Revert "ipv6: grab rt->rt6i_ref before allocating pcpu rt"
[linux/fpc-iii.git] / mm / slub.c
blob8e1c027a30f4d04b62ba4a38a19802d8f009dd06
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmemcheck.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/debugobjects.h>
31 #include <linux/kallsyms.h>
32 #include <linux/memory.h>
33 #include <linux/math64.h>
34 #include <linux/fault-inject.h>
35 #include <linux/stacktrace.h>
36 #include <linux/prefetch.h>
37 #include <linux/memcontrol.h>
38 #include <linux/random.h>
40 #include <trace/events/kmem.h>
42 #include "internal.h"
45 * Lock order:
46 * 1. slab_mutex (Global Mutex)
47 * 2. node->list_lock
48 * 3. slab_lock(page) (Only on some arches and for debugging)
50 * slab_mutex
52 * The role of the slab_mutex is to protect the list of all the slabs
53 * and to synchronize major metadata changes to slab cache structures.
55 * The slab_lock is only used for debugging and on arches that do not
56 * have the ability to do a cmpxchg_double. It only protects the second
57 * double word in the page struct. Meaning
58 * A. page->freelist -> List of object free in a page
59 * B. page->counters -> Counters of objects
60 * C. page->frozen -> frozen state
62 * If a slab is frozen then it is exempt from list management. It is not
63 * on any list. The processor that froze the slab is the one who can
64 * perform list operations on the page. Other processors may put objects
65 * onto the freelist but the processor that froze the slab is the only
66 * one that can retrieve the objects from the page's freelist.
68 * The list_lock protects the partial and full list on each node and
69 * the partial slab counter. If taken then no new slabs may be added or
70 * removed from the lists nor make the number of partial slabs be modified.
71 * (Note that the total number of slabs is an atomic value that may be
72 * modified without taking the list lock).
74 * The list_lock is a centralized lock and thus we avoid taking it as
75 * much as possible. As long as SLUB does not have to handle partial
76 * slabs, operations can continue without any centralized lock. F.e.
77 * allocating a long series of objects that fill up slabs does not require
78 * the list lock.
79 * Interrupts are disabled during allocation and deallocation in order to
80 * make the slab allocator safe to use in the context of an irq. In addition
81 * interrupts are disabled to ensure that the processor does not change
82 * while handling per_cpu slabs, due to kernel preemption.
84 * SLUB assigns one slab for allocation to each processor.
85 * Allocations only occur from these slabs called cpu slabs.
87 * Slabs with free elements are kept on a partial list and during regular
88 * operations no list for full slabs is used. If an object in a full slab is
89 * freed then the slab will show up again on the partial lists.
90 * We track full slabs for debugging purposes though because otherwise we
91 * cannot scan all objects.
93 * Slabs are freed when they become empty. Teardown and setup is
94 * minimal so we rely on the page allocators per cpu caches for
95 * fast frees and allocs.
97 * Overloading of page flags that are otherwise used for LRU management.
99 * PageActive The slab is frozen and exempt from list processing.
100 * This means that the slab is dedicated to a purpose
101 * such as satisfying allocations for a specific
102 * processor. Objects may be freed in the slab while
103 * it is frozen but slab_free will then skip the usual
104 * list operations. It is up to the processor holding
105 * the slab to integrate the slab into the slab lists
106 * when the slab is no longer needed.
108 * One use of this flag is to mark slabs that are
109 * used for allocations. Then such a slab becomes a cpu
110 * slab. The cpu slab may be equipped with an additional
111 * freelist that allows lockless access to
112 * free objects in addition to the regular freelist
113 * that requires the slab lock.
115 * PageError Slab requires special handling due to debug
116 * options set. This moves slab handling out of
117 * the fast path and disables lockless freelists.
120 static inline int kmem_cache_debug(struct kmem_cache *s)
122 #ifdef CONFIG_SLUB_DEBUG
123 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
124 #else
125 return 0;
126 #endif
129 void *fixup_red_left(struct kmem_cache *s, void *p)
131 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
132 p += s->red_left_pad;
134 return p;
137 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
139 #ifdef CONFIG_SLUB_CPU_PARTIAL
140 return !kmem_cache_debug(s);
141 #else
142 return false;
143 #endif
147 * Issues still to be resolved:
149 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
151 * - Variable sizing of the per node arrays
154 /* Enable to test recovery from slab corruption on boot */
155 #undef SLUB_RESILIENCY_TEST
157 /* Enable to log cmpxchg failures */
158 #undef SLUB_DEBUG_CMPXCHG
161 * Mininum number of partial slabs. These will be left on the partial
162 * lists even if they are empty. kmem_cache_shrink may reclaim them.
164 #define MIN_PARTIAL 5
167 * Maximum number of desirable partial slabs.
168 * The existence of more partial slabs makes kmem_cache_shrink
169 * sort the partial list by the number of objects in use.
171 #define MAX_PARTIAL 10
173 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
174 SLAB_POISON | SLAB_STORE_USER)
177 * These debug flags cannot use CMPXCHG because there might be consistency
178 * issues when checking or reading debug information
180 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
181 SLAB_TRACE)
185 * Debugging flags that require metadata to be stored in the slab. These get
186 * disabled when slub_debug=O is used and a cache's min order increases with
187 * metadata.
189 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 #define OO_SHIFT 16
192 #define OO_MASK ((1 << OO_SHIFT) - 1)
193 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
195 /* Internal SLUB flags */
196 #define __OBJECT_POISON 0x80000000UL /* Poison object */
197 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
200 * Tracking user of a slab.
202 #define TRACK_ADDRS_COUNT 16
203 struct track {
204 unsigned long addr; /* Called from address */
205 #ifdef CONFIG_STACKTRACE
206 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
207 #endif
208 int cpu; /* Was running on cpu */
209 int pid; /* Pid context */
210 unsigned long when; /* When did the operation occur */
213 enum track_item { TRACK_ALLOC, TRACK_FREE };
215 #ifdef CONFIG_SYSFS
216 static int sysfs_slab_add(struct kmem_cache *);
217 static int sysfs_slab_alias(struct kmem_cache *, const char *);
218 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
219 static void sysfs_slab_remove(struct kmem_cache *s);
220 #else
221 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
222 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
223 { return 0; }
224 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
225 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
226 #endif
228 static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 #ifdef CONFIG_SLUB_STATS
232 * The rmw is racy on a preemptible kernel but this is acceptable, so
233 * avoid this_cpu_add()'s irq-disable overhead.
235 raw_cpu_inc(s->cpu_slab->stat[si]);
236 #endif
239 /********************************************************************
240 * Core slab cache functions
241 *******************************************************************/
244 * Returns freelist pointer (ptr). With hardening, this is obfuscated
245 * with an XOR of the address where the pointer is held and a per-cache
246 * random number.
248 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
249 unsigned long ptr_addr)
251 #ifdef CONFIG_SLAB_FREELIST_HARDENED
252 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
253 #else
254 return ptr;
255 #endif
258 /* Returns the freelist pointer recorded at location ptr_addr. */
259 static inline void *freelist_dereference(const struct kmem_cache *s,
260 void *ptr_addr)
262 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
263 (unsigned long)ptr_addr);
266 static inline void *get_freepointer(struct kmem_cache *s, void *object)
268 return freelist_dereference(s, object + s->offset);
271 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
273 if (object)
274 prefetch(freelist_dereference(s, object + s->offset));
277 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
279 unsigned long freepointer_addr;
280 void *p;
282 if (!debug_pagealloc_enabled())
283 return get_freepointer(s, object);
285 freepointer_addr = (unsigned long)object + s->offset;
286 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
287 return freelist_ptr(s, p, freepointer_addr);
290 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
292 unsigned long freeptr_addr = (unsigned long)object + s->offset;
294 #ifdef CONFIG_SLAB_FREELIST_HARDENED
295 BUG_ON(object == fp); /* naive detection of double free or corruption */
296 #endif
298 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
301 /* Loop over all objects in a slab */
302 #define for_each_object(__p, __s, __addr, __objects) \
303 for (__p = fixup_red_left(__s, __addr); \
304 __p < (__addr) + (__objects) * (__s)->size; \
305 __p += (__s)->size)
307 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
308 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
309 __idx <= __objects; \
310 __p += (__s)->size, __idx++)
312 /* Determine object index from a given position */
313 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
315 return (p - addr) / s->size;
318 static inline int order_objects(int order, unsigned long size, int reserved)
320 return ((PAGE_SIZE << order) - reserved) / size;
323 static inline struct kmem_cache_order_objects oo_make(int order,
324 unsigned long size, int reserved)
326 struct kmem_cache_order_objects x = {
327 (order << OO_SHIFT) + order_objects(order, size, reserved)
330 return x;
333 static inline int oo_order(struct kmem_cache_order_objects x)
335 return x.x >> OO_SHIFT;
338 static inline int oo_objects(struct kmem_cache_order_objects x)
340 return x.x & OO_MASK;
344 * Per slab locking using the pagelock
346 static __always_inline void slab_lock(struct page *page)
348 VM_BUG_ON_PAGE(PageTail(page), page);
349 bit_spin_lock(PG_locked, &page->flags);
352 static __always_inline void slab_unlock(struct page *page)
354 VM_BUG_ON_PAGE(PageTail(page), page);
355 __bit_spin_unlock(PG_locked, &page->flags);
358 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
360 struct page tmp;
361 tmp.counters = counters_new;
363 * page->counters can cover frozen/inuse/objects as well
364 * as page->_refcount. If we assign to ->counters directly
365 * we run the risk of losing updates to page->_refcount, so
366 * be careful and only assign to the fields we need.
368 page->frozen = tmp.frozen;
369 page->inuse = tmp.inuse;
370 page->objects = tmp.objects;
373 /* Interrupts must be disabled (for the fallback code to work right) */
374 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
375 void *freelist_old, unsigned long counters_old,
376 void *freelist_new, unsigned long counters_new,
377 const char *n)
379 VM_BUG_ON(!irqs_disabled());
380 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
381 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382 if (s->flags & __CMPXCHG_DOUBLE) {
383 if (cmpxchg_double(&page->freelist, &page->counters,
384 freelist_old, counters_old,
385 freelist_new, counters_new))
386 return true;
387 } else
388 #endif
390 slab_lock(page);
391 if (page->freelist == freelist_old &&
392 page->counters == counters_old) {
393 page->freelist = freelist_new;
394 set_page_slub_counters(page, counters_new);
395 slab_unlock(page);
396 return true;
398 slab_unlock(page);
401 cpu_relax();
402 stat(s, CMPXCHG_DOUBLE_FAIL);
404 #ifdef SLUB_DEBUG_CMPXCHG
405 pr_info("%s %s: cmpxchg double redo ", n, s->name);
406 #endif
408 return false;
411 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
412 void *freelist_old, unsigned long counters_old,
413 void *freelist_new, unsigned long counters_new,
414 const char *n)
416 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
417 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418 if (s->flags & __CMPXCHG_DOUBLE) {
419 if (cmpxchg_double(&page->freelist, &page->counters,
420 freelist_old, counters_old,
421 freelist_new, counters_new))
422 return true;
423 } else
424 #endif
426 unsigned long flags;
428 local_irq_save(flags);
429 slab_lock(page);
430 if (page->freelist == freelist_old &&
431 page->counters == counters_old) {
432 page->freelist = freelist_new;
433 set_page_slub_counters(page, counters_new);
434 slab_unlock(page);
435 local_irq_restore(flags);
436 return true;
438 slab_unlock(page);
439 local_irq_restore(flags);
442 cpu_relax();
443 stat(s, CMPXCHG_DOUBLE_FAIL);
445 #ifdef SLUB_DEBUG_CMPXCHG
446 pr_info("%s %s: cmpxchg double redo ", n, s->name);
447 #endif
449 return false;
452 #ifdef CONFIG_SLUB_DEBUG
454 * Determine a map of object in use on a page.
456 * Node listlock must be held to guarantee that the page does
457 * not vanish from under us.
459 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
461 void *p;
462 void *addr = page_address(page);
464 for (p = page->freelist; p; p = get_freepointer(s, p))
465 set_bit(slab_index(p, s, addr), map);
468 static inline int size_from_object(struct kmem_cache *s)
470 if (s->flags & SLAB_RED_ZONE)
471 return s->size - s->red_left_pad;
473 return s->size;
476 static inline void *restore_red_left(struct kmem_cache *s, void *p)
478 if (s->flags & SLAB_RED_ZONE)
479 p -= s->red_left_pad;
481 return p;
485 * Debug settings:
487 #if defined(CONFIG_SLUB_DEBUG_ON)
488 static int slub_debug = DEBUG_DEFAULT_FLAGS;
489 #else
490 static int slub_debug;
491 #endif
493 static char *slub_debug_slabs;
494 static int disable_higher_order_debug;
497 * slub is about to manipulate internal object metadata. This memory lies
498 * outside the range of the allocated object, so accessing it would normally
499 * be reported by kasan as a bounds error. metadata_access_enable() is used
500 * to tell kasan that these accesses are OK.
