Merge tag 'for-linus-20171218' of git://git.infradead.org/linux-mtd
[linux/fpc-iii.git] / mm / memory.c
blobca5674cbaff2b65c4e51086e5922fbbd274f2cfa
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
82 #include "internal.h"
84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
98 * A number of key systems in x86 including ioremap() rely on the assumption
99 * that high_memory defines the upper bound on direct map memory, then end
100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102 * and ZONE_HIGHMEM.
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
108 * Randomize the address space (stacks, mmaps, brk, etc.).
110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111 * as ancient (libc5 based) binaries can segfault. )
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
116 #else
118 #endif
120 static int __init disable_randmaps(char *s)
122 randomize_va_space = 0;
123 return 1;
125 __setup("norandmaps", disable_randmaps);
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
130 unsigned long highest_memmap_pfn __read_mostly;
133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135 static int __init init_zero_pfn(void)
137 zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 return 0;
140 core_initcall(init_zero_pfn);
143 #if defined(SPLIT_RSS_COUNTING)
145 void sync_mm_rss(struct mm_struct *mm)
147 int i;
149 for (i = 0; i < NR_MM_COUNTERS; i++) {
150 if (current->rss_stat.count[i]) {
151 add_mm_counter(mm, i, current->rss_stat.count[i]);
152 current->rss_stat.count[i] = 0;
155 current->rss_stat.events = 0;
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 struct task_struct *task = current;
162 if (likely(task->mm == mm))
163 task->rss_stat.count[member] += val;
164 else
165 add_mm_counter(mm, member, val);
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH (64)
172 static void check_sync_rss_stat(struct task_struct *task)
174 if (unlikely(task != current))
175 return;
176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 sync_mm_rss(task->mm);
179 #else /* SPLIT_RSS_COUNTING */
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 static void check_sync_rss_stat(struct task_struct *task)
188 #endif /* SPLIT_RSS_COUNTING */
190 #ifdef HAVE_GENERIC_MMU_GATHER
192 static bool tlb_next_batch(struct mmu_gather *tlb)
194 struct mmu_gather_batch *batch;
196 batch = tlb->active;
197 if (batch->next) {
198 tlb->active = batch->next;
199 return true;
202 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 return false;
205 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 if (!batch)
207 return false;
209 tlb->batch_count++;
210 batch->next = NULL;
211 batch->nr = 0;
212 batch->max = MAX_GATHER_BATCH;
214 tlb->active->next = batch;
215 tlb->active = batch;
217 return true;
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 unsigned long start, unsigned long end)
223 tlb->mm = mm;
225 /* Is it from 0 to ~0? */
226 tlb->fullmm = !(start | (end+1));
227 tlb->need_flush_all = 0;
228 tlb->local.next = NULL;
229 tlb->local.nr = 0;
230 tlb->local.max = ARRAY_SIZE(tlb->__pages);
231 tlb->active = &tlb->local;
232 tlb->batch_count = 0;
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 tlb->batch = NULL;
236 #endif
237 tlb->page_size = 0;
239 __tlb_reset_range(tlb);
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
244 if (!tlb->end)
245 return;
247 tlb_flush(tlb);
248 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 tlb_table_flush(tlb);
251 #endif
252 __tlb_reset_range(tlb);
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
257 struct mmu_gather_batch *batch;
259 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 free_pages_and_swap_cache(batch->pages, batch->nr);
261 batch->nr = 0;
263 tlb->active = &tlb->local;
266 void tlb_flush_mmu(struct mmu_gather *tlb)
268 tlb_flush_mmu_tlbonly(tlb);
269 tlb_flush_mmu_free(tlb);
272 /* tlb_finish_mmu
273 * Called at the end of the shootdown operation to free up any resources
274 * that were required.
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 unsigned long start, unsigned long end, bool force)
279 struct mmu_gather_batch *batch, *next;
281 if (force)
282 __tlb_adjust_range(tlb, start, end - start);
284 tlb_flush_mmu(tlb);
286 /* keep the page table cache within bounds */
287 check_pgt_cache();
289 for (batch = tlb->local.next; batch; batch = next) {
290 next = batch->next;
291 free_pages((unsigned long)batch, 0);
293 tlb->local.next = NULL;
296 /* __tlb_remove_page
297 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298 * handling the additional races in SMP caused by other CPUs caching valid
299 * mappings in their TLBs. Returns the number of free page slots left.
300 * When out of page slots we must call tlb_flush_mmu().
301 *returns true if the caller should flush.
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
305 struct mmu_gather_batch *batch;
307 VM_BUG_ON(!tlb->end);
308 VM_WARN_ON(tlb->page_size != page_size);
310 batch = tlb->active;
312 * Add the page and check if we are full. If so
313 * force a flush.
315 batch->pages[batch->nr++] = page;
316 if (batch->nr == batch->max) {
317 if (!tlb_next_batch(tlb))
318 return true;
319 batch = tlb->active;
321 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
323 return false;
326 #endif /* HAVE_GENERIC_MMU_GATHER */
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
331 * See the comment near struct mmu_table_batch.
334 static void tlb_remove_table_smp_sync(void *arg)
336 /* Simply deliver the interrupt */
339 static void tlb_remove_table_one(void *table)
342 * This isn't an RCU grace period and hence the page-tables cannot be
343 * assumed to be actually RCU-freed.
345 * It is however sufficient for software page-table walkers that rely on
346 * IRQ disabling. See the comment near struct mmu_table_batch.
348 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
349 __tlb_remove_table(table);
352 static void tlb_remove_table_rcu(struct rcu_head *head)
354 struct mmu_table_batch *batch;
355 int i;
357 batch = container_of(head, struct mmu_table_batch, rcu);
359 for (i = 0; i < batch->nr; i++)
360 __tlb_remove_table(batch->tables[i]);
362 free_page((unsigned long)batch);
365 void tlb_table_flush(struct mmu_gather *tlb)
367 struct mmu_table_batch **batch = &tlb->batch;
369 if (*batch) {
370 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
371 *batch = NULL;
375 void tlb_remove_table(struct mmu_gather *tlb, void *table)
377 struct mmu_table_batch **batch = &tlb->batch;
380 * When there's less then two users of this mm there cannot be a
381 * concurrent page-table walk.
383 if (atomic_read(&tlb->mm->mm_users) < 2) {
384 __tlb_remove_table(table);
385 return;
388 if (*batch == NULL) {
389 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
390 if (*batch == NULL) {
391 tlb_remove_table_one(table);
392 return;
394 (*batch)->nr = 0;
396 (*batch)->tables[(*batch)->nr++] = table;
397 if ((*batch)->nr == MAX_TABLE_BATCH)
398 tlb_table_flush(tlb);
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
403 /* tlb_gather_mmu
404 * Called to initialize an (on-stack) mmu_gather structure for page-table
405 * tear-down from @mm. The @fullmm argument is used when @mm is without
406 * users and we're going to destroy the full address space (exit/execve).
408 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
409 unsigned long start, unsigned long end)
411 arch_tlb_gather_mmu(tlb, mm, start, end);
412 inc_tlb_flush_pending(tlb->mm);
415 void tlb_finish_mmu(struct mmu_gather *tlb,
416 unsigned long start, unsigned long end)
419 * If there are parallel threads are doing PTE changes on same range
420 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
421 * flush by batching, a thread has stable TLB entry can fail to flush
422 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
423 * forcefully if we detect parallel PTE batching threads.
425 bool force = mm_tlb_flush_nested(tlb->mm);
427 arch_tlb_finish_mmu(tlb, start, end, force);
428 dec_tlb_flush_pending(tlb->mm);
432 * Note: this doesn't free the actual pages themselves. That
433 * has been handled earlier when unmapping all the memory regions.
435 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
436 unsigned long addr)
438 pgtable_t token = pmd_pgtable(*pmd);
439 pmd_clear(pmd);
440 pte_free_tlb(tlb, token, addr);
441 mm_dec_nr_ptes(tlb->mm);
444 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
445 unsigned long addr, unsigned long end,
446 unsigned long floor, unsigned long ceiling)
448 pmd_t *pmd;
449 unsigned long next;
450 unsigned long start;
452 start = addr;
453 pmd = pmd_offset(pud, addr);
454 do {
455 next = pmd_addr_end(addr, end);
456 if (pmd_none_or_clear_bad(pmd))
457 continue;
458 free_pte_range(tlb, pmd, addr);
459 } while (pmd++, addr = next, addr != end);
461 start &= PUD_MASK;
462 if (start < floor)
463 return;
464 if (ceiling) {
465 ceiling &= PUD_MASK;
466 if (!ceiling)
467 return;
469 if (end - 1 > ceiling - 1)
470 return;
472 pmd = pmd_offset(pud, start);
473 pud_clear(pud);
474 pmd_free_tlb(tlb, pmd, start);
475 mm_dec_nr_pmds(tlb->mm);
478 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
479 unsigned long addr, unsigned long end,
480 unsigned long floor, unsigned long ceiling)
482 pud_t *pud;
483 unsigned long next;
484 unsigned long start;
486 start = addr;
487 pud = pud_offset(p4d, addr);
488 do {
489 next = pud_addr_end(addr, end);
490 if (pud_none_or_clear_bad(pud))
491 continue;
492 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
493 } while (pud++, addr = next, addr != end);
495 start &= P4D_MASK;
496 if (start < floor)
497 return;
498 if (ceiling) {
499 ceiling &= P4D_MASK;
500 if (!ceiling)
501 return;
503 if (end - 1 > ceiling - 1)
504 return;
506 pud = pud_offset(p4d, start);
507 p4d_clear(p4d);
508 pud_free_tlb(tlb, pud, start);
509 mm_dec_nr_puds(tlb->mm);
512 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
513 unsigned long addr, unsigned long end,
514 unsigned long floor, unsigned long ceiling)
516 p4d_t *p4d;
517 unsigned long next;
518 unsigned long start;
520 start = addr;
521 p4d = p4d_offset(pgd, addr);
522 do {
523 next = p4d_addr_end(addr, end);
524 if (p4d_none_or_clear_bad(p4d))
525 continue;
526 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
527 } while (p4d++, addr = next, addr != end);
529 start &= PGDIR_MASK;
530 if (start < floor)
531 return;
532 if (ceiling) {
533 ceiling &= PGDIR_MASK;
534 if (!ceiling)
535 return;
537 if (end - 1 > ceiling - 1)
538 return;
540 p4d = p4d_offset(pgd, start);
541 pgd_clear(pgd);
542 p4d_free_tlb(tlb, p4d, start);
546 * This function frees user-level page tables of a process.
548 void free_pgd_range(struct mmu_gather *tlb,
549 unsigned long addr, unsigned long end,
550 unsigned long floor, unsigned long ceiling)
552 pgd_t *pgd;
553 unsigned long next;
556 * The next few lines have given us lots of grief...
558 * Why are we testing PMD* at this top level? Because often
559 * there will be no work to do at all, and we'd prefer not to
560 * go all the way down to the bottom just to discover that.
562 * Why all these "- 1"s? Because 0 represents both the bottom
563 * of the address space and the top of it (using -1 for the
564 * top wouldn't help much: the masks would do the wrong thing).
565 * The rule is that addr 0 and floor 0 refer to the bottom of
566 * the address space, but end 0 and ceiling 0 refer to the top
567 * Comparisons need to use "end - 1" and "ceiling - 1" (though
568 * that end 0 case should be mythical).
570 * Wherever addr is brought up or ceiling brought down, we must
571 * be careful to reject "the opposite 0" before it confuses the
572 * subsequent tests. But what about where end is brought down
573 * by PMD_SIZE below? no, end can't go down to 0 there.
575 * Whereas we round start (addr) and ceiling down, by different
576 * masks at different levels, in order to test whether a table
577 * now has no other vmas using it, so can be freed, we don't
578 * bother to round floor or end up - the tests don't need that.
581 addr &= PMD_MASK;
582 if (addr < floor) {
583 addr += PMD_SIZE;
584 if (!addr)
585 return;
587 if (ceiling) {
588 ceiling &= PMD_MASK;
589 if (!ceiling)
590 return;
592 if (end - 1 > ceiling - 1)
593 end -= PMD_SIZE;
594 if (addr > end - 1)
595 return;
597 * We add page table cache pages with PAGE_SIZE,
598 * (see pte_free_tlb()), flush the tlb if we need
600 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
601 pgd = pgd_offset(tlb->mm, addr);
602 do {
603 next = pgd_addr_end(addr, end);
604 if (pgd_none_or_clear_bad(pgd))
605 continue;
606 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
607 } while (pgd++, addr = next, addr != end);
610 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
611 unsigned long floor, unsigned long ceiling)
613 while (vma) {
614 struct vm_area_struct *next = vma->vm_next;
615 unsigned long addr = vma->vm_start;
618 * Hide vma from rmap and truncate_pagecache before freeing
619 * pgtables
621 unlink_anon_vmas(vma);
622 unlink_file_vma(vma);
624 if (is_vm_hugetlb_page(vma)) {
625 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
626 floor, next ? next->vm_start : ceiling);
627 } else {
629 * Optimization: gather nearby vmas into one call down
631 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
632 && !is_vm_hugetlb_page(next)) {
633 vma = next;
634 next = vma->vm_next;
635 unlink_anon_vmas(vma);
636 unlink_file_vma(vma);
638 free_pgd_range(tlb, addr, vma->vm_end,
639 floor, next ? next->vm_start : ceiling);
641 vma = next;
645 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
647 spinlock_t *ptl;
648 pgtable_t new = pte_alloc_one(mm, address);
649 if (!new)
650 return -ENOMEM;
653 * Ensure all pte setup (eg. pte page lock and page clearing) are
654 * visible before the pte is made visible to other CPUs by being
655 * put into page tables.
657 * The other side of the story is the pointer chasing in the page
658 * table walking code (when walking the page table without locking;
659 * ie. most of the time). Fortunately, these data accesses consist
660 * of a chain of data-dependent loads, meaning most CPUs (alpha
661 * being the notable exception) will already guarantee loads are
662 * seen in-order. See the alpha page table accessors for the
663 * smp_read_barrier_depends() barriers in page table walking code.
665 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
667 ptl = pmd_lock(mm, pmd);
668 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
669 mm_inc_nr_ptes(mm);
670 pmd_populate(mm, pmd, new);
671 new = NULL;
673 spin_unlock(ptl);
674 if (new)
675 pte_free(mm, new);
676 return 0;
679 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
681 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
682 if (!new)
683 return -ENOMEM;
685 smp_wmb(); /* See comment in __pte_alloc */
687 spin_lock(&init_mm.page_table_lock);
688 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
689 pmd_populate_kernel(&init_mm, pmd, new);
690 new = NULL;
692 spin_unlock(&init_mm.page_table_lock);
693 if (new)
694 pte_free_kernel(&init_mm, new);
695 return 0;
698 static inline void init_rss_vec(int *rss)
700 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
703 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
705 int i;
707 if (current->mm == mm)
708 sync_mm_rss(mm);
709 for (i = 0; i < NR_MM_COUNTERS; i++)
710 if (rss[i])
711 add_mm_counter(mm, i, rss[i]);
715 * This function is called to print an error when a bad pte
716 * is found. For example, we might have a PFN-mapped pte in
717 * a region that doesn't allow it.
719 * The calling function must still handle the error.
721 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
722 pte_t pte, struct page *page)
724 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
725 p4d_t *p4d = p4d_offset(pgd, addr);
726 pud_t *pud = pud_offset(p4d, addr);
727 pmd_t *pmd = pmd_offset(pud, addr);
728 struct address_space *mapping;
729 pgoff_t index;
730 static unsigned long resume;
731 static unsigned long nr_shown;
732 static unsigned long nr_unshown;
735 * Allow a burst of 60 reports, then keep quiet for that minute;
736 * or allow a steady drip of one report per second.
