2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
19 #include <asm/uaccess.h>
20 #include <asm/tlbflush.h>
23 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
25 unsigned long data
, text
, lib
, swap
, ptes
, pmds
;
26 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
29 * Note: to minimize their overhead, mm maintains hiwater_vm and
30 * hiwater_rss only when about to *lower* total_vm or rss. Any
31 * collector of these hiwater stats must therefore get total_vm
32 * and rss too, which will usually be the higher. Barriers? not
33 * worth the effort, such snapshots can always be inconsistent.
35 hiwater_vm
= total_vm
= mm
->total_vm
;
36 if (hiwater_vm
< mm
->hiwater_vm
)
37 hiwater_vm
= mm
->hiwater_vm
;
38 hiwater_rss
= total_rss
= get_mm_rss(mm
);
39 if (hiwater_rss
< mm
->hiwater_rss
)
40 hiwater_rss
= mm
->hiwater_rss
;
42 data
= mm
->total_vm
- mm
->shared_vm
- mm
->stack_vm
;
43 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
44 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
45 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
46 ptes
= PTRS_PER_PTE
* sizeof(pte_t
) * atomic_long_read(&mm
->nr_ptes
);
47 pmds
= PTRS_PER_PMD
* sizeof(pmd_t
) * mm_nr_pmds(mm
);
62 hiwater_vm
<< (PAGE_SHIFT
-10),
63 total_vm
<< (PAGE_SHIFT
-10),
64 mm
->locked_vm
<< (PAGE_SHIFT
-10),
65 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
66 hiwater_rss
<< (PAGE_SHIFT
-10),
67 total_rss
<< (PAGE_SHIFT
-10),
68 data
<< (PAGE_SHIFT
-10),
69 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
72 swap
<< (PAGE_SHIFT
-10));
73 hugetlb_report_usage(m
, mm
);
76 unsigned long task_vsize(struct mm_struct
*mm
)
78 return PAGE_SIZE
* mm
->total_vm
;
81 unsigned long task_statm(struct mm_struct
*mm
,
82 unsigned long *shared
, unsigned long *text
,
83 unsigned long *data
, unsigned long *resident
)
85 *shared
= get_mm_counter(mm
, MM_FILEPAGES
);
86 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
88 *data
= mm
->total_vm
- mm
->shared_vm
;
89 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
95 * Save get_task_policy() for show_numa_map().
97 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
99 struct task_struct
*task
= priv
->task
;
102 priv
->task_mempolicy
= get_task_policy(task
);
103 mpol_get(priv
->task_mempolicy
);
106 static void release_task_mempolicy(struct proc_maps_private
*priv
)
108 mpol_put(priv
->task_mempolicy
);
111 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
114 static void release_task_mempolicy(struct proc_maps_private
*priv
)
119 static void vma_stop(struct proc_maps_private
*priv
)
121 struct mm_struct
*mm
= priv
->mm
;
123 release_task_mempolicy(priv
);
124 up_read(&mm
->mmap_sem
);
128 static struct vm_area_struct
*
129 m_next_vma(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
131 if (vma
== priv
->tail_vma
)
133 return vma
->vm_next
?: priv
->tail_vma
;
136 static void m_cache_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
138 if (m
->count
< m
->size
) /* vma is copied successfully */
139 m
->version
= m_next_vma(m
->private, vma
) ? vma
->vm_start
: -1UL;
142 static void *m_start(struct seq_file
*m
, loff_t
*ppos
)
144 struct proc_maps_private
*priv
= m
->private;
145 unsigned long last_addr
= m
->version
;
146 struct mm_struct
*mm
;
147 struct vm_area_struct
*vma
;
148 unsigned int pos
= *ppos
;
150 /* See m_cache_vma(). Zero at the start or after lseek. */
151 if (last_addr
== -1UL)
154 priv
->task
= get_proc_task(priv
->inode
);
156 return ERR_PTR(-ESRCH
);
159 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
162 down_read(&mm
->mmap_sem
);
163 hold_task_mempolicy(priv
);
164 priv
->tail_vma
= get_gate_vma(mm
);
167 vma
= find_vma(mm
, last_addr
);
168 if (vma
&& (vma
= m_next_vma(priv
, vma
)))
173 if (pos
< mm
->map_count
) {
174 for (vma
= mm
->mmap
; pos
; pos
--) {
175 m
->version
= vma
->vm_start
;
181 /* we do not bother to update m->version in this case */
182 if (pos
== mm
->map_count
&& priv
->tail_vma
)
183 return priv
->tail_vma
;
189 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
191 struct proc_maps_private
*priv
= m
->private;
192 struct vm_area_struct
*next
;
195 next
= m_next_vma(priv
, v
);
201 static void m_stop(struct seq_file
*m
, void *v
)
203 struct proc_maps_private
*priv
= m
->private;
205 if (!IS_ERR_OR_NULL(v
))
208 put_task_struct(priv
