audit: log task info on feature change
[linux/fpc-iii.git] / kernel / audit.c
blob40b28b5183eae897804e8ecdeb8039892a8d2a6e
1 /* audit.c -- Auditing support
2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
3 * System-call specific features have moved to auditsc.c
5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
6 * All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 * Goals: 1) Integrate fully with Security Modules.
25 * 2) Minimal run-time overhead:
26 * a) Minimal when syscall auditing is disabled (audit_enable=0).
27 * b) Small when syscall auditing is enabled and no audit record
28 * is generated (defer as much work as possible to record
29 * generation time):
30 * i) context is allocated,
31 * ii) names from getname are stored without a copy, and
32 * iii) inode information stored from path_lookup.
33 * 3) Ability to disable syscall auditing at boot time (audit=0).
34 * 4) Usable by other parts of the kernel (if audit_log* is called,
35 * then a syscall record will be generated automatically for the
36 * current syscall).
37 * 5) Netlink interface to user-space.
38 * 6) Support low-overhead kernel-based filtering to minimize the
39 * information that must be passed to user-space.
41 * Example user-space utilities: http://people.redhat.com/sgrubb/audit/
44 #include <linux/init.h>
45 #include <asm/types.h>
46 #include <linux/atomic.h>
47 #include <linux/mm.h>
48 #include <linux/export.h>
49 #include <linux/slab.h>
50 #include <linux/err.h>
51 #include <linux/kthread.h>
52 #include <linux/kernel.h>
53 #include <linux/syscalls.h>
55 #include <linux/audit.h>
57 #include <net/sock.h>
58 #include <net/netlink.h>
59 #include <linux/skbuff.h>
60 #ifdef CONFIG_SECURITY
61 #include <linux/security.h>
62 #endif
63 #include <linux/freezer.h>
64 #include <linux/tty.h>
65 #include <linux/pid_namespace.h>
66 #include <net/netns/generic.h>
68 #include "audit.h"
70 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
71 * (Initialization happens after skb_init is called.) */
72 #define AUDIT_DISABLED -1
73 #define AUDIT_UNINITIALIZED 0
74 #define AUDIT_INITIALIZED 1
75 static int audit_initialized;
77 #define AUDIT_OFF 0
78 #define AUDIT_ON 1
79 #define AUDIT_LOCKED 2
80 int audit_enabled;
81 int audit_ever_enabled;
83 EXPORT_SYMBOL_GPL(audit_enabled);
85 /* Default state when kernel boots without any parameters. */
86 static int audit_default;
88 /* If auditing cannot proceed, audit_failure selects what happens. */
89 static int audit_failure = AUDIT_FAIL_PRINTK;
92 * If audit records are to be written to the netlink socket, audit_pid
93 * contains the pid of the auditd process and audit_nlk_portid contains
94 * the portid to use to send netlink messages to that process.
96 int audit_pid;
97 static __u32 audit_nlk_portid;
99 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
100 * to that number per second. This prevents DoS attacks, but results in
101 * audit records being dropped. */
102 static int audit_rate_limit;
104 /* Number of outstanding audit_buffers allowed.
105 * When set to zero, this means unlimited. */
106 static int audit_backlog_limit = 64;
107 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
108 static int audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
109 static int audit_backlog_wait_overflow = 0;
111 /* The identity of the user shutting down the audit system. */
112 kuid_t audit_sig_uid = INVALID_UID;
113 pid_t audit_sig_pid = -1;
114 u32 audit_sig_sid = 0;
116 /* Records can be lost in several ways:
117 0) [suppressed in audit_alloc]
118 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
119 2) out of memory in audit_log_move [alloc_skb]
120 3) suppressed due to audit_rate_limit
121 4) suppressed due to audit_backlog_limit
123 static atomic_t audit_lost = ATOMIC_INIT(0);
125 /* The netlink socket. */
126 static struct sock *audit_sock;
127 int audit_net_id;
129 /* Hash for inode-based rules */
130 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
132 /* The audit_freelist is a list of pre-allocated audit buffers (if more
133 * than AUDIT_MAXFREE are in use, the audit buffer is freed instead of
134 * being placed on the freelist). */
135 static DEFINE_SPINLOCK(audit_freelist_lock);
136 static int audit_freelist_count;
137 static LIST_HEAD(audit_freelist);
139 static struct sk_buff_head audit_skb_queue;
140 /* queue of skbs to send to auditd when/if it comes back */
141 static struct sk_buff_head audit_skb_hold_queue;
142 static struct task_struct *kauditd_task;
143 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
144 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
146 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
147 .mask = -1,
148 .features = 0,
149 .lock = 0,};
151 static char *audit_feature_names[2] = {
152 "only_unset_loginuid",
153 "loginuid_immutable",
157 /* Serialize requests from userspace. */
158 DEFINE_MUTEX(audit_cmd_mutex);
160 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
161 * audit records. Since printk uses a 1024 byte buffer, this buffer
162 * should be at least that large. */
163 #define AUDIT_BUFSIZ 1024
165 /* AUDIT_MAXFREE is the number of empty audit_buffers we keep on the
166 * audit_freelist. Doing so eliminates many kmalloc/kfree calls. */
167 #define AUDIT_MAXFREE (2*NR_CPUS)
169 /* The audit_buffer is used when formatting an audit record. The caller
170 * locks briefly to get the record off the freelist or to allocate the
171 * buffer, and locks briefly to send the buffer to the netlink layer or
172 * to place it on a transmit queue. Multiple audit_buffers can be in
173 * use simultaneously. */
174 struct audit_buffer {
175 struct list_head list;
176 struct sk_buff *skb; /* formatted skb ready to send */
177 struct audit_context *ctx; /* NULL or associated context */
178 gfp_t gfp_mask;
181 struct audit_reply {
182 __u32 portid;
183 pid_t pid;
184 struct sk_buff *skb;
187 static void audit_set_portid(struct audit_buffer *ab, __u32 portid)
189 if (ab) {
190 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
191 nlh->nlmsg_pid = portid;
195 void audit_panic(const char *message)
197 switch (audit_failure)
199 case AUDIT_FAIL_SILENT:
200 break;
201 case AUDIT_FAIL_PRINTK:
202 if (printk_ratelimit())
203 printk(KERN_ERR "audit: %s\n", message);
204 break;
205 case AUDIT_FAIL_PANIC:
206 /* test audit_pid since printk is always losey, why bother? */
207 if (audit_pid)
208 panic("audit: %s\n", message);
209 break;
213 static inline int audit_rate_check(void)
215 static unsigned long last_check = 0;
216 static int messages = 0;
217 static DEFINE_SPINLOCK(lock);
218 unsigned long flags;
219 unsigned long now;
220 unsigned long elapsed;
221 int retval = 0;
223 if (!audit_rate_limit) return 1;
225 spin_lock_irqsave(&lock, flags);
226 if (++messages < audit_rate_limit) {
227 retval = 1;
228 } else {
229 now = jiffies;
230 elapsed = now - last_check;
231 if (elapsed > HZ) {
232 last_check = now;
233 messages = 0;
234 retval = 1;
237 spin_unlock_irqrestore(&lock, flags);
239 return retval;
243 * audit_log_lost - conditionally log lost audit message event
244 * @message: the message stating reason for lost audit message
246 * Emit at least 1 message per second, even if audit_rate_check is
247 * throttling.
248 * Always increment the lost messages counter.
