x86: Serialize SMP bootup CMOS accesses on rtc_lock
[linux/fpc-iii.git] / mm / mmap.c
blobd49736ff8a8dad10420a4f2f76ca89da52c7da89
1 /*
2 * mm/mmap.c
4 * Written by obz.
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
39 #include "internal.h"
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
43 #endif
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
47 #endif
49 static void unmap_region(struct mm_struct *mm,
50 struct vm_area_struct *vma, struct vm_area_struct *prev,
51 unsigned long start, unsigned long end);
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
57 #undef DEBUG_MM_RB
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 EXPORT_SYMBOL(vm_get_page_prot);
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 unsigned long free, allowed;
116 vm_acct_memory(pages);
119 * Sometimes we want to use more memory than we have
121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 return 0;
124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 unsigned long n;
127 free = global_page_state(NR_FILE_PAGES);
128 free += nr_swap_pages;
131 * Any slabs which are created with the
132 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
133 * which are reclaimable, under pressure. The dentry
134 * cache and most inode caches should fall into this
136 free += global_page_state(NR_SLAB_RECLAIMABLE);
139 * Leave the last 3% for root
141 if (!cap_sys_admin)
142 free -= free / 32;
144 if (free > pages)
145 return 0;
148 * nr_free_pages() is very expensive on large systems,
149 * only call if we're about to fail.
151 n = nr_free_pages();
154 * Leave reserved pages. The pages are not for anonymous pages.
156 if (n <= totalreserve_pages)
157 goto error;
158 else
159 n -= totalreserve_pages;
162 * Leave the last 3% for root
164 if (!cap_sys_admin)
165 n -= n / 32;
166 free += n;
168 if (free > pages)
169 return 0;
171 goto error;
174 allowed = (totalram_pages - hugetlb_total_pages())
175 * sysctl_overcommit_ratio / 100;
177 * Leave the last 3% for root
179 if (!cap_sys_admin)
180 allowed -= allowed / 32;
181 allowed += total_swap_pages;
183 /* Don't let a single process grow too big:
184 leave 3% of the size of this process for other processes */
185 if (mm)
186 allowed -= mm->total_vm / 32;
188 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
189 return 0;
190 error:
191 vm_unacct_memory(pages);
193 return -ENOMEM;
197 * Requires inode->i_mapping->i_mmap_mutex
199 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
200 struct file *file, struct address_space *mapping)
202 if (vma->vm_flags & VM_DENYWRITE)
203 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
204 if (vma->vm_flags & VM_SHARED)
205 mapping->i_mmap_writable--;
207 flush_dcache_mmap_lock(mapping);
208 if (unlikely(vma->vm_flags & VM_NONLINEAR))
209 list_del_init(&vma->shared.vm_set.list);
210 else
211 vma_prio_tree_remove(vma, &mapping->i_mmap);
212 flush_dcache_mmap_unlock(mapping);
216 * Unlink a file-based vm structure from its prio_tree, to hide
217 * vma from rmap and vmtruncate before freeing its page tables.
219 void unlink_file_vma(struct vm_area_struct *vma)
221 struct file *file = vma->vm_file;
223 if (file) {
224 struct address_space *mapping = file->f_mapping;
225 mutex_lock(&mapping->i_mmap_mutex);
226 __remove_shared_vm_struct(vma, file, mapping);
227 mutex_unlock(&mapping->i_mmap_mutex);
232 * Close a vm structure and free it, returning the next.
234 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
236 struct vm_area_struct *next = vma->vm_next;
238 might_sleep();
239 if (vma->vm_ops && vma->vm_ops->close)
240 vma->vm_ops->close(vma);
241 if (vma->vm_file) {
242 fput(vma->vm_file);
243 if (vma->vm_flags & VM_EXECUTABLE)
244 removed_exe_file_vma(vma->vm_mm);
246 mpol_put(vma_policy(vma));
247 kmem_cache_free(vm_area_cachep, vma);
248 return next;
251 SYSCALL_DEFINE1(brk, unsigned long, brk)
253 unsigned long rlim, retval;
254 unsigned long newbrk, oldbrk;
255 struct mm_struct *mm = current->mm;
256 unsigned long min_brk;
258 down_write(&mm->mmap_sem);
260 #ifdef CONFIG_COMPAT_BRK
262 * CONFIG_COMPAT_BRK can still be overridden by setting
263 * randomize_va_space to 2, which will still cause mm->start_brk
264 * to be arbitrarily shifted
266 if (current->brk_randomized)
267 min_brk = mm->start_brk;
268 else
269 min_brk = mm->end_data;
270 #else
271 min_brk = mm->start_brk;
272 #endif
273 if (brk < min_brk)
274 goto out;
277 * Check against rlimit here. If this check is done later after the test
278 * of oldbrk with newbrk then it can escape the test and let the data
279 * segment grow beyond its set limit the in case where the limit is
280 * not page aligned -Ram Gupta
282 rlim = rlimit(RLIMIT_DATA);
283 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
284 (mm->end_data - mm->start_data) > rlim)
285 goto out;
287 newbrk = PAGE_ALIGN(brk);
288 oldbrk = PAGE_ALIGN(mm->brk);
289 if (oldbrk == newbrk)
290 goto set_brk;
292 /* Always allow shrinking brk. */
293 if (brk <= mm->brk) {
294 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
295 goto set_brk;
296 goto out;
299 /* Check against existing mmap mappings. */
300 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
301 goto out;
303 /* Ok, looks good - let it rip. */
304 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
305 goto out;
306 set_brk:
307 mm->brk = brk;
308 out:
309 retval = mm->brk;
310 up_write(&mm->mmap_sem);
311 return retval;
314 #ifdef DEBUG_MM_RB
315 static int browse_rb(struct rb_root *root)
317 int i = 0, j;
318 struct rb_node *nd, *pn = NULL;
319 unsigned long prev = 0, pend = 0;
321 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
322 struct vm_area_struct *vma;
323 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
324 if (vma->vm_start < prev)
325 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
326 if (vma->vm_start < pend)
327 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
328 if (vma->vm_start > vma->vm_end)
329 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
330 i++;
331 pn = nd;
332 prev = vma->vm_start;
333 pend = vma->vm_end;
335 j = 0;
336 for (nd = pn; nd; nd = rb_prev(nd)) {
337 j++;
339 if (i != j)
340 printk("backwards %d, forwards %d\n", j, i), i = 0;
341 return i;
344 void validate_mm(struct mm_struct *mm)
346 int bug = 0;
347 int i = 0;
348 struct vm_area_struct *tmp = mm->mmap;
349 while (tmp) {
350 tmp = tmp->vm_next;
351 i++;
353 if (i != mm->map_count)
354 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
355 i = browse_rb(&mm->mm_rb);
356 if (i != mm->map_count)
357 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
358 BUG_ON(bug);
360 #else
361 #define validate_mm(mm) do { } while (0)
362 #endif
364 static struct vm_area_struct *
365 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
366 struct vm_area_struct **pprev, struct rb_node ***rb_link,
367 struct rb_node ** rb_parent)
369 struct vm_area_struct * vma;
370 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
372 __rb_link = &mm->mm_rb.rb_node;
373 rb_prev = __rb_parent = NULL;
374 vma = NULL;
376 while (*__rb_link) {
377 struct vm_area_struct *vma_tmp;
379 __rb_parent = *__rb_link;
380 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
382 if (vma_tmp->vm_end > addr) {
383 vma = vma_tmp;
384 if (vma_tmp->vm_start <= addr)
385 break;
386 __rb_link = &__rb_parent->rb_left;
387 } else {
388 rb_prev = __rb_parent;
389 __rb_link = &__rb_parent->rb_right;
393 *pprev = NULL;
394 if (rb_prev)
395 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
396 *rb_link = __rb_link;
397 *rb_parent = __rb_parent;
398 return vma;
401 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
402 struct rb_node **rb_link, struct rb_node *rb_parent)
404 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
405 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
408 static void __vma_link_file(struct vm_area_struct *vma)
410 struct file *file;
412 file = vma->vm_file;
413 if (file) {
414 struct address_space *mapping = file->f_mapping;
416 if (vma->vm_flags & VM_DENYWRITE)
417 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
418 if (vma->vm_flags & VM_SHARED)
419 mapping->i_mmap_writable++;
421 flush_dcache_mmap_lock(mapping);
422 if (unlikely(vma->vm_flags & VM_NONLINEAR))
423 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
424 else
425 vma_prio_tree_insert(vma, &mapping->i_mmap);
426 flush_dcache_mmap_unlock(mapping);
430 static void
431 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
432 struct vm_area_struct *prev, struct rb_node **rb_link,
433 struct rb_node *rb_parent)
435 __vma_link_list(mm, vma, prev, rb_parent);
436 __vma_link_rb(mm, vma, rb_link, rb_parent);
439 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
440 struct vm_area_struct *prev, struct rb_node **rb_link,
441 struct rb_node *rb_parent)
443 struct address_space *mapping = NULL;
445 if (vma->vm_file)
446 mapping = vma->vm_file->f_mapping;
448 if (mapping)
449 mutex_lock(&mapping->i_mmap_mutex);
451 __vma_link(mm, vma, prev, rb_link, rb_parent);
452 __vma_link_file(vma);
454 if (mapping)
455 mutex_unlock(&mapping->i_mmap_mutex);
457 mm->map_count++;
458 validate_mm(mm);
462 * Helper for vma_adjust in the split_vma insert case:
463 * insert vm structure into list and rbtree and anon_vma,
464 * but it has already been inserted into prio_tree earlier.