->task
);
213 static int proc_maps_open(struct inode
*inode
, struct file
*file
,
214 const struct seq_operations
*ops
, int psize
)
216 struct proc_maps_private
*priv
= __seq_open_private(file
, ops
, psize
);
222 priv
->mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
223 if (IS_ERR(priv
->mm
)) {
224 int err
= PTR_ERR(priv
->mm
);
226 seq_release_private(inode
, file
);
233 static int proc_map_release(struct inode
*inode
, struct file
*file
)
235 struct seq_file
*seq
= file
->private_data
;
236 struct proc_maps_private
*priv
= seq
->private;
241 return seq_release_private(inode
, file
);
244 static int do_maps_open(struct inode
*inode
, struct file
*file
,
245 const struct seq_operations
*ops
)
247 return proc_maps_open(inode
, file
, ops
,
248 sizeof(struct proc_maps_private
));
251 static pid_t
pid_of_stack(struct proc_maps_private
*priv
,
252 struct vm_area_struct
*vma
, bool is_pid
)
254 struct inode
*inode
= priv
->inode
;
255 struct task_struct
*task
;
259 task
= pid_task(proc_pid(inode
), PIDTYPE_PID
);
261 task
= task_of_stack(task
, vma
, is_pid
);
263 ret
= task_pid_nr_ns(task
, inode
->i_sb
->s_fs_info
);
271 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
273 struct mm_struct
*mm
= vma
->vm_mm
;
274 struct file
*file
= vma
->vm_file
;
275 struct proc_maps_private
*priv
= m
->private;
276 vm_flags_t flags
= vma
->vm_flags
;
277 unsigned long ino
= 0;
278 unsigned long long pgoff
= 0;
279 unsigned long start
, end
;
281 const char *name
= NULL
;
284 struct inode
*inode
= file_inode(vma
->vm_file
);
285 dev
= inode
->i_sb
->s_dev
;
287 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
290 /* We don't show the stack guard page in /proc/maps */
291 start
= vma
->vm_start
;
292 if (stack_guard_page_start(vma
, start
))
295 if (stack_guard_page_end(vma
, end
))
298 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
299 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
302 flags
& VM_READ
? 'r' : '-',
303 flags
& VM_WRITE
? 'w' : '-',
304 flags
& VM_EXEC
? 'x' : '-',
305 flags
& VM_MAYSHARE
? 's' : 'p',
307 MAJOR(dev
), MINOR(dev
), ino
);
310 * Print the dentry name for named mappings, and a
311 * special [heap] marker for the heap:
315 seq_file_path(m
, file
, "\n");
319 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
320 name
= vma
->vm_ops
->name(vma
);
325 name
= arch_vma_name(vma
);
334 if (vma
->vm_start
<= mm
->brk
&&
335 vma
->vm_end
>= mm
->start_brk
) {
340 tid
= pid_of_stack(priv
, vma
, is_pid
);
343 * Thread stack in /proc/PID/task/TID/maps or
344 * the main process stack.
346 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
347 vma
->vm_end
>= mm
->start_stack
)) {
350 /* Thread stack in /proc/PID/maps */
352 seq_printf(m
, "[stack:%d]", tid
);
365 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
367 show_map_vma(m
, v
, is_pid
);
372 static int show_pid_map(struct seq_file
*m
, void *v
)
374 return show_map(m
, v
, 1);
377 static int show_tid_map(struct seq_file
*m
, void *v
)
379 return show_map(m
, v
, 0);
382 static const struct seq_operations proc_pid_maps_op
= {
389 static const struct seq_operations proc_tid_maps_op
= {
396 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
398 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
401 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
403 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
406 const struct file_operations proc_pid_maps_operations
= {
407 .open
= pid_maps_open
,
410 .release
= proc_map_release
,
413 const struct file_operations proc_tid_maps_operations
= {
414 .open
= tid_maps_open
,
417 .release
= proc_map_release
,
421 * Proportional Set Size(PSS): my share of RSS.
423 * PSS of a process is the count of pages it has in memory, where each
424 * page is divided by the number of processes sharing it. So if a
425 * process has 1000 pages all to itself, and 1000 shared with one other
426 * process, its PSS will be 1500.
428 * To keep (accumulated) division errors low, we adopt a 64bit
429 * fixed-point pss counter to minimize division errors. So (pss >>
430 * PSS_SHIFT) would be the real byte count.
432 * A shift of 12 before division means (assuming 4K page size):
433 * - 1M 3-user-pages add up to 8KB errors;
434 * - supports mapcount up to 2^24, or 16M;
435 * - supports PSS up to 2^52 bytes, or 4PB.