250 void audit_log_lost(const char *message)
252 static unsigned long last_msg = 0;
253 static DEFINE_SPINLOCK(lock);
254 unsigned long flags;
255 unsigned long now;
256 int print;
258 atomic_inc(&audit_lost);
260 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
262 if (!print) {
263 spin_lock_irqsave(&lock, flags);
264 now = jiffies;
265 if (now - last_msg > HZ) {
266 print = 1;
267 last_msg = now;
269 spin_unlock_irqrestore(&lock, flags);
272 if (print) {
273 if (printk_ratelimit())
274 printk(KERN_WARNING
275 "audit: audit_lost=%d audit_rate_limit=%d "
276 "audit_backlog_limit=%d\n",
277 atomic_read(&audit_lost),
278 audit_rate_limit,
279 audit_backlog_limit);
280 audit_panic(message);
284 static int audit_log_config_change(char *function_name, int new, int old,
285 int allow_changes)
287 struct audit_buffer *ab;
288 int rc = 0;
290 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
291 if (unlikely(!ab))
292 return rc;
293 audit_log_format(ab, "%s=%d old=%d", function_name, new, old);
294 audit_log_session_info(ab);
295 rc = audit_log_task_context(ab);
296 if (rc)
297 allow_changes = 0; /* Something weird, deny request */
298 audit_log_format(ab, " res=%d", allow_changes);
299 audit_log_end(ab);
300 return rc;
303 static int audit_do_config_change(char *function_name, int *to_change, int new)
305 int allow_changes, rc = 0, old = *to_change;
307 /* check if we are locked */
308 if (audit_enabled == AUDIT_LOCKED)
309 allow_changes = 0;
310 else
311 allow_changes = 1;
313 if (audit_enabled != AUDIT_OFF) {
314 rc = audit_log_config_change(function_name, new, old, allow_changes);
315 if (rc)
316 allow_changes = 0;
319 /* If we are allowed, make the change */
320 if (allow_changes == 1)
321 *to_change = new;
322 /* Not allowed, update reason */
323 else if (rc == 0)
324 rc = -EPERM;
325 return rc;
328 static int audit_set_rate_limit(int limit)
330 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
333 static int audit_set_backlog_limit(int limit)
335 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
338 static int audit_set_backlog_wait_time(int timeout)
340 return audit_do_config_change("audit_backlog_wait_time",
341 &audit_backlog_wait_time, timeout);
344 static int audit_set_enabled(int state)
346 int rc;
347 if (state < AUDIT_OFF || state > AUDIT_LOCKED)
348 return -EINVAL;
350 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
351 if (!rc)
352 audit_ever_enabled |= !!state;
354 return rc;
357 static int audit_set_failure(int state)
359 if (state != AUDIT_FAIL_SILENT
360 && state != AUDIT_FAIL_PRINTK
361 && state != AUDIT_FAIL_PANIC)
362 return -EINVAL;
364 return audit_do_config_change("audit_failure", &audit_failure, state);
368 * Queue skbs to be sent to auditd when/if it comes back. These skbs should
369 * already have been sent via prink/syslog and so if these messages are dropped
370 * it is not a huge concern since we already passed the audit_log_lost()
371 * notification and stuff. This is just nice to get audit messages during
372 * boot before auditd is running or messages generated while auditd is stopped.
373 * This only holds messages is audit_default is set, aka booting with audit=1
374 * or building your kernel that way.
376 static void audit_hold_skb(struct sk_buff *skb)
378 if (audit_default &&
379 (!audit_backlog_limit ||
380 skb_queue_len(&audit_skb_hold_queue) < audit_backlog_limit))
381 skb_queue_tail(&audit_skb_hold_queue, skb);
382 else
383 kfree_skb(skb);
387 * For one reason or another this nlh isn't getting delivered to the userspace
388 * audit daemon, just send it to printk.
390 static void audit_printk_skb(struct sk_buff *skb)
392 struct nlmsghdr *nlh = nlmsg_hdr(skb);
393 char *data = nlmsg_data(nlh);
395 if (nlh->nlmsg_type != AUDIT_EOE) {
396 if (printk_ratelimit())
397 printk(KERN_NOTICE "type=%d %s\n", nlh->nlmsg_type, data);
398 else
399 audit_log_lost("printk limit exceeded\n");
402 audit_hold_skb(skb);
405 static void kauditd_send_skb(struct sk_buff *skb)
407 int err;
408 /* take a reference in case we can't send it and we want to hold it */
409 skb_get(skb);
410 err = netlink_unicast(audit_sock, skb, audit_nlk_portid, 0);
411 if (err < 0) {
412 BUG_ON(err != -ECONNREFUSED); /* Shouldn't happen */
413 if (audit_pid) {
414 printk(KERN_ERR "audit: *NO* daemon at audit_pid=%d\n", audit_pid);
415 audit_log_lost("auditd disappeared\n");
416 audit_pid = 0;
417 audit_sock = NULL;
419 /* we might get lucky and get this in the next auditd */
420 audit_hold_skb(skb);
421 } else
422 /* drop the extra reference if sent ok */
423 consume_skb(skb);
427 * flush_hold_queue - empty the hold queue if auditd appears
429 * If auditd just started, drain the queue of messages already
430 * sent to syslog/printk. Remember loss here is ok. We already
431 * called audit_log_lost() if it didn't go out normally. so the
432 * race between the skb_dequeue and the next check for audit_pid
433 * doesn't matter.
435 * If you ever find kauditd to be too slow we can get a perf win
436 * by doing our own locking and keeping better track if there
437 * are messages in this queue. I don't see the need now, but
438 * in 5 years when I want to play with this again I'll see this
439 * note and still have no friggin idea what i'm thinking today.
