1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmemcheck.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
40 #include <trace/events/kmem.h>
46 * 1. slab_mutex (Global Mutex)
48 * 3. slab_lock(page) (Only on some arches and for debugging)
52 * The role of the slab_mutex is to protect the list of all the slabs
53 * and to synchronize major metadata changes to slab cache structures.
55 * The slab_lock is only used for debugging and on arches that do not
56 * have the ability to do a cmpxchg_double. It only protects the second
57 * double word in the page struct. Meaning
58 * A. page->freelist -> List of object free in a page
59 * B. page->counters -> Counters of objects
60 * C. page->frozen -> frozen state
62 * If a slab is frozen then it is exempt from list management. It is not
63 * on any list. The processor that froze the slab is the one who can
64 * perform list operations on the page. Other processors may put objects
65 * onto the freelist but the processor that froze the slab is the only
66 * one that can retrieve the objects from the page's freelist.
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
89 * freed then the slab will show up again on the partial lists.
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
97 * Overloading of page flags that are otherwise used for LRU management.
99 * PageActive The slab is frozen and exempt from list processing.
100 * This means that the slab is dedicated to a purpose
101 * such as satisfying allocations for a specific
102 * processor. Objects may be freed in the slab while
103 * it is frozen but slab_free will then skip the usual
104 * list operations. It is up to the processor holding
105 * the slab to integrate the slab into the slab lists
106 * when the slab is no longer needed.
108 * One use of this flag is to mark slabs that are
109 * used for allocations. Then such a slab becomes a cpu
110 * slab. The cpu slab may be equipped with an additional
111 * freelist that allows lockless access to
112 * free objects in addition to the regular freelist
113 * that requires the slab lock.
115 * PageError Slab requires special handling due to debug
116 * options set. This moves slab handling out of
117 * the fast path and disables lockless freelists.
120 static inline int kmem_cache_debug(struct kmem_cache
*s
)
122 #ifdef CONFIG_SLUB_DEBUG
123 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
129 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
131 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
132 p
+= s
->red_left_pad
;
137 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
139 #ifdef CONFIG_SLUB_CPU_PARTIAL
140 return !kmem_cache_debug(s
);
147 * Issues still to be resolved:
149 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 * - Variable sizing of the per node arrays
154 /* Enable to test recovery from slab corruption on boot */
155 #undef SLUB_RESILIENCY_TEST
157 /* Enable to log cmpxchg failures */
158 #undef SLUB_DEBUG_CMPXCHG
161 * Mininum number of partial slabs. These will be left on the partial
162 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 #define MIN_PARTIAL 5
167 * Maximum number of desirable partial slabs.
168 * The existence of more partial slabs makes kmem_cache_shrink
169 * sort the partial list by the number of objects in use.
171 #define MAX_PARTIAL 10
173 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_STORE_USER)
177 * These debug flags cannot use CMPXCHG because there might be consistency
178 * issues when checking or reading debug information
180 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
185 * Debugging flags that require metadata to be stored in the slab. These get
186 * disabled when slub_debug=O is used and a cache's min order increases with
189 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
192 #define OO_MASK ((1 << OO_SHIFT) - 1)
193 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
195 /* Internal SLUB flags */
196 #define __OBJECT_POISON 0x80000000UL /* Poison object */
197 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
200 * Tracking user of a slab.
202 #define TRACK_ADDRS_COUNT 16
204 unsigned long addr
; /* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
208 int cpu
; /* Was running on cpu */
209 int pid
; /* Pid context */
210 unsigned long when
; /* When did the operation occur */
213 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
216 static int sysfs_slab_add(struct kmem_cache
*);
217 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
219 static void sysfs_slab_remove(struct kmem_cache
*s
);
221 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
225 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
228 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
230 #ifdef CONFIG_SLUB_STATS
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
235 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
239 /********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
248 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
249 unsigned long ptr_addr
)
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 return (void *)((unsigned long)ptr
^ s
->random
^ ptr_addr
);
258 /* Returns the freelist pointer recorded at location ptr_addr. */
259 static inline void *freelist_dereference(const struct kmem_cache
*s
,
262 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
263 (unsigned long)ptr_addr
);
266 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
268 return freelist_dereference(s
, object
+ s
->offset
);
271 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
274 prefetch(freelist_dereference(s
, object
+ s
->offset
));
277 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
279 unsigned long freepointer_addr
;
282 if (!debug_pagealloc_enabled())
283 return get_freepointer(s
, object
);
285 freepointer_addr
= (unsigned long)object
+ s
->offset
;
286 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
287 return freelist_ptr(s
, p
, freepointer_addr
);
290 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
292 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
294 #ifdef CONFIG_SLAB_FREELIST_HARDENED
295 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
298 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
301 /* Loop over all objects in a slab */
302 #define for_each_object(__p, __s, __addr, __objects) \
303 for (__p = fixup_red_left(__s, __addr); \
304 __p < (__addr) + (__objects) * (__s)->size; \
307 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
308 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
309 __idx <= __objects; \
310 __p += (__s)->size, __idx++)
312 /* Determine object index from a given position */
313 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
315 return (p
- addr
) / s
->size
;
318 static inline int order_objects(int order
, unsigned long size
, int reserved
)
320 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
323 static inline struct kmem_cache_order_objects
oo_make(int order
,
324 unsigned long size
, int reserved
)
326 struct kmem_cache_order_objects x
= {
327 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
333 static inline int oo_order(struct kmem_cache_order_objects x
)
335 return x
.x
>> OO_SHIFT
;
338 static inline int oo_objects(struct kmem_cache_order_objects x
)
340 return x
.x
& OO_MASK
;
344 * Per slab locking using the pagelock
346 static __always_inline
void slab_lock(struct page
*page
)
348 VM_BUG_ON_PAGE(PageTail(page
), page
);
349 bit_spin_lock(PG_locked
, &page
->flags
);
352 static __always_inline
void slab_unlock(struct page
*page
)
354 VM_BUG_ON_PAGE(PageTail(page
), page
);
355 __bit_spin_unlock(PG_locked
, &page
->flags
);
358 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
361 tmp
.counters
= counters_new
;
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_refcount. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_refcount, so
366 * be careful and only assign to the fields we need.
368 page
->frozen
= tmp
.frozen
;
369 page
->inuse
= tmp
.inuse
;
370 page
->objects
= tmp
.objects
;
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
375 void *freelist_old
, unsigned long counters_old
,
376 void *freelist_new
, unsigned long counters_new
,
379 VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s
->flags
& __CMPXCHG_DOUBLE
) {
383 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
384 freelist_old
, counters_old
,
385 freelist_new
, counters_new
))
391 if (page
->freelist
== freelist_old
&&
392 page
->counters
== counters_old
) {
393 page
->freelist
= freelist_new
;
394 set_page_slub_counters(page
, counters_new
);
402 stat(s
, CMPXCHG_DOUBLE_FAIL
);
404 #ifdef SLUB_DEBUG_CMPXCHG
405 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
411 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
412 void *freelist_old
, unsigned long counters_old
,
413 void *freelist_new
, unsigned long counters_new
,
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 if (s
->flags
& __CMPXCHG_DOUBLE
) {
419 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
420 freelist_old
, counters_old
,
421 freelist_new
, counters_new
))
428 local_irq_save(flags
);
430 if (page
->freelist
== freelist_old
&&
431 page
->counters
== counters_old
) {
432 page
->freelist
= freelist_new
;
433 set_page_slub_counters(page
, counters_new
);
435 local_irq_restore(flags
);
439 local_irq_restore(flags
);
443 stat(s
, CMPXCHG_DOUBLE_FAIL
);
445 #ifdef SLUB_DEBUG_CMPXCHG
446 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
452 #ifdef CONFIG_SLUB_DEBUG
454 * Determine a map of object in use on a page.
456 * Node listlock must be held to guarantee that the page does
457 * not vanish from under us.
459 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
462 void *addr
= page_address(page
);
464 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
465 set_bit(slab_index(p
, s
, addr
), map
);
468 static inline int size_from_object(struct kmem_cache
*s
)
470 if (s
->flags
& SLAB_RED_ZONE
)
471 return s
->size
- s
->red_left_pad
;
476 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
478 if (s
->flags
& SLAB_RED_ZONE
)
479 p
-= s
->red_left_pad
;
487 #if defined(CONFIG_SLUB_DEBUG_ON)
488 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
490 static int slub_debug
;
493 static char *slub_debug_slabs
;
494 static int disable_higher_order_debug
;
497 * slub is about to manipulate internal object metadata. This memory lies
498 * outside the range of the allocated object, so accessing it would normally
499 * be reported by kasan as a bounds error. metadata_access_enable() is used
500 * to tell kasan that these accesses are OK.
502 static inline void metadata_access_enable(void)
504 kasan_disable_current();
507 static inline void metadata_access_disable(void)
509 kasan_enable_current();
516 /* Verify that a pointer has an address that is valid within a slab page */
517 static inline int check_valid_pointer(struct kmem_cache
*s
,
518 struct page
*page
, void *object
)
525 base
= page_address(page
);
526 object
= restore_red_left(s
, object
);
527 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
528 (object
- base
) % s
->size
) {
535 static void print_section(char *level
, char *text
, u8
*addr
,
538 metadata_access_enable();
539 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
541 metadata_access_disable();
544 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
545 enum track_item alloc
)
550 p
= object
+ s
->offset
+ sizeof(void *);
552 p
= object
+ s
->inuse
;
557 static void set_track(struct kmem_cache
*s
, void *object
,
558 enum track_item alloc
, unsigned long addr
)
560 struct track
*p
= get_track(s
, object
, alloc
);
563 #ifdef CONFIG_STACKTRACE
564 struct stack_trace trace
;
567 trace
.nr_entries
= 0;
568 trace
.max_entries
= TRACK_ADDRS_COUNT
;
569 trace
.entries
= p
->addrs
;
571 metadata_access_enable();
572 save_stack_trace(&trace
);
573 metadata_access_disable();
575 /* See rant in lockdep.c */
576 if (trace
.nr_entries
!= 0 &&
577 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
580 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
584 p
->cpu
= smp_processor_id();
585 p
->pid
= current
->pid
;
588 memset(p
, 0, sizeof(struct track
));
591 static void init_tracking(struct kmem_cache
*s
, void *object
)
593 if (!(s
->flags
& SLAB_STORE_USER
))
596 set_track(s
, object
, TRACK_FREE
, 0UL);
597 set_track(s
, object
, TRACK_ALLOC
, 0UL);
600 static void print_track(const char *s
, struct track
*t
)
605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
606 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
607 #ifdef CONFIG_STACKTRACE
610 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
612 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
619 static void print_tracking(struct kmem_cache
*s
, void *object
)
621 if (!(s
->flags
& SLAB_STORE_USER
))
624 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
625 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
628 static void print_page_info(struct page
*page
)
630 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
631 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
635 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
637 struct va_format vaf
;
643 pr_err("=============================================================================\n");
644 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
645 pr_err("-----------------------------------------------------------------------------\n\n");
647 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
651 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
653 struct va_format vaf
;
659 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
663 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
665 unsigned int off
; /* Offset of last byte */
666 u8
*addr
= page_address(page
);
668 print_tracking(s
, p
);
670 print_page_info(page
);
672 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
673 p
, p
- addr
, get_freepointer(s
, p
));
675 if (s
->flags
& SLAB_RED_ZONE
)
676 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
678 else if (p
> addr
+ 16)
679 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
681 print_section(KERN_ERR
, "Object ", p
,
682 min_t(unsigned long, s
->object_size
, PAGE_SIZE
));
683 if (s
->flags
& SLAB_RED_ZONE
)
684 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
685 s
->inuse
- s
->object_size
);
688 off
= s
->offset
+ sizeof(void *);
692 if (s
->flags
& SLAB_STORE_USER
)
693 off
+= 2 * sizeof(struct track
);
695 off
+= kasan_metadata_size(s
);
697 if (off
!= size_from_object(s
))
698 /* Beginning of the filler is the free pointer */
699 print_section(KERN_ERR
, "Padding ", p
+ off
,
700 size_from_object(s
) - off
);
705 void object_err(struct kmem_cache
*s
, struct page
*page
,
706 u8
*object
, char *reason
)
708 slab_bug(s
, "%s", reason
);
709 print_trailer(s
, page
, object
);
712 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
713 const char *fmt
, ...)
719 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
721 slab_bug(s
, "%s", buf
);
722 print_page_info(page
);
726 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
730 if (s
->flags
& SLAB_RED_ZONE
)
731 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
733 if (s
->flags
& __OBJECT_POISON
) {
734 memset(p
, POISON_FREE
, s
->object_size
- 1);
735 p
[s
->object_size
- 1] = POISON_END
;
738 if (s
->flags
& SLAB_RED_ZONE
)
739 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
742 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
743 void *from
, void *to
)
745 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
746 memset(from
, data
, to
- from
);
749 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
750 u8
*object
, char *what
,
751 u8
*start
, unsigned int value
, unsigned int bytes
)
756 metadata_access_enable();
757 fault
= memchr_inv(start
, value
, bytes
);
758 metadata_access_disable();
763 while (end
> fault
&& end
[-1] == value
)
766 slab_bug(s
, "%s overwritten", what
);
767 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
768 fault
, end
- 1, fault
[0], value
);
769 print_trailer(s
, page
, object
);
771 restore_bytes(s
, what
, value
, fault
, end
);
779 * Bytes of the object to be managed.
780 * If the freepointer may overlay the object then the free
781 * pointer is the first word of the object.
783 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
786 * object + s->object_size
787 * Padding to reach word boundary. This is also used for Redzoning.
788 * Padding is extended by another word if Redzoning is enabled and
789 * object_size == inuse.
791 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
792 * 0xcc (RED_ACTIVE) for objects in use.
795 * Meta data starts here.
797 * A. Free pointer (if we cannot overwrite object on free)
798 * B. Tracking data for SLAB_STORE_USER
799 * C. Padding to reach required alignment boundary or at mininum
800 * one word if debugging is on to be able to detect writes
801 * before the word boundary.
803 * Padding is done using 0x5a (POISON_INUSE)
806 * Nothing is used beyond s->size.
808 * If slabcaches are merged then the object_size and inuse boundaries are mostly
809 * ignored. And therefore no slab options that rely on these boundaries
810 * may be used with merged slabcaches.
