xfs: XFS_IS_REALTIME_INODE() should be false if no rt device present
[linux/fpc-iii.git] / arch / sparc / kernel / smp_64.c
blob4511caa3b7e91021ce410bdce0998e6b446e7578
1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
6 #include <linux/export.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ftrace.h>
26 #include <linux/cpu.h>
27 #include <linux/slab.h>
28 #include <linux/kgdb.h>
30 #include <asm/head.h>
31 #include <asm/ptrace.h>
32 #include <linux/atomic.h>
33 #include <asm/tlbflush.h>
34 #include <asm/mmu_context.h>
35 #include <asm/cpudata.h>
36 #include <asm/hvtramp.h>
37 #include <asm/io.h>
38 #include <asm/timer.h>
39 #include <asm/setup.h>
41 #include <asm/irq.h>
42 #include <asm/irq_regs.h>
43 #include <asm/page.h>
44 #include <asm/pgtable.h>
45 #include <asm/oplib.h>
46 #include <asm/uaccess.h>
47 #include <asm/starfire.h>
48 #include <asm/tlb.h>
49 #include <asm/sections.h>
50 #include <asm/prom.h>
51 #include <asm/mdesc.h>
52 #include <asm/ldc.h>
53 #include <asm/hypervisor.h>
54 #include <asm/pcr.h>
56 #include "cpumap.h"
57 #include "kernel.h"
59 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
63 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
66 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
67 EXPORT_SYMBOL(cpu_core_map);
68 EXPORT_SYMBOL(cpu_core_sib_map);
70 static cpumask_t smp_commenced_mask;
72 void smp_info(struct seq_file *m)
74 int i;
76 seq_printf(m, "State:\n");
77 for_each_online_cpu(i)
78 seq_printf(m, "CPU%d:\t\tonline\n", i);
81 void smp_bogo(struct seq_file *m)
83 int i;
85 for_each_online_cpu(i)
86 seq_printf(m,
87 "Cpu%dClkTck\t: %016lx\n",
88 i, cpu_data(i).clock_tick);
91 extern void setup_sparc64_timer(void);
93 static volatile unsigned long callin_flag = 0;
95 void smp_callin(void)
97 int cpuid = hard_smp_processor_id();
99 __local_per_cpu_offset = __per_cpu_offset(cpuid);
101 if (tlb_type == hypervisor)
102 sun4v_ktsb_register();
104 __flush_tlb_all();
106 setup_sparc64_timer();
108 if (cheetah_pcache_forced_on)
109 cheetah_enable_pcache();
111 callin_flag = 1;
112 __asm__ __volatile__("membar #Sync\n\t"
113 "flush %%g6" : : : "memory");
115 /* Clear this or we will die instantly when we
116 * schedule back to this idler...
118 current_thread_info()->new_child = 0;
120 /* Attach to the address space of init_task. */
121 atomic_inc(&init_mm.mm_count);
122 current->active_mm = &init_mm;
124 /* inform the notifiers about the new cpu */
125 notify_cpu_starting(cpuid);
127 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
128 rmb();
130 set_cpu_online(cpuid, true);
132 /* idle thread is expected to have preempt disabled */
133 preempt_disable();
135 local_irq_enable();
137 cpu_startup_entry(CPUHP_ONLINE);
140 void cpu_panic(void)
142 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
143 panic("SMP bolixed\n");
146 /* This tick register synchronization scheme is taken entirely from
147 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
149 * The only change I've made is to rework it so that the master
150 * initiates the synchonization instead of the slave. -DaveM
153 #define MASTER 0
154 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
156 #define NUM_ROUNDS 64 /* magic value */
157 #define NUM_ITERS 5 /* likewise */
159 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
160 static unsigned long go[SLAVE + 1];
162 #define DEBUG_TICK_SYNC 0
164 static inline long get_delta (long *rt, long *master)
166 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
167 unsigned long tcenter, t0, t1, tm;
168 unsigned long i;
170 for (i = 0; i < NUM_ITERS; i++) {
171 t0 = tick_ops->get_tick();
172 go[MASTER] = 1;
173 membar_safe("#StoreLoad");
174 while (!(tm = go[SLAVE]))
175 rmb();
176 go[SLAVE] = 0;
177 wmb();
178 t1 = tick_ops->get_tick();
180 if (t1 - t0 < best_t1 - best_t0)
181 best_t0 = t0, best_t1 = t1, best_tm = tm;
184 *rt = best_t1 - best_t0;
185 *master = best_tm - best_t0;
187 /* average best_t0 and best_t1 without overflow: */
188 tcenter = (best_t0/2 + best_t1/2);
189 if (best_t0 % 2 + best_t1 % 2 == 2)
190 tcenter++;
191 return tcenter - best_tm;
194 void smp_synchronize_tick_client(void)
196 long i, delta, adj, adjust_latency = 0, done = 0;
197 unsigned long flags, rt, master_time_stamp;
198 #if DEBUG_TICK_SYNC
199 struct {
200 long rt; /* roundtrip time */
201 long master; /* master's timestamp */
202 long diff; /* difference between midpoint and master's timestamp */
203 long lat; /* estimate of itc adjustment latency */
204 } t[NUM_ROUNDS];
205 #endif
