2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2017 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2017 Milan Broz <gmazyland@gmail.com>
7 * This file is released under the GPL.
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <keys/user-type.h>
39 #include <linux/device-mapper.h>
41 #define DM_MSG_PREFIX "crypt"
44 * context holding the current state of a multi-part conversion
46 struct convert_context
{
47 struct completion restart
;
50 struct bvec_iter iter_in
;
51 struct bvec_iter iter_out
;
55 struct skcipher_request
*req
;
56 struct aead_request
*req_aead
;
62 * per bio private data
65 struct crypt_config
*cc
;
67 u8
*integrity_metadata
;
68 bool integrity_metadata_from_pool
;
69 struct work_struct work
;
71 struct convert_context ctx
;
77 struct rb_node rb_node
;
78 } CRYPTO_MINALIGN_ATTR
;
80 struct dm_crypt_request
{
81 struct convert_context
*ctx
;
82 struct scatterlist sg_in
[4];
83 struct scatterlist sg_out
[4];
89 struct crypt_iv_operations
{
90 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
92 void (*dtr
)(struct crypt_config
*cc
);
93 int (*init
)(struct crypt_config
*cc
);
94 int (*wipe
)(struct crypt_config
*cc
);
95 int (*generator
)(struct crypt_config
*cc
, u8
*iv
,
96 struct dm_crypt_request
*dmreq
);
97 int (*post
)(struct crypt_config
*cc
, u8
*iv
,
98 struct dm_crypt_request
*dmreq
);
101 struct iv_essiv_private
{
102 struct crypto_ahash
*hash_tfm
;
106 struct iv_benbi_private
{
110 #define LMK_SEED_SIZE 64 /* hash + 0 */
111 struct iv_lmk_private
{
112 struct crypto_shash
*hash_tfm
;
116 #define TCW_WHITENING_SIZE 16
117 struct iv_tcw_private
{
118 struct crypto_shash
*crc32_tfm
;
124 * Crypt: maps a linear range of a block device
125 * and encrypts / decrypts at the same time.
127 enum flags
{ DM_CRYPT_SUSPENDED
, DM_CRYPT_KEY_VALID
,
128 DM_CRYPT_SAME_CPU
, DM_CRYPT_NO_OFFLOAD
};
131 CRYPT_MODE_INTEGRITY_AEAD
, /* Use authenticated mode for cihper */
132 CRYPT_IV_LARGE_SECTORS
, /* Calculate IV from sector_size, not 512B sectors */
136 * The fields in here must be read only after initialization.
138 struct crypt_config
{
143 * pool for per bio private data, crypto requests,
144 * encryption requeusts/buffer pages and integrity tags
147 mempool_t
*page_pool
;
149 unsigned tag_pool_max_sectors
;
151 struct percpu_counter n_allocated_pages
;
154 struct mutex bio_alloc_lock
;
156 struct workqueue_struct
*io_queue
;
157 struct workqueue_struct
*crypt_queue
;
159 struct task_struct
*write_thread
;
160 wait_queue_head_t write_thread_wait
;
161 struct rb_root write_tree
;
168 const struct crypt_iv_operations
*iv_gen_ops
;
170 struct iv_essiv_private essiv
;
171 struct iv_benbi_private benbi
;
172 struct iv_lmk_private lmk
;
173 struct iv_tcw_private tcw
;
176 unsigned int iv_size
;
177 unsigned short int sector_size
;
178 unsigned char sector_shift
;
180 /* ESSIV: struct crypto_cipher *essiv_tfm */
183 struct crypto_skcipher
**tfms
;
184 struct crypto_aead
**tfms_aead
;
187 unsigned long cipher_flags
;
190 * Layout of each crypto request:
192 * struct skcipher_request
195 * struct dm_crypt_request
199 * The padding is added so that dm_crypt_request and the IV are
202 unsigned int dmreq_start
;
204 unsigned int per_bio_data_size
;
207 unsigned int key_size
;
208 unsigned int key_parts
; /* independent parts in key buffer */
209 unsigned int key_extra_size
; /* additional keys length */
210 unsigned int key_mac_size
; /* MAC key size for authenc(...) */
212 unsigned int integrity_tag_size
;
213 unsigned int integrity_iv_size
;
214 unsigned int on_disk_tag_size
;
216 u8
*authenc_key
; /* space for keys in authenc() format (if used) */
221 #define MAX_TAG_SIZE 480
222 #define POOL_ENTRY_SIZE 512
224 static DEFINE_SPINLOCK(dm_crypt_clients_lock
);
225 static unsigned dm_crypt_clients_n
= 0;
226 static volatile unsigned long dm_crypt_pages_per_client
;
227 #define DM_CRYPT_MEMORY_PERCENT 2
228 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_PAGES * 16)
230 static void clone_init(struct dm_crypt_io
*, struct bio
*);
231 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
);
232 static struct scatterlist
*crypt_get_sg_data(struct crypt_config
*cc
,
233 struct scatterlist
*sg
);
236 * Use this to access cipher attributes that are independent of the key.
238 static struct crypto_skcipher
*any_tfm(struct crypt_config
*cc
)
240 return cc
->cipher_tfm
.tfms
[0];
243 static struct crypto_aead
*any_tfm_aead(struct crypt_config
*cc
)
245 return cc
->cipher_tfm
.tfms_aead
[0];
249 * Different IV generation algorithms:
251 * plain: the initial vector is the 32-bit little-endian version of the sector
252 * number, padded with zeros if necessary.
254 * plain64: the initial vector is the 64-bit little-endian version of the sector
255 * number, padded with zeros if necessary.
257 * plain64be: the initial vector is the 64-bit big-endian version of the sector
258 * number, padded with zeros if necessary.
260 * essiv: "encrypted sector|salt initial vector", the sector number is
261 * encrypted with the bulk cipher using a salt as key. The salt
262 * should be derived from the bulk cipher's key via hashing.
264 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
265 * (needed for LRW-32-AES and possible other narrow block modes)
267 * null: the initial vector is always zero. Provides compatibility with
268 * obsolete loop_fish2 devices. Do not use for new devices.
270 * lmk: Compatible implementation of the block chaining mode used
271 * by the Loop-AES block device encryption system
272 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
273 * It operates on full 512 byte sectors and uses CBC
274 * with an IV derived from the sector number, the data and
275 * optionally extra IV seed.
276 * This means that after decryption the first block
277 * of sector must be tweaked according to decrypted data.
278 * Loop-AES can use three encryption schemes:
279 * version 1: is plain aes-cbc mode
280 * version 2: uses 64 multikey scheme with lmk IV generator
281 * version 3: the same as version 2 with additional IV seed
282 * (it uses 65 keys, last key is used as IV seed)
284 * tcw: Compatible implementation of the block chaining mode used
285 * by the TrueCrypt device encryption system (prior to version 4.1).
286 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
287 * It operates on full 512 byte sectors and uses CBC
288 * with an IV derived from initial key and the sector number.
289 * In addition, whitening value is applied on every sector, whitening
290 * is calculated from initial key, sector number and mixed using CRC32.
291 * Note that this encryption scheme is vulnerable to watermarking attacks
292 * and should be used for old compatible containers access only.
294 * plumb: unimplemented, see:
295 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
298 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
,
299 struct dm_crypt_request
*dmreq
)
301 memset(iv
, 0, cc
->iv_size
);
302 *(__le32
*)iv
= cpu_to_le32(dmreq
->iv_sector
& 0xffffffff);
307 static int crypt_iv_plain64_gen(struct crypt_config
*cc
, u8
*iv
,
308 struct dm_crypt_request
*dmreq
)
310 memset(iv
, 0, cc
->iv_size
);
311 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
316 static int crypt_iv_plain64be_gen(struct crypt_config
*cc
, u8
*iv
,
317 struct dm_crypt_request
*dmreq
)
319 memset(iv
, 0, cc
->iv_size
);
320 /* iv_size is at least of size u64; usually it is 16 bytes */
321 *(__be64
*)&iv
[cc
->iv_size
- sizeof(u64
)] = cpu_to_be64(dmreq
->iv_sector
);
326 /* Initialise ESSIV - compute salt but no local memory allocations */
327 static int crypt_iv_essiv_init(struct crypt_config
*cc
)
329 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
330 AHASH_REQUEST_ON_STACK(req
, essiv
->hash_tfm
);
331 struct scatterlist sg
;
332 struct crypto_cipher
*essiv_tfm
;
335 sg_init_one(&sg
, cc
->key
, cc
->key_size
);
336 ahash_request_set_tfm(req
, essiv
->hash_tfm
);
337 ahash_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_SLEEP
, NULL
, NULL
);
338 ahash_request_set_crypt(req
, &sg
, essiv
->salt
, cc
->key_size
);
340 err
= crypto_ahash_digest(req
);
341 ahash_request_zero(req
);
345 essiv_tfm
= cc
->iv_private
;
347 err
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
,
348 crypto_ahash_digestsize(essiv
->hash_tfm
));
355 /* Wipe salt and reset key derived from volume key */
356 static int crypt_iv_essiv_wipe(struct crypt_config
*cc
)
358 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
359 unsigned salt_size
= crypto_ahash_digestsize(essiv
->hash_tfm
);
360 struct crypto_cipher
*essiv_tfm
;
363 memset(essiv
->salt
, 0, salt_size
);
365 essiv_tfm
= cc
->iv_private
;
366 r
= crypto_cipher_setkey(essiv_tfm
, essiv
->salt
, salt_size
);
373 /* Allocate the cipher for ESSIV */
374 static struct crypto_cipher
*alloc_essiv_cipher(struct crypt_config
*cc
,
375 struct dm_target
*ti
,
377 unsigned int saltsize
)
379 struct crypto_cipher
*essiv_tfm
;
382 /* Setup the essiv_tfm with the given salt */
383 essiv_tfm
= crypto_alloc_cipher(cc
->cipher
, 0, CRYPTO_ALG_ASYNC
);
384 if (IS_ERR(essiv_tfm
)) {
385 ti
->error
= "Error allocating crypto tfm for ESSIV";
389 if (crypto_cipher_blocksize(essiv_tfm
) != cc
->iv_size
) {
390 ti
->error
= "Block size of ESSIV cipher does "
391 "not match IV size of block cipher";
392 crypto_free_cipher(essiv_tfm
);
393 return ERR_PTR(-EINVAL
);
396 err
= crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
);
398 ti
->error
= "Failed to set key for ESSIV cipher";
399 crypto_free_cipher(essiv_tfm
);
406 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
408 struct crypto_cipher
*essiv_tfm
;
409 struct iv_essiv_private
*essiv
= &cc
->iv_gen_private
.essiv
;
411 crypto_free_ahash(essiv
->hash_tfm
);
412 essiv
->hash_tfm
= NULL
;
417 essiv_tfm
= cc
->iv_private
;
420 crypto_free_cipher(essiv_tfm
);
422 cc
->iv_private
= NULL
;
425 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
428 struct crypto_cipher
*essiv_tfm
= NULL
;
429 struct crypto_ahash
*hash_tfm
= NULL
;
434 ti
->error
= "Digest algorithm missing for ESSIV mode";
438 /* Allocate hash algorithm */
439 hash_tfm
= crypto_alloc_ahash(opts
, 0, CRYPTO_ALG_ASYNC
);
440 if (IS_ERR(hash_tfm
)) {
441 ti
->error
= "Error initializing ESSIV hash";
442 err
= PTR_ERR(hash_tfm
);
446 salt
= kzalloc(crypto_ahash_digestsize(hash_tfm
), GFP_KERNEL
);
448 ti
->error
= "Error kmallocing salt storage in ESSIV";
453 cc
->iv_gen_private
.essiv
.salt
= salt
;
454 cc
->iv_gen_private
.essiv
.hash_tfm
= hash_tfm
;
456 essiv_tfm