813 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
815 unsigned long off
= s
->inuse
; /* The end of info */
818 /* Freepointer is placed after the object. */
819 off
+= sizeof(void *);
821 if (s
->flags
& SLAB_STORE_USER
)
822 /* We also have user information there */
823 off
+= 2 * sizeof(struct track
);
825 off
+= kasan_metadata_size(s
);
827 if (size_from_object(s
) == off
)
830 return check_bytes_and_report(s
, page
, p
, "Object padding",
831 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
834 /* Check the pad bytes at the end of a slab page */
835 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
843 if (!(s
->flags
& SLAB_POISON
))
846 start
= page_address(page
);
847 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
848 end
= start
+ length
;
849 remainder
= length
% s
->size
;
853 metadata_access_enable();
854 fault
= memchr_inv(end
- remainder
, POISON_INUSE
, remainder
);
855 metadata_access_disable();
858 while (end
> fault
&& end
[-1] == POISON_INUSE
)
861 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
862 print_section(KERN_ERR
, "Padding ", end
- remainder
, remainder
);
864 restore_bytes(s
, "slab padding", POISON_INUSE
, end
- remainder
, end
);
868 static int check_object(struct kmem_cache
*s
, struct page
*page
,
869 void *object
, u8 val
)
872 u8
*endobject
= object
+ s
->object_size
;
874 if (s
->flags
& SLAB_RED_ZONE
) {
875 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
876 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
879 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
880 endobject
, val
, s
->inuse
- s
->object_size
))
883 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
884 check_bytes_and_report(s
, page
, p
, "Alignment padding",
885 endobject
, POISON_INUSE
,
886 s
->inuse
- s
->object_size
);
890 if (s
->flags
& SLAB_POISON
) {
891 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
892 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
893 POISON_FREE
, s
->object_size
- 1) ||
894 !check_bytes_and_report(s
, page
, p
, "Poison",
895 p
+ s
->object_size
- 1, POISON_END
, 1)))
898 * check_pad_bytes cleans up on its own.
900 check_pad_bytes(s
, page
, p
);
903 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
905 * Object and freepointer overlap. Cannot check
906 * freepointer while object is allocated.
910 /* Check free pointer validity */
911 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
912 object_err(s
, page
, p
, "Freepointer corrupt");
914 * No choice but to zap it and thus lose the remainder
915 * of the free objects in this slab. May cause
916 * another error because the object count is now wrong.
918 set_freepointer(s
, p
, NULL
);
924 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
928 VM_BUG_ON(!irqs_disabled());
930 if (!PageSlab(page
)) {
931 slab_err(s
, page
, "Not a valid slab page");
935 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
936 if (page
->objects
> maxobj
) {
937 slab_err(s
, page
, "objects %u > max %u",
938 page
->objects
, maxobj
);
941 if (page
->inuse
> page
->objects
) {
942 slab_err(s
, page
, "inuse %u > max %u",
943 page
->inuse
, page
->objects
);
946 /* Slab_pad_check fixes things up after itself */
947 slab_pad_check(s
, page
);
952 * Determine if a certain object on a page is on the freelist. Must hold the
953 * slab lock to guarantee that the chains are in a consistent state.
955 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
963 while (fp
&& nr
<= page
->objects
) {
966 if (!check_valid_pointer(s
, page
, fp
)) {
968 object_err(s
, page
, object
,
969 "Freechain corrupt");
970 set_freepointer(s
, object
, NULL
);
972 slab_err(s
, page
, "Freepointer corrupt");
973 page
->freelist
= NULL
;
974 page
->inuse
= page
->objects
;
975 slab_fix(s
, "Freelist cleared");
981 fp
= get_freepointer(s
, object
);
985 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
986 if (max_objects
> MAX_OBJS_PER_PAGE
)
987 max_objects
= MAX_OBJS_PER_PAGE
;
989 if (page
->objects
!= max_objects
) {
990 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
991 page
->objects
, max_objects
);
992 page
->objects
= max_objects
;
993 slab_fix(s
, "Number of objects adjusted.");
995 if (page
->inuse
!= page
->objects
- nr
) {
996 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
997 page
->inuse
, page
->objects
- nr
);
998 page
->inuse
= page
->objects
- nr
;
999 slab_fix(s
, "Object count adjusted.");
1001 return search
== NULL
;
1004 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
1007 if (s
->flags
& SLAB_TRACE
) {
1008 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1010 alloc
? "alloc" : "free",
1011 object
, page
->inuse
,
1015 print_section(KERN_INFO
, "Object ", (void *)object
,
1023 * Tracking of fully allocated slabs for debugging purposes.
1025 static void add_full(struct kmem_cache
*s
,
1026 struct kmem_cache_node
*n
, struct page
*page
)
1028 if (!(s
->flags
& SLAB_STORE_USER
))
1031 lockdep_assert_held(&n
->list_lock
);
1032 list_add(&page
->lru
, &n
->full
);
1035 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1037 if (!(s
->flags
& SLAB_STORE_USER
))
1040 lockdep_assert_held(&n
->list_lock
);
1041 list_del(&page
->lru
);
1044 /* Tracking of the number of slabs for debugging purposes */
1045 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1047 struct kmem_cache_node
*n
= get_node(s
, node
);
1049 return atomic_long_read(&n
->nr_slabs
);
1052 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1054 return atomic_long_read(&n
->nr_slabs
);
1057 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1059 struct kmem_cache_node
*n
= get_node(s
, node
);
1062 * May be called early in order to allocate a slab for the
1063 * kmem_cache_node structure. Solve the chicken-egg
1064 * dilemma by deferring the increment of the count during
1065 * bootstrap (see early_kmem_cache_node_alloc).
1068 atomic_long_inc(&n
->nr_slabs
);
1069 atomic_long_add(objects
, &n
->total_objects
);
1072 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1074 struct kmem_cache_node
*n
= get_node(s
, node
);
1076 atomic_long_dec(&n
->nr_slabs
);
1077 atomic_long_sub(objects
, &n
->total_objects
);
1080 /* Object debug checks for alloc/free paths */
1081 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1084 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1087 init_object(s
, object
, SLUB_RED_INACTIVE
);
1088 init_tracking(s
, object
);
1091 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1093 void *object
, unsigned long addr
)
1095 if (!check_slab(s
, page
))
1098 if (!check_valid_pointer(s
, page
, object
)) {
1099 object_err(s
, page
, object
, "Freelist Pointer check fails");
1103 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1109 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1111 void *object
, unsigned long addr
)
1113 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1114 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1118 /* Success perform special debug activities for allocs */
1119 if (s
->flags
& SLAB_STORE_USER
)
1120 set_track(s
, object
, TRACK_ALLOC
, addr
);
1121 trace(s
, page
, object
, 1);
1122 init_object(s
, object
, SLUB_RED_ACTIVE
);
1126 if (PageSlab(page
)) {
1128 * If this is a slab page then lets do the best we can
1129 * to avoid issues in the future. Marking all objects
1130 * as used avoids touching the remaining objects.
1132 slab_fix(s
, "Marking all objects used");
1133 page
->inuse
= page
->objects
;
1134 page
->freelist
= NULL
;
1139 static inline int free_consistency_checks(struct kmem_cache
*s
,
1140 struct page
*page
, void *object
, unsigned long addr
)
1142 if (!check_valid_pointer(s
, page
, object
)) {
1143 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1147 if (on_freelist(s
, page
, object
)) {
1148 object_err(s
, page
, object
, "Object already free");
1152 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1155 if (unlikely(s
!= page
->slab_cache
)) {
1156 if (!PageSlab(page
)) {
1157 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1159 } else if (!page
->slab_cache
) {
1160 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1164 object_err(s
, page
, object
,
1165 "page slab pointer corrupt.");
1171 /* Supports checking bulk free of a constructed freelist */
1172 static noinline
int free_debug_processing(
1173 struct kmem_cache
*s
, struct page
*page
,
1174 void *head
, void *tail
, int bulk_cnt
,
1177 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1178 void *object
= head
;
1180 unsigned long uninitialized_var(flags
);
1183 spin_lock_irqsave(&n
->list_lock
, flags
);
1186 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1187 if (!check_slab(s
, page
))
1194 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1195 if (!free_consistency_checks(s
, page
, object
, addr
))
1199 if (s
->flags
& SLAB_STORE_USER
)
1200 set_track(s
, object
, TRACK_FREE
, addr
);
1201 trace(s
, page
, object
, 0);
1202 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1203 init_object(s
, object
, SLUB_RED_INACTIVE
);
1205 /* Reached end of constructed freelist yet? */
1206 if (object
!= tail
) {
1207 object
= get_freepointer(s
, object
);
1213 if (cnt
!= bulk_cnt
)
1214 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1218 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1220 slab_fix(s
, "Object at 0x%p not freed", object
);
1224 static int __init
setup_slub_debug(char *str
)
1226 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1227 if (*str
++ != '=' || !*str
)
1229 * No options specified. Switch on full debugging.
1235 * No options but restriction on slabs. This means full
1236 * debugging for slabs matching a pattern.
1243 * Switch off all debugging measures.
1248 * Determine which debug features should be switched on
1250 for (; *str
&& *str
!= ','; str
++) {
1251 switch (tolower(*str
)) {
1253 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1256 slub_debug
|= SLAB_RED_ZONE
;
1259 slub_debug
|= SLAB_POISON
;
1262 slub_debug
|= SLAB_STORE_USER
;
1265 slub_debug
|= SLAB_TRACE
;
1268 slub_debug
|= SLAB_FAILSLAB
;
1272 * Avoid enabling debugging on caches if its minimum
1273 * order would increase as a result.
1275 disable_higher_order_debug
= 1;
1278 pr_err("slub_debug option '%c' unknown. skipped\n",
1285 slub_debug_slabs
= str
+ 1;
1290 __setup("slub_debug", setup_slub_debug
);
1292 unsigned long kmem_cache_flags(unsigned long object_size
,
1293 unsigned long flags
, const char *name
,
1294 void (*ctor
)(void *))
1297 * Enable debugging if selected on the kernel commandline.
1299 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1300 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1301 flags
|= slub_debug
;
1305 #else /* !CONFIG_SLUB_DEBUG */
1306 static inline void setup_object_debug(struct kmem_cache
*s
,
1307 struct page
*page
, void *object
) {}
1309 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1310 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1312 static inline int free_debug_processing(
1313 struct kmem_cache
*s
, struct page
*page
,
1314 void *head
, void *tail
, int bulk_cnt
,
1315 unsigned long addr
) { return 0; }
1317 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1319 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1320 void *object
, u8 val
) { return 1; }
1321 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1322 struct page
*page
) {}
1323 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1324 struct page
*page
) {}
1325 unsigned long kmem_cache_flags(unsigned long object_size
,
1326 unsigned long flags
, const char *name
,
1327 void (*ctor
)(void *))
1331 #define slub_debug 0
1333 #define disable_higher_order_debug 0
1335 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1337 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1339 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1341 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1344 #endif /* CONFIG_SLUB_DEBUG */
1347 * Hooks for other subsystems that check memory allocations. In a typical
1348 * production configuration these hooks all should produce no code at all.
1350 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1352 kmemleak_alloc(ptr
, size
, 1, flags
);
1353 kasan_kmalloc_large(ptr
, size
, flags
);
1356 static inline void kfree_hook(const void *x
)
1359 kasan_kfree_large(x
);
1362 static inline void *slab_free_hook(struct kmem_cache
*s
, void *x
)
1366 kmemleak_free_recursive(x
, s
->flags
);
1369 * Trouble is that we may no longer disable interrupts in the fast path
1370 * So in order to make the debug calls that expect irqs to be
1371 * disabled we need to disable interrupts temporarily.
1373 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1375 unsigned long flags
;
1377 local_irq_save(flags
);
1378 kmemcheck_slab_free(s
, x
, s
->object_size
);
1379 debug_check_no_locks_freed(x
, s
->object_size
);
1380 local_irq_restore(flags
);
1383 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1384 debug_check_no_obj_freed(x
, s
->object_size
);
1386 freeptr
= get_freepointer(s
, x
);
1388 * kasan_slab_free() may put x into memory quarantine, delaying its
1389 * reuse. In this case the object's freelist pointer is changed.
1391 kasan_slab_free(s
, x
);
1395 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1396 void *head
, void *tail
)
1399 * Compiler cannot detect this function can be removed if slab_free_hook()
1400 * evaluates to nothing. Thus, catch all relevant config debug options here.
1402 #if defined(CONFIG_KMEMCHECK) || \
1403 defined(CONFIG_LOCKDEP) || \
1404 defined(CONFIG_DEBUG_KMEMLEAK) || \
1405 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1406 defined(CONFIG_KASAN)
1408 void *object
= head
;
1409 void *tail_obj
= tail
? : head
;
1413 freeptr
= slab_free_hook(s
, object
);
1414 } while ((object
!= tail_obj
) && (object
= freeptr
));
1418 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1421 setup_object_debug(s
, page
, object
);
1422 kasan_init_slab_obj(s
, object
);
1423 if (unlikely(s
->ctor
)) {
1424 kasan_unpoison_object_data(s
, object
);
1426 kasan_poison_object_data(s
, object
);
1431 * Slab allocation and freeing
1433 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1434 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1437 int order
= oo_order(oo
);
1439 flags
|= __GFP_NOTRACK
;
1441 if (node
== NUMA_NO_NODE
)
1442 page
= alloc_pages(flags
, order
);
1444 page
= __alloc_pages_node(node
, flags
, order
);
1446 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1447 __free_pages(page
, order
);
1454 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1455 /* Pre-initialize the random sequence cache */
1456 static int init_cache_random_seq(struct kmem_cache
*s
)
1459 unsigned long i
, count
= oo_objects(s
->oo
);
1461 /* Bailout if already initialised */
1465 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1467 pr_err("SLUB: Unable to initialize free list for %s\n",
1472 /* Transform to an offset on the set of pages */
1473 if (s
->random_seq
) {
1474 for (i
= 0; i
< count
; i
++)
1475 s
->random_seq
[i
] *= s
->size
;
1480 /* Initialize each random sequence freelist per cache */
1481 static void __init
init_freelist_randomization(void)
1483 struct kmem_cache
*s
;
1485 mutex_lock(&slab_mutex
);
1487 list_for_each_entry(s
, &slab_caches
, list
)
1488 init_cache_random_seq(s
);
1490 mutex_unlock(&slab_mutex
);
1493 /* Get the next entry on the pre-computed freelist randomized */
1494 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1495 unsigned long *pos
, void *start
,
1496 unsigned long page_limit
,
1497 unsigned long freelist_count
)
1502 * If the target page allocation failed, the number of objects on the
1503 * page might be smaller than the usual size defined by the cache.
1506 idx
= s
->random_seq
[*pos
];
1508 if (*pos
>= freelist_count
)
1510 } while (unlikely(idx
>= page_limit
));
1512 return (char *)start
+ idx
;
1515 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1516 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1521 unsigned long idx
, pos
, page_limit
, freelist_count
;
1523 if (page
->objects
< 2 || !s
->random_seq
)
1526 freelist_count
= oo_objects(s
->oo
);
1527 pos
= get_random_int() % freelist_count
;
1529 page_limit
= page
->objects
* s
->size
;
1530 start
= fixup_red_left(s
, page_address(page
));
1532 /* First entry is used as the base of the freelist */
1533 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1535 page
->freelist
= cur
;
1537 for (idx
= 1; idx
< page
->objects
; idx
++) {
1538 setup_object(s
, page
, cur
);
1539 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1541 set_freepointer(s
, cur
, next
);
1544 setup_object(s
, page
, cur
);
1545 set_freepointer(s
, cur
, NULL
);
1550 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1554 static inline void init_freelist_randomization(void) { }
1555 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1559 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1561 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1564 struct kmem_cache_order_objects oo
= s
->oo
;
1570 flags
&= gfp_allowed_mask
;
1572 if (gfpflags_allow_blocking(flags
))
1575 flags
|= s
->allocflags
;
1578 * Let the initial higher-order allocation fail under memory pressure
1579 * so we fall-back to the minimum order allocation.