207 go[MASTER] = 1;
209 while (go[MASTER])
210 rmb();
212 local_irq_save(flags);
214 for (i = 0; i < NUM_ROUNDS; i++) {
215 delta = get_delta(&rt, &master_time_stamp);
216 if (delta == 0)
217 done = 1; /* let's lock on to this... */
219 if (!done) {
220 if (i > 0) {
221 adjust_latency += -delta;
222 adj = -delta + adjust_latency/4;
223 } else
224 adj = -delta;
226 tick_ops->add_tick(adj);
228 #if DEBUG_TICK_SYNC
229 t[i].rt = rt;
230 t[i].master = master_time_stamp;
231 t[i].diff = delta;
232 t[i].lat = adjust_latency/4;
233 #endif
236 local_irq_restore(flags);
238 #if DEBUG_TICK_SYNC
239 for (i = 0; i < NUM_ROUNDS; i++)
240 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
241 t[i].rt, t[i].master, t[i].diff, t[i].lat);
242 #endif
244 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
245 "(last diff %ld cycles, maxerr %lu cycles)\n",
246 smp_processor_id(), delta, rt);
249 static void smp_start_sync_tick_client(int cpu);
251 static void smp_synchronize_one_tick(int cpu)
253 unsigned long flags, i;
255 go[MASTER] = 0;
257 smp_start_sync_tick_client(cpu);
259 /* wait for client to be ready */
260 while (!go[MASTER])
261 rmb();
263 /* now let the client proceed into his loop */
264 go[MASTER] = 0;
265 membar_safe("#StoreLoad");
267 raw_spin_lock_irqsave(&itc_sync_lock, flags);
269 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
270 while (!go[MASTER])
271 rmb();
272 go[MASTER] = 0;
273 wmb();
274 go[SLAVE] = tick_ops->get_tick();
275 membar_safe("#StoreLoad");
278 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
281 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
282 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
283 void **descrp)
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
287 struct hvtramp_descr *hdesc;
288 unsigned long trampoline_ra;
289 struct trap_per_cpu *tb;
290 u64 tte_vaddr, tte_data;
291 unsigned long hv_err;
292 int i;
294 hdesc = kzalloc(sizeof(*hdesc) +
295 (sizeof(struct hvtramp_mapping) *
296 num_kernel_image_mappings - 1),
297 GFP_KERNEL);
298 if (!hdesc) {
299 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
300 "hvtramp_descr.\n");
301 return;
303 *descrp = hdesc;
305 hdesc->cpu = cpu;
306 hdesc->num_mappings = num_kernel_image_mappings;
308 tb = &trap_block[cpu];
310 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
313 hdesc->thread_reg = thread_reg;
315 tte_vaddr = (unsigned long) KERNBASE;
316 tte_data = kern_locked_tte_data;
318 for (i = 0; i < hdesc->num_mappings; i++) {
319 hdesc->maps[i].vaddr = tte_vaddr;
320 hdesc->maps[i].tte = tte_data;
321 tte_vaddr += 0x400000;
322 tte_data += 0x400000;
325 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
327 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328 kimage_addr_to_ra(&sparc64_ttable_tl0),
329 __pa(hdesc));
330 if (hv_err)
331 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332 "gives error %lu\n", hv_err);
334 #endif
336 extern unsigned long sparc64_cpu_startup;
338 /* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
342 static struct thread_info *cpu_new_thread = NULL;
344 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
346 unsigned long entry =
347 (unsigned long)(&sparc64_cpu_startup);
348 unsigned long cookie =
349 (unsigned long)(&cpu_new_thread);
350 void *descr = NULL;
351 int timeout, ret;
353 callin_flag = 0;
354 cpu_new_thread = task_thread_info(idle);
356 if (tlb_type == hypervisor) {
357 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
358 if (ldom_domaining_enabled)
359 ldom_startcpu_cpuid(cpu,
360 (unsigned long) cpu_new_thread,
361 &descr);
362 else
363 #endif
364 prom_startcpu_cpuid(cpu, entry, cookie);
365 } else {
366 struct device_node *dp = of_find_node_by_cpuid(cpu);
368 prom_startcpu(dp->phandle, entry, cookie);
371 for (timeout = 0; timeout < 50000; timeout++) {
372 if (callin_flag)
373 break;
374 udelay(100);
377 if (callin_flag) {
378 ret = 0;
379 } else {
380 printk("Processor %d is stuck.\n", cpu);
381 ret = -ENODEV;
383 cpu_new_thread = NULL;
385 kfree(descr);
387 return ret;
390 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
392 u64 result, target;
393 int stuck, tmp;
395 if (this_is_starfire) {
396 /* map to real upaid */
397 cpu = (((cpu & 0x3c) << 1) |
398 ((cpu & 0x40) >> 4) |
399 (cpu & 0x3));
402 target = (cpu << 14) | 0x70;
403 again:
404 /* Ok, this is the real Spitfire Errata #54.
405 * One must read back from a UDB internal register
406 * after writes to the UDB interrupt dispatch, but
407 * before the membar Sync for that write.