466 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
468 struct vm_area_struct *__vma, *prev;
469 struct rb_node **rb_link, *rb_parent;
471 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
472 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
473 __vma_link(mm, vma, prev, rb_link, rb_parent);
474 mm->map_count++;
477 static inline void
478 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
479 struct vm_area_struct *prev)
481 struct vm_area_struct *next = vma->vm_next;
483 prev->vm_next = next;
484 if (next)
485 next->vm_prev = prev;
486 rb_erase(&vma->vm_rb, &mm->mm_rb);
487 if (mm->mmap_cache == vma)
488 mm->mmap_cache = prev;
492 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
493 * is already present in an i_mmap tree without adjusting the tree.
494 * The following helper function should be used when such adjustments
495 * are necessary. The "insert" vma (if any) is to be inserted
496 * before we drop the necessary locks.
498 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
499 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
501 struct mm_struct *mm = vma->vm_mm;
502 struct vm_area_struct *next = vma->vm_next;
503 struct vm_area_struct *importer = NULL;
504 struct address_space *mapping = NULL;
505 struct prio_tree_root *root = NULL;
506 struct anon_vma *anon_vma = NULL;
507 struct file *file = vma->vm_file;
508 long adjust_next = 0;
509 int remove_next = 0;
511 if (next && !insert) {
512 struct vm_area_struct *exporter = NULL;
514 if (end >= next->vm_end) {
516 * vma expands, overlapping all the next, and
517 * perhaps the one after too (mprotect case 6).
519 again: remove_next = 1 + (end > next->vm_end);
520 end = next->vm_end;
521 exporter = next;
522 importer = vma;
523 } else if (end > next->vm_start) {
525 * vma expands, overlapping part of the next:
526 * mprotect case 5 shifting the boundary up.
528 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
529 exporter = next;
530 importer = vma;
531 } else if (end < vma->vm_end) {
533 * vma shrinks, and !insert tells it's not
534 * split_vma inserting another: so it must be
535 * mprotect case 4 shifting the boundary down.
537 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
538 exporter = vma;
539 importer = next;
543 * Easily overlooked: when mprotect shifts the boundary,
544 * make sure the expanding vma has anon_vma set if the
545 * shrinking vma had, to cover any anon pages imported.
547 if (exporter && exporter->anon_vma && !importer->anon_vma) {
548 if (anon_vma_clone(importer, exporter))
549 return -ENOMEM;
550 importer->anon_vma = exporter->anon_vma;
554 if (file) {
555 mapping = file->f_mapping;
556 if (!(vma->vm_flags & VM_NONLINEAR))
557 root = &mapping->i_mmap;
558 mutex_lock(&mapping->i_mmap_mutex);
559 if (insert) {
561 * Put into prio_tree now, so instantiated pages
562 * are visible to arm/parisc __flush_dcache_page
563 * throughout; but we cannot insert into address
564 * space until vma start or end is updated.
566 __vma_link_file(insert);
570 vma_adjust_trans_huge(vma, start, end, adjust_next);
573 * When changing only vma->vm_end, we don't really need anon_vma
574 * lock. This is a fairly rare case by itself, but the anon_vma
575 * lock may be shared between many sibling processes. Skipping
576 * the lock for brk adjustments makes a difference sometimes.
578 if (vma->anon_vma && (importer || start != vma->vm_start)) {
579 anon_vma = vma->anon_vma;
580 anon_vma_lock(anon_vma);
583 if (root) {
584 flush_dcache_mmap_lock(mapping);
585 vma_prio_tree_remove(vma, root);
586 if (adjust_next)
587 vma_prio_tree_remove(next, root);
590 vma->vm_start = start;
591 vma->vm_end = end;
592 vma->vm_pgoff = pgoff;
593 if (adjust_next) {
594 next->vm_start += adjust_next << PAGE_SHIFT;
595 next->vm_pgoff += adjust_next;
598 if (root) {
599 if (adjust_next)
600 vma_prio_tree_insert(next, root);
601 vma_prio_tree_insert(vma, root);
602 flush_dcache_mmap_unlock(mapping);
605 if (remove_next) {
607 * vma_merge has merged next into vma, and needs
608 * us to remove next before dropping the locks.
610 __vma_unlink(mm, next, vma);
611 if (file)
612 __remove_shared_vm_struct(next, file, mapping);
613 } else if (insert) {
615 * split_vma has split insert from vma, and needs
616 * us to insert it before dropping the locks
617 * (it may either follow vma or precede it).
619 __insert_vm_struct(mm, insert);
622 if (anon_vma)
623 anon_vma_unlock(anon_vma);
624 if (mapping)
625 mutex_unlock(&mapping->i_mmap_mutex);
627 if (remove_next) {
628 if (file) {
629 fput(file);
630 if (next->vm_flags & VM_EXECUTABLE)
631 removed_exe_file_vma(mm);
633 if (next->anon_vma)
634 anon_vma_merge(vma, next);
635 mm->map_count--;
636 mpol_put(vma_policy(next));
637 kmem_cache_free(vm_area_cachep, next);
639 * In mprotect's case 6 (see comments on vma_merge),
640 * we must remove another next too. It would clutter
641 * up the code too much to do both in one go.
643 if (remove_next == 2) {
644 next = vma->vm_next;
645 goto again;
649 validate_mm(mm);
651 return 0;
655 * If the vma has a ->close operation then the driver probably needs to release
656 * per-vma resources, so we don't attempt to merge those.
658 static inline int is_mergeable_vma(struct vm_area_struct *vma,
659 struct file *file, unsigned long vm_flags)
661 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
662 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
663 return 0;
664 if (vma->vm_file != file)
665 return 0;
666 if (vma->vm_ops && vma->vm_ops->close)
667 return 0;
668 return 1;
671 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
672 struct anon_vma *anon_vma2,
673 struct vm_area_struct *vma)
676 * The list_is_singular() test is to avoid merging VMA cloned from
677 * parents. This can improve scalability caused by anon_vma lock.
679 if ((!anon_vma1 || !anon_vma2) && (!vma ||
680 list_is_singular(&vma->anon_vma_chain)))
681 return 1;
682 return anon_vma1 == anon_vma2;
686 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687 * in front of (at a lower virtual address and file offset than) the vma.
689 * We cannot merge two vmas if they have differently assigned (non-NULL)
690 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
692 * We don't check here for the merged mmap wrapping around the end of pagecache
693 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
694 * wrap, nor mmaps which cover the final page at index -1UL.
696 static int
697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
698 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
700 if (is_mergeable_vma(vma, file, vm_flags) &&
701 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
702 if (vma->vm_pgoff == vm_pgoff)
703 return 1;
705 return 0;
709 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
710 * beyond (at a higher virtual address and file offset than) the vma.
712 * We cannot merge two vmas if they have differently assigned (non-NULL)
713 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
715 static int
716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
717 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
719 if (is_mergeable_vma(vma, file, vm_flags) &&
720 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
721 pgoff_t vm_pglen;
722 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
724 return 1;
726 return 0;
730 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
731 * whether that can be merged with its predecessor or its successor.
732 * Or both (it neatly fills a hole).
734 * In most cases - when called for mmap, brk or mremap - [addr,end) is
735 * certain not to be mapped by the time vma_merge is called; but when
736 * called for mprotect, it is certain to be already mapped (either at
737 * an offset within prev, or at the start of next), and the flags of
738 * this area are about to be changed to vm_flags - and the no-change
739 * case has already been eliminated.
741 * The following mprotect cases have to be considered, where AAAA is
742 * the area passed down from mprotect_fixup, never extending beyond one
743 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
745 * AAAA AAAA AAAA AAAA
746 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
747 * cannot merge might become might become might become
748 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
749 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
750 * mremap move: PPPPNNNNNNNN 8
751 * AAAA
752 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
753 * might become case 1 below case 2 below case 3 below
755 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
756 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
758 struct vm_area_struct *vma_merge(struct mm_struct *mm,
759 struct vm_area_struct *prev, unsigned long addr,
760 unsigned long end, unsigned long vm_flags,
761 struct anon_vma *anon_vma, struct file *file,
762 pgoff_t pgoff, struct mempolicy *policy)
764 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
765 struct vm_area_struct *area, *next;
766 int err;
769 * We later require that vma->vm_flags == vm_flags,
770 * so this tests vma->vm_flags & VM_SPECIAL, too.