439 #ifdef CONFIG_PROC_PAGE_MONITOR
440 struct mem_size_stats
{
441 unsigned long resident
;
442 unsigned long shared_clean
;
443 unsigned long shared_dirty
;
444 unsigned long private_clean
;
445 unsigned long private_dirty
;
446 unsigned long referenced
;
447 unsigned long anonymous
;
448 unsigned long anonymous_thp
;
450 unsigned long shared_hugetlb
;
451 unsigned long private_hugetlb
;
456 static void smaps_account(struct mem_size_stats
*mss
, struct page
*page
,
457 unsigned long size
, bool young
, bool dirty
)
462 mss
->anonymous
+= size
;
464 mss
->resident
+= size
;
465 /* Accumulate the size in pages that have been accessed. */
466 if (young
|| page_is_young(page
) || PageReferenced(page
))
467 mss
->referenced
+= size
;
468 mapcount
= page_mapcount(page
);
472 if (dirty
|| PageDirty(page
))
473 mss
->shared_dirty
+= size
;
475 mss
->shared_clean
+= size
;
476 pss_delta
= (u64
)size
<< PSS_SHIFT
;
477 do_div(pss_delta
, mapcount
);
478 mss
->pss
+= pss_delta
;
480 if (dirty
|| PageDirty(page
))
481 mss
->private_dirty
+= size
;
483 mss
->private_clean
+= size
;
484 mss
->pss
+= (u64
)size
<< PSS_SHIFT
;
488 static void smaps_pte_entry(pte_t
*pte
, unsigned long addr
,
489 struct mm_walk
*walk
)
491 struct mem_size_stats
*mss
= walk
->private;
492 struct vm_area_struct
*vma
= walk
->vma
;
493 struct page
*page
= NULL
;
495 if (pte_present(*pte
)) {
496 page
= vm_normal_page(vma
, addr
, *pte
);
497 } else if (is_swap_pte(*pte
)) {
498 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
500 if (!non_swap_entry(swpent
)) {
503 mss
->swap
+= PAGE_SIZE
;
504 mapcount
= swp_swapcount(swpent
);
506 u64 pss_delta
= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
508 do_div(pss_delta
, mapcount
);
509 mss
->swap_pss
+= pss_delta
;
511 mss
->swap_pss
+= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
513 } else if (is_migration_entry(swpent
))
514 page
= migration_entry_to_page(swpent
);
519 smaps_account(mss
, page
, PAGE_SIZE
, pte_young(*pte
), pte_dirty(*pte
));
522 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
523 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
524 struct mm_walk
*walk
)
526 struct mem_size_stats
*mss
= walk
->private;
527 struct vm_area_struct
*vma
= walk
->vma
;
530 /* FOLL_DUMP will return -EFAULT on huge zero page */
531 page
= follow_trans_huge_pmd(vma
, addr
, pmd
, FOLL_DUMP
);
532 if (IS_ERR_OR_NULL(page
))
534 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
535 smaps_account(mss
, page
, HPAGE_PMD_SIZE
,
536 pmd_young(*pmd
), pmd_dirty(*pmd
));
539 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
540 struct mm_walk
*walk
)
545 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
546 struct mm_walk
*walk
)
548 struct vm_area_struct
*vma
= walk
->vma
;
552 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
553 smaps_pmd_entry(pmd
, addr
, walk
);
558 if (pmd_trans_unstable(pmd
))
561 * The mmap_sem held all the way back in m_start() is what
562 * keeps khugepaged out of here and from collapsing things
565 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
566 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
567 smaps_pte_entry(pte
, addr
, walk
);
568 pte_unmap_unlock(pte
- 1, ptl
);
573 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
576 * Don't forget to update Documentation/ on changes.
578 static const char mnemonics
[BITS_PER_LONG
][2] = {
580 * In case if we meet a flag we don't know about.
582 [0 ... (BITS_PER_LONG
-1)] = "??",
584 [ilog2(VM_READ
)] = "rd",
585 [ilog2(VM_WRITE
)] = "wr",
586 [ilog2(VM_EXEC
)] = "ex",
587 [ilog2(VM_SHARED
)] = "sh",
588 [ilog2(VM_MAYREAD
)] = "mr",
589 [ilog2(VM_MAYWRITE
)] = "mw",
590 [ilog2(VM_MAYEXEC
)] = "me",
591 [ilog2(VM_MAYSHARE
)] = "ms",
592 [ilog2(VM_GROWSDOWN
)] = "gd",
593 [ilog2(VM_PFNMAP
)] = "pf",
594 [ilog2(VM_DENYWRITE
)] = "dw",
595 #ifdef CONFIG_X86_INTEL_MPX
596 [ilog2(VM_MPX
)] = "mp",
598 [ilog2(VM_LOCKED
)] = "lo",
599 [ilog2(VM_IO
)] = "io",
600 [ilog2(VM_SEQ_READ
)] = "sr",
601 [ilog2(VM_RAND_READ
)] = "rr",
602 [ilog2(VM_DONTCOPY
)] = "dc",
603 [ilog2(VM_DONTEXPAND