441 static void flush_hold_queue(void)
443 struct sk_buff *skb;
445 if (!audit_default || !audit_pid)
446 return;
448 skb = skb_dequeue(&audit_skb_hold_queue);
449 if (likely(!skb))
450 return;
452 while (skb && audit_pid) {
453 kauditd_send_skb(skb);
454 skb = skb_dequeue(&audit_skb_hold_queue);
458 * if auditd just disappeared but we
459 * dequeued an skb we need to drop ref
461 if (skb)
462 consume_skb(skb);
465 static int kauditd_thread(void *dummy)
467 set_freezable();
468 while (!kthread_should_stop()) {
469 struct sk_buff *skb;
470 DECLARE_WAITQUEUE(wait, current);
472 flush_hold_queue();
474 skb = skb_dequeue(&audit_skb_queue);
476 if (skb) {
477 if (skb_queue_len(&audit_skb_queue) <= audit_backlog_limit)
478 wake_up(&audit_backlog_wait);
479 if (audit_pid)
480 kauditd_send_skb(skb);
481 else
482 audit_printk_skb(skb);
483 continue;
485 set_current_state(TASK_INTERRUPTIBLE);
486 add_wait_queue(&kauditd_wait, &wait);
488 if (!skb_queue_len(&audit_skb_queue)) {
489 try_to_freeze();
490 schedule();
493 __set_current_state(TASK_RUNNING);
494 remove_wait_queue(&kauditd_wait, &wait);
496 return 0;
499 int audit_send_list(void *_dest)
501 struct audit_netlink_list *dest = _dest;
502 struct sk_buff *skb;
503 struct net *net = get_net_ns_by_pid(dest->pid);
504 struct audit_net *aunet = net_generic(net, audit_net_id);
506 /* wait for parent to finish and send an ACK */
507 mutex_lock(&audit_cmd_mutex);
508 mutex_unlock(&audit_cmd_mutex);
510 while ((skb = __skb_dequeue(&dest->q)) != NULL)
511 netlink_unicast(aunet->nlsk, skb, dest->portid, 0);
513 kfree(dest);
515 return 0;
518 struct sk_buff *audit_make_reply(__u32 portid, int seq, int type, int done,
519 int multi, const void *payload, int size)
521 struct sk_buff *skb;
522 struct nlmsghdr *nlh;
523 void *data;
524 int flags = multi ? NLM_F_MULTI : 0;
525 int t = done ? NLMSG_DONE : type;
527 skb = nlmsg_new(size, GFP_KERNEL);
528 if (!skb)
529 return NULL;
531 nlh = nlmsg_put(skb, portid, seq, t, size, flags);
532 if (!nlh)
533 goto out_kfree_skb;
534 data = nlmsg_data(nlh);
535 memcpy(data, payload, size);
536 return skb;
538 out_kfree_skb:
539 kfree_skb(skb);
540 return NULL;
543 static int audit_send_reply_thread(void *arg)
545 struct audit_reply *reply = (struct audit_reply *)arg;
546 struct net *net = get_net_ns_by_pid(reply->pid);
547 struct audit_net *aunet = net_generic(net, audit_net_id);
549 mutex_lock(&audit_cmd_mutex);
550 mutex_unlock(&audit_cmd_mutex);
552 /* Ignore failure. It'll only happen if the sender goes away,
553 because our timeout is set to infinite. */
554 netlink_unicast(aunet->nlsk , reply->skb, reply->portid, 0);
555 kfree(reply);
556 return 0;
559 * audit_send_reply - send an audit reply message via netlink
560 * @portid: netlink port to which to send reply
561 * @seq: sequence number
562 * @type: audit message type
563 * @done: done (last) flag
564 * @multi: multi-part message flag
565 * @payload: payload data
566 * @size: payload size
568 * Allocates an skb, builds the netlink message, and sends it to the port id.
569 * No failure notifications.
571 static void audit_send_reply(__u32 portid, int seq, int type, int done,
572 int multi, const void *payload, int size)
574 struct sk_buff *skb;
575 struct task_struct *tsk;
576 struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
577 GFP_KERNEL);
579 if (!reply)
580 return;
582 skb = audit_make_reply(portid, seq, type, done, multi, payload, size);
583 if (!skb)
584 goto out;
586 reply->portid = portid;
587 reply->pid = task_pid_vnr(current);
588 reply->skb = skb;
590 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
591 if (!IS_ERR(tsk))
592 return;
593 kfree_skb(skb);
594 out:
595 kfree(reply);
599 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
600 * control messages.
602 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
604 int err = 0;
606 /* Only support the initial namespaces for now. */
607 if ((current_user_ns() != &init_user_ns) ||
608 (task_active_pid_ns(current) != &init_pid_ns))
609 return -EPERM;
611 switch (msg_type) {
612 case AUDIT_LIST:
613 case AUDIT_ADD:
614 case AUDIT_DEL:
615 return -EOPNOTSUPP;
616 case AUDIT_GET:
617 case AUDIT_SET:
618 case AUDIT_GET_FEATURE:
619 case AUDIT_SET_FEATURE:
620 case AUDIT_LIST_RULES:
621 case AUDIT_ADD_RULE:
622 case AUDIT_DEL_RULE:
623 case AUDIT_SIGNAL_INFO:
624 case AUDIT_TTY_GET:
625 case AUDIT_TTY_SET:
626 case AUDIT_TRIM:
627 case AUDIT_MAKE_EQUIV:
628 if (!capable(CAP_AUDIT_CONTROL))
629 err = -EPERM;
630 break;
631 case AUDIT_USER:
632 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
633 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
634 if (!capable(CAP_AUDIT_WRITE))
635 err = -EPERM;
636 break;
637 default: /* bad msg */
638 err = -EINVAL;
641 return err;
644 static int audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
646 int rc = 0;
647 uid_t uid = from_kuid(&init_user_ns, current_uid());
649 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
650 *ab = NULL;
651 return rc;
654 *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
655 if (unlikely(!*ab))
656 return rc;
657 audit_log_format(*ab, "pid=%d uid=%u", task_tgid_vnr(current), uid);
658 audit_log_session_info(*ab);
659 audit_log_task_context(*ab);
661 return rc;
664 int is_audit_feature_set(int i)
666 return af.features & AUDIT_FEATURE_TO_MASK(i);
670 static int audit_get_feature(struct sk_buff *skb)
672 u32 seq;
674 seq = nlmsg_hdr(skb)->nlmsg_seq;
676 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
677 &af, sizeof(af));
679 return 0;
682 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
683 u32 old_lock, u32 new_lock, int res)
685 struct audit_buffer *ab;
687 if (audit_enabled == AUDIT_OFF)
688 return;
690 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_FEATURE_CHANGE);
691 audit_log_task_info(ab, current);
692 audit_log_format(ab, "feature=%s old=%d new=%d old_lock=%d new_lock=%d res=%d",
693 audit_feature_names[which], !!old_feature, !!new_feature,
694 !!old_lock, !!new_lock, res);
695 audit_log_end(ab);
698 static int audit_set_feature(struct sk_buff *skb)
700 struct audit_features *uaf;
701 int i;
703 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > sizeof(audit_feature_names)/sizeof(audit_feature_names[0]));
704 uaf = nlmsg_data(nlmsg_hdr(skb));
706 /* if there is ever a version 2 we should handle that here */
708 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
709 u32 feature = AUDIT_FEATURE_TO_MASK(i);
710 u32 old_feature, new_feature, old_lock, new_lock;
712 /* if we are not changing this feature, move along */
713 if (!(feature & uaf->mask))
714 continue;
716 old_feature = af.features & feature;
717 new_feature = uaf->features & feature;
718 new_lock = (uaf->lock | af.lock) & feature;
719 old_lock = af.lock & feature;
721 /* are we changing a locked feature? */
722 if (old_lock && (new_feature != old_feature)) {
723 audit_log_feature_change(i, old_feature, new_feature,
724 old_lock, new_lock, 0);
725 return -EPERM;
728 /* nothing invalid, do the changes */
729 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
730 u32 feature = AUDIT_FEATURE_TO_MASK(i);
731 u32 old_feature, new_feature, old_lock, new_lock;
733 /* if we are not changing this feature, move along */
734 if (!(feature & uaf->mask))
735 continue;
737 old_feature = af.features & feature;
738 new_feature = uaf->features & feature;
739 old_lock = af.lock & feature;
740 new_lock = (uaf->lock | af.lock) & feature;
742 if (new_feature != old_feature)
743 audit_log_feature_change(i, old_feature, new_feature,
744 old_lock, new_lock, 1);
746 if (new_feature)
747 af.features |= feature;
748 else
749 af.features &= ~feature;
750 af.lock |= new_lock;
753 return 0;
756 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
