4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38 struct wb_completion
{
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work
{
47 struct super_block
*sb
;
48 unsigned long *older_than_this
;
49 enum writeback_sync_modes sync_mode
;
50 unsigned int tagged_writepages
:1;
51 unsigned int for_kupdate
:1;
52 unsigned int range_cyclic
:1;
53 unsigned int for_background
:1;
54 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free
:1; /* free on completion */
56 enum wb_reason reason
; /* why was writeback initiated? */
58 struct list_head list
; /* pending work list */
59 struct wb_completion
*done
; /* set if the caller waits */
63 * If one wants to wait for one or more wb_writeback_works, each work's
64 * ->done should be set to a wb_completion defined using the following
65 * macro. Once all work items are issued with wb_queue_work(), the caller
66 * can wait for the completion of all using wb_wait_for_completion(). Work
67 * items which are waited upon aren't freed automatically on completion.
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
70 struct wb_completion cmpl = { \
71 .cnt = ATOMIC_INIT(1), \
76 * If an inode is constantly having its pages dirtied, but then the
77 * updates stop dirtytime_expire_interval seconds in the past, it's
78 * possible for the worst case time between when an inode has its
79 * timestamps updated and when they finally get written out to be two
80 * dirtytime_expire_intervals. We set the default to 12 hours (in
81 * seconds), which means most of the time inodes will have their
82 * timestamps written to disk after 12 hours, but in the worst case a
83 * few inodes might not their timestamps updated for 24 hours.
85 unsigned int dirtytime_expire_interval
= 12 * 60 * 60;
87 static inline struct inode
*wb_inode(struct list_head
*head
)
89 return list_entry(head
, struct inode
, i_io_list
);
93 * Include the creation of the trace points after defining the
94 * wb_writeback_work structure and inline functions so that the definition
95 * remains local to this file.
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage
);
102 static bool wb_io_lists_populated(struct bdi_writeback
*wb
)
104 if (wb_has_dirty_io(wb
)) {
107 set_bit(WB_has_dirty_io
, &wb
->state
);
108 WARN_ON_ONCE(!wb
->avg_write_bandwidth
);
109 atomic_long_add(wb
->avg_write_bandwidth
,
110 &wb
->bdi
->tot_write_bandwidth
);
115 static void wb_io_lists_depopulated(struct bdi_writeback
*wb
)
117 if (wb_has_dirty_io(wb
) && list_empty(&wb
->b_dirty
) &&
118 list_empty(&wb
->b_io
) && list_empty(&wb
->b_more_io
)) {
119 clear_bit(WB_has_dirty_io
, &wb
->state
);
120 WARN_ON_ONCE(atomic_long_sub_return(wb
->avg_write_bandwidth
,
121 &wb
->bdi
->tot_write_bandwidth
) < 0);
126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127 * @inode: inode to be moved
128 * @wb: target bdi_writeback
129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132 * Returns %true if @inode is the first occupant of the !dirty_time IO
133 * lists; otherwise, %false.
135 static bool inode_io_list_move_locked(struct inode
*inode
,
136 struct bdi_writeback
*wb
,
137 struct list_head
*head
)
139 assert_spin_locked(&wb
->list_lock
);
141 list_move(&inode
->i_io_list
, head
);
143 /* dirty_time doesn't count as dirty_io until expiration */
144 if (head
!= &wb
->b_dirty_time
)
145 return wb_io_lists_populated(wb
);
147 wb_io_lists_depopulated(wb
);
152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153 * @inode: inode to be removed
154 * @wb: bdi_writeback @inode is being removed from
156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157 * clear %WB_has_dirty_io if all are empty afterwards.
159 static void inode_io_list_del_locked(struct inode
*inode
,
160 struct bdi_writeback
*wb
)
162 assert_spin_locked(&wb
->list_lock
);
164 list_del_init(&inode
->i_io_list
);
165 wb_io_lists_depopulated(wb
);
168 static void wb_wakeup(struct bdi_writeback
*wb
)
170 spin_lock_bh(&wb
->work_lock
);
171 if (test_bit(WB_registered
, &wb
->state
))
172 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
173 spin_unlock_bh(&wb
->work_lock
);
176 static void finish_writeback_work(struct bdi_writeback
*wb
,
177 struct wb_writeback_work
*work
)
179 struct wb_completion
*done
= work
->done
;
183 if (done
&& atomic_dec_and_test(&done
->cnt
))
184 wake_up_all(&wb
->bdi
->wb_waitq
);
187 static void wb_queue_work(struct bdi_writeback
*wb
,
188 struct wb_writeback_work
*work
)
190 trace_writeback_queue(wb
, work
);
193 atomic_inc(&work
->done
->cnt
);
195 spin_lock_bh(&wb
->work_lock
);
197 if (test_bit(WB_registered
, &wb
->state
)) {
198 list_add_tail(&work
->list
, &wb
->work_list
);
199 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
201 finish_writeback_work(wb
, work
);
203 spin_unlock_bh(&wb
->work_lock
);
207 * wb_wait_for_completion - wait for completion of bdi_writeback_works
208 * @bdi: bdi work items were issued to
209 * @done: target wb_completion
211 * Wait for one or more work items issued to @bdi with their ->done field
212 * set to @done, which should have been defined with
213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
214 * work items are completed. Work items which are waited upon aren't freed
215 * automatically on completion.
217 static void wb_wait_for_completion(struct backing_dev_info
*bdi
,
218 struct wb_completion
*done
)
220 atomic_dec(&done
->cnt
); /* put down the initial count */
221 wait_event(bdi
->wb_waitq
, !atomic_read(&done
->cnt
));
224 #ifdef CONFIG_CGROUP_WRITEBACK
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 /* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
236 /* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 /* one round can affect upto 5 slots */
240 static atomic_t isw_nr_in_flight
= ATOMIC_INIT(0);
241 static struct workqueue_struct
*isw_wq
;
243 void __inode_attach_wb(struct inode
*inode
, struct page
*page
)
245 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
246 struct bdi_writeback
*wb
= NULL
;
248 if (inode_cgwb_enabled(inode
)) {
249 struct cgroup_subsys_state
*memcg_css
;
252 memcg_css
= mem_cgroup_css_from_page(page
);
253 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
255 /* must pin memcg_css, see wb_get_create() */
256 memcg_css
= task_get_css(current
, memory_cgrp_id
);
257 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
266 * There may be multiple instances of this function racing to
267 * update the same inode. Use cmpxchg() to tell the winner.
269 if (unlikely(cmpxchg(&inode
->i_wb
, NULL
, wb
)))
274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275 * @inode: inode of interest with i_lock held
277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
278 * held on entry and is released on return. The returned wb is guaranteed
279 * to stay @inode's associated wb until its list_lock is released.
281 static struct bdi_writeback
*
282 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
283 __releases(&inode
->i_lock
)
284 __acquires(&wb
->list_lock
)
287 struct bdi_writeback
*wb
= inode_to_wb(inode
);
290 * inode_to_wb() association is protected by both
291 * @inode->i_lock and @wb->list_lock but list_lock nests
292 * outside i_lock. Drop i_lock and verify that the
293 * association hasn't changed after acquiring list_lock.
296 spin_unlock(&inode
->i_lock
);
297 spin_lock(&wb
->list_lock
);
299 /* i_wb may have changed inbetween, can't use inode_to_wb() */
300 if (likely(wb
== inode
->i_wb
)) {
301 wb_put(wb
); /* @inode already has ref */
305 spin_unlock(&wb
->list_lock
);
308 spin_lock(&inode
->i_lock
);
313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314 * @inode: inode of interest
316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
320 __acquires(&wb
->list_lock
)
322 spin_lock(&inode
->i_lock
);
323 return locked_inode_to_wb_and_lock_list(inode
);
326 struct inode_switch_wbs_context
{
328 struct bdi_writeback
*new_wb
;
330 struct rcu_head rcu_head
;
331 struct work_struct work
;
334 static void inode_switch_wbs_work_fn(struct work_struct
*work
)
336 struct inode_switch_wbs_context
*isw
=
337 container_of(work
, struct inode_switch_wbs_context
, work
);
338 struct inode
*inode
= isw
->inode
;
339 struct address_space
*mapping
= inode
->i_mapping
;
340 struct bdi_writeback
*old_wb
= inode
->i_wb
;
341 struct bdi_writeback
*new_wb
= isw
->new_wb
;
342 XA_STATE(xas
, &mapping
->i_pages
, 0);
344 bool switched
= false;
347 * By the time control reaches here, RCU grace period has passed
348 * since I_WB_SWITCH assertion and all wb stat update transactions
349 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350 * synchronizing against the i_pages lock.
352 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
353 * gives us exclusion against all wb related operations on @inode
354 * including IO list manipulations and stat updates.