408 * So we use the high UDB control register (ASI 0x7f,
409 * ADDR 0x20) for the dummy read. -DaveM
411 tmp = 0x40;
412 __asm__ __volatile__(
413 "wrpr %1, %2, %%pstate\n\t"
414 "stxa %4, [%0] %3\n\t"
415 "stxa %5, [%0+%8] %3\n\t"
416 "add %0, %8, %0\n\t"
417 "stxa %6, [%0+%8] %3\n\t"
418 "membar #Sync\n\t"
419 "stxa %%g0, [%7] %3\n\t"
420 "membar #Sync\n\t"
421 "mov 0x20, %%g1\n\t"
422 "ldxa [%%g1] 0x7f, %%g0\n\t"
423 "membar #Sync"
424 : "=r" (tmp)
425 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
426 "r" (data0), "r" (data1), "r" (data2), "r" (target),
427 "r" (0x10), "0" (tmp)
428 : "g1");
430 /* NOTE: PSTATE_IE is still clear. */
431 stuck = 100000;
432 do {
433 __asm__ __volatile__("ldxa [%%g0] %1, %0"
434 : "=r" (result)
435 : "i" (ASI_INTR_DISPATCH_STAT));
436 if (result == 0) {
437 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
438 : : "r" (pstate));
439 return;
441 stuck -= 1;
442 if (stuck == 0)
443 break;
444 } while (result & 0x1);
445 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446 : : "r" (pstate));
447 if (stuck == 0) {
448 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
449 smp_processor_id(), result);
450 } else {
451 udelay(2);
452 goto again;
456 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
458 u64 *mondo, data0, data1, data2;
459 u16 *cpu_list;
460 u64 pstate;
461 int i;
463 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
464 cpu_list = __va(tb->cpu_list_pa);
465 mondo = __va(tb->cpu_mondo_block_pa);
466 data0 = mondo[0];
467 data1 = mondo[1];
468 data2 = mondo[2];
469 for (i = 0; i < cnt; i++)
470 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
473 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474 * packet, but we have no use for that. However we do take advantage of
475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
477 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
479 int nack_busy_id, is_jbus, need_more;
480 u64 *mondo, pstate, ver, busy_mask;
481 u16 *cpu_list;
483 cpu_list = __va(tb->cpu_list_pa);
484 mondo = __va(tb->cpu_mondo_block_pa);
486 /* Unfortunately, someone at Sun had the brilliant idea to make the
487 * busy/nack fields hard-coded by ITID number for this Ultra-III
488 * derivative processor.
490 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
491 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
492 (ver >> 32) == __SERRANO_ID);
494 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
496 retry:
497 need_more = 0;
498 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
499 : : "r" (pstate), "i" (PSTATE_IE));
501 /* Setup the dispatch data registers. */
502 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
503 "stxa %1, [%4] %6\n\t"
504 "stxa %2, [%5] %6\n\t"
505 "membar #Sync\n\t"
506 : /* no outputs */
507 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
508 "r" (0x40), "r" (0x50), "r" (0x60),
509 "i" (ASI_INTR_W));
511 nack_busy_id = 0;
512 busy_mask = 0;
514 int i;
516 for (i = 0; i < cnt; i++) {
517 u64 target, nr;
519 nr = cpu_list[i];
520 if (nr == 0xffff)
521 continue;
523 target = (nr << 14) | 0x70;
524 if (is_jbus) {
525 busy_mask |= (0x1UL << (nr * 2));
526 } else {
527 target |= (nack_busy_id << 24);
528 busy_mask |= (0x1UL <<
529 (nack_busy_id * 2));
531 __asm__ __volatile__(
532 "stxa %%g0, [%0] %1\n\t"
533 "membar #Sync\n\t"
534 : /* no outputs */
535 : "r" (target), "i" (ASI_INTR_W));
536 nack_busy_id++;
537 if (nack_busy_id == 32) {
538 need_more = 1;
539 break;
544 /* Now, poll for completion. */
546 u64 dispatch_stat, nack_mask;
547 long stuck;
549 stuck = 100000 * nack_busy_id;
550 nack_mask = busy_mask << 1;
551 do {
552 __asm__ __volatile__("ldxa [%%g0] %1, %0"
553 : "=r" (dispatch_stat)
554 : "i" (ASI_INTR_DISPATCH_STAT));
555 if (!(dispatch_stat & (busy_mask | nack_mask))) {
556 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
557 : : "r" (pstate));
558 if (unlikely(need_more)) {
559 int i, this_cnt = 0;
560 for (i = 0; i < cnt; i++) {
561 if (cpu_list[i] == 0xffff)
562 continue;
563 cpu_list[i] = 0xffff;
564 this_cnt++;
565 if (this_cnt == 32)
566 break;
568 goto retry;
570 return;
572 if (!--stuck)
573 break;
574 } while (dispatch_stat & busy_mask);
576 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
577 : : "r" (pstate));
579 if (dispatch_stat & busy_mask) {
580 /* Busy bits will not clear, continue instead
581 * of freezing up on this cpu.
583 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
584 smp_processor_id(), dispatch_stat);
585 } else {
586 int i, this_busy_nack = 0;
588 /* Delay some random time with interrupts enabled
589 * to prevent deadlock.
591 udelay(2 * nack_busy_id);
593 /* Clear out the mask bits for cpus which did not
594 * NACK us.