1581 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1582 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1583 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1585 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1586 if (unlikely(!page
)) {
1590 * Allocation may have failed due to fragmentation.
1591 * Try a lower order alloc if possible
1593 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1594 if (unlikely(!page
))
1596 stat(s
, ORDER_FALLBACK
);
1599 if (kmemcheck_enabled
&&
1600 !(s
->flags
& (SLAB_NOTRACK
| DEBUG_DEFAULT_FLAGS
))) {
1601 int pages
= 1 << oo_order(oo
);
1603 kmemcheck_alloc_shadow(page
, oo_order(oo
), alloc_gfp
, node
);
1606 * Objects from caches that have a constructor don't get
1607 * cleared when they're allocated, so we need to do it here.
1610 kmemcheck_mark_uninitialized_pages(page
, pages
);
1612 kmemcheck_mark_unallocated_pages(page
, pages
);
1615 page
->objects
= oo_objects(oo
);
1617 order
= compound_order(page
);
1618 page
->slab_cache
= s
;
1619 __SetPageSlab(page
);
1620 if (page_is_pfmemalloc(page
))
1621 SetPageSlabPfmemalloc(page
);
1623 start
= page_address(page
);
1625 if (unlikely(s
->flags
& SLAB_POISON
))
1626 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1628 kasan_poison_slab(page
);
1630 shuffle
= shuffle_freelist(s
, page
);
1633 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1634 setup_object(s
, page
, p
);
1635 if (likely(idx
< page
->objects
))
1636 set_freepointer(s
, p
, p
+ s
->size
);
1638 set_freepointer(s
, p
, NULL
);
1640 page
->freelist
= fixup_red_left(s
, start
);
1643 page
->inuse
= page
->objects
;
1647 if (gfpflags_allow_blocking(flags
))
1648 local_irq_disable();
1652 mod_lruvec_page_state(page
,
1653 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1654 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1657 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1662 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1664 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1665 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1666 flags
&= ~GFP_SLAB_BUG_MASK
;
1667 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1668 invalid_mask
, &invalid_mask
, flags
, &flags
);
1672 return allocate_slab(s
,
1673 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1676 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1678 int order
= compound_order(page
);
1679 int pages
= 1 << order
;
1681 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1684 slab_pad_check(s
, page
);
1685 for_each_object(p
, s
, page_address(page
),
1687 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1690 kmemcheck_free_shadow(page
, compound_order(page
));
1692 mod_lruvec_page_state(page
,
1693 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1694 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1697 __ClearPageSlabPfmemalloc(page
);
1698 __ClearPageSlab(page
);
1700 page_mapcount_reset(page
);
1701 if (current
->reclaim_state
)
1702 current
->reclaim_state
->reclaimed_slab
+= pages
;
1703 memcg_uncharge_slab(page
, order
, s
);
1704 __free_pages(page
, order
);
1707 #define need_reserve_slab_rcu \
1708 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1710 static void rcu_free_slab(struct rcu_head
*h
)
1714 if (need_reserve_slab_rcu
)
1715 page
= virt_to_head_page(h
);
1717 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1719 __free_slab(page
->slab_cache
, page
);
1722 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1724 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1725 struct rcu_head
*head
;
1727 if (need_reserve_slab_rcu
) {
1728 int order
= compound_order(page
);
1729 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1731 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1732 head
= page_address(page
) + offset
;
1734 head
= &page
->rcu_head
;
1737 call_rcu(head
, rcu_free_slab
);
1739 __free_slab(s
, page
);
1742 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1744 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1749 * Management of partially allocated slabs.
1752 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1755 if (tail
== DEACTIVATE_TO_TAIL
)
1756 list_add_tail(&page
->lru
, &n
->partial
);
1758 list_add(&page
->lru
, &n
->partial
);
1761 static inline void add_partial(struct kmem_cache_node
*n
,
1762 struct page
*page
, int tail
)
1764 lockdep_assert_held(&n
->list_lock
);
1765 __add_partial(n
, page
, tail
);
1768 static inline void remove_partial(struct kmem_cache_node
*n
,
1771 lockdep_assert_held(&n
->list_lock
);
1772 list_del(&page
->lru
);
1777 * Remove slab from the partial list, freeze it and
1778 * return the pointer to the freelist.
1780 * Returns a list of objects or NULL if it fails.
1782 static inline void *acquire_slab(struct kmem_cache
*s
,
1783 struct kmem_cache_node
*n
, struct page
*page
,
1784 int mode
, int *objects
)
1787 unsigned long counters
;
1790 lockdep_assert_held(&n
->list_lock
);
1793 * Zap the freelist and set the frozen bit.
1794 * The old freelist is the list of objects for the
1795 * per cpu allocation list.
1797 freelist
= page
->freelist
;
1798 counters
= page
->counters
;
1799 new.counters
= counters
;
1800 *objects
= new.objects
- new.inuse
;
1802 new.inuse
= page
->objects
;
1803 new.freelist
= NULL
;
1805 new.freelist
= freelist
;
1808 VM_BUG_ON(new.frozen
);
1811 if (!__cmpxchg_double_slab(s
, page
,
1813 new.freelist
, new.counters
,
1817 remove_partial(n
, page
);
1822 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1823 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1826 * Try to allocate a partial slab from a specific node.
1828 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1829 struct kmem_cache_cpu
*c
, gfp_t flags
)
1831 struct page
*page
, *page2
;
1832 void *object
= NULL
;
1837 * Racy check. If we mistakenly see no partial slabs then we
1838 * just allocate an empty slab. If we mistakenly try to get a
1839 * partial slab and there is none available then get_partials()
1842 if (!n
|| !n
->nr_partial
)
1845 spin_lock(&n
->list_lock
);
1846 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1849 if (!pfmemalloc_match(page
, flags
))
1852 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1856 available
+= objects
;
1859 stat(s
, ALLOC_FROM_PARTIAL
);
1862 put_cpu_partial(s
, page
, 0);
1863 stat(s
, CPU_PARTIAL_NODE
);
1865 if (!kmem_cache_has_cpu_partial(s
)
1866 || available
> slub_cpu_partial(s
) / 2)
1870 spin_unlock(&n
->list_lock
);
1875 * Get a page from somewhere. Search in increasing NUMA distances.
1877 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1878 struct kmem_cache_cpu
*c
)
1881 struct zonelist
*zonelist
;
1884 enum zone_type high_zoneidx
= gfp_zone(flags
);
1886 unsigned int cpuset_mems_cookie
;
1889 * The defrag ratio allows a configuration of the tradeoffs between
1890 * inter node defragmentation and node local allocations. A lower
1891 * defrag_ratio increases the tendency to do local allocations
1892 * instead of attempting to obtain partial slabs from other nodes.
1894 * If the defrag_ratio is set to 0 then kmalloc() always
1895 * returns node local objects. If the ratio is higher then kmalloc()
1896 * may return off node objects because partial slabs are obtained
1897 * from other nodes and filled up.
1899 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1900 * (which makes defrag_ratio = 1000) then every (well almost)
1901 * allocation will first attempt to defrag slab caches on other nodes.
1902 * This means scanning over all nodes to look for partial slabs which
1903 * may be expensive if we do it every time we are trying to find a slab
1904 * with available objects.
1906 if (!s
->remote_node_defrag_ratio
||
1907 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1911 cpuset_mems_cookie
= read_mems_allowed_begin();
1912 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1913 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1914 struct kmem_cache_node
*n
;
1916 n
= get_node(s
, zone_to_nid(zone
));
1918 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1919 n
->nr_partial
> s
->min_partial
) {
1920 object
= get_partial_node(s
, n
, c
, flags
);
1923 * Don't check read_mems_allowed_retry()
1924 * here - if mems_allowed was updated in
1925 * parallel, that was a harmless race
1926 * between allocation and the cpuset
1933 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1939 * Get a partial page, lock it and return it.
1941 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1942 struct kmem_cache_cpu
*c
)
1945 int searchnode
= node
;
1947 if (node
== NUMA_NO_NODE
)
1948 searchnode
= numa_mem_id();
1949 else if (!node_present_pages(node
))
1950 searchnode
= node_to_mem_node(node
);
1952 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1953 if (object
|| node
!= NUMA_NO_NODE
)
1956 return get_any_partial(s
, flags
, c
);
1959 #ifdef CONFIG_PREEMPT
1961 * Calculate the next globally unique transaction for disambiguiation
1962 * during cmpxchg. The transactions start with the cpu number and are then
1963 * incremented by CONFIG_NR_CPUS.
1965 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1968 * No preemption supported therefore also no need to check for
1974 static inline unsigned long next_tid(unsigned long tid
)
1976 return tid
+ TID_STEP
;
1979 static inline unsigned int tid_to_cpu(unsigned long tid
)
1981 return tid
% TID_STEP
;
1984 static inline unsigned long tid_to_event(unsigned long tid
)
1986 return tid
/ TID_STEP
;
1989 static inline unsigned int init_tid(int cpu
)
1994 static inline void note_cmpxchg_failure(const char *n
,
1995 const struct kmem_cache
*s
, unsigned long tid
)
1997 #ifdef SLUB_DEBUG_CMPXCHG
1998 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
2000 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
2002 #ifdef CONFIG_PREEMPT
2003 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
2004 pr_warn("due to cpu change %d -> %d\n",
2005 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
2008 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
2009 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2010 tid_to_event(tid
), tid_to_event(actual_tid
));
2012 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2013 actual_tid
, tid
, next_tid(tid
));
2015 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
2018 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
2022 for_each_possible_cpu(cpu
)
2023 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2027 * Remove the cpu slab
2029 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2030 void *freelist
, struct kmem_cache_cpu
*c
)
2032 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2033 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2035 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2037 int tail
= DEACTIVATE_TO_HEAD
;
2041 if (page
->freelist
) {
2042 stat(s
, DEACTIVATE_REMOTE_FREES
);
2043 tail
= DEACTIVATE_TO_TAIL
;
2047 * Stage one: Free all available per cpu objects back
2048 * to the page freelist while it is still frozen. Leave the
2051 * There is no need to take the list->lock because the page
2054 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2056 unsigned long counters
;
2059 prior
= page
->freelist
;
2060 counters
= page
->counters
;
2061 set_freepointer(s
, freelist
, prior
);
2062 new.counters
= counters
;
2064 VM_BUG_ON(!new.frozen
);
2066 } while (!__cmpxchg_double_slab(s
, page
,
2068 freelist
, new.counters
,
2069 "drain percpu freelist"));
2071 freelist
= nextfree
;
2075 * Stage two: Ensure that the page is unfrozen while the
2076 * list presence reflects the actual number of objects
2079 * We setup the list membership and then perform a cmpxchg
2080 * with the count. If there is a mismatch then the page
2081 * is not unfrozen but the page is on the wrong list.
2083 * Then we restart the process which may have to remove
2084 * the page from the list that we just put it on again
2085 * because the number of objects in the slab may have
2090 old
.freelist
= page
->freelist
;
2091 old
.counters
= page
->counters
;
2092 VM_BUG_ON(!old
.frozen
);
2094 /* Determine target state of the slab */
2095 new.counters
= old
.counters
;
2098 set_freepointer(s
, freelist
, old
.freelist
);
2099 new.freelist
= freelist
;
2101 new.freelist
= old
.freelist
;
2105 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2107 else if (new.freelist
) {
2112 * Taking the spinlock removes the possiblity
2113 * that acquire_slab() will see a slab page that
2116 spin_lock(&n
->list_lock
);
2120 if (kmem_cache_debug(s
) && !lock
) {
2123 * This also ensures that the scanning of full
2124 * slabs from diagnostic functions will not see
2127 spin_lock(&n
->list_lock
);
2135 remove_partial(n
, page
);
2137 else if (l
== M_FULL
)
2139 remove_full(s
, n
, page
);
2141 if (m
== M_PARTIAL
) {
2143 add_partial(n
, page
, tail
);
2146 } else if (m
== M_FULL
) {
2148 stat(s
, DEACTIVATE_FULL
);
2149 add_full(s
, n
, page
);
2155 if (!__cmpxchg_double_slab(s
, page
,
2156 old
.freelist
, old
.counters
,
2157 new.freelist
, new.counters
,
2162 spin_unlock(&n
->list_lock
);
2165 stat(s
, DEACTIVATE_EMPTY
);
2166 discard_slab(s
, page
);
2175 * Unfreeze all the cpu partial slabs.
2177 * This function must be called with interrupts disabled
2178 * for the cpu using c (or some other guarantee must be there
2179 * to guarantee no concurrent accesses).
2181 static void unfreeze_partials(struct kmem_cache
*s
,
2182 struct kmem_cache_cpu
*c
)
2184 #ifdef CONFIG_SLUB_CPU_PARTIAL
2185 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2186 struct page
*page
, *discard_page
= NULL
;
2188 while ((page
= c
->partial
)) {
2192 c
->partial
= page
->next
;
2194 n2
= get_node(s
, page_to_nid(page
));
2197 spin_unlock(&n
->list_lock
);
2200 spin_lock(&n
->list_lock
);
2205 old
.freelist
= page
->freelist
;
2206 old
.counters
= page
->counters
;
2207 VM_BUG_ON(!old
.frozen
);
2209 new.counters
= old
.counters
;
2210 new.freelist
= old
.freelist
;
2214 } while (!__cmpxchg_double_slab(s
, page
,
2215 old
.freelist
, old
.counters
,
2216 new.freelist
, new.counters
,
2217 "unfreezing slab"));
2219 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2220 page
->next
= discard_page
;
2221 discard_page
= page
;
2223 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2224 stat(s
, FREE_ADD_PARTIAL
);
2229 spin_unlock(&n
->list_lock
);
2231 while (discard_page
) {
2232 page
= discard_page
;
2233 discard_page
= discard_page
->next
;
2235 stat(s
, DEACTIVATE_EMPTY
);
2236 discard_slab(s
, page
);
2243 * Put a page that was just frozen (in __slab_free) into a partial page
2244 * slot if available. This is done without interrupts disabled and without
2245 * preemption disabled. The cmpxchg is racy and may put the partial page
2246 * onto a random cpus partial slot.
2248 * If we did not find a slot then simply move all the partials to the
2249 * per node partial list.
2251 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2253 #ifdef CONFIG_SLUB_CPU_PARTIAL
2254 struct page
*oldpage
;
2262 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2265 pobjects
= oldpage
->pobjects
;
2266 pages
= oldpage
->pages
;
2267 if (drain
&& pobjects
> s
->cpu_partial
) {
2268 unsigned long flags
;
2270 * partial array is full. Move the existing
2271 * set to the per node partial list.
