_lock_bh(&wb
->work_lock
);
1713 if (!list_empty(&wb
->work_list
)) {
1714 work
= list_entry(wb
->work_list
.next
,
1715 struct wb_writeback_work
, list
);
1716 list_del_init(&work
->list
);
1718 spin_unlock_bh(&wb
->work_lock
);
1723 * Add in the number of potentially dirty inodes, because each inode
1724 * write can dirty pagecache in the underlying blockdev.
1726 static unsigned long get_nr_dirty_pages(void)
1728 return global_page_state(NR_FILE_DIRTY
) +
1729 global_page_state(NR_UNSTABLE_NFS
) +
1730 get_nr_dirty_inodes();
1733 static long wb_check_background_flush(struct bdi_writeback
*wb
)
1735 if (wb_over_bg_thresh(wb
)) {
1737 struct wb_writeback_work work
= {
1738 .nr_pages
= LONG_MAX
,
1739 .sync_mode
= WB_SYNC_NONE
,
1740 .for_background
= 1,
1742 .reason
= WB_REASON_BACKGROUND
,
1745 return wb_writeback(wb
, &work
);
1751 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
1753 unsigned long expired
;
1757 * When set to zero, disable periodic writeback
1759 if (!dirty_writeback_interval
)
1762 expired
= wb
->last_old_flush
+
1763 msecs_to_jiffies(dirty_writeback_interval
* 10);
1764 if (time_before(jiffies
, expired
))
1767 wb
->last_old_flush
= jiffies
;
1768 nr_pages
= get_nr_dirty_pages();
1771 struct wb_writeback_work work
= {
1772 .nr_pages
= nr_pages
,
1773 .sync_mode
= WB_SYNC_NONE
,
1776 .reason
= WB_REASON_PERIODIC
,
1779 return wb_writeback(wb
, &work
);
1786 * Retrieve work items and do the writeback they describe
1788 static long wb_do_writeback(struct bdi_writeback
*wb
)
1790 struct wb_writeback_work
*work
;
1793 set_bit(WB_writeback_running
, &wb
->state
);
1794 while ((work
= get_next_work_item(wb
)) != NULL
) {
1795 struct wb_completion
*done
= work
->done
;
1797 trace_writeback_exec(wb
, work
);
1799 wrote
+= wb_writeback(wb
, work
);
1801 if (work
->auto_free
)
1803 if (done
&& atomic_dec_and_test(&done
->cnt
))
1804 wake_up_all(&wb
->bdi
->wb_waitq
);
1808 * Check for periodic writeback, kupdated() style
1810 wrote
+= wb_check_old_data_flush(wb
);
1811 wrote
+= wb_check_background_flush(wb
);
1812 clear_bit(WB_writeback_running
, &wb
->state
);
1818 * Handle writeback of dirty data for the device backed by this bdi. Also
1819 * reschedules periodically and does kupdated style flushing.
1821 void wb_workfn(struct work_struct
*work
)
1823 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1824 struct bdi_writeback
, dwork
);
1827 set_worker_desc("flush-%s", dev_name(wb
->bdi
->dev
));
1828 current
->flags
|= PF_SWAPWRITE
;
1830 if (likely(!current_is_workqueue_rescuer() ||
1831 !test_bit(WB_registered
, &wb
->state
))) {
1833 * The normal path. Keep writing back @wb until its
1834 * work_list is empty. Note that this path is also taken
1835 * if @wb is shutting down even when we're running off the
1836 * rescuer as work_list needs to be drained.
1839 pages_written
= wb_do_writeback(wb
);
1840 trace_writeback_pages_written(pages_written
);
1841 } while (!list_empty(&wb
->work_list
));
1844 * bdi_wq can't get enough workers and we're running off
1845 * the emergency worker. Don't hog it. Hopefully, 1024 is
1846 * enough for efficient IO.
1848 pages_written
= writeback_inodes_wb(wb
, 1024,
1849 WB_REASON_FORKER_THREAD
);
1850 trace_writeback_pages_written(pages_written
);
1853 if (!list_empty(&wb
->work_list
))
1854 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
1855 else if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
1856 wb_wakeup_delayed(wb
);
1858 current
->flags
&= ~PF_SWAPWRITE
;
1862 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1865 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1867 struct backing_dev_info
*bdi
;
1870 nr_pages
= get_nr_dirty_pages();
1873 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1874 struct bdi_writeback
*wb
;
1876 if (!bdi_has_dirty_io(bdi
))
1879 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
1880 wb_start_writeback(wb
, wb_split_bdi_pages(wb
, nr_pages
),
1887 * Wake up bdi's periodically to make sure dirtytime inodes gets
1888 * written back periodically. We deliberately do *not* check the
1889 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1890 * kernel to be constantly waking up once there are any dirtytime
1891 * inodes on the system. So instead we define a separate delayed work
1892 * function which gets called much more rarely. (By default, only
1893 * once every 12 hours.)