758 u32 seq;
759 void *data;
760 int err;
761 struct audit_buffer *ab;
762 u16 msg_type = nlh->nlmsg_type;
763 struct audit_sig_info *sig_data;
764 char *ctx = NULL;
765 u32 len;
767 err = audit_netlink_ok(skb, msg_type);
768 if (err)
769 return err;
771 /* As soon as there's any sign of userspace auditd,
772 * start kauditd to talk to it */
773 if (!kauditd_task) {
774 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
775 if (IS_ERR(kauditd_task)) {
776 err = PTR_ERR(kauditd_task);
777 kauditd_task = NULL;
778 return err;
781 seq = nlh->nlmsg_seq;
782 data = nlmsg_data(nlh);
784 switch (msg_type) {
785 case AUDIT_GET: {
786 struct audit_status s;
787 memset(&s, 0, sizeof(s));
788 s.enabled = audit_enabled;
789 s.failure = audit_failure;
790 s.pid = audit_pid;
791 s.rate_limit = audit_rate_limit;
792 s.backlog_limit = audit_backlog_limit;
793 s.lost = atomic_read(&audit_lost);
794 s.backlog = skb_queue_len(&audit_skb_queue);
795 s.version = 2;
796 s.backlog_wait_time = audit_backlog_wait_time;
797 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_GET, 0, 0,
798 &s, sizeof(s));
799 break;
801 case AUDIT_SET: {
802 struct audit_status s;
803 memset(&s, 0, sizeof(s));
804 /* guard against past and future API changes */
805 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
806 if (s.mask & AUDIT_STATUS_ENABLED) {
807 err = audit_set_enabled(s.enabled);
808 if (err < 0)
809 return err;
811 if (s.mask & AUDIT_STATUS_FAILURE) {
812 err = audit_set_failure(s.failure);
813 if (err < 0)
814 return err;
816 if (s.mask & AUDIT_STATUS_PID) {
817 int new_pid = s.pid;
819 if ((!new_pid) && (task_tgid_vnr(current) != audit_pid))
820 return -EACCES;
821 if (audit_enabled != AUDIT_OFF)
822 audit_log_config_change("audit_pid", new_pid, audit_pid, 1);
823 audit_pid = new_pid;
824 audit_nlk_portid = NETLINK_CB(skb).portid;
825 audit_sock = skb->sk;
827 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
828 err = audit_set_rate_limit(s.rate_limit);
829 if (err < 0)
830 return err;
832 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
833 err = audit_set_backlog_limit(s.backlog_limit);
834 if (err < 0)
835 return err;
837 switch (s.version) {
838 /* add future vers # cases immediately below and allow
839 * to fall through */
840 case 2:
841 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
842 if (sizeof(s) > (size_t)nlh->nlmsg_len)
843 return -EINVAL;
844 if (s.backlog_wait_time < 0 ||
845 s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
846 return -EINVAL;
847 err = audit_set_backlog_wait_time(s.backlog_wait_time);
848 if (err < 0)
849 return err;
851 default:
852 break;
854 break;
856 case AUDIT_GET_FEATURE:
857 err = audit_get_feature(skb);
858 if (err)
859 return err;
860 break;
861 case AUDIT_SET_FEATURE:
862 err = audit_set_feature(skb);
863 if (err)
864 return err;
865 break;
866 case AUDIT_USER:
867 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
868 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
869 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
870 return 0;
872 err = audit_filter_user(msg_type);
873 if (err == 1) { /* match or error */
874 err = 0;
875 if (msg_type == AUDIT_USER_TTY) {
876 err = tty_audit_push_current();
877 if (err)
878 break;
880 mutex_unlock(&audit_cmd_mutex);
881 audit_log_common_recv_msg(&ab, msg_type);
882 if (msg_type != AUDIT_USER_TTY)
883 audit_log_format(ab, " msg='%.*s'",
884 AUDIT_MESSAGE_TEXT_MAX,
885 (char *)data);
886 else {
887 int size;
889 audit_log_format(ab, " data=");
890 size = nlmsg_len(nlh);
891 if (size > 0 &&
892 ((unsigned char *)data)[size - 1] == '\0')
893 size--;
894 audit_log_n_untrustedstring(ab, data, size);
896 audit_set_portid(ab, NETLINK_CB(skb).portid);
897 audit_log_end(ab);
898 mutex_lock(&audit_cmd_mutex);
900 break;
901 case AUDIT_ADD_RULE:
902 case AUDIT_DEL_RULE:
903 if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
904 return -EINVAL;
905 if (audit_enabled == AUDIT_LOCKED) {
906 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
907 audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
908 audit_log_end(ab);
909 return -EPERM;
911 err = audit_rule_change(msg_type, NETLINK_CB(skb).portid,
912 seq, data, nlmsg_len(nlh));
913 break;
914 case AUDIT_LIST_RULES:
915 err = audit_list_rules_send(NETLINK_CB(skb).portid, seq);
916 break;
917 case AUDIT_TRIM:
918 audit_trim_trees();
919 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
920 audit_log_format(ab, " op=trim res=1");
921 audit_log_end(ab);
922 break;
923 case AUDIT_MAKE_EQUIV: {
924 void *bufp = data;
925 u32 sizes[2];
926 size_t msglen = nlmsg_len(nlh);
927 char *old, *new;
929 err = -EINVAL;
930 if (msglen < 2 * sizeof(u32))
931 break;
932 memcpy(sizes, bufp, 2 * sizeof(u32));
933 bufp += 2 * sizeof(u32);
934 msglen -= 2 * sizeof(u32);
935 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
936 if (IS_ERR(old)) {
937 err = PTR_ERR(old);
938 break;
940 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
941 if (IS_ERR(new)) {
942 err = PTR_ERR(new);
943 kfree(old);
944 break;
946 /* OK, here comes... */
947 err = audit_tag_tree(old, new);
949 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
951 audit_log_format(ab, " op=make_equiv old=");
952 audit_log_untrustedstring(ab, old);
953 audit_log_format(ab, " new=");
954 audit_log_untrustedstring(ab, new);
955 audit_log_format(ab, " res=%d", !err);
956 audit_log_end(ab);
957 kfree(old);
958 kfree(new);
959 break;
961 case AUDIT_SIGNAL_INFO:
962 len = 0;
963 if (audit_sig_sid) {
964 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
965 if (err)
966 return err;
968 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
969 if (!sig_data) {
970 if (audit_sig_sid)
971 security_release_secctx(ctx, len);
972 return -ENOMEM;
974 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
975 sig_data->pid = audit_sig_pid;
976 if (audit_sig_sid) {
977 memcpy(sig_data->ctx, ctx, len);
978 security_release_secctx(ctx, len);
980 audit_send_reply(NETLINK_CB(skb).portid, seq, AUDIT_SIGNAL_INFO,
981 0, 0, sig_data, sizeof(*sig_data) + len);
982 kfree(sig_data);
983 break;
984 case AUDIT_TTY_GET: {
985 struct audit_tty_status s;
986 struct task_struct *tsk = current;
988 spin_lock(&tsk->sighand->siglock);
989 s.enabled = tsk->signal->audit_tty;
990 s.log_passwd = tsk->signal->audit_tty_log_passwd;
991 spin_unlock(&tsk->sighand->siglock);
993 audit_send_reply(NETLINK_CB(skb).portid, seq,
994 AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
995 break;
997 case AUDIT_TTY_SET: {
998 struct audit_tty_status s, old;
999 struct task_struct *tsk = current;
1000 struct audit_buffer *ab;
1001 int res = 0;
1003 spin_lock(&tsk->sighand->siglock);
1004 old.enabled = tsk->signal->audit_tty;
1005 old.log_passwd = tsk->signal->audit_tty_log_passwd;
1006 spin_unlock(&tsk->sighand->siglock);
1008 memset(&s, 0, sizeof(s));
1009 /* guard against past and future API changes */
1010 memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1011 if ((s.enabled == 0 || s.enabled == 1) &&
1012 (s.log_passwd == 0 || s.log_passwd == 1))
1013 res = 1;
1014 audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1015 audit_log_format(ab, " op=tty_set"
1016 " old-enabled=%d old-log_passwd=%d"
1017 " new-enabled=%d new-log_passwd=%d"
1018 " res=%d",
1019 old.enabled, old.log_passwd,
1020 s.enabled, s.log_passwd,
1021 res);
1022 audit_log_end(ab);
1023 if (res) {
1024 spin_lock(&tsk->sighand->siglock);
1025 tsk->signal->audit_tty = s.enabled;
1026 tsk->signal->audit_tty_log_passwd = s.log_passwd;
1027 spin_unlock(&tsk->sighand->siglock);
1028 } else
1029 return -EINVAL;
1030 break;
1032 default:
1033 err = -EINVAL;
1034 break;
1037 return err < 0 ? err : 0;
1041 * Get message from skb. Each message is processed by audit_receive_msg.