738 if (nr_shown == 60) {
739 if (time_before(jiffies, resume)) {
740 nr_unshown++;
741 return;
743 if (nr_unshown) {
744 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
745 nr_unshown);
746 nr_unshown = 0;
748 nr_shown = 0;
750 if (nr_shown++ == 0)
751 resume = jiffies + 60 * HZ;
753 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
754 index = linear_page_index(vma, addr);
756 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
757 current->comm,
758 (long long)pte_val(pte), (long long)pmd_val(*pmd));
759 if (page)
760 dump_page(page, "bad pte");
761 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
762 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
764 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
766 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
767 vma->vm_file,
768 vma->vm_ops ? vma->vm_ops->fault : NULL,
769 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
770 mapping ? mapping->a_ops->readpage : NULL);
771 dump_stack();
772 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
776 * vm_normal_page -- This function gets the "struct page" associated with a pte.
778 * "Special" mappings do not wish to be associated with a "struct page" (either
779 * it doesn't exist, or it exists but they don't want to touch it). In this
780 * case, NULL is returned here. "Normal" mappings do have a struct page.
782 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
783 * pte bit, in which case this function is trivial. Secondly, an architecture
784 * may not have a spare pte bit, which requires a more complicated scheme,
785 * described below.
787 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
788 * special mapping (even if there are underlying and valid "struct pages").
789 * COWed pages of a VM_PFNMAP are always normal.
791 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
792 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
793 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
794 * mapping will always honor the rule
796 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
798 * And for normal mappings this is false.
800 * This restricts such mappings to be a linear translation from virtual address
801 * to pfn. To get around this restriction, we allow arbitrary mappings so long
802 * as the vma is not a COW mapping; in that case, we know that all ptes are
803 * special (because none can have been COWed).
806 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
808 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
809 * page" backing, however the difference is that _all_ pages with a struct
810 * page (that is, those where pfn_valid is true) are refcounted and considered
811 * normal pages by the VM. The disadvantage is that pages are refcounted
812 * (which can be slower and simply not an option for some PFNMAP users). The
813 * advantage is that we don't have to follow the strict linearity rule of
814 * PFNMAP mappings in order to support COWable mappings.
817 #ifdef __HAVE_ARCH_PTE_SPECIAL
818 # define HAVE_PTE_SPECIAL 1
819 #else
820 # define HAVE_PTE_SPECIAL 0
821 #endif
822 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
823 pte_t pte, bool with_public_device)
825 unsigned long pfn = pte_pfn(pte);
827 if (HAVE_PTE_SPECIAL) {
828 if (likely(!pte_special(pte)))
829 goto check_pfn;
830 if (vma->vm_ops && vma->vm_ops->find_special_page)
831 return vma->vm_ops->find_special_page(vma, addr);
832 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
833 return NULL;
834 if (is_zero_pfn(pfn))
835 return NULL;
838 * Device public pages are special pages (they are ZONE_DEVICE
839 * pages but different from persistent memory). They behave
840 * allmost like normal pages. The difference is that they are
841 * not on the lru and thus should never be involve with any-
842 * thing that involve lru manipulation (mlock, numa balancing,
843 * ...).
845 * This is why we still want to return NULL for such page from
846 * vm_normal_page() so that we do not have to special case all
847 * call site of vm_normal_page().
849 if (likely(pfn <= highest_memmap_pfn)) {
850 struct page *page = pfn_to_page(pfn);
852 if (is_device_public_page(page)) {
853 if (with_public_device)
854 return page;
855 return NULL;
858 print_bad_pte(vma, addr, pte, NULL);
859 return NULL;
862 /* !HAVE_PTE_SPECIAL case follows: */
864 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
865 if (vma->vm_flags & VM_MIXEDMAP) {
866 if (!pfn_valid(pfn))
867 return NULL;
868 goto out;
869 } else {
870 unsigned long off;
871 off = (addr - vma->vm_start) >> PAGE_SHIFT;
872 if (pfn == vma->vm_pgoff + off)
873 return NULL;
874 if (!is_cow_mapping(vma->vm_flags))
875 return NULL;
879 if (is_zero_pfn(pfn))
880 return NULL;
881 check_pfn:
882 if (unlikely(pfn > highest_memmap_pfn)) {
883 print_bad_pte(vma, addr, pte, NULL);
884 return NULL;
888 * NOTE! We still have PageReserved() pages in the page tables.
889 * eg. VDSO mappings can cause them to exist.
891 out:
892 return pfn_to_page(pfn);
895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
896 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
897 pmd_t pmd)
899 unsigned long pfn = pmd_pfn(pmd);
902 * There is no pmd_special() but there may be special pmds, e.g.
903 * in a direct-access (dax) mapping, so let's just replicate the
904 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
906 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
907 if (vma->vm_flags & VM_MIXEDMAP) {
908 if (!pfn_valid(pfn))
909 return NULL;
910 goto out;
911 } else {
912 unsigned long off;
913 off = (addr - vma->vm_start) >> PAGE_SHIFT;
914 if (pfn == vma->vm_pgoff + off)
915 return NULL;
916 if (!is_cow_mapping(vma->vm_flags))
917 return NULL;
921 if (is_zero_pfn(pfn))
922 return NULL;
923 if (unlikely(pfn > highest_memmap_pfn))
924 return NULL;
927 * NOTE! We still have PageReserved() pages in the page tables.
928 * eg. VDSO mappings can cause them to exist.
930 out:
931 return pfn_to_page(pfn);
933 #endif
936 * copy one vm_area from one task to the other. Assumes the page tables
937 * already present in the new task to be cleared in the whole range
938 * covered by this vma.
941 static inline unsigned long
942 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
944 unsigned long addr, int *rss)
946 unsigned long vm_flags = vma->vm_flags;
947 pte_t pte = *src_pte;
948 struct page *page;
950 /* pte contains position in swap or file, so copy. */
951 if (unlikely(!pte_present(pte))) {
952 swp_entry_t entry = pte_to_swp_entry(pte);
954 if (likely(!non_swap_entry(entry))) {
955 if (swap_duplicate(entry) < 0)
956 return entry.val;
958 /* make sure dst_mm is on swapoff's mmlist. */
959 if (unlikely(list_empty(&dst_mm->mmlist))) {
960 spin_lock(&mmlist_lock);
961 if (list_empty(&dst_mm->mmlist))
962 list_add(&dst_mm->mmlist,
963 &src_mm->mmlist);
964 spin_unlock(&mmlist_lock);
966 rss[MM_SWAPENTS]++;
967 } else if (is_migration_entry(entry)) {
968 page = migration_entry_to_page(entry);
970 rss[mm_counter(page)]++;
972 if (is_write_migration_entry(entry) &&
973 is_cow_mapping(vm_flags)) {
975 * COW mappings require pages in both
976 * parent and child to be set to read.
978 make_migration_entry_read(&entry);
979 pte = swp_entry_to_pte(entry);
980 if (pte_swp_soft_dirty(*src_pte))
981 pte = pte_swp_mksoft_dirty(pte);
982 set_pte_at(src_mm, addr, src_pte, pte);
984 } else if (is_device_private_entry(entry)) {
985 page = device_private_entry_to_page(entry);
988 * Update rss count even for unaddressable pages, as
989 * they should treated just like normal pages in this
990 * respect.
992 * We will likely want to have some new rss counters
993 * for unaddressable pages, at some point. But for now
994 * keep things as they are.
996 get_page(page);
997 rss[mm_counter(page)]++;
998 page_dup_rmap(page, false);
1001 * We do not preserve soft-dirty information, because so
1002 * far, checkpoint/restore is the only feature that
1003 * requires that. And checkpoint/restore does not work
1004 * when a device driver is involved (you cannot easily
1005 * save and restore device driver state).
1007 if (is_write_device_private_entry(entry) &&
1008 is_cow_mapping(vm_flags)) {
1009 make_device_private_entry_read(&entry);
1010 pte = swp_entry_to_pte(entry);
1011 set_pte_at(src_mm, addr, src_pte, pte);
1014 goto out_set_pte;
1018 * If it's a COW mapping, write protect it both
1019 * in the parent and the child
1021 if (is_cow_mapping(vm_flags)) {
1022 ptep_set_wrprotect(src_mm, addr, src_pte);
1023 pte = pte_wrprotect(pte);
1027 * If it's a shared mapping, mark it clean in
1028 * the child
1030 if (vm_flags & VM_SHARED)
1031 pte = pte_mkclean(pte);
1032 pte = pte_mkold(pte);
1034 page = vm_normal_page(vma, addr, pte);
1035 if (page) {
1036 get_page(page);
1037 page_dup_rmap(page, false);
1038 rss[mm_counter(page)]++;
1039 } else if (pte_devmap(pte)) {
1040 page = pte_page(pte);
1043 * Cache coherent device memory behave like regular page and
1044 * not like persistent memory page. For more informations see
1045 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1047 if (is_device_public_page(page)) {
1048 get_page(page);
1049 page_dup_rmap(page, false);
1050 rss[mm_counter(page)]++;
1054 out_set_pte:
1055 set_pte_at(dst_mm, addr, dst_pte, pte);
1056 return 0;
1059 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1061 unsigned long addr, unsigned long end)
1063 pte_t *orig_src_pte, *orig_dst_pte;
1064 pte_t *src_pte, *dst_pte;
1065 spinlock_t *src_ptl, *dst_ptl;
1066 int progress = 0;
1067 int rss[NR_MM_COUNTERS];
1068 swp_entry_t entry = (swp_entry_t){0};
1070 again:
1071 init_rss_vec(rss);
1073 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1074 if (!dst_pte)
1075 return -ENOMEM;
1076 src_pte = pte_offset_map(src_pmd, addr);
1077 src_ptl = pte_lockptr(src_mm, src_pmd);
1078 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1079 orig_src_pte = src_pte;
1080 orig_dst_pte = dst_pte;
1081 arch_enter_lazy_mmu_mode();
1083 do {
1085 * We are holding two locks at this point - either of them
1086 * could generate latencies in another task on another CPU.
1088 if (progress >= 32) {
1089 progress = 0;
1090 if (need_resched() ||
1091 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1092 break;
1094 if (pte_none(*src_pte)) {
1095 progress++;
1096 continue;
1098 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1099 vma, addr, rss);
1100 if (entry.val)
1101 break;
1102 progress += 8;
1103 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105 arch_leave_lazy_mmu_mode();
1106 spin_unlock(src_ptl);
1107 pte_unmap(orig_src_pte);
1108 add_mm_rss_vec(dst_mm, rss);
1109 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110 cond_resched();
1112 if (entry.val) {
1113 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1114 return -ENOMEM;
1115 progress = 0;
1117 if (addr != end)
1118 goto again;
1119 return 0;
1122 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1124 unsigned long addr, unsigned long end)
1126 pmd_t *src_pmd, *dst_pmd;
1127 unsigned long next;
1129 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1130 if (!dst_pmd)
1131 return -ENOMEM;
1132 src_pmd = pmd_offset(src_pud, addr);
1133 do {
1134 next = pmd_addr_end(addr, end);
1135 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1136 || pmd_devmap(*src_pmd)) {
1137 int err;
1138 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1139 err = copy_huge_pmd(dst_mm, src_mm,
1140 dst_pmd, src_pmd, addr, vma);
1141 if (err == -ENOMEM)
1142 return -ENOMEM;
1143 if (!err)
1144 continue;
1145 /* fall through */
1147 if (pmd_none_or_clear_bad(src_pmd))
1148 continue;
1149 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1150 vma, addr, next))
1151 return -ENOMEM;
1152 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1153 return 0;
1156 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1157 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1158 unsigned long addr, unsigned long end)
1160 pud_t *src_pud, *dst_pud;
1161 unsigned long next;
1163 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1164 if (!dst_pud)
1165 return -ENOMEM;
1166 src_pud = pud_offset(src_p4d, addr);
1167 do {
1168 next = pud_addr_end(addr, end);
1169 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1170 int err;
1172 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1173 err = copy_huge_pud(dst_mm, src_mm,
1174 dst_pud, src_pud, addr, vma);
1175 if (err == -ENOMEM)
1176 return -ENOMEM;
1177 if (!err)
1178 continue;
1179 /* fall through */
1181 if (pud_none_or_clear_bad(src_pud))
1182 continue;
1183 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1184 vma, addr, next))
1185 return -ENOMEM;
1186 } while (dst_pud++, src_pud++, addr = next, addr != end);
1187 return 0;
1190 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1192 unsigned long addr, unsigned long end)
1194 p4d_t *src_p4d, *dst_p4d;
1195 unsigned long next;
1197 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1198 if (!dst_p4d)
1199 return -ENOMEM;
1200 src_p4d = p4d_offset(src_pgd, addr);
1201 do {
1202 next = p4d_addr_end(addr, end);
1203 if (p4d_none_or_clear_bad(src_p4d))
1204 continue;
1205 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1206 vma, addr, next))
1207 return -ENOMEM;
1208 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1209 return 0;
1212 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1213 struct vm_area_struct *vma)
1215 pgd_t *src_pgd, *dst_pgd;
1216 unsigned long next;
1217 unsigned long addr = vma->vm_start;
1218 unsigned long end = vma->vm_end;
1219 unsigned long mmun_start; /* For mmu_notifiers */
1220 unsigned long mmun_end; /* For mmu_notifiers */
1221 bool is_cow;
1222 int ret;
1225 * Don't copy ptes where a page fault will fill them correctly.
1226 * Fork becomes much lighter when there are big shared or private
1227 * readonly mappings. The tradeoff is that copy_page_range is more
1228 * efficient than faulting.
1230 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1231 !vma->anon_vma)
1232 return 0;
1234 if (is_vm_hugetlb_page(vma))
1235 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1237 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1239 * We do not free on error cases below as remove_vma
1240 * gets called on error from higher level routine
1242 ret = track_pfn_copy(vma);
1243 if (ret)
1244 return ret;
1248 * We need to invalidate the secondary MMU mappings only when
1249 * there could be a permission downgrade on the ptes of the
1250 * parent mm. And a permission downgrade will only happen if
1251 * is_cow_mapping() returns true.
1253 is_cow = is_cow_mapping(vma->vm_flags);
1254 mmun_start = addr;
1255 mmun_end = end;
1256 if (is_cow)
1257 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1258 mmun_end);
1260 ret = 0;
1261 dst_pgd = pgd_offset(dst_mm, addr);
1262 src_pgd = pgd_offset(src_mm, addr);
1263 do {
1264 next = pgd_addr_end(addr, end);
1265 if (pgd_none_or_clear_bad(src_pgd))
1266 continue;
1267 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1268 vma, addr, next))) {
1269 ret = -ENOMEM;
1270 break;
1272 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1274 if (is_cow)
1275 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1276 return ret;
1279 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1280 struct vm_area_struct *vma, pmd_t *pmd,
1281 unsigned long addr, unsigned long end,
1282 struct zap_details *details)
1284 struct mm_struct *mm = tlb->mm;
1285 int force_flush = 0;
1286 int rss[NR_MM_COUNTERS];
1287 spinlock_t *ptl;
1288 pte_t *start_pte;
1289 pte_t *pte;
1290 swp_entry_t entry;
1292 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1293 again:
1294 init_rss_vec(rss);
1295 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1296 pte = start_pte;
1297 flush_tlb_batched_pending(mm);
1298 arch_enter_lazy_mmu_mode();
1299 do {
1300 pte_t ptent = *pte;
1301 if (pte_none(ptent))
1302 continue;
1304 if (pte_present(ptent)) {
1305 struct page *page;
1307 page = _vm_normal_page(vma, addr, ptent, true);
1308 if (unlikely(details) && page) {
1310 * unmap_shared_mapping_pages() wants to
1311 * invalidate cache without truncating:
1312 * unmap shared but keep private pages.