356 if (old_wb
< new_wb
) {
357 spin_lock(&old_wb
->list_lock
);
358 spin_lock_nested(&new_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
360 spin_lock(&new_wb
->list_lock
);
361 spin_lock_nested(&old_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
363 spin_lock(&inode
->i_lock
);
364 xa_lock_irq(&mapping
->i_pages
);
367 * Once I_FREEING is visible under i_lock, the eviction path owns
368 * the inode and we shouldn't modify ->i_io_list.
370 if (unlikely(inode
->i_state
& I_FREEING
))
374 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
375 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376 * pages actually under writeback.
378 xas_for_each_marked(&xas
, page
, ULONG_MAX
, PAGECACHE_TAG_DIRTY
) {
379 if (PageDirty(page
)) {
380 dec_wb_stat(old_wb
, WB_RECLAIMABLE
);
381 inc_wb_stat(new_wb
, WB_RECLAIMABLE
);
386 xas_for_each_marked(&xas
, page
, ULONG_MAX
, PAGECACHE_TAG_WRITEBACK
) {
387 WARN_ON_ONCE(!PageWriteback(page
));
388 dec_wb_stat(old_wb
, WB_WRITEBACK
);
389 inc_wb_stat(new_wb
, WB_WRITEBACK
);
395 * Transfer to @new_wb's IO list if necessary. The specific list
396 * @inode was on is ignored and the inode is put on ->b_dirty which
397 * is always correct including from ->b_dirty_time. The transfer
398 * preserves @inode->dirtied_when ordering.
400 if (!list_empty(&inode
->i_io_list
)) {
403 inode_io_list_del_locked(inode
, old_wb
);
404 inode
->i_wb
= new_wb
;
405 list_for_each_entry(pos
, &new_wb
->b_dirty
, i_io_list
)
406 if (time_after_eq(inode
->dirtied_when
,
409 inode_io_list_move_locked(inode
, new_wb
, pos
->i_io_list
.prev
);
411 inode
->i_wb
= new_wb
;
414 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
415 inode
->i_wb_frn_winner
= 0;
416 inode
->i_wb_frn_avg_time
= 0;
417 inode
->i_wb_frn_history
= 0;
421 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
422 * ensures that the new wb is visible if they see !I_WB_SWITCH.
424 smp_store_release(&inode
->i_state
, inode
->i_state
& ~I_WB_SWITCH
);
426 xa_unlock_irq(&mapping
->i_pages
);
427 spin_unlock(&inode
->i_lock
);
428 spin_unlock(&new_wb
->list_lock
);
429 spin_unlock(&old_wb
->list_lock
);
440 atomic_dec(&isw_nr_in_flight
);
443 static void inode_switch_wbs_rcu_fn(struct rcu_head
*rcu_head
)
445 struct inode_switch_wbs_context
*isw
= container_of(rcu_head
,
446 struct inode_switch_wbs_context
, rcu_head
);
448 /* needs to grab bh-unsafe locks, bounce to work item */
449 INIT_WORK(&isw
->work
, inode_switch_wbs_work_fn
);
450 queue_work(isw_wq
, &isw
->work
);
454 * inode_switch_wbs - change the wb association of an inode
455 * @inode: target inode
456 * @new_wb_id: ID of the new wb
458 * Switch @inode's wb association to the wb identified by @new_wb_id. The
459 * switching is performed asynchronously and may fail silently.
461 static void inode_switch_wbs(struct inode
*inode
, int new_wb_id
)
463 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
464 struct cgroup_subsys_state
*memcg_css
;
465 struct inode_switch_wbs_context
*isw
;
467 /* noop if seems to be already in progress */
468 if (inode
->i_state
& I_WB_SWITCH
)
471 isw
= kzalloc(sizeof(*isw
), GFP_ATOMIC
);
475 /* find and pin the new wb */
477 memcg_css
= css_from_id(new_wb_id
, &memory_cgrp_subsys
);
479 isw
->new_wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
484 /* while holding I_WB_SWITCH, no one else can update the association */
485 spin_lock(&inode
->i_lock
);
486 if (!(inode
->i_sb
->s_flags
& SB_ACTIVE
) ||
487 inode
->i_state
& (I_WB_SWITCH
| I_FREEING
) ||
488 inode_to_wb(inode
) == isw
->new_wb
) {
489 spin_unlock(&inode
->i_lock
);
492 inode
->i_state
|= I_WB_SWITCH
;
494 spin_unlock(&inode
->i_lock
);
498 atomic_inc(&isw_nr_in_flight
);
501 * In addition to synchronizing among switchers, I_WB_SWITCH tells
502 * the RCU protected stat update paths to grab the i_page
503 * lock so that stat transfer can synchronize against them.
504 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
506 call_rcu(&isw
->rcu_head
, inode_switch_wbs_rcu_fn
);
516 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
517 * @wbc: writeback_control of interest
518 * @inode: target inode
520 * @inode is locked and about to be written back under the control of @wbc.
521 * Record @inode's writeback context into @wbc and unlock the i_lock. On
522 * writeback completion, wbc_detach_inode() should be called. This is used
523 * to track the cgroup writeback context.
525 void wbc_attach_and_unlock_inode(struct writeback_control
*wbc
,
528 if (!inode_cgwb_enabled(inode
)) {
529 spin_unlock(&inode
->i_lock
);
533 wbc
->wb
= inode_to_wb(inode
);
536 wbc
->wb_id
= wbc
->wb
->memcg_css
->id
;
537 wbc
->wb_lcand_id
= inode
->i_wb_frn_winner
;
538 wbc
->wb_tcand_id
= 0;
540 wbc
->wb_lcand_bytes
= 0;
541 wbc
->wb_tcand_bytes
= 0;
544 spin_unlock(&inode
->i_lock
);
547 * A dying wb indicates that the memcg-blkcg mapping has changed
548 * and a new wb is already serving the memcg. Switch immediately.
550 if (unlikely(wb_dying(wbc
->wb
)))
551 inode_switch_wbs(inode
, wbc
->wb_id
);
555 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
556 * @wbc: writeback_control of the just finished writeback
558 * To be called after a writeback attempt of an inode finishes and undoes
559 * wbc_attach_and_unlock_inode(). Can be called under any context.
561 * As concurrent write sharing of an inode is expected to be very rare and
562 * memcg only tracks page ownership on first-use basis severely confining
563 * the usefulness of such sharing, cgroup writeback tracks ownership
564 * per-inode. While the support for concurrent write sharing of an inode
565 * is deemed unnecessary, an inode being written to by different cgroups at
566 * different points in time is a lot more common, and, more importantly,
567 * charging only by first-use can too readily lead to grossly incorrect
568 * behaviors (single foreign page can lead to gigabytes of writeback to be
569 * incorrectly attributed).
571 * To resolve this issue, cgroup writeback detects the majority dirtier of
572 * an inode and transfers the ownership to it. To avoid unnnecessary
573 * oscillation, the detection mechanism keeps track of history and gives
574 * out the switch verdict only if the foreign usage pattern is stable over
575 * a certain amount of time and/or writeback attempts.
577 * On each writeback attempt, @wbc tries to detect the majority writer
578 * using Boyer-Moore majority vote algorithm. In addition to the byte
579 * count from the majority voting, it also counts the bytes written for the
580 * current wb and the last round's winner wb (max of last round's current
581 * wb, the winner from two rounds ago, and the last round's majority
582 * candidate). Keeping track of the historical winner helps the algorithm
583 * to semi-reliably detect the most active writer even when it's not the
586 * Once the winner of the round is determined, whether the winner is
587 * foreign or not and how much IO time the round consumed is recorded in
588 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
589 * over a certain threshold, the switch verdict is given.
591 void wbc_detach_inode(struct writeback_control
*wbc
)
593 struct bdi_writeback
*wb
= wbc
->wb
;
594 struct inode
*inode
= wbc
->inode
;
595 unsigned long avg_time
, max_bytes
, max_time
;
602 history
= inode
->i_wb_frn_history
;
603 avg_time
= inode
->i_wb_frn_avg_time
;
605 /* pick the winner of this round */
606 if (wbc
->wb_bytes
>= wbc
->wb_lcand_bytes
&&
607 wbc
->wb_bytes
>= wbc
->wb_tcand_bytes
) {
609 max_bytes
= wbc
->wb_bytes
;
610 } else if (wbc
->wb_lcand_bytes
>= wbc
->wb_tcand_bytes
) {
611 max_id
= wbc
->wb_lcand_id
;
612 max_bytes
= wbc
->wb_lcand_bytes
;
614 max_id
= wbc
->wb_tcand_id
;
615 max_bytes
= wbc
->wb_tcand_bytes
;
619 * Calculate the amount of IO time the winner consumed and fold it
620 * into the running average kept per inode. If the consumed IO
621 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
622 * deciding whether to switch or not. This is to prevent one-off
623 * small dirtiers from skewing the verdict.