1042 * Malformed skbs with wrong length are discarded silently.
1044 static void audit_receive_skb(struct sk_buff *skb)
1046 struct nlmsghdr *nlh;
1048 * len MUST be signed for nlmsg_next to be able to dec it below 0
1049 * if the nlmsg_len was not aligned
1051 int len;
1052 int err;
1054 nlh = nlmsg_hdr(skb);
1055 len = skb->len;
1057 while (nlmsg_ok(nlh, len)) {
1058 err = audit_receive_msg(skb, nlh);
1059 /* if err or if this message says it wants a response */
1060 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1061 netlink_ack(skb, nlh, err);
1063 nlh = nlmsg_next(nlh, &len);
1067 /* Receive messages from netlink socket. */
1068 static void audit_receive(struct sk_buff *skb)
1070 mutex_lock(&audit_cmd_mutex);
1071 audit_receive_skb(skb);
1072 mutex_unlock(&audit_cmd_mutex);
1075 static int __net_init audit_net_init(struct net *net)
1077 struct netlink_kernel_cfg cfg = {
1078 .input = audit_receive,
1081 struct audit_net *aunet = net_generic(net, audit_net_id);
1083 pr_info("audit: initializing netlink socket in namespace\n");
1085 aunet->nlsk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1086 if (aunet->nlsk == NULL) {
1087 audit_panic("cannot initialize netlink socket in namespace");
1088 return -ENOMEM;
1090 aunet->nlsk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1091 return 0;
1094 static void __net_exit audit_net_exit(struct net *net)
1096 struct audit_net *aunet = net_generic(net, audit_net_id);
1097 struct sock *sock = aunet->nlsk;
1098 if (sock == audit_sock) {
1099 audit_pid = 0;
1100 audit_sock = NULL;
1103 rcu_assign_pointer(aunet->nlsk, NULL);
1104 synchronize_net();
1105 netlink_kernel_release(sock);
1108 static struct pernet_operations __net_initdata audit_net_ops = {
1109 .init = audit_net_init,
1110 .exit = audit_net_exit,
1111 .id = &audit_net_id,
1112 .size = sizeof(struct audit_net),
1115 /* Initialize audit support at boot time. */
1116 static int __init audit_init(void)
1118 int i;
1120 if (audit_initialized == AUDIT_DISABLED)
1121 return 0;
1123 pr_info("audit: initializing netlink subsys (%s)\n",
1124 audit_default ? "enabled" : "disabled");
1125 register_pernet_subsys(&audit_net_ops);
1127 skb_queue_head_init(&audit_skb_queue);
1128 skb_queue_head_init(&audit_skb_hold_queue);
1129 audit_initialized = AUDIT_INITIALIZED;
1130 audit_enabled = audit_default;
1131 audit_ever_enabled |= !!audit_default;
1133 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL, "initialized");
1135 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1136 INIT_LIST_HEAD(&audit_inode_hash[i]);
1138 return 0;
1140 __initcall(audit_init);
1142 /* Process kernel command-line parameter at boot time. audit=0 or audit=1. */
1143 static int __init audit_enable(char *str)
1145 audit_default = !!simple_strtol(str, NULL, 0);
1146 if (!audit_default)
1147 audit_initialized = AUDIT_DISABLED;
1149 pr_info("audit: %s\n", audit_default ?
1150 "enabled (after initialization)" : "disabled (until reboot)");
1152 return 1;
1154 __setup("audit=", audit_enable);
1156 /* Process kernel command-line parameter at boot time.
1157 * audit_backlog_limit=<n> */
1158 static int __init audit_backlog_limit_set(char *str)
1160 long int audit_backlog_limit_arg;
1161 pr_info("audit_backlog_limit: ");
1162 if (kstrtol(str, 0, &audit_backlog_limit_arg)) {
1163 printk("using default of %d, unable to parse %s\n",
1164 audit_backlog_limit, str);
1165 return 1;
1167 if (audit_backlog_limit_arg >= 0)
1168 audit_backlog_limit = (int)audit_backlog_limit_arg;
1169 printk("%d\n", audit_backlog_limit);
1171 return 1;
1173 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1175 static void audit_buffer_free(struct audit_buffer *ab)
1177 unsigned long flags;
1179 if (!ab)
1180 return;
1182 if (ab->skb)
1183 kfree_skb(ab->skb);
1185 spin_lock_irqsave(&audit_freelist_lock, flags);
1186 if (audit_freelist_count > AUDIT_MAXFREE)
1187 kfree(ab);
1188 else {
1189 audit_freelist_count++;
1190 list_add(&ab->list, &audit_freelist);
1192 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1195 static struct audit_buffer * audit_buffer_alloc(struct audit_context *ctx,
1196 gfp_t gfp_mask, int type)
1198 unsigned long flags;
1199 struct audit_buffer *ab = NULL;
1200 struct nlmsghdr *nlh;
1202 spin_lock_irqsave(&audit_freelist_lock, flags);
1203 if (!list_empty(&audit_freelist)) {
1204 ab = list_entry(audit_freelist.next,
1205 struct audit_buffer, list);
1206 list_del(&ab->list);
1207 --audit_freelist_count;
1209 spin_unlock_irqrestore(&audit_freelist_lock, flags);
1211 if (!ab) {
1212 ab = kmalloc(sizeof(*ab), gfp_mask);
1213 if (!ab)
1214 goto err;
1217 ab->ctx = ctx;
1218 ab->gfp_mask = gfp_mask;
1220 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1221 if (!ab->skb)
1222 goto err;
1224 nlh = nlmsg_put(ab->skb, 0, 0, type, 0, 0);
1225 if (!nlh)
1226 goto out_kfree_skb;
1228 return ab;
1230 out_kfree_skb:
1231 kfree_skb(ab->skb);
1232 ab->skb = NULL;
1233 err:
1234 audit_buffer_free(ab);
1235 return NULL;
1239 * audit_serial - compute a serial number for the audit record
1241 * Compute a serial number for the audit record. Audit records are
1242 * written to user-space as soon as they are generated, so a complete
1243 * audit record may be written in several pieces. The timestamp of the
1244 * record and this serial number are used by the user-space tools to
1245 * determine which pieces belong to the same audit record. The
1246 * (timestamp,serial) tuple is unique for each syscall and is live from
1247 * syscall entry to syscall exit.
1249 * NOTE: Another possibility is to store the formatted records off the
1250 * audit context (for those records that have a context), and emit them
1251 * all at syscall exit. However, this could delay the reporting of
1252 * significant errors until syscall exit (or never, if the system
1253 * halts).