1314 if (details->check_mapping &&
1315 details->check_mapping != page_rmapping(page))
1316 continue;
1318 ptent = ptep_get_and_clear_full(mm, addr, pte,
1319 tlb->fullmm);
1320 tlb_remove_tlb_entry(tlb, pte, addr);
1321 if (unlikely(!page))
1322 continue;
1324 if (!PageAnon(page)) {
1325 if (pte_dirty(ptent)) {
1326 force_flush = 1;
1327 set_page_dirty(page);
1329 if (pte_young(ptent) &&
1330 likely(!(vma->vm_flags & VM_SEQ_READ)))
1331 mark_page_accessed(page);
1333 rss[mm_counter(page)]--;
1334 page_remove_rmap(page, false);
1335 if (unlikely(page_mapcount(page) < 0))
1336 print_bad_pte(vma, addr, ptent, page);
1337 if (unlikely(__tlb_remove_page(tlb, page))) {
1338 force_flush = 1;
1339 addr += PAGE_SIZE;
1340 break;
1342 continue;
1345 entry = pte_to_swp_entry(ptent);
1346 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1347 struct page *page = device_private_entry_to_page(entry);
1349 if (unlikely(details && details->check_mapping)) {
1351 * unmap_shared_mapping_pages() wants to
1352 * invalidate cache without truncating:
1353 * unmap shared but keep private pages.
1355 if (details->check_mapping !=
1356 page_rmapping(page))
1357 continue;
1360 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1361 rss[mm_counter(page)]--;
1362 page_remove_rmap(page, false);
1363 put_page(page);
1364 continue;
1367 /* If details->check_mapping, we leave swap entries. */
1368 if (unlikely(details))
1369 continue;
1371 entry = pte_to_swp_entry(ptent);
1372 if (!non_swap_entry(entry))
1373 rss[MM_SWAPENTS]--;
1374 else if (is_migration_entry(entry)) {
1375 struct page *page;
1377 page = migration_entry_to_page(entry);
1378 rss[mm_counter(page)]--;
1380 if (unlikely(!free_swap_and_cache(entry)))
1381 print_bad_pte(vma, addr, ptent, NULL);
1382 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1383 } while (pte++, addr += PAGE_SIZE, addr != end);
1385 add_mm_rss_vec(mm, rss);
1386 arch_leave_lazy_mmu_mode();
1388 /* Do the actual TLB flush before dropping ptl */
1389 if (force_flush)
1390 tlb_flush_mmu_tlbonly(tlb);
1391 pte_unmap_unlock(start_pte, ptl);
1394 * If we forced a TLB flush (either due to running out of
1395 * batch buffers or because we needed to flush dirty TLB
1396 * entries before releasing the ptl), free the batched
1397 * memory too. Restart if we didn't do everything.
1399 if (force_flush) {
1400 force_flush = 0;
1401 tlb_flush_mmu_free(tlb);
1402 if (addr != end)
1403 goto again;
1406 return addr;
1409 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1410 struct vm_area_struct *vma, pud_t *pud,
1411 unsigned long addr, unsigned long end,
1412 struct zap_details *details)
1414 pmd_t *pmd;
1415 unsigned long next;
1417 pmd = pmd_offset(pud, addr);
1418 do {
1419 next = pmd_addr_end(addr, end);
1420 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1421 if (next - addr != HPAGE_PMD_SIZE) {
1422 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1423 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1424 __split_huge_pmd(vma, pmd, addr, false, NULL);
1425 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1426 goto next;
1427 /* fall through */
1430 * Here there can be other concurrent MADV_DONTNEED or
1431 * trans huge page faults running, and if the pmd is
1432 * none or trans huge it can change under us. This is
1433 * because MADV_DONTNEED holds the mmap_sem in read
1434 * mode.
1436 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1437 goto next;
1438 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1439 next:
1440 cond_resched();
1441 } while (pmd++, addr = next, addr != end);
1443 return addr;
1446 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1447 struct vm_area_struct *vma, p4d_t *p4d,
1448 unsigned long addr, unsigned long end,
1449 struct zap_details *details)
1451 pud_t *pud;
1452 unsigned long next;
1454 pud = pud_offset(p4d, addr);
1455 do {
1456 next = pud_addr_end(addr, end);
1457 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1458 if (next - addr != HPAGE_PUD_SIZE) {
1459 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1460 split_huge_pud(vma, pud, addr);
1461 } else if (zap_huge_pud(tlb, vma, pud, addr))
1462 goto next;
1463 /* fall through */
1465 if (pud_none_or_clear_bad(pud))
1466 continue;
1467 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1468 next:
1469 cond_resched();
1470 } while (pud++, addr = next, addr != end);
1472 return addr;
1475 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1476 struct vm_area_struct *vma, pgd_t *pgd,
1477 unsigned long addr, unsigned long end,
1478 struct zap_details *details)
1480 p4d_t *p4d;
1481 unsigned long next;
1483 p4d = p4d_offset(pgd, addr);
1484 do {
1485 next = p4d_addr_end(addr, end);
1486 if (p4d_none_or_clear_bad(p4d))
1487 continue;
1488 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1489 } while (p4d++, addr = next, addr != end);
1491 return addr;
1494 void unmap_page_range(struct mmu_gather *tlb,
1495 struct vm_area_struct *vma,
1496 unsigned long addr, unsigned long end,
1497 struct zap_details *details)
1499 pgd_t *pgd;
1500 unsigned long next;
1502 BUG_ON(addr >= end);
1503 tlb_start_vma(tlb, vma);
1504 pgd = pgd_offset(vma->vm_mm, addr);
1505 do {
1506 next = pgd_addr_end(addr, end);
1507 if (pgd_none_or_clear_bad(pgd))
1508 continue;
1509 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1510 } while (pgd++, addr = next, addr != end);
1511 tlb_end_vma(tlb, vma);
1515 static void unmap_single_vma(struct mmu_gather *tlb,
1516 struct vm_area_struct *vma, unsigned long start_addr,
1517 unsigned long end_addr,
1518 struct zap_details *details)
1520 unsigned long start = max(vma->vm_start, start_addr);
1521 unsigned long end;
1523 if (start >= vma->vm_end)
1524 return;
1525 end = min(vma->vm_end, end_addr);
1526 if (end <= vma->vm_start)
1527 return;
1529 if (vma->vm_file)
1530 uprobe_munmap(vma, start, end);
1532 if (unlikely(vma->vm_flags & VM_PFNMAP))
1533 untrack_pfn(vma, 0, 0);
1535 if (start != end) {
1536 if (unlikely(is_vm_hugetlb_page(vma))) {
1538 * It is undesirable to test vma->vm_file as it
1539 * should be non-null for valid hugetlb area.
1540 * However, vm_file will be NULL in the error
1541 * cleanup path of mmap_region. When
1542 * hugetlbfs ->mmap method fails,
1543 * mmap_region() nullifies vma->vm_file
1544 * before calling this function to clean up.
1545 * Since no pte has actually been setup, it is
1546 * safe to do nothing in this case.
1548 if (vma->vm_file) {
1549 i_mmap_lock_write(vma->vm_file->f_mapping);
1550 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1551 i_mmap_unlock_write(vma->vm_file->f_mapping);
1553 } else
1554 unmap_page_range(tlb, vma, start, end, details);
1559 * unmap_vmas - unmap a range of memory covered by a list of vma's
1560 * @tlb: address of the caller's struct mmu_gather
1561 * @vma: the starting vma
1562 * @start_addr: virtual address at which to start unmapping
1563 * @end_addr: virtual address at which to end unmapping
1565 * Unmap all pages in the vma list.
1567 * Only addresses between `start' and `end' will be unmapped.
1569 * The VMA list must be sorted in ascending virtual address order.
1571 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1572 * range after unmap_vmas() returns. So the only responsibility here is to
1573 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1574 * drops the lock and schedules.
1576 void unmap_vmas(struct mmu_gather *tlb,
1577 struct vm_area_struct *vma, unsigned long start_addr,
1578 unsigned long end_addr)
1580 struct mm_struct *mm = vma->vm_mm;
1582 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1583 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1584 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1585 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1589 * zap_page_range - remove user pages in a given range
1590 * @vma: vm_area_struct holding the applicable pages
1591 * @start: starting address of pages to zap
1592 * @size: number of bytes to zap
1594 * Caller must protect the VMA list
1596 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1597 unsigned long size)
1599 struct mm_struct *mm = vma->vm_mm;
1600 struct mmu_gather tlb;
1601 unsigned long end = start + size;
1603 lru_add_drain();
1604 tlb_gather_mmu(&tlb, mm, start, end);
1605 update_hiwater_rss(mm);
1606 mmu_notifier_invalidate_range_start(mm, start, end);
1607 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1608 unmap_single_vma(&tlb, vma, start, end, NULL);
1611 * zap_page_range does not specify whether mmap_sem should be
1612 * held for read or write. That allows parallel zap_page_range
1613 * operations to unmap a PTE and defer a flush meaning that
1614 * this call observes pte_none and fails to flush the TLB.
1615 * Rather than adding a complex API, ensure that no stale
1616 * TLB entries exist when this call returns.
1618 flush_tlb_range(vma, start, end);
1621 mmu_notifier_invalidate_range_end(mm, start, end);
1622 tlb_finish_mmu(&tlb, start, end);
1626 * zap_page_range_single - remove user pages in a given range
1627 * @vma: vm_area_struct holding the applicable pages
1628 * @address: starting address of pages to zap
1629 * @size: number of bytes to zap
1630 * @details: details of shared cache invalidation
1632 * The range must fit into one VMA.
1634 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1635 unsigned long size, struct zap_details *details)
1637 struct mm_struct *mm = vma->vm_mm;
1638 struct mmu_gather tlb;
1639 unsigned long end = address + size;
1641 lru_add_drain();
1642 tlb_gather_mmu(&tlb, mm, address, end);
1643 update_hiwater_rss(mm);
1644 mmu_notifier_invalidate_range_start(mm, address, end);
1645 unmap_single_vma(&tlb, vma, address, end, details);
1646 mmu_notifier_invalidate_range_end(mm, address, end);
1647 tlb_finish_mmu(&tlb, address, end);
1651 * zap_vma_ptes - remove ptes mapping the vma
1652 * @vma: vm_area_struct holding ptes to be zapped
1653 * @address: starting address of pages to zap
1654 * @size: number of bytes to zap
1656 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1658 * The entire address range must be fully contained within the vma.
1660 * Returns 0 if successful.
1662 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1663 unsigned long size)
1665 if (address < vma->vm_start || address + size > vma->vm_end ||
1666 !(vma->vm_flags & VM_PFNMAP))
1667 return -1;
1668 zap_page_range_single(vma, address, size, NULL);
1669 return 0;
1671 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1673 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1674 spinlock_t **ptl)
1676 pgd_t *pgd;
1677 p4d_t *p4d;
1678 pud_t *pud;
1679 pmd_t *pmd;
1681 pgd = pgd_offset(mm, addr);
1682 p4d = p4d_alloc(mm, pgd, addr);
1683 if (!p4d)
1684 return NULL;
1685 pud = pud_alloc(mm, p4d, addr);
1686 if (!pud)
1687 return NULL;
1688 pmd = pmd_alloc(mm, pud, addr);
1689 if (!pmd)
1690 return NULL;
1692 VM_BUG_ON(pmd_trans_huge(*pmd));
1693 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1697 * This is the old fallback for page remapping.
1699 * For historical reasons, it only allows reserved pages. Only
1700 * old drivers should use this, and they needed to mark their
1701 * pages reserved for the old functions anyway.
1703 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1704 struct page *page, pgprot_t prot)
1706 struct mm_struct *mm = vma->vm_mm;
1707 int retval;
1708 pte_t *pte;
1709 spinlock_t *ptl;
1711 retval = -EINVAL;
1712 if (PageAnon(page))
1713 goto out;
1714 retval = -ENOMEM;
1715 flush_dcache_page(page);
1716 pte = get_locked_pte(mm, addr, &ptl);
1717 if (!pte)
1718 goto out;
1719 retval = -EBUSY;
1720 if (!pte_none(*pte))
1721 goto out_unlock;
1723 /* Ok, finally just insert the thing.. */
1724 get_page(page);
1725 inc_mm_counter_fast(mm, mm_counter_file(page));
1726 page_add_file_rmap(page, false);
1727 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1729 retval = 0;
1730 pte_unmap_unlock(pte, ptl);
1731 return retval;
1732 out_unlock:
1733 pte_unmap_unlock(pte, ptl);
1734 out:
1735 return retval;
1739 * vm_insert_page - insert single page into user vma
1740 * @vma: user vma to map to
1741 * @addr: target user address of this page
1742 * @page: source kernel page
1744 * This allows drivers to insert individual pages they've allocated
1745 * into a user vma.
1747 * The page has to be a nice clean _individual_ kernel allocation.
1748 * If you allocate a compound page, you need to have marked it as
1749 * such (__GFP_COMP), or manually just split the page up yourself
1750 * (see split_page()).
1752 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1753 * took an arbitrary page protection parameter. This doesn't allow
1754 * that. Your vma protection will have to be set up correctly, which
1755 * means that if you want a shared writable mapping, you'd better
1756 * ask for a shared writable mapping!
1758 * The page does not need to be reserved.
1760 * Usually this function is called from f_op->mmap() handler
1761 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1762 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1763 * function from other places, for example from page-fault handler.
1765 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1766 struct page *page)
1768 if (addr < vma->vm_start || addr >= vma->vm_end)
1769 return -EFAULT;
1770 if (!page_count(page))
1771 return -EINVAL;
1772 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1773 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1774 BUG_ON(vma->vm_flags & VM_PFNMAP);
1775 vma->vm_flags |= VM_MIXEDMAP;
1777 return insert_page(vma, addr, page, vma->vm_page_prot);
1779 EXPORT_SYMBOL(vm_insert_page);
1781 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1782 pfn_t pfn, pgprot_t prot, bool mkwrite)
1784 struct mm_struct *mm = vma->vm_mm;
1785 int retval;
1786 pte_t *pte, entry;
1787 spinlock_t *ptl;
1789 retval = -ENOMEM;
1790 pte = get_locked_pte(mm, addr, &ptl);
1791 if (!pte)
1792 goto out;
1793 retval = -EBUSY;
1794 if (!pte_none(*pte)) {
1795 if (mkwrite) {
1797 * For read faults on private mappings the PFN passed
1798 * in may not match the PFN we have mapped if the
1799 * mapped PFN is a writeable COW page. In the mkwrite
1800 * case we are creating a writable PTE for a shared
1801 * mapping and we expect the PFNs to match.
1803 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1804 goto out_unlock;
1805 entry = *pte;
1806 goto out_mkwrite;
1807 } else
1808 goto out_unlock;
1811 /* Ok, finally just insert the thing.. */
1812 if (pfn_t_devmap(pfn))
1813 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1814 else
1815 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1817 out_mkwrite:
1818 if (mkwrite) {
1819 entry = pte_mkyoung(entry);
1820 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1823 set_pte_at(mm, addr, pte, entry);
1824 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1826 retval = 0;
1827 out_unlock:
1828 pte_unmap_unlock(pte, ptl);
1829 out:
1830 return retval;
1834 * vm_insert_pfn - insert single pfn into user vma
1835 * @vma: user vma to map to
1836 * @addr: target user address of this page
1837 * @pfn: source kernel pfn
1839 * Similar to vm_insert_page, this allows drivers to insert individual pages
1840 * they've allocated into a user vma. Same comments apply.
1842 * This function should only be called from a vm_ops->fault handler, and
1843 * in that case the handler should return NULL.
1845 * vma cannot be a COW mapping.
1847 * As this is called only for pages that do not currently exist, we
1848 * do not need to flush old virtual caches or the TLB.
1850 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1851 unsigned long pfn)
1853 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1855 EXPORT_SYMBOL(vm_insert_pfn);
1858 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1859 * @vma: user vma to map to
1860 * @addr: target user address of this page
1861 * @pfn: source kernel pfn
1862 * @pgprot: pgprot flags for the inserted page
1864 * This is exactly like vm_insert_pfn, except that it allows drivers to
1865 * to override pgprot on a per-page basis.