772 if (vm_flags & VM_SPECIAL)
773 return NULL;
775 if (prev)
776 next = prev->vm_next;
777 else
778 next = mm->mmap;
779 area = next;
780 if (next && next->vm_end == end) /* cases 6, 7, 8 */
781 next = next->vm_next;
784 * Can it merge with the predecessor?
786 if (prev && prev->vm_end == addr &&
787 mpol_equal(vma_policy(prev), policy) &&
788 can_vma_merge_after(prev, vm_flags,
789 anon_vma, file, pgoff)) {
791 * OK, it can. Can we now merge in the successor as well?
793 if (next && end == next->vm_start &&
794 mpol_equal(policy, vma_policy(next)) &&
795 can_vma_merge_before(next, vm_flags,
796 anon_vma, file, pgoff+pglen) &&
797 is_mergeable_anon_vma(prev->anon_vma,
798 next->anon_vma, NULL)) {
799 /* cases 1, 6 */
800 err = vma_adjust(prev, prev->vm_start,
801 next->vm_end, prev->vm_pgoff, NULL);
802 } else /* cases 2, 5, 7 */
803 err = vma_adjust(prev, prev->vm_start,
804 end, prev->vm_pgoff, NULL);
805 if (err)
806 return NULL;
807 khugepaged_enter_vma_merge(prev);
808 return prev;
812 * Can this new request be merged in front of next?
814 if (next && end == next->vm_start &&
815 mpol_equal(policy, vma_policy(next)) &&
816 can_vma_merge_before(next, vm_flags,
817 anon_vma, file, pgoff+pglen)) {
818 if (prev && addr < prev->vm_end) /* case 4 */
819 err = vma_adjust(prev, prev->vm_start,
820 addr, prev->vm_pgoff, NULL);
821 else /* cases 3, 8 */
822 err = vma_adjust(area, addr, next->vm_end,
823 next->vm_pgoff - pglen, NULL);
824 if (err)
825 return NULL;
826 khugepaged_enter_vma_merge(area);
827 return area;
830 return NULL;
834 * Rough compatbility check to quickly see if it's even worth looking
835 * at sharing an anon_vma.
837 * They need to have the same vm_file, and the flags can only differ
838 * in things that mprotect may change.
840 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
841 * we can merge the two vma's. For example, we refuse to merge a vma if
842 * there is a vm_ops->close() function, because that indicates that the
843 * driver is doing some kind of reference counting. But that doesn't
844 * really matter for the anon_vma sharing case.
846 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
848 return a->vm_end == b->vm_start &&
849 mpol_equal(vma_policy(a), vma_policy(b)) &&
850 a->vm_file == b->vm_file &&
851 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
852 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
856 * Do some basic sanity checking to see if we can re-use the anon_vma
857 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
858 * the same as 'old', the other will be the new one that is trying
859 * to share the anon_vma.
861 * NOTE! This runs with mm_sem held for reading, so it is possible that
862 * the anon_vma of 'old' is concurrently in the process of being set up
863 * by another page fault trying to merge _that_. But that's ok: if it
864 * is being set up, that automatically means that it will be a singleton
865 * acceptable for merging, so we can do all of this optimistically. But
866 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
868 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
869 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
870 * is to return an anon_vma that is "complex" due to having gone through
871 * a fork).
873 * We also make sure that the two vma's are compatible (adjacent,
874 * and with the same memory policies). That's all stable, even with just
875 * a read lock on the mm_sem.
877 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
879 if (anon_vma_compatible(a, b)) {
880 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
882 if (anon_vma && list_is_singular(&old->anon_vma_chain))
883 return anon_vma;
885 return NULL;
889 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
890 * neighbouring vmas for a suitable anon_vma, before it goes off
891 * to allocate a new anon_vma. It checks because a repetitive
892 * sequence of mprotects and faults may otherwise lead to distinct
893 * anon_vmas being allocated, preventing vma merge in subsequent
894 * mprotect.
896 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
898 struct anon_vma *anon_vma;
899 struct vm_area_struct *near;
901 near = vma->vm_next;
902 if (!near)
903 goto try_prev;
905 anon_vma = reusable_anon_vma(near, vma, near);
906 if (anon_vma)
907 return anon_vma;
908 try_prev:
909 near = vma->vm_prev;
910 if (!near)
911 goto none;
913 anon_vma = reusable_anon_vma(near, near, vma);
914 if (anon_vma)
915 return anon_vma;
916 none:
918 * There's no absolute need to look only at touching neighbours:
919 * we could search further afield for "compatible" anon_vmas.
920 * But it would probably just be a waste of time searching,
921 * or lead to too many vmas hanging off the same anon_vma.
922 * We're trying to allow mprotect remerging later on,
923 * not trying to minimize memory used for anon_vmas.
925 return NULL;
928 #ifdef CONFIG_PROC_FS
929 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
930 struct file *file, long pages)
932 const unsigned long stack_flags
933 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
935 if (file) {
936 mm->shared_vm += pages;
937 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
938 mm->exec_vm += pages;
939 } else if (flags & stack_flags)
940 mm->stack_vm += pages;
941 if (flags & (VM_RESERVED|VM_IO))
942 mm->reserved_vm += pages;
944 #endif /* CONFIG_PROC_FS */
947 * The caller must hold down_write(&current->mm->mmap_sem).
950 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
951 unsigned long len, unsigned long prot,
952 unsigned long flags, unsigned long pgoff)
954 struct mm_struct * mm = current->mm;
955 struct inode *inode;
956 vm_flags_t vm_flags;
957 int error;
958 unsigned long reqprot = prot;
961 * Does the application expect PROT_READ to imply PROT_EXEC?
963 * (the exception is when the underlying filesystem is noexec
964 * mounted, in which case we dont add PROT_EXEC.)
966 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
967 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
968 prot |= PROT_EXEC;
970 if (!len)
971 return -EINVAL;
973 if (!(flags & MAP_FIXED))
974 addr = round_hint_to_min(addr);
976 /* Careful about overflows.. */
977 len = PAGE_ALIGN(len);
978 if (!len)
979 return -ENOMEM;
981 /* offset overflow? */
982 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
983 return -EOVERFLOW;
985 /* Too many mappings? */
986 if (mm->map_count > sysctl_max_map_count)
987 return -ENOMEM;
989 /* Obtain the address to map to. we verify (or select) it and ensure
990 * that it represents a valid section of the address space.
992 addr = get_unmapped_area(file, addr, len, pgoff, flags);
993 if (addr & ~PAGE_MASK)
994 return addr;
996 /* Do simple checking here so the lower-level routines won't have
997 * to. we assume access permissions have been handled by the open
998 * of the memory object, so we don't do any here.
1000 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1001 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1003 if (flags & MAP_LOCKED)
1004 if (!can_do_mlock())
1005 return -EPERM;
1007 /* mlock MCL_FUTURE? */
1008 if (vm_flags & VM_LOCKED) {
1009 unsigned long locked, lock_limit;
1010 locked = len >> PAGE_SHIFT;
1011 locked += mm->locked_vm;
1012 lock_limit = rlimit(RLIMIT_MEMLOCK);
1013 lock_limit >>= PAGE_SHIFT;
1014 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1015 return -EAGAIN;
1018 inode = file ? file->f_path.dentry->d_inode : NULL;
1020 if (file) {
1021 switch (flags & MAP_TYPE) {
1022 case MAP_SHARED:
1023 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1024 return -EACCES;
1027 * Make sure we don't allow writing to an append-only
1028 * file..
1030 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1031 return -EACCES;
1034 * Make sure there are no mandatory locks on the file.
1036 if (locks_verify_locked(inode))
1037 return -EAGAIN;
1039 vm_flags |= VM_SHARED | VM_MAYSHARE;
1040 if (!(file->f_mode & FMODE_WRITE))
1041 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1043 /* fall through */
1044 case MAP_PRIVATE:
1045 if (!(file->f_mode & FMODE_READ))
1046 return -EACCES;
1047 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1048 if (vm_flags & VM_EXEC)
1049 return -EPERM;
1050 vm_flags &= ~VM_MAYEXEC;
1053 if (!file->f_op || !file->f_op->mmap)
1054 return -ENODEV;
1055 break;
1057 default:
1058 return -EINVAL;
1060 } else {
1061 switch (flags & MAP_TYPE) {
1062 case MAP_SHARED:
1064 * Ignore pgoff.