)] = "de",
604 [ilog2(VM_ACCOUNT
)] = "ac",
605 [ilog2(VM_NORESERVE
)] = "nr",
606 [ilog2(VM_HUGETLB
)] = "ht",
607 [ilog2(VM_ARCH_1
)] = "ar",
608 [ilog2(VM_DONTDUMP
)] = "dd",
609 #ifdef CONFIG_MEM_SOFT_DIRTY
610 [ilog2(VM_SOFTDIRTY
)] = "sd",
612 [ilog2(VM_MIXEDMAP
)] = "mm",
613 [ilog2(VM_HUGEPAGE
)] = "hg",
614 [ilog2(VM_NOHUGEPAGE
)] = "nh",
615 [ilog2(VM_MERGEABLE
)] = "mg",
616 [ilog2(VM_UFFD_MISSING
)]= "um",
617 [ilog2(VM_UFFD_WP
)] = "uw",
621 seq_puts(m
, "VmFlags: ");
622 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
623 if (vma
->vm_flags
& (1UL << i
)) {
624 seq_printf(m
, "%c%c ",
625 mnemonics
[i
][0], mnemonics
[i
][1]);
631 #ifdef CONFIG_HUGETLB_PAGE
632 static int smaps_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
633 unsigned long addr
, unsigned long end
,
634 struct mm_walk
*walk
)
636 struct mem_size_stats
*mss
= walk
->private;
637 struct vm_area_struct
*vma
= walk
->vma
;
638 struct page
*page
= NULL
;
640 if (pte_present(*pte
)) {
641 page
= vm_normal_page(vma
, addr
, *pte
);
642 } else if (is_swap_pte(*pte
)) {
643 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
645 if (is_migration_entry(swpent
))
646 page
= migration_entry_to_page(swpent
);
649 int mapcount
= page_mapcount(page
);
652 mss
->shared_hugetlb
+= huge_page_size(hstate_vma(vma
));
654 mss
->private_hugetlb
+= huge_page_size(hstate_vma(vma
));
658 #endif /* HUGETLB_PAGE */
660 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
662 struct vm_area_struct
*vma
= v
;
663 struct mem_size_stats mss
;
664 struct mm_walk smaps_walk
= {
665 .pmd_entry
= smaps_pte_range
,
666 #ifdef CONFIG_HUGETLB_PAGE
667 .hugetlb_entry
= smaps_hugetlb_range
,
673 memset(&mss
, 0, sizeof mss
);
674 /* mmap_sem is held in m_start */
675 walk_page_vma(vma
, &smaps_walk
);
677 show_map_vma(m
, vma
, is_pid
);
683 "Shared_Clean: %8lu kB\n"
684 "Shared_Dirty: %8lu kB\n"
685 "Private_Clean: %8lu kB\n"
686 "Private_Dirty: %8lu kB\n"
687 "Referenced: %8lu kB\n"
688 "Anonymous: %8lu kB\n"
689 "AnonHugePages: %8lu kB\n"
690 "Shared_Hugetlb: %8lu kB\n"
691 "Private_Hugetlb: %7lu kB\n"
694 "KernelPageSize: %8lu kB\n"
695 "MMUPageSize: %8lu kB\n"
697 (vma
->vm_end
- vma
->vm_start
) >> 10,
699 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
700 mss
.shared_clean
>> 10,
701 mss
.shared_dirty
>> 10,
702 mss
.private_clean
>> 10,
703 mss
.private_dirty
>> 10,
704 mss
.referenced
>> 10,
706 mss
.anonymous_thp
>> 10,
707 mss
.shared_hugetlb
>> 10,
708 mss
.private_hugetlb
>> 10,
710 (unsigned long)(mss
.swap_pss
>> (10 + PSS_SHIFT
)),
711 vma_kernel_pagesize(vma
) >> 10,
712 vma_mmu_pagesize(vma
) >> 10,
713 (vma
->vm_flags
& VM_LOCKED
) ?
714 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
716 show_smap_vma_flags(m
, vma
);
721 static int show_pid_smap(struct seq_file
*m
, void *v
)
723 return show_smap(m
, v
, 1);
726 static int show_tid_smap(struct seq_file
*m
, void *v
)
728 return show_smap(m
, v
, 0);
731 static const struct seq_operations proc_pid_smaps_op
= {
735 .show
= show_pid_smap
738 static const struct seq_operations proc_tid_smaps_op
= {
742 .show
= show_tid_smap
745 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
747 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
750 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
752 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
755 const struct file_operations proc_pid_smaps_operations
= {
756 .open
= pid_smaps_open
,
759 .release
= proc_map_release
,
762 const struct file_operations proc_tid_smaps_operations
= {
763 .open
= tid_smaps_open
,
766 .release
= proc_map_release
,
769 enum clear_refs_types
{
773 CLEAR_REFS_SOFT_DIRTY
,
774 CLEAR_REFS_MM_HIWATER_RSS
,
778 struct clear_refs_private
{
779 enum clear_refs_types type
;
782 #ifdef CONFIG_MEM_SOFT_DIRTY
783 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
784 unsigned long addr
, pte_t
*pte
)
787 * The soft-dirty tracker uses #PF-s to catch writes
788 * to pages, so write-protect the pte as well. See the
789 * Documentation/vm/soft-dirty.txt for full description
790 * of how soft-dirty works.