= alloc_essiv_cipher(cc
, ti
, salt
,
457 crypto_ahash_digestsize(hash_tfm
));
458 if (IS_ERR(essiv_tfm
)) {
459 crypt_iv_essiv_dtr(cc
);
460 return PTR_ERR(essiv_tfm
);
462 cc
->iv_private
= essiv_tfm
;
467 if (hash_tfm
&& !IS_ERR(hash_tfm
))
468 crypto_free_ahash(hash_tfm
);
473 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
,
474 struct dm_crypt_request
*dmreq
)
476 struct crypto_cipher
*essiv_tfm
= cc
->iv_private
;
478 memset(iv
, 0, cc
->iv_size
);
479 *(__le64
*)iv
= cpu_to_le64(dmreq
->iv_sector
);
480 crypto_cipher_encrypt_one(essiv_tfm
, iv
, iv
);
485 static int crypt_iv_benbi_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
488 unsigned bs
= crypto_skcipher_blocksize(any_tfm(cc
));
491 /* we need to calculate how far we must shift the sector count
492 * to get the cipher block count, we use this shift in _gen */
494 if (1 << log
!= bs
) {
495 ti
->error
= "cypher blocksize is not a power of 2";
500 ti
->error
= "cypher blocksize is > 512";
504 cc
->iv_gen_private
.benbi
.shift
= 9 - log
;
509 static void crypt_iv_benbi_dtr(struct crypt_config
*cc
)
513 static int crypt_iv_benbi_gen(struct crypt_config
*cc
, u8
*iv
,
514 struct dm_crypt_request
*dmreq
)
518 memset(iv
, 0, cc
->iv_size
- sizeof(u64
)); /* rest is cleared below */
520 val
= cpu_to_be64(((u64
)dmreq
->iv_sector
<< cc
->iv_gen_private
.benbi
.shift
) + 1);
521 put_unaligned(val
, (__be64
*)(iv
+ cc
->iv_size
- sizeof(u64
)));
526 static int crypt_iv_null_gen(struct crypt_config
*cc
, u8
*iv
,
527 struct dm_crypt_request
*dmreq
)
529 memset(iv
, 0, cc
->iv_size
);
534 static void crypt_iv_lmk_dtr(struct crypt_config
*cc
)
536 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
538 if (lmk
->hash_tfm
&& !IS_ERR(lmk
->hash_tfm
))
539 crypto_free_shash(lmk
->hash_tfm
);
540 lmk
->hash_tfm
= NULL
;
546 static int crypt_iv_lmk_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
549 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
551 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
)) {
552 ti
->error
= "Unsupported sector size for LMK";
556 lmk
->hash_tfm
= crypto_alloc_shash("md5", 0, 0);
557 if (IS_ERR(lmk
->hash_tfm
)) {
558 ti
->error
= "Error initializing LMK hash";
559 return PTR_ERR(lmk
->hash_tfm
);
562 /* No seed in LMK version 2 */
563 if (cc
->key_parts
== cc
->tfms_count
) {
568 lmk
->seed
= kzalloc(LMK_SEED_SIZE
, GFP_KERNEL
);
570 crypt_iv_lmk_dtr(cc
);
571 ti
->error
= "Error kmallocing seed storage in LMK";
578 static int crypt_iv_lmk_init(struct crypt_config
*cc
)
580 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
581 int subkey_size
= cc
->key_size
/ cc
->key_parts
;
583 /* LMK seed is on the position of LMK_KEYS + 1 key */
585 memcpy(lmk
->seed
, cc
->key
+ (cc
->tfms_count
* subkey_size
),
586 crypto_shash_digestsize(lmk
->hash_tfm
));
591 static int crypt_iv_lmk_wipe(struct crypt_config
*cc
)
593 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
596 memset(lmk
->seed
, 0, LMK_SEED_SIZE
);
601 static int crypt_iv_lmk_one(struct crypt_config
*cc
, u8
*iv
,
602 struct dm_crypt_request
*dmreq
,
605 struct iv_lmk_private
*lmk
= &cc
->iv_gen_private
.lmk
;
606 SHASH_DESC_ON_STACK(desc
, lmk
->hash_tfm
);
607 struct md5_state md5state
;
611 desc
->tfm
= lmk
->hash_tfm
;
612 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
614 r
= crypto_shash_init(desc
);
619 r
= crypto_shash_update(desc
, lmk
->seed
, LMK_SEED_SIZE
);
624 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
625 r
= crypto_shash_update(desc
, data
+ 16, 16 * 31);
629 /* Sector is cropped to 56 bits here */
630 buf
[0] = cpu_to_le32(dmreq
->iv_sector
& 0xFFFFFFFF);
631 buf
[1] = cpu_to_le32((((u64
)dmreq
->iv_sector
>> 32) & 0x00FFFFFF) | 0x80000000);
632 buf
[2] = cpu_to_le32(4024);
634 r
= crypto_shash_update(desc
, (u8
*)buf
, sizeof(buf
));
638 /* No MD5 padding here */
639 r
= crypto_shash_export(desc
, &md5state
);
643 for (i
= 0; i
< MD5_HASH_WORDS
; i
++)
644 __cpu_to_le32s(&md5state
.hash
[i
]);
645 memcpy(iv
, &md5state
.hash
, cc
->iv_size
);
650 static int crypt_iv_lmk_gen(struct crypt_config
*cc
, u8
*iv
,
651 struct dm_crypt_request
*dmreq
)
653 struct scatterlist
*sg
;
657 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
) {
658 sg
= crypt_get_sg_data(cc
, dmreq
->sg_in
);
659 src
= kmap_atomic(sg_page(sg
));
660 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, src
+ sg
->offset
);
663 memset(iv
, 0, cc
->iv_size
);
668 static int crypt_iv_lmk_post(struct crypt_config
*cc
, u8
*iv
,
669 struct dm_crypt_request
*dmreq
)
671 struct scatterlist
*sg
;
675 if (bio_data_dir(dmreq
->ctx
->bio_in
) == WRITE
)
678 sg
= crypt_get_sg_data(cc
, dmreq
->sg_out
);
679 dst
= kmap_atomic(sg_page(sg
));
680 r
= crypt_iv_lmk_one(cc
, iv
, dmreq
, dst
+ sg
->offset
);
682 /* Tweak the first block of plaintext sector */
684 crypto_xor(dst
+ sg
->offset
, iv
, cc
->iv_size
);
690 static void crypt_iv_tcw_dtr(struct crypt_config
*cc
)
692 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
694 kzfree(tcw
->iv_seed
);
696 kzfree(tcw
->whitening
);
697 tcw
->whitening
= NULL
;
699 if (tcw
->crc32_tfm
&& !IS_ERR(tcw
->crc32_tfm
))
700 crypto_free_shash(tcw
->crc32_tfm
);
701 tcw
->crc32_tfm
= NULL
;
704 static int crypt_iv_tcw_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
707 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
709 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
)) {
710 ti
->error
= "Unsupported sector size for TCW";
714 if (cc
->key_size
<= (cc
->iv_size
+ TCW_WHITENING_SIZE
)) {
715 ti
->error
= "Wrong key size for TCW";
719 tcw
->crc32_tfm
= crypto_alloc_shash("crc32", 0, 0);
720 if (IS_ERR(tcw
->crc32_tfm
)) {
721 ti
->error
= "Error initializing CRC32 in TCW";
722 return PTR_ERR(tcw
->crc32_tfm
);
725 tcw
->iv_seed
= kzalloc(cc
->iv_size
, GFP_KERNEL
);
726 tcw
->whitening
= kzalloc(TCW_WHITENING_SIZE
, GFP_KERNEL
);
727 if (!tcw
->iv_seed
|| !tcw
->whitening
) {
728 crypt_iv_tcw_dtr(cc
);
729 ti
->error
= "Error allocating seed storage in TCW";
736 static int crypt_iv_tcw_init(struct crypt_config
*cc
)
738 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
739 int key_offset
= cc
->key_size
- cc
->iv_size
- TCW_WHITENING_SIZE
;
741 memcpy(tcw
->iv_seed
, &cc
->key
[key_offset
], cc
->iv_size
);
742 memcpy(tcw
->whitening
, &cc
->key
[key_offset
+ cc
->iv_size
],
748 static int crypt_iv_tcw_wipe(struct crypt_config
*cc
)
750 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
752 memset(tcw
->iv_seed
, 0, cc
->iv_size
);
753 memset(tcw
->whitening
, 0, TCW_WHITENING_SIZE
);
758 static int crypt_iv_tcw_whitening(struct crypt_config
*cc
,
759 struct dm_crypt_request
*dmreq
,
762 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
763 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
764 u8 buf
[TCW_WHITENING_SIZE
];
765 SHASH_DESC_ON_STACK(desc
, tcw
->crc32_tfm
);
768 /* xor whitening with sector number */
769 crypto_xor_cpy(buf
, tcw
->whitening
, (u8
*)§or
, 8);
770 crypto_xor_cpy(&buf
[8], tcw
->whitening
+ 8, (u8
*)§or
, 8);
772 /* calculate crc32 for every 32bit part and xor it */
773 desc
->tfm
= tcw
->crc32_tfm
;
774 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
775 for (i
= 0; i
< 4; i
++) {
776 r
= crypto_shash_init(desc
);
779 r
= crypto_shash_update(desc
, &buf
[i
* 4], 4);
782 r
= crypto_shash_final(desc
, &buf
[i
* 4]);
786 crypto_xor(&buf
[0], &buf
[12], 4);
787 crypto_xor(&buf
[4], &buf
[8], 4);
789 /* apply whitening (8 bytes) to whole sector */
790 for (i
= 0; i
< ((1 << SECTOR_SHIFT
) / 8); i
++)
791 crypto_xor(data
+ i
* 8, buf
, 8);
793 memzero_explicit(buf
, sizeof(buf
));
797 static int crypt_iv_tcw_gen(struct crypt_config
*cc
, u8
*iv
,
798 struct dm_crypt_request
*dmreq
)
800 struct scatterlist
*sg
;
801 struct iv_tcw_private
*tcw
= &cc
->iv_gen_private
.tcw
;
802 __le64 sector
= cpu_to_le64(dmreq
->iv_sector
);
806 /* Remove whitening from ciphertext */
807 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
) {
808 sg
= crypt_get_sg_data(cc
, dmreq
->sg_in
);
809 src
= kmap_atomic(sg_page(sg
));
810 r
= crypt_iv_tcw_whitening(cc
, dmreq
, src
+ sg
->offset
);
815 crypto_xor_cpy(iv
, tcw
->iv_seed
, (u8
*)§or
, 8);
817 crypto_xor_cpy(&iv
[8], tcw
->iv_seed
+ 8, (u8
*)§or
,
823 static int crypt_iv_tcw_post(struct crypt_config
*cc
, u8
*iv
,
824 struct dm_crypt_request
*dmreq
)
826 struct scatterlist
*sg
;
830 if (bio_data_dir(dmreq
->ctx
->bio_in
) != WRITE
)
833 /* Apply whitening on ciphertext */
834 sg
= crypt_get_sg_data(cc
, dmreq
->sg_out
);
835 dst
= kmap_atomic(sg_page(sg
));
836 r
= crypt_iv_tcw_whitening(cc
, dmreq
, dst
+ sg
->offset
);
842 static int crypt_iv_random_gen(struct crypt_config
*cc
, u8
*iv
,
843 struct dm_crypt_request
*dmreq
)
845 /* Used only for writes, there must be an additional space to store IV */
846 get_random_bytes(iv
, cc
->iv_size
);
850 static const struct crypt_iv_operations crypt_iv_plain_ops
= {
851 .generator
= crypt_iv_plain_gen
854 static const struct crypt_iv_operations crypt_iv_plain64_ops
= {
855 .generator
= crypt_iv_plain64_gen
858 static const struct crypt_iv_operations crypt_iv_plain64be_ops
= {
859 .generator
= crypt_iv_plain64be_gen
862 static const struct crypt_iv_operations crypt_iv_essiv_ops
= {
863 .ctr
= crypt_iv_essiv_ctr
,
864 .dtr
= crypt_iv_essiv_dtr
,
865 .init
= crypt_iv_essiv_init
,
866 .wipe
= crypt_iv_essiv_wipe
,
867 .generator
= crypt_iv_essiv_gen
870 static const struct crypt_iv_operations crypt_iv_benbi_ops
= {
871 .ctr
= crypt_iv_benbi_ctr
,
872 .dtr
= crypt_iv_benbi_dtr
,
873 .generator
= crypt_iv_benbi_gen
876 static const struct crypt_iv_operations crypt_iv_null_ops
= {
877 .generator
= crypt_iv_null_gen
880 static const struct crypt_iv_operations crypt_iv_lmk_ops
= {
881 .ctr
= crypt_iv_lmk_ctr
,
882 .dtr
= crypt_iv_lmk_dtr
,
883 .init
= crypt_iv_lmk_init
,
884 .wipe
= crypt_iv_lmk_wipe
,
885 .generator
= crypt_iv_lmk_gen
,
886 .post
= crypt_iv_lmk_post
889 static const struct crypt_iv_operations crypt_iv_tcw_ops
= {
890 .ctr
= crypt_iv_tcw_ctr
,
891 .dtr
= crypt_iv_tcw_dtr
,
892 .init
= crypt_iv_tcw_init
,
893 .wipe
= crypt_iv_tcw_wipe
,
894 .generator
= crypt_iv_tcw_gen
,
895 .post
= crypt_iv_tcw_post
898 static struct crypt_iv_operations crypt_iv_random_ops
= {
899 .generator
= crypt_iv_random_gen
903 * Integrity extensions
905 static bool crypt_integrity_aead(struct crypt_config
*cc
)
907 return test_bit(CRYPT_MODE_INTEGRITY_AEAD
, &cc
->cipher_flags
);
910 static bool crypt_integrity_hmac(struct crypt_config
*cc
)
912 return crypt_integrity_aead(cc
) && cc
->key_mac_size
;