1066 pgoff = 0;
1067 vm_flags |= VM_SHARED | VM_MAYSHARE;
1068 break;
1069 case MAP_PRIVATE:
1071 * Set pgoff according to addr for anon_vma.
1073 pgoff = addr >> PAGE_SHIFT;
1074 break;
1075 default:
1076 return -EINVAL;
1080 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1081 if (error)
1082 return error;
1084 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1086 EXPORT_SYMBOL(do_mmap_pgoff);
1088 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1089 unsigned long, prot, unsigned long, flags,
1090 unsigned long, fd, unsigned long, pgoff)
1092 struct file *file = NULL;
1093 unsigned long retval = -EBADF;
1095 if (!(flags & MAP_ANONYMOUS)) {
1096 audit_mmap_fd(fd, flags);
1097 if (unlikely(flags & MAP_HUGETLB))
1098 return -EINVAL;
1099 file = fget(fd);
1100 if (!file)
1101 goto out;
1102 } else if (flags & MAP_HUGETLB) {
1103 struct user_struct *user = NULL;
1105 * VM_NORESERVE is used because the reservations will be
1106 * taken when vm_ops->mmap() is called
1107 * A dummy user value is used because we are not locking
1108 * memory so no accounting is necessary
1110 len = ALIGN(len, huge_page_size(&default_hstate));
1111 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1112 &user, HUGETLB_ANONHUGE_INODE);
1113 if (IS_ERR(file))
1114 return PTR_ERR(file);
1117 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1119 down_write(&current->mm->mmap_sem);
1120 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1121 up_write(&current->mm->mmap_sem);
1123 if (file)
1124 fput(file);
1125 out:
1126 return retval;
1129 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1130 struct mmap_arg_struct {
1131 unsigned long addr;
1132 unsigned long len;
1133 unsigned long prot;
1134 unsigned long flags;
1135 unsigned long fd;
1136 unsigned long offset;
1139 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1141 struct mmap_arg_struct a;
1143 if (copy_from_user(&a, arg, sizeof(a)))
1144 return -EFAULT;
1145 if (a.offset & ~PAGE_MASK)
1146 return -EINVAL;
1148 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1149 a.offset >> PAGE_SHIFT);
1151 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1154 * Some shared mappigns will want the pages marked read-only
1155 * to track write events. If so, we'll downgrade vm_page_prot
1156 * to the private version (using protection_map[] without the
1157 * VM_SHARED bit).
1159 int vma_wants_writenotify(struct vm_area_struct *vma)
1161 vm_flags_t vm_flags = vma->vm_flags;
1163 /* If it was private or non-writable, the write bit is already clear */
1164 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1165 return 0;
1167 /* The backer wishes to know when pages are first written to? */
1168 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1169 return 1;
1171 /* The open routine did something to the protections already? */
1172 if (pgprot_val(vma->vm_page_prot) !=
1173 pgprot_val(vm_get_page_prot(vm_flags)))
1174 return 0;
1176 /* Specialty mapping? */
1177 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1178 return 0;
1180 /* Can the mapping track the dirty pages? */
1181 return vma->vm_file && vma->vm_file->f_mapping &&
1182 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1186 * We account for memory if it's a private writeable mapping,
1187 * not hugepages and VM_NORESERVE wasn't set.
1189 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1192 * hugetlb has its own accounting separate from the core VM
1193 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1195 if (file && is_file_hugepages(file))
1196 return 0;
1198 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1201 unsigned long mmap_region(struct file *file, unsigned long addr,
1202 unsigned long len, unsigned long flags,
1203 vm_flags_t vm_flags, unsigned long pgoff)
1205 struct mm_struct *mm = current->mm;
1206 struct vm_area_struct *vma, *prev;
1207 int correct_wcount = 0;
1208 int error;
1209 struct rb_node **rb_link, *rb_parent;
1210 unsigned long charged = 0;
1211 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1213 /* Clear old maps */
1214 error = -ENOMEM;
1215 munmap_back:
1216 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1217 if (vma && vma->vm_start < addr + len) {
1218 if (do_munmap(mm, addr, len))
1219 return -ENOMEM;
1220 goto munmap_back;
1223 /* Check against address space limit. */
1224 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1225 return -ENOMEM;
1228 * Set 'VM_NORESERVE' if we should not account for the
1229 * memory use of this mapping.
1231 if ((flags & MAP_NORESERVE)) {
1232 /* We honor MAP_NORESERVE if allowed to overcommit */
1233 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1234 vm_flags |= VM_NORESERVE;
1236 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1237 if (file && is_file_hugepages(file))
1238 vm_flags |= VM_NORESERVE;
1242 * Private writable mapping: check memory availability
1244 if (accountable_mapping(file, vm_flags)) {
1245 charged = len >> PAGE_SHIFT;
1246 if (security_vm_enough_memory(charged))
1247 return -ENOMEM;
1248 vm_flags |= VM_ACCOUNT;
1252 * Can we just expand an old mapping?
1254 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1255 if (vma)
1256 goto out;
1259 * Determine the object being mapped and call the appropriate
1260 * specific mapper. the address has already been validated, but
1261 * not unmapped, but the maps are removed from the list.
1263 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1264 if (!vma) {
1265 error = -ENOMEM;
1266 goto unacct_error;
1269 vma->vm_mm = mm;
1270 vma->vm_start = addr;
1271 vma->vm_end = addr + len;
1272 vma->vm_flags = vm_flags;
1273 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1274 vma->vm_pgoff = pgoff;
1275 INIT_LIST_HEAD(&vma->anon_vma_chain);
1277 if (file) {
1278 error = -EINVAL;
1279 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1280 goto free_vma;
1281 if (vm_flags & VM_DENYWRITE) {
1282 error = deny_write_access(file);
1283 if (error)
1284 goto free_vma;
1285 correct_wcount = 1;
1287 vma->vm_file = file;
1288 get_file(file);
1289 error = file->f_op->mmap(file, vma);
1290 if (error)
1291 goto unmap_and_free_vma;
1292 if (vm_flags & VM_EXECUTABLE)
1293 added_exe_file_vma(mm);
1295 /* Can addr have changed??
1297 * Answer: Yes, several device drivers can do it in their
1298 * f_op->mmap method. -DaveM
1300 addr = vma->vm_start;
1301 pgoff = vma->vm_pgoff;
1302 vm_flags = vma->vm_flags;
1303 } else if (vm_flags & VM_SHARED) {
1304 error = shmem_zero_setup(vma);
1305 if (error)
1306 goto free_vma;
1309 if (vma_wants_writenotify(vma)) {
1310 pgprot_t pprot = vma->vm_page_prot;
1312 /* Can vma->vm_page_prot have changed??
1314 * Answer: Yes, drivers may have changed it in their
1315 * f_op->mmap method.
1317 * Ensures that vmas marked as uncached stay that way.
1319 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1320 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1321 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1324 vma_link(mm, vma, prev, rb_link, rb_parent);
1325 file = vma->vm_file;
1327 /* Once vma denies write, undo our temporary denial count */
1328 if (correct_wcount)
1329 atomic_inc(&inode->i_writecount);
1330 out:
1331 perf_event_mmap(vma);
1333 mm->total_vm += len >> PAGE_SHIFT;
1334 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1335 if (vm_flags & VM_LOCKED) {
1336 if (!mlock_vma_pages_range(vma, addr, addr + len))
1337 mm->locked_vm += (len >> PAGE_SHIFT);
1338 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1339 make_pages_present(addr, addr + len);
1340 return addr;
1342 unmap_and_free_vma:
1343 if (correct_wcount)
1344 atomic_inc(&inode->i_writecount);
1345 vma->vm_file = NULL;
1346 fput(file);
1348 /* Undo any partial mapping done by a device driver. */
1349 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1350 charged = 0;
1351 free_vma:
1352 kmem_cache_free(vm_area_cachep, vma);
1353 unacct_error:
1354 if (charged)
1355 vm_unacct_memory(charged);
1356 return error;
1359 /* Get an address range which is currently unmapped.
1360 * For shmat() with addr=0.
1362 * Ugly calling convention alert:
1363 * Return value with the low bits set means error value,
1364 * ie
1365 * if (ret & ~PAGE_MASK)
1366 * error = ret;
1368 * This function "knows" that -ENOMEM has the bits set.