502 static inline void metadata_access_enable(void)
504 kasan_disable_current();
507 static inline void metadata_access_disable(void)
509 kasan_enable_current();
513 * Object debugging
516 /* Verify that a pointer has an address that is valid within a slab page */
517 static inline int check_valid_pointer(struct kmem_cache *s,
518 struct page *page, void *object)
520 void *base;
522 if (!object)
523 return 1;
525 base = page_address(page);
526 object = restore_red_left(s, object);
527 if (object < base || object >= base + page->objects * s->size ||
528 (object - base) % s->size) {
529 return 0;
532 return 1;
535 static void print_section(char *level, char *text, u8 *addr,
536 unsigned int length)
538 metadata_access_enable();
539 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
540 length, 1);
541 metadata_access_disable();
544 static struct track *get_track(struct kmem_cache *s, void *object,
545 enum track_item alloc)
547 struct track *p;
549 if (s->offset)
550 p = object + s->offset + sizeof(void *);
551 else
552 p = object + s->inuse;
554 return p + alloc;
557 static void set_track(struct kmem_cache *s, void *object,
558 enum track_item alloc, unsigned long addr)
560 struct track *p = get_track(s, object, alloc);
562 if (addr) {
563 #ifdef CONFIG_STACKTRACE
564 struct stack_trace trace;
565 int i;
567 trace.nr_entries = 0;
568 trace.max_entries = TRACK_ADDRS_COUNT;
569 trace.entries = p->addrs;
570 trace.skip = 3;
571 metadata_access_enable();
572 save_stack_trace(&trace);
573 metadata_access_disable();
575 /* See rant in lockdep.c */
576 if (trace.nr_entries != 0 &&
577 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
578 trace.nr_entries--;
580 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
581 p->addrs[i] = 0;
582 #endif
583 p->addr = addr;
584 p->cpu = smp_processor_id();
585 p->pid = current->pid;
586 p->when = jiffies;
587 } else
588 memset(p, 0, sizeof(struct track));
591 static void init_tracking(struct kmem_cache *s, void *object)
593 if (!(s->flags & SLAB_STORE_USER))
594 return;
596 set_track(s, object, TRACK_FREE, 0UL);
597 set_track(s, object, TRACK_ALLOC, 0UL);
600 static void print_track(const char *s, struct track *t)
602 if (!t->addr)
603 return;
605 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
606 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
607 #ifdef CONFIG_STACKTRACE
609 int i;
610 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
611 if (t->addrs[i])
612 pr_err("\t%pS\n", (void *)t->addrs[i]);
613 else
614 break;
616 #endif
619 static void print_tracking(struct kmem_cache *s, void *object)
621 if (!(s->flags & SLAB_STORE_USER))
622 return;
624 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
625 print_track("Freed", get_track(s, object, TRACK_FREE));
628 static void print_page_info(struct page *page)
630 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
631 page, page->objects, page->inuse, page->freelist, page->flags);
635 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
637 struct va_format vaf;
638 va_list args;
640 va_start(args, fmt);
641 vaf.fmt = fmt;
642 vaf.va = &args;
643 pr_err("=============================================================================\n");
644 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
645 pr_err("-----------------------------------------------------------------------------\n\n");
647 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
648 va_end(args);
651 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
653 struct va_format vaf;
654 va_list args;
656 va_start(args, fmt);
657 vaf.fmt = fmt;
658 vaf.va = &args;
659 pr_err("FIX %s: %pV\n", s->name, &vaf);
660 va_end(args);
663 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
665 unsigned int off; /* Offset of last byte */
666 u8 *addr = page_address(page);
668 print_tracking(s, p);
670 print_page_info(page);
672 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
673 p, p - addr, get_freepointer(s, p));
675 if (s->flags & SLAB_RED_ZONE)
676 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
677 s->red_left_pad);
678 else if (p > addr + 16)
679 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
681 print_section(KERN_ERR, "Object ", p,
682 min_t(unsigned long, s->object_size, PAGE_SIZE));
683 if (s->flags & SLAB_RED_ZONE)
684 print_section(KERN_ERR, "Redzone ", p + s->object_size,
685 s->inuse - s->object_size);
687 if (s->offset)
688 off = s->offset + sizeof(void *);
689 else
690 off = s->inuse;
692 if (s->flags & SLAB_STORE_USER)
693 off += 2 * sizeof(struct track);
695 off += kasan_metadata_size(s);
697 if (off != size_from_object(s))
698 /* Beginning of the filler is the free pointer */
699 print_section(KERN_ERR, "Padding ", p + off,
700 size_from_object(s) - off);
702 dump_stack();
705 void object_err(struct kmem_cache *s, struct page *page,
706 u8 *object, char *reason)
708 slab_bug(s, "%s", reason);
709 print_trailer(s, page, object);
712 static void slab_err(struct kmem_cache *s, struct page *page,
713 const char *fmt, ...)
715 va_list args;
716 char buf[100];
718 va_start(args, fmt);
719 vsnprintf(buf, sizeof(buf), fmt, args);
720 va_end(args);
721 slab_bug(s, "%s", buf);
722 print_page_info(page);
723 dump_stack();
726 static void init_object(struct kmem_cache *s, void *object, u8 val)
728 u8 *p = object;
730 if (s->flags & SLAB_RED_ZONE)
731 memset(p - s->red_left_pad, val, s->red_left_pad);
733 if (s->flags & __OBJECT_POISON) {
734 memset(p, POISON_FREE, s->object_size - 1);
735 p[s->object_size - 1] = POISON_END;
738 if (s->flags & SLAB_RED_ZONE)
739 memset(p + s->object_size, val, s->inuse - s->object_size);
742 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
743 void *from, void *to)
745 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
746 memset(from, data, to - from);
749 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
750 u8 *object, char *what,
751 u8 *start, unsigned int value, unsigned int bytes)
753 u8 *fault;
754 u8 *end;
756 metadata_access_enable();
757 fault = memchr_inv(start, value, bytes);
758 metadata_access_disable();
759 if (!fault)
760 return 1;
762 end = start + bytes;
763 while (end > fault && end[-1] == value)
764 end--;
766 slab_bug(s, "%s overwritten", what);
767 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
768 fault, end - 1, fault[0], value);
769 print_trailer(s, page, object);
771 restore_bytes(s, what, value, fault, end);
772 return 0;
776 * Object layout:
778 * object address
779 * Bytes of the object to be managed.
780 * If the freepointer may overlay the object then the free
781 * pointer is the first word of the object.
783 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
784 * 0xa5 (POISON_END)
786 * object + s->object_size
787 * Padding to reach word boundary. This is also used for Redzoning.
788 * Padding is extended by another word if Redzoning is enabled and
789 * object_size == inuse.
791 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
792 * 0xcc (RED_ACTIVE) for objects in use.
794 * object + s->inuse
795 * Meta data starts here.
797 * A. Free pointer (if we cannot overwrite object on free)
798 * B. Tracking data for SLAB_STORE_USER
799 * C. Padding to reach required alignment boundary or at mininum
800 * one word if debugging is on to be able to detect writes
801 * before the word boundary.
803 * Padding is done using 0x5a (POISON_INUSE)
805 * object + s->size
806 * Nothing is used beyond s->size.
808 * If slabcaches are merged then the object_size and inuse boundaries are mostly
809 * ignored. And therefore no slab options that rely on these boundaries
810 * may be used with merged slabcaches.
813 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
815 unsigned long off = s->inuse; /* The end of info */
817 if (s->offset)
818 /* Freepointer is placed after the object. */
819 off += sizeof(void *);
821 if (s->flags & SLAB_STORE_USER)
822 /* We also have user information there */
823 off += 2 * sizeof(struct track);
825 off += kasan_metadata_size(s);
827 if (size_from_object(s) == off)
828 return 1;
830 return check_bytes_and_report(s, page, p, "Object padding",
831 p + off, POISON_INUSE, size_from_object(s) - off);
834 /* Check the pad bytes at the end of a slab page */
835 static int slab_pad_check(struct kmem_cache *s, struct page *page)
837 u8 *start;
838 u8 *fault;
839 u8 *end;
840 int length;
841 int remainder;
843 if (!(s->flags & SLAB_POISON))
844 return 1;
846 start = page_address(page);
847 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
848 end = start + length;
849 remainder = length % s->size;
850 if (!remainder)
851 return 1;
853 metadata_access_enable();
854 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
855 metadata_access_disable();
856 if (!fault)
857 return 1;
858 while (end > fault && end[-1] == POISON_INUSE)
859 end--;
861 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
862 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
864 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
865 return 0;
868 static int check_object(struct kmem_cache *s, struct page *page,
869 void *object, u8 val)
871 u8 *p = object;
872 u8 *endobject = object + s->object_size;
874 if (s->flags & SLAB_RED_ZONE) {
875 if (!check_bytes_and_report(s, page, object, "Redzone",
876 object - s->red_left_pad, val, s->red_left_pad))
877 return 0;
879 if (!check_bytes_and_report(s, page, object, "Redzone",
880 endobject, val, s->inuse - s->object_size))
881 return 0;
882 } else {
883 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
884 check_bytes_and_report(s, page, p, "Alignment padding",
885 endobject, POISON_INUSE,
886 s->inuse - s->object_size);
890 if (s->flags & SLAB_POISON) {
891 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
892 (!check_bytes_and_report(s, page, p, "Poison", p,
893 POISON_FREE, s->object_size - 1) ||
894 !check_bytes_and_report(s, page, p, "Poison",
895 p + s->object_size - 1, POISON_END, 1)))
896 return 0;
898 * check_pad_bytes cleans up on its own.
900 check_pad_bytes(s, page, p);
903 if (!s->offset && val == SLUB_RED_ACTIVE)
905 * Object and freepointer overlap. Cannot check
906 * freepointer while object is allocated.
908 return 1;
910 /* Check free pointer validity */
911 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
912 object_err(s, page, p, "Freepointer corrupt");
914 * No choice but to zap it and thus lose the remainder
915 * of the free objects in this slab. May cause
916 * another error because the object count is now wrong.
918 set_freepointer(s, p, NULL);
919 return 0;
921 return 1;
924 static int check_slab(struct kmem_cache *s, struct page *page)
926 int maxobj;
928 VM_BUG_ON(!irqs_disabled());
930 if (!PageSlab(page)) {
931 slab_err(s, page, "Not a valid slab page");
932 return 0;
935 maxobj = order_objects(compound_order(page), s->size, s->reserved);
936 if (page->objects > maxobj) {
937 slab_err(s, page, "objects %u > max %u",
938 page->objects, maxobj);
939 return 0;
941 if (page->inuse > page->objects) {
942 slab_err(s, page, "inuse %u > max %u",
943 page->inuse, page->objects);
944 return 0;
946 /* Slab_pad_check fixes things up after itself */
947 slab_pad_check(s, page);
948 return 1;
952 * Determine if a certain object on a page is on the freelist. Must hold the
953 * slab lock to guarantee that the chains are in a consistent state.
955 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
957 int nr = 0;
958 void *fp;
959 void *object = NULL;
960 int max_objects;
962 fp = page->freelist;
963 while (fp && nr <= page->objects) {
964 if (fp == search)
965 return 1;
966 if (!check_valid_pointer(s, page, fp)) {
967 if (object) {
968 object_err(s, page, object,
969 "Freechain corrupt");
970 set_freepointer(s, object, NULL);
971 } else {
972 slab_err(s, page, "Freepointer corrupt");
973 page->freelist = NULL;
974 page->inuse = page->objects;
975 slab_fix(s, "Freelist cleared");
976 return 0;
978 break;
980 object = fp;
981 fp = get_freepointer(s, object);
982 nr++;
985 max_objects = order_objects(compound_order(page), s->size, s->reserved);
986 if (max_objects > MAX_OBJS_PER_PAGE)
987 max_objects = MAX_OBJS_PER_PAGE;
989 if (page->objects != max_objects) {
990 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
991 page->objects, max_objects);
992 page->objects = max_objects;
993 slab_fix(s, "Number of objects adjusted.");
995 if (page->inuse != page->objects - nr) {
996 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
997 page->inuse, page->objects - nr);
998 page->inuse = page->objects - nr;
999 slab_fix(s, "Object count adjusted.");
1001 return search == NULL;
1004 static void trace(struct kmem_cache *s, struct page *page, void *object,
1005 int alloc)
1007 if (s->flags & SLAB_TRACE) {
1008 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1009 s->name,
1010 alloc ? "alloc" : "free",
1011 object, page->inuse,
1012 page->freelist);
1014 if (!alloc)
1015 print_section(KERN_INFO, "Object ", (void *)object,
1016 s->object_size);
1018 dump_stack();
1023 * Tracking of fully allocated slabs for debugging purposes.
1025 static void add_full(struct kmem_cache *s,
1026 struct kmem_cache_node *n, struct page *page)
1028 if (!(s->flags & SLAB_STORE_USER))
1029 return;
1031 lockdep_assert_held(&n->list_lock);
1032 list_add(&page->lru, &n->full);
1035 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1037 if (!(s->flags & SLAB_STORE_USER))
1038 return;
1040 lockdep_assert_held(&n->list_lock);
1041 list_del(&page->lru);
1044 /* Tracking of the number of slabs for debugging purposes */
1045 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1047 struct kmem_cache_node *n = get_node(s, node);
1049 return atomic_long_read(&n->nr_slabs);
1052 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1054 return atomic_long_read(&n->nr_slabs);
1057 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1059 struct kmem_cache_node *n = get_node(s, node);
1062 * May be called early in order to allocate a slab for the
1063 * kmem_cache_node structure. Solve the chicken-egg
1064 * dilemma by deferring the increment of the count during
1065 * bootstrap (see early_kmem_cache_node_alloc).
1067 if (likely(n)) {
1068 atomic_long_inc(&n->nr_slabs);
1069 atomic_long_add(objects, &n->total_objects);
1072 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1074 struct kmem_cache_node *n = get_node(s, node);
1076 atomic_long_dec(&n->nr_slabs);
1077 atomic_long_sub(objects, &n->total_objects);
1080 /* Object debug checks for alloc/free paths */
1081 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1082 void *object)
1084 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1085 return;
1087 init_object(s, object, SLUB_RED_INACTIVE);
1088 init_tracking(s, object);
1091 static inline int alloc_consistency_checks(struct kmem_cache *s,
1092 struct page *page,
1093 void *object, unsigned long addr)
1095 if (!check_slab(s, page))
1096 return 0;
1098 if (!check_valid_pointer(s, page, object)) {
1099 object_err(s, page, object, "Freelist Pointer check fails");
1100 return 0;
1103 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1104 return 0;
1106 return 1;
1109 static noinline int alloc_debug_processing(struct kmem_cache *s,
1110 struct page *page,
1111 void *object, unsigned long addr)
1113 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1114 if (!alloc_consistency_checks(s, page, object, addr))
1115 goto bad;
1118 /* Success perform special debug activities for allocs */
1119 if (s->flags & SLAB_STORE_USER)
1120 set_track(s, object, TRACK_ALLOC, addr);
1121 trace(s, page, object, 1);
1122 init_object(s, object, SLUB_RED_ACTIVE);
1123 return 1;
1125 bad:
1126 if (PageSlab(page)) {
1128 * If this is a slab page then lets do the best we can
1129 * to avoid issues in the future. Marking all objects
1130 * as used avoids touching the remaining objects.
