xfs: XFS_IS_REALTIME_INODE() should be false if no rt device present
[linux/fpc-iii.git] / arch / arc / kernel / time.c
blobdbedc576e4cad870e5682750740bc13aa81c9d92
1 /*
2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * vineetg: Jan 1011
9 * -sched_clock( ) no longer jiffies based. Uses the same clocksource
10 * as gtod
12 * Rajeshwarr/Vineetg: Mar 2008
13 * -Implemented CONFIG_GENERIC_TIME (rather deleted arch specific code)
14 * for arch independent gettimeofday()
15 * -Implemented CONFIG_GENERIC_CLOCKEVENTS as base for hrtimers
17 * Vineetg: Mar 2008: Forked off from time.c which now is time-jiff.c
20 /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1
21 * Each can programmed to go from @count to @limit and optionally
22 * interrupt when that happens.
23 * A write to Control Register clears the Interrupt
25 * We've designated TIMER0 for events (clockevents)
26 * while TIMER1 for free running (clocksource)
28 * Newer ARC700 cores have 64bit clk fetching RTSC insn, preferred over TIMER1
29 * which however is currently broken
32 #include <linux/spinlock.h>
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/sched.h>
36 #include <linux/kernel.h>
37 #include <linux/time.h>
38 #include <linux/init.h>
39 #include <linux/timex.h>
40 #include <linux/profile.h>
41 #include <linux/clocksource.h>
42 #include <linux/clockchips.h>
43 #include <asm/irq.h>
44 #include <asm/arcregs.h>
45 #include <asm/clk.h>
46 #include <asm/mach_desc.h>
48 #include <asm/mcip.h>
50 /* Timer related Aux registers */
51 #define ARC_REG_TIMER0_LIMIT 0x23 /* timer 0 limit */
52 #define ARC_REG_TIMER0_CTRL 0x22 /* timer 0 control */
53 #define ARC_REG_TIMER0_CNT 0x21 /* timer 0 count */
54 #define ARC_REG_TIMER1_LIMIT 0x102 /* timer 1 limit */
55 #define ARC_REG_TIMER1_CTRL 0x101 /* timer 1 control */
56 #define ARC_REG_TIMER1_CNT 0x100 /* timer 1 count */
58 #define TIMER_CTRL_IE (1 << 0) /* Interupt when Count reachs limit */
59 #define TIMER_CTRL_NH (1 << 1) /* Count only when CPU NOT halted */
61 #define ARC_TIMER_MAX 0xFFFFFFFF
63 /********** Clock Source Device *********/
65 #ifdef CONFIG_ARC_HAS_GRTC
67 static int arc_counter_setup(void)
69 return 1;
72 static cycle_t arc_counter_read(struct clocksource *cs)
74 unsigned long flags;
75 union {
76 #ifdef CONFIG_CPU_BIG_ENDIAN
77 struct { u32 h, l; };
78 #else
79 struct { u32 l, h; };
80 #endif
81 cycle_t full;
82 } stamp;
84 local_irq_save(flags);
86 __mcip_cmd(CMD_GRTC_READ_LO, 0);
87 stamp.l = read_aux_reg(ARC_REG_MCIP_READBACK);
89 __mcip_cmd(CMD_GRTC_READ_HI, 0);
90 stamp.h = read_aux_reg(ARC_REG_MCIP_READBACK);
92 local_irq_restore(flags);
94 return stamp.full;
97 static struct clocksource arc_counter = {
98 .name = "ARConnect GRTC",
99 .rating = 400,
100 .read = arc_counter_read,
101 .mask = CLOCKSOURCE_MASK(64),
102 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
105 #else
107 #ifdef CONFIG_ARC_HAS_RTC
109 #define AUX_RTC_CTRL 0x103
110 #define AUX_RTC_LOW 0x104
111 #define AUX_RTC_HIGH 0x105
113 int arc_counter_setup(void)
115 write_aux_reg(AUX_RTC_CTRL, 1);
117 /* Not usable in SMP */
118 return !IS_ENABLED(CONFIG_SMP);
121 static cycle_t arc_counter_read(struct clocksource *cs)
123 unsigned long status;
124 union {
125 #ifdef CONFIG_CPU_BIG_ENDIAN
126 struct { u32 high, low; };
127 #else
128 struct { u32 low, high; };
129 #endif
130 cycle_t full;
131 } stamp;
134 * hardware has an internal state machine which tracks readout of
135 * low/high and updates the CTRL.status if
136 * - interrupt/exception taken between the two reads
137 * - high increments after low has been read
139 do {
140 stamp.low = read_aux_reg(AUX_RTC_LOW);
141 stamp.high = read_aux_reg(AUX_RTC_HIGH);
142 status = read_aux_reg(AUX_RTC_CTRL);
143 } while (!(status & _BITUL(31)));
145 return stamp.full;
148 static struct clocksource arc_counter = {
149 .name = "ARCv2 RTC",
150 .rating = 350,