1370 #ifndef HAVE_ARCH_UNMAPPED_AREA
1371 unsigned long
1372 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1373 unsigned long len, unsigned long pgoff, unsigned long flags)
1375 struct mm_struct *mm = current->mm;
1376 struct vm_area_struct *vma;
1377 unsigned long start_addr;
1379 if (len > TASK_SIZE)
1380 return -ENOMEM;
1382 if (flags & MAP_FIXED)
1383 return addr;
1385 if (addr) {
1386 addr = PAGE_ALIGN(addr);
1387 vma = find_vma(mm, addr);
1388 if (TASK_SIZE - len >= addr &&
1389 (!vma || addr + len <= vma->vm_start))
1390 return addr;
1392 if (len > mm->cached_hole_size) {
1393 start_addr = addr = mm->free_area_cache;
1394 } else {
1395 start_addr = addr = TASK_UNMAPPED_BASE;
1396 mm->cached_hole_size = 0;
1399 full_search:
1400 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1401 /* At this point: (!vma || addr < vma->vm_end). */
1402 if (TASK_SIZE - len < addr) {
1404 * Start a new search - just in case we missed
1405 * some holes.
1407 if (start_addr != TASK_UNMAPPED_BASE) {
1408 addr = TASK_UNMAPPED_BASE;
1409 start_addr = addr;
1410 mm->cached_hole_size = 0;
1411 goto full_search;
1413 return -ENOMEM;
1415 if (!vma || addr + len <= vma->vm_start) {
1417 * Remember the place where we stopped the search:
1419 mm->free_area_cache = addr + len;
1420 return addr;
1422 if (addr + mm->cached_hole_size < vma->vm_start)
1423 mm->cached_hole_size = vma->vm_start - addr;
1424 addr = vma->vm_end;
1427 #endif
1429 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1432 * Is this a new hole at the lowest possible address?
1434 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1435 mm->free_area_cache = addr;
1436 mm->cached_hole_size = ~0UL;
1441 * This mmap-allocator allocates new areas top-down from below the
1442 * stack's low limit (the base):
1444 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1445 unsigned long
1446 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1447 const unsigned long len, const unsigned long pgoff,
1448 const unsigned long flags)
1450 struct vm_area_struct *vma;
1451 struct mm_struct *mm = current->mm;
1452 unsigned long addr = addr0;
1454 /* requested length too big for entire address space */
1455 if (len > TASK_SIZE)
1456 return -ENOMEM;
1458 if (flags & MAP_FIXED)
1459 return addr;
1461 /* requesting a specific address */
1462 if (addr) {
1463 addr = PAGE_ALIGN(addr);
1464 vma = find_vma(mm, addr);
1465 if (TASK_SIZE - len >= addr &&
1466 (!vma || addr + len <= vma->vm_start))
1467 return addr;
1470 /* check if free_area_cache is useful for us */
1471 if (len <= mm->cached_hole_size) {
1472 mm->cached_hole_size = 0;
1473 mm->free_area_cache = mm->mmap_base;
1476 /* either no address requested or can't fit in requested address hole */
1477 addr = mm->free_area_cache;
1479 /* make sure it can fit in the remaining address space */
1480 if (addr > len) {
1481 vma = find_vma(mm, addr-len);
1482 if (!vma || addr <= vma->vm_start)
1483 /* remember the address as a hint for next time */
1484 return (mm->free_area_cache = addr-len);
1487 if (mm->mmap_base < len)
1488 goto bottomup;
1490 addr = mm->mmap_base-len;
1492 do {
1494 * Lookup failure means no vma is above this address,
1495 * else if new region fits below vma->vm_start,
1496 * return with success:
1498 vma = find_vma(mm, addr);
1499 if (!vma || addr+len <= vma->vm_start)
1500 /* remember the address as a hint for next time */
1501 return (mm->free_area_cache = addr);
1503 /* remember the largest hole we saw so far */
1504 if (addr + mm->cached_hole_size < vma->vm_start)
1505 mm->cached_hole_size = vma->vm_start - addr;
1507 /* try just below the current vma->vm_start */
1508 addr = vma->vm_start-len;
1509 } while (len < vma->vm_start);
1511 bottomup:
1513 * A failed mmap() very likely causes application failure,
1514 * so fall back to the bottom-up function here. This scenario
1515 * can happen with large stack limits and large mmap()
1516 * allocations.
1518 mm->cached_hole_size = ~0UL;
1519 mm->free_area_cache = TASK_UNMAPPED_BASE;
1520 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1522 * Restore the topdown base:
1524 mm->free_area_cache = mm->mmap_base;
1525 mm->cached_hole_size = ~0UL;
1527 return addr;
1529 #endif
1531 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1534 * Is this a new hole at the highest possible address?
1536 if (addr > mm->free_area_cache)
1537 mm->free_area_cache = addr;
1539 /* dont allow allocations above current base */
1540 if (mm->free_area_cache > mm->mmap_base)
1541 mm->free_area_cache = mm->mmap_base;
1544 unsigned long
1545 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1546 unsigned long pgoff, unsigned long flags)
1548 unsigned long (*get_area)(struct file *, unsigned long,
1549 unsigned long, unsigned long, unsigned long);
1551 unsigned long error = arch_mmap_check(addr, len, flags);
1552 if (error)
1553 return error;
1555 /* Careful about overflows.. */
1556 if (len > TASK_SIZE)
1557 return -ENOMEM;
1559 get_area = current->mm->get_unmapped_area;
1560 if (file && file->f_op && file->f_op->get_unmapped_area)
1561 get_area = file->f_op->get_unmapped_area;
1562 addr = get_area(file, addr, len, pgoff, flags);
1563 if (IS_ERR_VALUE(addr))
1564 return addr;
1566 if (addr > TASK_SIZE - len)
1567 return -ENOMEM;
1568 if (addr & ~PAGE_MASK)
1569 return -EINVAL;
1571 return arch_rebalance_pgtables(addr, len);
1574 EXPORT_SYMBOL(get_unmapped_area);
1576 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1577 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1579 struct vm_area_struct *vma = NULL;
1581 if (mm) {
1582 /* Check the cache first. */
1583 /* (Cache hit rate is typically around 35%.) */
1584 vma = mm->mmap_cache;
1585 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1586 struct rb_node * rb_node;
1588 rb_node = mm->mm_rb.rb_node;
1589 vma = NULL;
1591 while (rb_node) {
1592 struct vm_area_struct * vma_tmp;
1594 vma_tmp = rb_entry(rb_node,
1595 struct vm_area_struct, vm_rb);
1597 if (vma_tmp->vm_end > addr) {
1598 vma = vma_tmp;
1599 if (vma_tmp->vm_start <= addr)
1600 break;
1601 rb_node = rb_node->rb_left;
1602 } else
1603 rb_node = rb_node->rb_right;
1605 if (vma)
1606 mm->mmap_cache = vma;
1609 return vma;
1612 EXPORT_SYMBOL(find_vma);
1614 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1615 struct vm_area_struct *
1616 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1617 struct vm_area_struct **pprev)
1619 struct vm_area_struct *vma = NULL, *prev = NULL;
1620 struct rb_node *rb_node;
1621 if (!mm)
1622 goto out;
1624 /* Guard against addr being lower than the first VMA */
1625 vma = mm->mmap;
1627 /* Go through the RB tree quickly. */
1628 rb_node = mm->mm_rb.rb_node;
1630 while (rb_node) {
1631 struct vm_area_struct *vma_tmp;
1632 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1634 if (addr < vma_tmp->vm_end) {
1635 rb_node = rb_node->rb_left;
1636 } else {
1637 prev = vma_tmp;
1638 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1639 break;
1640 rb_node = rb_node->rb_right;
1644 out:
1645 *pprev = prev;
1646 return prev ? prev->vm_next : vma;
1650 * Verify that the stack growth is acceptable and
1651 * update accounting. This is shared with both the
1652 * grow-up and grow-down cases.
1654 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1656 struct mm_struct *mm = vma->vm_mm;
1657 struct rlimit *rlim = current->signal->rlim;
1658 unsigned long new_start;
1660 /* address space limit tests */
1661 if (!may_expand_vm(mm, grow))
1662 return -ENOMEM;
1664 /* Stack limit test */
1665 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1666 return -ENOMEM;
1668 /* mlock limit tests */
1669 if (vma->vm_flags & VM_LOCKED) {
1670 unsigned long locked;
1671 unsigned long limit;
1672 locked = mm->locked_vm + grow;
1673 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1674 limit >>= PAGE_SHIFT;
1675 if (locked > limit && !capable(CAP_IPC_LOCK))
1676 return -ENOMEM;
1679 /* Check to ensure the stack will not grow into a hugetlb-only region */
1680 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1681 vma->vm_end - size;
1682 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1683 return -EFAULT;
1686 * Overcommit.. This must be the final test, as it will
1687 * update security statistics.
1689 if (security_vm_enough_memory_mm(mm, grow))
1690 return -ENOMEM;
1692 /* Ok, everything looks good - let it rip */
1693 mm->total_vm += grow;
1694 if (vma->vm_flags & VM_LOCKED)
1695 mm->locked_vm += grow;
1696 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1697 return 0;
1700 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1702 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1703 * vma is the last one with address > vma->vm_end. Have to extend vma.