1867 * This only makes sense for IO mappings, and it makes no sense for
1868 * cow mappings. In general, using multiple vmas is preferable;
1869 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1870 * impractical.
1872 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1873 unsigned long pfn, pgprot_t pgprot)
1875 int ret;
1877 * Technically, architectures with pte_special can avoid all these
1878 * restrictions (same for remap_pfn_range). However we would like
1879 * consistency in testing and feature parity among all, so we should
1880 * try to keep these invariants in place for everybody.
1882 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1883 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1884 (VM_PFNMAP|VM_MIXEDMAP));
1885 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1886 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1888 if (addr < vma->vm_start || addr >= vma->vm_end)
1889 return -EFAULT;
1891 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1893 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1894 false);
1896 return ret;
1898 EXPORT_SYMBOL(vm_insert_pfn_prot);
1900 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1901 pfn_t pfn, bool mkwrite)
1903 pgprot_t pgprot = vma->vm_page_prot;
1905 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1907 if (addr < vma->vm_start || addr >= vma->vm_end)
1908 return -EFAULT;
1910 track_pfn_insert(vma, &pgprot, pfn);
1913 * If we don't have pte special, then we have to use the pfn_valid()
1914 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1915 * refcount the page if pfn_valid is true (hence insert_page rather
1916 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1917 * without pte special, it would there be refcounted as a normal page.
1919 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1920 struct page *page;
1923 * At this point we are committed to insert_page()
1924 * regardless of whether the caller specified flags that
1925 * result in pfn_t_has_page() == false.
1927 page = pfn_to_page(pfn_t_to_pfn(pfn));
1928 return insert_page(vma, addr, page, pgprot);
1930 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1933 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1934 pfn_t pfn)
1936 return __vm_insert_mixed(vma, addr, pfn, false);
1939 EXPORT_SYMBOL(vm_insert_mixed);
1941 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1942 pfn_t pfn)
1944 return __vm_insert_mixed(vma, addr, pfn, true);
1946 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1949 * maps a range of physical memory into the requested pages. the old
1950 * mappings are removed. any references to nonexistent pages results
1951 * in null mappings (currently treated as "copy-on-access")
1953 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1954 unsigned long addr, unsigned long end,
1955 unsigned long pfn, pgprot_t prot)
1957 pte_t *pte;
1958 spinlock_t *ptl;
1960 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1961 if (!pte)
1962 return -ENOMEM;
1963 arch_enter_lazy_mmu_mode();
1964 do {
1965 BUG_ON(!pte_none(*pte));
1966 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1967 pfn++;
1968 } while (pte++, addr += PAGE_SIZE, addr != end);
1969 arch_leave_lazy_mmu_mode();
1970 pte_unmap_unlock(pte - 1, ptl);
1971 return 0;
1974 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1975 unsigned long addr, unsigned long end,
1976 unsigned long pfn, pgprot_t prot)
1978 pmd_t *pmd;
1979 unsigned long next;
1981 pfn -= addr >> PAGE_SHIFT;
1982 pmd = pmd_alloc(mm, pud, addr);
1983 if (!pmd)
1984 return -ENOMEM;
1985 VM_BUG_ON(pmd_trans_huge(*pmd));
1986 do {
1987 next = pmd_addr_end(addr, end);
1988 if (remap_pte_range(mm, pmd, addr, next,
1989 pfn + (addr >> PAGE_SHIFT), prot))
1990 return -ENOMEM;
1991 } while (pmd++, addr = next, addr != end);
1992 return 0;
1995 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1996 unsigned long addr, unsigned long end,
1997 unsigned long pfn, pgprot_t prot)
1999 pud_t *pud;
2000 unsigned long next;
2002 pfn -= addr >> PAGE_SHIFT;
2003 pud = pud_alloc(mm, p4d, addr);
2004 if (!pud)
2005 return -ENOMEM;
2006 do {
2007 next = pud_addr_end(addr, end);
2008 if (remap_pmd_range(mm, pud, addr, next,
2009 pfn + (addr >> PAGE_SHIFT), prot))
2010 return -ENOMEM;
2011 } while (pud++, addr = next, addr != end);
2012 return 0;
2015 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2016 unsigned long addr, unsigned long end,
2017 unsigned long pfn, pgprot_t prot)
2019 p4d_t *p4d;
2020 unsigned long next;
2022 pfn -= addr >> PAGE_SHIFT;
2023 p4d = p4d_alloc(mm, pgd, addr);
2024 if (!p4d)
2025 return -ENOMEM;
2026 do {
2027 next = p4d_addr_end(addr, end);
2028 if (remap_pud_range(mm, p4d, addr, next,
2029 pfn + (addr >> PAGE_SHIFT), prot))
2030 return -ENOMEM;
2031 } while (p4d++, addr = next, addr != end);
2032 return 0;
2036 * remap_pfn_range - remap kernel memory to userspace
2037 * @vma: user vma to map to
2038 * @addr: target user address to start at
2039 * @pfn: physical address of kernel memory
2040 * @size: size of map area
2041 * @prot: page protection flags for this mapping
2043 * Note: this is only safe if the mm semaphore is held when called.
2045 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2046 unsigned long pfn, unsigned long size, pgprot_t prot)
2048 pgd_t *pgd;
2049 unsigned long next;
2050 unsigned long end = addr + PAGE_ALIGN(size);
2051 struct mm_struct *mm = vma->vm_mm;
2052 unsigned long remap_pfn = pfn;
2053 int err;
2056 * Physically remapped pages are special. Tell the
2057 * rest of the world about it:
2058 * VM_IO tells people not to look at these pages
2059 * (accesses can have side effects).
2060 * VM_PFNMAP tells the core MM that the base pages are just
2061 * raw PFN mappings, and do not have a "struct page" associated
2062 * with them.
2063 * VM_DONTEXPAND
2064 * Disable vma merging and expanding with mremap().
2065 * VM_DONTDUMP
2066 * Omit vma from core dump, even when VM_IO turned off.
2068 * There's a horrible special case to handle copy-on-write
2069 * behaviour that some programs depend on. We mark the "original"
2070 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2071 * See vm_normal_page() for details.
2073 if (is_cow_mapping(vma->vm_flags)) {
2074 if (addr != vma->vm_start || end != vma->vm_end)
2075 return -EINVAL;
2076 vma->vm_pgoff = pfn;
2079 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2080 if (err)
2081 return -EINVAL;
2083 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2085 BUG_ON(addr >= end);
2086 pfn -= addr >> PAGE_SHIFT;
2087 pgd = pgd_offset(mm, addr);
2088 flush_cache_range(vma, addr, end);
2089 do {
2090 next = pgd_addr_end(addr, end);
2091 err = remap_p4d_range(mm, pgd, addr, next,
2092 pfn + (addr >> PAGE_SHIFT), prot);
2093 if (err)
2094 break;
2095 } while (pgd++, addr = next, addr != end);
2097 if (err)
2098 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2100 return err;
2102 EXPORT_SYMBOL(remap_pfn_range);
2105 * vm_iomap_memory - remap memory to userspace
2106 * @vma: user vma to map to
2107 * @start: start of area
2108 * @len: size of area
2110 * This is a simplified io_remap_pfn_range() for common driver use. The
2111 * driver just needs to give us the physical memory range to be mapped,
2112 * we'll figure out the rest from the vma information.
2114 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2115 * whatever write-combining details or similar.
2117 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2119 unsigned long vm_len, pfn, pages;
2121 /* Check that the physical memory area passed in looks valid */
2122 if (start + len < start)
2123 return -EINVAL;
2125 * You *really* shouldn't map things that aren't page-aligned,
2126 * but we've historically allowed it because IO memory might
2127 * just have smaller alignment.
2129 len += start & ~PAGE_MASK;
2130 pfn = start >> PAGE_SHIFT;
2131 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2132 if (pfn + pages < pfn)
2133 return -EINVAL;
2135 /* We start the mapping 'vm_pgoff' pages into the area */
2136 if (vma->vm_pgoff > pages)
2137 return -EINVAL;
2138 pfn += vma->vm_pgoff;
2139 pages -= vma->vm_pgoff;
2141 /* Can we fit all of the mapping? */
2142 vm_len = vma->vm_end - vma->vm_start;
2143 if (vm_len >> PAGE_SHIFT > pages)
2144 return -EINVAL;
2146 /* Ok, let it rip */
2147 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2149 EXPORT_SYMBOL(vm_iomap_memory);
2151 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2152 unsigned long addr, unsigned long end,
2153 pte_fn_t fn, void *data)
2155 pte_t *pte;
2156 int err;
2157 pgtable_t token;
2158 spinlock_t *uninitialized_var(ptl);
2160 pte = (mm == &init_mm) ?
2161 pte_alloc_kernel(pmd, addr) :
2162 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2163 if (!pte)
2164 return -ENOMEM;
2166 BUG_ON(pmd_huge(*pmd));
2168 arch_enter_lazy_mmu_mode();
2170 token = pmd_pgtable(*pmd);
2172 do {
2173 err = fn(pte++, token, addr, data);
2174 if (err)
2175 break;
2176 } while (addr += PAGE_SIZE, addr != end);
2178 arch_leave_lazy_mmu_mode();
2180 if (mm != &init_mm)
2181 pte_unmap_unlock(pte-1, ptl);
2182 return err;
2185 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2186 unsigned long addr, unsigned long end,
2187 pte_fn_t fn, void *data)
2189 pmd_t *pmd;
2190 unsigned long next;
2191 int err;
2193 BUG_ON(pud_huge(*pud));
2195 pmd = pmd_alloc(mm, pud, addr);
2196 if (!pmd)
2197 return -ENOMEM;
2198 do {
2199 next = pmd_addr_end(addr, end);
2200 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2201 if (err)
2202 break;
2203 } while (pmd++, addr = next, addr != end);
2204 return err;
2207 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2208 unsigned long addr, unsigned long end,
2209 pte_fn_t fn, void *data)
2211 pud_t *pud;
2212 unsigned long next;
2213 int err;
2215 pud = pud_alloc(mm, p4d, addr);
2216 if (!pud)
2217 return -ENOMEM;
2218 do {
2219 next = pud_addr_end(addr, end);
2220 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2221 if (err)
2222 break;
2223 } while (pud++, addr = next, addr != end);
2224 return err;
2227 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2228 unsigned long addr, unsigned long end,
2229 pte_fn_t fn, void *data)
2231 p4d_t *p4d;
2232 unsigned long next;
2233 int err;
2235 p4d = p4d_alloc(mm, pgd, addr);
2236 if (!p4d)
2237 return -ENOMEM;
2238 do {
2239 next = p4d_addr_end(addr, end);
2240 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2241 if (err)
2242 break;
2243 } while (p4d++, addr = next, addr != end);
2244 return err;
2248 * Scan a region of virtual memory, filling in page tables as necessary
2249 * and calling a provided function on each leaf page table.
2251 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2252 unsigned long size, pte_fn_t fn, void *data)
2254 pgd_t *pgd;
2255 unsigned long next;
2256 unsigned long end = addr + size;
2257 int err;
2259 if (WARN_ON(addr >= end))
2260 return -EINVAL;
2262 pgd = pgd_offset(mm, addr);
2263 do {
2264 next = pgd_addr_end(addr, end);
2265 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2266 if (err)
2267 break;
2268 } while (pgd++, addr = next, addr != end);
2270 return err;
2272 EXPORT_SYMBOL_GPL(apply_to_page_range);
2275 * handle_pte_fault chooses page fault handler according to an entry which was
2276 * read non-atomically. Before making any commitment, on those architectures
2277 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2278 * parts, do_swap_page must check under lock before unmapping the pte and
2279 * proceeding (but do_wp_page is only called after already making such a check;
2280 * and do_anonymous_page can safely check later on).
2282 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2283 pte_t *page_table, pte_t orig_pte)
2285 int same = 1;
2286 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2287 if (sizeof(pte_t) > sizeof(unsigned long)) {
2288 spinlock_t *ptl = pte_lockptr(mm, pmd);
2289 spin_lock(ptl);
2290 same = pte_same(*page_table, orig_pte);
2291 spin_unlock(ptl);
2293 #endif
2294 pte_unmap(page_table);
2295 return same;
2298 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2300 debug_dma_assert_idle(src);
2303 * If the source page was a PFN mapping, we don't have
2304 * a "struct page" for it. We do a best-effort copy by
2305 * just copying from the original user address. If that
2306 * fails, we just zero-fill it. Live with it.
2308 if (unlikely(!src)) {
2309 void *kaddr = kmap_atomic(dst);
2310 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2313 * This really shouldn't fail, because the page is there
2314 * in the page tables. But it might just be unreadable,
2315 * in which case we just give up and fill the result with
2316 * zeroes.
2318 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2319 clear_page(kaddr);
2320 kunmap_atomic(kaddr);
2321 flush_dcache_page(dst);
2322 } else
2323 copy_user_highpage(dst, src, va, vma);
2326 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2328 struct file *vm_file = vma->vm_file;
2330 if (vm_file)
2331 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2334 * Special mappings (e.g. VDSO) do not have any file so fake
2335 * a default GFP_KERNEL for them.
2337 return GFP_KERNEL;
2341 * Notify the address space that the page is about to become writable so that
2342 * it can prohibit this or wait for the page to get into an appropriate state.
2344 * We do this without the lock held, so that it can sleep if it needs to.
2346 static int do_page_mkwrite(struct vm_fault *vmf)
2348 int ret;
2349 struct page *page = vmf->page;
2350 unsigned int old_flags = vmf->flags;
2352 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2354 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2355 /* Restore original flags so that caller is not surprised */
2356 vmf->flags = old_flags;
2357 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2358 return ret;
2359 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2360 lock_page(page);
2361 if (!page->mapping) {
2362 unlock_page(page);
2363 return 0; /* retry */
2365 ret |= VM_FAULT_LOCKED;
2366 } else
2367 VM_BUG_ON_PAGE(!PageLocked(page), page);
2368 return ret;
2372 * Handle dirtying of a page in shared file mapping on a write fault.
2374 * The function expects the page to be locked and unlocks it.
2376 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2377 struct page *page)
2379 struct address_space *mapping;
2380 bool dirtied;
2381 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2383 dirtied = set_page_dirty(page);
2384 VM_BUG_ON_PAGE(PageAnon(page), page);
2386 * Take a local copy of the address_space - page.mapping may be zeroed
2387 * by truncate after unlock_page(). The address_space itself remains
2388 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2389 * release semantics to prevent the compiler from undoing this copying.
2391 mapping = page_rmapping(page);
2392 unlock_page(page);
2394 if ((dirtied || page_mkwrite) && mapping) {
2396 * Some device drivers do not set page.mapping
2397 * but still dirty their pages
2399 balance_dirty_pages_ratelimited(mapping);
2402 if (!page_mkwrite)
2403 file_update_time(vma->vm_file);
2407 * Handle write page faults for pages that can be reused in the current vma
2409 * This can happen either due to the mapping being with the VM_SHARED flag,
2410 * or due to us being the last reference standing to the page. In either
2411 * case, all we need to do here is to mark the page as writable and update
2412 * any related book-keeping.
2414 static inline void wp_page_reuse(struct vm_fault *vmf)
2415 __releases(vmf->ptl)
2417 struct vm_area_struct *vma = vmf->vma;
2418 struct page *page = vmf->page;
2419 pte_t entry;
2421 * Clear the pages cpupid information as the existing
2422 * information potentially belongs to a now completely
2423 * unrelated process.
2425 if (page)
2426 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2428 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2429 entry = pte_mkyoung(vmf->orig_pte);
2430 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2431 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2432 update_mmu_cache(vma, vmf->address, vmf->pte);
2433 pte_unmap_unlock(vmf->pte, vmf->ptl);
2437 * Handle the case of a page which we actually need to copy to a new page.