151 .read = arc_counter_read,
152 .mask = CLOCKSOURCE_MASK(64),
153 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
156 #else /* !CONFIG_ARC_HAS_RTC */
159 * set 32bit TIMER1 to keep counting monotonically and wraparound
161 int arc_counter_setup(void)
163 write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMER_MAX);
164 write_aux_reg(ARC_REG_TIMER1_CNT, 0);
165 write_aux_reg(ARC_REG_TIMER1_CTRL, TIMER_CTRL_NH);
167 /* Not usable in SMP */
168 return !IS_ENABLED(CONFIG_SMP);
171 static cycle_t arc_counter_read(struct clocksource *cs)
173 return (cycle_t) read_aux_reg(ARC_REG_TIMER1_CNT);
176 static struct clocksource arc_counter = {
177 .name = "ARC Timer1",
178 .rating = 300,
179 .read = arc_counter_read,
180 .mask = CLOCKSOURCE_MASK(32),
181 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
184 #endif
185 #endif
187 /********** Clock Event Device *********/
190 * Arm the timer to interrupt after @cycles
191 * The distinction for oneshot/periodic is done in arc_event_timer_ack() below
193 static void arc_timer_event_setup(unsigned int cycles)
195 write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles);
196 write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */
198 write_aux_reg(ARC_REG_TIMER0_CTRL, TIMER_CTRL_IE | TIMER_CTRL_NH);
202 static int arc_clkevent_set_next_event(unsigned long delta,
203 struct clock_event_device *dev)
205 arc_timer_event_setup(delta);
206 return 0;
209 static int arc_clkevent_set_periodic(struct clock_event_device *dev)
212 * At X Hz, 1 sec = 1000ms -> X cycles;
213 * 10ms -> X / 100 cycles
215 arc_timer_event_setup(arc_get_core_freq() / HZ);
216 return 0;
219 static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = {
220 .name = "ARC Timer0",
221 .features = CLOCK_EVT_FEAT_ONESHOT |
222 CLOCK_EVT_FEAT_PERIODIC,
223 .rating = 300,
224 .irq = TIMER0_IRQ, /* hardwired, no need for resources */
225 .set_next_event = arc_clkevent_set_next_event,
226 .set_state_periodic = arc_clkevent_set_periodic,
229 static irqreturn_t timer_irq_handler(int irq, void *dev_id)
232 * Note that generic IRQ core could have passed @evt for @dev_id if
233 * irq_set_chip_and_handler() asked for handle_percpu_devid_irq()
235 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
236 int irq_reenable = clockevent_state_periodic(evt);
239 * Any write to CTRL reg ACks the interrupt, we rewrite the
240 * Count when [N]ot [H]alted bit.
241 * And re-arm it if perioid by [I]nterrupt [E]nable bit
243 write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | TIMER_CTRL_NH);
245 evt->event_handler(evt);
247 return IRQ_HANDLED;
251 * Setup the local event timer for @cpu
253 void arc_local_timer_setup()
255 struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device);
256 int cpu = smp_processor_id();
258 evt->cpumask = cpumask_of(cpu);
259 clockevents_config_and_register(evt, arc_get_core_freq(),
260 0, ARC_TIMER_MAX);
262 /* setup the per-cpu timer IRQ handler - for all cpus */
263 arc_request_percpu_irq(TIMER0_IRQ, cpu, timer_irq_handler,
264 "Timer0 (per-cpu-tick)", evt);
268 * Called from start_kernel() - boot CPU only
270 * -Sets up h/w timers as applicable on boot cpu
271 * -Also sets up any global state needed for timer subsystem:
272 * - for "counting" timer, registers a clocksource, usable across CPUs
273 * (provided that underlying counter h/w is synchronized across cores)
274 * - for "event" timer, sets up TIMER0 IRQ (as that is platform agnostic)
276 void __init time_init(void)
279 * sets up the timekeeping free-flowing counter which also returns
280 * whether the counter is usable as clocksource
282 if (arc_counter_setup())
284 * CLK upto 4.29 GHz can be safely represented in 32 bits
285 * because Max 32 bit number is 4,294,967,295
287 clocksource_register_hz(&arc_counter, arc_get_core_freq());
289 /* sets up the periodic event timer */
290 arc_local_timer_setup();