1895 * If there is any other write activity going on in the file system,
1896 * this function won't be necessary. But if the only thing that has
1897 * happened on the file system is a dirtytime inode caused by an atime
1898 * update, we need this infrastructure below to make sure that inode
1899 * eventually gets pushed out to disk.
1901 static void wakeup_dirtytime_writeback(struct work_struct
*w
);
1902 static DECLARE_DELAYED_WORK(dirtytime_work
, wakeup_dirtytime_writeback
);
1904 static void wakeup_dirtytime_writeback(struct work_struct
*w
)
1906 struct backing_dev_info
*bdi
;
1909 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1910 struct bdi_writeback
*wb
;
1912 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
1913 if (!list_empty(&wb
->b_dirty_time
))
1917 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
1920 static int __init
start_dirtytime_writeback(void)
1922 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
1925 __initcall(start_dirtytime_writeback
);
1927 int dirtytime_interval_handler(struct ctl_table
*table
, int write
,
1928 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1932 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
1933 if (ret
== 0 && write
)
1934 mod_delayed_work(system_wq
, &dirtytime_work
, 0);
1938 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1940 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1941 struct dentry
*dentry
;
1942 const char *name
= "?";
1944 dentry
= d_find_alias(inode
);
1946 spin_lock(&dentry
->d_lock
);
1947 name
= (const char *) dentry
->d_name
.name
;
1950 "%s(%d): dirtied inode %lu (%s) on %s\n",
1951 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1952 name
, inode
->i_sb
->s_id
);
1954 spin_unlock(&dentry
->d_lock
);
1961 * __mark_inode_dirty - internal function
1962 * @inode: inode to mark
1963 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1964 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1965 * mark_inode_dirty_sync.
1967 * Put the inode on the super block's dirty list.
1969 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1970 * dirty list only if it is hashed or if it refers to a blockdev.
1971 * If it was not hashed, it will never be added to the dirty list
1972 * even if it is later hashed, as it will have been marked dirty already.
1974 * In short, make sure you hash any inodes _before_ you start marking
1977 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1978 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1979 * the kernel-internal blockdev inode represents the dirtying time of the
1980 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1981 * page->mapping->host, so the page-dirtying time is recorded in the internal
1984 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1986 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1987 struct super_block
*sb
= inode
->i_sb
;
1990 trace_writeback_mark_inode_dirty(inode
, flags
);
1993 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1994 * dirty the inode itself
1996 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
| I_DIRTY_TIME
)) {
1997 trace_writeback_dirty_inode_start(inode
, flags
);
1999 if (sb
->s_op
->dirty_inode
)
2000 sb
->s_op
->dirty_inode(inode
, flags
);
2002 trace_writeback_dirty_inode(inode
, flags
);
2004 if (flags
& I_DIRTY_INODE
)
2005 flags
&= ~I_DIRTY_TIME
;
2006 dirtytime
= flags
& I_DIRTY_TIME
;
2009 * Paired with smp_mb() in __writeback_single_inode() for the
2010 * following lockless i_state test. See there for details.
2014 if (((inode
->i_state
& flags
) == flags
) ||
2015 (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
)))
2018 if (unlikely(block_dump
))
2019 block_dump___mark_inode_dirty(inode
);
2021 spin_lock(&inode
->i_lock
);
2022 if (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
))
2023 goto out_unlock_inode
;
2024 if ((inode
->i_state
& flags
) != flags
) {
2025 const int was_dirty
= inode
->i_state
& I_DIRTY
;
2027 inode_attach_wb(inode
, NULL
);
2029 if (flags
& I_DIRTY_INODE
)
2030 inode
->i_state
&= ~I_DIRTY_TIME
;
2031 inode
->i_state
|= flags
;
2034 * If the inode is being synced, just update its dirty state.
2035 * The unlocker will place the inode on the appropriate
2036 * superblock list, based upon its state.
2038 if (inode
->i_state
& I_SYNC
)
2039 goto out_unlock_inode
;
2042 * Only add valid (hashed) inodes to the superblock's
2043 * dirty list. Add blockdev inodes as well.