1132 slab_fix(s, "Marking all objects used");
1133 page->inuse = page->objects;
1134 page->freelist = NULL;
1136 return 0;
1139 static inline int free_consistency_checks(struct kmem_cache *s,
1140 struct page *page, void *object, unsigned long addr)
1142 if (!check_valid_pointer(s, page, object)) {
1143 slab_err(s, page, "Invalid object pointer 0x%p", object);
1144 return 0;
1147 if (on_freelist(s, page, object)) {
1148 object_err(s, page, object, "Object already free");
1149 return 0;
1152 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1153 return 0;
1155 if (unlikely(s != page->slab_cache)) {
1156 if (!PageSlab(page)) {
1157 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1158 object);
1159 } else if (!page->slab_cache) {
1160 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1161 object);
1162 dump_stack();
1163 } else
1164 object_err(s, page, object,
1165 "page slab pointer corrupt.");
1166 return 0;
1168 return 1;
1171 /* Supports checking bulk free of a constructed freelist */
1172 static noinline int free_debug_processing(
1173 struct kmem_cache *s, struct page *page,
1174 void *head, void *tail, int bulk_cnt,
1175 unsigned long addr)
1177 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1178 void *object = head;
1179 int cnt = 0;
1180 unsigned long uninitialized_var(flags);
1181 int ret = 0;
1183 spin_lock_irqsave(&n->list_lock, flags);
1184 slab_lock(page);
1186 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1187 if (!check_slab(s, page))
1188 goto out;
1191 next_object:
1192 cnt++;
1194 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1195 if (!free_consistency_checks(s, page, object, addr))
1196 goto out;
1199 if (s->flags & SLAB_STORE_USER)
1200 set_track(s, object, TRACK_FREE, addr);
1201 trace(s, page, object, 0);
1202 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1203 init_object(s, object, SLUB_RED_INACTIVE);
1205 /* Reached end of constructed freelist yet? */
1206 if (object != tail) {
1207 object = get_freepointer(s, object);
1208 goto next_object;
1210 ret = 1;
1212 out:
1213 if (cnt != bulk_cnt)
1214 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1215 bulk_cnt, cnt);
1217 slab_unlock(page);
1218 spin_unlock_irqrestore(&n->list_lock, flags);
1219 if (!ret)
1220 slab_fix(s, "Object at 0x%p not freed", object);
1221 return ret;
1224 static int __init setup_slub_debug(char *str)
1226 slub_debug = DEBUG_DEFAULT_FLAGS;
1227 if (*str++ != '=' || !*str)
1229 * No options specified. Switch on full debugging.
1231 goto out;
1233 if (*str == ',')
1235 * No options but restriction on slabs. This means full
1236 * debugging for slabs matching a pattern.
1238 goto check_slabs;
1240 slub_debug = 0;
1241 if (*str == '-')
1243 * Switch off all debugging measures.
1245 goto out;
1248 * Determine which debug features should be switched on
1250 for (; *str && *str != ','; str++) {
1251 switch (tolower(*str)) {
1252 case 'f':
1253 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1254 break;
1255 case 'z':
1256 slub_debug |= SLAB_RED_ZONE;
1257 break;
1258 case 'p':
1259 slub_debug |= SLAB_POISON;
1260 break;
1261 case 'u':
1262 slub_debug |= SLAB_STORE_USER;
1263 break;
1264 case 't':
1265 slub_debug |= SLAB_TRACE;
1266 break;
1267 case 'a':
1268 slub_debug |= SLAB_FAILSLAB;
1269 break;
1270 case 'o':
1272 * Avoid enabling debugging on caches if its minimum
1273 * order would increase as a result.
1275 disable_higher_order_debug = 1;
1276 break;
1277 default:
1278 pr_err("slub_debug option '%c' unknown. skipped\n",
1279 *str);
1283 check_slabs:
1284 if (*str == ',')
1285 slub_debug_slabs = str + 1;
1286 out:
1287 return 1;
1290 __setup("slub_debug", setup_slub_debug);
1292 unsigned long kmem_cache_flags(unsigned long object_size,
1293 unsigned long flags, const char *name,
1294 void (*ctor)(void *))
1297 * Enable debugging if selected on the kernel commandline.
1299 if (slub_debug && (!slub_debug_slabs || (name &&
1300 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1301 flags |= slub_debug;
1303 return flags;
1305 #else /* !CONFIG_SLUB_DEBUG */
1306 static inline void setup_object_debug(struct kmem_cache *s,
1307 struct page *page, void *object) {}
1309 static inline int alloc_debug_processing(struct kmem_cache *s,
1310 struct page *page, void *object, unsigned long addr) { return 0; }
1312 static inline int free_debug_processing(
1313 struct kmem_cache *s, struct page *page,
1314 void *head, void *tail, int bulk_cnt,
1315 unsigned long addr) { return 0; }
1317 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1318 { return 1; }
1319 static inline int check_object(struct kmem_cache *s, struct page *page,
1320 void *object, u8 val) { return 1; }
1321 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1322 struct page *page) {}
1323 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1324 struct page *page) {}
1325 unsigned long kmem_cache_flags(unsigned long object_size,
1326 unsigned long flags, const char *name,
1327 void (*ctor)(void *))
1329 return flags;
1331 #define slub_debug 0
1333 #define disable_higher_order_debug 0
1335 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1336 { return 0; }
1337 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1338 { return 0; }
1339 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1340 int objects) {}
1341 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1342 int objects) {}
1344 #endif /* CONFIG_SLUB_DEBUG */
1347 * Hooks for other subsystems that check memory allocations. In a typical
1348 * production configuration these hooks all should produce no code at all.
1350 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1352 kmemleak_alloc(ptr, size, 1, flags);
1353 kasan_kmalloc_large(ptr, size, flags);
1356 static inline void kfree_hook(const void *x)
1358 kmemleak_free(x);
1359 kasan_kfree_large(x);
1362 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1364 void *freeptr;
1366 kmemleak_free_recursive(x, s->flags);
1369 * Trouble is that we may no longer disable interrupts in the fast path
1370 * So in order to make the debug calls that expect irqs to be
1371 * disabled we need to disable interrupts temporarily.
1373 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1375 unsigned long flags;
1377 local_irq_save(flags);
1378 kmemcheck_slab_free(s, x, s->object_size);
1379 debug_check_no_locks_freed(x, s->object_size);
1380 local_irq_restore(flags);
1382 #endif
1383 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1384 debug_check_no_obj_freed(x, s->object_size);
1386 freeptr = get_freepointer(s, x);
1388 * kasan_slab_free() may put x into memory quarantine, delaying its
1389 * reuse. In this case the object's freelist pointer is changed.
1391 kasan_slab_free(s, x);
1392 return freeptr;
1395 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1396 void *head, void *tail)
1399 * Compiler cannot detect this function can be removed if slab_free_hook()
1400 * evaluates to nothing. Thus, catch all relevant config debug options here.
1402 #if defined(CONFIG_KMEMCHECK) || \
1403 defined(CONFIG_LOCKDEP) || \
1404 defined(CONFIG_DEBUG_KMEMLEAK) || \
1405 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1406 defined(CONFIG_KASAN)
1408 void *object = head;
1409 void *tail_obj = tail ? : head;
1410 void *freeptr;
1412 do {
1413 freeptr = slab_free_hook(s, object);
1414 } while ((object != tail_obj) && (object = freeptr));
1415 #endif
1418 static void setup_object(struct kmem_cache *s, struct page *page,
1419 void *object)
1421 setup_object_debug(s, page, object);
1422 kasan_init_slab_obj(s, object);
1423 if (unlikely(s->ctor)) {
1424 kasan_unpoison_object_data(s, object);
1425 s->ctor(object);
1426 kasan_poison_object_data(s, object);
1431 * Slab allocation and freeing
1433 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1434 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1436 struct page *page;
1437 int order = oo_order(oo);
1439 flags |= __GFP_NOTRACK;
1441 if (node == NUMA_NO_NODE)
1442 page = alloc_pages(flags, order);
1443 else
1444 page = __alloc_pages_node(node, flags, order);
1446 if (page && memcg_charge_slab(page, flags, order, s)) {
1447 __free_pages(page, order);
1448 page = NULL;
1451 return page;
1454 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1455 /* Pre-initialize the random sequence cache */
1456 static int init_cache_random_seq(struct kmem_cache *s)
1458 int err;
1459 unsigned long i, count = oo_objects(s->oo);
1461 /* Bailout if already initialised */
1462 if (s->random_seq)
1463 return 0;
1465 err = cache_random_seq_create(s, count, GFP_KERNEL);
1466 if (err) {
1467 pr_err("SLUB: Unable to initialize free list for %s\n",
1468 s->name);
1469 return err;
1472 /* Transform to an offset on the set of pages */
1473 if (s->random_seq) {
1474 for (i = 0; i < count; i++)
1475 s->random_seq[i] *= s->size;
1477 return 0;
1480 /* Initialize each random sequence freelist per cache */
1481 static void __init init_freelist_randomization(void)
1483 struct kmem_cache *s;
1485 mutex_lock(&slab_mutex);
1487 list_for_each_entry(s, &slab_caches, list)
1488 init_cache_random_seq(s);
1490 mutex_unlock(&slab_mutex);
1493 /* Get the next entry on the pre-computed freelist randomized */
1494 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1495 unsigned long *pos, void *start,
1496 unsigned long page_limit,
1497 unsigned long freelist_count)
1499 unsigned int idx;
1502 * If the target page allocation failed, the number of objects on the
1503 * page might be smaller than the usual size defined by the cache.
1505 do {
1506 idx = s->random_seq[*pos];
1507 *pos += 1;
1508 if (*pos >= freelist_count)
1509 *pos = 0;
1510 } while (unlikely(idx >= page_limit));
1512 return (char *)start + idx;
1515 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1516 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1518 void *start;
1519 void *cur;
1520 void *next;
1521 unsigned long idx, pos, page_limit, freelist_count;
1523 if (page->objects < 2 || !s->random_seq)
1524 return false;
1526 freelist_count = oo_objects(s->oo);
1527 pos = get_random_int() % freelist_count;
1529 page_limit = page->objects * s->size;
1530 start = fixup_red_left(s, page_address(page));
1532 /* First entry is used as the base of the freelist */
1533 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1534 freelist_count);
1535 page->freelist = cur;
1537 for (idx = 1; idx < page->objects; idx++) {
1538 setup_object(s, page, cur);
1539 next = next_freelist_entry(s, page, &pos, start, page_limit,
1540 freelist_count);
1541 set_freepointer(s, cur, next);
1542 cur = next;
1544 setup_object(s, page, cur);
1545 set_freepointer(s, cur, NULL);
1547 return true;
1549 #else
1550 static inline int init_cache_random_seq(struct kmem_cache *s)
1552 return 0;
1554 static inline void init_freelist_randomization(void) { }
1555 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1557 return false;
1559 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1561 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1563 struct page *page;
1564 struct kmem_cache_order_objects oo = s->oo;
1565 gfp_t alloc_gfp;
1566 void *start, *p;
1567 int idx, order;
1568 bool shuffle;
1570 flags &= gfp_allowed_mask;
1572 if (gfpflags_allow_blocking(flags))
1573 local_irq_enable();
1575 flags |= s->allocflags;
1578 * Let the initial higher-order allocation fail under memory pressure
1579 * so we fall-back to the minimum order allocation.
1581 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1582 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1583 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1585 page = alloc_slab_page(s, alloc_gfp, node, oo);
1586 if (unlikely(!page)) {
1587 oo = s->min;
1588 alloc_gfp = flags;
1590 * Allocation may have failed due to fragmentation.
1591 * Try a lower order alloc if possible
1593 page = alloc_slab_page(s, alloc_gfp, node, oo);
1594 if (unlikely(!page))
1595 goto out;
1596 stat(s, ORDER_FALLBACK);
1599 if (kmemcheck_enabled &&
1600 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1601 int pages = 1 << oo_order(oo);
1603 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1606 * Objects from caches that have a constructor don't get
1607 * cleared when they're allocated, so we need to do it here.
1609 if (s->ctor)
1610 kmemcheck_mark_uninitialized_pages(page, pages);
1611 else
1612 kmemcheck_mark_unallocated_pages(page, pages);
1615 page->objects = oo_objects(oo);
1617 order = compound_order(page);
1618 page->slab_cache = s;
1619 __SetPageSlab(page);
1620 if (page_is_pfmemalloc(page))
1621 SetPageSlabPfmemalloc(page);
1623 start = page_address(page);
1625 if (unlikely(s->flags & SLAB_POISON))
1626 memset(start, POISON_INUSE, PAGE_SIZE << order);
1628 kasan_poison_slab(page);
1630 shuffle = shuffle_freelist(s, page);
1632 if (!shuffle) {
1633 for_each_object_idx(p, idx, s, start, page->objects) {
1634 setup_object(s, page, p);
1635 if (likely(idx < page->objects))
1636 set_freepointer(s, p, p + s->size);
1637 else
1638 set_freepointer(s, p, NULL);
1640 page->freelist = fixup_red_left(s, start);
1643 page->inuse = page->objects;
1644 page->frozen = 1;
1646 out:
1647 if (gfpflags_allow_blocking(flags))
1648 local_irq_disable();
1649 if (!page)
1650 return NULL;
1652 mod_lruvec_page_state(page,
1653 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1654 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1655 1 << oo_order(oo));
1657 inc_slabs_node(s, page_to_nid(page), page->objects);
1659 return page;
1662 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1664 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1665 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1666 flags &= ~GFP_SLAB_BUG_MASK;
1667 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1668 invalid_mask, &invalid_mask, flags, &flags);
1669 dump_stack();
1672 return allocate_slab(s,
1673 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1676 static void __free_slab(struct kmem_cache *s, struct page *page)
1678 int order = compound_order(page);
1679 int pages = 1 << order;
1681 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1682 void *p;
1684 slab_pad_check(s, page);
1685 for_each_object(p, s, page_address(page),
1686 page->objects)
1687 check_object(s, page, p, SLUB_RED_INACTIVE);
1690 kmemcheck_free_shadow(page, compound_order(page));
1692 mod_lruvec_page_state(page,
1693 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1694 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1695 -pages);
1697 __ClearPageSlabPfmemalloc(page);
1698 __ClearPageSlab(page);
1700 page_mapcount_reset(page);
1701 if (current->reclaim_state)
1702 current->reclaim_state->reclaimed_slab += pages;
1703 memcg_uncharge_slab(page, order, s);
1704 __free_pages(page, order);
1707 #define need_reserve_slab_rcu \
1708 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1710 static void rcu_free_slab(struct rcu_head *h)
1712 struct page *page;
1714 if (need_reserve_slab_rcu)
1715 page = virt_to_head_page(h);
1716 else
1717 page = container_of((struct list_head *)h, struct page, lru);
1719 __free_slab(page->slab_cache, page);
1722 static void free_slab(struct kmem_cache *s, struct page *page)
1724 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1725 struct rcu_head *head;
1727 if (need_reserve_slab_rcu) {
1728 int order = compound_order(page);
1729 int offset = (PAGE_SIZE << order) - s->reserved;
1731 VM_BUG_ON(s->reserved != sizeof(*head));
1732 head = page_address(page) + offset;
1733 } else {
1734 head = &page->rcu_head;
1737 call_rcu(head, rcu_free_slab);
1738 } else
1739 __free_slab(s, page);
1742 static void discard_slab(struct kmem_cache *s, struct page *page)
1744 dec_slabs_node(s, page_to_nid(page), page->objects);
1745 free_slab(s, page);
1749 * Management of partially allocated slabs.
