2 * linux/drivers/scsi/esas2r/esas2r_io.c
3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
5 * Copyright (c) 2001-2013 ATTO Technology, Inc.
6 * (mailto:linuxdrivers@attotech.com)mpt3sas/mpt3sas_trigger_diag.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23 * solely responsible for determining the appropriateness of using and
24 * distributing the Program and assumes all risks associated with its
25 * exercise of rights under this Agreement, including but not limited to
26 * the risks and costs of program errors, damage to or loss of data,
27 * programs or equipment, and unavailability or interruption of operations.
29 * DISCLAIMER OF LIABILITY
30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38 * You should have received a copy of the GNU General Public License
39 * along with this program; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
46 void esas2r_start_request(struct esas2r_adapter
*a
, struct esas2r_request
*rq
)
48 struct esas2r_target
*t
= NULL
;
49 struct esas2r_request
*startrq
= rq
;
52 if (unlikely(test_bit(AF_DEGRADED_MODE
, &a
->flags
) ||
53 test_bit(AF_POWER_DOWN
, &a
->flags
))) {
54 if (rq
->vrq
->scsi
.function
== VDA_FUNC_SCSI
)
55 rq
->req_stat
= RS_SEL2
;
57 rq
->req_stat
= RS_DEGRADED
;
58 } else if (likely(rq
->vrq
->scsi
.function
== VDA_FUNC_SCSI
)) {
59 t
= a
->targetdb
+ rq
->target_id
;
61 if (unlikely(t
>= a
->targetdb_end
62 || !(t
->flags
& TF_USED
))) {
63 rq
->req_stat
= RS_SEL
;
65 /* copy in the target ID. */
66 rq
->vrq
->scsi
.target_id
= cpu_to_le16(t
->virt_targ_id
);
69 * Test if we want to report RS_SEL for missing target.
70 * Note that if AF_DISC_PENDING is set than this will
71 * go on the defer queue.
73 if (unlikely(t
->target_state
!= TS_PRESENT
&&
74 !test_bit(AF_DISC_PENDING
, &a
->flags
)))
75 rq
->req_stat
= RS_SEL
;
79 if (unlikely(rq
->req_stat
!= RS_PENDING
)) {
80 esas2r_complete_request(a
, rq
);
84 esas2r_trace("rq=%p", rq
);
85 esas2r_trace("rq->vrq->scsi.handle=%x", rq
->vrq
->scsi
.handle
);
87 if (rq
->vrq
->scsi
.function
== VDA_FUNC_SCSI
) {
88 esas2r_trace("rq->target_id=%d", rq
->target_id
);
89 esas2r_trace("rq->vrq->scsi.flags=%x", rq
->vrq
->scsi
.flags
);
92 spin_lock_irqsave(&a
->queue_lock
, flags
);
94 if (likely(list_empty(&a
->defer_list
) &&
95 !test_bit(AF_CHPRST_PENDING
, &a
->flags
) &&
96 !test_bit(AF_FLASHING
, &a
->flags
) &&
97 !test_bit(AF_DISC_PENDING
, &a
->flags
)))
98 esas2r_local_start_request(a
, startrq
);
100 list_add_tail(&startrq
->req_list
, &a
->defer_list
);
102 spin_unlock_irqrestore(&a
->queue_lock
, flags
);
106 * Starts the specified request. all requests have RS_PENDING set when this
107 * routine is called. The caller is usually esas2r_start_request, but
108 * esas2r_do_deferred_processes will start request that are deferred.
110 * The caller must ensure that requests can be started.
112 * esas2r_start_request will defer a request if there are already requests
113 * waiting or there is a chip reset pending. once the reset condition clears,
114 * esas2r_do_deferred_processes will call this function to start the request.