2045 if (!S_ISBLK(inode
->i_mode
)) {
2046 if (inode_unhashed(inode
))
2047 goto out_unlock_inode
;
2049 if (inode
->i_state
& I_FREEING
)
2050 goto out_unlock_inode
;
2053 * If the inode was already on b_dirty/b_io/b_more_io, don't
2054 * reposition it (that would break b_dirty time-ordering).
2057 struct bdi_writeback
*wb
;
2058 struct list_head
*dirty_list
;
2059 bool wakeup_bdi
= false;
2061 wb
= locked_inode_to_wb_and_lock_list(inode
);
2063 WARN(bdi_cap_writeback_dirty(wb
->bdi
) &&
2064 !test_bit(WB_registered
, &wb
->state
),
2065 "bdi-%s not registered\n", wb
->bdi
->name
);
2067 inode
->dirtied_when
= jiffies
;
2069 inode
->dirtied_time_when
= jiffies
;
2071 if (inode
->i_state
& (I_DIRTY_INODE
| I_DIRTY_PAGES
))
2072 dirty_list
= &wb
->b_dirty
;
2074 dirty_list
= &wb
->b_dirty_time
;
2076 wakeup_bdi
= inode_io_list_move_locked(inode
, wb
,
2079 spin_unlock(&wb
->list_lock
);
2080 trace_writeback_dirty_inode_enqueue(inode
);
2083 * If this is the first dirty inode for this bdi,
2084 * we have to wake-up the corresponding bdi thread
2085 * to make sure background write-back happens
2088 if (bdi_cap_writeback_dirty(wb
->bdi
) && wakeup_bdi
)
2089 wb_wakeup_delayed(wb
);
2094 spin_unlock(&inode
->i_lock
);
2096 #undef I_DIRTY_INODE
2098 EXPORT_SYMBOL(__mark_inode_dirty
);
2101 * The @s_sync_lock is used to serialise concurrent sync operations
2102 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2103 * Concurrent callers will block on the s_sync_lock rather than doing contending
2104 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2105 * has been issued up to the time this function is enter is guaranteed to be
2106 * completed by the time we have gained the lock and waited for all IO that is
2107 * in progress regardless of the order callers are granted the lock.
2109 static void wait_sb_inodes(struct super_block
*sb
)
2111 struct inode
*inode
, *old_inode
= NULL
;
2114 * We need to be protected against the filesystem going from
2115 * r/o to r/w or vice versa.
2117 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2119 mutex_lock(&sb
->s_sync_lock
);
2120 spin_lock(&sb
->s_inode_list_lock
);
2123 * Data integrity sync. Must wait for all pages under writeback,
2124 * because there may have been pages dirtied before our sync
2125 * call, but which had writeout started before we write it out.
2126 * In which case, the inode may not be on the dirty list, but
2127 * we still have to wait for that writeout.
2129 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
2130 struct address_space
*mapping
= inode
->i_mapping
;
2132 spin_lock(&inode
->i_lock
);
2133 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
2134 (mapping
->nrpages
== 0)) {
2135 spin_unlock(&inode
->i_lock
);
2139 spin_unlock(&inode
->i_lock
);
2140 spin_unlock(&sb
->s_inode_list_lock
);
2143 * We hold a reference to 'inode' so it couldn't have been
2144 * removed from s_inodes list while we dropped the
2145 * s_inode_list_lock. We cannot iput the inode now as we can
2146 * be holding the last reference and we cannot iput it under
2147 * s_inode_list_lock. So we keep the reference and iput it
2154 * We keep the error status of individual mapping so that
2155 * applications can catch the writeback error using fsync(2).
2156 * See filemap_fdatawait_keep_errors() for details.
2158 filemap_fdatawait_keep_errors(mapping
);
2162 spin_lock(&sb
->s_inode_list_lock
);
2164 spin_unlock(&sb
->s_inode_list_lock
);
2166 mutex_unlock(&sb
->s_sync_lock
);
2169 static void __writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2170 enum wb_reason reason
, bool skip_if_busy
)
2172 DEFINE_WB_COMPLETION_ONSTACK(done
);
2173 struct wb_writeback_work work
= {
2175 .sync_mode
= WB_SYNC_NONE
,
2176 .tagged_writepages
= 1,
2181 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2183 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2185 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2187 bdi_split_work_to_wbs(sb
->s_bdi
, &work
, skip_if_busy
);
2188 wb_wait_for_completion(bdi
, &done
);
2192 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2193 * @sb: the superblock
2194 * @nr: the number of pages to write
2195 * @reason: reason why some writeback work initiated
2197 * Start writeback on some inodes on this super_block. No guarantees are made
2198 * on how many (if any) will be written, and this function does not wait
2199 * for IO completion of submitted IO.