1751 static inline void
1752 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1754 n->nr_partial++;
1755 if (tail == DEACTIVATE_TO_TAIL)
1756 list_add_tail(&page->lru, &n->partial);
1757 else
1758 list_add(&page->lru, &n->partial);
1761 static inline void add_partial(struct kmem_cache_node *n,
1762 struct page *page, int tail)
1764 lockdep_assert_held(&n->list_lock);
1765 __add_partial(n, page, tail);
1768 static inline void remove_partial(struct kmem_cache_node *n,
1769 struct page *page)
1771 lockdep_assert_held(&n->list_lock);
1772 list_del(&page->lru);
1773 n->nr_partial--;
1777 * Remove slab from the partial list, freeze it and
1778 * return the pointer to the freelist.
1780 * Returns a list of objects or NULL if it fails.
1782 static inline void *acquire_slab(struct kmem_cache *s,
1783 struct kmem_cache_node *n, struct page *page,
1784 int mode, int *objects)
1786 void *freelist;
1787 unsigned long counters;
1788 struct page new;
1790 lockdep_assert_held(&n->list_lock);
1793 * Zap the freelist and set the frozen bit.
1794 * The old freelist is the list of objects for the
1795 * per cpu allocation list.
1797 freelist = page->freelist;
1798 counters = page->counters;
1799 new.counters = counters;
1800 *objects = new.objects - new.inuse;
1801 if (mode) {
1802 new.inuse = page->objects;
1803 new.freelist = NULL;
1804 } else {
1805 new.freelist = freelist;
1808 VM_BUG_ON(new.frozen);
1809 new.frozen = 1;
1811 if (!__cmpxchg_double_slab(s, page,
1812 freelist, counters,
1813 new.freelist, new.counters,
1814 "acquire_slab"))
1815 return NULL;
1817 remove_partial(n, page);
1818 WARN_ON(!freelist);
1819 return freelist;
1822 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1823 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1826 * Try to allocate a partial slab from a specific node.
1828 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1829 struct kmem_cache_cpu *c, gfp_t flags)
1831 struct page *page, *page2;
1832 void *object = NULL;
1833 int available = 0;
1834 int objects;
1837 * Racy check. If we mistakenly see no partial slabs then we
1838 * just allocate an empty slab. If we mistakenly try to get a
1839 * partial slab and there is none available then get_partials()
1840 * will return NULL.
1842 if (!n || !n->nr_partial)
1843 return NULL;
1845 spin_lock(&n->list_lock);
1846 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1847 void *t;
1849 if (!pfmemalloc_match(page, flags))
1850 continue;
1852 t = acquire_slab(s, n, page, object == NULL, &objects);
1853 if (!t)
1854 break;
1856 available += objects;
1857 if (!object) {
1858 c->page = page;
1859 stat(s, ALLOC_FROM_PARTIAL);
1860 object = t;
1861 } else {
1862 put_cpu_partial(s, page, 0);
1863 stat(s, CPU_PARTIAL_NODE);
1865 if (!kmem_cache_has_cpu_partial(s)
1866 || available > slub_cpu_partial(s) / 2)
1867 break;
1870 spin_unlock(&n->list_lock);
1871 return object;
1875 * Get a page from somewhere. Search in increasing NUMA distances.
1877 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1878 struct kmem_cache_cpu *c)
1880 #ifdef CONFIG_NUMA
1881 struct zonelist *zonelist;
1882 struct zoneref *z;
1883 struct zone *zone;
1884 enum zone_type high_zoneidx = gfp_zone(flags);
1885 void *object;
1886 unsigned int cpuset_mems_cookie;
1889 * The defrag ratio allows a configuration of the tradeoffs between
1890 * inter node defragmentation and node local allocations. A lower
1891 * defrag_ratio increases the tendency to do local allocations
1892 * instead of attempting to obtain partial slabs from other nodes.
1894 * If the defrag_ratio is set to 0 then kmalloc() always
1895 * returns node local objects. If the ratio is higher then kmalloc()
1896 * may return off node objects because partial slabs are obtained
1897 * from other nodes and filled up.
1899 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1900 * (which makes defrag_ratio = 1000) then every (well almost)
1901 * allocation will first attempt to defrag slab caches on other nodes.
1902 * This means scanning over all nodes to look for partial slabs which
1903 * may be expensive if we do it every time we are trying to find a slab
1904 * with available objects.
1906 if (!s->remote_node_defrag_ratio ||
1907 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1908 return NULL;
1910 do {
1911 cpuset_mems_cookie = read_mems_allowed_begin();
1912 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1913 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1914 struct kmem_cache_node *n;
1916 n = get_node(s, zone_to_nid(zone));
1918 if (n && cpuset_zone_allowed(zone, flags) &&
1919 n->nr_partial > s->min_partial) {
1920 object = get_partial_node(s, n, c, flags);
1921 if (object) {
1923 * Don't check read_mems_allowed_retry()
1924 * here - if mems_allowed was updated in
1925 * parallel, that was a harmless race
1926 * between allocation and the cpuset
1927 * update
1929 return object;
1933 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1934 #endif
1935 return NULL;
1939 * Get a partial page, lock it and return it.
1941 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1942 struct kmem_cache_cpu *c)
1944 void *object;
1945 int searchnode = node;
1947 if (node == NUMA_NO_NODE)
1948 searchnode = numa_mem_id();
1949 else if (!node_present_pages(node))
1950 searchnode = node_to_mem_node(node);
1952 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1953 if (object || node != NUMA_NO_NODE)
1954 return object;
1956 return get_any_partial(s, flags, c);
1959 #ifdef CONFIG_PREEMPT
1961 * Calculate the next globally unique transaction for disambiguiation
1962 * during cmpxchg. The transactions start with the cpu number and are then
1963 * incremented by CONFIG_NR_CPUS.
1965 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1966 #else
1968 * No preemption supported therefore also no need to check for
1969 * different cpus.
1971 #define TID_STEP 1
1972 #endif
1974 static inline unsigned long next_tid(unsigned long tid)
1976 return tid + TID_STEP;
1979 static inline unsigned int tid_to_cpu(unsigned long tid)
1981 return tid % TID_STEP;
1984 static inline unsigned long tid_to_event(unsigned long tid)
1986 return tid / TID_STEP;
1989 static inline unsigned int init_tid(int cpu)
1991 return cpu;
1994 static inline void note_cmpxchg_failure(const char *n,
1995 const struct kmem_cache *s, unsigned long tid)
1997 #ifdef SLUB_DEBUG_CMPXCHG
1998 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
2000 pr_info("%s %s: cmpxchg redo ", n, s->name);
2002 #ifdef CONFIG_PREEMPT
2003 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2004 pr_warn("due to cpu change %d -> %d\n",
2005 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2006 else
2007 #endif
2008 if (tid_to_event(tid) != tid_to_event(actual_tid))
2009 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2010 tid_to_event(tid), tid_to_event(actual_tid));
2011 else
2012 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2013 actual_tid, tid, next_tid(tid));
2014 #endif
2015 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2018 static void init_kmem_cache_cpus(struct kmem_cache *s)
2020 int cpu;
2022 for_each_possible_cpu(cpu)
2023 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2027 * Remove the cpu slab
2029 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2030 void *freelist, struct kmem_cache_cpu *c)
2032 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2033 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2034 int lock = 0;
2035 enum slab_modes l = M_NONE, m = M_NONE;
2036 void *nextfree;
2037 int tail = DEACTIVATE_TO_HEAD;
2038 struct page new;
2039 struct page old;
2041 if (page->freelist) {
2042 stat(s, DEACTIVATE_REMOTE_FREES);
2043 tail = DEACTIVATE_TO_TAIL;
2047 * Stage one: Free all available per cpu objects back
2048 * to the page freelist while it is still frozen. Leave the
2049 * last one.
2051 * There is no need to take the list->lock because the page
2052 * is still frozen.
2054 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2055 void *prior;
2056 unsigned long counters;
2058 do {
2059 prior = page->freelist;
2060 counters = page->counters;
2061 set_freepointer(s, freelist, prior);
2062 new.counters = counters;
2063 new.inuse--;
2064 VM_BUG_ON(!new.frozen);
2066 } while (!__cmpxchg_double_slab(s, page,
2067 prior, counters,
2068 freelist, new.counters,
2069 "drain percpu freelist"));
2071 freelist = nextfree;
2075 * Stage two: Ensure that the page is unfrozen while the
2076 * list presence reflects the actual number of objects
2077 * during unfreeze.
2079 * We setup the list membership and then perform a cmpxchg
2080 * with the count. If there is a mismatch then the page
2081 * is not unfrozen but the page is on the wrong list.
2083 * Then we restart the process which may have to remove
2084 * the page from the list that we just put it on again
2085 * because the number of objects in the slab may have
2086 * changed.
2088 redo:
2090 old.freelist = page->freelist;
2091 old.counters = page->counters;
2092 VM_BUG_ON(!old.frozen);
2094 /* Determine target state of the slab */
2095 new.counters = old.counters;
2096 if (freelist) {
2097 new.inuse--;
2098 set_freepointer(s, freelist, old.freelist);
2099 new.freelist = freelist;
2100 } else
2101 new.freelist = old.freelist;
2103 new.frozen = 0;
2105 if (!new.inuse && n->nr_partial >= s->min_partial)
2106 m = M_FREE;
2107 else if (new.freelist) {
2108 m = M_PARTIAL;
2109 if (!lock) {
2110 lock = 1;
2112 * Taking the spinlock removes the possiblity
2113 * that acquire_slab() will see a slab page that
2114 * is frozen
2116 spin_lock(&n->list_lock);
2118 } else {
2119 m = M_FULL;
2120 if (kmem_cache_debug(s) && !lock) {
2121 lock = 1;
2123 * This also ensures that the scanning of full
2124 * slabs from diagnostic functions will not see
2125 * any frozen slabs.
2127 spin_lock(&n->list_lock);
2131 if (l != m) {
2133 if (l == M_PARTIAL)
2135 remove_partial(n, page);
2137 else if (l == M_FULL)
2139 remove_full(s, n, page);
2141 if (m == M_PARTIAL) {
2143 add_partial(n, page, tail);
2144 stat(s, tail);
2146 } else if (m == M_FULL) {
2148 stat(s, DEACTIVATE_FULL);
2149 add_full(s, n, page);
2154 l = m;
2155 if (!__cmpxchg_double_slab(s, page,
2156 old.freelist, old.counters,
2157 new.freelist, new.counters,
2158 "unfreezing slab"))
2159 goto redo;
2161 if (lock)
2162 spin_unlock(&n->list_lock);
2164 if (m == M_FREE) {
2165 stat(s, DEACTIVATE_EMPTY);
2166 discard_slab(s, page);
2167 stat(s, FREE_SLAB);
2170 c->page = NULL;
2171 c->freelist = NULL;
2175 * Unfreeze all the cpu partial slabs.
2177 * This function must be called with interrupts disabled
2178 * for the cpu using c (or some other guarantee must be there
2179 * to guarantee no concurrent accesses).
2181 static void unfreeze_partials(struct kmem_cache *s,
2182 struct kmem_cache_cpu *c)
2184 #ifdef CONFIG_SLUB_CPU_PARTIAL
2185 struct kmem_cache_node *n = NULL, *n2 = NULL;
2186 struct page *page, *discard_page = NULL;
2188 while ((page = c->partial)) {
2189 struct page new;
2190 struct page old;
2192 c->partial = page->next;
2194 n2 = get_node(s, page_to_nid(page));
2195 if (n != n2) {
2196 if (n)
2197 spin_unlock(&n->list_lock);
2199 n = n2;
2200 spin_lock(&n->list_lock);
2203 do {
2205 old.freelist = page->freelist;
2206 old.counters = page->counters;
2207 VM_BUG_ON(!old.frozen);
2209 new.counters = old.counters;
2210 new.freelist = old.freelist;
2212 new.frozen = 0;
2214 } while (!__cmpxchg_double_slab(s, page,
2215 old.freelist, old.counters,
2216 new.freelist, new.counters,
2217 "unfreezing slab"));
2219 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2220 page->next = discard_page;
2221 discard_page = page;
2222 } else {
2223 add_partial(n, page, DEACTIVATE_TO_TAIL);
2224 stat(s, FREE_ADD_PARTIAL);
2228 if (n)
2229 spin_unlock(&n->list_lock);
2231 while (discard_page) {
2232 page = discard_page;
2233 discard_page = discard_page->next;
2235 stat(s, DEACTIVATE_EMPTY);
2236 discard_slab(s, page);
2237 stat(s, FREE_SLAB);
2239 #endif
2243 * Put a page that was just frozen (in __slab_free) into a partial page
2244 * slot if available. This is done without interrupts disabled and without
2245 * preemption disabled. The cmpxchg is racy and may put the partial page
2246 * onto a random cpus partial slot.
2248 * If we did not find a slot then simply move all the partials to the
2249 * per node partial list.
2251 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2253 #ifdef CONFIG_SLUB_CPU_PARTIAL
2254 struct page *oldpage;
2255 int pages;
2256 int pobjects;
2258 preempt_disable();
2259 do {
2260 pages = 0;
2261 pobjects = 0;
2262 oldpage = this_cpu_read(s->cpu_slab->partial);
2264 if (oldpage) {
2265 pobjects = oldpage->pobjects;
2266 pages = oldpage->pages;
2267 if (drain && pobjects > s->cpu_partial) {
2268 unsigned long flags;
2270 * partial array is full. Move the existing
2271 * set to the per node partial list.
2273 local_irq_save(flags);
2274 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2275 local_irq_restore(flags);
2276 oldpage = NULL;
2277 pobjects = 0;
2278 pages = 0;
2279 stat(s, CPU_PARTIAL_DRAIN);
2283 pages++;
2284 pobjects += page->objects - page->inuse;
2286 page->pages = pages;
2287 page->pobjects = pobjects;
2288 page->next = oldpage;
2290 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2291 != oldpage);
2292 if (unlikely(!s->cpu_partial)) {
2293 unsigned long flags;
2295 local_irq_save(flags);
2296 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2297 local_irq_restore(flags);
2299 preempt_enable();
2300 #endif
2303 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2305 stat(s, CPUSLAB_FLUSH);
2306 deactivate_slab(s, c->page, c->freelist, c);
2308 c->tid = next_tid(c->tid);
2312 * Flush cpu slab.
2314 * Called from IPI handler with interrupts disabled.
2316 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2318 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2320 if (likely(c)) {
2321 if (c->page)
2322 flush_slab(s, c);
2324 unfreeze_partials(s, c);
2328 static void flush_cpu_slab(void *d)
2330 struct kmem_cache *s = d;
2332 __flush_cpu_slab(s, smp_processor_id());
2335 static bool has_cpu_slab(int cpu, void *info)
2337 struct kmem_cache *s = info;
2338 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2340 return c->page || slub_percpu_partial(c);
2343 static void flush_all(struct kmem_cache *s)
2345 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2349 * Use the cpu notifier to insure that the cpu slabs are flushed when
2350 * necessary.