1705 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1707 int error;
1709 if (!(vma->vm_flags & VM_GROWSUP))
1710 return -EFAULT;
1713 * We must make sure the anon_vma is allocated
1714 * so that the anon_vma locking is not a noop.
1716 if (unlikely(anon_vma_prepare(vma)))
1717 return -ENOMEM;
1718 vma_lock_anon_vma(vma);
1721 * vma->vm_start/vm_end cannot change under us because the caller
1722 * is required to hold the mmap_sem in read mode. We need the
1723 * anon_vma lock to serialize against concurrent expand_stacks.
1724 * Also guard against wrapping around to address 0.
1726 if (address < PAGE_ALIGN(address+4))
1727 address = PAGE_ALIGN(address+4);
1728 else {
1729 vma_unlock_anon_vma(vma);
1730 return -ENOMEM;
1732 error = 0;
1734 /* Somebody else might have raced and expanded it already */
1735 if (address > vma->vm_end) {
1736 unsigned long size, grow;
1738 size = address - vma->vm_start;
1739 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1741 error = -ENOMEM;
1742 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1743 error = acct_stack_growth(vma, size, grow);
1744 if (!error) {
1745 vma->vm_end = address;
1746 perf_event_mmap(vma);
1750 vma_unlock_anon_vma(vma);
1751 khugepaged_enter_vma_merge(vma);
1752 return error;
1754 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1757 * vma is the first one with address < vma->vm_start. Have to extend vma.
1759 int expand_downwards(struct vm_area_struct *vma,
1760 unsigned long address)
1762 int error;
1765 * We must make sure the anon_vma is allocated
1766 * so that the anon_vma locking is not a noop.
1768 if (unlikely(anon_vma_prepare(vma)))
1769 return -ENOMEM;
1771 address &= PAGE_MASK;
1772 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1773 if (error)
1774 return error;
1776 vma_lock_anon_vma(vma);
1779 * vma->vm_start/vm_end cannot change under us because the caller
1780 * is required to hold the mmap_sem in read mode. We need the
1781 * anon_vma lock to serialize against concurrent expand_stacks.
1784 /* Somebody else might have raced and expanded it already */
1785 if (address < vma->vm_start) {
1786 unsigned long size, grow;
1788 size = vma->vm_end - address;
1789 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1791 error = -ENOMEM;
1792 if (grow <= vma->vm_pgoff) {
1793 error = acct_stack_growth(vma, size, grow);
1794 if (!error) {
1795 vma->vm_start = address;
1796 vma->vm_pgoff -= grow;
1797 perf_event_mmap(vma);
1801 vma_unlock_anon_vma(vma);
1802 khugepaged_enter_vma_merge(vma);
1803 return error;
1806 #ifdef CONFIG_STACK_GROWSUP
1807 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1809 return expand_upwards(vma, address);
1812 struct vm_area_struct *
1813 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1815 struct vm_area_struct *vma, *prev;
1817 addr &= PAGE_MASK;
1818 vma = find_vma_prev(mm, addr, &prev);
1819 if (vma && (vma->vm_start <= addr))
1820 return vma;
1821 if (!prev || expand_stack(prev, addr))
1822 return NULL;
1823 if (prev->vm_flags & VM_LOCKED) {
1824 mlock_vma_pages_range(prev, addr, prev->vm_end);
1826 return prev;
1828 #else
1829 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1831 return expand_downwards(vma, address);
1834 struct vm_area_struct *
1835 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1837 struct vm_area_struct * vma;
1838 unsigned long start;
1840 addr &= PAGE_MASK;
1841 vma = find_vma(mm,addr);
1842 if (!vma)
1843 return NULL;
1844 if (vma->vm_start <= addr)
1845 return vma;
1846 if (!(vma->vm_flags & VM_GROWSDOWN))
1847 return NULL;
1848 start = vma->vm_start;
1849 if (expand_stack(vma, addr))
1850 return NULL;
1851 if (vma->vm_flags & VM_LOCKED) {
1852 mlock_vma_pages_range(vma, addr, start);
1854 return vma;
1856 #endif
1859 * Ok - we have the memory areas we should free on the vma list,
1860 * so release them, and do the vma updates.
1862 * Called with the mm semaphore held.
1864 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1866 /* Update high watermark before we lower total_vm */
1867 update_hiwater_vm(mm);
1868 do {
1869 long nrpages = vma_pages(vma);
1871 mm->total_vm -= nrpages;
1872 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1873 vma = remove_vma(vma);
1874 } while (vma);
1875 validate_mm(mm);
1879 * Get rid of page table information in the indicated region.
1881 * Called with the mm semaphore held.
1883 static void unmap_region(struct mm_struct *mm,
1884 struct vm_area_struct *vma, struct vm_area_struct *prev,
1885 unsigned long start, unsigned long end)
1887 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1888 struct mmu_gather tlb;
1889 unsigned long nr_accounted = 0;
1891 lru_add_drain();
1892 tlb_gather_mmu(&tlb, mm, 0);
1893 update_hiwater_rss(mm);
1894 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1895 vm_unacct_memory(nr_accounted);
1896 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1897 next ? next->vm_start : 0);
1898 tlb_finish_mmu(&tlb, start, end);
1902 * Create a list of vma's touched by the unmap, removing them from the mm's
1903 * vma list as we go..
1905 static void
1906 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1907 struct vm_area_struct *prev, unsigned long end)
1909 struct vm_area_struct **insertion_point;
1910 struct vm_area_struct *tail_vma = NULL;
1911 unsigned long addr;
1913 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1914 vma->vm_prev = NULL;
1915 do {
1916 rb_erase(&vma->vm_rb, &mm->mm_rb);
1917 mm->map_count--;
1918 tail_vma = vma;
1919 vma = vma->vm_next;
1920 } while (vma && vma->vm_start < end);
1921 *insertion_point = vma;
1922 if (vma)
1923 vma->vm_prev = prev;
1924 tail_vma->vm_next = NULL;
1925 if (mm->unmap_area == arch_unmap_area)
1926 addr = prev ? prev->vm_end : mm->mmap_base;
1927 else
1928 addr = vma ? vma->vm_start : mm->mmap_base;
1929 mm->unmap_area(mm, addr);
1930 mm->mmap_cache = NULL; /* Kill the cache. */
1934 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1935 * munmap path where it doesn't make sense to fail.
1937 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1938 unsigned long addr, int new_below)
1940 struct mempolicy *pol;
1941 struct vm_area_struct *new;
1942 int err = -ENOMEM;
1944 if (is_vm_hugetlb_page(vma) && (addr &
1945 ~(huge_page_mask(hstate_vma(vma)))))
1946 return -EINVAL;
1948 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1949 if (!new)
1950 goto out_err;
1952 /* most fields are the same, copy all, and then fixup */
1953 *new = *vma;
1955 INIT_LIST_HEAD(&new->anon_vma_chain);
1957 if (new_below)
1958 new->vm_end = addr;
1959 else {
1960 new->vm_start = addr;
1961 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1964 pol = mpol_dup(vma_policy(vma));
1965 if (IS_ERR(pol)) {
1966 err = PTR_ERR(pol);
1967 goto out_free_vma;
1969 vma_set_policy(new, pol);
1971 if (anon_vma_clone(new, vma))
1972 goto out_free_mpol;
1974 if (new->vm_file) {
1975 get_file(new->vm_file);
1976 if (vma->vm_flags & VM_EXECUTABLE)
1977 added_exe_file_vma(mm);
1980 if (new->vm_ops && new->vm_ops->open)
1981 new->vm_ops->open(new);
1983 if (new_below)
1984 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1985 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1986 else
1987 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1989 /* Success. */
1990 if (!err)
1991 return 0;
1993 /* Clean everything up if vma_adjust failed. */
1994 if (new->vm_ops && new->vm_ops->close)
1995 new->vm_ops->close(new);
1996 if (new->vm_file) {
1997 if (vma->vm_flags & VM_EXECUTABLE)
1998 removed_exe_file_vma(mm);
1999 fput(new->vm_file);
2001 unlink_anon_vmas(new);
2002 out_free_mpol:
2003 mpol_put(pol);
2004 out_free_vma:
2005 kmem_cache_free(vm_area_cachep, new);
2006 out_err:
2007 return err;
2011 * Split a vma into two pieces at address 'addr', a new vma is allocated
2012 * either for the first part or the tail.
2014 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2015 unsigned long addr, int new_below)
2017 if (mm->map_count >= sysctl_max_map_count)
2018 return -ENOMEM;
2020 return __split_vma(mm, vma, addr, new_below);
2023 /* Munmap is split into 2 main parts -- this part which finds
2024 * what needs doing, and the areas themselves, which do the
2025 * work. This now handles partial unmappings.