596 for (i = 0; i < cnt; i++) {
597 u64 check_mask, nr;
599 nr = cpu_list[i];
600 if (nr == 0xffff)
601 continue;
603 if (is_jbus)
604 check_mask = (0x2UL << (2*nr));
605 else
606 check_mask = (0x2UL <<
607 this_busy_nack);
608 if ((dispatch_stat & check_mask) == 0)
609 cpu_list[i] = 0xffff;
610 this_busy_nack += 2;
611 if (this_busy_nack == 64)
612 break;
615 goto retry;
620 #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
621 #define MONDO_USEC_WAIT_MIN 2
622 #define MONDO_USEC_WAIT_MAX 100
623 #define MONDO_RETRY_LIMIT 500000
625 /* Multi-cpu list version.
627 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
628 * Sometimes not all cpus receive the mondo, requiring us to re-send
629 * the mondo until all cpus have received, or cpus are truly stuck
630 * unable to receive mondo, and we timeout.
631 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
632 * perform guest service, such as PCIe error handling. Consider the
633 * service time, 1 second overall wait is reasonable for 1 cpu.
634 * Here two in-between mondo check wait time are defined: 2 usec for
635 * single cpu quick turn around and up to 100usec for large cpu count.
636 * Deliver mondo to large number of cpus could take longer, we adjusts
637 * the retry count as long as target cpus are making forward progress.
639 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
641 int this_cpu, tot_cpus, prev_sent, i, rem;
642 int usec_wait, retries, tot_retries;
643 u16 first_cpu = 0xffff;
644 unsigned long xc_rcvd = 0;
645 unsigned long status;
646 int ecpuerror_id = 0;
647 int enocpu_id = 0;
648 u16 *cpu_list;
649 u16 cpu;
651 this_cpu = smp_processor_id();
652 cpu_list = __va(tb->cpu_list_pa);
653 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
654 if (usec_wait > MONDO_USEC_WAIT_MAX)
655 usec_wait = MONDO_USEC_WAIT_MAX;
656 retries = tot_retries = 0;
657 tot_cpus = cnt;
658 prev_sent = 0;
660 do {
661 int n_sent, mondo_delivered, target_cpu_busy;
663 status = sun4v_cpu_mondo_send(cnt,
664 tb->cpu_list_pa,
665 tb->cpu_mondo_block_pa);
667 /* HV_EOK means all cpus received the xcall, we're done. */
668 if (likely(status == HV_EOK))
669 goto xcall_done;
671 /* If not these non-fatal errors, panic */
672 if (unlikely((status != HV_EWOULDBLOCK) &&
673 (status != HV_ECPUERROR) &&
674 (status != HV_ENOCPU)))
675 goto fatal_errors;
677 /* First, see if we made any forward progress.
679 * Go through the cpu_list, count the target cpus that have
680 * received our mondo (n_sent), and those that did not (rem).
681 * Re-pack cpu_list with the cpus remain to be retried in the
682 * front - this simplifies tracking the truly stalled cpus.
684 * The hypervisor indicates successful sends by setting
685 * cpu list entries to the value 0xffff.
687 * EWOULDBLOCK means some target cpus did not receive the
688 * mondo and retry usually helps.
690 * ECPUERROR means at least one target cpu is in error state,
691 * it's usually safe to skip the faulty cpu and retry.
693 * ENOCPU means one of the target cpu doesn't belong to the
694 * domain, perhaps offlined which is unexpected, but not
695 * fatal and it's okay to skip the offlined cpu.
697 rem = 0;
698 n_sent = 0;
699 for (i = 0; i < cnt; i++) {
700 cpu = cpu_list[i];
701 if (likely(cpu == 0xffff)) {
702 n_sent++;
703 } else if ((status == HV_ECPUERROR) &&
704 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
705 ecpuerror_id = cpu + 1;
706 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
707 enocpu_id = cpu + 1;
708 } else {
709 cpu_list[rem++] = cpu;
713 /* No cpu remained, we're done. */
714 if (rem == 0)
715 break;
717 /* Otherwise, update the cpu count for retry. */
718 cnt = rem;
720 /* Record the overall number of mondos received by the
721 * first of the remaining cpus.
723 if (first_cpu != cpu_list[0]) {
724 first_cpu = cpu_list[0];
725 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
728 /* Was any mondo delivered successfully? */
729 mondo_delivered = (n_sent > prev_sent);
730 prev_sent = n_sent;
732 /* or, was any target cpu busy processing other mondos? */
733 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
734 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
736 /* Retry count is for no progress. If we're making progress,
737 * reset the retry count.
739 if (likely(mondo_delivered || target_cpu_busy)) {
740 tot_retries += retries;
741 retries = 0;
742 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
743 goto fatal_mondo_timeout;
746 /* Delay a little bit to let other cpus catch up on
747 * their cpu mondo queue work.
749 if (!mondo_delivered)
750 udelay(usec_wait);
752 retries++;
753 } while (1);
755 xcall_done:
756 if (unlikely(ecpuerror_id > 0)) {
757 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
758 this_cpu, ecpuerror_id - 1);
759 } else if (unlikely(enocpu_id > 0)) {
760 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
761 this_cpu, enocpu_id - 1);
763 return;
765 fatal_errors:
766 /* fatal errors include bad alignment, etc */
767 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
768 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
769 panic("Unexpected SUN4V mondo error %lu\n", status);
771 fatal_mondo_timeout:
772 /* some cpus being non-responsive to the cpu mondo */
773 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
774 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
775 panic("SUN4V mondo timeout panic\n");
778 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
780 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
782 struct trap_per_cpu *tb;
783 int this_cpu, i, cnt;
784 unsigned long flags;
785 u16 *cpu_list;
786 u64 *mondo;
788 /* We have to do this whole thing with interrupts fully disabled.