2352 static int slub_cpu_dead(unsigned int cpu)
2354 struct kmem_cache *s;
2355 unsigned long flags;
2357 mutex_lock(&slab_mutex);
2358 list_for_each_entry(s, &slab_caches, list) {
2359 local_irq_save(flags);
2360 __flush_cpu_slab(s, cpu);
2361 local_irq_restore(flags);
2363 mutex_unlock(&slab_mutex);
2364 return 0;
2368 * Check if the objects in a per cpu structure fit numa
2369 * locality expectations.
2371 static inline int node_match(struct page *page, int node)
2373 #ifdef CONFIG_NUMA
2374 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2375 return 0;
2376 #endif
2377 return 1;
2380 #ifdef CONFIG_SLUB_DEBUG
2381 static int count_free(struct page *page)
2383 return page->objects - page->inuse;
2386 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2388 return atomic_long_read(&n->total_objects);
2390 #endif /* CONFIG_SLUB_DEBUG */
2392 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2393 static unsigned long count_partial(struct kmem_cache_node *n,
2394 int (*get_count)(struct page *))
2396 unsigned long flags;
2397 unsigned long x = 0;
2398 struct page *page;
2400 spin_lock_irqsave(&n->list_lock, flags);
2401 list_for_each_entry(page, &n->partial, lru)
2402 x += get_count(page);
2403 spin_unlock_irqrestore(&n->list_lock, flags);
2404 return x;
2406 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2408 static noinline void
2409 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2411 #ifdef CONFIG_SLUB_DEBUG
2412 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2413 DEFAULT_RATELIMIT_BURST);
2414 int node;
2415 struct kmem_cache_node *n;
2417 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2418 return;
2420 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2421 nid, gfpflags, &gfpflags);
2422 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2423 s->name, s->object_size, s->size, oo_order(s->oo),
2424 oo_order(s->min));
2426 if (oo_order(s->min) > get_order(s->object_size))
2427 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2428 s->name);
2430 for_each_kmem_cache_node(s, node, n) {
2431 unsigned long nr_slabs;
2432 unsigned long nr_objs;
2433 unsigned long nr_free;
2435 nr_free = count_partial(n, count_free);
2436 nr_slabs = node_nr_slabs(n);
2437 nr_objs = node_nr_objs(n);
2439 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2440 node, nr_slabs, nr_objs, nr_free);
2442 #endif
2445 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2446 int node, struct kmem_cache_cpu **pc)
2448 void *freelist;
2449 struct kmem_cache_cpu *c = *pc;
2450 struct page *page;
2452 freelist = get_partial(s, flags, node, c);
2454 if (freelist)
2455 return freelist;
2457 page = new_slab(s, flags, node);
2458 if (page) {
2459 c = raw_cpu_ptr(s->cpu_slab);
2460 if (c->page)
2461 flush_slab(s, c);
2464 * No other reference to the page yet so we can
2465 * muck around with it freely without cmpxchg
2467 freelist = page->freelist;
2468 page->freelist = NULL;
2470 stat(s, ALLOC_SLAB);
2471 c->page = page;
2472 *pc = c;
2473 } else
2474 freelist = NULL;
2476 return freelist;
2479 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2481 if (unlikely(PageSlabPfmemalloc(page)))
2482 return gfp_pfmemalloc_allowed(gfpflags);
2484 return true;
2488 * Check the page->freelist of a page and either transfer the freelist to the
2489 * per cpu freelist or deactivate the page.
2491 * The page is still frozen if the return value is not NULL.
2493 * If this function returns NULL then the page has been unfrozen.
2495 * This function must be called with interrupt disabled.
2497 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2499 struct page new;
2500 unsigned long counters;
2501 void *freelist;
2503 do {
2504 freelist = page->freelist;
2505 counters = page->counters;
2507 new.counters = counters;
2508 VM_BUG_ON(!new.frozen);
2510 new.inuse = page->objects;
2511 new.frozen = freelist != NULL;
2513 } while (!__cmpxchg_double_slab(s, page,
2514 freelist, counters,
2515 NULL, new.counters,
2516 "get_freelist"));
2518 return freelist;
2522 * Slow path. The lockless freelist is empty or we need to perform
2523 * debugging duties.
2525 * Processing is still very fast if new objects have been freed to the
2526 * regular freelist. In that case we simply take over the regular freelist
2527 * as the lockless freelist and zap the regular freelist.
2529 * If that is not working then we fall back to the partial lists. We take the
2530 * first element of the freelist as the object to allocate now and move the
2531 * rest of the freelist to the lockless freelist.
2533 * And if we were unable to get a new slab from the partial slab lists then
2534 * we need to allocate a new slab. This is the slowest path since it involves
2535 * a call to the page allocator and the setup of a new slab.
2537 * Version of __slab_alloc to use when we know that interrupts are
2538 * already disabled (which is the case for bulk allocation).
2540 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2541 unsigned long addr, struct kmem_cache_cpu *c)
2543 void *freelist;
2544 struct page *page;
2546 page = c->page;
2547 if (!page)
2548 goto new_slab;
2549 redo:
2551 if (unlikely(!node_match(page, node))) {
2552 int searchnode = node;
2554 if (node != NUMA_NO_NODE && !node_present_pages(node))
2555 searchnode = node_to_mem_node(node);
2557 if (unlikely(!node_match(page, searchnode))) {
2558 stat(s, ALLOC_NODE_MISMATCH);
2559 deactivate_slab(s, page, c->freelist, c);
2560 goto new_slab;
2565 * By rights, we should be searching for a slab page that was
2566 * PFMEMALLOC but right now, we are losing the pfmemalloc
2567 * information when the page leaves the per-cpu allocator
2569 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2570 deactivate_slab(s, page, c->freelist, c);
2571 goto new_slab;
2574 /* must check again c->freelist in case of cpu migration or IRQ */
2575 freelist = c->freelist;
2576 if (freelist)
2577 goto load_freelist;
2579 freelist = get_freelist(s, page);
2581 if (!freelist) {
2582 c->page = NULL;
2583 stat(s, DEACTIVATE_BYPASS);
2584 goto new_slab;
2587 stat(s, ALLOC_REFILL);
2589 load_freelist:
2591 * freelist is pointing to the list of objects to be used.
2592 * page is pointing to the page from which the objects are obtained.
2593 * That page must be frozen for per cpu allocations to work.
2595 VM_BUG_ON(!c->page->frozen);
2596 c->freelist = get_freepointer(s, freelist);
2597 c->tid = next_tid(c->tid);
2598 return freelist;
2600 new_slab:
2602 if (slub_percpu_partial(c)) {
2603 page = c->page = slub_percpu_partial(c);
2604 slub_set_percpu_partial(c, page);
2605 stat(s, CPU_PARTIAL_ALLOC);
2606 goto redo;
2609 freelist = new_slab_objects(s, gfpflags, node, &c);
2611 if (unlikely(!freelist)) {
2612 slab_out_of_memory(s, gfpflags, node);
2613 return NULL;
2616 page = c->page;
2617 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2618 goto load_freelist;
2620 /* Only entered in the debug case */
2621 if (kmem_cache_debug(s) &&
2622 !alloc_debug_processing(s, page, freelist, addr))
2623 goto new_slab; /* Slab failed checks. Next slab needed */
2625 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2626 return freelist;
2630 * Another one that disabled interrupt and compensates for possible
2631 * cpu changes by refetching the per cpu area pointer.
2633 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2634 unsigned long addr, struct kmem_cache_cpu *c)
2636 void *p;
2637 unsigned long flags;
2639 local_irq_save(flags);
2640 #ifdef CONFIG_PREEMPT
2642 * We may have been preempted and rescheduled on a different
2643 * cpu before disabling interrupts. Need to reload cpu area
2644 * pointer.
2646 c = this_cpu_ptr(s->cpu_slab);
2647 #endif
2649 p = ___slab_alloc(s, gfpflags, node, addr, c);
2650 local_irq_restore(flags);
2651 return p;
2655 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2656 * have the fastpath folded into their functions. So no function call
2657 * overhead for requests that can be satisfied on the fastpath.
2659 * The fastpath works by first checking if the lockless freelist can be used.
2660 * If not then __slab_alloc is called for slow processing.
2662 * Otherwise we can simply pick the next object from the lockless free list.
2664 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2665 gfp_t gfpflags, int node, unsigned long addr)
2667 void *object;
2668 struct kmem_cache_cpu *c;
2669 struct page *page;
2670 unsigned long tid;
2672 s = slab_pre_alloc_hook(s, gfpflags);
2673 if (!s)
2674 return NULL;
2675 redo:
2677 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2678 * enabled. We may switch back and forth between cpus while
2679 * reading from one cpu area. That does not matter as long
2680 * as we end up on the original cpu again when doing the cmpxchg.
2682 * We should guarantee that tid and kmem_cache are retrieved on
2683 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2684 * to check if it is matched or not.
2686 do {
2687 tid = this_cpu_read(s->cpu_slab->tid);
2688 c = raw_cpu_ptr(s->cpu_slab);
2689 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2690 unlikely(tid != READ_ONCE(c->tid)));
2693 * Irqless object alloc/free algorithm used here depends on sequence
2694 * of fetching cpu_slab's data. tid should be fetched before anything
2695 * on c to guarantee that object and page associated with previous tid
2696 * won't be used with current tid. If we fetch tid first, object and
2697 * page could be one associated with next tid and our alloc/free
2698 * request will be failed. In this case, we will retry. So, no problem.
2700 barrier();
2703 * The transaction ids are globally unique per cpu and per operation on
2704 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2705 * occurs on the right processor and that there was no operation on the
2706 * linked list in between.
2709 object = c->freelist;
2710 page = c->page;
2711 if (unlikely(!object || !node_match(page, node))) {
2712 object = __slab_alloc(s, gfpflags, node, addr, c);
2713 stat(s, ALLOC_SLOWPATH);
2714 } else {
2715 void *next_object = get_freepointer_safe(s, object);
2718 * The cmpxchg will only match if there was no additional
2719 * operation and if we are on the right processor.
2721 * The cmpxchg does the following atomically (without lock
2722 * semantics!)
2723 * 1. Relocate first pointer to the current per cpu area.
2724 * 2. Verify that tid and freelist have not been changed
2725 * 3. If they were not changed replace tid and freelist
2727 * Since this is without lock semantics the protection is only
2728 * against code executing on this cpu *not* from access by
2729 * other cpus.
2731 if (unlikely(!this_cpu_cmpxchg_double(
2732 s->cpu_slab->freelist, s->cpu_slab->tid,
2733 object, tid,
2734 next_object, next_tid(tid)))) {
2736 note_cmpxchg_failure("slab_alloc", s, tid);
2737 goto redo;
2739 prefetch_freepointer(s, next_object);
2740 stat(s, ALLOC_FASTPATH);
2743 if (unlikely(gfpflags & __GFP_ZERO) && object)
2744 memset(object, 0, s->object_size);
2746 slab_post_alloc_hook(s, gfpflags, 1, &object);
2748 return object;
2751 static __always_inline void *slab_alloc(struct kmem_cache *s,
2752 gfp_t gfpflags, unsigned long addr)
2754 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2757 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2759 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2761 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2762 s->size, gfpflags);
2764 return ret;
2766 EXPORT_SYMBOL(kmem_cache_alloc);
2768 #ifdef CONFIG_TRACING
2769 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2771 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2772 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2773 kasan_kmalloc(s, ret, size, gfpflags);
2774 return ret;
2776 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2777 #endif
2779 #ifdef CONFIG_NUMA
2780 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2782 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2784 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2785 s->object_size, s->size, gfpflags, node);
2787 return ret;
2789 EXPORT_SYMBOL(kmem_cache_alloc_node);
2791 #ifdef CONFIG_TRACING
2792 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2793 gfp_t gfpflags,
2794 int node, size_t size)
2796 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2798 trace_kmalloc_node(_RET_IP_, ret,
2799 size, s->size, gfpflags, node);
2801 kasan_kmalloc(s, ret, size, gfpflags);
2802 return ret;
2804 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2805 #endif
2806 #endif
2809 * Slow path handling. This may still be called frequently since objects
2810 * have a longer lifetime than the cpu slabs in most processing loads.
2812 * So we still attempt to reduce cache line usage. Just take the slab
2813 * lock and free the item. If there is no additional partial page
2814 * handling required then we can return immediately.
2816 static void __slab_free(struct kmem_cache *s, struct page *page,
2817 void *head, void *tail, int cnt,
2818 unsigned long addr)
2821 void *prior;
2822 int was_frozen;
2823 struct page new;
2824 unsigned long counters;
2825 struct kmem_cache_node *n = NULL;
2826 unsigned long uninitialized_var(flags);
2828 stat(s, FREE_SLOWPATH);
2830 if (kmem_cache_debug(s) &&
2831 !free_debug_processing(s, page, head, tail, cnt, addr))
2832 return;
2834 do {
2835 if (unlikely(n)) {
2836 spin_unlock_irqrestore(&n->list_lock, flags);
2837 n = NULL;
2839 prior = page->freelist;
2840 counters = page->counters;
2841 set_freepointer(s, tail, prior);
2842 new.counters = counters;
2843 was_frozen = new.frozen;
2844 new.inuse -= cnt;
2845 if ((!new.inuse || !prior) && !was_frozen) {
2847 if (kmem_cache_has_cpu_partial(s) && !prior) {
2850 * Slab was on no list before and will be
2851 * partially empty
2852 * We can defer the list move and instead
2853 * freeze it.
2855 new.frozen = 1;
2857 } else { /* Needs to be taken off a list */
2859 n = get_node(s, page_to_nid(page));
2861 * Speculatively acquire the list_lock.
2862 * If the cmpxchg does not succeed then we may
2863 * drop the list_lock without any processing.
2865 * Otherwise the list_lock will synchronize with
2866 * other processors updating the list of slabs.
2868 spin_lock_irqsave(&n->list_lock, flags);
2873 } while (!cmpxchg_double_slab(s, page,
2874 prior, counters,
2875 head, new.counters,
2876 "__slab_free"));
2878 if (likely(!n)) {
2881 * If we just froze the page then put it onto the
2882 * per cpu partial list.
2884 if (new.frozen && !was_frozen) {
2885 put_cpu_partial(s, page, 1);
2886 stat(s, CPU_PARTIAL_FREE);
2889 * The list lock was not taken therefore no list
2890 * activity can be necessary.
2892 if (was_frozen)
2893 stat(s, FREE_FROZEN);
2894 return;
2897 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2898 goto slab_empty;
2901 * Objects left in the slab. If it was not on the partial list before
2902 * then add it.