2026 * Jeremy Fitzhardinge <jeremy@goop.org>
2028 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2030 unsigned long end;
2031 struct vm_area_struct *vma, *prev, *last;
2033 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2034 return -EINVAL;
2036 if ((len = PAGE_ALIGN(len)) == 0)
2037 return -EINVAL;
2039 /* Find the first overlapping VMA */
2040 vma = find_vma(mm, start);
2041 if (!vma)
2042 return 0;
2043 prev = vma->vm_prev;
2044 /* we have start < vma->vm_end */
2046 /* if it doesn't overlap, we have nothing.. */
2047 end = start + len;
2048 if (vma->vm_start >= end)
2049 return 0;
2052 * If we need to split any vma, do it now to save pain later.
2054 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2055 * unmapped vm_area_struct will remain in use: so lower split_vma
2056 * places tmp vma above, and higher split_vma places tmp vma below.
2058 if (start > vma->vm_start) {
2059 int error;
2062 * Make sure that map_count on return from munmap() will
2063 * not exceed its limit; but let map_count go just above
2064 * its limit temporarily, to help free resources as expected.
2066 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2067 return -ENOMEM;
2069 error = __split_vma(mm, vma, start, 0);
2070 if (error)
2071 return error;
2072 prev = vma;
2075 /* Does it split the last one? */
2076 last = find_vma(mm, end);
2077 if (last && end > last->vm_start) {
2078 int error = __split_vma(mm, last, end, 1);
2079 if (error)
2080 return error;
2082 vma = prev? prev->vm_next: mm->mmap;
2085 * unlock any mlock()ed ranges before detaching vmas
2087 if (mm->locked_vm) {
2088 struct vm_area_struct *tmp = vma;
2089 while (tmp && tmp->vm_start < end) {
2090 if (tmp->vm_flags & VM_LOCKED) {
2091 mm->locked_vm -= vma_pages(tmp);
2092 munlock_vma_pages_all(tmp);
2094 tmp = tmp->vm_next;
2099 * Remove the vma's, and unmap the actual pages
2101 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2102 unmap_region(mm, vma, prev, start, end);
2104 /* Fix up all other VM information */
2105 remove_vma_list(mm, vma);
2107 return 0;
2110 EXPORT_SYMBOL(do_munmap);
2112 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2114 int ret;
2115 struct mm_struct *mm = current->mm;
2117 profile_munmap(addr);
2119 down_write(&mm->mmap_sem);
2120 ret = do_munmap(mm, addr, len);
2121 up_write(&mm->mmap_sem);
2122 return ret;
2125 static inline void verify_mm_writelocked(struct mm_struct *mm)
2127 #ifdef CONFIG_DEBUG_VM
2128 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2129 WARN_ON(1);
2130 up_read(&mm->mmap_sem);
2132 #endif
2136 * this is really a simplified "do_mmap". it only handles
2137 * anonymous maps. eventually we may be able to do some
2138 * brk-specific accounting here.
2140 unsigned long do_brk(unsigned long addr, unsigned long len)
2142 struct mm_struct * mm = current->mm;
2143 struct vm_area_struct * vma, * prev;
2144 unsigned long flags;
2145 struct rb_node ** rb_link, * rb_parent;
2146 pgoff_t pgoff = addr >> PAGE_SHIFT;
2147 int error;
2149 len = PAGE_ALIGN(len);
2150 if (!len)
2151 return addr;
2153 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2154 if (error)
2155 return error;
2157 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2159 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2160 if (error & ~PAGE_MASK)
2161 return error;
2164 * mlock MCL_FUTURE?
2166 if (mm->def_flags & VM_LOCKED) {
2167 unsigned long locked, lock_limit;
2168 locked = len >> PAGE_SHIFT;
2169 locked += mm->locked_vm;
2170 lock_limit = rlimit(RLIMIT_MEMLOCK);
2171 lock_limit >>= PAGE_SHIFT;
2172 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2173 return -EAGAIN;
2177 * mm->mmap_sem is required to protect against another thread
2178 * changing the mappings in case we sleep.
2180 verify_mm_writelocked(mm);
2183 * Clear old maps. this also does some error checking for us
2185 munmap_back:
2186 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2187 if (vma && vma->vm_start < addr + len) {
2188 if (do_munmap(mm, addr, len))
2189 return -ENOMEM;
2190 goto munmap_back;
2193 /* Check against address space limits *after* clearing old maps... */
2194 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2195 return -ENOMEM;
2197 if (mm->map_count > sysctl_max_map_count)
2198 return -ENOMEM;
2200 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2201 return -ENOMEM;
2203 /* Can we just expand an old private anonymous mapping? */
2204 vma = vma_merge(mm, prev, addr, addr + len, flags,
2205 NULL, NULL, pgoff, NULL);
2206 if (vma)
2207 goto out;
2210 * create a vma struct for an anonymous mapping
2212 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2213 if (!vma) {
2214 vm_unacct_memory(len >> PAGE_SHIFT);
2215 return -ENOMEM;
2218 INIT_LIST_HEAD(&vma->anon_vma_chain);
2219 vma->vm_mm = mm;
2220 vma->vm_start = addr;
2221 vma->vm_end = addr + len;
2222 vma->vm_pgoff = pgoff;
2223 vma->vm_flags = flags;
2224 vma->vm_page_prot = vm_get_page_prot(flags);
2225 vma_link(mm, vma, prev, rb_link, rb_parent);
2226 out:
2227 perf_event_mmap(vma);
2228 mm->total_vm += len >> PAGE_SHIFT;
2229 if (flags & VM_LOCKED) {
2230 if (!mlock_vma_pages_range(vma, addr, addr + len))
2231 mm->locked_vm += (len >> PAGE_SHIFT);
2233 return addr;
2236 EXPORT_SYMBOL(do_brk);
2238 /* Release all mmaps. */
2239 void exit_mmap(struct mm_struct *mm)
2241 struct mmu_gather tlb;
2242 struct vm_area_struct *vma;
2243 unsigned long nr_accounted = 0;
2244 unsigned long end;
2246 /* mm's last user has gone, and its about to be pulled down */
2247 mmu_notifier_release(mm);
2249 if (mm->locked_vm) {
2250 vma = mm->mmap;
2251 while (vma) {
2252 if (vma->vm_flags & VM_LOCKED)
2253 munlock_vma_pages_all(vma);
2254 vma = vma->vm_next;
2258 arch_exit_mmap(mm);
2260 vma = mm->mmap;
2261 if (!vma) /* Can happen if dup_mmap() received an OOM */
2262 return;
2264 lru_add_drain();
2265 flush_cache_mm(mm);
2266 tlb_gather_mmu(&tlb, mm, 1);
2267 /* update_hiwater_rss(mm) here? but nobody should be looking */
2268 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2269 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2270 vm_unacct_memory(nr_accounted);
2272 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2273 tlb_finish_mmu(&tlb, 0, end);
2276 * Walk the list again, actually closing and freeing it,
2277 * with preemption enabled, without holding any MM locks.
2279 while (vma)
2280 vma = remove_vma(vma);
2282 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2285 /* Insert vm structure into process list sorted by address
2286 * and into the inode's i_mmap tree. If vm_file is non-NULL
2287 * then i_mmap_mutex is taken here.
2289 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2291 struct vm_area_struct * __vma, * prev;
2292 struct rb_node ** rb_link, * rb_parent;
2295 * The vm_pgoff of a purely anonymous vma should be irrelevant
2296 * until its first write fault, when page's anon_vma and index
2297 * are set. But now set the vm_pgoff it will almost certainly
2298 * end up with (unless mremap moves it elsewhere before that
2299 * first wfault), so /proc/pid/maps tells a consistent story.
2301 * By setting it to reflect the virtual start address of the
2302 * vma, merges and splits can happen in a seamless way, just
2303 * using the existing file pgoff checks and manipulations.
2304 * Similarly in do_mmap_pgoff and in do_brk.
2306 if (!vma->vm_file) {
2307 BUG_ON(vma->anon_vma);
2308 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2310 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2311 if (__vma && __vma->vm_start < vma->vm_end)
2312 return -ENOMEM;
2313 if ((vma->vm_flags & VM_ACCOUNT) &&
2314 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2315 return -ENOMEM;
2316 vma_link(mm, vma, prev, rb_link, rb_parent);
2317 return 0;
2321 * Copy the vma structure to a new location in the same mm,
2322 * prior to moving page table entries, to effect an mremap move.
2324 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2325 unsigned long addr, unsigned long len, pgoff_t pgoff)
2327 struct vm_area_struct *vma = *vmap;
2328 unsigned long vma_start = vma->vm_start;
2329 struct mm_struct *mm = vma->vm_mm;
2330 struct vm_area_struct *new_vma, *prev;
2331 struct rb_node **rb_link, *rb_parent;
2332 struct mempolicy *pol;
2335 * If anonymous vma has not yet been faulted, update new pgoff
2336 * to match new location, to increase its chance of merging.