2201 void writeback_inodes_sb_nr(struct super_block
*sb
,
2203 enum wb_reason reason
)
2205 __writeback_inodes_sb_nr(sb
, nr
, reason
, false);
2207 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
2210 * writeback_inodes_sb - writeback dirty inodes from given super_block
2211 * @sb: the superblock
2212 * @reason: reason why some writeback work was initiated
2214 * Start writeback on some inodes on this super_block. No guarantees are made
2215 * on how many (if any) will be written, and this function does not wait
2216 * for IO completion of submitted IO.
2218 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2220 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2222 EXPORT_SYMBOL(writeback_inodes_sb
);
2225 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2226 * @sb: the superblock
2227 * @nr: the number of pages to write
2228 * @reason: the reason of writeback
2230 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2231 * Returns 1 if writeback was started, 0 if not.
2233 bool try_to_writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2234 enum wb_reason reason
)
2236 if (!down_read_trylock(&sb
->s_umount
))
2239 __writeback_inodes_sb_nr(sb
, nr
, reason
, true);
2240 up_read(&sb
->s_umount
);
2243 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr
);
2246 * try_to_writeback_inodes_sb - try to start writeback if none underway
2247 * @sb: the superblock
2248 * @reason: reason why some writeback work was initiated
2250 * Implement by try_to_writeback_inodes_sb_nr()
2251 * Returns 1 if writeback was started, 0 if not.
2253 bool try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2255 return try_to_writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2257 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
2260 * sync_inodes_sb - sync sb inode pages
2261 * @sb: the superblock
2263 * This function writes and waits on any dirty inode belonging to this
2266 void sync_inodes_sb(struct super_block
*sb
)
2268 DEFINE_WB_COMPLETION_ONSTACK(done
);
2269 struct wb_writeback_work work
= {
2271 .sync_mode
= WB_SYNC_ALL
,
2272 .nr_pages
= LONG_MAX
,
2275 .reason
= WB_REASON_SYNC
,
2278 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2281 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2282 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2283 * bdi_has_dirty() need to be written out too.
2285 if (bdi
== &noop_backing_dev_info
)
2287 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2289 bdi_split_work_to_wbs(bdi
, &work
, false);
2290 wb_wait_for_completion(bdi
, &done
);
2294 EXPORT_SYMBOL(sync_inodes_sb
);
2297 * write_inode_now - write an inode to disk
2298 * @inode: inode to write to disk
2299 * @sync: whether the write should be synchronous or not
2301 * This function commits an inode to disk immediately if it is dirty. This is
2302 * primarily needed by knfsd.
2304 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2306 int write_inode_now(struct inode
*inode
, int sync
)
2308 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
2309 struct writeback_control wbc
= {
2310 .nr_to_write
= LONG_MAX
,
2311 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2313 .range_end
= LLONG_MAX
,
2316 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
2317 wbc
.nr_to_write
= 0;
2320 return writeback_single_inode(inode
, wb
, &wbc
);
2322 EXPORT_SYMBOL(write_inode_now
);
2325 * sync_inode - write an inode and its pages to disk.
2326 * @inode: the inode to sync
2327 * @wbc: controls the writeback mode
2329 * sync_inode() will write an inode and its pages to disk. It will also
2330 * correctly update the inode on its superblock's dirty inode lists and will
2331 * update inode->i_state.
2333 * The caller must have a ref on the inode.
2335 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
2337 return writeback_single_inode(inode
, &inode_to_bdi(inode
)->wb
, wbc
);
2339 EXPORT_SYMBOL(sync_inode
);
2342 * sync_inode_metadata - write an inode to disk
2343 * @inode: the inode to sync
2344 * @wait: wait for I/O to complete.
2346 * Write an inode to disk and adjust its dirty state after completion.
2348 * Note: only writes the actual inode, no associated data or other metadata.
2350 int sync_inode_metadata(struct inode
*inode
, int wait
)
2352 struct writeback_control wbc
= {
2353 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2354 .nr_to_write
= 0, /* metadata-only */
2357 return sync_inode(inode
, &wbc
);
2359 EXPORT_SYMBOL(sync_inode_metadata
);