2273 local_irq_save(flags
);
2274 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2275 local_irq_restore(flags
);
2279 stat(s
, CPU_PARTIAL_DRAIN
);
2284 pobjects
+= page
->objects
- page
->inuse
;
2286 page
->pages
= pages
;
2287 page
->pobjects
= pobjects
;
2288 page
->next
= oldpage
;
2290 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2292 if (unlikely(!s
->cpu_partial
)) {
2293 unsigned long flags
;
2295 local_irq_save(flags
);
2296 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2297 local_irq_restore(flags
);
2303 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2305 stat(s
, CPUSLAB_FLUSH
);
2306 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2308 c
->tid
= next_tid(c
->tid
);
2314 * Called from IPI handler with interrupts disabled.
2316 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2318 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2324 unfreeze_partials(s
, c
);
2328 static void flush_cpu_slab(void *d
)
2330 struct kmem_cache
*s
= d
;
2332 __flush_cpu_slab(s
, smp_processor_id());
2335 static bool has_cpu_slab(int cpu
, void *info
)
2337 struct kmem_cache
*s
= info
;
2338 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2340 return c
->page
|| slub_percpu_partial(c
);
2343 static void flush_all(struct kmem_cache
*s
)
2345 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2349 * Use the cpu notifier to insure that the cpu slabs are flushed when
2352 static int slub_cpu_dead(unsigned int cpu
)
2354 struct kmem_cache
*s
;
2355 unsigned long flags
;
2357 mutex_lock(&slab_mutex
);
2358 list_for_each_entry(s
, &slab_caches
, list
) {
2359 local_irq_save(flags
);
2360 __flush_cpu_slab(s
, cpu
);
2361 local_irq_restore(flags
);
2363 mutex_unlock(&slab_mutex
);
2368 * Check if the objects in a per cpu structure fit numa
2369 * locality expectations.
2371 static inline int node_match(struct page
*page
, int node
)
2374 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2380 #ifdef CONFIG_SLUB_DEBUG
2381 static int count_free(struct page
*page
)
2383 return page
->objects
- page
->inuse
;
2386 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2388 return atomic_long_read(&n
->total_objects
);
2390 #endif /* CONFIG_SLUB_DEBUG */
2392 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2393 static unsigned long count_partial(struct kmem_cache_node
*n
,
2394 int (*get_count
)(struct page
*))
2396 unsigned long flags
;
2397 unsigned long x
= 0;
2400 spin_lock_irqsave(&n
->list_lock
, flags
);
2401 list_for_each_entry(page
, &n
->partial
, lru
)
2402 x
+= get_count(page
);
2403 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2406 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2408 static noinline
void
2409 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2411 #ifdef CONFIG_SLUB_DEBUG
2412 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2413 DEFAULT_RATELIMIT_BURST
);
2415 struct kmem_cache_node
*n
;
2417 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2420 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2421 nid
, gfpflags
, &gfpflags
);
2422 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2423 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2426 if (oo_order(s
->min
) > get_order(s
->object_size
))
2427 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2430 for_each_kmem_cache_node(s
, node
, n
) {
2431 unsigned long nr_slabs
;
2432 unsigned long nr_objs
;
2433 unsigned long nr_free
;
2435 nr_free
= count_partial(n
, count_free
);
2436 nr_slabs
= node_nr_slabs(n
);
2437 nr_objs
= node_nr_objs(n
);
2439 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2440 node
, nr_slabs
, nr_objs
, nr_free
);
2445 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2446 int node
, struct kmem_cache_cpu
**pc
)
2449 struct kmem_cache_cpu
*c
= *pc
;
2452 freelist
= get_partial(s
, flags
, node
, c
);
2457 page
= new_slab(s
, flags
, node
);
2459 c
= raw_cpu_ptr(s
->cpu_slab
);
2464 * No other reference to the page yet so we can
2465 * muck around with it freely without cmpxchg
2467 freelist
= page
->freelist
;
2468 page
->freelist
= NULL
;
2470 stat(s
, ALLOC_SLAB
);
2479 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2481 if (unlikely(PageSlabPfmemalloc(page
)))
2482 return gfp_pfmemalloc_allowed(gfpflags
);
2488 * Check the page->freelist of a page and either transfer the freelist to the
2489 * per cpu freelist or deactivate the page.
2491 * The page is still frozen if the return value is not NULL.
2493 * If this function returns NULL then the page has been unfrozen.
2495 * This function must be called with interrupt disabled.
2497 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2500 unsigned long counters
;
2504 freelist
= page
->freelist
;
2505 counters
= page
->counters
;
2507 new.counters
= counters
;
2508 VM_BUG_ON(!new.frozen
);
2510 new.inuse
= page
->objects
;
2511 new.frozen
= freelist
!= NULL
;
2513 } while (!__cmpxchg_double_slab(s
, page
,
2522 * Slow path. The lockless freelist is empty or we need to perform
2525 * Processing is still very fast if new objects have been freed to the
2526 * regular freelist. In that case we simply take over the regular freelist
2527 * as the lockless freelist and zap the regular freelist.
2529 * If that is not working then we fall back to the partial lists. We take the
2530 * first element of the freelist as the object to allocate now and move the
2531 * rest of the freelist to the lockless freelist.
2533 * And if we were unable to get a new slab from the partial slab lists then
2534 * we need to allocate a new slab. This is the slowest path since it involves
2535 * a call to the page allocator and the setup of a new slab.
2537 * Version of __slab_alloc to use when we know that interrupts are
2538 * already disabled (which is the case for bulk allocation).
2540 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2541 unsigned long addr
, struct kmem_cache_cpu
*c
)
2551 if (unlikely(!node_match(page
, node
))) {
2552 int searchnode
= node
;
2554 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2555 searchnode
= node_to_mem_node(node
);
2557 if (unlikely(!node_match(page
, searchnode
))) {
2558 stat(s
, ALLOC_NODE_MISMATCH
);
2559 deactivate_slab(s
, page
, c
->freelist
, c
);
2565 * By rights, we should be searching for a slab page that was
2566 * PFMEMALLOC but right now, we are losing the pfmemalloc
2567 * information when the page leaves the per-cpu allocator
2569 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2570 deactivate_slab(s
, page
, c
->freelist
, c
);
2574 /* must check again c->freelist in case of cpu migration or IRQ */
2575 freelist
= c
->freelist
;
2579 freelist
= get_freelist(s
, page
);
2583 stat(s
, DEACTIVATE_BYPASS
);
2587 stat(s
, ALLOC_REFILL
);
2591 * freelist is pointing to the list of objects to be used.
2592 * page is pointing to the page from which the objects are obtained.
2593 * That page must be frozen for per cpu allocations to work.
2595 VM_BUG_ON(!c
->page
->frozen
);
2596 c
->freelist
= get_freepointer(s
, freelist
);
2597 c
->tid
= next_tid(c
->tid
);
2602 if (slub_percpu_partial(c
)) {
2603 page
= c
->page
= slub_percpu_partial(c
);
2604 slub_set_percpu_partial(c
, page
);
2605 stat(s
, CPU_PARTIAL_ALLOC
);
2609 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2611 if (unlikely(!freelist
)) {
2612 slab_out_of_memory(s
, gfpflags
, node
);
2617 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2620 /* Only entered in the debug case */
2621 if (kmem_cache_debug(s
) &&
2622 !alloc_debug_processing(s
, page
, freelist
, addr
))
2623 goto new_slab
; /* Slab failed checks. Next slab needed */
2625 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2630 * Another one that disabled interrupt and compensates for possible
2631 * cpu changes by refetching the per cpu area pointer.
2633 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2634 unsigned long addr
, struct kmem_cache_cpu
*c
)
2637 unsigned long flags
;
2639 local_irq_save(flags
);
2640 #ifdef CONFIG_PREEMPT
2642 * We may have been preempted and rescheduled on a different
2643 * cpu before disabling interrupts. Need to reload cpu area
2646 c
= this_cpu_ptr(s
->cpu_slab
);
2649 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2650 local_irq_restore(flags
);
2655 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2656 * have the fastpath folded into their functions. So no function call
2657 * overhead for requests that can be satisfied on the fastpath.
2659 * The fastpath works by first checking if the lockless freelist can be used.
2660 * If not then __slab_alloc is called for slow processing.
2662 * Otherwise we can simply pick the next object from the lockless free list.
2664 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2665 gfp_t gfpflags
, int node
, unsigned long addr
)
2668 struct kmem_cache_cpu
*c
;
2672 s
= slab_pre_alloc_hook(s
, gfpflags
);
2677 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2678 * enabled. We may switch back and forth between cpus while
2679 * reading from one cpu area. That does not matter as long
2680 * as we end up on the original cpu again when doing the cmpxchg.
2682 * We should guarantee that tid and kmem_cache are retrieved on
2683 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2684 * to check if it is matched or not.
2687 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2688 c
= raw_cpu_ptr(s
->cpu_slab
);
2689 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2690 unlikely(tid
!= READ_ONCE(c
->tid
)));
2693 * Irqless object alloc/free algorithm used here depends on sequence
2694 * of fetching cpu_slab's data. tid should be fetched before anything
2695 * on c to guarantee that object and page associated with previous tid
2696 * won't be used with current tid. If we fetch tid first, object and
2697 * page could be one associated with next tid and our alloc/free
2698 * request will be failed. In this case, we will retry. So, no problem.
2703 * The transaction ids are globally unique per cpu and per operation on
2704 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2705 * occurs on the right processor and that there was no operation on the
2706 * linked list in between.
2709 object
= c
->freelist
;
2711 if (unlikely(!object
|| !node_match(page
, node
))) {
2712 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2713 stat(s
, ALLOC_SLOWPATH
);
2715 void *next_object
= get_freepointer_safe(s
, object
);
2718 * The cmpxchg will only match if there was no additional
2719 * operation and if we are on the right processor.
2721 * The cmpxchg does the following atomically (without lock
2723 * 1. Relocate first pointer to the current per cpu area.
2724 * 2. Verify that tid and freelist have not been changed
2725 * 3. If they were not changed replace tid and freelist
2727 * Since this is without lock semantics the protection is only
2728 * against code executing on this cpu *not* from access by
2731 if (unlikely(!this_cpu_cmpxchg_double(
2732 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2734 next_object
, next_tid(tid
)))) {
2736 note_cmpxchg_failure("slab_alloc", s
, tid
);
2739 prefetch_freepointer(s
, next_object
);
2740 stat(s
, ALLOC_FASTPATH
);
2743 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2744 memset(object
, 0, s
->object_size
);
2746 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2751 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2752 gfp_t gfpflags
, unsigned long addr
)
2754 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2757 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2759 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2761 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2766 EXPORT_SYMBOL(kmem_cache_alloc
);
2768 #ifdef CONFIG_TRACING
2769 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2771 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2772 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2773 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2776 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2780 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2782 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2784 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2785 s
->object_size
, s
->size
, gfpflags
, node
);
2789 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2791 #ifdef CONFIG_TRACING
2792 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2794 int node
, size_t size
)
2796 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2798 trace_kmalloc_node(_RET_IP_
, ret
,
2799 size
, s
->size
, gfpflags
, node
);
2801 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2804 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2809 * Slow path handling. This may still be called frequently since objects
2810 * have a longer lifetime than the cpu slabs in most processing loads.
2812 * So we still attempt to reduce cache line usage. Just take the slab
2813 * lock and free the item. If there is no additional partial page
2814 * handling required then we can return immediately.
2816 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2817 void *head
, void *tail
, int cnt
,
2824 unsigned long counters
;
2825 struct kmem_cache_node
*n
= NULL
;
2826 unsigned long uninitialized_var(flags
);
2828 stat(s
, FREE_SLOWPATH
);
2830 if (kmem_cache_debug(s
) &&
2831 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2836 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2839 prior
= page
->freelist
;
2840 counters
= page
->counters
;
2841 set_freepointer(s
, tail
, prior
);
2842 new.counters
= counters
;
2843 was_frozen
= new.frozen
;
2845 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2847 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2850 * Slab was on no list before and will be
2852 * We can defer the list move and instead
2857 } else { /* Needs to be taken off a list */
2859 n
= get_node(s
, page_to_nid(page
));
2861 * Speculatively acquire the list_lock.
2862 * If the cmpxchg does not succeed then we may
2863 * drop the list_lock without any processing.
2865 * Otherwise the list_lock will synchronize with
2866 * other processors updating the list of slabs.
2868 spin_lock_irqsave(&n
->list_lock
, flags
);
2873 } while (!cmpxchg_double_slab(s
, page
,
2881 * If we just froze the page then put it onto the
2882 * per cpu partial list.
2884 if (new.frozen
&& !was_frozen
) {
2885 put_cpu_partial(s
, page
, 1);
2886 stat(s
, CPU_PARTIAL_FREE
);
2889 * The list lock was not taken therefore no list
2890 * activity can be necessary.
2893 stat(s
, FREE_FROZEN
);
2897 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2901 * Objects left in the slab. If it was not on the partial list before
2904 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2905 if (kmem_cache_debug(s
))
2906 remove_full(s
, n
, page
);
2907 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2908 stat(s
, FREE_ADD_PARTIAL
);
2910 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2916 * Slab on the partial list.
2918 remove_partial(n
, page
);
2919 stat(s
, FREE_REMOVE_PARTIAL
);
2921 /* Slab must be on the full list */
2922 remove_full(s
, n
, page
);
2925 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2927 discard_slab(s
, page
);
2931 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2932 * can perform fastpath freeing without additional function calls.
2934 * The fastpath is only possible if we are freeing to the current cpu slab
2935 * of this processor. This typically the case if we have just allocated
2938 * If fastpath is not possible then fall back to __slab_free where we deal
2939 * with all sorts of special processing.
2941 * Bulk free of a freelist with several objects (all pointing to the
2942 * same page) possible by specifying head and tail ptr, plus objects
2943 * count (cnt). Bulk free indicated by tail pointer being set.
2945 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2946 struct page
*page
, void *head
, void *tail
,
2947 int cnt
, unsigned long addr
)
2949 void *tail_obj
= tail
? : head
;
2950 struct kmem_cache_cpu
*c
;
2954 * Determine the currently cpus per cpu slab.
2955 * The cpu may change afterward. However that does not matter since
2956 * data is retrieved via this pointer. If we are on the same cpu
2957 * during the cmpxchg then the free will succeed.