915 /* Get sg containing data */
916 static struct scatterlist
*crypt_get_sg_data(struct crypt_config
*cc
,
917 struct scatterlist
*sg
)
919 if (unlikely(crypt_integrity_aead(cc
)))
925 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io
*io
, struct bio
*bio
)
927 struct bio_integrity_payload
*bip
;
928 unsigned int tag_len
;
931 if (!bio_sectors(bio
) || !io
->cc
->on_disk_tag_size
)
934 bip
= bio_integrity_alloc(bio
, GFP_NOIO
, 1);
938 tag_len
= io
->cc
->on_disk_tag_size
* bio_sectors(bio
);
940 bip
->bip_iter
.bi_size
= tag_len
;
941 bip
->bip_iter
.bi_sector
= io
->cc
->start
+ io
->sector
;
943 ret
= bio_integrity_add_page(bio
, virt_to_page(io
->integrity_metadata
),
944 tag_len
, offset_in_page(io
->integrity_metadata
));
945 if (unlikely(ret
!= tag_len
))
951 static int crypt_integrity_ctr(struct crypt_config
*cc
, struct dm_target
*ti
)
953 #ifdef CONFIG_BLK_DEV_INTEGRITY
954 struct blk_integrity
*bi
= blk_get_integrity(cc
->dev
->bdev
->bd_disk
);
956 /* From now we require underlying device with our integrity profile */
957 if (!bi
|| strcasecmp(bi
->profile
->name
, "DM-DIF-EXT-TAG")) {
958 ti
->error
= "Integrity profile not supported.";
962 if (bi
->tag_size
!= cc
->on_disk_tag_size
||
963 bi
->tuple_size
!= cc
->on_disk_tag_size
) {
964 ti
->error
= "Integrity profile tag size mismatch.";
967 if (1 << bi
->interval_exp
!= cc
->sector_size
) {
968 ti
->error
= "Integrity profile sector size mismatch.";
972 if (crypt_integrity_aead(cc
)) {
973 cc
->integrity_tag_size
= cc
->on_disk_tag_size
- cc
->integrity_iv_size
;
974 DMINFO("Integrity AEAD, tag size %u, IV size %u.",
975 cc
->integrity_tag_size
, cc
->integrity_iv_size
);
977 if (crypto_aead_setauthsize(any_tfm_aead(cc
), cc
->integrity_tag_size
)) {
978 ti
->error
= "Integrity AEAD auth tag size is not supported.";
981 } else if (cc
->integrity_iv_size
)
982 DMINFO("Additional per-sector space %u bytes for IV.",
983 cc
->integrity_iv_size
);
985 if ((cc
->integrity_tag_size
+ cc
->integrity_iv_size
) != bi
->tag_size
) {
986 ti
->error
= "Not enough space for integrity tag in the profile.";
992 ti
->error
= "Integrity profile not supported.";
997 static void crypt_convert_init(struct crypt_config
*cc
,
998 struct convert_context
*ctx
,
999 struct bio
*bio_out
, struct bio
*bio_in
,
1002 ctx
->bio_in
= bio_in
;
1003 ctx
->bio_out
= bio_out
;
1005 ctx
->iter_in
= bio_in
->bi_iter
;
1007 ctx
->iter_out
= bio_out
->bi_iter
;
1008 ctx
->cc_sector
= sector
+ cc
->iv_offset
;
1009 init_completion(&ctx
->restart
);
1012 static struct dm_crypt_request
*dmreq_of_req(struct crypt_config
*cc
,
1015 return (struct dm_crypt_request
*)((char *)req
+ cc
->dmreq_start
);
1018 static void *req_of_dmreq(struct crypt_config
*cc
, struct dm_crypt_request
*dmreq
)
1020 return (void *)((char *)dmreq
- cc
->dmreq_start
);
1023 static u8
*iv_of_dmreq(struct crypt_config
*cc
,
1024 struct dm_crypt_request
*dmreq
)
1026 if (crypt_integrity_aead(cc
))
1027 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
1028 crypto_aead_alignmask(any_tfm_aead(cc
)) + 1);
1030 return (u8
*)ALIGN((unsigned long)(dmreq
+ 1),
1031 crypto_skcipher_alignmask(any_tfm(cc
)) + 1);
1034 static u8
*org_iv_of_dmreq(struct crypt_config
*cc
,
1035 struct dm_crypt_request
*dmreq
)
1037 return iv_of_dmreq(cc
, dmreq
) + cc
->iv_size
;
1040 static uint64_t *org_sector_of_dmreq(struct crypt_config
*cc
,
1041 struct dm_crypt_request
*dmreq
)
1043 u8
*ptr
= iv_of_dmreq(cc
, dmreq
) + cc
->iv_size
+ cc
->iv_size
;
1044 return (uint64_t*) ptr
;
1047 static unsigned int *org_tag_of_dmreq(struct crypt_config
*cc
,
1048 struct dm_crypt_request
*dmreq
)
1050 u8
*ptr
= iv_of_dmreq(cc
, dmreq
) + cc
->iv_size
+
1051 cc
->iv_size
+ sizeof(uint64_t);
1052 return (unsigned int*)ptr
;
1055 static void *tag_from_dmreq(struct crypt_config
*cc
,
1056 struct dm_crypt_request
*dmreq
)
1058 struct convert_context
*ctx
= dmreq
->ctx
;
1059 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1061 return &io
->integrity_metadata
[*org_tag_of_dmreq(cc
, dmreq
) *
1062 cc
->on_disk_tag_size
];
1065 static void *iv_tag_from_dmreq(struct crypt_config
*cc
,
1066 struct dm_crypt_request
*dmreq
)
1068 return tag_from_dmreq(cc
, dmreq
) + cc
->integrity_tag_size
;
1071 static int crypt_convert_block_aead(struct crypt_config
*cc
,
1072 struct convert_context
*ctx
,
1073 struct aead_request
*req
,
1074 unsigned int tag_offset
)
1076 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
1077 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
1078 struct dm_crypt_request
*dmreq
;
1079 u8
*iv
, *org_iv
, *tag_iv
, *tag
;
1083 BUG_ON(cc
->integrity_iv_size
&& cc
->integrity_iv_size
!= cc
->iv_size
);
1085 /* Reject unexpected unaligned bio. */
1086 if (unlikely(bv_in
.bv_len
& (cc
->sector_size
- 1)))
1089 dmreq
= dmreq_of_req(cc
, req
);
1090 dmreq
->iv_sector
= ctx
->cc_sector
;
1091 if (test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
))
1092 dmreq
->iv_sector
>>= cc
->sector_shift
;
1095 *org_tag_of_dmreq(cc
, dmreq
) = tag_offset
;
1097 sector
= org_sector_of_dmreq(cc
, dmreq
);
1098 *sector
= cpu_to_le64(ctx
->cc_sector
- cc
->iv_offset
);
1100 iv
= iv_of_dmreq(cc
, dmreq
);
1101 org_iv
= org_iv_of_dmreq(cc
, dmreq
);
1102 tag
= tag_from_dmreq(cc
, dmreq
);
1103 tag_iv
= iv_tag_from_dmreq(cc
, dmreq
);
1106 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1107 * | (authenticated) | (auth+encryption) | |
1108 * | sector_LE | IV | sector in/out | tag in/out |
1110 sg_init_table(dmreq
->sg_in
, 4);
1111 sg_set_buf(&dmreq
->sg_in
[0], sector
, sizeof(uint64_t));
1112 sg_set_buf(&dmreq
->sg_in
[1], org_iv
, cc
->iv_size
);
1113 sg_set_page(&dmreq
->sg_in
[2], bv_in
.bv_page
, cc
->sector_size
, bv_in
.bv_offset
);
1114 sg_set_buf(&dmreq
->sg_in
[3], tag
, cc
->integrity_tag_size
);
1116 sg_init_table(dmreq
->sg_out
, 4);
1117 sg_set_buf(&dmreq
->sg_out
[0], sector
, sizeof(uint64_t));
1118 sg_set_buf(&dmreq
->sg_out
[1], org_iv
, cc
->iv_size
);
1119 sg_set_page(&dmreq
->sg_out
[2], bv_out
.bv_page
, cc
->sector_size
, bv_out
.bv_offset
);
1120 sg_set_buf(&dmreq
->sg_out
[3], tag
, cc
->integrity_tag_size
);
1122 if (cc
->iv_gen_ops
) {
1123 /* For READs use IV stored in integrity metadata */
1124 if (cc
->integrity_iv_size
&& bio_data_dir(ctx
->bio_in
) != WRITE
) {
1125 memcpy(org_iv
, tag_iv
, cc
->iv_size
);
1127 r
= cc
->iv_gen_ops
->generator(cc
, org_iv
, dmreq
);
1130 /* Store generated IV in integrity metadata */
1131 if (cc
->integrity_iv_size
)
1132 memcpy(tag_iv
, org_iv
, cc
->iv_size
);
1134 /* Working copy of IV, to be modified in crypto API */
1135 memcpy(iv
, org_iv
, cc
->iv_size
);
1138 aead_request_set_ad(req
, sizeof(uint64_t) + cc
->iv_size
);
1139 if (bio_data_dir(ctx
->bio_in
) == WRITE
) {
1140 aead_request_set_crypt(req
, dmreq
->sg_in
, dmreq
->sg_out
,
1141 cc
->sector_size
, iv
);
1142 r
= crypto_aead_encrypt(req
);
1143 if (cc
->integrity_tag_size
+ cc
->integrity_iv_size
!= cc
->on_disk_tag_size
)
1144 memset(tag
+ cc
->integrity_tag_size
+ cc
->integrity_iv_size
, 0,
1145 cc
->on_disk_tag_size
- (cc
->integrity_tag_size
+ cc
->integrity_iv_size
));
1147 aead_request_set_crypt(req
, dmreq
->sg_in
, dmreq
->sg_out
,
1148 cc
->sector_size
+ cc
->integrity_tag_size
, iv
);
1149 r
= crypto_aead_decrypt(req
);
1153 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1154 (unsigned long long)le64_to_cpu(*sector
));
1156 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1157 r
= cc
->iv_gen_ops
->post(cc
, org_iv
, dmreq
);
1159 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, cc
->sector_size
);
1160 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, cc
->sector_size
);
1165 static int crypt_convert_block_skcipher(struct crypt_config
*cc
,
1166 struct convert_context
*ctx
,
1167 struct skcipher_request
*req
,
1168 unsigned int tag_offset
)
1170 struct bio_vec bv_in
= bio_iter_iovec(ctx
->bio_in
, ctx
->iter_in
);
1171 struct bio_vec bv_out
= bio_iter_iovec(ctx
->bio_out
, ctx
->iter_out
);
1172 struct scatterlist
*sg_in
, *sg_out
;
1173 struct dm_crypt_request
*dmreq
;
1174 u8
*iv
, *org_iv
, *tag_iv
;
1178 /* Reject unexpected unaligned bio. */
1179 if (unlikely(bv_in
.bv_len
& (cc
->sector_size
- 1)))
1182 dmreq
= dmreq_of_req(cc
, req
);
1183 dmreq
->iv_sector
= ctx
->cc_sector
;
1184 if (test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
))
1185 dmreq
->iv_sector
>>= cc
->sector_shift
;
1188 *org_tag_of_dmreq(cc
, dmreq
) = tag_offset
;
1190 iv
= iv_of_dmreq(cc
, dmreq
);
1191 org_iv
= org_iv_of_dmreq(cc
, dmreq
);
1192 tag_iv
= iv_tag_from_dmreq(cc
, dmreq
);
1194 sector
= org_sector_of_dmreq(cc
, dmreq
);
1195 *sector
= cpu_to_le64(ctx
->cc_sector
- cc
->iv_offset
);
1197 /* For skcipher we use only the first sg item */
1198 sg_in
= &dmreq
->sg_in
[0];
1199 sg_out
= &dmreq
->sg_out
[0];
1201 sg_init_table(sg_in
, 1);
1202 sg_set_page(sg_in
, bv_in
.bv_page
, cc
->sector_size
, bv_in
.bv_offset
);
1204 sg_init_table(sg_out
, 1);
1205 sg_set_page(sg_out
, bv_out
.bv_page
, cc
->sector_size
, bv_out
.bv_offset
);
1207 if (cc
->iv_gen_ops
) {
1208 /* For READs use IV stored in integrity metadata */
1209 if (cc
->integrity_iv_size
&& bio_data_dir(ctx
->bio_in
) != WRITE
) {
1210 memcpy(org_iv
, tag_iv
, cc
->integrity_iv_size
);
1212 r
= cc
->iv_gen_ops
->generator(cc
, org_iv
, dmreq
);
1215 /* Store generated IV in integrity metadata */
1216 if (cc
->integrity_iv_size
)
1217 memcpy(tag_iv
, org_iv
, cc
->integrity_iv_size
);
1219 /* Working copy of IV, to be modified in crypto API */
1220 memcpy(iv
, org_iv
, cc
->iv_size
);
1223 skcipher_request_set_crypt(req
, sg_in
, sg_out
, cc
->sector_size
, iv
);
1225 if (bio_data_dir(ctx
->bio_in
) == WRITE
)
1226 r
= crypto_skcipher_encrypt(req
);
1228 r
= crypto_skcipher_decrypt(req
);
1230 if (!r
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1231 r
= cc
->iv_gen_ops
->post(cc
, org_iv
, dmreq
);
1233 bio_advance_iter(ctx
->bio_in
, &ctx
->iter_in
, cc
->sector_size
);
1234 bio_advance_iter(ctx
->bio_out
, &ctx
->iter_out
, cc
->sector_size
);
1239 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1242 static void crypt_alloc_req_skcipher(struct crypt_config
*cc
,
1243 struct convert_context
*ctx
)
1245 unsigned key_index
= ctx
->cc_sector
& (cc
->tfms_count
- 1);
1248 ctx
->r
.req
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
1250 skcipher_request_set_tfm(ctx
->r
.req
, cc
->cipher_tfm
.tfms
[key_index
]);
1253 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1254 * requests if driver request queue is full.