625 max_time
= DIV_ROUND_UP((max_bytes
>> PAGE_SHIFT
) << WB_FRN_TIME_SHIFT
,
626 wb
->avg_write_bandwidth
);
628 avg_time
+= (max_time
>> WB_FRN_TIME_AVG_SHIFT
) -
629 (avg_time
>> WB_FRN_TIME_AVG_SHIFT
);
631 avg_time
= max_time
; /* immediate catch up on first run */
633 if (max_time
>= avg_time
/ WB_FRN_TIME_CUT_DIV
) {
637 * The switch verdict is reached if foreign wb's consume
638 * more than a certain proportion of IO time in a
639 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
640 * history mask where each bit represents one sixteenth of
641 * the period. Determine the number of slots to shift into
642 * history from @max_time.
644 slots
= min(DIV_ROUND_UP(max_time
, WB_FRN_HIST_UNIT
),
645 (unsigned long)WB_FRN_HIST_MAX_SLOTS
);
647 if (wbc
->wb_id
!= max_id
)
648 history
|= (1U << slots
) - 1;
651 * Switch if the current wb isn't the consistent winner.
652 * If there are multiple closely competing dirtiers, the
653 * inode may switch across them repeatedly over time, which
654 * is okay. The main goal is avoiding keeping an inode on
655 * the wrong wb for an extended period of time.
657 if (hweight32(history
) > WB_FRN_HIST_THR_SLOTS
)
658 inode_switch_wbs(inode
, max_id
);
662 * Multiple instances of this function may race to update the
663 * following fields but we don't mind occassional inaccuracies.
665 inode
->i_wb_frn_winner
= max_id
;
666 inode
->i_wb_frn_avg_time
= min(avg_time
, (unsigned long)U16_MAX
);
667 inode
->i_wb_frn_history
= history
;
674 * wbc_account_io - account IO issued during writeback
675 * @wbc: writeback_control of the writeback in progress
676 * @page: page being written out
677 * @bytes: number of bytes being written out
679 * @bytes from @page are about to written out during the writeback
680 * controlled by @wbc. Keep the book for foreign inode detection. See
681 * wbc_detach_inode().
683 void wbc_account_io(struct writeback_control
*wbc
, struct page
*page
,
689 * pageout() path doesn't attach @wbc to the inode being written
690 * out. This is intentional as we don't want the function to block
691 * behind a slow cgroup. Ultimately, we want pageout() to kick off
692 * regular writeback instead of writing things out itself.
697 id
= mem_cgroup_css_from_page(page
)->id
;
699 if (id
== wbc
->wb_id
) {
700 wbc
->wb_bytes
+= bytes
;
704 if (id
== wbc
->wb_lcand_id
)
705 wbc
->wb_lcand_bytes
+= bytes
;
707 /* Boyer-Moore majority vote algorithm */
708 if (!wbc
->wb_tcand_bytes
)
709 wbc
->wb_tcand_id
= id
;
710 if (id
== wbc
->wb_tcand_id
)
711 wbc
->wb_tcand_bytes
+= bytes
;
713 wbc
->wb_tcand_bytes
-= min(bytes
, wbc
->wb_tcand_bytes
);
715 EXPORT_SYMBOL_GPL(wbc_account_io
);
718 * inode_congested - test whether an inode is congested
719 * @inode: inode to test for congestion (may be NULL)
720 * @cong_bits: mask of WB_[a]sync_congested bits to test
722 * Tests whether @inode is congested. @cong_bits is the mask of congestion
723 * bits to test and the return value is the mask of set bits.
725 * If cgroup writeback is enabled for @inode, the congestion state is
726 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
727 * associated with @inode is congested; otherwise, the root wb's congestion
730 * @inode is allowed to be NULL as this function is often called on
731 * mapping->host which is NULL for the swapper space.
733 int inode_congested(struct inode
*inode
, int cong_bits
)
736 * Once set, ->i_wb never becomes NULL while the inode is alive.
737 * Start transaction iff ->i_wb is visible.
739 if (inode
&& inode_to_wb_is_valid(inode
)) {
740 struct bdi_writeback
*wb
;
741 struct wb_lock_cookie lock_cookie
= {};
744 wb
= unlocked_inode_to_wb_begin(inode
, &lock_cookie
);
745 congested
= wb_congested(wb
, cong_bits
);
746 unlocked_inode_to_wb_end(inode
, &lock_cookie
);
750 return wb_congested(&inode_to_bdi(inode
)->wb
, cong_bits
);
752 EXPORT_SYMBOL_GPL(inode_congested
);
755 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
756 * @wb: target bdi_writeback to split @nr_pages to
757 * @nr_pages: number of pages to write for the whole bdi
759 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
760 * relation to the total write bandwidth of all wb's w/ dirty inodes on
763 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
765 unsigned long this_bw
= wb
->avg_write_bandwidth
;
766 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
768 if (nr_pages
== LONG_MAX
)
772 * This may be called on clean wb's and proportional distribution
773 * may not make sense, just use the original @nr_pages in those
774 * cases. In general, we wanna err on the side of writing more.
776 if (!tot_bw
|| this_bw
>= tot_bw
)
779 return DIV_ROUND_UP_ULL((u64
)nr_pages
* this_bw
, tot_bw
);
783 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
784 * @bdi: target backing_dev_info
785 * @base_work: wb_writeback_work to issue
786 * @skip_if_busy: skip wb's which already have writeback in progress
788 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
789 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
790 * distributed to the busy wbs according to each wb's proportion in the
791 * total active write bandwidth of @bdi.
793 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
794 struct wb_writeback_work
*base_work
,
797 struct bdi_writeback
*last_wb
= NULL
;
798 struct bdi_writeback
*wb
= list_entry(&bdi
->wb_list
,
799 struct bdi_writeback
, bdi_node
);
804 list_for_each_entry_continue_rcu(wb
, &bdi
->wb_list
, bdi_node
) {
805 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done
);
806 struct wb_writeback_work fallback_work
;
807 struct wb_writeback_work
*work
;
815 /* SYNC_ALL writes out I_DIRTY_TIME too */
816 if (!wb_has_dirty_io(wb
) &&
817 (base_work
->sync_mode
== WB_SYNC_NONE
||
818 list_empty(&wb
->b_dirty_time
)))
820 if (skip_if_busy
&& writeback_in_progress(wb
))
823 nr_pages
= wb_split_bdi_pages(wb
, base_work
->nr_pages
);
825 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
828 work
->nr_pages
= nr_pages
;
830 wb_queue_work(wb
, work
);
834 /* alloc failed, execute synchronously using on-stack fallback */
835 work
= &fallback_work
;
837 work
->nr_pages
= nr_pages
;
839 work
->done
= &fallback_work_done
;
841 wb_queue_work(wb
, work
);
844 * Pin @wb so that it stays on @bdi->wb_list. This allows
845 * continuing iteration from @wb after dropping and
846 * regrabbing rcu read lock.
852 wb_wait_for_completion(bdi
, &fallback_work_done
);
862 * cgroup_writeback_umount - flush inode wb switches for umount
864 * This function is called when a super_block is about to be destroyed and
865 * flushes in-flight inode wb switches. An inode wb switch goes through
866 * RCU and then workqueue, so the two need to be flushed in order to ensure
867 * that all previously scheduled switches are finished. As wb switches are
868 * rare occurrences and synchronize_rcu() can take a while, perform
869 * flushing iff wb switches are in flight.
871 void cgroup_writeback_umount(void)
873 if (atomic_read(&isw_nr_in_flight
)) {
875 flush_workqueue(isw_wq
);
879 static int __init
cgroup_writeback_init(void)
881 isw_wq
= alloc_workqueue("inode_switch_wbs", 0, 0);
886 fs_initcall(cgroup_writeback_init
);
888 #else /* CONFIG_CGROUP_WRITEBACK */
890 static struct bdi_writeback
*
891 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
892 __releases(&inode
->i_lock
)
893 __acquires(&wb
->list_lock
)
895 struct bdi_writeback
*wb
= inode_to_wb(inode
);
897 spin_unlock(&inode
->i_lock
);
898 spin_lock(&wb
->list_lock
);
902 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
903 __acquires(&wb
->list_lock
)
905 struct bdi_writeback
*wb
= inode_to_wb(inode
);
907 spin_lock(&wb
->list_lock
);
911 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
916 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
917 struct wb_writeback_work
*base_work
,
922 if (!skip_if_busy
|| !writeback_in_progress(&bdi
->wb
)) {
923 base_work
->auto_free
= 0;
924 wb_queue_work(&bdi
->wb
, base_work
);
928 #endif /* CONFIG_CGROUP_WRITEBACK */
931 * Add in the number of potentially dirty inodes, because each inode
932 * write can dirty pagecache in the underlying blockdev.