2960 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2961 c
= raw_cpu_ptr(s
->cpu_slab
);
2962 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2963 unlikely(tid
!= READ_ONCE(c
->tid
)));
2965 /* Same with comment on barrier() in slab_alloc_node() */
2968 if (likely(page
== c
->page
)) {
2969 set_freepointer(s
, tail_obj
, c
->freelist
);
2971 if (unlikely(!this_cpu_cmpxchg_double(
2972 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2974 head
, next_tid(tid
)))) {
2976 note_cmpxchg_failure("slab_free", s
, tid
);
2979 stat(s
, FREE_FASTPATH
);
2981 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2985 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2986 void *head
, void *tail
, int cnt
,
2989 slab_free_freelist_hook(s
, head
, tail
);
2991 * slab_free_freelist_hook() could have put the items into quarantine.
2992 * If so, no need to free them.
2994 if (s
->flags
& SLAB_KASAN
&& !(s
->flags
& SLAB_TYPESAFE_BY_RCU
))
2996 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
3000 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
3002 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
3006 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
3008 s
= cache_from_obj(s
, x
);
3011 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
3012 trace_kmem_cache_free(_RET_IP_
, x
);
3014 EXPORT_SYMBOL(kmem_cache_free
);
3016 struct detached_freelist
{
3021 struct kmem_cache
*s
;
3025 * This function progressively scans the array with free objects (with
3026 * a limited look ahead) and extract objects belonging to the same
3027 * page. It builds a detached freelist directly within the given
3028 * page/objects. This can happen without any need for
3029 * synchronization, because the objects are owned by running process.
3030 * The freelist is build up as a single linked list in the objects.
3031 * The idea is, that this detached freelist can then be bulk
3032 * transferred to the real freelist(s), but only requiring a single
3033 * synchronization primitive. Look ahead in the array is limited due
3034 * to performance reasons.
3037 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3038 void **p
, struct detached_freelist
*df
)
3040 size_t first_skipped_index
= 0;
3045 /* Always re-init detached_freelist */
3050 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3051 } while (!object
&& size
);
3056 page
= virt_to_head_page(object
);
3058 /* Handle kalloc'ed objects */
3059 if (unlikely(!PageSlab(page
))) {
3060 BUG_ON(!PageCompound(page
));
3062 __free_pages(page
, compound_order(page
));
3063 p
[size
] = NULL
; /* mark object processed */
3066 /* Derive kmem_cache from object */
3067 df
->s
= page
->slab_cache
;
3069 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3072 /* Start new detached freelist */
3074 set_freepointer(df
->s
, object
, NULL
);
3076 df
->freelist
= object
;
3077 p
[size
] = NULL
; /* mark object processed */
3083 continue; /* Skip processed objects */
3085 /* df->page is always set at this point */
3086 if (df
->page
== virt_to_head_page(object
)) {
3087 /* Opportunity build freelist */
3088 set_freepointer(df
->s
, object
, df
->freelist
);
3089 df
->freelist
= object
;
3091 p
[size
] = NULL
; /* mark object processed */
3096 /* Limit look ahead search */
3100 if (!first_skipped_index
)
3101 first_skipped_index
= size
+ 1;
3104 return first_skipped_index
;
3107 /* Note that interrupts must be enabled when calling this function. */
3108 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3114 struct detached_freelist df
;
3116 size
= build_detached_freelist(s
, size
, p
, &df
);
3120 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3121 } while (likely(size
));
3123 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3125 /* Note that interrupts must be enabled when calling this function. */
3126 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3129 struct kmem_cache_cpu
*c
;
3132 /* memcg and kmem_cache debug support */
3133 s
= slab_pre_alloc_hook(s
, flags
);
3137 * Drain objects in the per cpu slab, while disabling local
3138 * IRQs, which protects against PREEMPT and interrupts
3139 * handlers invoking normal fastpath.
3141 local_irq_disable();
3142 c
= this_cpu_ptr(s
->cpu_slab
);
3144 for (i
= 0; i
< size
; i
++) {
3145 void *object
= c
->freelist
;
3147 if (unlikely(!object
)) {
3149 * Invoking slow path likely have side-effect
3150 * of re-populating per CPU c->freelist
3152 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3154 if (unlikely(!p
[i
]))
3157 c
= this_cpu_ptr(s
->cpu_slab
);
3158 continue; /* goto for-loop */
3160 c
->freelist
= get_freepointer(s
, object
);
3163 c
->tid
= next_tid(c
->tid
);
3166 /* Clear memory outside IRQ disabled fastpath loop */
3167 if (unlikely(flags
& __GFP_ZERO
)) {
3170 for (j
= 0; j
< i
; j
++)
3171 memset(p
[j
], 0, s
->object_size
);
3174 /* memcg and kmem_cache debug support */
3175 slab_post_alloc_hook(s
, flags
, size
, p
);
3179 slab_post_alloc_hook(s
, flags
, i
, p
);
3180 __kmem_cache_free_bulk(s
, i
, p
);
3183 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3187 * Object placement in a slab is made very easy because we always start at
3188 * offset 0. If we tune the size of the object to the alignment then we can
3189 * get the required alignment by putting one properly sized object after
3192 * Notice that the allocation order determines the sizes of the per cpu
3193 * caches. Each processor has always one slab available for allocations.
3194 * Increasing the allocation order reduces the number of times that slabs
3195 * must be moved on and off the partial lists and is therefore a factor in
3200 * Mininum / Maximum order of slab pages. This influences locking overhead
3201 * and slab fragmentation. A higher order reduces the number of partial slabs
3202 * and increases the number of allocations possible without having to
3203 * take the list_lock.
3205 static int slub_min_order
;
3206 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3207 static int slub_min_objects
;
3210 * Calculate the order of allocation given an slab object size.
3212 * The order of allocation has significant impact on performance and other
3213 * system components. Generally order 0 allocations should be preferred since
3214 * order 0 does not cause fragmentation in the page allocator. Larger objects
3215 * be problematic to put into order 0 slabs because there may be too much
3216 * unused space left. We go to a higher order if more than 1/16th of the slab
3219 * In order to reach satisfactory performance we must ensure that a minimum
3220 * number of objects is in one slab. Otherwise we may generate too much
3221 * activity on the partial lists which requires taking the list_lock. This is
3222 * less a concern for large slabs though which are rarely used.
3224 * slub_max_order specifies the order where we begin to stop considering the
3225 * number of objects in a slab as critical. If we reach slub_max_order then
3226 * we try to keep the page order as low as possible. So we accept more waste
3227 * of space in favor of a small page order.
3229 * Higher order allocations also allow the placement of more objects in a
3230 * slab and thereby reduce object handling overhead. If the user has
3231 * requested a higher mininum order then we start with that one instead of
3232 * the smallest order which will fit the object.
3234 static inline int slab_order(int size
, int min_objects
,
3235 int max_order
, int fract_leftover
, int reserved
)
3239 int min_order
= slub_min_order
;
3241 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3242 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3244 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3245 order
<= max_order
; order
++) {
3247 unsigned long slab_size
= PAGE_SIZE
<< order
;
3249 rem
= (slab_size
- reserved
) % size
;
3251 if (rem
<= slab_size
/ fract_leftover
)
3258 static inline int calculate_order(int size
, int reserved
)
3266 * Attempt to find best configuration for a slab. This
3267 * works by first attempting to generate a layout with
3268 * the best configuration and backing off gradually.
3270 * First we increase the acceptable waste in a slab. Then
3271 * we reduce the minimum objects required in a slab.
3273 min_objects
= slub_min_objects
;
3275 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3276 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3277 min_objects
= min(min_objects
, max_objects
);
3279 while (min_objects
> 1) {
3281 while (fraction
>= 4) {
3282 order
= slab_order(size
, min_objects
,
3283 slub_max_order
, fraction
, reserved
);
3284 if (order
<= slub_max_order
)
3292 * We were unable to place multiple objects in a slab. Now
3293 * lets see if we can place a single object there.
3295 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3296 if (order
<= slub_max_order
)
3300 * Doh this slab cannot be placed using slub_max_order.
3302 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3303 if (order
< MAX_ORDER
)
3309 init_kmem_cache_node(struct kmem_cache_node
*n
)
3312 spin_lock_init(&n
->list_lock
);
3313 INIT_LIST_HEAD(&n
->partial
);
3314 #ifdef CONFIG_SLUB_DEBUG
3315 atomic_long_set(&n
->nr_slabs
, 0);
3316 atomic_long_set(&n
->total_objects
, 0);
3317 INIT_LIST_HEAD(&n
->full
);
3321 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3323 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3324 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3327 * Must align to double word boundary for the double cmpxchg
3328 * instructions to work; see __pcpu_double_call_return_bool().
3330 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3331 2 * sizeof(void *));
3336 init_kmem_cache_cpus(s
);
3341 static struct kmem_cache
*kmem_cache_node
;
3344 * No kmalloc_node yet so do it by hand. We know that this is the first
3345 * slab on the node for this slabcache. There are no concurrent accesses
3348 * Note that this function only works on the kmem_cache_node
3349 * when allocating for the kmem_cache_node. This is used for bootstrapping
3350 * memory on a fresh node that has no slab structures yet.
3352 static void early_kmem_cache_node_alloc(int node
)
3355 struct kmem_cache_node
*n
;
3357 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3359 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3362 if (page_to_nid(page
) != node
) {
3363 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3364 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3369 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3372 kmem_cache_node
->node
[node
] = n
;
3373 #ifdef CONFIG_SLUB_DEBUG
3374 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3375 init_tracking(kmem_cache_node
, n
);
3377 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3379 init_kmem_cache_node(n
);
3380 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3383 * No locks need to be taken here as it has just been
3384 * initialized and there is no concurrent access.
3386 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3389 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3392 struct kmem_cache_node
*n
;
3394 for_each_kmem_cache_node(s
, node
, n
) {
3395 s
->node
[node
] = NULL
;
3396 kmem_cache_free(kmem_cache_node
, n
);
3400 void __kmem_cache_release(struct kmem_cache
*s
)
3402 cache_random_seq_destroy(s
);
3403 free_percpu(s
->cpu_slab
);
3404 free_kmem_cache_nodes(s
);
3407 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3411 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3412 struct kmem_cache_node
*n
;
3414 if (slab_state
== DOWN
) {
3415 early_kmem_cache_node_alloc(node
);
3418 n
= kmem_cache_alloc_node(kmem_cache_node
,
3422 free_kmem_cache_nodes(s
);
3426 init_kmem_cache_node(n
);
3432 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3434 if (min
< MIN_PARTIAL
)
3436 else if (min
> MAX_PARTIAL
)
3438 s
->min_partial
= min
;
3441 static void set_cpu_partial(struct kmem_cache
*s
)
3443 #ifdef CONFIG_SLUB_CPU_PARTIAL
3445 * cpu_partial determined the maximum number of objects kept in the
3446 * per cpu partial lists of a processor.
3448 * Per cpu partial lists mainly contain slabs that just have one
3449 * object freed. If they are used for allocation then they can be
3450 * filled up again with minimal effort. The slab will never hit the
3451 * per node partial lists and therefore no locking will be required.
3453 * This setting also determines
3455 * A) The number of objects from per cpu partial slabs dumped to the
3456 * per node list when we reach the limit.
3457 * B) The number of objects in cpu partial slabs to extract from the
3458 * per node list when we run out of per cpu objects. We only fetch
3459 * 50% to keep some capacity around for frees.
3461 if (!kmem_cache_has_cpu_partial(s
))
3463 else if (s
->size
>= PAGE_SIZE
)
3465 else if (s
->size
>= 1024)
3467 else if (s
->size
>= 256)
3468 s
->cpu_partial
= 13;
3470 s
->cpu_partial
= 30;
3475 * calculate_sizes() determines the order and the distribution of data within
3478 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3480 unsigned long flags
= s
->flags
;
3481 size_t size
= s
->object_size
;
3485 * Round up object size to the next word boundary. We can only
3486 * place the free pointer at word boundaries and this determines
3487 * the possible location of the free pointer.
3489 size
= ALIGN(size
, sizeof(void *));
3491 #ifdef CONFIG_SLUB_DEBUG
3493 * Determine if we can poison the object itself. If the user of
3494 * the slab may touch the object after free or before allocation
3495 * then we should never poison the object itself.
3497 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3499 s
->flags
|= __OBJECT_POISON
;
3501 s
->flags
&= ~__OBJECT_POISON
;
3505 * If we are Redzoning then check if there is some space between the
3506 * end of the object and the free pointer. If not then add an
3507 * additional word to have some bytes to store Redzone information.
3509 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3510 size
+= sizeof(void *);
3514 * With that we have determined the number of bytes in actual use
3515 * by the object. This is the potential offset to the free pointer.
3519 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3522 * Relocate free pointer after the object if it is not
3523 * permitted to overwrite the first word of the object on
3526 * This is the case if we do RCU, have a constructor or
3527 * destructor or are poisoning the objects.
3530 size
+= sizeof(void *);
3533 #ifdef CONFIG_SLUB_DEBUG
3534 if (flags
& SLAB_STORE_USER
)
3536 * Need to store information about allocs and frees after
3539 size
+= 2 * sizeof(struct track
);
3542 kasan_cache_create(s
, &size
, &s
->flags
);
3543 #ifdef CONFIG_SLUB_DEBUG
3544 if (flags
& SLAB_RED_ZONE
) {
3546 * Add some empty padding so that we can catch
3547 * overwrites from earlier objects rather than let
3548 * tracking information or the free pointer be
3549 * corrupted if a user writes before the start
3552 size
+= sizeof(void *);
3554 s
->red_left_pad
= sizeof(void *);
3555 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3556 size
+= s
->red_left_pad
;
3561 * SLUB stores one object immediately after another beginning from
3562 * offset 0. In order to align the objects we have to simply size
3563 * each object to conform to the alignment.
3565 size
= ALIGN(size
, s
->align
);
3567 if (forced_order
>= 0)
3568 order
= forced_order
;
3570 order
= calculate_order(size
, s
->reserved
);
3577 s
->allocflags
|= __GFP_COMP
;
3579 if (s
->flags
& SLAB_CACHE_DMA
)
3580 s
->allocflags
|= GFP_DMA
;
3582 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3583 s
->allocflags
|= __GFP_RECLAIMABLE
;
3586 * Determine the number of objects per slab
3588 s
->oo
= oo_make(order
, size
, s
->reserved
);
3589 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3590 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3593 return !!oo_objects(s
->oo
);
3596 static int kmem_cache_open(struct kmem_cache
*s
, unsigned long flags
)
3598 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3600 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3601 s
->random
= get_random_long();
3604 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_TYPESAFE_BY_RCU
))
3605 s
->reserved
= sizeof(struct rcu_head
);
3607 if (!calculate_sizes(s
, -1))
3609 if (disable_higher_order_debug
) {
3611 * Disable debugging flags that store metadata if the min slab
3614 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3615 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3617 if (!calculate_sizes(s
, -1))
3622 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3623 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3624 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3625 /* Enable fast mode */
3626 s
->flags
|= __CMPXCHG_DOUBLE
;
3630 * The larger the object size is, the more pages we want on the partial
3631 * list to avoid pounding the page allocator excessively.