1256 skcipher_request_set_callback(ctx
->r
.req
,
1257 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
1258 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->r
.req
));
1261 static void crypt_alloc_req_aead(struct crypt_config
*cc
,
1262 struct convert_context
*ctx
)
1264 if (!ctx
->r
.req_aead
)
1265 ctx
->r
.req_aead
= mempool_alloc(cc
->req_pool
, GFP_NOIO
);
1267 aead_request_set_tfm(ctx
->r
.req_aead
, cc
->cipher_tfm
.tfms_aead
[0]);
1270 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1271 * requests if driver request queue is full.
1273 aead_request_set_callback(ctx
->r
.req_aead
,
1274 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
1275 kcryptd_async_done
, dmreq_of_req(cc
, ctx
->r
.req_aead
));
1278 static void crypt_alloc_req(struct crypt_config
*cc
,
1279 struct convert_context
*ctx
)
1281 if (crypt_integrity_aead(cc
))
1282 crypt_alloc_req_aead(cc
, ctx
);
1284 crypt_alloc_req_skcipher(cc
, ctx
);
1287 static void crypt_free_req_skcipher(struct crypt_config
*cc
,
1288 struct skcipher_request
*req
, struct bio
*base_bio
)
1290 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
1292 if ((struct skcipher_request
*)(io
+ 1) != req
)
1293 mempool_free(req
, cc
->req_pool
);
1296 static void crypt_free_req_aead(struct crypt_config
*cc
,
1297 struct aead_request
*req
, struct bio
*base_bio
)
1299 struct dm_crypt_io
*io
= dm_per_bio_data(base_bio
, cc
->per_bio_data_size
);
1301 if ((struct aead_request
*)(io
+ 1) != req
)
1302 mempool_free(req
, cc
->req_pool
);
1305 static void crypt_free_req(struct crypt_config
*cc
, void *req
, struct bio
*base_bio
)
1307 if (crypt_integrity_aead(cc
))
1308 crypt_free_req_aead(cc
, req
, base_bio
);
1310 crypt_free_req_skcipher(cc
, req
, base_bio
);
1314 * Encrypt / decrypt data from one bio to another one (can be the same one)
1316 static blk_status_t
crypt_convert(struct crypt_config
*cc
,
1317 struct convert_context
*ctx
)
1319 unsigned int tag_offset
= 0;
1320 unsigned int sector_step
= cc
->sector_size
>> SECTOR_SHIFT
;
1323 atomic_set(&ctx
->cc_pending
, 1);
1325 while (ctx
->iter_in
.bi_size
&& ctx
->iter_out
.bi_size
) {
1327 crypt_alloc_req(cc
, ctx
);
1328 atomic_inc(&ctx
->cc_pending
);
1330 if (crypt_integrity_aead(cc
))
1331 r
= crypt_convert_block_aead(cc
, ctx
, ctx
->r
.req_aead
, tag_offset
);
1333 r
= crypt_convert_block_skcipher(cc
, ctx
, ctx
->r
.req
, tag_offset
);
1337 * The request was queued by a crypto driver
1338 * but the driver request queue is full, let's wait.
1341 wait_for_completion(&ctx
->restart
);
1342 reinit_completion(&ctx
->restart
);
1345 * The request is queued and processed asynchronously,
1346 * completion function kcryptd_async_done() will be called.
1350 ctx
->cc_sector
+= sector_step
;
1354 * The request was already processed (synchronously).
1357 atomic_dec(&ctx
->cc_pending
);
1358 ctx
->cc_sector
+= sector_step
;
1363 * There was a data integrity error.
1366 atomic_dec(&ctx
->cc_pending
);
1367 return BLK_STS_PROTECTION
;
1369 * There was an error while processing the request.
1372 atomic_dec(&ctx
->cc_pending
);
1373 return BLK_STS_IOERR
;
1380 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
);
1383 * Generate a new unfragmented bio with the given size
1384 * This should never violate the device limitations (but only because
1385 * max_segment_size is being constrained to PAGE_SIZE).
1387 * This function may be called concurrently. If we allocate from the mempool
1388 * concurrently, there is a possibility of deadlock. For example, if we have
1389 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1390 * the mempool concurrently, it may deadlock in a situation where both processes
1391 * have allocated 128 pages and the mempool is exhausted.
1393 * In order to avoid this scenario we allocate the pages under a mutex.
1395 * In order to not degrade performance with excessive locking, we try
1396 * non-blocking allocations without a mutex first but on failure we fallback
1397 * to blocking allocations with a mutex.
1399 static struct bio
*crypt_alloc_buffer(struct dm_crypt_io
*io
, unsigned size
)
1401 struct crypt_config
*cc
= io
->cc
;
1403 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1404 gfp_t gfp_mask
= GFP_NOWAIT
| __GFP_HIGHMEM
;
1405 unsigned i
, len
, remaining_size
;
1409 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1410 mutex_lock(&cc
->bio_alloc_lock
);
1412 clone
= bio_alloc_bioset(GFP_NOIO
, nr_iovecs
, cc
->bs
);
1416 clone_init(io
, clone
);
1418 remaining_size
= size
;
1420 for (i
= 0; i
< nr_iovecs
; i
++) {
1421 page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
1423 crypt_free_buffer_pages(cc
, clone
);
1425 gfp_mask
|= __GFP_DIRECT_RECLAIM
;
1429 len
= (remaining_size
> PAGE_SIZE
) ? PAGE_SIZE
: remaining_size
;
1431 bio_add_page(clone
, page
, len
, 0);
1433 remaining_size
-= len
;
1436 /* Allocate space for integrity tags */
1437 if (dm_crypt_integrity_io_alloc(io
, clone
)) {
1438 crypt_free_buffer_pages(cc
, clone
);
1443 if (unlikely(gfp_mask
& __GFP_DIRECT_RECLAIM
))
1444 mutex_unlock(&cc
->bio_alloc_lock
);
1449 static void crypt_free_buffer_pages(struct crypt_config
*cc
, struct bio
*clone
)
1454 bio_for_each_segment_all(bv
, clone
, i
) {
1455 BUG_ON(!bv
->bv_page
);
1456 mempool_free(bv
->bv_page
, cc
->page_pool
);
1460 static void crypt_io_init(struct dm_crypt_io
*io
, struct crypt_config
*cc
,
1461 struct bio
*bio
, sector_t sector
)
1465 io
->sector
= sector
;
1467 io
->ctx
.r
.req
= NULL
;
1468 io
->integrity_metadata
= NULL
;
1469 io
->integrity_metadata_from_pool
= false;
1470 atomic_set(&io
->io_pending
, 0);
1473 static void crypt_inc_pending(struct dm_crypt_io
*io
)
1475 atomic_inc(&io
->io_pending
);
1479 * One of the bios was finished. Check for completion of
1480 * the whole request and correctly clean up the buffer.
1482 static void crypt_dec_pending(struct dm_crypt_io
*io
)
1484 struct crypt_config
*cc
= io
->cc
;
1485 struct bio
*base_bio
= io
->base_bio
;
1486 blk_status_t error
= io
->error
;
1488 if (!atomic_dec_and_test(&io
->io_pending
))
1492 crypt_free_req(cc
, io
->ctx
.r
.req
, base_bio
);
1494 if (unlikely(io
->integrity_metadata_from_pool
))
1495 mempool_free(io
->integrity_metadata
, io
->cc
->tag_pool
);
1497 kfree(io
->integrity_metadata
);
1499 base_bio
->bi_status
= error
;
1500 bio_endio(base_bio
);
1504 * kcryptd/kcryptd_io:
1506 * Needed because it would be very unwise to do decryption in an
1507 * interrupt context.
1509 * kcryptd performs the actual encryption or decryption.
1511 * kcryptd_io performs the IO submission.
1513 * They must be separated as otherwise the final stages could be
1514 * starved by new requests which can block in the first stages due
1515 * to memory allocation.
1517 * The work is done per CPU global for all dm-crypt instances.
1518 * They should not depend on each other and do not block.
1520 static void crypt_endio(struct bio
*clone
)
1522 struct dm_crypt_io
*io
= clone
->bi_private
;
1523 struct crypt_config
*cc
= io
->cc
;
1524 unsigned rw
= bio_data_dir(clone
);
1528 * free the processed pages
1531 crypt_free_buffer_pages(cc
, clone
);
1533 error
= clone
->bi_status
;
1536 if (rw
== READ
&& !error
) {
1537 kcryptd_queue_crypt(io
);
1541 if (unlikely(error
))
1544 crypt_dec_pending(io
);
1547 static void clone_init(struct dm_crypt_io
*io
, struct bio
*clone
)
1549 struct crypt_config
*cc
= io
->cc
;
1551 clone
->bi_private
= io
;
1552 clone
->bi_end_io
= crypt_endio
;
1553 bio_set_dev(clone
, cc
->dev
->bdev
);
1554 clone
->bi_opf
= io
->base_bio
->bi_opf
;
1557 static int kcryptd_io_read(struct dm_crypt_io
*io
, gfp_t gfp
)
1559 struct crypt_config
*cc
= io
->cc
;
1563 * We need the original biovec array in order to decrypt
1564 * the whole bio data *afterwards* -- thanks to immutable
1565 * biovecs we don't need to worry about the block layer
1566 * modifying the biovec array; so leverage bio_clone_fast().