2439 * Called with mmap_sem locked and the old page referenced, but
2440 * without the ptl held.
2442 * High level logic flow:
2444 * - Allocate a page, copy the content of the old page to the new one.
2445 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2446 * - Take the PTL. If the pte changed, bail out and release the allocated page
2447 * - If the pte is still the way we remember it, update the page table and all
2448 * relevant references. This includes dropping the reference the page-table
2449 * held to the old page, as well as updating the rmap.
2450 * - In any case, unlock the PTL and drop the reference we took to the old page.
2452 static int wp_page_copy(struct vm_fault *vmf)
2454 struct vm_area_struct *vma = vmf->vma;
2455 struct mm_struct *mm = vma->vm_mm;
2456 struct page *old_page = vmf->page;
2457 struct page *new_page = NULL;
2458 pte_t entry;
2459 int page_copied = 0;
2460 const unsigned long mmun_start = vmf->address & PAGE_MASK;
2461 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2462 struct mem_cgroup *memcg;
2464 if (unlikely(anon_vma_prepare(vma)))
2465 goto oom;
2467 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2468 new_page = alloc_zeroed_user_highpage_movable(vma,
2469 vmf->address);
2470 if (!new_page)
2471 goto oom;
2472 } else {
2473 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2474 vmf->address);
2475 if (!new_page)
2476 goto oom;
2477 cow_user_page(new_page, old_page, vmf->address, vma);
2480 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2481 goto oom_free_new;
2483 __SetPageUptodate(new_page);
2485 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2488 * Re-check the pte - we dropped the lock
2490 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2491 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2492 if (old_page) {
2493 if (!PageAnon(old_page)) {
2494 dec_mm_counter_fast(mm,
2495 mm_counter_file(old_page));
2496 inc_mm_counter_fast(mm, MM_ANONPAGES);
2498 } else {
2499 inc_mm_counter_fast(mm, MM_ANONPAGES);
2501 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2502 entry = mk_pte(new_page, vma->vm_page_prot);
2503 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2505 * Clear the pte entry and flush it first, before updating the
2506 * pte with the new entry. This will avoid a race condition
2507 * seen in the presence of one thread doing SMC and another
2508 * thread doing COW.
2510 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2511 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2512 mem_cgroup_commit_charge(new_page, memcg, false, false);
2513 lru_cache_add_active_or_unevictable(new_page, vma);
2515 * We call the notify macro here because, when using secondary
2516 * mmu page tables (such as kvm shadow page tables), we want the
2517 * new page to be mapped directly into the secondary page table.
2519 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2520 update_mmu_cache(vma, vmf->address, vmf->pte);
2521 if (old_page) {
2523 * Only after switching the pte to the new page may
2524 * we remove the mapcount here. Otherwise another
2525 * process may come and find the rmap count decremented
2526 * before the pte is switched to the new page, and
2527 * "reuse" the old page writing into it while our pte
2528 * here still points into it and can be read by other
2529 * threads.
2531 * The critical issue is to order this
2532 * page_remove_rmap with the ptp_clear_flush above.
2533 * Those stores are ordered by (if nothing else,)
2534 * the barrier present in the atomic_add_negative
2535 * in page_remove_rmap.
2537 * Then the TLB flush in ptep_clear_flush ensures that
2538 * no process can access the old page before the
2539 * decremented mapcount is visible. And the old page
2540 * cannot be reused until after the decremented
2541 * mapcount is visible. So transitively, TLBs to
2542 * old page will be flushed before it can be reused.
2544 page_remove_rmap(old_page, false);
2547 /* Free the old page.. */
2548 new_page = old_page;
2549 page_copied = 1;
2550 } else {
2551 mem_cgroup_cancel_charge(new_page, memcg, false);
2554 if (new_page)
2555 put_page(new_page);
2557 pte_unmap_unlock(vmf->pte, vmf->ptl);
2559 * No need to double call mmu_notifier->invalidate_range() callback as
2560 * the above ptep_clear_flush_notify() did already call it.
2562 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2563 if (old_page) {
2565 * Don't let another task, with possibly unlocked vma,
2566 * keep the mlocked page.
2568 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2569 lock_page(old_page); /* LRU manipulation */
2570 if (PageMlocked(old_page))
2571 munlock_vma_page(old_page);
2572 unlock_page(old_page);
2574 put_page(old_page);
2576 return page_copied ? VM_FAULT_WRITE : 0;
2577 oom_free_new:
2578 put_page(new_page);
2579 oom:
2580 if (old_page)
2581 put_page(old_page);
2582 return VM_FAULT_OOM;
2586 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2587 * writeable once the page is prepared
2589 * @vmf: structure describing the fault
2591 * This function handles all that is needed to finish a write page fault in a
2592 * shared mapping due to PTE being read-only once the mapped page is prepared.
2593 * It handles locking of PTE and modifying it. The function returns
2594 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2595 * lock.
2597 * The function expects the page to be locked or other protection against
2598 * concurrent faults / writeback (such as DAX radix tree locks).
2600 int finish_mkwrite_fault(struct vm_fault *vmf)
2602 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2603 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2604 &vmf->ptl);
2606 * We might have raced with another page fault while we released the
2607 * pte_offset_map_lock.
2609 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2610 pte_unmap_unlock(vmf->pte, vmf->ptl);
2611 return VM_FAULT_NOPAGE;
2613 wp_page_reuse(vmf);
2614 return 0;
2618 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2619 * mapping
2621 static int wp_pfn_shared(struct vm_fault *vmf)
2623 struct vm_area_struct *vma = vmf->vma;
2625 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2626 int ret;
2628 pte_unmap_unlock(vmf->pte, vmf->ptl);
2629 vmf->flags |= FAULT_FLAG_MKWRITE;
2630 ret = vma->vm_ops->pfn_mkwrite(vmf);
2631 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2632 return ret;
2633 return finish_mkwrite_fault(vmf);
2635 wp_page_reuse(vmf);
2636 return VM_FAULT_WRITE;
2639 static int wp_page_shared(struct vm_fault *vmf)
2640 __releases(vmf->ptl)
2642 struct vm_area_struct *vma = vmf->vma;
2644 get_page(vmf->page);
2646 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2647 int tmp;
2649 pte_unmap_unlock(vmf->pte, vmf->ptl);
2650 tmp = do_page_mkwrite(vmf);
2651 if (unlikely(!tmp || (tmp &
2652 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2653 put_page(vmf->page);
2654 return tmp;
2656 tmp = finish_mkwrite_fault(vmf);
2657 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2658 unlock_page(vmf->page);
2659 put_page(vmf->page);
2660 return tmp;
2662 } else {
2663 wp_page_reuse(vmf);
2664 lock_page(vmf->page);
2666 fault_dirty_shared_page(vma, vmf->page);
2667 put_page(vmf->page);
2669 return VM_FAULT_WRITE;
2673 * This routine handles present pages, when users try to write
2674 * to a shared page. It is done by copying the page to a new address
2675 * and decrementing the shared-page counter for the old page.
2677 * Note that this routine assumes that the protection checks have been
2678 * done by the caller (the low-level page fault routine in most cases).
2679 * Thus we can safely just mark it writable once we've done any necessary
2680 * COW.
2682 * We also mark the page dirty at this point even though the page will
2683 * change only once the write actually happens. This avoids a few races,
2684 * and potentially makes it more efficient.
2686 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687 * but allow concurrent faults), with pte both mapped and locked.
2688 * We return with mmap_sem still held, but pte unmapped and unlocked.
2690 static int do_wp_page(struct vm_fault *vmf)
2691 __releases(vmf->ptl)
2693 struct vm_area_struct *vma = vmf->vma;
2695 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2696 if (!vmf->page) {
2698 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2699 * VM_PFNMAP VMA.
2701 * We should not cow pages in a shared writeable mapping.
2702 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2704 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2705 (VM_WRITE|VM_SHARED))
2706 return wp_pfn_shared(vmf);
2708 pte_unmap_unlock(vmf->pte, vmf->ptl);
2709 return wp_page_copy(vmf);
2713 * Take out anonymous pages first, anonymous shared vmas are
2714 * not dirty accountable.
2716 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2717 int total_map_swapcount;
2718 if (!trylock_page(vmf->page)) {
2719 get_page(vmf->page);
2720 pte_unmap_unlock(vmf->pte, vmf->ptl);
2721 lock_page(vmf->page);
2722 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2723 vmf->address, &vmf->ptl);
2724 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2725 unlock_page(vmf->page);
2726 pte_unmap_unlock(vmf->pte, vmf->ptl);
2727 put_page(vmf->page);
2728 return 0;
2730 put_page(vmf->page);
2732 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2733 if (total_map_swapcount == 1) {
2735 * The page is all ours. Move it to
2736 * our anon_vma so the rmap code will
2737 * not search our parent or siblings.
2738 * Protected against the rmap code by
2739 * the page lock.
2741 page_move_anon_rmap(vmf->page, vma);
2743 unlock_page(vmf->page);
2744 wp_page_reuse(vmf);
2745 return VM_FAULT_WRITE;
2747 unlock_page(vmf->page);
2748 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2749 (VM_WRITE|VM_SHARED))) {
2750 return wp_page_shared(vmf);
2754 * Ok, we need to copy. Oh, well..
2756 get_page(vmf->page);
2758 pte_unmap_unlock(vmf->pte, vmf->ptl);
2759 return wp_page_copy(vmf);
2762 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2763 unsigned long start_addr, unsigned long end_addr,
2764 struct zap_details *details)
2766 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2769 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2770 struct zap_details *details)
2772 struct vm_area_struct *vma;
2773 pgoff_t vba, vea, zba, zea;
2775 vma_interval_tree_foreach(vma, root,
2776 details->first_index, details->last_index) {
2778 vba = vma->vm_pgoff;
2779 vea = vba + vma_pages(vma) - 1;
2780 zba = details->first_index;
2781 if (zba < vba)
2782 zba = vba;
2783 zea = details->last_index;
2784 if (zea > vea)
2785 zea = vea;
2787 unmap_mapping_range_vma(vma,
2788 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2789 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2790 details);
2795 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2796 * address_space corresponding to the specified page range in the underlying
2797 * file.
2799 * @mapping: the address space containing mmaps to be unmapped.
2800 * @holebegin: byte in first page to unmap, relative to the start of
2801 * the underlying file. This will be rounded down to a PAGE_SIZE
2802 * boundary. Note that this is different from truncate_pagecache(), which
2803 * must keep the partial page. In contrast, we must get rid of
2804 * partial pages.
2805 * @holelen: size of prospective hole in bytes. This will be rounded
2806 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2807 * end of the file.
2808 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2809 * but 0 when invalidating pagecache, don't throw away private data.
2811 void unmap_mapping_range(struct address_space *mapping,
2812 loff_t const holebegin, loff_t const holelen, int even_cows)
2814 struct zap_details details = { };
2815 pgoff_t hba = holebegin >> PAGE_SHIFT;
2816 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2818 /* Check for overflow. */
2819 if (sizeof(holelen) > sizeof(hlen)) {
2820 long long holeend =
2821 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2822 if (holeend & ~(long long)ULONG_MAX)
2823 hlen = ULONG_MAX - hba + 1;
2826 details.check_mapping = even_cows ? NULL : mapping;
2827 details.first_index = hba;
2828 details.last_index = hba + hlen - 1;
2829 if (details.last_index < details.first_index)
2830 details.last_index = ULONG_MAX;
2832 i_mmap_lock_write(mapping);
2833 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2834 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2835 i_mmap_unlock_write(mapping);
2837 EXPORT_SYMBOL(unmap_mapping_range);
2840 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2841 * but allow concurrent faults), and pte mapped but not yet locked.
2842 * We return with pte unmapped and unlocked.
2844 * We return with the mmap_sem locked or unlocked in the same cases
2845 * as does filemap_fault().
2847 int do_swap_page(struct vm_fault *vmf)
2849 struct vm_area_struct *vma = vmf->vma;
2850 struct page *page = NULL, *swapcache = NULL;
2851 struct mem_cgroup *memcg;
2852 struct vma_swap_readahead swap_ra;
2853 swp_entry_t entry;
2854 pte_t pte;
2855 int locked;
2856 int exclusive = 0;
2857 int ret = 0;
2858 bool vma_readahead = swap_use_vma_readahead();
2860 if (vma_readahead)
2861 page = swap_readahead_detect(vmf, &swap_ra);
2862 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2863 if (page)
2864 put_page(page);
2865 goto out;
2868 entry = pte_to_swp_entry(vmf->orig_pte);
2869 if (unlikely(non_swap_entry(entry))) {
2870 if (is_migration_entry(entry)) {
2871 migration_entry_wait(vma->vm_mm, vmf->pmd,
2872 vmf->address);
2873 } else if (is_device_private_entry(entry)) {
2875 * For un-addressable device memory we call the pgmap
2876 * fault handler callback. The callback must migrate
2877 * the page back to some CPU accessible page.
2879 ret = device_private_entry_fault(vma, vmf->address, entry,
2880 vmf->flags, vmf->pmd);
2881 } else if (is_hwpoison_entry(entry)) {
2882 ret = VM_FAULT_HWPOISON;
2883 } else {
2884 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2885 ret = VM_FAULT_SIGBUS;
2887 goto out;
2891 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2892 if (!page)
2893 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2894 vmf->address);
2895 if (!page) {
2896 struct swap_info_struct *si = swp_swap_info(entry);
2898 if (si->flags & SWP_SYNCHRONOUS_IO &&
2899 __swap_count(si, entry) == 1) {
2900 /* skip swapcache */
2901 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2902 if (page) {
2903 __SetPageLocked(page);
2904 __SetPageSwapBacked(page);
2905 set_page_private(page, entry.val);
2906 lru_cache_add_anon(page);
2907 swap_readpage(page, true);
2909 } else {
2910 if (vma_readahead)
2911 page = do_swap_page_readahead(entry,
2912 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2913 else
2914 page = swapin_readahead(entry,
2915 GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2916 swapcache = page;
2919 if (!page) {
2921 * Back out if somebody else faulted in this pte
2922 * while we released the pte lock.
2924 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2925 vmf->address, &vmf->ptl);
2926 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2927 ret = VM_FAULT_OOM;
2928 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2929 goto unlock;
2932 /* Had to read the page from swap area: Major fault */
2933 ret = VM_FAULT_MAJOR;
2934 count_vm_event(PGMAJFAULT);
2935 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2936 } else if (PageHWPoison(page)) {
2938 * hwpoisoned dirty swapcache pages are kept for killing
2939 * owner processes (which may be unknown at hwpoison time)
2941 ret = VM_FAULT_HWPOISON;
2942 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2943 swapcache = page;
2944 goto out_release;
2947 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2949 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2950 if (!locked) {
2951 ret |= VM_FAULT_RETRY;
2952 goto out_release;
2956 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2957 * release the swapcache from under us. The page pin, and pte_same
2958 * test below, are not enough to exclude that. Even if it is still
2959 * swapcache, we need to check that the page's swap has not changed.
2961 if (unlikely((!PageSwapCache(page) ||
2962 page_private(page) != entry.val)) && swapcache)
2963 goto out_page;
2965 page = ksm_might_need_to_copy(page, vma, vmf->address);
2966 if (unlikely(!page)) {
2967 ret = VM_FAULT_OOM;
2968 page = swapcache;
2969 goto out_page;
2972 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2973 &memcg, false)) {
2974 ret = VM_FAULT_OOM;
2975 goto out_page;
2979 * Back out if somebody else already faulted in this pte.
2981 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2982 &vmf->ptl);
2983 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2984 goto out_nomap;
2986 if (unlikely(!PageUptodate(page))) {
2987 ret = VM_FAULT_SIGBUS;
2988 goto out_nomap;
2992 * The page isn't present yet, go ahead with the fault.