116 * When a request is started, it is placed on the active list and queued to
119 void esas2r_local_start_request(struct esas2r_adapter
*a
,
120 struct esas2r_request
*rq
)
122 esas2r_trace_enter();
123 esas2r_trace("rq=%p", rq
);
124 esas2r_trace("rq->vrq:%p", rq
->vrq
);
125 esas2r_trace("rq->vrq_md->phys_addr:%x", rq
->vrq_md
->phys_addr
);
127 if (unlikely(rq
->vrq
->scsi
.function
== VDA_FUNC_FLASH
128 && rq
->vrq
->flash
.sub_func
== VDA_FLASH_COMMIT
))
129 set_bit(AF_FLASHING
, &a
->flags
);
131 list_add_tail(&rq
->req_list
, &a
->active_list
);
132 esas2r_start_vda_request(a
, rq
);
137 void esas2r_start_vda_request(struct esas2r_adapter
*a
,
138 struct esas2r_request
*rq
)
140 struct esas2r_inbound_list_source_entry
*element
;
143 rq
->req_stat
= RS_STARTED
;
145 * Calculate the inbound list entry location and the current state of
149 if (a
->last_write
>= a
->list_size
) {
151 /* update the toggle bit */
152 if (test_bit(AF_COMM_LIST_TOGGLE
, &a
->flags
))
153 clear_bit(AF_COMM_LIST_TOGGLE
, &a
->flags
);
155 set_bit(AF_COMM_LIST_TOGGLE
, &a
->flags
);
159 (struct esas2r_inbound_list_source_entry
*)a
->inbound_list_md
.
163 /* Set the VDA request size if it was never modified */
164 if (rq
->vda_req_sz
== RQ_SIZE_DEFAULT
)
165 rq
->vda_req_sz
= (u16
)(a
->max_vdareq_size
/ sizeof(u32
));
167 element
->address
= cpu_to_le64(rq
->vrq_md
->phys_addr
);
168 element
->length
= cpu_to_le32(rq
->vda_req_sz
);
170 /* Update the write pointer */
173 if (test_bit(AF_COMM_LIST_TOGGLE
, &a
->flags
))
176 esas2r_trace("rq->vrq->scsi.handle:%x", rq
->vrq
->scsi
.handle
);
177 esas2r_trace("dw:%x", dw
);
178 esas2r_trace("rq->vda_req_sz:%x", rq
->vda_req_sz
);
179 esas2r_write_register_dword(a
, MU_IN_LIST_WRITE
, dw
);
183 * Build the scatter/gather list for an I/O request according to the
184 * specifications placed in the s/g context. The caller must initialize
185 * context prior to the initial call by calling esas2r_sgc_init().
187 bool esas2r_build_sg_list_sge(struct esas2r_adapter
*a
,
188 struct esas2r_sg_context
*sgc
)
190 struct esas2r_request
*rq
= sgc
->first_req
;
191 union atto_vda_req
*vrq
= rq
->vrq
;
193 while (sgc
->length
) {
198 len
= (*sgc
->get_phys_addr
)(sgc
, &addr
);
200 if (unlikely(len
== 0))
203 /* if current length is more than what's left, stop there */
204 if (unlikely(len
> sgc
->length
))
208 /* limit to a round number less than the maximum length */
209 if (len
> SGE_LEN_MAX
) {
211 * Save the remainder of the split. Whenever we limit
212 * an entry we come back around to build entries out
213 * of the leftover. We do this to prevent multiple
214 * calls to the get_phys_addr() function for an SGE
217 rem
= len
- SGE_LEN_MAX
;
221 /* See if we need to allocate a new SGL */
222 if (unlikely(sgc
->sge
.a64
.curr
> sgc
->sge
.a64
.limit
)) {
224 struct esas2r_mem_desc
*sgl
;
227 * If no SGls are available, return failure. The
228 * caller can call us later with the current context
231 sgl
= esas2r_alloc_sgl(a
);
233 if (unlikely(sgl
== NULL
))
236 /* Calculate the length of the last SGE filled in */
237 sgelen
= (u8
)((u8
*)sgc
->sge
.a64
.curr
238 - (u8
*)sgc
->sge
.a64
.last
);
241 * Copy the last SGE filled in to the first entry of
242 * the new SGL to make room for the chain entry.
244 memcpy(sgl
->virt_addr
, sgc
->sge
.a64
.last
, sgelen
);
246 /* Figure out the new curr pointer in the new segment */
248 (struct atto_vda_sge
*)((u8
*)sgl
->virt_addr
+
251 /* Set the limit pointer and build the chain entry */
253 (struct atto_vda_sge
*)((u8
*)sgl
->virt_addr
257 sgc
->sge
.a64
.last
->length
= cpu_to_le32(
258 SGE_CHAIN
| SGE_ADDR_64
);
259 sgc
->sge
.a64
.last
->address
=
260 cpu_to_le64(sgl
->phys_addr
);
263 * Now, if there was a previous chain entry, then
264 * update it to contain the length of this segment
265 * and size of this chain. otherwise this is the
266 * first SGL, so set the chain_offset in the request.