789 * Otherwise if we send an xcall from interrupt context it will
790 * corrupt both our mondo block and cpu list state.
792 * One consequence of this is that we cannot use timeout mechanisms
793 * that depend upon interrupts being delivered locally. So, for
794 * example, we cannot sample jiffies and expect it to advance.
796 * Fortunately, udelay() uses %stick/%tick so we can use that.
798 local_irq_save(flags);
800 this_cpu = smp_processor_id();
801 tb = &trap_block[this_cpu];
803 mondo = __va(tb->cpu_mondo_block_pa);
804 mondo[0] = data0;
805 mondo[1] = data1;
806 mondo[2] = data2;
807 wmb();
809 cpu_list = __va(tb->cpu_list_pa);
811 /* Setup the initial cpu list. */
812 cnt = 0;
813 for_each_cpu(i, mask) {
814 if (i == this_cpu || !cpu_online(i))
815 continue;
816 cpu_list[cnt++] = i;
819 if (cnt)
820 xcall_deliver_impl(tb, cnt);
822 local_irq_restore(flags);
825 /* Send cross call to all processors mentioned in MASK_P
826 * except self. Really, there are only two cases currently,
827 * "cpu_online_mask" and "mm_cpumask(mm)".
829 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
831 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
833 xcall_deliver(data0, data1, data2, mask);
836 /* Send cross call to all processors except self. */
837 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
839 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
842 extern unsigned long xcall_sync_tick;
844 static void smp_start_sync_tick_client(int cpu)
846 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
847 cpumask_of(cpu));
850 extern unsigned long xcall_call_function;
852 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
854 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
857 extern unsigned long xcall_call_function_single;
859 void arch_send_call_function_single_ipi(int cpu)
861 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
862 cpumask_of(cpu));
865 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
867 clear_softint(1 << irq);
868 irq_enter();
869 generic_smp_call_function_interrupt();
870 irq_exit();
873 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
875 clear_softint(1 << irq);
876 irq_enter();
877 generic_smp_call_function_single_interrupt();
878 irq_exit();
881 static void tsb_sync(void *info)
883 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
884 struct mm_struct *mm = info;
886 /* It is not valid to test "current->active_mm == mm" here.
888 * The value of "current" is not changed atomically with
889 * switch_mm(). But that's OK, we just need to check the
890 * current cpu's trap block PGD physical address.
892 if (tp->pgd_paddr == __pa(mm->pgd))
893 tsb_context_switch(mm);
896 void smp_tsb_sync(struct mm_struct *mm)
898 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
901 extern unsigned long xcall_flush_tlb_mm;
902 extern unsigned long xcall_flush_tlb_page;
903 extern unsigned long xcall_flush_tlb_kernel_range;
904 extern unsigned long xcall_fetch_glob_regs;
905 extern unsigned long xcall_fetch_glob_pmu;
906 extern unsigned long xcall_fetch_glob_pmu_n4;
907 extern unsigned long xcall_receive_signal;
908 extern unsigned long xcall_new_mmu_context_version;
909 #ifdef CONFIG_KGDB
910 extern unsigned long xcall_kgdb_capture;
911 #endif
913 #ifdef DCACHE_ALIASING_POSSIBLE
914 extern unsigned long xcall_flush_dcache_page_cheetah;
915 #endif
916 extern unsigned long xcall_flush_dcache_page_spitfire;
918 static inline void __local_flush_dcache_page(struct page *page)
920 #ifdef DCACHE_ALIASING_POSSIBLE
921 __flush_dcache_page(page_address(page),
922 ((tlb_type == spitfire) &&
923 page_mapping(page) != NULL));
924 #else
925 if (page_mapping(page) != NULL &&
926 tlb_type == spitfire)
927 __flush_icache_page(__pa(page_address(page)));
928 #endif
931 void smp_flush_dcache_page_impl(struct page *page, int cpu)
933 int this_cpu;
935 if (tlb_type == hypervisor)
936 return;
938 #ifdef CONFIG_DEBUG_DCFLUSH
939 atomic_inc(&dcpage_flushes);
940 #endif
942 this_cpu = get_cpu();
944 if (cpu == this_cpu) {
945 __local_flush_dcache_page(page);
946 } else if (cpu_online(cpu)) {
947 void *pg_addr = page_address(page);
948 u64 data0 = 0;
950 if (tlb_type == spitfire) {
951 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
952 if (page_mapping(page) != NULL)
953 data0 |= ((u64)1 << 32);
954 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
955 #ifdef DCACHE_ALIASING_POSSIBLE
956 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
957 #endif
959 if (data0) {
960 xcall_deliver(data0, __pa(pg_addr),
961 (u64) pg_addr, cpumask_of(cpu));
962 #ifdef CONFIG_DEBUG_DCFLUSH
963 atomic_inc(&dcpage_flushes_xcall);
964 #endif
968 put_cpu();
971 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
973 void *pg_addr;
974 u64 data0;
976 if (tlb_type == hypervisor)
977 return;
979 preempt_disable();
981 #ifdef CONFIG_DEBUG_DCFLUSH
982 atomic_inc(&dcpage_flushes);
983 #endif
984 data0 = 0;
985 pg_addr = page_address(page);
986 if (tlb_type == spitfire) {
987 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
988 if (page_mapping(page) != NULL)
989 data0 |= ((u64)1 << 32);
990 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
991 #ifdef DCACHE_ALIASING_POSSIBLE
992 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
993 #endif
995 if (data0) {
996 xcall_deliver(data0, __pa(pg_addr),
997 (u64) pg_addr, cpu_online_mask);
998 #ifdef CONFIG_DEBUG_DCFLUSH
999 atomic_inc(&dcpage_flushes_xcall);
1000 #endif
1002 __local_flush_dcache_page(page);
1004 preempt_enable();
1007 #ifdef CONFIG_KGDB
1008 void kgdb_roundup_cpus(unsigned long flags)
1010 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1012 #endif
1014 void smp_fetch_global_regs(void)
1016 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1019 void smp_fetch_global_pmu(void)
1021 if (tlb_type == hypervisor &&
1022 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1023 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1024 else
1025 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1028 /* We know that the window frames of the user have been flushed
1029 * to the stack before we get here because all callers of us
1030 * are flush_tlb_*() routines, and these run after flush_cache_*()
1031 * which performs the flushw.