794 if (pte_present(ptent
)) {
795 ptent
= ptep_modify_prot_start(vma
->vm_mm
, addr
, pte
);
796 ptent
= pte_wrprotect(ptent
);
797 ptent
= pte_clear_soft_dirty(ptent
);
798 ptep_modify_prot_commit(vma
->vm_mm
, addr
, pte
, ptent
);
799 } else if (is_swap_pte(ptent
)) {
800 ptent
= pte_swp_clear_soft_dirty(ptent
);
801 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
805 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
806 unsigned long addr
, pte_t
*pte
)
811 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
812 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
813 unsigned long addr
, pmd_t
*pmdp
)
815 pmd_t pmd
= pmdp_huge_get_and_clear(vma
->vm_mm
, addr
, pmdp
);
817 pmd
= pmd_wrprotect(pmd
);
818 pmd
= pmd_clear_soft_dirty(pmd
);
820 if (vma
->vm_flags
& VM_SOFTDIRTY
)
821 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
823 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
826 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
827 unsigned long addr
, pmd_t
*pmdp
)
832 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
833 unsigned long end
, struct mm_walk
*walk
)
835 struct clear_refs_private
*cp
= walk
->private;
836 struct vm_area_struct
*vma
= walk
->vma
;
841 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
842 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
843 clear_soft_dirty_pmd(vma
, addr
, pmd
);
847 page
= pmd_page(*pmd
);
849 /* Clear accessed and referenced bits. */
850 pmdp_test_and_clear_young(vma
, addr
, pmd
);
851 test_and_clear_page_young(page
);
852 ClearPageReferenced(page
);
858 if (pmd_trans_unstable(pmd
))
861 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
862 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
865 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
866 clear_soft_dirty(vma
, addr
, pte
);
870 if (!pte_present(ptent
))
873 page
= vm_normal_page(vma
, addr
, ptent
);
877 /* Clear accessed and referenced bits. */
878 ptep_test_and_clear_young(vma
, addr
, pte
);
879 test_and_clear_page_young(page
);
880 ClearPageReferenced(page
);
882 pte_unmap_unlock(pte
- 1, ptl
);
887 static int clear_refs_test_walk(unsigned long start
, unsigned long end
,
888 struct mm_walk
*walk
)
890 struct clear_refs_private
*cp
= walk
->private;
891 struct vm_area_struct
*vma
= walk
->vma
;
893 if (vma
->vm_flags
& VM_PFNMAP
)
897 * Writing 1 to /proc/pid/clear_refs affects all pages.
898 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
899 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
900 * Writing 4 to /proc/pid/clear_refs affects all pages.
902 if (cp
->type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
904 if (cp
->type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
909 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
910 size_t count
, loff_t
*ppos
)
912 struct task_struct
*task
;
913 char buffer
[PROC_NUMBUF
];
914 struct mm_struct
*mm
;
915 struct vm_area_struct
*vma
;
916 enum clear_refs_types type
;
920 memset(buffer
, 0, sizeof(buffer
));
921 if (count
> sizeof(buffer
) - 1)
922 count
= sizeof(buffer
) - 1;
923 if (copy_from_user(buffer
, buf
, count
))
925 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
928 type
= (enum clear_refs_types
)itype
;
929 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
932 task
= get_proc_task(file_inode(file
));
935 mm
= get_task_mm(task
);
937 struct clear_refs_private cp
= {
940 struct mm_walk clear_refs_walk
= {
941 .pmd_entry
= clear_refs_pte_range
,
942 .test_walk
= clear_refs_test_walk
,
947 if (type
== CLEAR_REFS_MM_HIWATER_RSS
) {
949 * Writing 5 to /proc/pid/clear_refs resets the peak
950 * resident set size to this mm's current rss value.