268 if (sgc
->sge
.a64
.chain
) {
269 sgc
->sge
.a64
.chain
->length
|=
271 ((u8
*)(sgc
->sge
.a64
.
273 - (u8
*)rq
->sg_table
->
275 + sizeof(struct atto_vda_sge
) *
276 LOBIT(SGE_CHAIN_SZ
));
278 vrq
->scsi
.chain_offset
= (u8
)
284 * This is the first SGL, so set the
285 * chain_offset and the VDA request size in
289 (vrq
->scsi
.chain_offset
+
290 sizeof(struct atto_vda_sge
) +
296 * Remember this so when we get a new SGL filled in we
297 * can update the length of this chain entry.
299 sgc
->sge
.a64
.chain
= sgc
->sge
.a64
.last
;
301 /* Now link the new SGL onto the primary request. */
302 list_add(&sgl
->next_desc
, &rq
->sg_table_head
);
305 /* Update last one filled in */
306 sgc
->sge
.a64
.last
= sgc
->sge
.a64
.curr
;
308 /* Build the new SGE and update the S/G context */
309 sgc
->sge
.a64
.curr
->length
= cpu_to_le32(SGE_ADDR_64
| len
);
310 sgc
->sge
.a64
.curr
->address
= cpu_to_le32(addr
);
312 sgc
->cur_offset
+= len
;
316 * Check if we previously split an entry. If so we have to
317 * pick up where we left off.
327 /* Mark the end of the SGL */
328 sgc
->sge
.a64
.last
->length
|= cpu_to_le32(SGE_LAST
);
331 * If there was a previous chain entry, update the length to indicate
332 * the length of this last segment.
334 if (sgc
->sge
.a64
.chain
) {
335 sgc
->sge
.a64
.chain
->length
|= cpu_to_le32(
336 ((u8
*)(sgc
->sge
.a64
.curr
) -
337 (u8
*)rq
->sg_table
->virt_addr
));
342 * The entire VDA request was not used so lets
343 * set the size of the VDA request to be DMA'd
346 ((u16
)((u8
*)sgc
->sge
.a64
.last
- (u8
*)vrq
)
347 + sizeof(struct atto_vda_sge
) + 3) / sizeof(u32
);
350 * Only update the request size if it is bigger than what is
351 * already there. We can come in here twice for some management
354 if (reqsize
> rq
->vda_req_sz
)
355 rq
->vda_req_sz
= reqsize
;
362 * Create PRD list for each I-block consumed by the command. This routine
363 * determines how much data is required from each I-block being consumed
364 * by the command. The first and last I-blocks can be partials and all of
365 * the I-blocks in between are for a full I-block of data.
367 * The interleave size is used to determine the number of bytes in the 1st
368 * I-block and the remaining I-blocks are what remeains.
370 static bool esas2r_build_prd_iblk(struct esas2r_adapter
*a
,
371 struct esas2r_sg_context
*sgc
)
373 struct esas2r_request
*rq
= sgc
->first_req
;
376 struct esas2r_mem_desc
*sgl
;
380 while (sgc
->length
) {
381 /* Get the next address/length pair */
383 len
= (*sgc
->get_phys_addr
)(sgc
, &addr
);
385 if (unlikely(len
== 0))
388 /* If current length is more than what's left, stop there */
390 if (unlikely(len
> sgc
->length
))
394 /* Limit to a round number less than the maximum length */
396 if (len
> PRD_LEN_MAX
) {
398 * Save the remainder of the split. whenever we limit
399 * an entry we come back around to build entries out
400 * of the leftover. We do this to prevent multiple
401 * calls to the get_phys_addr() function for an SGE
404 rem
= len
- PRD_LEN_MAX
;
408 /* See if we need to allocate a new SGL */
409 if (sgc
->sge
.prd
.sge_cnt
== 0) {
410 if (len
== sgc
->length
) {
412 * We only have 1 PRD entry left.