1255 unsigned int audit_serial(void)
1257 static DEFINE_SPINLOCK(serial_lock);
1258 static unsigned int serial = 0;
1260 unsigned long flags;
1261 unsigned int ret;
1263 spin_lock_irqsave(&serial_lock, flags);
1264 do {
1265 ret = ++serial;
1266 } while (unlikely(!ret));
1267 spin_unlock_irqrestore(&serial_lock, flags);
1269 return ret;
1272 static inline void audit_get_stamp(struct audit_context *ctx,
1273 struct timespec *t, unsigned int *serial)
1275 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1276 *t = CURRENT_TIME;
1277 *serial = audit_serial();
1282 * Wait for auditd to drain the queue a little
1284 static unsigned long wait_for_auditd(unsigned long sleep_time)
1286 unsigned long timeout = sleep_time;
1287 DECLARE_WAITQUEUE(wait, current);
1288 set_current_state(TASK_UNINTERRUPTIBLE);
1289 add_wait_queue_exclusive(&audit_backlog_wait, &wait);
1291 if (audit_backlog_limit &&
1292 skb_queue_len(&audit_skb_queue) > audit_backlog_limit)
1293 timeout = schedule_timeout(sleep_time);
1295 __set_current_state(TASK_RUNNING);
1296 remove_wait_queue(&audit_backlog_wait, &wait);
1298 return timeout;
1302 * audit_log_start - obtain an audit buffer
1303 * @ctx: audit_context (may be NULL)
1304 * @gfp_mask: type of allocation
1305 * @type: audit message type
1307 * Returns audit_buffer pointer on success or NULL on error.
1309 * Obtain an audit buffer. This routine does locking to obtain the
1310 * audit buffer, but then no locking is required for calls to
1311 * audit_log_*format. If the task (ctx) is a task that is currently in a
1312 * syscall, then the syscall is marked as auditable and an audit record
1313 * will be written at syscall exit. If there is no associated task, then
1314 * task context (ctx) should be NULL.
1316 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1317 int type)
1319 struct audit_buffer *ab = NULL;
1320 struct timespec t;
1321 unsigned int uninitialized_var(serial);
1322 int reserve = 5; /* Allow atomic callers to go up to five
1323 entries over the normal backlog limit */
1324 unsigned long timeout_start = jiffies;
1326 if (audit_initialized != AUDIT_INITIALIZED)
1327 return NULL;
1329 if (unlikely(audit_filter_type(type)))
1330 return NULL;
1332 if (gfp_mask & __GFP_WAIT) {
1333 if (audit_pid && audit_pid == current->pid)
1334 gfp_mask &= ~__GFP_WAIT;
1335 else
1336 reserve = 0;
1339 while (audit_backlog_limit
1340 && skb_queue_len(&audit_skb_queue) > audit_backlog_limit + reserve) {
1341 if (gfp_mask & __GFP_WAIT && audit_backlog_wait_time) {
1342 unsigned long sleep_time;
1344 sleep_time = timeout_start + audit_backlog_wait_time -
1345 jiffies;
1346 if ((long)sleep_time > 0) {
1347 sleep_time = wait_for_auditd(sleep_time);
1348 if ((long)sleep_time > 0)
1349 continue;
1352 if (audit_rate_check() && printk_ratelimit())
1353 printk(KERN_WARNING
1354 "audit: audit_backlog=%d > "
1355 "audit_backlog_limit=%d\n",
1356 skb_queue_len(&audit_skb_queue),
1357 audit_backlog_limit);
1358 audit_log_lost("backlog limit exceeded");
1359 audit_backlog_wait_time = audit_backlog_wait_overflow;
1360 wake_up(&audit_backlog_wait);
1361 return NULL;
1364 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
1366 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1367 if (!ab) {
1368 audit_log_lost("out of memory in audit_log_start");
1369 return NULL;
1372 audit_get_stamp(ab->ctx, &t, &serial);
1374 audit_log_format(ab, "audit(%lu.%03lu:%u): ",
1375 t.tv_sec, t.tv_nsec/1000000, serial);
1376 return ab;
1380 * audit_expand - expand skb in the audit buffer
1381 * @ab: audit_buffer
1382 * @extra: space to add at tail of the skb
1384 * Returns 0 (no space) on failed expansion, or available space if
1385 * successful.
1387 static inline int audit_expand(struct audit_buffer *ab, int extra)
1389 struct sk_buff *skb = ab->skb;
1390 int oldtail = skb_tailroom(skb);
1391 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1392 int newtail = skb_tailroom(skb);
1394 if (ret < 0) {
1395 audit_log_lost("out of memory in audit_expand");
1396 return 0;
1399 skb->truesize += newtail - oldtail;
1400 return newtail;
1404 * Format an audit message into the audit buffer. If there isn't enough
1405 * room in the audit buffer, more room will be allocated and vsnprint
1406 * will be called a second time. Currently, we assume that a printk
1407 * can't format message larger than 1024 bytes, so we don't either.
1409 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1410 va_list args)
1412 int len, avail;
1413 struct sk_buff *skb;
1414 va_list args2;
1416 if (!ab)
1417 return;
1419 BUG_ON(!ab->skb);
1420 skb = ab->skb;
1421 avail = skb_tailroom(skb);
1422 if (avail == 0) {
1423 avail = audit_expand(ab, AUDIT_BUFSIZ);
1424 if (!avail)
1425 goto out;
1427 va_copy(args2, args);
1428 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1429 if (len >= avail) {
1430 /* The printk buffer is 1024 bytes long, so if we get
1431 * here and AUDIT_BUFSIZ is at least 1024, then we can
1432 * log everything that printk could have logged. */
1433 avail = audit_expand(ab,
1434 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1435 if (!avail)
1436 goto out_va_end;
1437 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1439 if (len > 0)
1440 skb_put(skb, len);
1441 out_va_end:
1442 va_end(args2);
1443 out:
1444 return;
1448 * audit_log_format - format a message into the audit buffer.
1449 * @ab: audit_buffer
1450 * @fmt: format string
1451 * @...: optional parameters matching @fmt string
1453 * All the work is done in audit_log_vformat.
1455 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1457 va_list args;
1459 if (!ab)
1460 return;
1461 va_start(args, fmt);
1462 audit_log_vformat(ab, fmt, args);
1463 va_end(args);
1467 * audit_log_hex - convert a buffer to hex and append it to the audit skb
1468 * @ab: the audit_buffer
1469 * @buf: buffer to convert to hex
1470 * @len: length of @buf to be converted
1472 * No return value; failure to expand is silently ignored.
1474 * This function will take the passed buf and convert it into a string of
1475 * ascii hex digits. The new string is placed onto the skb.
1477 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1478 size_t len)
1480 int i, avail, new_len;
1481 unsigned char *ptr;
1482 struct sk_buff *skb;
1483 static const unsigned char *hex = "0123456789ABCDEF";
1485 if (!ab)
1486 return;
1488 BUG_ON(!ab->skb);
1489 skb = ab->skb;
1490 avail = skb_tailroom(skb);
1491 new_len = len<<1;
1492 if (new_len >= avail) {
1493 /* Round the buffer request up to the next multiple */
1494 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1495 avail = audit_expand(ab, new_len);
1496 if (!avail)
1497 return;
1500 ptr = skb_tail_pointer(skb);
1501 for (i=0; i<len; i++) {
1502 *ptr++ = hex[(buf[i] & 0xF0)>>4]; /* Upper nibble */
1503 *ptr++ = hex[buf[i] & 0x0F]; /* Lower nibble */
1505 *ptr = 0;
1506 skb_put(skb, len << 1); /* new string is twice the old string */
1510 * Format a string of no more than slen characters into the audit buffer,
1511 * enclosed in quote marks.