952 down_write(&mm
->mmap_sem
);
953 reset_mm_hiwater_rss(mm
);
954 up_write(&mm
->mmap_sem
);
958 down_read(&mm
->mmap_sem
);
959 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
960 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
961 if (!(vma
->vm_flags
& VM_SOFTDIRTY
))
963 up_read(&mm
->mmap_sem
);
964 down_write(&mm
->mmap_sem
);
965 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
966 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
967 vma_set_page_prot(vma
);
969 downgrade_write(&mm
->mmap_sem
);
972 mmu_notifier_invalidate_range_start(mm
, 0, -1);
974 walk_page_range(0, ~0UL, &clear_refs_walk
);
975 if (type
== CLEAR_REFS_SOFT_DIRTY
)
976 mmu_notifier_invalidate_range_end(mm
, 0, -1);
978 up_read(&mm
->mmap_sem
);
982 put_task_struct(task
);
987 const struct file_operations proc_clear_refs_operations
= {
988 .write
= clear_refs_write
,
989 .llseek
= noop_llseek
,
997 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
998 pagemap_entry_t
*buffer
;
1002 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1003 #define PAGEMAP_WALK_MASK (PMD_MASK)
1005 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1006 #define PM_PFRAME_BITS 55
1007 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1008 #define PM_SOFT_DIRTY BIT_ULL(55)
1009 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1010 #define PM_FILE BIT_ULL(61)
1011 #define PM_SWAP BIT_ULL(62)
1012 #define PM_PRESENT BIT_ULL(63)
1014 #define PM_END_OF_BUFFER 1
1016 static inline pagemap_entry_t
make_pme(u64 frame
, u64 flags
)
1018 return (pagemap_entry_t
) { .pme
= (frame
& PM_PFRAME_MASK
) | flags
};
1021 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
1022 struct pagemapread
*pm
)
1024 pm
->buffer
[pm
->pos
++] = *pme
;
1025 if (pm
->pos
>= pm
->len
)
1026 return PM_END_OF_BUFFER
;
1030 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
1031 struct mm_walk
*walk
)
1033 struct pagemapread
*pm
= walk
->private;
1034 unsigned long addr
= start
;
1037 while (addr
< end
) {
1038 struct vm_area_struct
*vma
= find_vma(walk
->mm
, addr
);
1039 pagemap_entry_t pme
= make_pme(0, 0);
1040 /* End of address space hole, which we mark as non-present. */
1041 unsigned long hole_end
;
1044 hole_end
= min(end
, vma
->vm_start
);
1048 for (; addr
< hole_end
; addr
+= PAGE_SIZE
) {
1049 err
= add_to_pagemap(addr
, &pme
, pm
);
1057 /* Addresses in the VMA. */
1058 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1059 pme
= make_pme(0, PM_SOFT_DIRTY
);
1060 for (; addr
< min(end
, vma
->vm_end
); addr
+= PAGE_SIZE
) {
1061 err
= add_to_pagemap(addr
, &pme
, pm
);
1070 static pagemap_entry_t
pte_to_pagemap_entry(struct pagemapread
*pm
,
1071 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
1073 u64 frame
= 0, flags
= 0;
1074 struct page
*page
= NULL
;
1076 if (pte_present(pte
)) {
1078 frame
= pte_pfn(pte
);
1079 flags
|= PM_PRESENT
;
1080 page
= vm_normal_page(vma
, addr
, pte
);
1081 if (pte_soft_dirty(pte
))
1082 flags
|= PM_SOFT_DIRTY
;
1083 } else if (is_swap_pte(pte
)) {
1085 if (pte_swp_soft_dirty(pte
))
1086 flags
|= PM_SOFT_DIRTY
;
1087 entry
= pte_to_swp_entry(pte
);
1088 frame
= swp_type(entry
) |
1089 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
1091 if (is_migration_entry(entry
))
1092 page
= migration_entry_to_page(entry
);
1095 if (page
&& !PageAnon(page
))
1097 if (page
&& page_mapcount(page
) == 1)
1098 flags
|= PM_MMAP_EXCLUSIVE
;
1099 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1100 flags
|= PM_SOFT_DIRTY
;
1102 return make_pme(frame
, flags
);
1105 static int pagemap_pmd_range(pmd_t
*pmdp
, unsigned long addr
, unsigned long end
,
1106 struct mm_walk
*walk
)
1108 struct vm_area_struct
*vma
= walk
->vma
;
1109 struct pagemapread
*pm
= walk
->private;
1111 pte_t
*pte
, *orig_pte
;
1114 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1115 if (pmd_trans_huge_lock(pmdp
, vma
, &ptl
) == 1) {
1116 u64 flags
= 0, frame
= 0;
1119 if ((vma
->vm_flags
& VM_SOFTDIRTY
) || pmd_soft_dirty(pmd
))
1120 flags
|= PM_SOFT_DIRTY
;
1123 * Currently pmd for thp is always present because thp
1124 * can not be swapped-out, migrated, or HWPOISONed
1125 * (split in such cases instead.)
1126 * This if-check is just to prepare for future implementation.
1128 if (pmd_present(pmd
)) {
1129 struct page
*page
= pmd_page(pmd
);
1131 if (page_mapcount(page
) == 1)
1132 flags
|= PM_MMAP_EXCLUSIVE
;
1134 flags
|= PM_PRESENT
;
1136 frame
= pmd_pfn(pmd
) +
1137 ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1140 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1141 pagemap_entry_t pme
= make_pme(frame
, flags
);
1143 err
= add_to_pagemap(addr
, &pme
, pm
);
1146 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1153 if (pmd_trans_unstable(pmdp
))
1155 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1158 * We can assume that @vma always points to a valid one and @end never
1159 * goes beyond vma->vm_end.