413 * It can be placed where the chain
414 * entry would have gone
417 /* Build the simple SGE */
418 sgc
->sge
.prd
.curr
->ctl_len
= cpu_to_le32(
420 sgc
->sge
.prd
.curr
->address
= cpu_to_le64(addr
);
422 /* Adjust length related fields */
423 sgc
->cur_offset
+= len
;
426 /* We use the reserved chain entry for data */
432 if (sgc
->sge
.prd
.chain
) {
434 * Fill # of entries of current SGL in previous
435 * chain the length of this current SGL may not
439 sgc
->sge
.prd
.chain
->ctl_len
|= cpu_to_le32(
440 sgc
->sge
.prd
.sgl_max_cnt
);
444 * If no SGls are available, return failure. The
445 * caller can call us later with the current context
449 sgl
= esas2r_alloc_sgl(a
);
451 if (unlikely(sgl
== NULL
))
455 * Link the new SGL onto the chain
456 * They are in reverse order
458 list_add(&sgl
->next_desc
, &rq
->sg_table_head
);
461 * An SGL was just filled in and we are starting
462 * a new SGL. Prime the chain of the ending SGL with
463 * info that points to the new SGL. The length gets
464 * filled in when the new SGL is filled or ended
467 sgc
->sge
.prd
.chain
= sgc
->sge
.prd
.curr
;
469 sgc
->sge
.prd
.chain
->ctl_len
= cpu_to_le32(PRD_CHAIN
);
470 sgc
->sge
.prd
.chain
->address
=
471 cpu_to_le64(sgl
->phys_addr
);
474 * Start a new segment.
475 * Take one away and save for chain SGE
479 (struct atto_physical_region_description
*)sgl
482 sgc
->sge
.prd
.sge_cnt
= sgc
->sge
.prd
.sgl_max_cnt
- 1;
485 sgc
->sge
.prd
.sge_cnt
--;
486 /* Build the simple SGE */
487 sgc
->sge
.prd
.curr
->ctl_len
= cpu_to_le32(PRD_DATA
| len
);
488 sgc
->sge
.prd
.curr
->address
= cpu_to_le64(addr
);
490 /* Used another element. Point to the next one */
494 /* Adjust length related fields */
496 sgc
->cur_offset
+= len
;
500 * Check if we previously split an entry. If so we have to
501 * pick up where we left off.
512 if (!list_empty(&rq
->sg_table_head
)) {
513 if (sgc
->sge
.prd
.chain
) {
514 sgc
->sge
.prd
.chain
->ctl_len
|=
515 cpu_to_le32(sgc
->sge
.prd
.sgl_max_cnt
516 - sgc
->sge
.prd
.sge_cnt
524 bool esas2r_build_sg_list_prd(struct esas2r_adapter
*a
,
525 struct esas2r_sg_context
*sgc
)
527 struct esas2r_request
*rq
= sgc
->first_req
;
528 u32 len
= sgc
->length
;
529 struct esas2r_target
*t
= a
->targetdb
+ rq
->target_id
;
532 struct atto_physical_region_description
*curr_iblk_chn
;
533 u8
*cdb
= (u8
*)&rq
->vrq
->scsi
.cdb
[0];
536 * extract LBA from command so we can determine
537 * the I-Block boundary
540 if (rq
->vrq
->scsi
.function
== VDA_FUNC_SCSI
541 && t
->target_state
== TS_PRESENT
542 && !(t
->flags
& TF_PASS_THRU
)) {
545 switch (rq
->vrq
->scsi
.cdb
[0]) {
550 MAKEDWORD(MAKEWORD(cdb
[9],
564 MAKEDWORD(MAKEWORD(cdb
[5],
576 MAKEDWORD(MAKEWORD(cdb
[3],
578 MAKEWORD(cdb
[1] & 0x1F,
591 rq
->vrq
->scsi
.iblk_cnt_prd
= 0;
593 /* Determine size of 1st I-block PRD list */
594 startlba
= t
->inter_block
- (lbalo
& (t
->inter_block
-
596 sgc
->length
= startlba
* t
->block_size
;
598 /* Chk if the 1st iblk chain starts at base of Iblock */
599 if ((lbalo
& (t
->inter_block
- 1)) == 0)
600 rq
->flags
|= RF_1ST_IBLK_BASE
;
602 if (sgc
->length
> len
)
611 /* get our starting chain address */
614 (struct atto_physical_region_description
*)sgc
->sge
.a64
.curr
;
616 sgc
->sge
.prd
.sgl_max_cnt
= sgl_page_size
/
618 atto_physical_region_description
);
620 /* create all of the I-block PRD lists */
623 sgc
->sge
.prd
.sge_cnt
= 0;
624 sgc
->sge
.prd
.chain
= NULL
;
625 sgc
->sge
.prd
.curr
= curr_iblk_chn
;
627 /* increment to next I-Block */
631 /* go build the next I-Block PRD list */
633 if (unlikely(!esas2r_build_prd_iblk(a
, sgc
)))
639 rq
->vrq
->scsi
.iblk_cnt_prd
++;
641 if (len
> t
->inter_byte
)
642 sgc
->length
= t
->inter_byte
;
648 /* figure out the size used of the VDA request */
650 reqsize
= ((u16
)((u8
*)curr_iblk_chn
- (u8
*)rq
->vrq
))
654 * only update the request size if it is bigger than what is
655 * already there. we can come in here twice for some management
659 if (reqsize
> rq
->vda_req_sz
)
660 rq
->vda_req_sz
= reqsize
;
665 static void esas2r_handle_pending_reset(struct esas2r_adapter
*a
, u32 currtime
)
667 u32 delta
= currtime
- a
->chip_init_time
;
669 if (delta
<= ESAS2R_CHPRST_WAIT_TIME
) {
670 /* Wait before accessing registers */
671 } else if (delta
>= ESAS2R_CHPRST_TIME
) {
673 * The last reset failed so try again. Reset
674 * processing will give up after three tries.