934 static unsigned long get_nr_dirty_pages(void)
936 return global_node_page_state(NR_FILE_DIRTY
) +
937 global_node_page_state(NR_UNSTABLE_NFS
) +
938 get_nr_dirty_inodes();
941 static void wb_start_writeback(struct bdi_writeback
*wb
, enum wb_reason reason
)
943 if (!wb_has_dirty_io(wb
))
947 * All callers of this function want to start writeback of all
948 * dirty pages. Places like vmscan can call this at a very
949 * high frequency, causing pointless allocations of tons of
950 * work items and keeping the flusher threads busy retrieving
951 * that work. Ensure that we only allow one of them pending and
952 * inflight at the time.
954 if (test_bit(WB_start_all
, &wb
->state
) ||
955 test_and_set_bit(WB_start_all
, &wb
->state
))
958 wb
->start_all_reason
= reason
;
963 * wb_start_background_writeback - start background writeback
964 * @wb: bdi_writback to write from
967 * This makes sure WB_SYNC_NONE background writeback happens. When
968 * this function returns, it is only guaranteed that for given wb
969 * some IO is happening if we are over background dirty threshold.
970 * Caller need not hold sb s_umount semaphore.
972 void wb_start_background_writeback(struct bdi_writeback
*wb
)
975 * We just wake up the flusher thread. It will perform background
976 * writeback as soon as there is no other work to do.
978 trace_writeback_wake_background(wb
);
983 * Remove the inode from the writeback list it is on.
985 void inode_io_list_del(struct inode
*inode
)
987 struct bdi_writeback
*wb
;
989 wb
= inode_to_wb_and_lock_list(inode
);
990 inode_io_list_del_locked(inode
, wb
);
991 spin_unlock(&wb
->list_lock
);
995 * mark an inode as under writeback on the sb
997 void sb_mark_inode_writeback(struct inode
*inode
)
999 struct super_block
*sb
= inode
->i_sb
;
1000 unsigned long flags
;
1002 if (list_empty(&inode
->i_wb_list
)) {
1003 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
1004 if (list_empty(&inode
->i_wb_list
)) {
1005 list_add_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
1006 trace_sb_mark_inode_writeback(inode
);
1008 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1013 * clear an inode as under writeback on the sb
1015 void sb_clear_inode_writeback(struct inode
*inode
)
1017 struct super_block
*sb
= inode
->i_sb
;
1018 unsigned long flags
;
1020 if (!list_empty(&inode
->i_wb_list
)) {
1021 spin_lock_irqsave(&sb
->s_inode_wblist_lock
, flags
);
1022 if (!list_empty(&inode
->i_wb_list
)) {
1023 list_del_init(&inode
->i_wb_list
);
1024 trace_sb_clear_inode_writeback(inode
);
1026 spin_unlock_irqrestore(&sb
->s_inode_wblist_lock
, flags
);
1031 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1032 * furthest end of its superblock's dirty-inode list.
1034 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1035 * already the most-recently-dirtied inode on the b_dirty list. If that is
1036 * the case then the inode must have been redirtied while it was being written
1037 * out and we don't reset its dirtied_when.
1039 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
1041 if (!list_empty(&wb
->b_dirty
)) {
1044 tail
= wb_inode(wb
->b_dirty
.next
);
1045 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
1046 inode
->dirtied_when
= jiffies
;
1048 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty
);
1052 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1054 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
1056 inode_io_list_move_locked(inode
, wb
, &wb
->b_more_io
);
1059 static void inode_sync_complete(struct inode
*inode
)
1061 inode
->i_state
&= ~I_SYNC
;
1062 /* If inode is clean an unused, put it into LRU now... */
1063 inode_add_lru(inode
);
1064 /* Waiters must see I_SYNC cleared before being woken up */
1066 wake_up_bit(&inode
->i_state
, __I_SYNC
);
1069 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
1071 bool ret
= time_after(inode
->dirtied_when
, t
);
1072 #ifndef CONFIG_64BIT
1074 * For inodes being constantly redirtied, dirtied_when can get stuck.
1075 * It _appears_ to be in the future, but is actually in distant past.
1076 * This test is necessary to prevent such wrapped-around relative times
1077 * from permanently stopping the whole bdi writeback.
1079 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
1084 #define EXPIRE_DIRTY_ATIME 0x0001
1087 * Move expired (dirtied before work->older_than_this) dirty inodes from
1088 * @delaying_queue to @dispatch_queue.
1090 static int move_expired_inodes(struct list_head
*delaying_queue
,
1091 struct list_head
*dispatch_queue
,
1093 struct wb_writeback_work
*work
)
1095 unsigned long *older_than_this
= NULL
;
1096 unsigned long expire_time
;
1098 struct list_head
*pos
, *node
;
1099 struct super_block
*sb
= NULL
;
1100 struct inode
*inode
;
1104 if ((flags
& EXPIRE_DIRTY_ATIME
) == 0)
1105 older_than_this
= work
->older_than_this
;
1106 else if (!work
->for_sync
) {
1107 expire_time
= jiffies
- (dirtytime_expire_interval
* HZ
);
1108 older_than_this
= &expire_time
;
1110 while (!list_empty(delaying_queue
)) {
1111 inode
= wb_inode(delaying_queue
->prev
);
1112 if (older_than_this
&&
1113 inode_dirtied_after(inode
, *older_than_this
))
1115 list_move(&inode
->i_io_list
, &tmp
);
1117 if (flags
& EXPIRE_DIRTY_ATIME
)
1118 set_bit(__I_DIRTY_TIME_EXPIRED
, &inode
->i_state
);
1119 if (sb_is_blkdev_sb(inode
->i_sb
))
1121 if (sb
&& sb
!= inode
->i_sb
)
1126 /* just one sb in list, splice to dispatch_queue and we're done */
1128 list_splice(&tmp
, dispatch_queue
);
1132 /* Move inodes from one superblock together */
1133 while (!list_empty(&tmp
)) {
1134 sb
= wb_inode(tmp
.prev
)->i_sb
;
1135 list_for_each_prev_safe(pos
, node
, &tmp
) {
1136 inode
= wb_inode(pos
);
1137 if (inode
->i_sb
== sb
)
1138 list_move(&inode
->i_io_list
, dispatch_queue
);
1146 * Queue all expired dirty inodes for io, eldest first.
1148 * newly dirtied b_dirty b_io b_more_io
1149 * =============> gf edc BA
1151 * newly dirtied b_dirty b_io b_more_io
1152 * =============> g fBAedc
1154 * +--> dequeue for IO
1156 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
1160 assert_spin_locked(&wb
->list_lock
);
1161 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
1162 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, 0, work
);
1163 moved
+= move_expired_inodes(&wb
->b_dirty_time
, &wb
->b_io
,
1164 EXPIRE_DIRTY_ATIME
, work
);
1166 wb_io_lists_populated(wb
);
1167 trace_writeback_queue_io(wb
, work
, moved
);
1170 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1174 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
1175 trace_writeback_write_inode_start(inode
, wbc
);
1176 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
1177 trace_writeback_write_inode(inode
, wbc
);
1184 * Wait for writeback on an inode to complete. Called with i_lock held.
1185 * Caller must make sure inode cannot go away when we drop i_lock.
1187 static void __inode_wait_for_writeback(struct inode
*inode
)
1188 __releases(inode
->i_lock
)
1189 __acquires(inode
->i_lock
)
1191 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
1192 wait_queue_head_t
*wqh
;
1194 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1195 while (inode
->i_state
& I_SYNC
) {
1196 spin_unlock(&inode
->i_lock
);
1197 __wait_on_bit(wqh
, &wq
, bit_wait
,
1198 TASK_UNINTERRUPTIBLE
);
1199 spin_lock(&inode
->i_lock
);
1204 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1206 void inode_wait_for_writeback(struct inode
*inode
)
1208 spin_lock(&inode
->i_lock
);
1209 __inode_wait_for_writeback(inode
);
1210 spin_unlock(&inode
->i_lock
);
1214 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1215 * held and drops it. It is aimed for callers not holding any inode reference
1216 * so once i_lock is dropped, inode can go away.
1218 static void inode_sleep_on_writeback(struct inode
*inode
)
1219 __releases(inode
->i_lock
)
1222 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1225 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
1226 sleep
= inode
->i_state
& I_SYNC
;
1227 spin_unlock(&inode
->i_lock
);
1230 finish_wait(wqh
, &wait
);
1234 * Find proper writeback list for the inode depending on its current state and
1235 * possibly also change of its state while we were doing writeback. Here we
1236 * handle things such as livelock prevention or fairness of writeback among
1237 * inodes. This function can be called only by flusher thread - noone else
1238 * processes all inodes in writeback lists and requeueing inodes behind flusher
1239 * thread's back can have unexpected consequences.