3633 set_min_partial(s
, ilog2(s
->size
) / 2);
3638 s
->remote_node_defrag_ratio
= 1000;
3641 /* Initialize the pre-computed randomized freelist if slab is up */
3642 if (slab_state
>= UP
) {
3643 if (init_cache_random_seq(s
))
3647 if (!init_kmem_cache_nodes(s
))
3650 if (alloc_kmem_cache_cpus(s
))
3653 free_kmem_cache_nodes(s
);
3655 if (flags
& SLAB_PANIC
)
3656 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3657 s
->name
, (unsigned long)s
->size
, s
->size
,
3658 oo_order(s
->oo
), s
->offset
, flags
);
3662 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3665 #ifdef CONFIG_SLUB_DEBUG
3666 void *addr
= page_address(page
);
3668 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3669 sizeof(long), GFP_ATOMIC
);
3672 slab_err(s
, page
, text
, s
->name
);
3675 get_map(s
, page
, map
);
3676 for_each_object(p
, s
, addr
, page
->objects
) {
3678 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3679 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3680 print_tracking(s
, p
);
3689 * Attempt to free all partial slabs on a node.
3690 * This is called from __kmem_cache_shutdown(). We must take list_lock
3691 * because sysfs file might still access partial list after the shutdowning.
3693 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3696 struct page
*page
, *h
;
3698 BUG_ON(irqs_disabled());
3699 spin_lock_irq(&n
->list_lock
);
3700 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3702 remove_partial(n
, page
);
3703 list_add(&page
->lru
, &discard
);
3705 list_slab_objects(s
, page
,
3706 "Objects remaining in %s on __kmem_cache_shutdown()");
3709 spin_unlock_irq(&n
->list_lock
);
3711 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3712 discard_slab(s
, page
);
3716 * Release all resources used by a slab cache.
3718 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3721 struct kmem_cache_node
*n
;
3724 /* Attempt to free all objects */
3725 for_each_kmem_cache_node(s
, node
, n
) {
3727 if (n
->nr_partial
|| slabs_node(s
, node
))
3730 sysfs_slab_remove(s
);
3734 /********************************************************************
3736 *******************************************************************/
3738 static int __init
setup_slub_min_order(char *str
)
3740 get_option(&str
, &slub_min_order
);
3745 __setup("slub_min_order=", setup_slub_min_order
);
3747 static int __init
setup_slub_max_order(char *str
)
3749 get_option(&str
, &slub_max_order
);
3750 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3755 __setup("slub_max_order=", setup_slub_max_order
);
3757 static int __init
setup_slub_min_objects(char *str
)
3759 get_option(&str
, &slub_min_objects
);
3764 __setup("slub_min_objects=", setup_slub_min_objects
);
3766 void *__kmalloc(size_t size
, gfp_t flags
)
3768 struct kmem_cache
*s
;
3771 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3772 return kmalloc_large(size
, flags
);
3774 s
= kmalloc_slab(size
, flags
);
3776 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3779 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3781 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3783 kasan_kmalloc(s
, ret
, size
, flags
);
3787 EXPORT_SYMBOL(__kmalloc
);
3790 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3795 flags
|= __GFP_COMP
| __GFP_NOTRACK
;
3796 page
= alloc_pages_node(node
, flags
, get_order(size
));
3798 ptr
= page_address(page
);
3800 kmalloc_large_node_hook(ptr
, size
, flags
);
3804 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3806 struct kmem_cache
*s
;
3809 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3810 ret
= kmalloc_large_node(size
, flags
, node
);
3812 trace_kmalloc_node(_RET_IP_
, ret
,
3813 size
, PAGE_SIZE
<< get_order(size
),
3819 s
= kmalloc_slab(size
, flags
);
3821 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3824 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3826 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3828 kasan_kmalloc(s
, ret
, size
, flags
);
3832 EXPORT_SYMBOL(__kmalloc_node
);
3835 #ifdef CONFIG_HARDENED_USERCOPY
3837 * Rejects objects that are incorrectly sized.
3839 * Returns NULL if check passes, otherwise const char * to name of cache
3840 * to indicate an error.
3842 const char *__check_heap_object(const void *ptr
, unsigned long n
,
3845 struct kmem_cache
*s
;
3846 unsigned long offset
;
3849 /* Find object and usable object size. */
3850 s
= page
->slab_cache
;
3851 object_size
= slab_ksize(s
);
3853 /* Reject impossible pointers. */
3854 if (ptr
< page_address(page
))
3857 /* Find offset within object. */
3858 offset
= (ptr
- page_address(page
)) % s
->size
;
3860 /* Adjust for redzone and reject if within the redzone. */
3861 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3862 if (offset
< s
->red_left_pad
)
3864 offset
-= s
->red_left_pad
;
3867 /* Allow address range falling entirely within object size. */
3868 if (offset
<= object_size
&& n
<= object_size
- offset
)
3873 #endif /* CONFIG_HARDENED_USERCOPY */
3875 static size_t __ksize(const void *object
)
3879 if (unlikely(object
== ZERO_SIZE_PTR
))
3882 page
= virt_to_head_page(object
);
3884 if (unlikely(!PageSlab(page
))) {
3885 WARN_ON(!PageCompound(page
));
3886 return PAGE_SIZE
<< compound_order(page
);
3889 return slab_ksize(page
->slab_cache
);
3892 size_t ksize(const void *object
)
3894 size_t size
= __ksize(object
);
3895 /* We assume that ksize callers could use whole allocated area,
3896 * so we need to unpoison this area.
3898 kasan_unpoison_shadow(object
, size
);
3901 EXPORT_SYMBOL(ksize
);
3903 void kfree(const void *x
)
3906 void *object
= (void *)x
;
3908 trace_kfree(_RET_IP_
, x
);
3910 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3913 page
= virt_to_head_page(x
);
3914 if (unlikely(!PageSlab(page
))) {
3915 BUG_ON(!PageCompound(page
));
3917 __free_pages(page
, compound_order(page
));
3920 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3922 EXPORT_SYMBOL(kfree
);
3924 #define SHRINK_PROMOTE_MAX 32
3927 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3928 * up most to the head of the partial lists. New allocations will then
3929 * fill those up and thus they can be removed from the partial lists.
3931 * The slabs with the least items are placed last. This results in them
3932 * being allocated from last increasing the chance that the last objects
3933 * are freed in them.
3935 int __kmem_cache_shrink(struct kmem_cache
*s
)
3939 struct kmem_cache_node
*n
;
3942 struct list_head discard
;
3943 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3944 unsigned long flags
;
3948 for_each_kmem_cache_node(s
, node
, n
) {
3949 INIT_LIST_HEAD(&discard
);
3950 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3951 INIT_LIST_HEAD(promote
+ i
);
3953 spin_lock_irqsave(&n
->list_lock
, flags
);
3956 * Build lists of slabs to discard or promote.
3958 * Note that concurrent frees may occur while we hold the
3959 * list_lock. page->inuse here is the upper limit.
3961 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3962 int free
= page
->objects
- page
->inuse
;
3964 /* Do not reread page->inuse */
3967 /* We do not keep full slabs on the list */
3970 if (free
== page
->objects
) {
3971 list_move(&page
->lru
, &discard
);
3973 } else if (free
<= SHRINK_PROMOTE_MAX
)
3974 list_move(&page
->lru
, promote
+ free
- 1);
3978 * Promote the slabs filled up most to the head of the
3981 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3982 list_splice(promote
+ i
, &n
->partial
);
3984 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3986 /* Release empty slabs */
3987 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3988 discard_slab(s
, page
);
3990 if (slabs_node(s
, node
))
3998 static void kmemcg_cache_deact_after_rcu(struct kmem_cache
*s
)
4001 * Called with all the locks held after a sched RCU grace period.
4002 * Even if @s becomes empty after shrinking, we can't know that @s
4003 * doesn't have allocations already in-flight and thus can't
4004 * destroy @s until the associated memcg is released.
4006 * However, let's remove the sysfs files for empty caches here.
4007 * Each cache has a lot of interface files which aren't
4008 * particularly useful for empty draining caches; otherwise, we can
4009 * easily end up with millions of unnecessary sysfs files on
4010 * systems which have a lot of memory and transient cgroups.
4012 if (!__kmem_cache_shrink(s
))
4013 sysfs_slab_remove(s
);
4016 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
4019 * Disable empty slabs caching. Used to avoid pinning offline
4020 * memory cgroups by kmem pages that can be freed.
4022 slub_set_cpu_partial(s
, 0);
4026 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4027 * we have to make sure the change is visible before shrinking.
4029 slab_deactivate_memcg_cache_rcu_sched(s
, kmemcg_cache_deact_after_rcu
);
4033 static int slab_mem_going_offline_callback(void *arg
)
4035 struct kmem_cache
*s
;
4037 mutex_lock(&slab_mutex
);
4038 list_for_each_entry(s
, &slab_caches
, list
)
4039 __kmem_cache_shrink(s
);
4040 mutex_unlock(&slab_mutex
);
4045 static void slab_mem_offline_callback(void *arg
)
4047 struct kmem_cache_node
*n
;
4048 struct kmem_cache
*s
;
4049 struct memory_notify
*marg
= arg
;
4052 offline_node
= marg
->status_change_nid_normal
;
4055 * If the node still has available memory. we need kmem_cache_node
4058 if (offline_node
< 0)
4061 mutex_lock(&slab_mutex
);
4062 list_for_each_entry(s
, &slab_caches
, list
) {
4063 n
= get_node(s
, offline_node
);
4066 * if n->nr_slabs > 0, slabs still exist on the node
4067 * that is going down. We were unable to free them,
4068 * and offline_pages() function shouldn't call this
4069 * callback. So, we must fail.
4071 BUG_ON(slabs_node(s
, offline_node
));
4073 s
->node
[offline_node
] = NULL
;
4074 kmem_cache_free(kmem_cache_node
, n
);
4077 mutex_unlock(&slab_mutex
);
4080 static int slab_mem_going_online_callback(void *arg
)
4082 struct kmem_cache_node
*n
;
4083 struct kmem_cache
*s
;
4084 struct memory_notify
*marg
= arg
;
4085 int nid
= marg
->status_change_nid_normal
;
4089 * If the node's memory is already available, then kmem_cache_node is
4090 * already created. Nothing to do.
4096 * We are bringing a node online. No memory is available yet. We must
4097 * allocate a kmem_cache_node structure in order to bring the node
4100 mutex_lock(&slab_mutex
);
4101 list_for_each_entry(s
, &slab_caches
, list
) {
4103 * XXX: kmem_cache_alloc_node will fallback to other nodes
4104 * since memory is not yet available from the node that
4107 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4112 init_kmem_cache_node(n
);
4116 mutex_unlock(&slab_mutex
);
4120 static int slab_memory_callback(struct notifier_block
*self
,
4121 unsigned long action
, void *arg
)
4126 case MEM_GOING_ONLINE
:
4127 ret
= slab_mem_going_online_callback(arg
);
4129 case MEM_GOING_OFFLINE
:
4130 ret
= slab_mem_going_offline_callback(arg
);
4133 case MEM_CANCEL_ONLINE
:
4134 slab_mem_offline_callback(arg
);
4137 case MEM_CANCEL_OFFLINE
:
4141 ret
= notifier_from_errno(ret
);
4147 static struct notifier_block slab_memory_callback_nb
= {
4148 .notifier_call
= slab_memory_callback
,
4149 .priority
= SLAB_CALLBACK_PRI
,
4152 /********************************************************************
4153 * Basic setup of slabs
4154 *******************************************************************/
4157 * Used for early kmem_cache structures that were allocated using
4158 * the page allocator. Allocate them properly then fix up the pointers
4159 * that may be pointing to the wrong kmem_cache structure.
4162 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4165 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4166 struct kmem_cache_node
*n
;
4168 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4171 * This runs very early, and only the boot processor is supposed to be
4172 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4175 __flush_cpu_slab(s
, smp_processor_id());
4176 for_each_kmem_cache_node(s
, node
, n
) {
4179 list_for_each_entry(p
, &n
->partial
, lru
)
4182 #ifdef CONFIG_SLUB_DEBUG
4183 list_for_each_entry(p
, &n
->full
, lru
)
4187 slab_init_memcg_params(s
);
4188 list_add(&s
->list
, &slab_caches
);
4189 memcg_link_cache(s
);
4193 void __init
kmem_cache_init(void)
4195 static __initdata
struct kmem_cache boot_kmem_cache
,
4196 boot_kmem_cache_node
;
4198 if (debug_guardpage_minorder())
4201 kmem_cache_node
= &boot_kmem_cache_node
;
4202 kmem_cache
= &boot_kmem_cache
;
4204 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4205 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
);
4207 register_hotmemory_notifier(&slab_memory_callback_nb
);
4209 /* Able to allocate the per node structures */
4210 slab_state
= PARTIAL
;
4212 create_boot_cache(kmem_cache
, "kmem_cache",
4213 offsetof(struct kmem_cache
, node
) +
4214 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4215 SLAB_HWCACHE_ALIGN
);
4217 kmem_cache
= bootstrap(&boot_kmem_cache
);
4220 * Allocate kmem_cache_node properly from the kmem_cache slab.
4221 * kmem_cache_node is separately allocated so no need to
4222 * update any list pointers.
4224 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4226 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4227 setup_kmalloc_cache_index_table();
4228 create_kmalloc_caches(0);
4230 /* Setup random freelists for each cache */
4231 init_freelist_randomization();
4233 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4236 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4238 slub_min_order
, slub_max_order
, slub_min_objects
,
4239 nr_cpu_ids
, nr_node_ids
);
4242 void __init
kmem_cache_init_late(void)
4247 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
4248 unsigned long flags
, void (*ctor
)(void *))
4250 struct kmem_cache
*s
, *c
;
4252 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4257 * Adjust the object sizes so that we clear
4258 * the complete object on kzalloc.