2338 if (!vma->vm_file && !vma->anon_vma)
2339 pgoff = addr >> PAGE_SHIFT;
2341 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2342 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2343 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2344 if (new_vma) {
2346 * Source vma may have been merged into new_vma
2348 if (vma_start >= new_vma->vm_start &&
2349 vma_start < new_vma->vm_end)
2350 *vmap = new_vma;
2351 } else {
2352 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2353 if (new_vma) {
2354 *new_vma = *vma;
2355 pol = mpol_dup(vma_policy(vma));
2356 if (IS_ERR(pol))
2357 goto out_free_vma;
2358 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2359 if (anon_vma_clone(new_vma, vma))
2360 goto out_free_mempol;
2361 vma_set_policy(new_vma, pol);
2362 new_vma->vm_start = addr;
2363 new_vma->vm_end = addr + len;
2364 new_vma->vm_pgoff = pgoff;
2365 if (new_vma->vm_file) {
2366 get_file(new_vma->vm_file);
2367 if (vma->vm_flags & VM_EXECUTABLE)
2368 added_exe_file_vma(mm);
2370 if (new_vma->vm_ops && new_vma->vm_ops->open)
2371 new_vma->vm_ops->open(new_vma);
2372 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2375 return new_vma;
2377 out_free_mempol:
2378 mpol_put(pol);
2379 out_free_vma:
2380 kmem_cache_free(vm_area_cachep, new_vma);
2381 return NULL;
2385 * Return true if the calling process may expand its vm space by the passed
2386 * number of pages
2388 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2390 unsigned long cur = mm->total_vm; /* pages */
2391 unsigned long lim;
2393 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2395 if (cur + npages > lim)
2396 return 0;
2397 return 1;
2401 static int special_mapping_fault(struct vm_area_struct *vma,
2402 struct vm_fault *vmf)
2404 pgoff_t pgoff;
2405 struct page **pages;
2408 * special mappings have no vm_file, and in that case, the mm
2409 * uses vm_pgoff internally. So we have to subtract it from here.
2410 * We are allowed to do this because we are the mm; do not copy
2411 * this code into drivers!
2413 pgoff = vmf->pgoff - vma->vm_pgoff;
2415 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2416 pgoff--;
2418 if (*pages) {
2419 struct page *page = *pages;
2420 get_page(page);
2421 vmf->page = page;
2422 return 0;
2425 return VM_FAULT_SIGBUS;
2429 * Having a close hook prevents vma merging regardless of flags.
2431 static void special_mapping_close(struct vm_area_struct *vma)
2435 static const struct vm_operations_struct special_mapping_vmops = {
2436 .close = special_mapping_close,
2437 .fault = special_mapping_fault,
2441 * Called with mm->mmap_sem held for writing.
2442 * Insert a new vma covering the given region, with the given flags.
2443 * Its pages are supplied by the given array of struct page *.
2444 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2445 * The region past the last page supplied will always produce SIGBUS.
2446 * The array pointer and the pages it points to are assumed to stay alive
2447 * for as long as this mapping might exist.
2449 int install_special_mapping(struct mm_struct *mm,
2450 unsigned long addr, unsigned long len,
2451 unsigned long vm_flags, struct page **pages)
2453 int ret;
2454 struct vm_area_struct *vma;
2456 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2457 if (unlikely(vma == NULL))
2458 return -ENOMEM;
2460 INIT_LIST_HEAD(&vma->anon_vma_chain);
2461 vma->vm_mm = mm;
2462 vma->vm_start = addr;
2463 vma->vm_end = addr + len;
2465 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2466 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2468 vma->vm_ops = &special_mapping_vmops;
2469 vma->vm_private_data = pages;
2471 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2472 if (ret)
2473 goto out;
2475 ret = insert_vm_struct(mm, vma);
2476 if (ret)
2477 goto out;
2479 mm->total_vm += len >> PAGE_SHIFT;
2481 perf_event_mmap(vma);
2483 return 0;
2485 out:
2486 kmem_cache_free(vm_area_cachep, vma);
2487 return ret;
2490 static DEFINE_MUTEX(mm_all_locks_mutex);
2492 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2494 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2496 * The LSB of head.next can't change from under us
2497 * because we hold the mm_all_locks_mutex.
2499 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2501 * We can safely modify head.next after taking the
2502 * anon_vma->root->mutex. If some other vma in this mm shares
2503 * the same anon_vma we won't take it again.
2505 * No need of atomic instructions here, head.next
2506 * can't change from under us thanks to the
2507 * anon_vma->root->mutex.
2509 if (__test_and_set_bit(0, (unsigned long *)
2510 &anon_vma->root->head.next))
2511 BUG();
2515 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2517 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2519 * AS_MM_ALL_LOCKS can't change from under us because
2520 * we hold the mm_all_locks_mutex.
2522 * Operations on ->flags have to be atomic because
2523 * even if AS_MM_ALL_LOCKS is stable thanks to the
2524 * mm_all_locks_mutex, there may be other cpus
2525 * changing other bitflags in parallel to us.
2527 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2528 BUG();
2529 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2534 * This operation locks against the VM for all pte/vma/mm related
2535 * operations that could ever happen on a certain mm. This includes
2536 * vmtruncate, try_to_unmap, and all page faults.
2538 * The caller must take the mmap_sem in write mode before calling
2539 * mm_take_all_locks(). The caller isn't allowed to release the
2540 * mmap_sem until mm_drop_all_locks() returns.
2542 * mmap_sem in write mode is required in order to block all operations
2543 * that could modify pagetables and free pages without need of
2544 * altering the vma layout (for example populate_range() with
2545 * nonlinear vmas). It's also needed in write mode to avoid new
2546 * anon_vmas to be associated with existing vmas.
2548 * A single task can't take more than one mm_take_all_locks() in a row
2549 * or it would deadlock.
2551 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2552 * mapping->flags avoid to take the same lock twice, if more than one
2553 * vma in this mm is backed by the same anon_vma or address_space.
2555 * We can take all the locks in random order because the VM code
2556 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2557 * takes more than one of them in a row. Secondly we're protected
2558 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2560 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2561 * that may have to take thousand of locks.
2563 * mm_take_all_locks() can fail if it's interrupted by signals.
2565 int mm_take_all_locks(struct mm_struct *mm)
2567 struct vm_area_struct *vma;
2568 struct anon_vma_chain *avc;
2569 int ret = -EINTR;
2571 BUG_ON(down_read_trylock(&mm->mmap_sem));
2573 mutex_lock(&mm_all_locks_mutex);
2575 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2576 if (signal_pending(current))
2577 goto out_unlock;
2578 if (vma->vm_file && vma->vm_file->f_mapping)
2579 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2582 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2583 if (signal_pending(current))
2584 goto out_unlock;
2585 if (vma->anon_vma)
2586 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2587 vm_lock_anon_vma(mm, avc->anon_vma);
2590 ret = 0;
2592 out_unlock:
2593 if (ret)
2594 mm_drop_all_locks(mm);
2596 return ret;
2599 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2601 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2603 * The LSB of head.next can't change to 0 from under
2604 * us because we hold the mm_all_locks_mutex.
2606 * We must however clear the bitflag before unlocking
2607 * the vma so the users using the anon_vma->head will
2608 * never see our bitflag.
2610 * No need of atomic instructions here, head.next
2611 * can't change from under us until we release the
2612 * anon_vma->root->mutex.
2614 if (!__test_and_clear_bit(0, (unsigned long *)
2615 &anon_vma->root->head.next))
2616 BUG();
2617 anon_vma_unlock(anon_vma);
2621 static void vm_unlock_mapping(struct address_space *mapping)
2623 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2625 * AS_MM_ALL_LOCKS can't change to 0 from under us
2626 * because we hold the mm_all_locks_mutex.
2628 mutex_unlock(&mapping->i_mmap_mutex);
2629 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2630 &mapping->flags))
2631 BUG();
2636 * The mmap_sem cannot be released by the caller until
2637 * mm_drop_all_locks() returns.
2639 void mm_drop_all_locks(struct mm_struct *mm)
2641 struct vm_area_struct *vma;
2642 struct anon_vma_chain *avc;
2644 BUG_ON(down_read_trylock(&mm->mmap_sem));
2645 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2647 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2648 if (vma->anon_vma)
2649 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2650 vm_unlock_anon_vma(avc->anon_vma);
2651 if (vma->vm_file && vma->vm_file->f_mapping)
2652 vm_unlock_mapping(vma->vm_file->f_mapping);
2655 mutex_unlock(&mm_all_locks_mutex);
2659 * initialise the VMA slab
2661 void __init mmap_init(void)
2663 int ret;
2665 ret = percpu_counter_init(&vm_committed_as, 0);
2666 VM_BUG_ON(ret);