1241 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1242 struct writeback_control
*wbc
)
1244 if (inode
->i_state
& I_FREEING
)
1248 * Sync livelock prevention. Each inode is tagged and synced in one
1249 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1250 * the dirty time to prevent enqueue and sync it again.
1252 if ((inode
->i_state
& I_DIRTY
) &&
1253 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
1254 inode
->dirtied_when
= jiffies
;
1256 if (wbc
->pages_skipped
) {
1258 * writeback is not making progress due to locked
1259 * buffers. Skip this inode for now.
1261 redirty_tail(inode
, wb
);
1265 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
1267 * We didn't write back all the pages. nfs_writepages()
1268 * sometimes bales out without doing anything.
1270 if (wbc
->nr_to_write
<= 0) {
1271 /* Slice used up. Queue for next turn. */
1272 requeue_io(inode
, wb
);
1275 * Writeback blocked by something other than
1276 * congestion. Delay the inode for some time to
1277 * avoid spinning on the CPU (100% iowait)
1278 * retrying writeback of the dirty page/inode
1279 * that cannot be performed immediately.
1281 redirty_tail(inode
, wb
);
1283 } else if (inode
->i_state
& I_DIRTY
) {
1285 * Filesystems can dirty the inode during writeback operations,
1286 * such as delayed allocation during submission or metadata
1287 * updates after data IO completion.
1289 redirty_tail(inode
, wb
);
1290 } else if (inode
->i_state
& I_DIRTY_TIME
) {
1291 inode
->dirtied_when
= jiffies
;
1292 inode_io_list_move_locked(inode
, wb
, &wb
->b_dirty_time
);
1294 /* The inode is clean. Remove from writeback lists. */
1295 inode_io_list_del_locked(inode
, wb
);
1300 * Write out an inode and its dirty pages. Do not update the writeback list
1301 * linkage. That is left to the caller. The caller is also responsible for
1302 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1305 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1307 struct address_space
*mapping
= inode
->i_mapping
;
1308 long nr_to_write
= wbc
->nr_to_write
;
1312 WARN_ON(!(inode
->i_state
& I_SYNC
));
1314 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
1316 ret
= do_writepages(mapping
, wbc
);
1319 * Make sure to wait on the data before writing out the metadata.
1320 * This is important for filesystems that modify metadata on data
1321 * I/O completion. We don't do it for sync(2) writeback because it has a
1322 * separate, external IO completion path and ->sync_fs for guaranteeing
1323 * inode metadata is written back correctly.
1325 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
1326 int err
= filemap_fdatawait(mapping
);
1332 * Some filesystems may redirty the inode during the writeback
1333 * due to delalloc, clear dirty metadata flags right before
1336 spin_lock(&inode
->i_lock
);
1338 dirty
= inode
->i_state
& I_DIRTY
;
1339 if (inode
->i_state
& I_DIRTY_TIME
) {
1340 if ((dirty
& I_DIRTY_INODE
) ||
1341 wbc
->sync_mode
== WB_SYNC_ALL
||
1342 unlikely(inode
->i_state
& I_DIRTY_TIME_EXPIRED
) ||
1343 unlikely(time_after(jiffies
,
1344 (inode
->dirtied_time_when
+
1345 dirtytime_expire_interval
* HZ
)))) {
1346 dirty
|= I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
;
1347 trace_writeback_lazytime(inode
);
1350 inode
->i_state
&= ~I_DIRTY_TIME_EXPIRED
;
1351 inode
->i_state
&= ~dirty
;
1354 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1355 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1356 * either they see the I_DIRTY bits cleared or we see the dirtied
1359 * I_DIRTY_PAGES is always cleared together above even if @mapping
1360 * still has dirty pages. The flag is reinstated after smp_mb() if
1361 * necessary. This guarantees that either __mark_inode_dirty()
1362 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1366 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
1367 inode
->i_state
|= I_DIRTY_PAGES
;
1369 spin_unlock(&inode
->i_lock
);
1371 if (dirty
& I_DIRTY_TIME
)
1372 mark_inode_dirty_sync(inode
);
1373 /* Don't write the inode if only I_DIRTY_PAGES was set */
1374 if (dirty
& ~I_DIRTY_PAGES
) {
1375 int err
= write_inode(inode
, wbc
);
1379 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
1384 * Write out an inode's dirty pages. Either the caller has an active reference
1385 * on the inode or the inode has I_WILL_FREE set.
1387 * This function is designed to be called for writing back one inode which
1388 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1389 * and does more profound writeback list handling in writeback_sb_inodes().
1391 static int writeback_single_inode(struct inode
*inode
,
1392 struct writeback_control
*wbc
)
1394 struct bdi_writeback
*wb
;
1397 spin_lock(&inode
->i_lock
);
1398 if (!atomic_read(&inode
->i_count
))
1399 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
1401 WARN_ON(inode
->i_state
& I_WILL_FREE
);
1403 if (inode
->i_state
& I_SYNC
) {
1404 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
1407 * It's a data-integrity sync. We must wait. Since callers hold
1408 * inode reference or inode has I_WILL_FREE set, it cannot go
1411 __inode_wait_for_writeback(inode
);
1413 WARN_ON(inode
->i_state
& I_SYNC
);
1415 * Skip inode if it is clean and we have no outstanding writeback in
1416 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1417 * function since flusher thread may be doing for example sync in
1418 * parallel and if we move the inode, it could get skipped. So here we
1419 * make sure inode is on some writeback list and leave it there unless
1420 * we have completely cleaned the inode.
1422 if (!(inode
->i_state
& I_DIRTY_ALL
) &&
1423 (wbc
->sync_mode
!= WB_SYNC_ALL
||
1424 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
1426 inode
->i_state
|= I_SYNC
;
1427 wbc_attach_and_unlock_inode(wbc
, inode
);
1429 ret
= __writeback_single_inode(inode
, wbc
);
1431 wbc_detach_inode(wbc
);
1433 wb
= inode_to_wb_and_lock_list(inode
);
1434 spin_lock(&inode
->i_lock
);
1436 * If inode is clean, remove it from writeback lists. Otherwise don't
1437 * touch it. See comment above for explanation.
1439 if (!(inode
->i_state
& I_DIRTY_ALL
))
1440 inode_io_list_del_locked(inode
, wb
);
1441 spin_unlock(&wb
->list_lock
);
1442 inode_sync_complete(inode
);
1444 spin_unlock(&inode
->i_lock
);
1448 static long writeback_chunk_size(struct bdi_writeback
*wb
,
1449 struct wb_writeback_work
*work
)
1454 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1455 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1456 * here avoids calling into writeback_inodes_wb() more than once.
1458 * The intended call sequence for WB_SYNC_ALL writeback is:
1461 * writeback_sb_inodes() <== called only once
1462 * write_cache_pages() <== called once for each inode
1463 * (quickly) tag currently dirty pages
1464 * (maybe slowly) sync all tagged pages
1466 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
1469 pages
= min(wb
->avg_write_bandwidth
/ 2,
1470 global_wb_domain
.dirty_limit
/ DIRTY_SCOPE
);
1471 pages
= min(pages
, work
->nr_pages
);
1472 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
1473 MIN_WRITEBACK_PAGES
);
1480 * Write a portion of b_io inodes which belong to @sb.
1482 * Return the number of pages and/or inodes written.
1484 * NOTE! This is called with wb->list_lock held, and will
1485 * unlock and relock that for each inode it ends up doing
1488 static long writeback_sb_inodes(struct super_block
*sb
,
1489 struct bdi_writeback
*wb
,
1490 struct wb_writeback_work
*work
)
1492 struct writeback_control wbc
= {
1493 .sync_mode
= work
->sync_mode
,
1494 .tagged_writepages
= work
->tagged_writepages
,
1495 .for_kupdate
= work
->for_kupdate
,
1496 .for_background
= work
->for_background
,
1497 .for_sync
= work
->for_sync
,
1498 .range_cyclic
= work
->range_cyclic
,
1500 .range_end
= LLONG_MAX
,
1502 unsigned long start_time
= jiffies
;
1504 long wrote
= 0; /* count both pages and inodes */
1506 while (!list_empty(&wb
->b_io
)) {
1507 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1508 struct bdi_writeback
*tmp_wb
;
1510 if (inode
->i_sb
!= sb
) {
1513 * We only want to write back data for this
1514 * superblock, move all inodes not belonging
1515 * to it back onto the dirty list.
1517 redirty_tail(inode
, wb
);
1522 * The inode belongs to a different superblock.
1523 * Bounce back to the caller to unpin this and
1524 * pin the next superblock.
1530 * Don't bother with new inodes or inodes being freed, first
1531 * kind does not need periodic writeout yet, and for the latter
1532 * kind writeout is handled by the freer.