1161 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmdp
, addr
, &ptl
);
1162 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
1163 pagemap_entry_t pme
;
1165 pme
= pte_to_pagemap_entry(pm
, vma
, addr
, *pte
);
1166 err
= add_to_pagemap(addr
, &pme
, pm
);
1170 pte_unmap_unlock(orig_pte
, ptl
);
1177 #ifdef CONFIG_HUGETLB_PAGE
1178 /* This function walks within one hugetlb entry in the single call */
1179 static int pagemap_hugetlb_range(pte_t
*ptep
, unsigned long hmask
,
1180 unsigned long addr
, unsigned long end
,
1181 struct mm_walk
*walk
)
1183 struct pagemapread
*pm
= walk
->private;
1184 struct vm_area_struct
*vma
= walk
->vma
;
1185 u64 flags
= 0, frame
= 0;
1189 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1190 flags
|= PM_SOFT_DIRTY
;
1192 pte
= huge_ptep_get(ptep
);
1193 if (pte_present(pte
)) {
1194 struct page
*page
= pte_page(pte
);
1196 if (!PageAnon(page
))
1199 if (page_mapcount(page
) == 1)
1200 flags
|= PM_MMAP_EXCLUSIVE
;
1202 flags
|= PM_PRESENT
;
1204 frame
= pte_pfn(pte
) +
1205 ((addr
& ~hmask
) >> PAGE_SHIFT
);
1208 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1209 pagemap_entry_t pme
= make_pme(frame
, flags
);
1211 err
= add_to_pagemap(addr
, &pme
, pm
);
1214 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1222 #endif /* HUGETLB_PAGE */
1225 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1227 * For each page in the address space, this file contains one 64-bit entry
1228 * consisting of the following:
1230 * Bits 0-54 page frame number (PFN) if present
1231 * Bits 0-4 swap type if swapped
1232 * Bits 5-54 swap offset if swapped
1233 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1234 * Bit 56 page exclusively mapped
1236 * Bit 61 page is file-page or shared-anon
1237 * Bit 62 page swapped
1238 * Bit 63 page present
1240 * If the page is not present but in swap, then the PFN contains an
1241 * encoding of the swap file number and the page's offset into the
1242 * swap. Unmapped pages return a null PFN. This allows determining
1243 * precisely which pages are mapped (or in swap) and comparing mapped
1244 * pages between processes.
1246 * Efficient users of this interface will use /proc/pid/maps to
1247 * determine which areas of memory are actually mapped and llseek to
1248 * skip over unmapped regions.
1250 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1251 size_t count
, loff_t
*ppos
)
1253 struct mm_struct
*mm
= file
->private_data
;
1254 struct pagemapread pm
;
1255 struct mm_walk pagemap_walk
= {};
1257 unsigned long svpfn
;
1258 unsigned long start_vaddr
;
1259 unsigned long end_vaddr
;
1260 int ret
= 0, copied
= 0;
1262 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
1266 /* file position must be aligned */
1267 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1274 /* do not disclose physical addresses: attack vector */
1275 pm
.show_pfn
= file_ns_capable(file
, &init_user_ns
, CAP_SYS_ADMIN
);
1277 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1278 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_TEMPORARY
);
1283 pagemap_walk
.pmd_entry
= pagemap_pmd_range
;
1284 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1285 #ifdef CONFIG_HUGETLB_PAGE
1286 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1288 pagemap_walk
.mm
= mm
;
1289 pagemap_walk
.private = &pm
;
1292 svpfn
= src
/ PM_ENTRY_BYTES
;
1293 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1294 end_vaddr
= mm
->task_size
;
1296 /* watch out for wraparound */
1297 if (svpfn
> mm
->task_size
>> PAGE_SHIFT
)
1298 start_vaddr
= end_vaddr
;
1301 * The odds are that this will stop walking way
1302 * before end_vaddr, because the length of the
1303 * user buffer is tracked in "pm", and the walk
1304 * will stop when we hit the end of the buffer.
1307 while (count
&& (start_vaddr
< end_vaddr
)) {
1312 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1314 if (end
< start_vaddr
|| end
> end_vaddr
)
1316 down_read(&mm
->mmap_sem
);
1317 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1318 up_read(&mm
->mmap_sem
);
1321 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1322 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1331 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1342 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1344 struct mm_struct
*mm
;
1346 mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
1349 file
->private_data
= mm
;
1353 static int pagemap_release(struct inode
*inode
, struct file
*file
)
1355 struct mm_struct
*mm
= file
->private_data
;
1362 const struct file_operations proc_pagemap_operations
= {
1363 .llseek
= mem_lseek
, /* borrow this */
1364 .read
= pagemap_read
,
1365 .open
= pagemap_open
,
1366 .release
= pagemap_release
,
1368 #endif /* CONFIG_PROC_PAGE_MONITOR */
1373 unsigned long pages
;
1375 unsigned long active
;
1376 unsigned long writeback
;
1377 unsigned long mapcount_max
;
1378 unsigned long dirty
;
1379 unsigned long swapcache
;
1380 unsigned long node
[MAX_NUMNODES
];
1383 struct numa_maps_private
{
1384 struct proc_maps_private proc_maps
;
1385 struct numa_maps md
;
1388 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1389 unsigned long nr_pages
)
1391 int count
= page_mapcount(page
);
1393 md
->pages
+= nr_pages
;