1568 clone
= bio_clone_fast(io
->base_bio
, gfp
, cc
->bs
);
1572 crypt_inc_pending(io
);
1574 clone_init(io
, clone
);
1575 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1577 if (dm_crypt_integrity_io_alloc(io
, clone
)) {
1578 crypt_dec_pending(io
);
1583 generic_make_request(clone
);
1587 static void kcryptd_io_read_work(struct work_struct
*work
)
1589 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1591 crypt_inc_pending(io
);
1592 if (kcryptd_io_read(io
, GFP_NOIO
))
1593 io
->error
= BLK_STS_RESOURCE
;
1594 crypt_dec_pending(io
);
1597 static void kcryptd_queue_read(struct dm_crypt_io
*io
)
1599 struct crypt_config
*cc
= io
->cc
;
1601 INIT_WORK(&io
->work
, kcryptd_io_read_work
);
1602 queue_work(cc
->io_queue
, &io
->work
);
1605 static void kcryptd_io_write(struct dm_crypt_io
*io
)
1607 struct bio
*clone
= io
->ctx
.bio_out
;
1609 generic_make_request(clone
);
1612 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1614 static int dmcrypt_write(void *data
)
1616 struct crypt_config
*cc
= data
;
1617 struct dm_crypt_io
*io
;
1620 struct rb_root write_tree
;
1621 struct blk_plug plug
;
1623 DECLARE_WAITQUEUE(wait
, current
);
1625 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1628 if (!RB_EMPTY_ROOT(&cc
->write_tree
))
1631 set_current_state(TASK_INTERRUPTIBLE
);
1632 __add_wait_queue(&cc
->write_thread_wait
, &wait
);
1634 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1636 if (unlikely(kthread_should_stop())) {
1637 set_current_state(TASK_RUNNING
);
1638 remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1644 set_current_state(TASK_RUNNING
);
1645 spin_lock_irq(&cc
->write_thread_wait
.lock
);
1646 __remove_wait_queue(&cc
->write_thread_wait
, &wait
);
1647 goto continue_locked
;
1650 write_tree
= cc
->write_tree
;
1651 cc
->write_tree
= RB_ROOT
;
1652 spin_unlock_irq(&cc
->write_thread_wait
.lock
);
1654 BUG_ON(rb_parent(write_tree
.rb_node
));
1657 * Note: we cannot walk the tree here with rb_next because
1658 * the structures may be freed when kcryptd_io_write is called.
1660 blk_start_plug(&plug
);
1662 io
= crypt_io_from_node(rb_first(&write_tree
));
1663 rb_erase(&io
->rb_node
, &write_tree
);
1664 kcryptd_io_write(io
);
1665 } while (!RB_EMPTY_ROOT(&write_tree
));
1666 blk_finish_plug(&plug
);
1671 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io
*io
, int async
)
1673 struct bio
*clone
= io
->ctx
.bio_out
;
1674 struct crypt_config
*cc
= io
->cc
;
1675 unsigned long flags
;
1677 struct rb_node
**rbp
, *parent
;
1679 if (unlikely(io
->error
)) {
1680 crypt_free_buffer_pages(cc
, clone
);
1682 crypt_dec_pending(io
);
1686 /* crypt_convert should have filled the clone bio */
1687 BUG_ON(io
->ctx
.iter_out
.bi_size
);
1689 clone
->bi_iter
.bi_sector
= cc
->start
+ io
->sector
;
1691 if (likely(!async
) && test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
)) {
1692 generic_make_request(clone
);
1696 spin_lock_irqsave(&cc
->write_thread_wait
.lock
, flags
);
1697 rbp
= &cc
->write_tree
.rb_node
;
1699 sector
= io
->sector
;
1702 if (sector
< crypt_io_from_node(parent
)->sector
)
1703 rbp
= &(*rbp
)->rb_left
;
1705 rbp
= &(*rbp
)->rb_right
;
1707 rb_link_node(&io
->rb_node
, parent
, rbp
);
1708 rb_insert_color(&io
->rb_node
, &cc
->write_tree
);
1710 wake_up_locked(&cc
->write_thread_wait
);
1711 spin_unlock_irqrestore(&cc
->write_thread_wait
.lock
, flags
);
1714 static void kcryptd_crypt_write_convert(struct dm_crypt_io
*io
)
1716 struct crypt_config
*cc
= io
->cc
;
1719 sector_t sector
= io
->sector
;
1723 * Prevent io from disappearing until this function completes.
1725 crypt_inc_pending(io
);
1726 crypt_convert_init(cc
, &io
->ctx
, NULL
, io
->base_bio
, sector
);
1728 clone
= crypt_alloc_buffer(io
, io
->base_bio
->bi_iter
.bi_size
);
1729 if (unlikely(!clone
)) {
1730 io
->error
= BLK_STS_IOERR
;
1734 io
->ctx
.bio_out
= clone
;
1735 io
->ctx
.iter_out
= clone
->bi_iter
;
1737 sector
+= bio_sectors(clone
);
1739 crypt_inc_pending(io
);
1740 r
= crypt_convert(cc
, &io
->ctx
);
1743 crypt_finished
= atomic_dec_and_test(&io
->ctx
.cc_pending
);
1745 /* Encryption was already finished, submit io now */
1746 if (crypt_finished
) {
1747 kcryptd_crypt_write_io_submit(io
, 0);
1748 io
->sector
= sector
;
1752 crypt_dec_pending(io
);
1755 static void kcryptd_crypt_read_done(struct dm_crypt_io
*io
)
1757 crypt_dec_pending(io
);
1760 static void kcryptd_crypt_read_convert(struct dm_crypt_io
*io
)
1762 struct crypt_config
*cc
= io
->cc
;
1765 crypt_inc_pending(io
);
1767 crypt_convert_init(cc
, &io
->ctx
, io
->base_bio
, io
->base_bio
,
1770 r
= crypt_convert(cc
, &io
->ctx
);
1774 if (atomic_dec_and_test(&io
->ctx
.cc_pending
))
1775 kcryptd_crypt_read_done(io
);
1777 crypt_dec_pending(io
);
1780 static void kcryptd_async_done(struct crypto_async_request
*async_req
,
1783 struct dm_crypt_request
*dmreq
= async_req
->data
;
1784 struct convert_context
*ctx
= dmreq
->ctx
;
1785 struct dm_crypt_io
*io
= container_of(ctx
, struct dm_crypt_io
, ctx
);
1786 struct crypt_config
*cc
= io
->cc
;
1789 * A request from crypto driver backlog is going to be processed now,
1790 * finish the completion and continue in crypt_convert().
1791 * (Callback will be called for the second time for this request.)
1793 if (error
== -EINPROGRESS
) {
1794 complete(&ctx
->restart
);
1798 if (!error
&& cc
->iv_gen_ops
&& cc
->iv_gen_ops
->post
)
1799 error
= cc
->iv_gen_ops
->post(cc
, org_iv_of_dmreq(cc
, dmreq
), dmreq
);
1801 if (error
== -EBADMSG
) {
1802 DMERR_LIMIT("INTEGRITY AEAD ERROR, sector %llu",
1803 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc
, dmreq
)));
1804 io
->error
= BLK_STS_PROTECTION
;
1805 } else if (error
< 0)
1806 io
->error
= BLK_STS_IOERR
;
1808 crypt_free_req(cc
, req_of_dmreq(cc
, dmreq
), io
->base_bio
);
1810 if (!atomic_dec_and_test(&ctx
->cc_pending
))
1813 if (bio_data_dir(io
->base_bio
) == READ
)
1814 kcryptd_crypt_read_done(io
);
1816 kcryptd_crypt_write_io_submit(io
, 1);
1819 static void kcryptd_crypt(struct work_struct
*work
)
1821 struct dm_crypt_io
*io
= container_of(work
, struct dm_crypt_io
, work
);
1823 if (bio_data_dir(io
->base_bio
) == READ
)
1824 kcryptd_crypt_read_convert(io
);
1826 kcryptd_crypt_write_convert(io
);
1829 static void kcryptd_queue_crypt(struct dm_crypt_io
*io
)
1831 struct crypt_config
*cc
= io
->cc
;
1833 INIT_WORK(&io
->work
, kcryptd_crypt
);
1834 queue_work(cc
->crypt_queue
, &io
->work
);
1837 static void crypt_free_tfms_aead(struct crypt_config
*cc
)
1839 if (!cc
->cipher_tfm
.tfms_aead
)
1842 if (cc
->cipher_tfm
.tfms_aead
[0] && !IS_ERR(cc
->cipher_tfm
.tfms_aead
[0])) {
1843 crypto_free_aead(cc
->cipher_tfm
.tfms_aead
[0]);
1844 cc
->cipher_tfm
.tfms_aead
[0] = NULL
;
1847 kfree(cc
->cipher_tfm
.tfms_aead
);
1848 cc
->cipher_tfm
.tfms_aead
= NULL
;
1851 static void crypt_free_tfms_skcipher(struct crypt_config
*cc
)
1855 if (!cc
->cipher_tfm
.tfms
)
1858 for (i
= 0; i
< cc
->tfms_count
; i
++)
1859 if (cc
->cipher_tfm
.tfms
[i
] && !IS_ERR(cc
->cipher_tfm
.tfms
[i
])) {
1860 crypto_free_skcipher(cc
->cipher_tfm
.tfms
[i
]);
1861 cc
->cipher_tfm
.tfms
[i
] = NULL
;
1864 kfree(cc
->cipher_tfm
.tfms
);
1865 cc
->cipher_tfm
.tfms
= NULL
;
1868 static void crypt_free_tfms(struct crypt_config
*cc
)
1870 if (crypt_integrity_aead(cc
))
1871 crypt_free_tfms_aead(cc
);
1873 crypt_free_tfms_skcipher(cc
);
1876 static int crypt_alloc_tfms_skcipher(struct crypt_config
*cc
, char *ciphermode
)
1881 cc
->cipher_tfm
.tfms
= kzalloc(cc
->tfms_count
*
1882 sizeof(struct crypto_skcipher
*), GFP_KERNEL
);
1883 if (!cc
->cipher_tfm
.tfms
)
1886 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1887 cc
->cipher_tfm
.tfms
[i
] = crypto_alloc_skcipher(ciphermode
, 0, 0);
1888 if (IS_ERR(cc
->cipher_tfm
.tfms
[i
])) {
1889 err
= PTR_ERR(cc
->cipher_tfm
.tfms
[i
]);
1890 crypt_free_tfms(cc
);
1898 static int crypt_alloc_tfms_aead(struct crypt_config
*cc
, char *ciphermode
)
1902 cc
->cipher_tfm
.tfms
= kmalloc(sizeof(struct crypto_aead
*), GFP_KERNEL
);
1903 if (!cc
->cipher_tfm
.tfms
)
1906 cc
->cipher_tfm
.tfms_aead
[0] = crypto_alloc_aead(ciphermode
, 0, 0);
1907 if (IS_ERR(cc
->cipher_tfm
.tfms_aead
[0])) {
1908 err
= PTR_ERR(cc
->cipher_tfm
.tfms_aead
[0]);
1909 crypt_free_tfms(cc
);
1916 static int crypt_alloc_tfms(struct crypt_config
*cc
, char *ciphermode
)
1918 if (crypt_integrity_aead(cc
))
1919 return crypt_alloc_tfms_aead(cc
, ciphermode
);
1921 return crypt_alloc_tfms_skcipher(cc
, ciphermode
);
1924 static unsigned crypt_subkey_size(struct crypt_config
*cc
)
1926 return (cc
->key_size
- cc
->key_extra_size
) >> ilog2(cc
->tfms_count
);
1929 static unsigned crypt_authenckey_size(struct crypt_config
*cc
)
1931 return crypt_subkey_size(cc
) + RTA_SPACE(sizeof(struct crypto_authenc_key_param
));
1935 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
1936 * the key must be for some reason in special format.
1937 * This funcion converts cc->key to this special format.