1534 spin_lock(&inode
->i_lock
);
1535 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
1536 spin_unlock(&inode
->i_lock
);
1537 redirty_tail(inode
, wb
);
1540 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
1542 * If this inode is locked for writeback and we are not
1543 * doing writeback-for-data-integrity, move it to
1544 * b_more_io so that writeback can proceed with the
1545 * other inodes on s_io.
1547 * We'll have another go at writing back this inode
1548 * when we completed a full scan of b_io.
1550 spin_unlock(&inode
->i_lock
);
1551 requeue_io(inode
, wb
);
1552 trace_writeback_sb_inodes_requeue(inode
);
1555 spin_unlock(&wb
->list_lock
);
1558 * We already requeued the inode if it had I_SYNC set and we
1559 * are doing WB_SYNC_NONE writeback. So this catches only the
1562 if (inode
->i_state
& I_SYNC
) {
1563 /* Wait for I_SYNC. This function drops i_lock... */
1564 inode_sleep_on_writeback(inode
);
1565 /* Inode may be gone, start again */
1566 spin_lock(&wb
->list_lock
);
1569 inode
->i_state
|= I_SYNC
;
1570 wbc_attach_and_unlock_inode(&wbc
, inode
);
1572 write_chunk
= writeback_chunk_size(wb
, work
);
1573 wbc
.nr_to_write
= write_chunk
;
1574 wbc
.pages_skipped
= 0;
1577 * We use I_SYNC to pin the inode in memory. While it is set
1578 * evict_inode() will wait so the inode cannot be freed.
1580 __writeback_single_inode(inode
, &wbc
);
1582 wbc_detach_inode(&wbc
);
1583 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
1584 wrote
+= write_chunk
- wbc
.nr_to_write
;
1586 if (need_resched()) {
1588 * We're trying to balance between building up a nice
1589 * long list of IOs to improve our merge rate, and
1590 * getting those IOs out quickly for anyone throttling
1591 * in balance_dirty_pages(). cond_resched() doesn't
1592 * unplug, so get our IOs out the door before we
1595 blk_flush_plug(current
);
1600 * Requeue @inode if still dirty. Be careful as @inode may
1601 * have been switched to another wb in the meantime.
1603 tmp_wb
= inode_to_wb_and_lock_list(inode
);
1604 spin_lock(&inode
->i_lock
);
1605 if (!(inode
->i_state
& I_DIRTY_ALL
))
1607 requeue_inode(inode
, tmp_wb
, &wbc
);
1608 inode_sync_complete(inode
);
1609 spin_unlock(&inode
->i_lock
);
1611 if (unlikely(tmp_wb
!= wb
)) {
1612 spin_unlock(&tmp_wb
->list_lock
);
1613 spin_lock(&wb
->list_lock
);
1617 * bail out to wb_writeback() often enough to check
1618 * background threshold and other termination conditions.
1621 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1623 if (work
->nr_pages
<= 0)
1630 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
1631 struct wb_writeback_work
*work
)
1633 unsigned long start_time
= jiffies
;
1636 while (!list_empty(&wb
->b_io
)) {
1637 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1638 struct super_block
*sb
= inode
->i_sb
;
1640 if (!trylock_super(sb
)) {
1642 * trylock_super() may fail consistently due to
1643 * s_umount being grabbed by someone else. Don't use
1644 * requeue_io() to avoid busy retrying the inode/sb.
1646 redirty_tail(inode
, wb
);
1649 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
1650 up_read(&sb
->s_umount
);
1652 /* refer to the same tests at the end of writeback_sb_inodes */
1654 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1656 if (work
->nr_pages
<= 0)
1660 /* Leave any unwritten inodes on b_io */
1664 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
1665 enum wb_reason reason
)
1667 struct wb_writeback_work work
= {
1668 .nr_pages
= nr_pages
,
1669 .sync_mode
= WB_SYNC_NONE
,
1673 struct blk_plug plug
;
1675 blk_start_plug(&plug
);
1676 spin_lock(&wb
->list_lock
);
1677 if (list_empty(&wb
->b_io
))
1678 queue_io(wb
, &work
);
1679 __writeback_inodes_wb(wb
, &work
);
1680 spin_unlock(&wb
->list_lock
);
1681 blk_finish_plug(&plug
);
1683 return nr_pages
- work
.nr_pages
;
1687 * Explicit flushing or periodic writeback of "old" data.
1689 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1690 * dirtying-time in the inode's address_space. So this periodic writeback code
1691 * just walks the superblock inode list, writing back any inodes which are
1692 * older than a specific point in time.
1694 * Try to run once per dirty_writeback_interval. But if a writeback event
1695 * takes longer than a dirty_writeback_interval interval, then leave a
1698 * older_than_this takes precedence over nr_to_write. So we'll only write back
1699 * all dirty pages if they are all attached to "old" mappings.
1701 static long wb_writeback(struct bdi_writeback
*wb
,
1702 struct wb_writeback_work
*work
)
1704 unsigned long wb_start
= jiffies
;
1705 long nr_pages
= work
->nr_pages
;
1706 unsigned long oldest_jif
;
1707 struct inode
*inode
;
1709 struct blk_plug plug
;
1711 oldest_jif
= jiffies
;
1712 work
->older_than_this
= &oldest_jif
;
1714 blk_start_plug(&plug
);
1715 spin_lock(&wb
->list_lock
);
1718 * Stop writeback when nr_pages has been consumed
1720 if (work
->nr_pages
<= 0)
1724 * Background writeout and kupdate-style writeback may
1725 * run forever. Stop them if there is other work to do
1726 * so that e.g. sync can proceed. They'll be restarted
1727 * after the other works are all done.
1729 if ((work
->for_background
|| work
->for_kupdate
) &&
1730 !list_empty(&wb
->work_list
))
1734 * For background writeout, stop when we are below the
1735 * background dirty threshold
1737 if (work
->for_background
&& !wb_over_bg_thresh(wb
))
1741 * Kupdate and background works are special and we want to
1742 * include all inodes that need writing. Livelock avoidance is
1743 * handled by these works yielding to any other work so we are
1746 if (work
->for_kupdate
) {
1747 oldest_jif
= jiffies
-
1748 msecs_to_jiffies(dirty_expire_interval
* 10);
1749 } else if (work
->for_background
)
1750 oldest_jif
= jiffies
;
1752 trace_writeback_start(wb
, work
);
1753 if (list_empty(&wb
->b_io
))
1756 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
1758 progress
= __writeback_inodes_wb(wb
, work
);
1759 trace_writeback_written(wb
, work
);
1761 wb_update_bandwidth(wb
, wb_start
);
1764 * Did we write something? Try for more
1766 * Dirty inodes are moved to b_io for writeback in batches.
1767 * The completion of the current batch does not necessarily
1768 * mean the overall work is done. So we keep looping as long
1769 * as made some progress on cleaning pages or inodes.
1774 * No more inodes for IO, bail
1776 if (list_empty(&wb
->b_more_io
))
1779 * Nothing written. Wait for some inode to
1780 * become available for writeback. Otherwise
1781 * we'll just busyloop.
1783 trace_writeback_wait(wb
, work
);
1784 inode
= wb_inode(wb
->b_more_io
.prev
);
1785 spin_lock(&inode
->i_lock
);
1786 spin_unlock(&wb
->list_lock
);
1787 /* This function drops i_lock... */
1788 inode_sleep_on_writeback(inode
);
1789 spin_lock(&wb
->list_lock
);
1791 spin_unlock(&wb
->list_lock
);
1792 blk_finish_plug(&plug
);
1794 return nr_pages
- work
->nr_pages
;
1798 * Return the next wb_writeback_work struct that hasn't been processed yet.