4260 s
->object_size
= max(s
->object_size
, (int)size
);
4261 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
4263 for_each_memcg_cache(c
, s
) {
4264 c
->object_size
= s
->object_size
;
4265 c
->inuse
= max_t(int, c
->inuse
,
4266 ALIGN(size
, sizeof(void *)));
4269 if (sysfs_slab_alias(s
, name
)) {
4278 int __kmem_cache_create(struct kmem_cache
*s
, unsigned long flags
)
4282 err
= kmem_cache_open(s
, flags
);
4286 /* Mutex is not taken during early boot */
4287 if (slab_state
<= UP
)
4290 memcg_propagate_slab_attrs(s
);
4291 err
= sysfs_slab_add(s
);
4293 __kmem_cache_release(s
);
4298 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4300 struct kmem_cache
*s
;
4303 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4304 return kmalloc_large(size
, gfpflags
);
4306 s
= kmalloc_slab(size
, gfpflags
);
4308 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4311 ret
= slab_alloc(s
, gfpflags
, caller
);
4313 /* Honor the call site pointer we received. */
4314 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4320 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4321 int node
, unsigned long caller
)
4323 struct kmem_cache
*s
;
4326 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4327 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4329 trace_kmalloc_node(caller
, ret
,
4330 size
, PAGE_SIZE
<< get_order(size
),
4336 s
= kmalloc_slab(size
, gfpflags
);
4338 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4341 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4343 /* Honor the call site pointer we received. */
4344 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4351 static int count_inuse(struct page
*page
)
4356 static int count_total(struct page
*page
)
4358 return page
->objects
;
4362 #ifdef CONFIG_SLUB_DEBUG
4363 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4367 void *addr
= page_address(page
);
4369 if (!check_slab(s
, page
) ||
4370 !on_freelist(s
, page
, NULL
))
4373 /* Now we know that a valid freelist exists */
4374 bitmap_zero(map
, page
->objects
);
4376 get_map(s
, page
, map
);
4377 for_each_object(p
, s
, addr
, page
->objects
) {
4378 if (test_bit(slab_index(p
, s
, addr
), map
))
4379 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4383 for_each_object(p
, s
, addr
, page
->objects
)
4384 if (!test_bit(slab_index(p
, s
, addr
), map
))
4385 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4390 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4394 validate_slab(s
, page
, map
);
4398 static int validate_slab_node(struct kmem_cache
*s
,
4399 struct kmem_cache_node
*n
, unsigned long *map
)
4401 unsigned long count
= 0;
4403 unsigned long flags
;
4405 spin_lock_irqsave(&n
->list_lock
, flags
);
4407 list_for_each_entry(page
, &n
->partial
, lru
) {
4408 validate_slab_slab(s
, page
, map
);
4411 if (count
!= n
->nr_partial
)
4412 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4413 s
->name
, count
, n
->nr_partial
);
4415 if (!(s
->flags
& SLAB_STORE_USER
))
4418 list_for_each_entry(page
, &n
->full
, lru
) {
4419 validate_slab_slab(s
, page
, map
);
4422 if (count
!= atomic_long_read(&n
->nr_slabs
))
4423 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4424 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4427 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4431 static long validate_slab_cache(struct kmem_cache
*s
)
4434 unsigned long count
= 0;
4435 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4436 sizeof(unsigned long), GFP_KERNEL
);
4437 struct kmem_cache_node
*n
;
4443 for_each_kmem_cache_node(s
, node
, n
)
4444 count
+= validate_slab_node(s
, n
, map
);
4449 * Generate lists of code addresses where slabcache objects are allocated
4454 unsigned long count
;
4461 DECLARE_BITMAP(cpus
, NR_CPUS
);
4467 unsigned long count
;
4468 struct location
*loc
;
4471 static void free_loc_track(struct loc_track
*t
)
4474 free_pages((unsigned long)t
->loc
,
4475 get_order(sizeof(struct location
) * t
->max
));
4478 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4483 order
= get_order(sizeof(struct location
) * max
);
4485 l
= (void *)__get_free_pages(flags
, order
);
4490 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4498 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4499 const struct track
*track
)
4501 long start
, end
, pos
;
4503 unsigned long caddr
;
4504 unsigned long age
= jiffies
- track
->when
;
4510 pos
= start
+ (end
- start
+ 1) / 2;
4513 * There is nothing at "end". If we end up there
4514 * we need to add something to before end.
4519 caddr
= t
->loc
[pos
].addr
;
4520 if (track
->addr
== caddr
) {
4526 if (age
< l
->min_time
)
4528 if (age
> l
->max_time
)
4531 if (track
->pid
< l
->min_pid
)
4532 l
->min_pid
= track
->pid
;
4533 if (track
->pid
> l
->max_pid
)
4534 l
->max_pid
= track
->pid
;
4536 cpumask_set_cpu(track
->cpu
,
4537 to_cpumask(l
->cpus
));
4539 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4543 if (track
->addr
< caddr
)
4550 * Not found. Insert new tracking element.
4552 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4558 (t
->count
- pos
) * sizeof(struct location
));
4561 l
->addr
= track
->addr
;
4565 l
->min_pid
= track
->pid
;
4566 l
->max_pid
= track
->pid
;
4567 cpumask_clear(to_cpumask(l
->cpus
));
4568 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4569 nodes_clear(l
->nodes
);
4570 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4574 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4575 struct page
*page
, enum track_item alloc
,
4578 void *addr
= page_address(page
);
4581 bitmap_zero(map
, page
->objects
);
4582 get_map(s
, page
, map
);
4584 for_each_object(p
, s
, addr
, page
->objects
)
4585 if (!test_bit(slab_index(p
, s
, addr
), map
))
4586 add_location(t
, s
, get_track(s
, p
, alloc
));
4589 static int list_locations(struct kmem_cache
*s
, char *buf
,
4590 enum track_item alloc
)
4594 struct loc_track t
= { 0, 0, NULL
};
4596 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4597 sizeof(unsigned long), GFP_KERNEL
);
4598 struct kmem_cache_node
*n
;
4600 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4603 return sprintf(buf
, "Out of memory\n");
4605 /* Push back cpu slabs */
4608 for_each_kmem_cache_node(s
, node
, n
) {
4609 unsigned long flags
;
4612 if (!atomic_long_read(&n
->nr_slabs
))
4615 spin_lock_irqsave(&n
->list_lock
, flags
);
4616 list_for_each_entry(page
, &n
->partial
, lru
)
4617 process_slab(&t
, s
, page
, alloc
, map
);
4618 list_for_each_entry(page
, &n
->full
, lru
)
4619 process_slab(&t
, s
, page
, alloc
, map
);
4620 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4623 for (i
= 0; i
< t
.count
; i
++) {
4624 struct location
*l
= &t
.loc
[i
];
4626 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4628 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4631 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4633 len
+= sprintf(buf
+ len
, "<not-available>");
4635 if (l
->sum_time
!= l
->min_time
) {
4636 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4638 (long)div_u64(l
->sum_time
, l
->count
),
4641 len
+= sprintf(buf
+ len
, " age=%ld",
4644 if (l
->min_pid
!= l
->max_pid
)
4645 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4646 l
->min_pid
, l
->max_pid
);
4648 len
+= sprintf(buf
+ len
, " pid=%ld",
4651 if (num_online_cpus() > 1 &&
4652 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4653 len
< PAGE_SIZE
- 60)
4654 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4656 cpumask_pr_args(to_cpumask(l
->cpus
)));
4658 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4659 len
< PAGE_SIZE
- 60)
4660 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4662 nodemask_pr_args(&l
->nodes
));
4664 len
+= sprintf(buf
+ len
, "\n");
4670 len
+= sprintf(buf
, "No data\n");
4675 #ifdef SLUB_RESILIENCY_TEST
4676 static void __init
resiliency_test(void)
4680 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4682 pr_err("SLUB resiliency testing\n");
4683 pr_err("-----------------------\n");
4684 pr_err("A. Corruption after allocation\n");
4686 p
= kzalloc(16, GFP_KERNEL
);
4688 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4691 validate_slab_cache(kmalloc_caches
[4]);
4693 /* Hmmm... The next two are dangerous */
4694 p
= kzalloc(32, GFP_KERNEL
);
4695 p
[32 + sizeof(void *)] = 0x34;
4696 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4698 pr_err("If allocated object is overwritten then not detectable\n\n");
4700 validate_slab_cache(kmalloc_caches
[5]);
4701 p
= kzalloc(64, GFP_KERNEL
);
4702 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4704 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4706 pr_err("If allocated object is overwritten then not detectable\n\n");
4707 validate_slab_cache(kmalloc_caches
[6]);
4709 pr_err("\nB. Corruption after free\n");
4710 p
= kzalloc(128, GFP_KERNEL
);
4713 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4714 validate_slab_cache(kmalloc_caches
[7]);
4716 p
= kzalloc(256, GFP_KERNEL
);
4719 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4720 validate_slab_cache(kmalloc_caches
[8]);
4722 p
= kzalloc(512, GFP_KERNEL
);
4725 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4726 validate_slab_cache(kmalloc_caches
[9]);
4730 static void resiliency_test(void) {};
4735 enum slab_stat_type
{
4736 SL_ALL
, /* All slabs */
4737 SL_PARTIAL
, /* Only partially allocated slabs */
4738 SL_CPU
, /* Only slabs used for cpu caches */
4739 SL_OBJECTS
, /* Determine allocated objects not slabs */
4740 SL_TOTAL
/* Determine object capacity not slabs */
4743 #define SO_ALL (1 << SL_ALL)
4744 #define SO_PARTIAL (1 << SL_PARTIAL)
4745 #define SO_CPU (1 << SL_CPU)
4746 #define SO_OBJECTS (1 << SL_OBJECTS)
4747 #define SO_TOTAL (1 << SL_TOTAL)
4750 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4752 static int __init
setup_slub_memcg_sysfs(char *str
)
4756 if (get_option(&str
, &v
) > 0)
4757 memcg_sysfs_enabled
= v
;
4762 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4765 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4766 char *buf
, unsigned long flags
)
4768 unsigned long total
= 0;
4771 unsigned long *nodes
;
4773 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4777 if (flags
& SO_CPU
) {
4780 for_each_possible_cpu(cpu
) {
4781 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4786 page
= READ_ONCE(c
->page
);
4790 node
= page_to_nid(page
);
4791 if (flags
& SO_TOTAL
)
4793 else if (flags
& SO_OBJECTS
)
4801 page
= slub_percpu_partial_read_once(c
);
4803 node
= page_to_nid(page
);
4804 if (flags
& SO_TOTAL
)
4806 else if (flags
& SO_OBJECTS
)
4817 #ifdef CONFIG_SLUB_DEBUG
4818 if (flags
& SO_ALL
) {
4819 struct kmem_cache_node
*n
;
4821 for_each_kmem_cache_node(s
, node
, n
) {
4823 if (flags
& SO_TOTAL
)
4824 x
= atomic_long_read(&n
->total_objects
);
4825 else if (flags
& SO_OBJECTS
)
4826 x
= atomic_long_read(&n
->total_objects
) -
4827 count_partial(n
, count_free
);
4829 x
= atomic_long_read(&n
->nr_slabs
);
4836 if (flags
& SO_PARTIAL
) {
4837 struct kmem_cache_node
*n
;
4839 for_each_kmem_cache_node(s
, node
, n
) {
4840 if (flags
& SO_TOTAL
)
4841 x
= count_partial(n
, count_total
);
4842 else if (flags
& SO_OBJECTS
)
4843 x
= count_partial(n
, count_inuse
);
4850 x
= sprintf(buf
, "%lu", total
);
4852 for (node
= 0; node
< nr_node_ids
; node
++)
4854 x
+= sprintf(buf
+ x
, " N%d=%lu",
4859 return x
+ sprintf(buf
+ x
, "\n");
4862 #ifdef CONFIG_SLUB_DEBUG
4863 static int any_slab_objects(struct kmem_cache
*s
)
4866 struct kmem_cache_node
*n
;
4868 for_each_kmem_cache_node(s
, node
, n
)
4869 if (atomic_long_read(&n
->total_objects
))
4876 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4877 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4879 struct slab_attribute
{
4880 struct attribute attr
;
4881 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4882 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4885 #define SLAB_ATTR_RO(_name) \
4886 static struct slab_attribute _name##_attr = \
4887 __ATTR(_name, 0400, _name##_show, NULL)
4889 #define SLAB_ATTR(_name) \
4890 static struct slab_attribute _name##_attr = \
4891 __ATTR(_name, 0600, _name##_show, _name##_store)
4893 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4895 return sprintf(buf
, "%d\n", s
->size
);
4897 SLAB_ATTR_RO(slab_size
);
4899 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4901 return sprintf(buf
, "%d\n", s
->align
);
4903 SLAB_ATTR_RO(align
);
4905 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4907 return sprintf(buf
, "%d\n", s
->object_size
);
4909 SLAB_ATTR_RO(object_size
);
4911 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4913 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4915 SLAB_ATTR_RO(objs_per_slab
);
4917 static ssize_t
order_store(struct kmem_cache
*s
,
4918 const char *buf
, size_t length
)
4920 unsigned long order
;
4923 err
= kstrtoul(buf
, 10, &order
);
4927 if (order
> slub_max_order
|| order
< slub_min_order
)
4930 calculate_sizes(s
, order
);
4934 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4936 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4940 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4942 return sprintf(buf
, "%lu\n", s
->min_partial
);
4945 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4951 err
= kstrtoul(buf
, 10, &min
);
4955 set_min_partial(s
, min
);
4958 SLAB_ATTR(min_partial
);
4960 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4962 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
4965 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4968 unsigned long objects
;
4971 err
= kstrtoul(buf
, 10, &objects
);
4974 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4977 slub_set_cpu_partial(s
, objects
);
4981 SLAB_ATTR(cpu_partial
);
4983 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4987 return sprintf(buf
, "%pS\n", s
->ctor
);
4991 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4993 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4995 SLAB_ATTR_RO(aliases
);
4997 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4999 return show_slab_objects(s
, buf
, SO_PARTIAL
);
5001 SLAB_ATTR_RO(partial
);
5003 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
5005 return show_slab_objects(s
, buf
, SO_CPU
);
5007 SLAB_ATTR_RO(cpu_slabs
);
5009 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
5011 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
5013 SLAB_ATTR_RO(objects
);
5015 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5017 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5019 SLAB_ATTR_RO(objects_partial
);
5021 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5028 for_each_online_cpu(cpu
) {
5031 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5034 pages
+= page
->pages
;
5035 objects
+= page
->pobjects
;
5039 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5042 for_each_online_cpu(cpu
) {
5045 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5047 if (page
&& len
< PAGE_SIZE
- 20)
5048 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5049 page
->pobjects
, page
->pages
);
5052 return len
+ sprintf(buf
+ len
, "\n");
5054 SLAB_ATTR_RO(slabs_cpu_partial
);
5056 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5058 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5061 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5062 const char *buf
, size_t length
)
5064 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5066 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5069 SLAB_ATTR(reclaim_account
);
5071 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5073 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5075 SLAB_ATTR_RO(hwcache_align
);
5077 #ifdef CONFIG_ZONE_DMA
5078 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5080 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5082 SLAB_ATTR_RO(cache_dma
);
5085 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5087 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5089 SLAB_ATTR_RO(destroy_by_rcu
);
5091 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
5093 return sprintf(buf
, "%d\n", s
->reserved
);
5095 SLAB_ATTR_RO(reserved
);
5097 #ifdef CONFIG_SLUB_DEBUG
5098 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5100 return show_slab_objects(s
, buf
, SO_ALL
);
5102 SLAB_ATTR_RO(slabs
);
5104 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5106 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5108 SLAB_ATTR_RO(total_objects
);
5110 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5112 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5115 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5116 const char *buf
, size_t length
)
5118 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5119 if (buf
[0] == '1') {
5120 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5121 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5125 SLAB_ATTR(sanity_checks
);
5127 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5129 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5132 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5136 * Tracing a merged cache is going to give confusing results
5137 * as well as cause other issues like converting a mergeable
5138 * cache into an umergeable one.