2994 * Be careful about the sequence of operations here.
2995 * To get its accounting right, reuse_swap_page() must be called
2996 * while the page is counted on swap but not yet in mapcount i.e.
2997 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2998 * must be called after the swap_free(), or it will never succeed.
3001 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3002 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3003 pte = mk_pte(page, vma->vm_page_prot);
3004 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3005 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3006 vmf->flags &= ~FAULT_FLAG_WRITE;
3007 ret |= VM_FAULT_WRITE;
3008 exclusive = RMAP_EXCLUSIVE;
3010 flush_icache_page(vma, page);
3011 if (pte_swp_soft_dirty(vmf->orig_pte))
3012 pte = pte_mksoft_dirty(pte);
3013 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3014 vmf->orig_pte = pte;
3016 /* ksm created a completely new copy */
3017 if (unlikely(page != swapcache && swapcache)) {
3018 page_add_new_anon_rmap(page, vma, vmf->address, false);
3019 mem_cgroup_commit_charge(page, memcg, false, false);
3020 lru_cache_add_active_or_unevictable(page, vma);
3021 } else {
3022 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3023 mem_cgroup_commit_charge(page, memcg, true, false);
3024 activate_page(page);
3027 swap_free(entry);
3028 if (mem_cgroup_swap_full(page) ||
3029 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3030 try_to_free_swap(page);
3031 unlock_page(page);
3032 if (page != swapcache && swapcache) {
3034 * Hold the lock to avoid the swap entry to be reused
3035 * until we take the PT lock for the pte_same() check
3036 * (to avoid false positives from pte_same). For
3037 * further safety release the lock after the swap_free
3038 * so that the swap count won't change under a
3039 * parallel locked swapcache.
3041 unlock_page(swapcache);
3042 put_page(swapcache);
3045 if (vmf->flags & FAULT_FLAG_WRITE) {
3046 ret |= do_wp_page(vmf);
3047 if (ret & VM_FAULT_ERROR)
3048 ret &= VM_FAULT_ERROR;
3049 goto out;
3052 /* No need to invalidate - it was non-present before */
3053 update_mmu_cache(vma, vmf->address, vmf->pte);
3054 unlock:
3055 pte_unmap_unlock(vmf->pte, vmf->ptl);
3056 out:
3057 return ret;
3058 out_nomap:
3059 mem_cgroup_cancel_charge(page, memcg, false);
3060 pte_unmap_unlock(vmf->pte, vmf->ptl);
3061 out_page:
3062 unlock_page(page);
3063 out_release:
3064 put_page(page);
3065 if (page != swapcache && swapcache) {
3066 unlock_page(swapcache);
3067 put_page(swapcache);
3069 return ret;
3073 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3074 * but allow concurrent faults), and pte mapped but not yet locked.
3075 * We return with mmap_sem still held, but pte unmapped and unlocked.
3077 static int do_anonymous_page(struct vm_fault *vmf)
3079 struct vm_area_struct *vma = vmf->vma;
3080 struct mem_cgroup *memcg;
3081 struct page *page;
3082 int ret = 0;
3083 pte_t entry;
3085 /* File mapping without ->vm_ops ? */
3086 if (vma->vm_flags & VM_SHARED)
3087 return VM_FAULT_SIGBUS;
3090 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3091 * pte_offset_map() on pmds where a huge pmd might be created
3092 * from a different thread.
3094 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3095 * parallel threads are excluded by other means.
3097 * Here we only have down_read(mmap_sem).
3099 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3100 return VM_FAULT_OOM;
3102 /* See the comment in pte_alloc_one_map() */
3103 if (unlikely(pmd_trans_unstable(vmf->pmd)))
3104 return 0;
3106 /* Use the zero-page for reads */
3107 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3108 !mm_forbids_zeropage(vma->vm_mm)) {
3109 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3110 vma->vm_page_prot));
3111 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3112 vmf->address, &vmf->ptl);
3113 if (!pte_none(*vmf->pte))
3114 goto unlock;
3115 ret = check_stable_address_space(vma->vm_mm);
3116 if (ret)
3117 goto unlock;
3118 /* Deliver the page fault to userland, check inside PT lock */
3119 if (userfaultfd_missing(vma)) {
3120 pte_unmap_unlock(vmf->pte, vmf->ptl);
3121 return handle_userfault(vmf, VM_UFFD_MISSING);
3123 goto setpte;
3126 /* Allocate our own private page. */
3127 if (unlikely(anon_vma_prepare(vma)))
3128 goto oom;
3129 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3130 if (!page)
3131 goto oom;
3133 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3134 goto oom_free_page;
3137 * The memory barrier inside __SetPageUptodate makes sure that
3138 * preceeding stores to the page contents become visible before
3139 * the set_pte_at() write.
3141 __SetPageUptodate(page);
3143 entry = mk_pte(page, vma->vm_page_prot);
3144 if (vma->vm_flags & VM_WRITE)
3145 entry = pte_mkwrite(pte_mkdirty(entry));
3147 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3148 &vmf->ptl);
3149 if (!pte_none(*vmf->pte))
3150 goto release;
3152 ret = check_stable_address_space(vma->vm_mm);
3153 if (ret)
3154 goto release;
3156 /* Deliver the page fault to userland, check inside PT lock */
3157 if (userfaultfd_missing(vma)) {
3158 pte_unmap_unlock(vmf->pte, vmf->ptl);
3159 mem_cgroup_cancel_charge(page, memcg, false);
3160 put_page(page);
3161 return handle_userfault(vmf, VM_UFFD_MISSING);
3164 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3165 page_add_new_anon_rmap(page, vma, vmf->address, false);
3166 mem_cgroup_commit_charge(page, memcg, false, false);
3167 lru_cache_add_active_or_unevictable(page, vma);
3168 setpte:
3169 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3171 /* No need to invalidate - it was non-present before */
3172 update_mmu_cache(vma, vmf->address, vmf->pte);
3173 unlock:
3174 pte_unmap_unlock(vmf->pte, vmf->ptl);
3175 return ret;
3176 release:
3177 mem_cgroup_cancel_charge(page, memcg, false);
3178 put_page(page);
3179 goto unlock;
3180 oom_free_page:
3181 put_page(page);
3182 oom:
3183 return VM_FAULT_OOM;
3187 * The mmap_sem must have been held on entry, and may have been
3188 * released depending on flags and vma->vm_ops->fault() return value.
3189 * See filemap_fault() and __lock_page_retry().
3191 static int __do_fault(struct vm_fault *vmf)
3193 struct vm_area_struct *vma = vmf->vma;
3194 int ret;
3196 ret = vma->vm_ops->fault(vmf);
3197 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3198 VM_FAULT_DONE_COW)))
3199 return ret;
3201 if (unlikely(PageHWPoison(vmf->page))) {
3202 if (ret & VM_FAULT_LOCKED)
3203 unlock_page(vmf->page);
3204 put_page(vmf->page);
3205 vmf->page = NULL;
3206 return VM_FAULT_HWPOISON;
3209 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3210 lock_page(vmf->page);
3211 else
3212 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3214 return ret;
3218 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3219 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3220 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3221 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3223 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3225 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3228 static int pte_alloc_one_map(struct vm_fault *vmf)
3230 struct vm_area_struct *vma = vmf->vma;
3232 if (!pmd_none(*vmf->pmd))
3233 goto map_pte;
3234 if (vmf->prealloc_pte) {
3235 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3236 if (unlikely(!pmd_none(*vmf->pmd))) {
3237 spin_unlock(vmf->ptl);
3238 goto map_pte;
3241 mm_inc_nr_ptes(vma->vm_mm);
3242 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3243 spin_unlock(vmf->ptl);
3244 vmf->prealloc_pte = NULL;
3245 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3246 return VM_FAULT_OOM;
3248 map_pte:
3250 * If a huge pmd materialized under us just retry later. Use
3251 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3252 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3253 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3254 * running immediately after a huge pmd fault in a different thread of
3255 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3256 * All we have to ensure is that it is a regular pmd that we can walk
3257 * with pte_offset_map() and we can do that through an atomic read in
3258 * C, which is what pmd_trans_unstable() provides.
3260 if (pmd_devmap_trans_unstable(vmf->pmd))
3261 return VM_FAULT_NOPAGE;
3264 * At this point we know that our vmf->pmd points to a page of ptes
3265 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3266 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3267 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3268 * be valid and we will re-check to make sure the vmf->pte isn't
3269 * pte_none() under vmf->ptl protection when we return to
3270 * alloc_set_pte().
3272 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3273 &vmf->ptl);
3274 return 0;
3277 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3279 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3280 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3281 unsigned long haddr)
3283 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3284 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3285 return false;
3286 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3287 return false;
3288 return true;
3291 static void deposit_prealloc_pte(struct vm_fault *vmf)
3293 struct vm_area_struct *vma = vmf->vma;
3295 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3297 * We are going to consume the prealloc table,
3298 * count that as nr_ptes.
3300 mm_inc_nr_ptes(vma->vm_mm);
3301 vmf->prealloc_pte = NULL;
3304 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3306 struct vm_area_struct *vma = vmf->vma;
3307 bool write = vmf->flags & FAULT_FLAG_WRITE;
3308 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3309 pmd_t entry;
3310 int i, ret;
3312 if (!transhuge_vma_suitable(vma, haddr))
3313 return VM_FAULT_FALLBACK;
3315 ret = VM_FAULT_FALLBACK;
3316 page = compound_head(page);
3319 * Archs like ppc64 need additonal space to store information
3320 * related to pte entry. Use the preallocated table for that.
3322 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3323 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3324 if (!vmf->prealloc_pte)
3325 return VM_FAULT_OOM;
3326 smp_wmb(); /* See comment in __pte_alloc() */
3329 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3330 if (unlikely(!pmd_none(*vmf->pmd)))
3331 goto out;
3333 for (i = 0; i < HPAGE_PMD_NR; i++)
3334 flush_icache_page(vma, page + i);
3336 entry = mk_huge_pmd(page, vma->vm_page_prot);
3337 if (write)
3338 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3340 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3341 page_add_file_rmap(page, true);
3343 * deposit and withdraw with pmd lock held
3345 if (arch_needs_pgtable_deposit())
3346 deposit_prealloc_pte(vmf);
3348 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3350 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3352 /* fault is handled */
3353 ret = 0;
3354 count_vm_event(THP_FILE_MAPPED);
3355 out:
3356 spin_unlock(vmf->ptl);
3357 return ret;
3359 #else
3360 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3362 BUILD_BUG();
3363 return 0;
3365 #endif
3368 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3369 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3371 * @vmf: fault environment
3372 * @memcg: memcg to charge page (only for private mappings)
3373 * @page: page to map
3375 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3376 * return.
3378 * Target users are page handler itself and implementations of
3379 * vm_ops->map_pages.
3381 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3382 struct page *page)
3384 struct vm_area_struct *vma = vmf->vma;
3385 bool write = vmf->flags & FAULT_FLAG_WRITE;
3386 pte_t entry;
3387 int ret;
3389 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3390 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3391 /* THP on COW? */
3392 VM_BUG_ON_PAGE(memcg, page);
3394 ret = do_set_pmd(vmf, page);
3395 if (ret != VM_FAULT_FALLBACK)
3396 return ret;
3399 if (!vmf->pte) {
3400 ret = pte_alloc_one_map(vmf);
3401 if (ret)
3402 return ret;
3405 /* Re-check under ptl */
3406 if (unlikely(!pte_none(*vmf->pte)))
3407 return VM_FAULT_NOPAGE;
3409 flush_icache_page(vma, page);
3410 entry = mk_pte(page, vma->vm_page_prot);
3411 if (write)
3412 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3413 /* copy-on-write page */
3414 if (write && !(vma->vm_flags & VM_SHARED)) {
3415 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3416 page_add_new_anon_rmap(page, vma, vmf->address, false);
3417 mem_cgroup_commit_charge(page, memcg, false, false);
3418 lru_cache_add_active_or_unevictable(page, vma);
3419 } else {
3420 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3421 page_add_file_rmap(page, false);
3423 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3425 /* no need to invalidate: a not-present page won't be cached */
3426 update_mmu_cache(vma, vmf->address, vmf->pte);
3428 return 0;
3433 * finish_fault - finish page fault once we have prepared the page to fault
3435 * @vmf: structure describing the fault
3437 * This function handles all that is needed to finish a page fault once the
3438 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3439 * given page, adds reverse page mapping, handles memcg charges and LRU
3440 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3441 * error.
3443 * The function expects the page to be locked and on success it consumes a
3444 * reference of a page being mapped (for the PTE which maps it).
3446 int finish_fault(struct vm_fault *vmf)
3448 struct page *page;
3449 int ret = 0;
3451 /* Did we COW the page? */
3452 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3453 !(vmf->vma->vm_flags & VM_SHARED))
3454 page = vmf->cow_page;
3455 else
3456 page = vmf->page;
3459 * check even for read faults because we might have lost our CoWed
3460 * page
3462 if (!(vmf->vma->vm_flags & VM_SHARED))
3463 ret = check_stable_address_space(vmf->vma->vm_mm);
3464 if (!ret)
3465 ret = alloc_set_pte(vmf, vmf->memcg, page);
3466 if (vmf->pte)
3467 pte_unmap_unlock(vmf->pte, vmf->ptl);
3468 return ret;
3471 static unsigned long fault_around_bytes __read_mostly =
3472 rounddown_pow_of_two(65536);
3474 #ifdef CONFIG_DEBUG_FS
3475 static int fault_around_bytes_get(void *data, u64 *val)
3477 *val = fault_around_bytes;
3478 return 0;
3482 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3483 * rounded down to nearest page order. It's what do_fault_around() expects to
3484 * see.
3486 static int fault_around_bytes_set(void *data, u64 val)
3488 if (val / PAGE_SIZE > PTRS_PER_PTE)
3489 return -EINVAL;
3490 if (val > PAGE_SIZE)
3491 fault_around_bytes = rounddown_pow_of_two(val);
3492 else
3493 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3494 return 0;
3496 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3497 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3499 static int __init fault_around_debugfs(void)
3501 void *ret;
3503 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3504 &fault_around_bytes_fops);
3505 if (!ret)
3506 pr_warn("Failed to create fault_around_bytes in debugfs");
3507 return 0;
3509 late_initcall(fault_around_debugfs);
3510 #endif
3513 * do_fault_around() tries to map few pages around the fault address. The hope
3514 * is that the pages will be needed soon and this will lower the number of
3515 * faults to handle.
3517 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3518 * not ready to be mapped: not up-to-date, locked, etc.
3520 * This function is called with the page table lock taken. In the split ptlock
3521 * case the page table lock only protects only those entries which belong to
3522 * the page table corresponding to the fault address.
3524 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3525 * only once.
3527 * fault_around_pages() defines how many pages we'll try to map.
3528 * do_fault_around() expects it to return a power of two less than or equal to
3529 * PTRS_PER_PTE.
3531 * The virtual address of the area that we map is naturally aligned to the
3532 * fault_around_pages() value (and therefore to page order). This way it's
3533 * easier to guarantee that we don't cross page table boundaries.
3535 static int do_fault_around(struct vm_fault *vmf)
3537 unsigned long address = vmf->address, nr_pages, mask;
3538 pgoff_t start_pgoff = vmf->pgoff;
3539 pgoff_t end_pgoff;
3540 int off, ret = 0;
3542 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3543 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3545 vmf->address = max(address & mask, vmf->vma->vm_start);
3546 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3547 start_pgoff -= off;
3550 * end_pgoff is either end of page table or end of vma
3551 * or fault_around_pages() from start_pgoff, depending what is nearest.