1800 static struct wb_writeback_work
*get_next_work_item(struct bdi_writeback
*wb
)
1802 struct wb_writeback_work
*work
= NULL
;
1804 spin_lock_bh(&wb
->work_lock
);
1805 if (!list_empty(&wb
->work_list
)) {
1806 work
= list_entry(wb
->work_list
.next
,
1807 struct wb_writeback_work
, list
);
1808 list_del_init(&work
->list
);
1810 spin_unlock_bh(&wb
->work_lock
);
1814 static long wb_check_background_flush(struct bdi_writeback
*wb
)
1816 if (wb_over_bg_thresh(wb
)) {
1818 struct wb_writeback_work work
= {
1819 .nr_pages
= LONG_MAX
,
1820 .sync_mode
= WB_SYNC_NONE
,
1821 .for_background
= 1,
1823 .reason
= WB_REASON_BACKGROUND
,
1826 return wb_writeback(wb
, &work
);
1832 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
1834 unsigned long expired
;
1838 * When set to zero, disable periodic writeback
1840 if (!dirty_writeback_interval
)
1843 expired
= wb
->last_old_flush
+
1844 msecs_to_jiffies(dirty_writeback_interval
* 10);
1845 if (time_before(jiffies
, expired
))
1848 wb
->last_old_flush
= jiffies
;
1849 nr_pages
= get_nr_dirty_pages();
1852 struct wb_writeback_work work
= {
1853 .nr_pages
= nr_pages
,
1854 .sync_mode
= WB_SYNC_NONE
,
1857 .reason
= WB_REASON_PERIODIC
,
1860 return wb_writeback(wb
, &work
);
1866 static long wb_check_start_all(struct bdi_writeback
*wb
)
1870 if (!test_bit(WB_start_all
, &wb
->state
))
1873 nr_pages
= get_nr_dirty_pages();
1875 struct wb_writeback_work work
= {
1876 .nr_pages
= wb_split_bdi_pages(wb
, nr_pages
),
1877 .sync_mode
= WB_SYNC_NONE
,
1879 .reason
= wb
->start_all_reason
,
1882 nr_pages
= wb_writeback(wb
, &work
);
1885 clear_bit(WB_start_all
, &wb
->state
);
1891 * Retrieve work items and do the writeback they describe
1893 static long wb_do_writeback(struct bdi_writeback
*wb
)
1895 struct wb_writeback_work
*work
;
1898 set_bit(WB_writeback_running
, &wb
->state
);
1899 while ((work
= get_next_work_item(wb
)) != NULL
) {
1900 trace_writeback_exec(wb
, work
);
1901 wrote
+= wb_writeback(wb
, work
);
1902 finish_writeback_work(wb
, work
);
1906 * Check for a flush-everything request
1908 wrote
+= wb_check_start_all(wb
);
1911 * Check for periodic writeback, kupdated() style
1913 wrote
+= wb_check_old_data_flush(wb
);
1914 wrote
+= wb_check_background_flush(wb
);
1915 clear_bit(WB_writeback_running
, &wb
->state
);
1921 * Handle writeback of dirty data for the device backed by this bdi. Also
1922 * reschedules periodically and does kupdated style flushing.
1924 void wb_workfn(struct work_struct
*work
)
1926 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1927 struct bdi_writeback
, dwork
);
1930 set_worker_desc("flush-%s", dev_name(wb
->bdi
->dev
));
1931 current
->flags
|= PF_SWAPWRITE
;
1933 if (likely(!current_is_workqueue_rescuer() ||
1934 !test_bit(WB_registered
, &wb
->state
))) {
1936 * The normal path. Keep writing back @wb until its
1937 * work_list is empty. Note that this path is also taken
1938 * if @wb is shutting down even when we're running off the
1939 * rescuer as work_list needs to be drained.
1942 pages_written
= wb_do_writeback(wb
);
1943 trace_writeback_pages_written(pages_written
);
1944 } while (!list_empty(&wb
->work_list
));
1947 * bdi_wq can't get enough workers and we're running off
1948 * the emergency worker. Don't hog it. Hopefully, 1024 is
1949 * enough for efficient IO.
1951 pages_written
= writeback_inodes_wb(wb
, 1024,
1952 WB_REASON_FORKER_THREAD
);
1953 trace_writeback_pages_written(pages_written
);
1956 if (!list_empty(&wb
->work_list
))
1958 else if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
1959 wb_wakeup_delayed(wb
);
1961 current
->flags
&= ~PF_SWAPWRITE
;
1965 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
1966 * write back the whole world.
1968 static void __wakeup_flusher_threads_bdi(struct backing_dev_info
*bdi
,
1969 enum wb_reason reason
)
1971 struct bdi_writeback
*wb
;
1973 if (!bdi_has_dirty_io(bdi
))
1976 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
1977 wb_start_writeback(wb
, reason
);
1980 void wakeup_flusher_threads_bdi(struct backing_dev_info
*bdi
,
1981 enum wb_reason reason
)
1984 __wakeup_flusher_threads_bdi(bdi
, reason
);
1989 * Wakeup the flusher threads to start writeback of all currently dirty pages
1991 void wakeup_flusher_threads(enum wb_reason reason
)
1993 struct backing_dev_info
*bdi
;
1996 * If we are expecting writeback progress we must submit plugged IO.
1998 if (blk_needs_flush_plug(current
))
1999 blk_schedule_flush_plug(current
);
2002 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
2003 __wakeup_flusher_threads_bdi(bdi
, reason
);
2008 * Wake up bdi's periodically to make sure dirtytime inodes gets
2009 * written back periodically. We deliberately do *not* check the
2010 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2011 * kernel to be constantly waking up once there are any dirtytime
2012 * inodes on the system. So instead we define a separate delayed work
2013 * function which gets called much more rarely. (By default, only
2014 * once every 12 hours.)
2016 * If there is any other write activity going on in the file system,
2017 * this function won't be necessary. But if the only thing that has
2018 * happened on the file system is a dirtytime inode caused by an atime
2019 * update, we need this infrastructure below to make sure that inode
2020 * eventually gets pushed out to disk.
2022 static void wakeup_dirtytime_writeback(struct work_struct
*w
);
2023 static DECLARE_DELAYED_WORK(dirtytime_work
, wakeup_dirtytime_writeback
);
2025 static void wakeup_dirtytime_writeback(struct work_struct
*w
)
2027 struct backing_dev_info
*bdi
;
2030 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
2031 struct bdi_writeback
*wb
;
2033 list_for_each_entry_rcu(wb
, &bdi
->wb_list
, bdi_node
)
2034 if (!list_empty(&wb
->b_dirty_time
))
2038 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2041 static int __init
start_dirtytime_writeback(void)
2043 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
2046 __initcall(start_dirtytime_writeback
);
2048 int dirtytime_interval_handler(struct ctl_table
*table
, int write
,
2049 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2053 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
2054 if (ret
== 0 && write
)
2055 mod_delayed_work(system_wq
, &dirtytime_work
, 0);
2059 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
2061 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
2062 struct dentry
*dentry
;
2063 const char *name
= "?";
2065 dentry
= d_find_alias(inode
);
2067 spin_lock(&dentry
->d_lock
);
2068 name
= (const char *) dentry
->d_name
.name
;
2071 "%s(%d): dirtied inode %lu (%s) on %s\n",
2072 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
2073 name
, inode
->i_sb
->s_id
);
2075 spin_unlock(&dentry
->d_lock
);
2082 * __mark_inode_dirty - internal function
2084 * @inode: inode to mark
2085 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2087 * Mark an inode as dirty. Callers should use mark_inode_dirty or
2088 * mark_inode_dirty_sync.
2090 * Put the inode on the super block's dirty list.
2092 * CAREFUL! We mark it dirty unconditionally, but move it onto the
2093 * dirty list only if it is hashed or if it refers to a blockdev.
2094 * If it was not hashed, it will never be added to the dirty list
2095 * even if it is later hashed, as it will have been marked dirty already.
2097 * In short, make sure you hash any inodes _before_ you start marking
2100 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2101 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2102 * the kernel-internal blockdev inode represents the dirtying time of the
2103 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2104 * page->mapping->host, so the page-dirtying time is recorded in the internal
2107 void __mark_inode_dirty(struct inode
*inode
, int flags
)
2109 struct super_block
*sb
= inode
->i_sb
;
2112 trace_writeback_mark_inode_dirty(inode
, flags
);
2115 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2116 * dirty the inode itself
2118 if (flags
& (I_DIRTY_INODE
| I_DIRTY_TIME
)) {
2119 trace_writeback_dirty_inode_start(inode
, flags
);
2121 if (sb
->s_op
->dirty_inode
)
2122 sb
->s_op
->dirty_inode(inode
, flags
);
2124 trace_writeback_dirty_inode(inode
, flags
);
2126 if (flags
& I_DIRTY_INODE
)
2127 flags
&= ~I_DIRTY_TIME
;
2128 dirtytime
= flags
& I_DIRTY_TIME
;
2131 * Paired with smp_mb() in __writeback_single_inode() for the
2132 * following lockless i_state test. See there for details.
2136 if (((inode
->i_state
& flags
) == flags
) ||
2137 (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
)))
2140 if (unlikely(block_dump
))
2141 block_dump___mark_inode_dirty(inode
);
2143 spin_lock(&inode
->i_lock
);
2144 if (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
))
2145 goto out_unlock_inode
;
2146 if ((inode
->i_state
& flags
) != flags
) {
2147 const int was_dirty
= inode
->i_state
& I_DIRTY
;
2149 inode_attach_wb(inode
, NULL
);
2151 if (flags
& I_DIRTY_INODE
)
2152 inode
->i_state
&= ~I_DIRTY_TIME
;
2153 inode
->i_state
|= flags
;
2156 * If the inode is being synced, just update its dirty state.
2157 * The unlocker will place the inode on the appropriate
2158 * superblock list, based upon its state.