1939 static void crypt_copy_authenckey(char *p
, const void *key
,
1940 unsigned enckeylen
, unsigned authkeylen
)
1942 struct crypto_authenc_key_param
*param
;
1945 rta
= (struct rtattr
*)p
;
1946 param
= RTA_DATA(rta
);
1947 param
->enckeylen
= cpu_to_be32(enckeylen
);
1948 rta
->rta_len
= RTA_LENGTH(sizeof(*param
));
1949 rta
->rta_type
= CRYPTO_AUTHENC_KEYA_PARAM
;
1950 p
+= RTA_SPACE(sizeof(*param
));
1951 memcpy(p
, key
+ enckeylen
, authkeylen
);
1953 memcpy(p
, key
, enckeylen
);
1956 static int crypt_setkey(struct crypt_config
*cc
)
1958 unsigned subkey_size
;
1961 /* Ignore extra keys (which are used for IV etc) */
1962 subkey_size
= crypt_subkey_size(cc
);
1964 if (crypt_integrity_hmac(cc
)) {
1965 if (subkey_size
< cc
->key_mac_size
)
1968 crypt_copy_authenckey(cc
->authenc_key
, cc
->key
,
1969 subkey_size
- cc
->key_mac_size
,
1973 for (i
= 0; i
< cc
->tfms_count
; i
++) {
1974 if (crypt_integrity_hmac(cc
))
1975 r
= crypto_aead_setkey(cc
->cipher_tfm
.tfms_aead
[i
],
1976 cc
->authenc_key
, crypt_authenckey_size(cc
));
1977 else if (crypt_integrity_aead(cc
))
1978 r
= crypto_aead_setkey(cc
->cipher_tfm
.tfms_aead
[i
],
1979 cc
->key
+ (i
* subkey_size
),
1982 r
= crypto_skcipher_setkey(cc
->cipher_tfm
.tfms
[i
],
1983 cc
->key
+ (i
* subkey_size
),
1989 if (crypt_integrity_hmac(cc
))
1990 memzero_explicit(cc
->authenc_key
, crypt_authenckey_size(cc
));
1997 static bool contains_whitespace(const char *str
)
2000 if (isspace(*str
++))
2005 static int crypt_set_keyring_key(struct crypt_config
*cc
, const char *key_string
)
2007 char *new_key_string
, *key_desc
;
2010 const struct user_key_payload
*ukp
;
2013 * Reject key_string with whitespace. dm core currently lacks code for
2014 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2016 if (contains_whitespace(key_string
)) {
2017 DMERR("whitespace chars not allowed in key string");
2021 /* look for next ':' separating key_type from key_description */
2022 key_desc
= strpbrk(key_string
, ":");
2023 if (!key_desc
|| key_desc
== key_string
|| !strlen(key_desc
+ 1))
2026 if (strncmp(key_string
, "logon:", key_desc
- key_string
+ 1) &&
2027 strncmp(key_string
, "user:", key_desc
- key_string
+ 1))
2030 new_key_string
= kstrdup(key_string
, GFP_KERNEL
);
2031 if (!new_key_string
)
2034 key
= request_key(key_string
[0] == 'l' ? &key_type_logon
: &key_type_user
,
2035 key_desc
+ 1, NULL
);
2037 kzfree(new_key_string
);
2038 return PTR_ERR(key
);
2041 down_read(&key
->sem
);
2043 ukp
= user_key_payload_locked(key
);
2047 kzfree(new_key_string
);
2048 return -EKEYREVOKED
;
2051 if (cc
->key_size
!= ukp
->datalen
) {
2054 kzfree(new_key_string
);
2058 memcpy(cc
->key
, ukp
->data
, cc
->key_size
);
2063 /* clear the flag since following operations may invalidate previously valid key */
2064 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2066 ret
= crypt_setkey(cc
);
2069 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2070 kzfree(cc
->key_string
);
2071 cc
->key_string
= new_key_string
;
2073 kzfree(new_key_string
);
2078 static int get_key_size(char **key_string
)
2083 if (*key_string
[0] != ':')
2084 return strlen(*key_string
) >> 1;
2086 /* look for next ':' in key string */
2087 colon
= strpbrk(*key_string
+ 1, ":");
2091 if (sscanf(*key_string
+ 1, "%u%c", &ret
, &dummy
) != 2 || dummy
!= ':')
2094 *key_string
= colon
;
2096 /* remaining key string should be :<logon|user>:<key_desc> */
2103 static int crypt_set_keyring_key(struct crypt_config
*cc
, const char *key_string
)
2108 static int get_key_size(char **key_string
)
2110 return (*key_string
[0] == ':') ? -EINVAL
: strlen(*key_string
) >> 1;
2115 static int crypt_set_key(struct crypt_config
*cc
, char *key
)
2118 int key_string_len
= strlen(key
);
2120 /* Hyphen (which gives a key_size of zero) means there is no key. */
2121 if (!cc
->key_size
&& strcmp(key
, "-"))
2124 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2125 if (key
[0] == ':') {
2126 r
= crypt_set_keyring_key(cc
, key
+ 1);
2130 /* clear the flag since following operations may invalidate previously valid key */
2131 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2133 /* wipe references to any kernel keyring key */
2134 kzfree(cc
->key_string
);
2135 cc
->key_string
= NULL
;
2137 /* Decode key from its hex representation. */
2138 if (cc
->key_size
&& hex2bin(cc
->key
, key
, cc
->key_size
) < 0)
2141 r
= crypt_setkey(cc
);
2143 set_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2146 /* Hex key string not needed after here, so wipe it. */
2147 memset(key
, '0', key_string_len
);
2152 static int crypt_wipe_key(struct crypt_config
*cc
)
2156 clear_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
);
2157 get_random_bytes(&cc
->key
, cc
->key_size
);
2158 kzfree(cc
->key_string
);
2159 cc
->key_string
= NULL
;
2160 r
= crypt_setkey(cc
);
2161 memset(&cc
->key
, 0, cc
->key_size
* sizeof(u8
));
2166 static void crypt_calculate_pages_per_client(void)
2168 unsigned long pages
= (totalram_pages
- totalhigh_pages
) * DM_CRYPT_MEMORY_PERCENT
/ 100;
2170 if (!dm_crypt_clients_n
)
2173 pages
/= dm_crypt_clients_n
;
2174 if (pages
< DM_CRYPT_MIN_PAGES_PER_CLIENT
)
2175 pages
= DM_CRYPT_MIN_PAGES_PER_CLIENT
;
2176 dm_crypt_pages_per_client
= pages
;
2179 static void *crypt_page_alloc(gfp_t gfp_mask
, void *pool_data
)
2181 struct crypt_config
*cc
= pool_data
;
2184 if (unlikely(percpu_counter_compare(&cc
->n_allocated_pages
, dm_crypt_pages_per_client
) >= 0) &&
2185 likely(gfp_mask
& __GFP_NORETRY
))
2188 page
= alloc_page(gfp_mask
);
2189 if (likely(page
!= NULL
))
2190 percpu_counter_add(&cc
->n_allocated_pages
, 1);
2195 static void crypt_page_free(void *page
, void *pool_data
)
2197 struct crypt_config
*cc
= pool_data
;
2200 percpu_counter_sub(&cc
->n_allocated_pages
, 1);
2203 static void crypt_dtr(struct dm_target
*ti
)
2205 struct crypt_config
*cc
= ti
->private;
2212 if (cc
->write_thread
)
2213 kthread_stop(cc
->write_thread
);
2216 destroy_workqueue(cc
->io_queue
);
2217 if (cc
->crypt_queue
)
2218 destroy_workqueue(cc
->crypt_queue
);
2220 crypt_free_tfms(cc
);
2223 bioset_free(cc
->bs
);
2225 mempool_destroy(cc
->page_pool
);
2226 mempool_destroy(cc
->req_pool
);
2227 mempool_destroy(cc
->tag_pool
);
2230 WARN_ON(percpu_counter_sum(&cc
->n_allocated_pages
) != 0);
2231 percpu_counter_destroy(&cc
->n_allocated_pages
);
2233 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
2234 cc
->iv_gen_ops
->dtr(cc
);
2237 dm_put_device(ti
, cc
->dev
);
2240 kzfree(cc
->cipher_string
);
2241 kzfree(cc
->key_string
);
2242 kzfree(cc
->cipher_auth
);
2243 kzfree(cc
->authenc_key
);
2245 mutex_destroy(&cc
->bio_alloc_lock
);
2247 /* Must zero key material before freeing */
2250 spin_lock(&dm_crypt_clients_lock
);
2251 WARN_ON(!dm_crypt_clients_n
);
2252 dm_crypt_clients_n
--;
2253 crypt_calculate_pages_per_client();
2254 spin_unlock(&dm_crypt_clients_lock
);
2257 static int crypt_ctr_ivmode(struct dm_target
*ti
, const char *ivmode
)
2259 struct crypt_config
*cc
= ti
->private;
2261 if (crypt_integrity_aead(cc
))
2262 cc
->iv_size
= crypto_aead_ivsize(any_tfm_aead(cc
));
2264 cc
->iv_size
= crypto_skcipher_ivsize(any_tfm(cc
));
2267 /* at least a 64 bit sector number should fit in our buffer */
2268 cc
->iv_size
= max(cc
->iv_size
,
2269 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
2271 DMWARN("Selected cipher does not support IVs");
2275 /* Choose ivmode, see comments at iv code. */
2277 cc
->iv_gen_ops
= NULL
;
2278 else if (strcmp(ivmode
, "plain") == 0)
2279 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
2280 else if (strcmp(ivmode
, "plain64") == 0)
2281 cc
->iv_gen_ops
= &crypt_iv_plain64_ops
;
2282 else if (strcmp(ivmode
, "plain64be") == 0)
2283 cc
->iv_gen_ops
= &crypt_iv_plain64be_ops
;
2284 else if (strcmp(ivmode
, "essiv") == 0)
2285 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
2286 else if (strcmp(ivmode
, "benbi") == 0)
2287 cc
->iv_gen_ops
= &crypt_iv_benbi_ops
;
2288 else if (strcmp(ivmode
, "null") == 0)
2289 cc
->iv_gen_ops
= &crypt_iv_null_ops
;
2290 else if (strcmp(ivmode
, "lmk") == 0) {
2291 cc
->iv_gen_ops
= &crypt_iv_lmk_ops
;
2293 * Version 2 and 3 is recognised according
2294 * to length of provided multi-key string.
2295 * If present (version 3), last key is used as IV seed.
2296 * All keys (including IV seed) are always the same size.
2298 if (cc
->key_size
% cc
->key_parts
) {
2300 cc
->key_extra_size
= cc
->key_size
/ cc
->key_parts
;
2302 } else if (strcmp(ivmode
, "tcw") == 0) {
2303 cc
->iv_gen_ops
= &crypt_iv_tcw_ops
;
2304 cc
->key_parts
+= 2; /* IV + whitening */
2305 cc
->key_extra_size
= cc
->iv_size
+ TCW_WHITENING_SIZE
;
2306 } else if (strcmp(ivmode
, "random") == 0) {
2307 cc
->iv_gen_ops
= &crypt_iv_random_ops
;
2308 /* Need storage space in integrity fields. */
2309 cc
->integrity_iv_size
= cc
->iv_size
;
2311 ti
->error
= "Invalid IV mode";
2319 * Workaround to parse cipher algorithm from crypto API spec.
2320 * The cc->cipher is currently used only in ESSIV.
2321 * This should be probably done by crypto-api calls (once available...)
2323 static int crypt_ctr_blkdev_cipher(struct crypt_config
*cc
)
2325 const char *alg_name
= NULL
;
2328 if (crypt_integrity_aead(cc
)) {
2329 alg_name
= crypto_tfm_alg_name(crypto_aead_tfm(any_tfm_aead(cc
)));
2332 if (crypt_integrity_hmac(cc
)) {
2333 alg_name
= strchr(alg_name
, ',');
2339 alg_name
= crypto_tfm_alg_name(crypto_skcipher_tfm(any_tfm(cc
)));
2344 start
= strchr(alg_name
, '(');
2345 end
= strchr(alg_name
, ')');
2347 if (!start
&& !end
) {
2348 cc
->cipher
= kstrdup(alg_name
, GFP_KERNEL
);
2349 return cc
->cipher
? 0 : -ENOMEM
;
2352 if (!start
|| !end
|| ++start
>= end
)
2355 cc
->cipher
= kzalloc(end
- start
+ 1, GFP_KERNEL
);
2359 strncpy(cc
->cipher
, start
, end
- start
);
2365 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2366 * The HMAC is needed to calculate tag size (HMAC digest size).