3553 end_pgoff = start_pgoff -
3554 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3555 PTRS_PER_PTE - 1;
3556 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3557 start_pgoff + nr_pages - 1);
3559 if (pmd_none(*vmf->pmd)) {
3560 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3561 vmf->address);
3562 if (!vmf->prealloc_pte)
3563 goto out;
3564 smp_wmb(); /* See comment in __pte_alloc() */
3567 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3569 /* Huge page is mapped? Page fault is solved */
3570 if (pmd_trans_huge(*vmf->pmd)) {
3571 ret = VM_FAULT_NOPAGE;
3572 goto out;
3575 /* ->map_pages() haven't done anything useful. Cold page cache? */
3576 if (!vmf->pte)
3577 goto out;
3579 /* check if the page fault is solved */
3580 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3581 if (!pte_none(*vmf->pte))
3582 ret = VM_FAULT_NOPAGE;
3583 pte_unmap_unlock(vmf->pte, vmf->ptl);
3584 out:
3585 vmf->address = address;
3586 vmf->pte = NULL;
3587 return ret;
3590 static int do_read_fault(struct vm_fault *vmf)
3592 struct vm_area_struct *vma = vmf->vma;
3593 int ret = 0;
3596 * Let's call ->map_pages() first and use ->fault() as fallback
3597 * if page by the offset is not ready to be mapped (cold cache or
3598 * something).
3600 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3601 ret = do_fault_around(vmf);
3602 if (ret)
3603 return ret;
3606 ret = __do_fault(vmf);
3607 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3608 return ret;
3610 ret |= finish_fault(vmf);
3611 unlock_page(vmf->page);
3612 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3613 put_page(vmf->page);
3614 return ret;
3617 static int do_cow_fault(struct vm_fault *vmf)
3619 struct vm_area_struct *vma = vmf->vma;
3620 int ret;
3622 if (unlikely(anon_vma_prepare(vma)))
3623 return VM_FAULT_OOM;
3625 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3626 if (!vmf->cow_page)
3627 return VM_FAULT_OOM;
3629 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3630 &vmf->memcg, false)) {
3631 put_page(vmf->cow_page);
3632 return VM_FAULT_OOM;
3635 ret = __do_fault(vmf);
3636 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3637 goto uncharge_out;
3638 if (ret & VM_FAULT_DONE_COW)
3639 return ret;
3641 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3642 __SetPageUptodate(vmf->cow_page);
3644 ret |= finish_fault(vmf);
3645 unlock_page(vmf->page);
3646 put_page(vmf->page);
3647 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3648 goto uncharge_out;
3649 return ret;
3650 uncharge_out:
3651 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3652 put_page(vmf->cow_page);
3653 return ret;
3656 static int do_shared_fault(struct vm_fault *vmf)
3658 struct vm_area_struct *vma = vmf->vma;
3659 int ret, tmp;
3661 ret = __do_fault(vmf);
3662 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663 return ret;
3666 * Check if the backing address space wants to know that the page is
3667 * about to become writable
3669 if (vma->vm_ops->page_mkwrite) {
3670 unlock_page(vmf->page);
3671 tmp = do_page_mkwrite(vmf);
3672 if (unlikely(!tmp ||
3673 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3674 put_page(vmf->page);
3675 return tmp;
3679 ret |= finish_fault(vmf);
3680 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3681 VM_FAULT_RETRY))) {
3682 unlock_page(vmf->page);
3683 put_page(vmf->page);
3684 return ret;
3687 fault_dirty_shared_page(vma, vmf->page);
3688 return ret;
3692 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3693 * but allow concurrent faults).
3694 * The mmap_sem may have been released depending on flags and our
3695 * return value. See filemap_fault() and __lock_page_or_retry().
3697 static int do_fault(struct vm_fault *vmf)
3699 struct vm_area_struct *vma = vmf->vma;
3700 int ret;
3702 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3703 if (!vma->vm_ops->fault)
3704 ret = VM_FAULT_SIGBUS;
3705 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3706 ret = do_read_fault(vmf);
3707 else if (!(vma->vm_flags & VM_SHARED))
3708 ret = do_cow_fault(vmf);
3709 else
3710 ret = do_shared_fault(vmf);
3712 /* preallocated pagetable is unused: free it */
3713 if (vmf->prealloc_pte) {
3714 pte_free(vma->vm_mm, vmf->prealloc_pte);
3715 vmf->prealloc_pte = NULL;
3717 return ret;
3720 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3721 unsigned long addr, int page_nid,
3722 int *flags)
3724 get_page(page);
3726 count_vm_numa_event(NUMA_HINT_FAULTS);
3727 if (page_nid == numa_node_id()) {
3728 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3729 *flags |= TNF_FAULT_LOCAL;
3732 return mpol_misplaced(page, vma, addr);
3735 static int do_numa_page(struct vm_fault *vmf)
3737 struct vm_area_struct *vma = vmf->vma;
3738 struct page *page = NULL;
3739 int page_nid = -1;
3740 int last_cpupid;
3741 int target_nid;
3742 bool migrated = false;
3743 pte_t pte;
3744 bool was_writable = pte_savedwrite(vmf->orig_pte);
3745 int flags = 0;
3748 * The "pte" at this point cannot be used safely without
3749 * validation through pte_unmap_same(). It's of NUMA type but
3750 * the pfn may be screwed if the read is non atomic.
3752 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3753 spin_lock(vmf->ptl);
3754 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3755 pte_unmap_unlock(vmf->pte, vmf->ptl);
3756 goto out;
3760 * Make it present again, Depending on how arch implementes non
3761 * accessible ptes, some can allow access by kernel mode.
3763 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3764 pte = pte_modify(pte, vma->vm_page_prot);
3765 pte = pte_mkyoung(pte);
3766 if (was_writable)
3767 pte = pte_mkwrite(pte);
3768 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3769 update_mmu_cache(vma, vmf->address, vmf->pte);
3771 page = vm_normal_page(vma, vmf->address, pte);
3772 if (!page) {
3773 pte_unmap_unlock(vmf->pte, vmf->ptl);
3774 return 0;
3777 /* TODO: handle PTE-mapped THP */
3778 if (PageCompound(page)) {
3779 pte_unmap_unlock(vmf->pte, vmf->ptl);
3780 return 0;
3784 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3785 * much anyway since they can be in shared cache state. This misses
3786 * the case where a mapping is writable but the process never writes
3787 * to it but pte_write gets cleared during protection updates and
3788 * pte_dirty has unpredictable behaviour between PTE scan updates,
3789 * background writeback, dirty balancing and application behaviour.
3791 if (!pte_write(pte))
3792 flags |= TNF_NO_GROUP;
3795 * Flag if the page is shared between multiple address spaces. This
3796 * is later used when determining whether to group tasks together
3798 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3799 flags |= TNF_SHARED;
3801 last_cpupid = page_cpupid_last(page);
3802 page_nid = page_to_nid(page);
3803 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3804 &flags);
3805 pte_unmap_unlock(vmf->pte, vmf->ptl);
3806 if (target_nid == -1) {
3807 put_page(page);
3808 goto out;
3811 /* Migrate to the requested node */
3812 migrated = migrate_misplaced_page(page, vma, target_nid);
3813 if (migrated) {
3814 page_nid = target_nid;
3815 flags |= TNF_MIGRATED;
3816 } else
3817 flags |= TNF_MIGRATE_FAIL;
3819 out:
3820 if (page_nid != -1)
3821 task_numa_fault(last_cpupid, page_nid, 1, flags);
3822 return 0;
3825 static inline int create_huge_pmd(struct vm_fault *vmf)
3827 if (vma_is_anonymous(vmf->vma))
3828 return do_huge_pmd_anonymous_page(vmf);
3829 if (vmf->vma->vm_ops->huge_fault)
3830 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3831 return VM_FAULT_FALLBACK;
3834 /* `inline' is required to avoid gcc 4.1.2 build error */
3835 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3837 if (vma_is_anonymous(vmf->vma))
3838 return do_huge_pmd_wp_page(vmf, orig_pmd);
3839 if (vmf->vma->vm_ops->huge_fault)
3840 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3842 /* COW handled on pte level: split pmd */
3843 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3844 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3846 return VM_FAULT_FALLBACK;
3849 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3851 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3854 static int create_huge_pud(struct vm_fault *vmf)
3856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3857 /* No support for anonymous transparent PUD pages yet */
3858 if (vma_is_anonymous(vmf->vma))
3859 return VM_FAULT_FALLBACK;
3860 if (vmf->vma->vm_ops->huge_fault)
3861 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3862 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3863 return VM_FAULT_FALLBACK;
3866 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3869 /* No support for anonymous transparent PUD pages yet */
3870 if (vma_is_anonymous(vmf->vma))
3871 return VM_FAULT_FALLBACK;
3872 if (vmf->vma->vm_ops->huge_fault)
3873 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3875 return VM_FAULT_FALLBACK;
3879 * These routines also need to handle stuff like marking pages dirty
3880 * and/or accessed for architectures that don't do it in hardware (most
3881 * RISC architectures). The early dirtying is also good on the i386.
3883 * There is also a hook called "update_mmu_cache()" that architectures
3884 * with external mmu caches can use to update those (ie the Sparc or
3885 * PowerPC hashed page tables that act as extended TLBs).
3887 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3888 * concurrent faults).
3890 * The mmap_sem may have been released depending on flags and our return value.
3891 * See filemap_fault() and __lock_page_or_retry().
3893 static int handle_pte_fault(struct vm_fault *vmf)
3895 pte_t entry;
3897 if (unlikely(pmd_none(*vmf->pmd))) {
3899 * Leave __pte_alloc() until later: because vm_ops->fault may
3900 * want to allocate huge page, and if we expose page table
3901 * for an instant, it will be difficult to retract from
3902 * concurrent faults and from rmap lookups.
3904 vmf->pte = NULL;
3905 } else {
3906 /* See comment in pte_alloc_one_map() */
3907 if (pmd_devmap_trans_unstable(vmf->pmd))
3908 return 0;
3910 * A regular pmd is established and it can't morph into a huge
3911 * pmd from under us anymore at this point because we hold the
3912 * mmap_sem read mode and khugepaged takes it in write mode.
3913 * So now it's safe to run pte_offset_map().
3915 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3916 vmf->orig_pte = *vmf->pte;
3919 * some architectures can have larger ptes than wordsize,
3920 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3921 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3922 * accesses. The code below just needs a consistent view
3923 * for the ifs and we later double check anyway with the
3924 * ptl lock held. So here a barrier will do.
3926 barrier();
3927 if (pte_none(vmf->orig_pte)) {
3928 pte_unmap(vmf->pte);
3929 vmf->pte = NULL;
3933 if (!vmf->pte) {
3934 if (vma_is_anonymous(vmf->vma))
3935 return do_anonymous_page(vmf);
3936 else
3937 return do_fault(vmf);
3940 if (!pte_present(vmf->orig_pte))
3941 return do_swap_page(vmf);
3943 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3944 return do_numa_page(vmf);
3946 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3947 spin_lock(vmf->ptl);
3948 entry = vmf->orig_pte;
3949 if (unlikely(!pte_same(*vmf->pte, entry)))
3950 goto unlock;
3951 if (vmf->flags & FAULT_FLAG_WRITE) {
3952 if (!pte_write(entry))
3953 return do_wp_page(vmf);
3954 entry = pte_mkdirty(entry);
3956 entry = pte_mkyoung(entry);
3957 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3958 vmf->flags & FAULT_FLAG_WRITE)) {
3959 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3960 } else {
3962 * This is needed only for protection faults but the arch code
3963 * is not yet telling us if this is a protection fault or not.
3964 * This still avoids useless tlb flushes for .text page faults
3965 * with threads.
3967 if (vmf->flags & FAULT_FLAG_WRITE)
3968 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3970 unlock:
3971 pte_unmap_unlock(vmf->pte, vmf->ptl);
3972 return 0;
3976 * By the time we get here, we already hold the mm semaphore
3978 * The mmap_sem may have been released depending on flags and our
3979 * return value. See filemap_fault() and __lock_page_or_retry().
3981 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3982 unsigned int flags)
3984 struct vm_fault vmf = {
3985 .vma = vma,
3986 .address = address & PAGE_MASK,
3987 .flags = flags,
3988 .pgoff = linear_page_index(vma, address),
3989 .gfp_mask = __get_fault_gfp_mask(vma),
3991 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3992 struct mm_struct *mm = vma->vm_mm;
3993 pgd_t *pgd;
3994 p4d_t *p4d;
3995 int ret;
3997 pgd = pgd_offset(mm, address);
3998 p4d = p4d_alloc(mm, pgd, address);
3999 if (!p4d)
4000 return VM_FAULT_OOM;
4002 vmf.pud = pud_alloc(mm, p4d, address);
4003 if (!vmf.pud)
4004 return VM_FAULT_OOM;
4005 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4006 ret = create_huge_pud(&vmf);
4007 if (!(ret & VM_FAULT_FALLBACK))
4008 return ret;
4009 } else {
4010 pud_t orig_pud = *vmf.pud;
4012 barrier();
4013 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4015 /* NUMA case for anonymous PUDs would go here */
4017 if (dirty && !pud_write(orig_pud)) {
4018 ret = wp_huge_pud(&vmf, orig_pud);
4019 if (!(ret & VM_FAULT_FALLBACK))
4020 return ret;
4021 } else {
4022 huge_pud_set_accessed(&vmf, orig_pud);
4023 return 0;
4028 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4029 if (!vmf.pmd)
4030 return VM_FAULT_OOM;
4031 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4032 ret = create_huge_pmd(&vmf);
4033 if (!(ret & VM_FAULT_FALLBACK))
4034 return ret;
4035 } else {
4036 pmd_t orig_pmd = *vmf.pmd;
4038 barrier();
4039 if (unlikely(is_swap_pmd(orig_pmd))) {
4040 VM_BUG_ON(thp_migration_supported() &&
4041 !is_pmd_migration_entry(orig_pmd));
4042 if (is_pmd_migration_entry(orig_pmd))
4043 pmd_migration_entry_wait(mm, vmf.pmd);
4044 return 0;
4046 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4047 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4048 return do_huge_pmd_numa_page(&vmf, orig_pmd);
4050 if (dirty && !pmd_write(orig_pmd)) {
4051 ret = wp_huge_pmd(&vmf, orig_pmd);
4052 if (!(ret & VM_FAULT_FALLBACK))
4053 return ret;
4054 } else {
4055 huge_pmd_set_accessed(&vmf, orig_pmd);
4056 return 0;
4061 return handle_pte_fault(&vmf);
4065 * By the time we get here, we already hold the mm semaphore
4067 * The mmap_sem may have been released depending on flags and our
4068 * return value. See filemap_fault() and __lock_page_or_retry().
4070 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4071 unsigned int flags)
4073 int ret;
4075 __set_current_state(TASK_RUNNING);
4077 count_vm_event(PGFAULT);
4078 count_memcg_event_mm(vma->vm_mm, PGFAULT);
4080 /* do counter updates before entering really critical section. */
4081 check_sync_rss_stat(current);
4083 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4084 flags & FAULT_FLAG_INSTRUCTION,
4085 flags & FAULT_FLAG_REMOTE))
4086 return VM_FAULT_SIGSEGV;
4089 * Enable the memcg OOM handling for faults triggered in user
4090 * space. Kernel faults are handled more gracefully.
4092 if (flags & FAULT_FLAG_USER)
4093 mem_cgroup_oom_enable();
4095 if (unlikely(is_vm_hugetlb_page(vma)))
4096 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4097 else
4098 ret = __handle_mm_fault(vma, address, flags);
4100 if (flags & FAULT_FLAG_USER) {
4101 mem_cgroup_oom_disable();
4103 * The task may have entered a memcg OOM situation but
4104 * if the allocation error was handled gracefully (no
4105 * VM_FAULT_OOM), there is no need to kill anything.
4106 * Just clean up the OOM state peacefully.
4108 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4109 mem_cgroup_oom_synchronize(false);
4112 return ret;
4114 EXPORT_SYMBOL_GPL(handle_mm_fault);
4116 #ifndef __PAGETABLE_P4D_FOLDED
4118 * Allocate p4d page table.