2904 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2905 if (kmem_cache_debug(s))
2906 remove_full(s, n, page);
2907 add_partial(n, page, DEACTIVATE_TO_TAIL);
2908 stat(s, FREE_ADD_PARTIAL);
2910 spin_unlock_irqrestore(&n->list_lock, flags);
2911 return;
2913 slab_empty:
2914 if (prior) {
2916 * Slab on the partial list.
2918 remove_partial(n, page);
2919 stat(s, FREE_REMOVE_PARTIAL);
2920 } else {
2921 /* Slab must be on the full list */
2922 remove_full(s, n, page);
2925 spin_unlock_irqrestore(&n->list_lock, flags);
2926 stat(s, FREE_SLAB);
2927 discard_slab(s, page);
2931 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2932 * can perform fastpath freeing without additional function calls.
2934 * The fastpath is only possible if we are freeing to the current cpu slab
2935 * of this processor. This typically the case if we have just allocated
2936 * the item before.
2938 * If fastpath is not possible then fall back to __slab_free where we deal
2939 * with all sorts of special processing.
2941 * Bulk free of a freelist with several objects (all pointing to the
2942 * same page) possible by specifying head and tail ptr, plus objects
2943 * count (cnt). Bulk free indicated by tail pointer being set.
2945 static __always_inline void do_slab_free(struct kmem_cache *s,
2946 struct page *page, void *head, void *tail,
2947 int cnt, unsigned long addr)
2949 void *tail_obj = tail ? : head;
2950 struct kmem_cache_cpu *c;
2951 unsigned long tid;
2952 redo:
2954 * Determine the currently cpus per cpu slab.
2955 * The cpu may change afterward. However that does not matter since
2956 * data is retrieved via this pointer. If we are on the same cpu
2957 * during the cmpxchg then the free will succeed.
2959 do {
2960 tid = this_cpu_read(s->cpu_slab->tid);
2961 c = raw_cpu_ptr(s->cpu_slab);
2962 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2963 unlikely(tid != READ_ONCE(c->tid)));
2965 /* Same with comment on barrier() in slab_alloc_node() */
2966 barrier();
2968 if (likely(page == c->page)) {
2969 set_freepointer(s, tail_obj, c->freelist);
2971 if (unlikely(!this_cpu_cmpxchg_double(
2972 s->cpu_slab->freelist, s->cpu_slab->tid,
2973 c->freelist, tid,
2974 head, next_tid(tid)))) {
2976 note_cmpxchg_failure("slab_free", s, tid);
2977 goto redo;
2979 stat(s, FREE_FASTPATH);
2980 } else
2981 __slab_free(s, page, head, tail_obj, cnt, addr);
2985 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2986 void *head, void *tail, int cnt,
2987 unsigned long addr)
2989 slab_free_freelist_hook(s, head, tail);
2991 * slab_free_freelist_hook() could have put the items into quarantine.
2992 * If so, no need to free them.
2994 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2995 return;
2996 do_slab_free(s, page, head, tail, cnt, addr);
2999 #ifdef CONFIG_KASAN
3000 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3002 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3004 #endif
3006 void kmem_cache_free(struct kmem_cache *s, void *x)
3008 s = cache_from_obj(s, x);
3009 if (!s)
3010 return;
3011 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3012 trace_kmem_cache_free(_RET_IP_, x);
3014 EXPORT_SYMBOL(kmem_cache_free);
3016 struct detached_freelist {
3017 struct page *page;
3018 void *tail;
3019 void *freelist;
3020 int cnt;
3021 struct kmem_cache *s;
3025 * This function progressively scans the array with free objects (with
3026 * a limited look ahead) and extract objects belonging to the same
3027 * page. It builds a detached freelist directly within the given
3028 * page/objects. This can happen without any need for
3029 * synchronization, because the objects are owned by running process.
3030 * The freelist is build up as a single linked list in the objects.
3031 * The idea is, that this detached freelist can then be bulk
3032 * transferred to the real freelist(s), but only requiring a single
3033 * synchronization primitive. Look ahead in the array is limited due
3034 * to performance reasons.
3036 static inline
3037 int build_detached_freelist(struct kmem_cache *s, size_t size,
3038 void **p, struct detached_freelist *df)
3040 size_t first_skipped_index = 0;
3041 int lookahead = 3;
3042 void *object;
3043 struct page *page;
3045 /* Always re-init detached_freelist */
3046 df->page = NULL;
3048 do {
3049 object = p[--size];
3050 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3051 } while (!object && size);
3053 if (!object)
3054 return 0;
3056 page = virt_to_head_page(object);
3057 if (!s) {
3058 /* Handle kalloc'ed objects */
3059 if (unlikely(!PageSlab(page))) {
3060 BUG_ON(!PageCompound(page));
3061 kfree_hook(object);
3062 __free_pages(page, compound_order(page));
3063 p[size] = NULL; /* mark object processed */
3064 return size;
3066 /* Derive kmem_cache from object */
3067 df->s = page->slab_cache;
3068 } else {
3069 df->s = cache_from_obj(s, object); /* Support for memcg */
3072 /* Start new detached freelist */
3073 df->page = page;
3074 set_freepointer(df->s, object, NULL);
3075 df->tail = object;
3076 df->freelist = object;
3077 p[size] = NULL; /* mark object processed */
3078 df->cnt = 1;
3080 while (size) {
3081 object = p[--size];
3082 if (!object)
3083 continue; /* Skip processed objects */
3085 /* df->page is always set at this point */
3086 if (df->page == virt_to_head_page(object)) {
3087 /* Opportunity build freelist */
3088 set_freepointer(df->s, object, df->freelist);
3089 df->freelist = object;
3090 df->cnt++;
3091 p[size] = NULL; /* mark object processed */
3093 continue;
3096 /* Limit look ahead search */
3097 if (!--lookahead)
3098 break;
3100 if (!first_skipped_index)
3101 first_skipped_index = size + 1;
3104 return first_skipped_index;
3107 /* Note that interrupts must be enabled when calling this function. */
3108 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3110 if (WARN_ON(!size))
3111 return;
3113 do {
3114 struct detached_freelist df;
3116 size = build_detached_freelist(s, size, p, &df);
3117 if (!df.page)
3118 continue;
3120 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3121 } while (likely(size));
3123 EXPORT_SYMBOL(kmem_cache_free_bulk);
3125 /* Note that interrupts must be enabled when calling this function. */
3126 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3127 void **p)
3129 struct kmem_cache_cpu *c;
3130 int i;
3132 /* memcg and kmem_cache debug support */
3133 s = slab_pre_alloc_hook(s, flags);
3134 if (unlikely(!s))
3135 return false;
3137 * Drain objects in the per cpu slab, while disabling local
3138 * IRQs, which protects against PREEMPT and interrupts
3139 * handlers invoking normal fastpath.
3141 local_irq_disable();
3142 c = this_cpu_ptr(s->cpu_slab);
3144 for (i = 0; i < size; i++) {
3145 void *object = c->freelist;
3147 if (unlikely(!object)) {
3149 * Invoking slow path likely have side-effect
3150 * of re-populating per CPU c->freelist
3152 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3153 _RET_IP_, c);
3154 if (unlikely(!p[i]))
3155 goto error;
3157 c = this_cpu_ptr(s->cpu_slab);
3158 continue; /* goto for-loop */
3160 c->freelist = get_freepointer(s, object);
3161 p[i] = object;
3163 c->tid = next_tid(c->tid);
3164 local_irq_enable();
3166 /* Clear memory outside IRQ disabled fastpath loop */
3167 if (unlikely(flags & __GFP_ZERO)) {
3168 int j;
3170 for (j = 0; j < i; j++)
3171 memset(p[j], 0, s->object_size);
3174 /* memcg and kmem_cache debug support */
3175 slab_post_alloc_hook(s, flags, size, p);
3176 return i;
3177 error:
3178 local_irq_enable();
3179 slab_post_alloc_hook(s, flags, i, p);
3180 __kmem_cache_free_bulk(s, i, p);
3181 return 0;
3183 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3187 * Object placement in a slab is made very easy because we always start at
3188 * offset 0. If we tune the size of the object to the alignment then we can
3189 * get the required alignment by putting one properly sized object after
3190 * another.
3192 * Notice that the allocation order determines the sizes of the per cpu
3193 * caches. Each processor has always one slab available for allocations.
3194 * Increasing the allocation order reduces the number of times that slabs
3195 * must be moved on and off the partial lists and is therefore a factor in
3196 * locking overhead.
3200 * Mininum / Maximum order of slab pages. This influences locking overhead
3201 * and slab fragmentation. A higher order reduces the number of partial slabs
3202 * and increases the number of allocations possible without having to
3203 * take the list_lock.
3205 static int slub_min_order;
3206 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3207 static int slub_min_objects;
3210 * Calculate the order of allocation given an slab object size.
3212 * The order of allocation has significant impact on performance and other
3213 * system components. Generally order 0 allocations should be preferred since
3214 * order 0 does not cause fragmentation in the page allocator. Larger objects
3215 * be problematic to put into order 0 slabs because there may be too much
3216 * unused space left. We go to a higher order if more than 1/16th of the slab
3217 * would be wasted.
3219 * In order to reach satisfactory performance we must ensure that a minimum
3220 * number of objects is in one slab. Otherwise we may generate too much
3221 * activity on the partial lists which requires taking the list_lock. This is
3222 * less a concern for large slabs though which are rarely used.
3224 * slub_max_order specifies the order where we begin to stop considering the
3225 * number of objects in a slab as critical. If we reach slub_max_order then
3226 * we try to keep the page order as low as possible. So we accept more waste
3227 * of space in favor of a small page order.
3229 * Higher order allocations also allow the placement of more objects in a
3230 * slab and thereby reduce object handling overhead. If the user has
3231 * requested a higher mininum order then we start with that one instead of
3232 * the smallest order which will fit the object.
3234 static inline int slab_order(int size, int min_objects,
3235 int max_order, int fract_leftover, int reserved)
3237 int order;
3238 int rem;
3239 int min_order = slub_min_order;
3241 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3242 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3244 for (order = max(min_order, get_order(min_objects * size + reserved));
3245 order <= max_order; order++) {
3247 unsigned long slab_size = PAGE_SIZE << order;
3249 rem = (slab_size - reserved) % size;
3251 if (rem <= slab_size / fract_leftover)
3252 break;
3255 return order;
3258 static inline int calculate_order(int size, int reserved)
3260 int order;
3261 int min_objects;
3262 int fraction;
3263 int max_objects;
3266 * Attempt to find best configuration for a slab. This
3267 * works by first attempting to generate a layout with
3268 * the best configuration and backing off gradually.
3270 * First we increase the acceptable waste in a slab. Then
3271 * we reduce the minimum objects required in a slab.
3273 min_objects = slub_min_objects;
3274 if (!min_objects)
3275 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3276 max_objects = order_objects(slub_max_order, size, reserved);
3277 min_objects = min(min_objects, max_objects);
3279 while (min_objects > 1) {
3280 fraction = 16;
3281 while (fraction >= 4) {
3282 order = slab_order(size, min_objects,
3283 slub_max_order, fraction, reserved);
3284 if (order <= slub_max_order)
3285 return order;
3286 fraction /= 2;
3288 min_objects--;
3292 * We were unable to place multiple objects in a slab. Now
3293 * lets see if we can place a single object there.
3295 order = slab_order(size, 1, slub_max_order, 1, reserved);
3296 if (order <= slub_max_order)
3297 return order;
3300 * Doh this slab cannot be placed using slub_max_order.
3302 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3303 if (order < MAX_ORDER)
3304 return order;
3305 return -ENOSYS;
3308 static void
3309 init_kmem_cache_node(struct kmem_cache_node *n)
3311 n->nr_partial = 0;
3312 spin_lock_init(&n->list_lock);
3313 INIT_LIST_HEAD(&n->partial);
3314 #ifdef CONFIG_SLUB_DEBUG
3315 atomic_long_set(&n->nr_slabs, 0);
3316 atomic_long_set(&n->total_objects, 0);
3317 INIT_LIST_HEAD(&n->full);
3318 #endif
3321 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3323 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3324 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3327 * Must align to double word boundary for the double cmpxchg
3328 * instructions to work; see __pcpu_double_call_return_bool().
3330 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3331 2 * sizeof(void *));
3333 if (!s->cpu_slab)
3334 return 0;
3336 init_kmem_cache_cpus(s);
3338 return 1;
3341 static struct kmem_cache *kmem_cache_node;
3344 * No kmalloc_node yet so do it by hand. We know that this is the first
3345 * slab on the node for this slabcache. There are no concurrent accesses
3346 * possible.
3348 * Note that this function only works on the kmem_cache_node
3349 * when allocating for the kmem_cache_node. This is used for bootstrapping
3350 * memory on a fresh node that has no slab structures yet.
3352 static void early_kmem_cache_node_alloc(int node)
3354 struct page *page;
3355 struct kmem_cache_node *n;
3357 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3359 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3361 BUG_ON(!page);
3362 if (page_to_nid(page) != node) {
3363 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3364 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3367 n = page->freelist;
3368 BUG_ON(!n);
3369 page->freelist = get_freepointer(kmem_cache_node, n);
3370 page->inuse = 1;
3371 page->frozen = 0;
3372 kmem_cache_node->node[node] = n;
3373 #ifdef CONFIG_SLUB_DEBUG
3374 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3375 init_tracking(kmem_cache_node, n);
3376 #endif
3377 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3378 GFP_KERNEL);
3379 init_kmem_cache_node(n);
3380 inc_slabs_node(kmem_cache_node, node, page->objects);
3383 * No locks need to be taken here as it has just been
3384 * initialized and there is no concurrent access.
3386 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3389 static void free_kmem_cache_nodes(struct kmem_cache *s)
3391 int node;
3392 struct kmem_cache_node *n;
3394 for_each_kmem_cache_node(s, node, n) {
3395 s->node[node] = NULL;
3396 kmem_cache_free(kmem_cache_node, n);
3400 void __kmem_cache_release(struct kmem_cache *s)
3402 cache_random_seq_destroy(s);
3403 free_percpu(s->cpu_slab);
3404 free_kmem_cache_nodes(s);
3407 static int init_kmem_cache_nodes(struct kmem_cache *s)
3409 int node;
3411 for_each_node_state(node, N_NORMAL_MEMORY) {
3412 struct kmem_cache_node *n;
3414 if (slab_state == DOWN) {
3415 early_kmem_cache_node_alloc(node);
3416 continue;
3418 n = kmem_cache_alloc_node(kmem_cache_node,
3419 GFP_KERNEL, node);
3421 if (!n) {
3422 free_kmem_cache_nodes(s);
3423 return 0;
3426 init_kmem_cache_node(n);
3427 s->node[node] = n;
3429 return 1;
3432 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3434 if (min < MIN_PARTIAL)
3435 min = MIN_PARTIAL;
3436 else if (min > MAX_PARTIAL)
3437 min = MAX_PARTIAL;
3438 s->min_partial = min;
3441 static void set_cpu_partial(struct kmem_cache *s)
3443 #ifdef CONFIG_SLUB_CPU_PARTIAL
3445 * cpu_partial determined the maximum number of objects kept in the
3446 * per cpu partial lists of a processor.