1033 * The SMP TLB coherency scheme we use works as follows:
1035 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1036 * space has (potentially) executed on, this is the heuristic
1037 * we use to avoid doing cross calls.
1039 * Also, for flushing from kswapd and also for clones, we
1040 * use cpu_vm_mask as the list of cpus to make run the TLB.
1042 * 2) TLB context numbers are shared globally across all processors
1043 * in the system, this allows us to play several games to avoid
1044 * cross calls.
1046 * One invariant is that when a cpu switches to a process, and
1047 * that processes tsk->active_mm->cpu_vm_mask does not have the
1048 * current cpu's bit set, that tlb context is flushed locally.
1050 * If the address space is non-shared (ie. mm->count == 1) we avoid
1051 * cross calls when we want to flush the currently running process's
1052 * tlb state. This is done by clearing all cpu bits except the current
1053 * processor's in current->mm->cpu_vm_mask and performing the
1054 * flush locally only. This will force any subsequent cpus which run
1055 * this task to flush the context from the local tlb if the process
1056 * migrates to another cpu (again).
1058 * 3) For shared address spaces (threads) and swapping we bite the
1059 * bullet for most cases and perform the cross call (but only to
1060 * the cpus listed in cpu_vm_mask).
1062 * The performance gain from "optimizing" away the cross call for threads is
1063 * questionable (in theory the big win for threads is the massive sharing of
1064 * address space state across processors).
1067 /* This currently is only used by the hugetlb arch pre-fault
1068 * hook on UltraSPARC-III+ and later when changing the pagesize
1069 * bits of the context register for an address space.
1071 void smp_flush_tlb_mm(struct mm_struct *mm)
1073 u32 ctx = CTX_HWBITS(mm->context);
1074 int cpu = get_cpu();
1076 if (atomic_read(&mm->mm_users) == 1) {
1077 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1078 goto local_flush_and_out;
1081 smp_cross_call_masked(&xcall_flush_tlb_mm,
1082 ctx, 0, 0,
1083 mm_cpumask(mm));
1085 local_flush_and_out:
1086 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1088 put_cpu();
1091 struct tlb_pending_info {
1092 unsigned long ctx;
1093 unsigned long nr;
1094 unsigned long *vaddrs;
1097 static void tlb_pending_func(void *info)
1099 struct tlb_pending_info *t = info;
1101 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1104 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1106 u32 ctx = CTX_HWBITS(mm->context);
1107 struct tlb_pending_info info;
1108 int cpu = get_cpu();
1110 info.ctx = ctx;
1111 info.nr = nr;
1112 info.vaddrs = vaddrs;
1114 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1115 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1116 else
1117 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1118 &info, 1);
1120 __flush_tlb_pending(ctx, nr, vaddrs);
1122 put_cpu();
1125 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1127 unsigned long context = CTX_HWBITS(mm->context);
1128 int cpu = get_cpu();
1130 if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1131 cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1132 else
1133 smp_cross_call_masked(&xcall_flush_tlb_page,
1134 context, vaddr, 0,
1135 mm_cpumask(mm));
1136 __flush_tlb_page(context, vaddr);
1138 put_cpu();
1141 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1143 start &= PAGE_MASK;
1144 end = PAGE_ALIGN(end);
1145 if (start != end) {
1146 smp_cross_call(&xcall_flush_tlb_kernel_range,
1147 0, start, end);
1149 __flush_tlb_kernel_range(start, end);
1153 /* CPU capture. */
1154 /* #define CAPTURE_DEBUG */
1155 extern unsigned long xcall_capture;
1157 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1158 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1159 static unsigned long penguins_are_doing_time;
1161 void smp_capture(void)
1163 int result = atomic_add_return(1, &smp_capture_depth);
1165 if (result == 1) {
1166 int ncpus = num_online_cpus();
1168 #ifdef CAPTURE_DEBUG
1169 printk("CPU[%d]: Sending penguins to jail...",
1170 smp_processor_id());
1171 #endif
1172 penguins_are_doing_time = 1;
1173 atomic_inc(&smp_capture_registry);
1174 smp_cross_call(&xcall_capture, 0, 0, 0);
1175 while (atomic_read(&smp_capture_registry) != ncpus)
1176 rmb();
1177 #ifdef CAPTURE_DEBUG
1178 printk("done\n");
1179 #endif
1183 void smp_release(void)
1185 if (atomic_dec_and_test(&smp_capture_depth)) {
1186 #ifdef CAPTURE_DEBUG
1187 printk("CPU[%d]: Giving pardon to "
1188 "imprisoned penguins\n",
1189 smp_processor_id());
1190 #endif
1191 penguins_are_doing_time = 0;
1192 membar_safe("#StoreLoad");
1193 atomic_dec(&smp_capture_registry);
1197 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1198 * set, so they can service tlb flush xcalls...