4119 * We've already handled the fast-path in-line.
4121 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4123 p4d_t *new = p4d_alloc_one(mm, address);
4124 if (!new)
4125 return -ENOMEM;
4127 smp_wmb(); /* See comment in __pte_alloc */
4129 spin_lock(&mm->page_table_lock);
4130 if (pgd_present(*pgd)) /* Another has populated it */
4131 p4d_free(mm, new);
4132 else
4133 pgd_populate(mm, pgd, new);
4134 spin_unlock(&mm->page_table_lock);
4135 return 0;
4137 #endif /* __PAGETABLE_P4D_FOLDED */
4139 #ifndef __PAGETABLE_PUD_FOLDED
4141 * Allocate page upper directory.
4142 * We've already handled the fast-path in-line.
4144 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4146 pud_t *new = pud_alloc_one(mm, address);
4147 if (!new)
4148 return -ENOMEM;
4150 smp_wmb(); /* See comment in __pte_alloc */
4152 spin_lock(&mm->page_table_lock);
4153 #ifndef __ARCH_HAS_5LEVEL_HACK
4154 if (!p4d_present(*p4d)) {
4155 mm_inc_nr_puds(mm);
4156 p4d_populate(mm, p4d, new);
4157 } else /* Another has populated it */
4158 pud_free(mm, new);
4159 #else
4160 if (!pgd_present(*p4d)) {
4161 mm_inc_nr_puds(mm);
4162 pgd_populate(mm, p4d, new);
4163 } else /* Another has populated it */
4164 pud_free(mm, new);
4165 #endif /* __ARCH_HAS_5LEVEL_HACK */
4166 spin_unlock(&mm->page_table_lock);
4167 return 0;
4169 #endif /* __PAGETABLE_PUD_FOLDED */
4171 #ifndef __PAGETABLE_PMD_FOLDED
4173 * Allocate page middle directory.
4174 * We've already handled the fast-path in-line.
4176 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4178 spinlock_t *ptl;
4179 pmd_t *new = pmd_alloc_one(mm, address);
4180 if (!new)
4181 return -ENOMEM;
4183 smp_wmb(); /* See comment in __pte_alloc */
4185 ptl = pud_lock(mm, pud);
4186 #ifndef __ARCH_HAS_4LEVEL_HACK
4187 if (!pud_present(*pud)) {
4188 mm_inc_nr_pmds(mm);
4189 pud_populate(mm, pud, new);
4190 } else /* Another has populated it */
4191 pmd_free(mm, new);
4192 #else
4193 if (!pgd_present(*pud)) {
4194 mm_inc_nr_pmds(mm);
4195 pgd_populate(mm, pud, new);
4196 } else /* Another has populated it */
4197 pmd_free(mm, new);
4198 #endif /* __ARCH_HAS_4LEVEL_HACK */
4199 spin_unlock(ptl);
4200 return 0;
4202 #endif /* __PAGETABLE_PMD_FOLDED */
4204 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4205 unsigned long *start, unsigned long *end,
4206 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4208 pgd_t *pgd;
4209 p4d_t *p4d;
4210 pud_t *pud;
4211 pmd_t *pmd;
4212 pte_t *ptep;
4214 pgd = pgd_offset(mm, address);
4215 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4216 goto out;
4218 p4d = p4d_offset(pgd, address);
4219 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4220 goto out;
4222 pud = pud_offset(p4d, address);
4223 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4224 goto out;
4226 pmd = pmd_offset(pud, address);
4227 VM_BUG_ON(pmd_trans_huge(*pmd));
4229 if (pmd_huge(*pmd)) {
4230 if (!pmdpp)
4231 goto out;
4233 if (start && end) {
4234 *start = address & PMD_MASK;
4235 *end = *start + PMD_SIZE;
4236 mmu_notifier_invalidate_range_start(mm, *start, *end);
4238 *ptlp = pmd_lock(mm, pmd);
4239 if (pmd_huge(*pmd)) {
4240 *pmdpp = pmd;
4241 return 0;
4243 spin_unlock(*ptlp);
4244 if (start && end)
4245 mmu_notifier_invalidate_range_end(mm, *start, *end);
4248 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4249 goto out;
4251 if (start && end) {
4252 *start = address & PAGE_MASK;
4253 *end = *start + PAGE_SIZE;
4254 mmu_notifier_invalidate_range_start(mm, *start, *end);
4256 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4257 if (!pte_present(*ptep))
4258 goto unlock;
4259 *ptepp = ptep;
4260 return 0;
4261 unlock:
4262 pte_unmap_unlock(ptep, *ptlp);
4263 if (start && end)
4264 mmu_notifier_invalidate_range_end(mm, *start, *end);
4265 out:
4266 return -EINVAL;
4269 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4270 pte_t **ptepp, spinlock_t **ptlp)
4272 int res;
4274 /* (void) is needed to make gcc happy */
4275 (void) __cond_lock(*ptlp,
4276 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4277 ptepp, NULL, ptlp)));
4278 return res;
4281 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4282 unsigned long *start, unsigned long *end,
4283 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4285 int res;
4287 /* (void) is needed to make gcc happy */
4288 (void) __cond_lock(*ptlp,
4289 !(res = __follow_pte_pmd(mm, address, start, end,
4290 ptepp, pmdpp, ptlp)));
4291 return res;
4293 EXPORT_SYMBOL(follow_pte_pmd);
4296 * follow_pfn - look up PFN at a user virtual address
4297 * @vma: memory mapping
4298 * @address: user virtual address
4299 * @pfn: location to store found PFN
4301 * Only IO mappings and raw PFN mappings are allowed.
4303 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4305 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4306 unsigned long *pfn)
4308 int ret = -EINVAL;
4309 spinlock_t *ptl;
4310 pte_t *ptep;
4312 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4313 return ret;
4315 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4316 if (ret)
4317 return ret;
4318 *pfn = pte_pfn(*ptep);
4319 pte_unmap_unlock(ptep, ptl);
4320 return 0;
4322 EXPORT_SYMBOL(follow_pfn);
4324 #ifdef CONFIG_HAVE_IOREMAP_PROT
4325 int follow_phys(struct vm_area_struct *vma,
4326 unsigned long address, unsigned int flags,
4327 unsigned long *prot, resource_size_t *phys)
4329 int ret = -EINVAL;
4330 pte_t *ptep, pte;
4331 spinlock_t *ptl;
4333 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4334 goto out;
4336 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4337 goto out;
4338 pte = *ptep;
4340 if ((flags & FOLL_WRITE) && !pte_write(pte))
4341 goto unlock;
4343 *prot = pgprot_val(pte_pgprot(pte));
4344 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4346 ret = 0;
4347 unlock:
4348 pte_unmap_unlock(ptep, ptl);
4349 out:
4350 return ret;
4353 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4354 void *buf, int len, int write)
4356 resource_size_t phys_addr;
4357 unsigned long prot = 0;
4358 void __iomem *maddr;
4359 int offset = addr & (PAGE_SIZE-1);
4361 if (follow_phys(vma, addr, write, &prot, &phys_addr))
4362 return -EINVAL;
4364 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4365 if (write)
4366 memcpy_toio(maddr + offset, buf, len);
4367 else
4368 memcpy_fromio(buf, maddr + offset, len);
4369 iounmap(maddr);
4371 return len;
4373 EXPORT_SYMBOL_GPL(generic_access_phys);
4374 #endif
4377 * Access another process' address space as given in mm. If non-NULL, use the
4378 * given task for page fault accounting.
4380 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4381 unsigned long addr, void *buf, int len, unsigned int gup_flags)
4383 struct vm_area_struct *vma;
4384 void *old_buf = buf;
4385 int write = gup_flags & FOLL_WRITE;
4387 down_read(&mm->mmap_sem);
4388 /* ignore errors, just check how much was successfully transferred */
4389 while (len) {
4390 int bytes, ret, offset;
4391 void *maddr;
4392 struct page *page = NULL;
4394 ret = get_user_pages_remote(tsk, mm, addr, 1,
4395 gup_flags, &page, &vma, NULL);
4396 if (ret <= 0) {
4397 #ifndef CONFIG_HAVE_IOREMAP_PROT
4398 break;
4399 #else
4401 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4402 * we can access using slightly different code.
4404 vma = find_vma(mm, addr);
4405 if (!vma || vma->vm_start > addr)
4406 break;
4407 if (vma->vm_ops && vma->vm_ops->access)
4408 ret = vma->vm_ops->access(vma, addr, buf,
4409 len, write);
4410 if (ret <= 0)
4411 break;
4412 bytes = ret;
4413 #endif
4414 } else {
4415 bytes = len;
4416 offset = addr & (PAGE_SIZE-1);
4417 if (bytes > PAGE_SIZE-offset)
4418 bytes = PAGE_SIZE-offset;
4420 maddr = kmap(page);
4421 if (write) {
4422 copy_to_user_page(vma, page, addr,
4423 maddr + offset, buf, bytes);
4424 set_page_dirty_lock(page);
4425 } else {
4426 copy_from_user_page(vma, page, addr,
4427 buf, maddr + offset, bytes);
4429 kunmap(page);
4430 put_page(page);
4432 len -= bytes;
4433 buf += bytes;
4434 addr += bytes;
4436 up_read(&mm->mmap_sem);
4438 return buf - old_buf;
4442 * access_remote_vm - access another process' address space
4443 * @mm: the mm_struct of the target address space
4444 * @addr: start address to access
4445 * @buf: source or destination buffer
4446 * @len: number of bytes to transfer
4447 * @gup_flags: flags modifying lookup behaviour
4449 * The caller must hold a reference on @mm.
4451 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4452 void *buf, int len, unsigned int gup_flags)
4454 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4458 * Access another process' address space.
4459 * Source/target buffer must be kernel space,
4460 * Do not walk the page table directly, use get_user_pages
4462 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4463 void *buf, int len, unsigned int gup_flags)
4465 struct mm_struct *mm;
4466 int ret;
4468 mm = get_task_mm(tsk);
4469 if (!mm)
4470 return 0;
4472 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4474 mmput(mm);
4476 return ret;
4478 EXPORT_SYMBOL_GPL(access_process_vm);
4481 * Print the name of a VMA.
4483 void print_vma_addr(char *prefix, unsigned long ip)
4485 struct mm_struct *mm = current->mm;
4486 struct vm_area_struct *vma;
4489 * we might be running from an atomic context so we cannot sleep
4491 if (!down_read_trylock(&mm->mmap_sem))
4492 return;
4494 vma = find_vma(mm, ip);
4495 if (vma && vma->vm_file) {
4496 struct file *f = vma->vm_file;
4497 char *buf = (char *)__get_free_page(GFP_NOWAIT);
4498 if (buf) {
4499 char *p;
4501 p = file_path(f, buf, PAGE_SIZE);
4502 if (IS_ERR(p))
4503 p = "?";
4504 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4505 vma->vm_start,
4506 vma->vm_end - vma->vm_start);
4507 free_page((unsigned long)buf);
4510 up_read(&mm->mmap_sem);
4513 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4514 void __might_fault(const char *file, int line)
4517 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4518 * holding the mmap_sem, this is safe because kernel memory doesn't
4519 * get paged out, therefore we'll never actually fault, and the
4520 * below annotations will generate false positives.
4522 if (uaccess_kernel())
4523 return;
4524 if (pagefault_disabled())
4525 return;
4526 __might_sleep(file, line, 0);
4527 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4528 if (current->mm)
4529 might_lock_read(&current->mm->mmap_sem);
4530 #endif
4532 EXPORT_SYMBOL(__might_fault);
4533 #endif
4535 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4536 static void clear_gigantic_page(struct page *page,
4537 unsigned long addr,
4538 unsigned int pages_per_huge_page)
4540 int i;
4541 struct page *p = page;
4543 might_sleep();
4544 for (i = 0; i < pages_per_huge_page;
4545 i++, p = mem_map_next(p, page, i)) {
4546 cond_resched();
4547 clear_user_highpage(p, addr + i * PAGE_SIZE);
4550 void clear_huge_page(struct page *page,
4551 unsigned long addr_hint, unsigned int pages_per_huge_page)
4553 int i, n, base, l;
4554 unsigned long addr = addr_hint &
4555 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4557 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4558 clear_gigantic_page(page, addr, pages_per_huge_page);
4559 return;
4562 /* Clear sub-page to access last to keep its cache lines hot */
4563 might_sleep();
4564 n = (addr_hint - addr) / PAGE_SIZE;
4565 if (2 * n <= pages_per_huge_page) {
4566 /* If sub-page to access in first half of huge page */
4567 base = 0;
4568 l = n;
4569 /* Clear sub-pages at the end of huge page */
4570 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4571 cond_resched();
4572 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4574 } else {
4575 /* If sub-page to access in second half of huge page */
4576 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4577 l = pages_per_huge_page - n;
4578 /* Clear sub-pages at the begin of huge page */
4579 for (i = 0; i < base; i++) {
4580 cond_resched();
4581 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4585 * Clear remaining sub-pages in left-right-left-right pattern
4586 * towards the sub-page to access
4588 for (i = 0; i < l; i++) {
4589 int left_idx = base + i;
4590 int right_idx = base + 2 * l - 1 - i;
4592 cond_resched();
4593 clear_user_highpage(page + left_idx,
4594 addr + left_idx * PAGE_SIZE);
4595 cond_resched();
4596 clear_user_highpage(page + right_idx,
4597 addr + right_idx * PAGE_SIZE);
4601 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4602 unsigned long addr,
4603 struct vm_area_struct *vma,
4604 unsigned int pages_per_huge_page)
4606 int i;
4607 struct page *dst_base = dst;
4608 struct page *src_base = src;
4610 for (i = 0; i < pages_per_huge_page; ) {
4611 cond_resched();
4612 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4614 i++;
4615 dst = mem_map_next(dst, dst_base, i);
4616 src = mem_map_next(src, src_base, i);
4620 void copy_user_huge_page(struct page *dst, struct page *src,
4621 unsigned long addr, struct vm_area_struct *vma,
4622 unsigned int pages_per_huge_page)
4624 int i;
4626 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4627 copy_user_gigantic_page(dst, src, addr, vma,
4628 pages_per_huge_page);
4629 return;
4632 might_sleep();
4633 for (i = 0; i < pages_per_huge_page; i++) {
4634 cond_resched();
4635 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4639 long copy_huge_page_from_user(struct page *dst_page,
4640 const void __user *usr_src,
4641 unsigned int pages_per_huge_page,
4642 bool allow_pagefault)
4644 void *src = (void *)usr_src;
4645 void *page_kaddr;
4646 unsigned long i, rc = 0;
4647 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4649 for (i = 0; i < pages_per_huge_page; i++) {
4650 if (allow_pagefault)
4651 page_kaddr = kmap(dst_page + i);
4652 else
4653 page_kaddr = kmap_atomic(dst_page + i);
4654 rc = copy_from_user(page_kaddr,
4655 (const void __user *)(src + i * PAGE_SIZE),
4656 PAGE_SIZE);
4657 if (allow_pagefault)
4658 kunmap(dst_page + i);
4659 else
4660 kunmap_atomic(page_kaddr);
4662 ret_val -= (PAGE_SIZE - rc);
4663 if (rc)
4664 break;
4666 cond_resched();
4668 return ret_val;
4670 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4672 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4674 static struct kmem_cache *page_ptl_cachep;
4676 void __init ptlock_cache_init(void)
4678 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4679 SLAB_PANIC, NULL);
4682 bool ptlock_alloc(struct page *page)
4684 spinlock_t *ptl;
4686 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4687 if (!ptl)
4688 return false;
4689 page->ptl = ptl;
4690 return true;
4693 void ptlock_free(struct page *page)
4695 kmem_cache_free(page_ptl_cachep, page->ptl);
4697 #endif