2160 if (inode
->i_state
& I_SYNC
)
2161 goto out_unlock_inode
;
2164 * Only add valid (hashed) inodes to the superblock's
2165 * dirty list. Add blockdev inodes as well.
2167 if (!S_ISBLK(inode
->i_mode
)) {
2168 if (inode_unhashed(inode
))
2169 goto out_unlock_inode
;
2171 if (inode
->i_state
& I_FREEING
)
2172 goto out_unlock_inode
;
2175 * If the inode was already on b_dirty/b_io/b_more_io, don't
2176 * reposition it (that would break b_dirty time-ordering).
2179 struct bdi_writeback
*wb
;
2180 struct list_head
*dirty_list
;
2181 bool wakeup_bdi
= false;
2183 wb
= locked_inode_to_wb_and_lock_list(inode
);
2185 WARN(bdi_cap_writeback_dirty(wb
->bdi
) &&
2186 !test_bit(WB_registered
, &wb
->state
),
2187 "bdi-%s not registered\n", wb
->bdi
->name
);
2189 inode
->dirtied_when
= jiffies
;
2191 inode
->dirtied_time_when
= jiffies
;
2193 if (inode
->i_state
& I_DIRTY
)
2194 dirty_list
= &wb
->b_dirty
;
2196 dirty_list
= &wb
->b_dirty_time
;
2198 wakeup_bdi
= inode_io_list_move_locked(inode
, wb
,
2201 spin_unlock(&wb
->list_lock
);
2202 trace_writeback_dirty_inode_enqueue(inode
);
2205 * If this is the first dirty inode for this bdi,
2206 * we have to wake-up the corresponding bdi thread
2207 * to make sure background write-back happens
2210 if (bdi_cap_writeback_dirty(wb
->bdi
) && wakeup_bdi
)
2211 wb_wakeup_delayed(wb
);
2216 spin_unlock(&inode
->i_lock
);
2218 EXPORT_SYMBOL(__mark_inode_dirty
);
2221 * The @s_sync_lock is used to serialise concurrent sync operations
2222 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2223 * Concurrent callers will block on the s_sync_lock rather than doing contending
2224 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2225 * has been issued up to the time this function is enter is guaranteed to be
2226 * completed by the time we have gained the lock and waited for all IO that is
2227 * in progress regardless of the order callers are granted the lock.
2229 static void wait_sb_inodes(struct super_block
*sb
)
2231 LIST_HEAD(sync_list
);
2234 * We need to be protected against the filesystem going from
2235 * r/o to r/w or vice versa.
2237 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2239 mutex_lock(&sb
->s_sync_lock
);
2242 * Splice the writeback list onto a temporary list to avoid waiting on
2243 * inodes that have started writeback after this point.
2245 * Use rcu_read_lock() to keep the inodes around until we have a
2246 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2247 * the local list because inodes can be dropped from either by writeback
2251 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2252 list_splice_init(&sb
->s_inodes_wb
, &sync_list
);
2255 * Data integrity sync. Must wait for all pages under writeback, because
2256 * there may have been pages dirtied before our sync call, but which had
2257 * writeout started before we write it out. In which case, the inode
2258 * may not be on the dirty list, but we still have to wait for that
2261 while (!list_empty(&sync_list
)) {
2262 struct inode
*inode
= list_first_entry(&sync_list
, struct inode
,
2264 struct address_space
*mapping
= inode
->i_mapping
;
2267 * Move each inode back to the wb list before we drop the lock
2268 * to preserve consistency between i_wb_list and the mapping
2269 * writeback tag. Writeback completion is responsible to remove
2270 * the inode from either list once the writeback tag is cleared.
2272 list_move_tail(&inode
->i_wb_list
, &sb
->s_inodes_wb
);
2275 * The mapping can appear untagged while still on-list since we
2276 * do not have the mapping lock. Skip it here, wb completion
2279 if (!mapping_tagged(mapping
, PAGECACHE_TAG_WRITEBACK
))
2282 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2284 spin_lock(&inode
->i_lock
);
2285 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) {
2286 spin_unlock(&inode
->i_lock
);
2288 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2292 spin_unlock(&inode
->i_lock
);
2296 * We keep the error status of individual mapping so that
2297 * applications can catch the writeback error using fsync(2).
2298 * See filemap_fdatawait_keep_errors() for details.
2300 filemap_fdatawait_keep_errors(mapping
);
2307 spin_lock_irq(&sb
->s_inode_wblist_lock
);
2309 spin_unlock_irq(&sb
->s_inode_wblist_lock
);
2311 mutex_unlock(&sb
->s_sync_lock
);
2314 static void __writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2315 enum wb_reason reason
, bool skip_if_busy
)
2317 DEFINE_WB_COMPLETION_ONSTACK(done
);
2318 struct wb_writeback_work work
= {
2320 .sync_mode
= WB_SYNC_NONE
,
2321 .tagged_writepages
= 1,
2326 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2328 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2330 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2332 bdi_split_work_to_wbs(sb
->s_bdi
, &work
, skip_if_busy
);
2333 wb_wait_for_completion(bdi
, &done
);
2337 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2338 * @sb: the superblock
2339 * @nr: the number of pages to write
2340 * @reason: reason why some writeback work initiated
2342 * Start writeback on some inodes on this super_block. No guarantees are made
2343 * on how many (if any) will be written, and this function does not wait
2344 * for IO completion of submitted IO.
2346 void writeback_inodes_sb_nr(struct super_block
*sb
,
2348 enum wb_reason reason
)
2350 __writeback_inodes_sb_nr(sb
, nr
, reason
, false);
2352 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
2355 * writeback_inodes_sb - writeback dirty inodes from given super_block
2356 * @sb: the superblock
2357 * @reason: reason why some writeback work was initiated
2359 * Start writeback on some inodes on this super_block. No guarantees are made
2360 * on how many (if any) will be written, and this function does not wait
2361 * for IO completion of submitted IO.
2363 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2365 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2367 EXPORT_SYMBOL(writeback_inodes_sb
);
2370 * try_to_writeback_inodes_sb - try to start writeback if none underway
2371 * @sb: the superblock
2372 * @reason: reason why some writeback work was initiated
2374 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2376 void try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2378 if (!down_read_trylock(&sb
->s_umount
))
2381 __writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
, true);
2382 up_read(&sb
->s_umount
);
2384 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
2387 * sync_inodes_sb - sync sb inode pages
2388 * @sb: the superblock
2390 * This function writes and waits on any dirty inode belonging to this
2393 void sync_inodes_sb(struct super_block
*sb
)
2395 DEFINE_WB_COMPLETION_ONSTACK(done
);
2396 struct wb_writeback_work work
= {
2398 .sync_mode
= WB_SYNC_ALL
,
2399 .nr_pages
= LONG_MAX
,
2402 .reason
= WB_REASON_SYNC
,
2405 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2408 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2409 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2410 * bdi_has_dirty() need to be written out too.
2412 if (bdi
== &noop_backing_dev_info
)
2414 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2416 bdi_split_work_to_wbs(bdi
, &work
, false);
2417 wb_wait_for_completion(bdi
, &done
);
2421 EXPORT_SYMBOL(sync_inodes_sb
);
2424 * write_inode_now - write an inode to disk
2425 * @inode: inode to write to disk
2426 * @sync: whether the write should be synchronous or not
2428 * This function commits an inode to disk immediately if it is dirty. This is
2429 * primarily needed by knfsd.
2431 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2433 int write_inode_now(struct inode
*inode
, int sync
)
2435 struct writeback_control wbc
= {
2436 .nr_to_write
= LONG_MAX
,
2437 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2439 .range_end
= LLONG_MAX
,
2442 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
2443 wbc
.nr_to_write
= 0;
2446 return writeback_single_inode(inode
, &wbc
);
2448 EXPORT_SYMBOL(write_inode_now
);
2451 * sync_inode - write an inode and its pages to disk.
2452 * @inode: the inode to sync
2453 * @wbc: controls the writeback mode
2455 * sync_inode() will write an inode and its pages to disk. It will also
2456 * correctly update the inode on its superblock's dirty inode lists and will
2457 * update inode->i_state.
2459 * The caller must have a ref on the inode.
2461 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
2463 return writeback_single_inode(inode
, wbc
);
2465 EXPORT_SYMBOL(sync_inode
);
2468 * sync_inode_metadata - write an inode to disk
2469 * @inode: the inode to sync
2470 * @wait: wait for I/O to complete.
2472 * Write an inode to disk and adjust its dirty state after completion.
2474 * Note: only writes the actual inode, no associated data or other metadata.
2476 int sync_inode_metadata(struct inode
*inode
, int wait
)
2478 struct writeback_control wbc
= {
2479 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2480 .nr_to_write
= 0, /* metadata-only */
2483 return sync_inode(inode
, &wbc
);
2485 EXPORT_SYMBOL(sync_inode_metadata
);