1200 extern void prom_world(int);
1202 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1204 clear_softint(1 << irq);
1206 preempt_disable();
1208 __asm__ __volatile__("flushw");
1209 prom_world(1);
1210 atomic_inc(&smp_capture_registry);
1211 membar_safe("#StoreLoad");
1212 while (penguins_are_doing_time)
1213 rmb();
1214 atomic_dec(&smp_capture_registry);
1215 prom_world(0);
1217 preempt_enable();
1220 /* /proc/profile writes can call this, don't __init it please. */
1221 int setup_profiling_timer(unsigned int multiplier)
1223 return -EINVAL;
1226 void __init smp_prepare_cpus(unsigned int max_cpus)
1230 void smp_prepare_boot_cpu(void)
1234 void __init smp_setup_processor_id(void)
1236 if (tlb_type == spitfire)
1237 xcall_deliver_impl = spitfire_xcall_deliver;
1238 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1239 xcall_deliver_impl = cheetah_xcall_deliver;
1240 else
1241 xcall_deliver_impl = hypervisor_xcall_deliver;
1244 void smp_fill_in_sib_core_maps(void)
1246 unsigned int i;
1248 for_each_present_cpu(i) {
1249 unsigned int j;
1251 cpumask_clear(&cpu_core_map[i]);
1252 if (cpu_data(i).core_id == 0) {
1253 cpumask_set_cpu(i, &cpu_core_map[i]);
1254 continue;
1257 for_each_present_cpu(j) {
1258 if (cpu_data(i).core_id ==
1259 cpu_data(j).core_id)
1260 cpumask_set_cpu(j, &cpu_core_map[i]);
1264 for_each_present_cpu(i) {
1265 unsigned int j;
1267 for_each_present_cpu(j) {
1268 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1269 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1273 for_each_present_cpu(i) {
1274 unsigned int j;
1276 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1277 if (cpu_data(i).proc_id == -1) {
1278 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1279 continue;
1282 for_each_present_cpu(j) {
1283 if (cpu_data(i).proc_id ==
1284 cpu_data(j).proc_id)
1285 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1290 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1292 int ret = smp_boot_one_cpu(cpu, tidle);
1294 if (!ret) {
1295 cpumask_set_cpu(cpu, &smp_commenced_mask);
1296 while (!cpu_online(cpu))
1297 mb();
1298 if (!cpu_online(cpu)) {
1299 ret = -ENODEV;
1300 } else {
1301 /* On SUN4V, writes to %tick and %stick are
1302 * not allowed.
1304 if (tlb_type != hypervisor)
1305 smp_synchronize_one_tick(cpu);
1308 return ret;
1311 #ifdef CONFIG_HOTPLUG_CPU
1312 void cpu_play_dead(void)
1314 int cpu = smp_processor_id();
1315 unsigned long pstate;
1317 idle_task_exit();
1319 if (tlb_type == hypervisor) {
1320 struct trap_per_cpu *tb = &trap_block[cpu];
1322 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1323 tb->cpu_mondo_pa, 0);
1324 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1325 tb->dev_mondo_pa, 0);
1326 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1327 tb->resum_mondo_pa, 0);
1328 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1329 tb->nonresum_mondo_pa, 0);
1332 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1333 membar_safe("#Sync");
1335 local_irq_disable();
1337 __asm__ __volatile__(
1338 "rdpr %%pstate, %0\n\t"
1339 "wrpr %0, %1, %%pstate"
1340 : "=r" (pstate)
1341 : "i" (PSTATE_IE));
1343 while (1)
1344 barrier();
1347 int __cpu_disable(void)
1349 int cpu = smp_processor_id();
1350 cpuinfo_sparc *c;
1351 int i;
1353 for_each_cpu(i, &cpu_core_map[cpu])
1354 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1355 cpumask_clear(&cpu_core_map[cpu]);
1357 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1358 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1359 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1361 c = &cpu_data(cpu);
1363 c->core_id = 0;
1364 c->proc_id = -1;
1366 smp_wmb();
1368 /* Make sure no interrupts point to this cpu. */
1369 fixup_irqs();
1371 local_irq_enable();
1372 mdelay(1);
1373 local_irq_disable();
1375 set_cpu_online(cpu, false);
1377 cpu_map_rebuild();
1379 return 0;
1382 void __cpu_die(unsigned int cpu)
1384 int i;
1386 for (i = 0; i < 100; i++) {
1387 smp_rmb();
1388 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1389 break;
1390 msleep(100);
1392 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1393 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1394 } else {
1395 #if defined(CONFIG_SUN_LDOMS)
1396 unsigned long hv_err;
1397 int limit = 100;
1399 do {
1400 hv_err = sun4v_cpu_stop(cpu);
1401 if (hv_err == HV_EOK) {