2367 * This should be probably done by crypto-api calls (once available...)
2369 static int crypt_ctr_auth_cipher(struct crypt_config
*cc
, char *cipher_api
)
2371 char *start
, *end
, *mac_alg
= NULL
;
2372 struct crypto_ahash
*mac
;
2374 if (!strstarts(cipher_api
, "authenc("))
2377 start
= strchr(cipher_api
, '(');
2378 end
= strchr(cipher_api
, ',');
2379 if (!start
|| !end
|| ++start
> end
)
2382 mac_alg
= kzalloc(end
- start
+ 1, GFP_KERNEL
);
2385 strncpy(mac_alg
, start
, end
- start
);
2387 mac
= crypto_alloc_ahash(mac_alg
, 0, 0);
2391 return PTR_ERR(mac
);
2393 cc
->key_mac_size
= crypto_ahash_digestsize(mac
);
2394 crypto_free_ahash(mac
);
2396 cc
->authenc_key
= kmalloc(crypt_authenckey_size(cc
), GFP_KERNEL
);
2397 if (!cc
->authenc_key
)
2403 static int crypt_ctr_cipher_new(struct dm_target
*ti
, char *cipher_in
, char *key
,
2404 char **ivmode
, char **ivopts
)
2406 struct crypt_config
*cc
= ti
->private;
2407 char *tmp
, *cipher_api
;
2413 * New format (capi: prefix)
2414 * capi:cipher_api_spec-iv:ivopts
2416 tmp
= &cipher_in
[strlen("capi:")];
2417 cipher_api
= strsep(&tmp
, "-");
2418 *ivmode
= strsep(&tmp
, ":");
2421 if (*ivmode
&& !strcmp(*ivmode
, "lmk"))
2422 cc
->tfms_count
= 64;
2424 cc
->key_parts
= cc
->tfms_count
;
2426 /* Allocate cipher */
2427 ret
= crypt_alloc_tfms(cc
, cipher_api
);
2429 ti
->error
= "Error allocating crypto tfm";
2433 /* Alloc AEAD, can be used only in new format. */
2434 if (crypt_integrity_aead(cc
)) {
2435 ret
= crypt_ctr_auth_cipher(cc
, cipher_api
);
2437 ti
->error
= "Invalid AEAD cipher spec";
2440 cc
->iv_size
= crypto_aead_ivsize(any_tfm_aead(cc
));
2442 cc
->iv_size
= crypto_skcipher_ivsize(any_tfm(cc
));
2444 ret
= crypt_ctr_blkdev_cipher(cc
);
2446 ti
->error
= "Cannot allocate cipher string";
2453 static int crypt_ctr_cipher_old(struct dm_target
*ti
, char *cipher_in
, char *key
,
2454 char **ivmode
, char **ivopts
)
2456 struct crypt_config
*cc
= ti
->private;
2457 char *tmp
, *cipher
, *chainmode
, *keycount
;
2458 char *cipher_api
= NULL
;
2462 if (strchr(cipher_in
, '(') || crypt_integrity_aead(cc
)) {
2463 ti
->error
= "Bad cipher specification";
2468 * Legacy dm-crypt cipher specification
2469 * cipher[:keycount]-mode-iv:ivopts
2472 keycount
= strsep(&tmp
, "-");
2473 cipher
= strsep(&keycount
, ":");
2477 else if (sscanf(keycount
, "%u%c", &cc
->tfms_count
, &dummy
) != 1 ||
2478 !is_power_of_2(cc
->tfms_count
)) {
2479 ti
->error
= "Bad cipher key count specification";
2482 cc
->key_parts
= cc
->tfms_count
;
2484 cc
->cipher
= kstrdup(cipher
, GFP_KERNEL
);
2488 chainmode
= strsep(&tmp
, "-");
2489 *ivopts
= strsep(&tmp
, "-");
2490 *ivmode
= strsep(&*ivopts
, ":");
2493 DMWARN("Ignoring unexpected additional cipher options");
2496 * For compatibility with the original dm-crypt mapping format, if
2497 * only the cipher name is supplied, use cbc-plain.
2499 if (!chainmode
|| (!strcmp(chainmode
, "plain") && !*ivmode
)) {
2504 if (strcmp(chainmode
, "ecb") && !*ivmode
) {
2505 ti
->error
= "IV mechanism required";
2509 cipher_api
= kmalloc(CRYPTO_MAX_ALG_NAME
, GFP_KERNEL
);
2513 ret
= snprintf(cipher_api
, CRYPTO_MAX_ALG_NAME
,
2514 "%s(%s)", chainmode
, cipher
);
2520 /* Allocate cipher */
2521 ret
= crypt_alloc_tfms(cc
, cipher_api
);
2523 ti
->error
= "Error allocating crypto tfm";
2531 ti
->error
= "Cannot allocate cipher strings";
2535 static int crypt_ctr_cipher(struct dm_target
*ti
, char *cipher_in
, char *key
)
2537 struct crypt_config
*cc
= ti
->private;
2538 char *ivmode
= NULL
, *ivopts
= NULL
;
2541 cc
->cipher_string
= kstrdup(cipher_in
, GFP_KERNEL
);
2542 if (!cc
->cipher_string
) {
2543 ti
->error
= "Cannot allocate cipher strings";
2547 if (strstarts(cipher_in
, "capi:"))
2548 ret
= crypt_ctr_cipher_new(ti
, cipher_in
, key
, &ivmode
, &ivopts
);
2550 ret
= crypt_ctr_cipher_old(ti
, cipher_in
, key
, &ivmode
, &ivopts
);
2555 ret
= crypt_ctr_ivmode(ti
, ivmode
);
2559 /* Initialize and set key */
2560 ret
= crypt_set_key(cc
, key
);
2562 ti
->error
= "Error decoding and setting key";
2567 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
) {
2568 ret
= cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
);
2570 ti
->error
= "Error creating IV";
2575 /* Initialize IV (set keys for ESSIV etc) */
2576 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
) {
2577 ret
= cc
->iv_gen_ops
->init(cc
);
2579 ti
->error
= "Error initialising IV";
2584 /* wipe the kernel key payload copy */
2586 memset(cc
->key
, 0, cc
->key_size
* sizeof(u8
));
2591 static int crypt_ctr_optional(struct dm_target
*ti
, unsigned int argc
, char **argv
)
2593 struct crypt_config
*cc
= ti
->private;
2594 struct dm_arg_set as
;
2595 static const struct dm_arg _args
[] = {
2596 {0, 6, "Invalid number of feature args"},
2598 unsigned int opt_params
, val
;
2599 const char *opt_string
, *sval
;
2603 /* Optional parameters */
2607 ret
= dm_read_arg_group(_args
, &as
, &opt_params
, &ti
->error
);
2611 while (opt_params
--) {
2612 opt_string
= dm_shift_arg(&as
);
2614 ti
->error
= "Not enough feature arguments";
2618 if (!strcasecmp(opt_string
, "allow_discards"))
2619 ti
->num_discard_bios
= 1;
2621 else if (!strcasecmp(opt_string
, "same_cpu_crypt"))
2622 set_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
2624 else if (!strcasecmp(opt_string
, "submit_from_crypt_cpus"))
2625 set_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
2626 else if (sscanf(opt_string
, "integrity:%u:", &val
) == 1) {
2627 if (val
== 0 || val
> MAX_TAG_SIZE
) {
2628 ti
->error
= "Invalid integrity arguments";
2631 cc
->on_disk_tag_size
= val
;
2632 sval
= strchr(opt_string
+ strlen("integrity:"), ':') + 1;
2633 if (!strcasecmp(sval
, "aead")) {
2634 set_bit(CRYPT_MODE_INTEGRITY_AEAD
, &cc
->cipher_flags
);
2635 } else if (strcasecmp(sval
, "none")) {
2636 ti
->error
= "Unknown integrity profile";
2640 cc
->cipher_auth
= kstrdup(sval
, GFP_KERNEL
);
2641 if (!cc
->cipher_auth
)
2643 } else if (sscanf(opt_string
, "sector_size:%hu%c", &cc
->sector_size
, &dummy
) == 1) {
2644 if (cc
->sector_size
< (1 << SECTOR_SHIFT
) ||
2645 cc
->sector_size
> 4096 ||
2646 (cc
->sector_size
& (cc
->sector_size
- 1))) {
2647 ti
->error
= "Invalid feature value for sector_size";
2650 if (ti
->len
& ((cc
->sector_size
>> SECTOR_SHIFT
) - 1)) {
2651 ti
->error
= "Device size is not multiple of sector_size feature";
2654 cc
->sector_shift
= __ffs(cc
->sector_size
) - SECTOR_SHIFT
;
2655 } else if (!strcasecmp(opt_string
, "iv_large_sectors"))
2656 set_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
);
2658 ti
->error
= "Invalid feature arguments";
2667 * Construct an encryption mapping:
2668 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
2670 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
2672 struct crypt_config
*cc
;
2674 unsigned int align_mask
;
2675 unsigned long long tmpll
;
2677 size_t iv_size_padding
, additional_req_size
;
2681 ti
->error
= "Not enough arguments";
2685 key_size
= get_key_size(&argv
[1]);
2687 ti
->error
= "Cannot parse key size";
2691 cc
= kzalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
2693 ti
->error
= "Cannot allocate encryption context";
2696 cc
->key_size
= key_size
;
2697 cc
->sector_size
= (1 << SECTOR_SHIFT
);
2698 cc
->sector_shift
= 0;
2702 spin_lock(&dm_crypt_clients_lock
);
2703 dm_crypt_clients_n
++;
2704 crypt_calculate_pages_per_client();
2705 spin_unlock(&dm_crypt_clients_lock
);
2707 ret
= percpu_counter_init(&cc
->n_allocated_pages
, 0, GFP_KERNEL
);
2711 /* Optional parameters need to be read before cipher constructor */
2713 ret
= crypt_ctr_optional(ti
, argc
- 5, &argv
[5]);
2718 ret
= crypt_ctr_cipher(ti
, argv
[0], argv
[1]);
2722 if (crypt_integrity_aead(cc
)) {
2723 cc
->dmreq_start
= sizeof(struct aead_request
);
2724 cc
->dmreq_start
+= crypto_aead_reqsize(any_tfm_aead(cc
));
2725 align_mask
= crypto_aead_alignmask(any_tfm_aead(cc
));
2727 cc
->dmreq_start
= sizeof(struct skcipher_request
);
2728 cc
->dmreq_start
+= crypto_skcipher_reqsize(any_tfm(cc
));
2729 align_mask
= crypto_skcipher_alignmask(any_tfm(cc
));
2731 cc
->dmreq_start
= ALIGN(cc
->dmreq_start
, __alignof__(struct dm_crypt_request
));
2733 if (align_mask
< CRYPTO_MINALIGN
) {
2734 /* Allocate the padding exactly */
2735 iv_size_padding
= -(cc
->dmreq_start
+ sizeof(struct dm_crypt_request
))
2739 * If the cipher requires greater alignment than kmalloc
2740 * alignment, we don't know the exact position of the
2741 * initialization vector. We must assume worst case.