1513 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1514 size_t slen)
1516 int avail, new_len;
1517 unsigned char *ptr;
1518 struct sk_buff *skb;
1520 if (!ab)
1521 return;
1523 BUG_ON(!ab->skb);
1524 skb = ab->skb;
1525 avail = skb_tailroom(skb);
1526 new_len = slen + 3; /* enclosing quotes + null terminator */
1527 if (new_len > avail) {
1528 avail = audit_expand(ab, new_len);
1529 if (!avail)
1530 return;
1532 ptr = skb_tail_pointer(skb);
1533 *ptr++ = '"';
1534 memcpy(ptr, string, slen);
1535 ptr += slen;
1536 *ptr++ = '"';
1537 *ptr = 0;
1538 skb_put(skb, slen + 2); /* don't include null terminator */
1542 * audit_string_contains_control - does a string need to be logged in hex
1543 * @string: string to be checked
1544 * @len: max length of the string to check
1546 int audit_string_contains_control(const char *string, size_t len)
1548 const unsigned char *p;
1549 for (p = string; p < (const unsigned char *)string + len; p++) {
1550 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1551 return 1;
1553 return 0;
1557 * audit_log_n_untrustedstring - log a string that may contain random characters
1558 * @ab: audit_buffer
1559 * @len: length of string (not including trailing null)
1560 * @string: string to be logged
1562 * This code will escape a string that is passed to it if the string
1563 * contains a control character, unprintable character, double quote mark,
1564 * or a space. Unescaped strings will start and end with a double quote mark.
1565 * Strings that are escaped are printed in hex (2 digits per char).
1567 * The caller specifies the number of characters in the string to log, which may
1568 * or may not be the entire string.
1570 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1571 size_t len)
1573 if (audit_string_contains_control(string, len))
1574 audit_log_n_hex(ab, string, len);
1575 else
1576 audit_log_n_string(ab, string, len);
1580 * audit_log_untrustedstring - log a string that may contain random characters
1581 * @ab: audit_buffer
1582 * @string: string to be logged
1584 * Same as audit_log_n_untrustedstring(), except that strlen is used to
1585 * determine string length.
1587 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
1589 audit_log_n_untrustedstring(ab, string, strlen(string));
1592 /* This is a helper-function to print the escaped d_path */
1593 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
1594 const struct path *path)
1596 char *p, *pathname;
1598 if (prefix)
1599 audit_log_format(ab, "%s", prefix);
1601 /* We will allow 11 spaces for ' (deleted)' to be appended */
1602 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
1603 if (!pathname) {
1604 audit_log_string(ab, "<no_memory>");
1605 return;
1607 p = d_path(path, pathname, PATH_MAX+11);
1608 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
1609 /* FIXME: can we save some information here? */
1610 audit_log_string(ab, "<too_long>");
1611 } else
1612 audit_log_untrustedstring(ab, p);
1613 kfree(pathname);
1616 void audit_log_session_info(struct audit_buffer *ab)
1618 unsigned int sessionid = audit_get_sessionid(current);
1619 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
1621 audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
1624 void audit_log_key(struct audit_buffer *ab, char *key)
1626 audit_log_format(ab, " key=");
1627 if (key)
1628 audit_log_untrustedstring(ab, key);
1629 else
1630 audit_log_format(ab, "(null)");
1633 void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1635 int i;
1637 audit_log_format(ab, " %s=", prefix);
1638 CAP_FOR_EACH_U32(i) {
1639 audit_log_format(ab, "%08x",
1640 cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1644 void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1646 kernel_cap_t *perm = &name->fcap.permitted;
1647 kernel_cap_t *inh = &name->fcap.inheritable;
1648 int log = 0;
1650 if (!cap_isclear(*perm)) {
1651 audit_log_cap(ab, "cap_fp", perm);
1652 log = 1;
1654 if (!cap_isclear(*inh)) {
1655 audit_log_cap(ab, "cap_fi", inh);
1656 log = 1;
1659 if (log)
1660 audit_log_format(ab, " cap_fe=%d cap_fver=%x",
1661 name->fcap.fE, name->fcap_ver);
1664 static inline int audit_copy_fcaps(struct audit_names *name,
1665 const struct dentry *dentry)
1667 struct cpu_vfs_cap_data caps;
1668 int rc;
1670 if (!dentry)
1671 return 0;
1673 rc = get_vfs_caps_from_disk(dentry, &caps);
1674 if (rc)
1675 return rc;
1677 name->fcap.permitted = caps.permitted;
1678 name->fcap.inheritable = caps.inheritable;
1679 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1680 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
1681 VFS_CAP_REVISION_SHIFT;
1683 return 0;
1686 /* Copy inode data into an audit_names. */
1687 void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1688 const struct inode *inode)
1690 name->ino = inode->i_ino;
1691 name->dev = inode->i_sb->s_dev;
1692 name->mode = inode->i_mode;
1693 name->uid = inode->i_uid;
1694 name->gid = inode->i_gid;
1695 name->rdev = inode->i_rdev;
1696 security_inode_getsecid(inode, &name->osid);
1697 audit_copy_fcaps(name, dentry);
1701 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1702 * @context: audit_context for the task
1703 * @n: audit_names structure with reportable details
1704 * @path: optional path to report instead of audit_names->name
1705 * @record_num: record number to report when handling a list of names
1706 * @call_panic: optional pointer to int that will be updated if secid fails
1708 void audit_log_name(struct audit_context *context, struct audit_names *n,
1709 struct path *path, int record_num, int *call_panic)
1711 struct audit_buffer *ab;
1712 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1713 if (!ab)
1714 return;
1716 audit_log_format(ab, "item=%d", record_num);
1718 if (path)
1719 audit_log_d_path(ab, " name=", path);
1720 else if (n->name) {
1721 switch (n->name_len) {
1722 case AUDIT_NAME_FULL:
1723 /* log the full path */
1724 audit_log_format(ab, " name=");
1725 audit_log_untrustedstring(ab, n->name->name);
1726 break;
1727 case 0:
1728 /* name was specified as a relative path and the
1729 * directory component is the cwd */
1730 audit_log_d_path(ab, " name=", &context->pwd);
1731 break;
1732 default:
1733 /* log the name's directory component */
1734 audit_log_format(ab, " name=");
1735 audit_log_n_untrustedstring(ab, n->name->name,
1736 n->name_len);
1738 } else
1739 audit_log_format(ab, " name=(null)");
1741 if (n->ino != (unsigned long)-1) {
1742 audit_log_format(ab, " inode=%lu"
1743 " dev=%02x:%02x mode=%#ho"
1744 " ouid=%u ogid=%u rdev=%02x:%02x",