5140 if (s
->refcount
> 1)
5143 s
->flags
&= ~SLAB_TRACE
;
5144 if (buf
[0] == '1') {
5145 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5146 s
->flags
|= SLAB_TRACE
;
5152 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5154 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5157 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5158 const char *buf
, size_t length
)
5160 if (any_slab_objects(s
))
5163 s
->flags
&= ~SLAB_RED_ZONE
;
5164 if (buf
[0] == '1') {
5165 s
->flags
|= SLAB_RED_ZONE
;
5167 calculate_sizes(s
, -1);
5170 SLAB_ATTR(red_zone
);
5172 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5174 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5177 static ssize_t
poison_store(struct kmem_cache
*s
,
5178 const char *buf
, size_t length
)
5180 if (any_slab_objects(s
))
5183 s
->flags
&= ~SLAB_POISON
;
5184 if (buf
[0] == '1') {
5185 s
->flags
|= SLAB_POISON
;
5187 calculate_sizes(s
, -1);
5192 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5194 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5197 static ssize_t
store_user_store(struct kmem_cache
*s
,
5198 const char *buf
, size_t length
)
5200 if (any_slab_objects(s
))
5203 s
->flags
&= ~SLAB_STORE_USER
;
5204 if (buf
[0] == '1') {
5205 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5206 s
->flags
|= SLAB_STORE_USER
;
5208 calculate_sizes(s
, -1);
5211 SLAB_ATTR(store_user
);
5213 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5218 static ssize_t
validate_store(struct kmem_cache
*s
,
5219 const char *buf
, size_t length
)
5223 if (buf
[0] == '1') {
5224 ret
= validate_slab_cache(s
);
5230 SLAB_ATTR(validate
);
5232 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5234 if (!(s
->flags
& SLAB_STORE_USER
))
5236 return list_locations(s
, buf
, TRACK_ALLOC
);
5238 SLAB_ATTR_RO(alloc_calls
);
5240 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5242 if (!(s
->flags
& SLAB_STORE_USER
))
5244 return list_locations(s
, buf
, TRACK_FREE
);
5246 SLAB_ATTR_RO(free_calls
);
5247 #endif /* CONFIG_SLUB_DEBUG */
5249 #ifdef CONFIG_FAILSLAB
5250 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5252 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5255 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5258 if (s
->refcount
> 1)
5261 s
->flags
&= ~SLAB_FAILSLAB
;
5263 s
->flags
|= SLAB_FAILSLAB
;
5266 SLAB_ATTR(failslab
);
5269 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5274 static ssize_t
shrink_store(struct kmem_cache
*s
,
5275 const char *buf
, size_t length
)
5278 kmem_cache_shrink(s
);
5286 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5288 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5291 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5292 const char *buf
, size_t length
)
5294 unsigned long ratio
;
5297 err
= kstrtoul(buf
, 10, &ratio
);
5302 s
->remote_node_defrag_ratio
= ratio
* 10;
5306 SLAB_ATTR(remote_node_defrag_ratio
);
5309 #ifdef CONFIG_SLUB_STATS
5310 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5312 unsigned long sum
= 0;
5315 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5320 for_each_online_cpu(cpu
) {
5321 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5327 len
= sprintf(buf
, "%lu", sum
);
5330 for_each_online_cpu(cpu
) {
5331 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5332 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5336 return len
+ sprintf(buf
+ len
, "\n");
5339 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5343 for_each_online_cpu(cpu
)
5344 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5347 #define STAT_ATTR(si, text) \
5348 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5350 return show_stat(s, buf, si); \
5352 static ssize_t text##_store(struct kmem_cache *s, \
5353 const char *buf, size_t length) \
5355 if (buf[0] != '0') \
5357 clear_stat(s, si); \
5362 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5363 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5364 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5365 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5366 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5367 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5368 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5369 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5370 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5371 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5372 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5373 STAT_ATTR(FREE_SLAB
, free_slab
);
5374 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5375 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5376 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5377 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5378 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5379 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5380 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5381 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5382 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5383 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5384 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5385 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5386 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5387 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5390 static struct attribute
*slab_attrs
[] = {
5391 &slab_size_attr
.attr
,
5392 &object_size_attr
.attr
,
5393 &objs_per_slab_attr
.attr
,
5395 &min_partial_attr
.attr
,
5396 &cpu_partial_attr
.attr
,
5398 &objects_partial_attr
.attr
,
5400 &cpu_slabs_attr
.attr
,
5404 &hwcache_align_attr
.attr
,
5405 &reclaim_account_attr
.attr
,
5406 &destroy_by_rcu_attr
.attr
,
5408 &reserved_attr
.attr
,
5409 &slabs_cpu_partial_attr
.attr
,
5410 #ifdef CONFIG_SLUB_DEBUG
5411 &total_objects_attr
.attr
,
5413 &sanity_checks_attr
.attr
,
5415 &red_zone_attr
.attr
,
5417 &store_user_attr
.attr
,
5418 &validate_attr
.attr
,
5419 &alloc_calls_attr
.attr
,
5420 &free_calls_attr
.attr
,
5422 #ifdef CONFIG_ZONE_DMA
5423 &cache_dma_attr
.attr
,
5426 &remote_node_defrag_ratio_attr
.attr
,
5428 #ifdef CONFIG_SLUB_STATS
5429 &alloc_fastpath_attr
.attr
,
5430 &alloc_slowpath_attr
.attr
,
5431 &free_fastpath_attr
.attr
,
5432 &free_slowpath_attr
.attr
,
5433 &free_frozen_attr
.attr
,
5434 &free_add_partial_attr
.attr
,
5435 &free_remove_partial_attr
.attr
,
5436 &alloc_from_partial_attr
.attr
,
5437 &alloc_slab_attr
.attr
,
5438 &alloc_refill_attr
.attr
,
5439 &alloc_node_mismatch_attr
.attr
,
5440 &free_slab_attr
.attr
,
5441 &cpuslab_flush_attr
.attr
,
5442 &deactivate_full_attr
.attr
,
5443 &deactivate_empty_attr
.attr
,
5444 &deactivate_to_head_attr
.attr
,
5445 &deactivate_to_tail_attr
.attr
,
5446 &deactivate_remote_frees_attr
.attr
,
5447 &deactivate_bypass_attr
.attr
,
5448 &order_fallback_attr
.attr
,
5449 &cmpxchg_double_fail_attr
.attr
,
5450 &cmpxchg_double_cpu_fail_attr
.attr
,
5451 &cpu_partial_alloc_attr
.attr
,
5452 &cpu_partial_free_attr
.attr
,
5453 &cpu_partial_node_attr
.attr
,
5454 &cpu_partial_drain_attr
.attr
,
5456 #ifdef CONFIG_FAILSLAB
5457 &failslab_attr
.attr
,
5463 static const struct attribute_group slab_attr_group
= {
5464 .attrs
= slab_attrs
,
5467 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5468 struct attribute
*attr
,
5471 struct slab_attribute
*attribute
;
5472 struct kmem_cache
*s
;
5475 attribute
= to_slab_attr(attr
);
5478 if (!attribute
->show
)
5481 err
= attribute
->show(s
, buf
);
5486 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5487 struct attribute
*attr
,
5488 const char *buf
, size_t len
)
5490 struct slab_attribute
*attribute
;
5491 struct kmem_cache
*s
;
5494 attribute
= to_slab_attr(attr
);
5497 if (!attribute
->store
)
5500 err
= attribute
->store(s
, buf
, len
);
5502 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5503 struct kmem_cache
*c
;
5505 mutex_lock(&slab_mutex
);
5506 if (s
->max_attr_size
< len
)
5507 s
->max_attr_size
= len
;
5510 * This is a best effort propagation, so this function's return
5511 * value will be determined by the parent cache only. This is
5512 * basically because not all attributes will have a well
5513 * defined semantics for rollbacks - most of the actions will
5514 * have permanent effects.
5516 * Returning the error value of any of the children that fail
5517 * is not 100 % defined, in the sense that users seeing the
5518 * error code won't be able to know anything about the state of
5521 * Only returning the error code for the parent cache at least
5522 * has well defined semantics. The cache being written to
5523 * directly either failed or succeeded, in which case we loop
5524 * through the descendants with best-effort propagation.
5526 for_each_memcg_cache(c
, s
)
5527 attribute
->store(c
, buf
, len
);
5528 mutex_unlock(&slab_mutex
);
5534 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5538 char *buffer
= NULL
;
5539 struct kmem_cache
*root_cache
;
5541 if (is_root_cache(s
))
5544 root_cache
= s
->memcg_params
.root_cache
;
5547 * This mean this cache had no attribute written. Therefore, no point
5548 * in copying default values around
5550 if (!root_cache
->max_attr_size
)
5553 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5556 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5559 if (!attr
|| !attr
->store
|| !attr
->show
)
5563 * It is really bad that we have to allocate here, so we will
5564 * do it only as a fallback. If we actually allocate, though,
5565 * we can just use the allocated buffer until the end.
5567 * Most of the slub attributes will tend to be very small in
5568 * size, but sysfs allows buffers up to a page, so they can
5569 * theoretically happen.
5573 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5576 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5577 if (WARN_ON(!buffer
))
5582 len
= attr
->show(root_cache
, buf
);
5584 attr
->store(s
, buf
, len
);
5588 free_page((unsigned long)buffer
);
5592 static void kmem_cache_release(struct kobject
*k
)
5594 slab_kmem_cache_release(to_slab(k
));
5597 static const struct sysfs_ops slab_sysfs_ops
= {
5598 .show
= slab_attr_show
,
5599 .store
= slab_attr_store
,
5602 static struct kobj_type slab_ktype
= {
5603 .sysfs_ops
= &slab_sysfs_ops
,
5604 .release
= kmem_cache_release
,
5607 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5609 struct kobj_type
*ktype
= get_ktype(kobj
);
5611 if (ktype
== &slab_ktype
)
5616 static const struct kset_uevent_ops slab_uevent_ops
= {
5617 .filter
= uevent_filter
,
5620 static struct kset
*slab_kset
;
5622 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5625 if (!is_root_cache(s
))
5626 return s
->memcg_params
.root_cache
->memcg_kset
;
5631 #define ID_STR_LENGTH 64
5633 /* Create a unique string id for a slab cache:
5635 * Format :[flags-]size
5637 static char *create_unique_id(struct kmem_cache
*s
)
5639 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5646 * First flags affecting slabcache operations. We will only
5647 * get here for aliasable slabs so we do not need to support
5648 * too many flags. The flags here must cover all flags that
5649 * are matched during merging to guarantee that the id is
5652 if (s
->flags
& SLAB_CACHE_DMA
)
5654 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5656 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5658 if (!(s
->flags
& SLAB_NOTRACK
))
5660 if (s
->flags
& SLAB_ACCOUNT
)
5664 p
+= sprintf(p
, "%07d", s
->size
);
5666 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5670 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5672 struct kmem_cache
*s
=
5673 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5675 if (!s
->kobj
.state_in_sysfs
)
5677 * For a memcg cache, this may be called during
5678 * deactivation and again on shutdown. Remove only once.
5679 * A cache is never shut down before deactivation is
5680 * complete, so no need to worry about synchronization.
5685 kset_unregister(s
->memcg_kset
);
5687 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5688 kobject_del(&s
->kobj
);
5690 kobject_put(&s
->kobj
);
5693 static int sysfs_slab_add(struct kmem_cache
*s
)
5697 struct kset
*kset
= cache_kset(s
);
5698 int unmergeable
= slab_unmergeable(s
);
5700 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5703 kobject_init(&s
->kobj
, &slab_ktype
);
5707 if (!unmergeable
&& disable_higher_order_debug
&&
5708 (slub_debug
& DEBUG_METADATA_FLAGS
))
5713 * Slabcache can never be merged so we can use the name proper.
5714 * This is typically the case for debug situations. In that
5715 * case we can catch duplicate names easily.
5717 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5721 * Create a unique name for the slab as a target
5724 name
= create_unique_id(s
);
5727 s
->kobj
.kset
= kset
;
5728 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5732 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5737 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5738 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5739 if (!s
->memcg_kset
) {
5746 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5748 /* Setup first alias */
5749 sysfs_slab_alias(s
, s
->name
);
5756 kobject_del(&s
->kobj
);
5760 static void sysfs_slab_remove(struct kmem_cache
*s
)
5762 if (slab_state
< FULL
)
5764 * Sysfs has not been setup yet so no need to remove the
5769 kobject_get(&s
->kobj
);
5770 schedule_work(&s
->kobj_remove_work
);
5773 void sysfs_slab_release(struct kmem_cache
*s
)
5775 if (slab_state
>= FULL
)
5776 kobject_put(&s
->kobj
);
5780 * Need to buffer aliases during bootup until sysfs becomes
5781 * available lest we lose that information.
5783 struct saved_alias
{
5784 struct kmem_cache
*s
;
5786 struct saved_alias
*next
;
5789 static struct saved_alias
*alias_list
;
5791 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5793 struct saved_alias
*al
;
5795 if (slab_state
== FULL
) {
5797 * If we have a leftover link then remove it.
5799 sysfs_remove_link(&slab_kset
->kobj
, name
);
5800 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5803 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5809 al
->next
= alias_list
;
5814 static int __init
slab_sysfs_init(void)
5816 struct kmem_cache
*s
;
5819 mutex_lock(&slab_mutex
);
5821 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5823 mutex_unlock(&slab_mutex
);
5824 pr_err("Cannot register slab subsystem.\n");
5830 list_for_each_entry(s
, &slab_caches
, list
) {
5831 err
= sysfs_slab_add(s
);
5833 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5837 while (alias_list
) {
5838 struct saved_alias
*al
= alias_list
;
5840 alias_list
= alias_list
->next
;
5841 err
= sysfs_slab_alias(al
->s
, al
->name
);
5843 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5848 mutex_unlock(&slab_mutex
);
5853 __initcall(slab_sysfs_init
);
5854 #endif /* CONFIG_SYSFS */
5857 * The /proc/slabinfo ABI
5859 #ifdef CONFIG_SLABINFO
5860 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5862 unsigned long nr_slabs
= 0;
5863 unsigned long nr_objs
= 0;
5864 unsigned long nr_free
= 0;
5866 struct kmem_cache_node
*n
;
5868 for_each_kmem_cache_node(s
, node
, n
) {
5869 nr_slabs
+= node_nr_slabs(n
);
5870 nr_objs
+= node_nr_objs(n
);
5871 nr_free
+= count_partial(n
, count_free
);
5874 sinfo
->active_objs
= nr_objs
- nr_free
;
5875 sinfo
->num_objs
= nr_objs
;
5876 sinfo
->active_slabs
= nr_slabs
;
5877 sinfo
->num_slabs
= nr_slabs
;
5878 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5879 sinfo
->cache_order
= oo_order(s
->oo
);
5882 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5886 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5887 size_t count
, loff_t
*ppos
)
5891 #endif /* CONFIG_SLABINFO */