2743 iv_size_padding
= align_mask
;
2748 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
2749 additional_req_size
= sizeof(struct dm_crypt_request
) +
2750 iv_size_padding
+ cc
->iv_size
+
2753 sizeof(unsigned int);
2755 cc
->req_pool
= mempool_create_kmalloc_pool(MIN_IOS
, cc
->dmreq_start
+ additional_req_size
);
2756 if (!cc
->req_pool
) {
2757 ti
->error
= "Cannot allocate crypt request mempool";
2761 cc
->per_bio_data_size
= ti
->per_io_data_size
=
2762 ALIGN(sizeof(struct dm_crypt_io
) + cc
->dmreq_start
+ additional_req_size
,
2763 ARCH_KMALLOC_MINALIGN
);
2765 cc
->page_pool
= mempool_create(BIO_MAX_PAGES
, crypt_page_alloc
, crypt_page_free
, cc
);
2766 if (!cc
->page_pool
) {
2767 ti
->error
= "Cannot allocate page mempool";
2771 cc
->bs
= bioset_create(MIN_IOS
, 0, BIOSET_NEED_BVECS
);
2773 ti
->error
= "Cannot allocate crypt bioset";
2777 mutex_init(&cc
->bio_alloc_lock
);
2780 if ((sscanf(argv
[2], "%llu%c", &tmpll
, &dummy
) != 1) ||
2781 (tmpll
& ((cc
->sector_size
>> SECTOR_SHIFT
) - 1))) {
2782 ti
->error
= "Invalid iv_offset sector";
2785 cc
->iv_offset
= tmpll
;
2787 ret
= dm_get_device(ti
, argv
[3], dm_table_get_mode(ti
->table
), &cc
->dev
);
2789 ti
->error
= "Device lookup failed";
2794 if (sscanf(argv
[4], "%llu%c", &tmpll
, &dummy
) != 1) {
2795 ti
->error
= "Invalid device sector";
2800 if (crypt_integrity_aead(cc
) || cc
->integrity_iv_size
) {
2801 ret
= crypt_integrity_ctr(cc
, ti
);
2805 cc
->tag_pool_max_sectors
= POOL_ENTRY_SIZE
/ cc
->on_disk_tag_size
;
2806 if (!cc
->tag_pool_max_sectors
)
2807 cc
->tag_pool_max_sectors
= 1;
2809 cc
->tag_pool
= mempool_create_kmalloc_pool(MIN_IOS
,
2810 cc
->tag_pool_max_sectors
* cc
->on_disk_tag_size
);
2811 if (!cc
->tag_pool
) {
2812 ti
->error
= "Cannot allocate integrity tags mempool";
2817 cc
->tag_pool_max_sectors
<<= cc
->sector_shift
;
2821 cc
->io_queue
= alloc_workqueue("kcryptd_io", WQ_HIGHPRI
| WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
, 1);
2822 if (!cc
->io_queue
) {
2823 ti
->error
= "Couldn't create kcryptd io queue";
2827 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
2828 cc
->crypt_queue
= alloc_workqueue("kcryptd", WQ_HIGHPRI
| WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
, 1);
2830 cc
->crypt_queue
= alloc_workqueue("kcryptd",
2831 WQ_HIGHPRI
| WQ_CPU_INTENSIVE
| WQ_MEM_RECLAIM
| WQ_UNBOUND
,
2833 if (!cc
->crypt_queue
) {
2834 ti
->error
= "Couldn't create kcryptd queue";
2838 init_waitqueue_head(&cc
->write_thread_wait
);
2839 cc
->write_tree
= RB_ROOT
;
2841 cc
->write_thread
= kthread_create(dmcrypt_write
, cc
, "dmcrypt_write");
2842 if (IS_ERR(cc
->write_thread
)) {
2843 ret
= PTR_ERR(cc
->write_thread
);
2844 cc
->write_thread
= NULL
;
2845 ti
->error
= "Couldn't spawn write thread";
2848 wake_up_process(cc
->write_thread
);
2850 ti
->num_flush_bios
= 1;
2859 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
)
2861 struct dm_crypt_io
*io
;
2862 struct crypt_config
*cc
= ti
->private;
2865 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
2866 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
2867 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
2869 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
||
2870 bio_op(bio
) == REQ_OP_DISCARD
)) {
2871 bio_set_dev(bio
, cc
->dev
->bdev
);
2872 if (bio_sectors(bio
))
2873 bio
->bi_iter
.bi_sector
= cc
->start
+
2874 dm_target_offset(ti
, bio
->bi_iter
.bi_sector
);
2875 return DM_MAPIO_REMAPPED
;
2879 * Check if bio is too large, split as needed.
2881 if (unlikely(bio
->bi_iter
.bi_size
> (BIO_MAX_PAGES
<< PAGE_SHIFT
)) &&
2882 (bio_data_dir(bio
) == WRITE
|| cc
->on_disk_tag_size
))
2883 dm_accept_partial_bio(bio
, ((BIO_MAX_PAGES
<< PAGE_SHIFT
) >> SECTOR_SHIFT
));
2886 * Ensure that bio is a multiple of internal sector encryption size
2887 * and is aligned to this size as defined in IO hints.
2889 if (unlikely((bio
->bi_iter
.bi_sector
& ((cc
->sector_size
>> SECTOR_SHIFT
) - 1)) != 0))
2890 return DM_MAPIO_KILL
;
2892 if (unlikely(bio
->bi_iter
.bi_size
& (cc
->sector_size
- 1)))
2893 return DM_MAPIO_KILL
;
2895 io
= dm_per_bio_data(bio
, cc
->per_bio_data_size
);
2896 crypt_io_init(io
, cc
, bio
, dm_target_offset(ti
, bio
->bi_iter
.bi_sector
));
2898 if (cc
->on_disk_tag_size
) {
2899 unsigned tag_len
= cc
->on_disk_tag_size
* (bio_sectors(bio
) >> cc
->sector_shift
);
2901 if (unlikely(tag_len
> KMALLOC_MAX_SIZE
) ||
2902 unlikely(!(io
->integrity_metadata
= kmalloc(tag_len
,
2903 GFP_NOIO
| __GFP_NORETRY
| __GFP_NOMEMALLOC
| __GFP_NOWARN
)))) {
2904 if (bio_sectors(bio
) > cc
->tag_pool_max_sectors
)
2905 dm_accept_partial_bio(bio
, cc
->tag_pool_max_sectors
);
2906 io
->integrity_metadata
= mempool_alloc(cc
->tag_pool
, GFP_NOIO
);
2907 io
->integrity_metadata_from_pool
= true;
2911 if (crypt_integrity_aead(cc
))
2912 io
->ctx
.r
.req_aead
= (struct aead_request
*)(io
+ 1);
2914 io
->ctx
.r
.req
= (struct skcipher_request
*)(io
+ 1);
2916 if (bio_data_dir(io
->base_bio
) == READ
) {
2917 if (kcryptd_io_read(io
, GFP_NOWAIT
))
2918 kcryptd_queue_read(io
);
2920 kcryptd_queue_crypt(io
);
2922 return DM_MAPIO_SUBMITTED
;
2925 static void crypt_status(struct dm_target
*ti
, status_type_t type
,
2926 unsigned status_flags
, char *result
, unsigned maxlen
)
2928 struct crypt_config
*cc
= ti
->private;
2930 int num_feature_args
= 0;
2933 case STATUSTYPE_INFO
:
2937 case STATUSTYPE_TABLE
:
2938 DMEMIT("%s ", cc
->cipher_string
);
2940 if (cc
->key_size
> 0) {
2942 DMEMIT(":%u:%s", cc
->key_size
, cc
->key_string
);
2944 for (i
= 0; i
< cc
->key_size
; i
++)
2945 DMEMIT("%02x", cc
->key
[i
]);
2949 DMEMIT(" %llu %s %llu", (unsigned long long)cc
->iv_offset
,
2950 cc
->dev
->name
, (unsigned long long)cc
->start
);
2952 num_feature_args
+= !!ti
->num_discard_bios
;
2953 num_feature_args
+= test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
);
2954 num_feature_args
+= test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
);
2955 num_feature_args
+= cc
->sector_size
!= (1 << SECTOR_SHIFT
);
2956 num_feature_args
+= test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
);
2957 if (cc
->on_disk_tag_size
)
2959 if (num_feature_args
) {
2960 DMEMIT(" %d", num_feature_args
);
2961 if (ti
->num_discard_bios
)
2962 DMEMIT(" allow_discards");
2963 if (test_bit(DM_CRYPT_SAME_CPU
, &cc
->flags
))
2964 DMEMIT(" same_cpu_crypt");
2965 if (test_bit(DM_CRYPT_NO_OFFLOAD
, &cc
->flags
))
2966 DMEMIT(" submit_from_crypt_cpus");
2967 if (cc
->on_disk_tag_size
)
2968 DMEMIT(" integrity:%u:%s", cc
->on_disk_tag_size
, cc
->cipher_auth
);
2969 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
))
2970 DMEMIT(" sector_size:%d", cc
->sector_size
);
2971 if (test_bit(CRYPT_IV_LARGE_SECTORS
, &cc
->cipher_flags
))
2972 DMEMIT(" iv_large_sectors");
2979 static void crypt_postsuspend(struct dm_target
*ti
)
2981 struct crypt_config
*cc
= ti
->private;
2983 set_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
2986 static int crypt_preresume(struct dm_target
*ti
)
2988 struct crypt_config
*cc
= ti
->private;
2990 if (!test_bit(DM_CRYPT_KEY_VALID
, &cc
->flags
)) {
2991 DMERR("aborting resume - crypt key is not set.");
2998 static void crypt_resume(struct dm_target
*ti
)
3000 struct crypt_config
*cc
= ti
->private;
3002 clear_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
);
3005 /* Message interface
3009 static int crypt_message(struct dm_target
*ti
, unsigned argc
, char **argv
)
3011 struct crypt_config
*cc
= ti
->private;
3012 int key_size
, ret
= -EINVAL
;
3017 if (!strcasecmp(argv
[0], "key")) {
3018 if (!test_bit(DM_CRYPT_SUSPENDED
, &cc
->flags
)) {
3019 DMWARN("not suspended during key manipulation.");
3022 if (argc
== 3 && !strcasecmp(argv
[1], "set")) {
3023 /* The key size may not be changed. */
3024 key_size
= get_key_size(&argv
[2]);
3025 if (key_size
< 0 || cc
->key_size
!= key_size
) {
3026 memset(argv
[2], '0', strlen(argv
[2]));
3030 ret
= crypt_set_key(cc
, argv
[2]);
3033 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->init
)
3034 ret
= cc
->iv_gen_ops
->init(cc
);
3035 /* wipe the kernel key payload copy */
3037 memset(cc
->key
, 0, cc
->key_size
* sizeof(u8
));
3040 if (argc
== 2 && !strcasecmp(argv
[1], "wipe")) {
3041 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->wipe
) {
3042 ret
= cc
->iv_gen_ops
->wipe(cc
);
3046 return crypt_wipe_key(cc
);
3051 DMWARN("unrecognised message received.");
3055 static int crypt_iterate_devices(struct dm_target
*ti
,
3056 iterate_devices_callout_fn fn
, void *data
)
3058 struct crypt_config
*cc
= ti
->private;
3060 return fn(ti
, cc
->dev
, cc
->start
, ti
->len
, data
);
3063 static void crypt_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3065 struct crypt_config
*cc
= ti
->private;
3068 * Unfortunate constraint that is required to avoid the potential
3069 * for exceeding underlying device's max_segments limits -- due to
3070 * crypt_alloc_buffer() possibly allocating pages for the encryption
3071 * bio that are not as physically contiguous as the original bio.
3073 limits
->max_segment_size
= PAGE_SIZE
;
3075 if (cc
->sector_size
!= (1 << SECTOR_SHIFT
)) {
3076 limits
->logical_block_size
= cc
->sector_size
;
3077 limits
->physical_block_size
= cc
->sector_size
;
3078 blk_limits_io_min(limits
, cc
->sector_size
);
3082 static struct target_type crypt_target
= {
3084 .version
= {1, 18, 1},
3085 .module
= THIS_MODULE
,
3089 .status
= crypt_status
,
3090 .postsuspend
= crypt_postsuspend
,
3091 .preresume
= crypt_preresume
,
3092 .resume
= crypt_resume
,
3093 .message
= crypt_message
,
3094 .iterate_devices
= crypt_iterate_devices
,
3095 .io_hints
= crypt_io_hints
,
3098 static int __init
dm_crypt_init(void)
3102 r
= dm_register_target(&crypt_target
);
3104 DMERR("register failed %d", r
);
3109 static void __exit
dm_crypt_exit(void)
3111 dm_unregister_target(&crypt_target
);
3114 module_init(dm_crypt_init
);
3115 module_exit(dm_crypt_exit
);
3117 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3118 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
3119 MODULE_LICENSE("GPL");