3448 * Per cpu partial lists mainly contain slabs that just have one
3449 * object freed. If they are used for allocation then they can be
3450 * filled up again with minimal effort. The slab will never hit the
3451 * per node partial lists and therefore no locking will be required.
3453 * This setting also determines
3455 * A) The number of objects from per cpu partial slabs dumped to the
3456 * per node list when we reach the limit.
3457 * B) The number of objects in cpu partial slabs to extract from the
3458 * per node list when we run out of per cpu objects. We only fetch
3459 * 50% to keep some capacity around for frees.
3461 if (!kmem_cache_has_cpu_partial(s))
3462 s->cpu_partial = 0;
3463 else if (s->size >= PAGE_SIZE)
3464 s->cpu_partial = 2;
3465 else if (s->size >= 1024)
3466 s->cpu_partial = 6;
3467 else if (s->size >= 256)
3468 s->cpu_partial = 13;
3469 else
3470 s->cpu_partial = 30;
3471 #endif
3475 * calculate_sizes() determines the order and the distribution of data within
3476 * a slab object.
3478 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3480 unsigned long flags = s->flags;
3481 size_t size = s->object_size;
3482 int order;
3485 * Round up object size to the next word boundary. We can only
3486 * place the free pointer at word boundaries and this determines
3487 * the possible location of the free pointer.
3489 size = ALIGN(size, sizeof(void *));
3491 #ifdef CONFIG_SLUB_DEBUG
3493 * Determine if we can poison the object itself. If the user of
3494 * the slab may touch the object after free or before allocation
3495 * then we should never poison the object itself.
3497 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3498 !s->ctor)
3499 s->flags |= __OBJECT_POISON;
3500 else
3501 s->flags &= ~__OBJECT_POISON;
3505 * If we are Redzoning then check if there is some space between the
3506 * end of the object and the free pointer. If not then add an
3507 * additional word to have some bytes to store Redzone information.
3509 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3510 size += sizeof(void *);
3511 #endif
3514 * With that we have determined the number of bytes in actual use
3515 * by the object. This is the potential offset to the free pointer.
3517 s->inuse = size;
3519 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3520 s->ctor)) {
3522 * Relocate free pointer after the object if it is not
3523 * permitted to overwrite the first word of the object on
3524 * kmem_cache_free.
3526 * This is the case if we do RCU, have a constructor or
3527 * destructor or are poisoning the objects.
3529 s->offset = size;
3530 size += sizeof(void *);
3533 #ifdef CONFIG_SLUB_DEBUG
3534 if (flags & SLAB_STORE_USER)
3536 * Need to store information about allocs and frees after
3537 * the object.
3539 size += 2 * sizeof(struct track);
3540 #endif
3542 kasan_cache_create(s, &size, &s->flags);
3543 #ifdef CONFIG_SLUB_DEBUG
3544 if (flags & SLAB_RED_ZONE) {
3546 * Add some empty padding so that we can catch
3547 * overwrites from earlier objects rather than let
3548 * tracking information or the free pointer be
3549 * corrupted if a user writes before the start
3550 * of the object.
3552 size += sizeof(void *);
3554 s->red_left_pad = sizeof(void *);
3555 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3556 size += s->red_left_pad;
3558 #endif
3561 * SLUB stores one object immediately after another beginning from
3562 * offset 0. In order to align the objects we have to simply size
3563 * each object to conform to the alignment.
3565 size = ALIGN(size, s->align);
3566 s->size = size;
3567 if (forced_order >= 0)
3568 order = forced_order;
3569 else
3570 order = calculate_order(size, s->reserved);
3572 if (order < 0)
3573 return 0;
3575 s->allocflags = 0;
3576 if (order)
3577 s->allocflags |= __GFP_COMP;
3579 if (s->flags & SLAB_CACHE_DMA)
3580 s->allocflags |= GFP_DMA;
3582 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3583 s->allocflags |= __GFP_RECLAIMABLE;
3586 * Determine the number of objects per slab
3588 s->oo = oo_make(order, size, s->reserved);
3589 s->min = oo_make(get_order(size), size, s->reserved);
3590 if (oo_objects(s->oo) > oo_objects(s->max))
3591 s->max = s->oo;
3593 return !!oo_objects(s->oo);
3596 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3598 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3599 s->reserved = 0;
3600 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3601 s->random = get_random_long();
3602 #endif
3604 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3605 s->reserved = sizeof(struct rcu_head);
3607 if (!calculate_sizes(s, -1))
3608 goto error;
3609 if (disable_higher_order_debug) {
3611 * Disable debugging flags that store metadata if the min slab
3612 * order increased.
3614 if (get_order(s->size) > get_order(s->object_size)) {
3615 s->flags &= ~DEBUG_METADATA_FLAGS;
3616 s->offset = 0;
3617 if (!calculate_sizes(s, -1))
3618 goto error;
3622 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3623 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3624 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3625 /* Enable fast mode */
3626 s->flags |= __CMPXCHG_DOUBLE;
3627 #endif
3630 * The larger the object size is, the more pages we want on the partial
3631 * list to avoid pounding the page allocator excessively.
3633 set_min_partial(s, ilog2(s->size) / 2);
3635 set_cpu_partial(s);
3637 #ifdef CONFIG_NUMA
3638 s->remote_node_defrag_ratio = 1000;
3639 #endif
3641 /* Initialize the pre-computed randomized freelist if slab is up */
3642 if (slab_state >= UP) {
3643 if (init_cache_random_seq(s))
3644 goto error;
3647 if (!init_kmem_cache_nodes(s))
3648 goto error;
3650 if (alloc_kmem_cache_cpus(s))
3651 return 0;
3653 free_kmem_cache_nodes(s);
3654 error:
3655 if (flags & SLAB_PANIC)
3656 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3657 s->name, (unsigned long)s->size, s->size,
3658 oo_order(s->oo), s->offset, flags);
3659 return -EINVAL;
3662 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3663 const char *text)
3665 #ifdef CONFIG_SLUB_DEBUG
3666 void *addr = page_address(page);
3667 void *p;
3668 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3669 sizeof(long), GFP_ATOMIC);
3670 if (!map)
3671 return;
3672 slab_err(s, page, text, s->name);
3673 slab_lock(page);
3675 get_map(s, page, map);
3676 for_each_object(p, s, addr, page->objects) {
3678 if (!test_bit(slab_index(p, s, addr), map)) {
3679 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3680 print_tracking(s, p);
3683 slab_unlock(page);
3684 kfree(map);
3685 #endif
3689 * Attempt to free all partial slabs on a node.
3690 * This is called from __kmem_cache_shutdown(). We must take list_lock
3691 * because sysfs file might still access partial list after the shutdowning.
3693 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3695 LIST_HEAD(discard);
3696 struct page *page, *h;
3698 BUG_ON(irqs_disabled());
3699 spin_lock_irq(&n->list_lock);
3700 list_for_each_entry_safe(page, h, &n->partial, lru) {
3701 if (!page->inuse) {
3702 remove_partial(n, page);
3703 list_add(&page->lru, &discard);
3704 } else {
3705 list_slab_objects(s, page,
3706 "Objects remaining in %s on __kmem_cache_shutdown()");
3709 spin_unlock_irq(&n->list_lock);
3711 list_for_each_entry_safe(page, h, &discard, lru)
3712 discard_slab(s, page);
3716 * Release all resources used by a slab cache.
3718 int __kmem_cache_shutdown(struct kmem_cache *s)
3720 int node;
3721 struct kmem_cache_node *n;
3723 flush_all(s);
3724 /* Attempt to free all objects */
3725 for_each_kmem_cache_node(s, node, n) {
3726 free_partial(s, n);
3727 if (n->nr_partial || slabs_node(s, node))
3728 return 1;
3730 sysfs_slab_remove(s);
3731 return 0;
3734 /********************************************************************
3735 * Kmalloc subsystem
3736 *******************************************************************/
3738 static int __init setup_slub_min_order(char *str)
3740 get_option(&str, &slub_min_order);
3742 return 1;
3745 __setup("slub_min_order=", setup_slub_min_order);
3747 static int __init setup_slub_max_order(char *str)
3749 get_option(&str, &slub_max_order);
3750 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3752 return 1;
3755 __setup("slub_max_order=", setup_slub_max_order);
3757 static int __init setup_slub_min_objects(char *str)
3759 get_option(&str, &slub_min_objects);
3761 return 1;
3764 __setup("slub_min_objects=", setup_slub_min_objects);
3766 void *__kmalloc(size_t size, gfp_t flags)
3768 struct kmem_cache *s;
3769 void *ret;
3771 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3772 return kmalloc_large(size, flags);
3774 s = kmalloc_slab(size, flags);
3776 if (unlikely(ZERO_OR_NULL_PTR(s)))
3777 return s;
3779 ret = slab_alloc(s, flags, _RET_IP_);
3781 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3783 kasan_kmalloc(s, ret, size, flags);
3785 return ret;
3787 EXPORT_SYMBOL(__kmalloc);
3789 #ifdef CONFIG_NUMA
3790 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3792 struct page *page;
3793 void *ptr = NULL;
3795 flags |= __GFP_COMP | __GFP_NOTRACK;
3796 page = alloc_pages_node(node, flags, get_order(size));
3797 if (page)
3798 ptr = page_address(page);
3800 kmalloc_large_node_hook(ptr, size, flags);
3801 return ptr;
3804 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3806 struct kmem_cache *s;
3807 void *ret;
3809 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3810 ret = kmalloc_large_node(size, flags, node);
3812 trace_kmalloc_node(_RET_IP_, ret,
3813 size, PAGE_SIZE << get_order(size),
3814 flags, node);
3816 return ret;
3819 s = kmalloc_slab(size, flags);
3821 if (unlikely(ZERO_OR_NULL_PTR(s)))
3822 return s;
3824 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3826 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3828 kasan_kmalloc(s, ret, size, flags);
3830 return ret;
3832 EXPORT_SYMBOL(__kmalloc_node);
3833 #endif
3835 #ifdef CONFIG_HARDENED_USERCOPY
3837 * Rejects objects that are incorrectly sized.
3839 * Returns NULL if check passes, otherwise const char * to name of cache
3840 * to indicate an error.
3842 const char *__check_heap_object(const void *ptr, unsigned long n,
3843 struct page *page)
3845 struct kmem_cache *s;
3846 unsigned long offset;
3847 size_t object_size;
3849 /* Find object and usable object size. */
3850 s = page->slab_cache;
3851 object_size = slab_ksize(s);
3853 /* Reject impossible pointers. */
3854 if (ptr < page_address(page))
3855 return s->name;
3857 /* Find offset within object. */
3858 offset = (ptr - page_address(page)) % s->size;
3860 /* Adjust for redzone and reject if within the redzone. */
3861 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3862 if (offset < s->red_left_pad)
3863 return s->name;
3864 offset -= s->red_left_pad;
3867 /* Allow address range falling entirely within object size. */
3868 if (offset <= object_size && n <= object_size - offset)
3869 return NULL;
3871 return s->name;
3873 #endif /* CONFIG_HARDENED_USERCOPY */
3875 static size_t __ksize(const void *object)
3877 struct page *page;
3879 if (unlikely(object == ZERO_SIZE_PTR))
3880 return 0;
3882 page = virt_to_head_page(object);
3884 if (unlikely(!PageSlab(page))) {
3885 WARN_ON(!PageCompound(page));
3886 return PAGE_SIZE << compound_order(page);
3889 return slab_ksize(page->slab_cache);
3892 size_t ksize(const void *object)
3894 size_t size = __ksize(object);
3895 /* We assume that ksize callers could use whole allocated area,
3896 * so we need to unpoison this area.
3898 kasan_unpoison_shadow(object, size);
3899 return size;
3901 EXPORT_SYMBOL(ksize);
3903 void kfree(const void *x)
3905 struct page *page;
3906 void *object = (void *)x;
3908 trace_kfree(_RET_IP_, x);
3910 if (unlikely(ZERO_OR_NULL_PTR(x)))
3911 return;
3913 page = virt_to_head_page(x);
3914 if (unlikely(!PageSlab(page))) {
3915 BUG_ON(!PageCompound(page));
3916 kfree_hook(x);
3917 __free_pages(page, compound_order(page));
3918 return;
3920 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3922 EXPORT_SYMBOL(kfree);
3924 #define SHRINK_PROMOTE_MAX 32
3927 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3928 * up most to the head of the partial lists. New allocations will then
3929 * fill those up and thus they can be removed from the partial lists.
3931 * The slabs with the least items are placed last. This results in them
3932 * being allocated from last increasing the chance that the last objects
3933 * are freed in them.
3935 int __kmem_cache_shrink(struct kmem_cache *s)
3937 int node;
3938 int i;
3939 struct kmem_cache_node *n;
3940 struct page *page;
3941 struct page *t;
3942 struct list_head discard;
3943 struct list_head promote[SHRINK_PROMOTE_MAX];
3944 unsigned long flags;
3945 int ret = 0;
3947 flush_all(s);
3948 for_each_kmem_cache_node(s, node, n) {
3949 INIT_LIST_HEAD(&discard);
3950 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3951 INIT_LIST_HEAD(promote + i);
3953 spin_lock_irqsave(&n->list_lock, flags);
3956 * Build lists of slabs to discard or promote.
3958 * Note that concurrent frees may occur while we hold the
3959 * list_lock. page->inuse here is the upper limit.
3961 list_for_each_entry_safe(page, t, &n->partial, lru) {
3962 int free = page->objects - page->inuse;
3964 /* Do not reread page->inuse */
3965 barrier();
3967 /* We do not keep full slabs on the list */
3968 BUG_ON(free <= 0);
3970 if (free == page->objects) {
3971 list_move(&page->lru, &discard);
3972 n->nr_partial--;
3973 } else if (free <= SHRINK_PROMOTE_MAX)
3974 list_move(&page->lru, promote + free - 1);
3978 * Promote the slabs filled up most to the head of the
3979 * partial list.
3981 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3982 list_splice(promote + i, &n->partial);
3984 spin_unlock_irqrestore(&n->list_lock, flags);
3986 /* Release empty slabs */
3987 list_for_each_entry_safe(page, t, &discard, lru)
3988 discard_slab(s, page);
3990 if (slabs_node(s, node))
3991 ret = 1;
3994 return ret;
3997 #ifdef CONFIG_MEMCG
3998 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
4001 * Called with all the locks held after a sched RCU grace period.