676 esas2r_local_reset_adapter(a
);
678 /* We can now see if the firmware is ready */
681 doorbell
= esas2r_read_register_dword(a
, MU_DOORBELL_OUT
);
682 if (doorbell
== 0xFFFFFFFF || !(doorbell
& DRBL_FORCE_INT
)) {
683 esas2r_force_interrupt(a
);
685 u32 ver
= (doorbell
& DRBL_FW_VER_MSK
);
687 /* Driver supports API version 0 and 1 */
688 esas2r_write_register_dword(a
, MU_DOORBELL_OUT
,
690 if (ver
== DRBL_FW_VER_0
) {
691 set_bit(AF_CHPRST_DETECTED
, &a
->flags
);
692 set_bit(AF_LEGACY_SGE_MODE
, &a
->flags
);
694 a
->max_vdareq_size
= 128;
695 a
->build_sgl
= esas2r_build_sg_list_sge
;
696 } else if (ver
== DRBL_FW_VER_1
) {
697 set_bit(AF_CHPRST_DETECTED
, &a
->flags
);
698 clear_bit(AF_LEGACY_SGE_MODE
, &a
->flags
);
700 a
->max_vdareq_size
= 1024;
701 a
->build_sgl
= esas2r_build_sg_list_prd
;
703 esas2r_local_reset_adapter(a
);
710 /* This function must be called once per timer tick */
711 void esas2r_timer_tick(struct esas2r_adapter
*a
)
713 u32 currtime
= jiffies_to_msecs(jiffies
);
714 u32 deltatime
= currtime
- a
->last_tick_time
;
716 a
->last_tick_time
= currtime
;
718 /* count down the uptime */
719 if (a
->chip_uptime
&&
720 !test_bit(AF_CHPRST_PENDING
, &a
->flags
) &&
721 !test_bit(AF_DISC_PENDING
, &a
->flags
)) {
722 if (deltatime
>= a
->chip_uptime
)
725 a
->chip_uptime
-= deltatime
;
728 if (test_bit(AF_CHPRST_PENDING
, &a
->flags
)) {
729 if (!test_bit(AF_CHPRST_NEEDED
, &a
->flags
) &&
730 !test_bit(AF_CHPRST_DETECTED
, &a
->flags
))
731 esas2r_handle_pending_reset(a
, currtime
);
733 if (test_bit(AF_DISC_PENDING
, &a
->flags
))
734 esas2r_disc_check_complete(a
);
735 if (test_bit(AF_HEARTBEAT_ENB
, &a
->flags
)) {
736 if (test_bit(AF_HEARTBEAT
, &a
->flags
)) {
737 if ((currtime
- a
->heartbeat_time
) >=
738 ESAS2R_HEARTBEAT_TIME
) {
739 clear_bit(AF_HEARTBEAT
, &a
->flags
);
740 esas2r_hdebug("heartbeat failed");
741 esas2r_log(ESAS2R_LOG_CRIT
,
744 esas2r_local_reset_adapter(a
);
747 set_bit(AF_HEARTBEAT
, &a
->flags
);
748 a
->heartbeat_time
= currtime
;
749 esas2r_force_interrupt(a
);
754 if (atomic_read(&a
->disable_cnt
) == 0)
755 esas2r_do_deferred_processes(a
);
759 * Send the specified task management function to the target and LUN
760 * specified in rqaux. in addition, immediately abort any commands that
761 * are queued but not sent to the device according to the rules specified
762 * by the task management function.