1394 if (pte_dirty
|| PageDirty(page
))
1395 md
->dirty
+= nr_pages
;
1397 if (PageSwapCache(page
))
1398 md
->swapcache
+= nr_pages
;
1400 if (PageActive(page
) || PageUnevictable(page
))
1401 md
->active
+= nr_pages
;
1403 if (PageWriteback(page
))
1404 md
->writeback
+= nr_pages
;
1407 md
->anon
+= nr_pages
;
1409 if (count
> md
->mapcount_max
)
1410 md
->mapcount_max
= count
;
1412 md
->node
[page_to_nid(page
)] += nr_pages
;
1415 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1421 if (!pte_present(pte
))
1424 page
= vm_normal_page(vma
, addr
, pte
);
1428 if (PageReserved(page
))
1431 nid
= page_to_nid(page
);
1432 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1438 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1439 unsigned long end
, struct mm_walk
*walk
)
1441 struct numa_maps
*md
= walk
->private;
1442 struct vm_area_struct
*vma
= walk
->vma
;
1447 if (pmd_trans_huge_lock(pmd
, vma
, &ptl
) == 1) {
1448 pte_t huge_pte
= *(pte_t
*)pmd
;
1451 page
= can_gather_numa_stats(huge_pte
, vma
, addr
);
1453 gather_stats(page
, md
, pte_dirty(huge_pte
),
1454 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1459 if (pmd_trans_unstable(pmd
))
1461 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1463 struct page
*page
= can_gather_numa_stats(*pte
, vma
, addr
);
1466 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1468 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1469 pte_unmap_unlock(orig_pte
, ptl
);
1472 #ifdef CONFIG_HUGETLB_PAGE
1473 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1474 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1476 struct numa_maps
*md
;
1479 if (!pte_present(*pte
))
1482 page
= pte_page(*pte
);
1487 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1492 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1493 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1500 * Display pages allocated per node and memory policy via /proc.
1502 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1504 struct numa_maps_private
*numa_priv
= m
->private;
1505 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1506 struct vm_area_struct
*vma
= v
;
1507 struct numa_maps
*md
= &numa_priv
->md
;
1508 struct file
*file
= vma
->vm_file
;
1509 struct mm_struct
*mm
= vma
->vm_mm
;
1510 struct mm_walk walk
= {
1511 .hugetlb_entry
= gather_hugetlb_stats
,
1512 .pmd_entry
= gather_pte_stats
,
1516 struct mempolicy
*pol
;
1523 /* Ensure we start with an empty set of numa_maps statistics. */
1524 memset(md
, 0, sizeof(*md
));
1526 pol
= __get_vma_policy(vma
, vma
->vm_start
);
1528 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1531 mpol_to_str(buffer
, sizeof(buffer
), proc_priv
->task_mempolicy
);
1534 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1537 seq_puts(m
, " file=");
1538 seq_file_path(m
, file
, "\n\t= ");
1539 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1540 seq_puts(m
, " heap");
1542 pid_t tid
= pid_of_stack(proc_priv
, vma
, is_pid
);
1545 * Thread stack in /proc/PID/task/TID/maps or
1546 * the main process stack.
1548 if (!is_pid
|| (vma
->vm_start
<= mm
->start_stack
&&
1549 vma
->vm_end
>= mm
->start_stack
))
1550 seq_puts(m
, " stack");
1552 seq_printf(m
, " stack:%d", tid
);
1556 if (is_vm_hugetlb_page(vma
))
1557 seq_puts(m
, " huge");
1559 /* mmap_sem is held by m_start */
1560 walk_page_vma(vma
, &walk
);
1566 seq_printf(m
, " anon=%lu", md
->anon
);
1569 seq_printf(m
, " dirty=%lu", md
->dirty
);
1571 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1572 seq_printf(m
, " mapped=%lu", md
->pages
);
1574 if (md
->mapcount_max
> 1)
1575 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1578 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1580 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1581 seq_printf(m
, " active=%lu", md
->active
);
1584 seq_printf(m
, " writeback=%lu", md
->writeback
);
1586 for_each_node_state(nid
, N_MEMORY
)
1588 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1590 seq_printf(m
, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma
) >> 10);
1593 m_cache_vma(m
, vma
);
1597 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1599 return show_numa_map(m
, v
, 1);
1602 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1604 return show_numa_map(m
, v
, 0);
1607 static const struct seq_operations proc_pid_numa_maps_op
= {
1611 .show
= show_pid_numa_map
,
1614 static const struct seq_operations proc_tid_numa_maps_op
= {
1618 .show
= show_tid_numa_map
,
1621 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1622 const struct seq_operations
*ops
)
1624 return proc_maps_open(inode
, file
, ops
,
1625 sizeof(struct numa_maps_private
));
1628 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1630 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1633 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1635 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1638 const struct file_operations proc_pid_numa_maps_operations
= {
1639 .open
= pid_numa_maps_open
,
1641 .llseek
= seq_lseek
,
1642 .release
= proc_map_release
,
1645 const struct file_operations proc_tid_numa_maps_operations
= {
1646 .open
= tid_numa_maps_open
,
1648 .llseek
= seq_lseek
,
1649 .release
= proc_map_release
,
1651 #endif /* CONFIG_NUMA */