1745 n->ino,
1746 MAJOR(n->dev),
1747 MINOR(n->dev),
1748 n->mode,
1749 from_kuid(&init_user_ns, n->uid),
1750 from_kgid(&init_user_ns, n->gid),
1751 MAJOR(n->rdev),
1752 MINOR(n->rdev));
1754 if (n->osid != 0) {
1755 char *ctx = NULL;
1756 u32 len;
1757 if (security_secid_to_secctx(
1758 n->osid, &ctx, &len)) {
1759 audit_log_format(ab, " osid=%u", n->osid);
1760 if (call_panic)
1761 *call_panic = 2;
1762 } else {
1763 audit_log_format(ab, " obj=%s", ctx);
1764 security_release_secctx(ctx, len);
1768 /* log the audit_names record type */
1769 audit_log_format(ab, " nametype=");
1770 switch(n->type) {
1771 case AUDIT_TYPE_NORMAL:
1772 audit_log_format(ab, "NORMAL");
1773 break;
1774 case AUDIT_TYPE_PARENT:
1775 audit_log_format(ab, "PARENT");
1776 break;
1777 case AUDIT_TYPE_CHILD_DELETE:
1778 audit_log_format(ab, "DELETE");
1779 break;
1780 case AUDIT_TYPE_CHILD_CREATE:
1781 audit_log_format(ab, "CREATE");
1782 break;
1783 default:
1784 audit_log_format(ab, "UNKNOWN");
1785 break;
1788 audit_log_fcaps(ab, n);
1789 audit_log_end(ab);
1792 int audit_log_task_context(struct audit_buffer *ab)
1794 char *ctx = NULL;
1795 unsigned len;
1796 int error;
1797 u32 sid;
1799 security_task_getsecid(current, &sid);
1800 if (!sid)
1801 return 0;
1803 error = security_secid_to_secctx(sid, &ctx, &len);
1804 if (error) {
1805 if (error != -EINVAL)
1806 goto error_path;
1807 return 0;
1810 audit_log_format(ab, " subj=%s", ctx);
1811 security_release_secctx(ctx, len);
1812 return 0;
1814 error_path:
1815 audit_panic("error in audit_log_task_context");
1816 return error;
1818 EXPORT_SYMBOL(audit_log_task_context);
1820 void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
1822 const struct cred *cred;
1823 char name[sizeof(tsk->comm)];
1824 struct mm_struct *mm = tsk->mm;
1825 char *tty;
1827 if (!ab)
1828 return;
1830 /* tsk == current */
1831 cred = current_cred();
1833 spin_lock_irq(&tsk->sighand->siglock);
1834 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1835 tty = tsk->signal->tty->name;
1836 else
1837 tty = "(none)";
1838 spin_unlock_irq(&tsk->sighand->siglock);
1840 audit_log_format(ab,
1841 " ppid=%ld pid=%d auid=%u uid=%u gid=%u"
1842 " euid=%u suid=%u fsuid=%u"
1843 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1844 sys_getppid(),
1845 tsk->pid,
1846 from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
1847 from_kuid(&init_user_ns, cred->uid),
1848 from_kgid(&init_user_ns, cred->gid),
1849 from_kuid(&init_user_ns, cred->euid),
1850 from_kuid(&init_user_ns, cred->suid),
1851 from_kuid(&init_user_ns, cred->fsuid),
1852 from_kgid(&init_user_ns, cred->egid),
1853 from_kgid(&init_user_ns, cred->sgid),
1854 from_kgid(&init_user_ns, cred->fsgid),
1855 tty, audit_get_sessionid(tsk));
1857 get_task_comm(name, tsk);
1858 audit_log_format(ab, " comm=");
1859 audit_log_untrustedstring(ab, name);
1861 if (mm) {
1862 down_read(&mm->mmap_sem);
1863 if (mm->exe_file)
1864 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
1865 up_read(&mm->mmap_sem);
1866 } else
1867 audit_log_format(ab, " exe=(null)");
1868 audit_log_task_context(ab);
1870 EXPORT_SYMBOL(audit_log_task_info);
1873 * audit_log_link_denied - report a link restriction denial
1874 * @operation: specific link opreation
1875 * @link: the path that triggered the restriction
1877 void audit_log_link_denied(const char *operation, struct path *link)
1879 struct audit_buffer *ab;
1880 struct audit_names *name;
1882 name = kzalloc(sizeof(*name), GFP_NOFS);
1883 if (!name)
1884 return;
1886 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
1887 ab = audit_log_start(current->audit_context, GFP_KERNEL,
1888 AUDIT_ANOM_LINK);
1889 if (!ab)
1890 goto out;
1891 audit_log_format(ab, "op=%s", operation);
1892 audit_log_task_info(ab, current);
1893 audit_log_format(ab, " res=0");
1894 audit_log_end(ab);
1896 /* Generate AUDIT_PATH record with object. */
1897 name->type = AUDIT_TYPE_NORMAL;
1898 audit_copy_inode(name, link->dentry, link->dentry->d_inode);
1899 audit_log_name(current->audit_context, name, link, 0, NULL);
1900 out:
1901 kfree(name);
1905 * audit_log_end - end one audit record
1906 * @ab: the audit_buffer
1908 * The netlink_* functions cannot be called inside an irq context, so
1909 * the audit buffer is placed on a queue and a tasklet is scheduled to
1910 * remove them from the queue outside the irq context. May be called in
1911 * any context.
1913 void audit_log_end(struct audit_buffer *ab)
1915 if (!ab)
1916 return;
1917 if (!audit_rate_check()) {
1918 audit_log_lost("rate limit exceeded");
1919 } else {
1920 struct nlmsghdr *nlh = nlmsg_hdr(ab->skb);
1921 nlh->nlmsg_len = ab->skb->len - NLMSG_HDRLEN;
1923 if (audit_pid) {
1924 skb_queue_tail(&audit_skb_queue, ab->skb);
1925 wake_up_interruptible(&kauditd_wait);
1926 } else {
1927 audit_printk_skb(ab->skb);
1929 ab->skb = NULL;
1931 audit_buffer_free(ab);
1935 * audit_log - Log an audit record
1936 * @ctx: audit context
1937 * @gfp_mask: type of allocation
1938 * @type: audit message type
1939 * @fmt: format string to use
1940 * @...: variable parameters matching the format string
1942 * This is a convenience function that calls audit_log_start,
1943 * audit_log_vformat, and audit_log_end. It may be called
1944 * in any context.
1946 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
1947 const char *fmt, ...)
1949 struct audit_buffer *ab;
1950 va_list args;
1952 ab = audit_log_start(ctx, gfp_mask, type);
1953 if (ab) {
1954 va_start(args, fmt);
1955 audit_log_vformat(ab, fmt, args);
1956 va_end(args);
1957 audit_log_end(ab);
1961 #ifdef CONFIG_SECURITY
1963 * audit_log_secctx - Converts and logs SELinux context
1964 * @ab: audit_buffer
1965 * @secid: security number
1967 * This is a helper function that calls security_secid_to_secctx to convert
1968 * secid to secctx and then adds the (converted) SELinux context to the audit
1969 * log by calling audit_log_format, thus also preventing leak of internal secid
1970 * to userspace. If secid cannot be converted audit_panic is called.
1972 void audit_log_secctx(struct audit_buffer *ab, u32 secid)
1974 u32 len;
1975 char *secctx;
1977 if (security_secid_to_secctx(secid, &secctx, &len)) {
1978 audit_panic("Cannot convert secid to context");
1979 } else {
1980 audit_log_format(ab, " obj=%s", secctx);
1981 security_release_secctx(secctx, len);
1984 EXPORT_SYMBOL(audit_log_secctx);
1985 #endif
1987 EXPORT_SYMBOL(audit_log_start);
1988 EXPORT_SYMBOL(audit_log_end);
1989 EXPORT_SYMBOL(audit_log_format);
1990 EXPORT_SYMBOL(audit_log);