764 bool esas2r_send_task_mgmt(struct esas2r_adapter
*a
,
765 struct esas2r_request
*rqaux
, u8 task_mgt_func
)
767 u16 targetid
= rqaux
->target_id
;
768 u8 lun
= (u8
)le32_to_cpu(rqaux
->vrq
->scsi
.flags
);
770 struct esas2r_request
*rq
;
771 struct list_head
*next
, *element
;
774 LIST_HEAD(comp_list
);
776 esas2r_trace_enter();
777 esas2r_trace("rqaux:%p", rqaux
);
778 esas2r_trace("task_mgt_func:%x", task_mgt_func
);
779 spin_lock_irqsave(&a
->queue_lock
, flags
);
781 /* search the defer queue looking for requests for the device */
782 list_for_each_safe(element
, next
, &a
->defer_list
) {
783 rq
= list_entry(element
, struct esas2r_request
, req_list
);
785 if (rq
->vrq
->scsi
.function
== VDA_FUNC_SCSI
786 && rq
->target_id
== targetid
787 && (((u8
)le32_to_cpu(rq
->vrq
->scsi
.flags
)) == lun
788 || task_mgt_func
== 0x20)) { /* target reset */
789 /* Found a request affected by the task management */
790 if (rq
->req_stat
== RS_PENDING
) {
792 * The request is pending or waiting. We can
793 * safelycomplete the request now.
795 if (esas2r_ioreq_aborted(a
, rq
, RS_ABORTED
))
796 list_add_tail(&rq
->comp_list
,
802 /* Send the task management request to the firmware */
803 rqaux
->sense_len
= 0;
804 rqaux
->vrq
->scsi
.length
= 0;
805 rqaux
->target_id
= targetid
;
806 rqaux
->vrq
->scsi
.flags
|= cpu_to_le32(lun
);
807 memset(rqaux
->vrq
->scsi
.cdb
, 0, sizeof(rqaux
->vrq
->scsi
.cdb
));
808 rqaux
->vrq
->scsi
.flags
|=
809 cpu_to_le16(task_mgt_func
* LOBIT(FCP_CMND_TM_MASK
));
811 if (test_bit(AF_FLASHING
, &a
->flags
)) {
812 /* Assume success. if there are active requests, return busy */
813 rqaux
->req_stat
= RS_SUCCESS
;
815 list_for_each_safe(element
, next
, &a
->active_list
) {
816 rq
= list_entry(element
, struct esas2r_request
,
818 if (rq
->vrq
->scsi
.function
== VDA_FUNC_SCSI
819 && rq
->target_id
== targetid
820 && (((u8
)le32_to_cpu(rq
->vrq
->scsi
.flags
)) == lun
821 || task_mgt_func
== 0x20)) /* target reset */
822 rqaux
->req_stat
= RS_BUSY
;
828 spin_unlock_irqrestore(&a
->queue_lock
, flags
);
830 if (!test_bit(AF_FLASHING
, &a
->flags
))
831 esas2r_start_request(a
, rqaux
);
833 esas2r_comp_list_drain(a
, &comp_list
);
835 if (atomic_read(&a
->disable_cnt
) == 0)
836 esas2r_do_deferred_processes(a
);
843 void esas2r_reset_bus(struct esas2r_adapter
*a
)
845 esas2r_log(ESAS2R_LOG_INFO
, "performing a bus reset");
847 if (!test_bit(AF_DEGRADED_MODE
, &a
->flags
) &&
848 !test_bit(AF_CHPRST_PENDING
, &a
->flags
) &&
849 !test_bit(AF_DISC_PENDING
, &a
->flags
)) {
850 set_bit(AF_BUSRST_NEEDED
, &a
->flags
);
851 set_bit(AF_BUSRST_PENDING
, &a
->flags
);
852 set_bit(AF_OS_RESET
, &a
->flags
);
854 esas2r_schedule_tasklet(a
);
858 bool esas2r_ioreq_aborted(struct esas2r_adapter
*a
, struct esas2r_request
*rq
,
861 esas2r_trace_enter();
862 esas2r_trace("rq:%p", rq
);
863 list_del_init(&rq
->req_list
);
864 if (rq
->timeout
> RQ_MAX_TIMEOUT
) {
866 * The request timed out, but we could not abort it because a
867 * chip reset occurred. Return busy status.
869 rq
->req_stat
= RS_BUSY
;
874 rq
->req_stat
= status
;