1402 set_cpu_present(cpu, false);
1403 break;
1405 } while (--limit > 0);
1406 if (limit <= 0) {
1407 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1408 hv_err);
1410 #endif
1413 #endif
1415 void __init smp_cpus_done(unsigned int max_cpus)
1419 void smp_send_reschedule(int cpu)
1421 if (cpu == smp_processor_id()) {
1422 WARN_ON_ONCE(preemptible());
1423 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1424 } else {
1425 xcall_deliver((u64) &xcall_receive_signal,
1426 0, 0, cpumask_of(cpu));
1430 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1432 clear_softint(1 << irq);
1433 scheduler_ipi();
1436 static void stop_this_cpu(void *dummy)
1438 prom_stopself();
1441 void smp_send_stop(void)
1443 int cpu;
1445 if (tlb_type == hypervisor) {
1446 for_each_online_cpu(cpu) {
1447 if (cpu == smp_processor_id())
1448 continue;
1449 #ifdef CONFIG_SUN_LDOMS
1450 if (ldom_domaining_enabled) {
1451 unsigned long hv_err;
1452 hv_err = sun4v_cpu_stop(cpu);
1453 if (hv_err)
1454 printk(KERN_ERR "sun4v_cpu_stop() "
1455 "failed err=%lu\n", hv_err);
1456 } else
1457 #endif
1458 prom_stopcpu_cpuid(cpu);
1460 } else
1461 smp_call_function(stop_this_cpu, NULL, 0);
1465 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1466 * @cpu: cpu to allocate for
1467 * @size: size allocation in bytes
1468 * @align: alignment
1470 * Allocate @size bytes aligned at @align for cpu @cpu. This wrapper
1471 * does the right thing for NUMA regardless of the current
1472 * configuration.
1474 * RETURNS:
1475 * Pointer to the allocated area on success, NULL on failure.
1477 static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1478 size_t align)
1480 const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1481 #ifdef CONFIG_NEED_MULTIPLE_NODES
1482 int node = cpu_to_node(cpu);
1483 void *ptr;
1485 if (!node_online(node) || !NODE_DATA(node)) {
1486 ptr = __alloc_bootmem(size, align, goal);
1487 pr_info("cpu %d has no node %d or node-local memory\n",
1488 cpu, node);
1489 pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1490 cpu, size, __pa(ptr));
1491 } else {
1492 ptr = __alloc_bootmem_node(NODE_DATA(node),
1493 size, align, goal);
1494 pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1495 "%016lx\n", cpu, size, node, __pa(ptr));
1497 return ptr;
1498 #else
1499 return __alloc_bootmem(size, align, goal);
1500 #endif
1503 static void __init pcpu_free_bootmem(void *ptr, size_t size)
1505 free_bootmem(__pa(ptr), size);
1508 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1510 if (cpu_to_node(from) == cpu_to_node(to))
1511 return LOCAL_DISTANCE;
1512 else
1513 return REMOTE_DISTANCE;
1516 static void __init pcpu_populate_pte(unsigned long addr)
1518 pgd_t *pgd = pgd_offset_k(addr);
1519 pud_t *pud;
1520 pmd_t *pmd;
1522 if (pgd_none(*pgd)) {
1523 pud_t *new;
1525 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1526 pgd_populate(&init_mm, pgd, new);
1529 pud = pud_offset(pgd, addr);
1530 if (pud_none(*pud)) {
1531 pmd_t *new;
1533 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1534 pud_populate(&init_mm, pud, new);
1537 pmd = pmd_offset(pud, addr);
1538 if (!pmd_present(*pmd)) {
1539 pte_t *new;
1541 new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1542 pmd_populate_kernel(&init_mm, pmd, new);
1546 void __init setup_per_cpu_areas(void)
1548 unsigned long delta;
1549 unsigned int cpu;
1550 int rc = -EINVAL;
1552 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1553 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1554 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1555 pcpu_cpu_distance,
1556 pcpu_alloc_bootmem,
1557 pcpu_free_bootmem);
1558 if (rc)
1559 pr_warning("PERCPU: %s allocator failed (%d), "
1560 "falling back to page size\n",
1561 pcpu_fc_names[pcpu_chosen_fc], rc);
1563 if (rc < 0)
1564 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1565 pcpu_alloc_bootmem,
1566 pcpu_free_bootmem,
1567 pcpu_populate_pte);
1568 if (rc < 0)
1569 panic("cannot initialize percpu area (err=%d)", rc);
1571 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1572 for_each_possible_cpu(cpu)
1573 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1575 /* Setup %g5 for the boot cpu. */
1576 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1578 of_fill_in_cpu_data();
1579 if (tlb_type == hypervisor)
1580 mdesc_fill_in_cpu_data(cpu_all_mask);