4002 * Even if @s becomes empty after shrinking, we can't know that @s
4003 * doesn't have allocations already in-flight and thus can't
4004 * destroy @s until the associated memcg is released.
4006 * However, let's remove the sysfs files for empty caches here.
4007 * Each cache has a lot of interface files which aren't
4008 * particularly useful for empty draining caches; otherwise, we can
4009 * easily end up with millions of unnecessary sysfs files on
4010 * systems which have a lot of memory and transient cgroups.
4012 if (!__kmem_cache_shrink(s))
4013 sysfs_slab_remove(s);
4016 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4019 * Disable empty slabs caching. Used to avoid pinning offline
4020 * memory cgroups by kmem pages that can be freed.
4022 slub_set_cpu_partial(s, 0);
4023 s->min_partial = 0;
4026 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4027 * we have to make sure the change is visible before shrinking.
4029 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4031 #endif
4033 static int slab_mem_going_offline_callback(void *arg)
4035 struct kmem_cache *s;
4037 mutex_lock(&slab_mutex);
4038 list_for_each_entry(s, &slab_caches, list)
4039 __kmem_cache_shrink(s);
4040 mutex_unlock(&slab_mutex);
4042 return 0;
4045 static void slab_mem_offline_callback(void *arg)
4047 struct kmem_cache_node *n;
4048 struct kmem_cache *s;
4049 struct memory_notify *marg = arg;
4050 int offline_node;
4052 offline_node = marg->status_change_nid_normal;
4055 * If the node still has available memory. we need kmem_cache_node
4056 * for it yet.
4058 if (offline_node < 0)
4059 return;
4061 mutex_lock(&slab_mutex);
4062 list_for_each_entry(s, &slab_caches, list) {
4063 n = get_node(s, offline_node);
4064 if (n) {
4066 * if n->nr_slabs > 0, slabs still exist on the node
4067 * that is going down. We were unable to free them,
4068 * and offline_pages() function shouldn't call this
4069 * callback. So, we must fail.
4071 BUG_ON(slabs_node(s, offline_node));
4073 s->node[offline_node] = NULL;
4074 kmem_cache_free(kmem_cache_node, n);
4077 mutex_unlock(&slab_mutex);
4080 static int slab_mem_going_online_callback(void *arg)
4082 struct kmem_cache_node *n;
4083 struct kmem_cache *s;
4084 struct memory_notify *marg = arg;
4085 int nid = marg->status_change_nid_normal;
4086 int ret = 0;
4089 * If the node's memory is already available, then kmem_cache_node is
4090 * already created. Nothing to do.
4092 if (nid < 0)
4093 return 0;
4096 * We are bringing a node online. No memory is available yet. We must
4097 * allocate a kmem_cache_node structure in order to bring the node
4098 * online.
4100 mutex_lock(&slab_mutex);
4101 list_for_each_entry(s, &slab_caches, list) {
4103 * XXX: kmem_cache_alloc_node will fallback to other nodes
4104 * since memory is not yet available from the node that
4105 * is brought up.
4107 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4108 if (!n) {
4109 ret = -ENOMEM;
4110 goto out;
4112 init_kmem_cache_node(n);
4113 s->node[nid] = n;
4115 out:
4116 mutex_unlock(&slab_mutex);
4117 return ret;
4120 static int slab_memory_callback(struct notifier_block *self,
4121 unsigned long action, void *arg)
4123 int ret = 0;
4125 switch (action) {
4126 case MEM_GOING_ONLINE:
4127 ret = slab_mem_going_online_callback(arg);
4128 break;
4129 case MEM_GOING_OFFLINE:
4130 ret = slab_mem_going_offline_callback(arg);
4131 break;
4132 case MEM_OFFLINE:
4133 case MEM_CANCEL_ONLINE:
4134 slab_mem_offline_callback(arg);
4135 break;
4136 case MEM_ONLINE:
4137 case MEM_CANCEL_OFFLINE:
4138 break;
4140 if (ret)
4141 ret = notifier_from_errno(ret);
4142 else
4143 ret = NOTIFY_OK;
4144 return ret;
4147 static struct notifier_block slab_memory_callback_nb = {
4148 .notifier_call = slab_memory_callback,
4149 .priority = SLAB_CALLBACK_PRI,
4152 /********************************************************************
4153 * Basic setup of slabs
4154 *******************************************************************/
4157 * Used for early kmem_cache structures that were allocated using
4158 * the page allocator. Allocate them properly then fix up the pointers
4159 * that may be pointing to the wrong kmem_cache structure.
4162 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4164 int node;
4165 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4166 struct kmem_cache_node *n;
4168 memcpy(s, static_cache, kmem_cache->object_size);
4171 * This runs very early, and only the boot processor is supposed to be
4172 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4173 * IPIs around.
4175 __flush_cpu_slab(s, smp_processor_id());
4176 for_each_kmem_cache_node(s, node, n) {
4177 struct page *p;
4179 list_for_each_entry(p, &n->partial, lru)
4180 p->slab_cache = s;
4182 #ifdef CONFIG_SLUB_DEBUG
4183 list_for_each_entry(p, &n->full, lru)
4184 p->slab_cache = s;
4185 #endif
4187 slab_init_memcg_params(s);
4188 list_add(&s->list, &slab_caches);
4189 memcg_link_cache(s);
4190 return s;
4193 void __init kmem_cache_init(void)
4195 static __initdata struct kmem_cache boot_kmem_cache,
4196 boot_kmem_cache_node;
4198 if (debug_guardpage_minorder())
4199 slub_max_order = 0;
4201 kmem_cache_node = &boot_kmem_cache_node;
4202 kmem_cache = &boot_kmem_cache;
4204 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4205 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4207 register_hotmemory_notifier(&slab_memory_callback_nb);
4209 /* Able to allocate the per node structures */
4210 slab_state = PARTIAL;
4212 create_boot_cache(kmem_cache, "kmem_cache",
4213 offsetof(struct kmem_cache, node) +
4214 nr_node_ids * sizeof(struct kmem_cache_node *),
4215 SLAB_HWCACHE_ALIGN);
4217 kmem_cache = bootstrap(&boot_kmem_cache);
4220 * Allocate kmem_cache_node properly from the kmem_cache slab.
4221 * kmem_cache_node is separately allocated so no need to
4222 * update any list pointers.
4224 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4226 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4227 setup_kmalloc_cache_index_table();
4228 create_kmalloc_caches(0);
4230 /* Setup random freelists for each cache */
4231 init_freelist_randomization();
4233 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4234 slub_cpu_dead);
4236 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4237 cache_line_size(),
4238 slub_min_order, slub_max_order, slub_min_objects,
4239 nr_cpu_ids, nr_node_ids);
4242 void __init kmem_cache_init_late(void)
4246 struct kmem_cache *
4247 __kmem_cache_alias(const char *name, size_t size, size_t align,
4248 unsigned long flags, void (*ctor)(void *))
4250 struct kmem_cache *s, *c;
4252 s = find_mergeable(size, align, flags, name, ctor);
4253 if (s) {
4254 s->refcount++;
4257 * Adjust the object sizes so that we clear
4258 * the complete object on kzalloc.
4260 s->object_size = max(s->object_size, (int)size);
4261 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4263 for_each_memcg_cache(c, s) {
4264 c->object_size = s->object_size;
4265 c->inuse = max_t(int, c->inuse,
4266 ALIGN(size, sizeof(void *)));
4269 if (sysfs_slab_alias(s, name)) {
4270 s->refcount--;
4271 s = NULL;
4275 return s;
4278 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4280 int err;
4282 err = kmem_cache_open(s, flags);
4283 if (err)
4284 return err;
4286 /* Mutex is not taken during early boot */
4287 if (slab_state <= UP)
4288 return 0;
4290 memcg_propagate_slab_attrs(s);
4291 err = sysfs_slab_add(s);
4292 if (err)
4293 __kmem_cache_release(s);
4295 return err;
4298 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4300 struct kmem_cache *s;
4301 void *ret;
4303 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4304 return kmalloc_large(size, gfpflags);
4306 s = kmalloc_slab(size, gfpflags);
4308 if (unlikely(ZERO_OR_NULL_PTR(s)))
4309 return s;
4311 ret = slab_alloc(s, gfpflags, caller);
4313 /* Honor the call site pointer we received. */
4314 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4316 return ret;
4319 #ifdef CONFIG_NUMA
4320 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4321 int node, unsigned long caller)
4323 struct kmem_cache *s;
4324 void *ret;
4326 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4327 ret = kmalloc_large_node(size, gfpflags, node);
4329 trace_kmalloc_node(caller, ret,
4330 size, PAGE_SIZE << get_order(size),
4331 gfpflags, node);
4333 return ret;
4336 s = kmalloc_slab(size, gfpflags);
4338 if (unlikely(ZERO_OR_NULL_PTR(s)))
4339 return s;
4341 ret = slab_alloc_node(s, gfpflags, node, caller);
4343 /* Honor the call site pointer we received. */
4344 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4346 return ret;
4348 #endif
4350 #ifdef CONFIG_SYSFS
4351 static int count_inuse(struct page *page)
4353 return page->inuse;
4356 static int count_total(struct page *page)
4358 return page->objects;
4360 #endif
4362 #ifdef CONFIG_SLUB_DEBUG
4363 static int validate_slab(struct kmem_cache *s, struct page *page,
4364 unsigned long *map)
4366 void *p;
4367 void *addr = page_address(page);
4369 if (!check_slab(s, page) ||
4370 !on_freelist(s, page, NULL))
4371 return 0;
4373 /* Now we know that a valid freelist exists */
4374 bitmap_zero(map, page->objects);
4376 get_map(s, page, map);
4377 for_each_object(p, s, addr, page->objects) {
4378 if (test_bit(slab_index(p, s, addr), map))
4379 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4380 return 0;
4383 for_each_object(p, s, addr, page->objects)
4384 if (!test_bit(slab_index(p, s, addr), map))
4385 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4386 return 0;
4387 return 1;
4390 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4391 unsigned long *map)
4393 slab_lock(page);
4394 validate_slab(s, page, map);
4395 slab_unlock(page);
4398 static int validate_slab_node(struct kmem_cache *s,
4399 struct kmem_cache_node *n, unsigned long *map)
4401 unsigned long count = 0;
4402 struct page *page;
4403 unsigned long flags;
4405 spin_lock_irqsave(&n->list_lock, flags);
4407 list_for_each_entry(page, &n->partial, lru) {
4408 validate_slab_slab(s, page, map);
4409 count++;
4411 if (count != n->nr_partial)
4412 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4413 s->name, count, n->nr_partial);
4415 if (!(s->flags & SLAB_STORE_USER))
4416 goto out;
4418 list_for_each_entry(page, &n->full, lru) {
4419 validate_slab_slab(s, page, map);
4420 count++;
4422 if (count != atomic_long_read(&n->nr_slabs))
4423 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4424 s->name, count, atomic_long_read(&n->nr_slabs));
4426 out:
4427 spin_unlock_irqrestore(&n->list_lock, flags);
4428 return count;
4431 static long validate_slab_cache(struct kmem_cache *s)
4433 int node;
4434 unsigned long count = 0;
4435 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4436 sizeof(unsigned long), GFP_KERNEL);
4437 struct kmem_cache_node *n;
4439 if (!map)
4440 return -ENOMEM;
4442 flush_all(s);
4443 for_each_kmem_cache_node(s, node, n)
4444 count += validate_slab_node(s, n, map);
4445 kfree(map);
4446 return count;
4449 * Generate lists of code addresses where slabcache objects are allocated
4450 * and freed.
4453 struct location {
4454 unsigned long count;
4455 unsigned long addr;
4456 long long sum_time;
4457 long min_time;
4458 long max_time;
4459 long min_pid;
4460 long max_pid;
4461 DECLARE_BITMAP(cpus, NR_CPUS);
4462 nodemask_t nodes;
4465 struct loc_track {
4466 unsigned long max;
4467 unsigned long count;
4468 struct location *loc;
4471 static void free_loc_track(struct loc_track *t)
4473 if (t->max)
4474 free_pages((unsigned long)t->loc,
4475 get_order(sizeof(struct location) * t->max));
4478 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4480 struct location *l;
4481 int order;
4483 order = get_order(sizeof(struct location) * max);
4485 l = (void *)__get_free_pages(flags, order);
4486 if (!l)
4487 return 0;
4489 if (t->count) {
4490 memcpy(l, t->loc, sizeof(struct location) * t->count);
4491 free_loc_track(t);
4493 t->max = max;
4494 t->loc = l;
4495 return 1;
4498 static int add_location(struct loc_track *t, struct kmem_cache *s,
4499 const struct track *track)
4501 long start, end, pos;
4502 struct location *l;
4503 unsigned long caddr;
4504 unsigned long age = jiffies - track->when;
4506 start = -1;
4507 end = t->count;
4509 for ( ; ; ) {
4510 pos = start + (end - start + 1) / 2;
4513 * There is nothing at "end". If we end up there
4514 * we need to add something to before end.
4516 if (pos == end)
4517 break;
4519 caddr = t->loc[pos].addr;
4520 if (track->addr == caddr) {
4522 l = &t->loc[pos];
4523 l->count++;
4524 if (track->when) {
4525 l->sum_time += age;
4526 if (age < l->min_time)
4527 l->min_time = age;
4528 if (age > l->max_time)
4529 l->max_time = age;
4531 if (track->pid < l->min_pid)
4532 l->min_pid = track->pid;
4533 if (track->pid > l->max_pid)
4534 l->max_pid = track->pid;
4536 cpumask_set_cpu(track->cpu,
4537 to_cpumask(l->cpus));
4539 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4540 return 1;
4543 if (track->addr < caddr)
4544 end = pos;
4545 else
4546 start = pos;
4550 * Not found. Insert new tracking element.
4552 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4553 return 0;
4555 l = t->loc + pos;
4556 if (pos < t->count)
4557 memmove(l + 1, l,
4558 (t->count - pos) * sizeof(struct location));
4559 t->count++;
4560 l->count = 1;
4561 l->addr = track->addr;
4562 l->sum_time = age;
4563 l->min_time = age;
4564 l->max_time = age;
4565 l->min_pid = track->pid;
4566 l->max_pid = track->pid;
4567 cpumask_clear(to_cpumask(l->cpus));
4568 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4569 nodes_clear(l->nodes);
4570 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4571 return 1;
4574 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4575 struct page *page, enum track_item alloc,
4576 unsigned long *map)
4578 void *addr = page_address(page);
4579 void *p;
4581 bitmap_zero(map, page->objects);
4582 get_map(s, page, map);
4584 for_each_object(p, s, addr, page->objects)
4585 if (!test_bit(slab_index(p, s, addr), map))
4586 add_location(t, s, get_track(s, p, alloc));
4589 static int list_locations(struct kmem_cache *s, char *buf,
4590 enum track_item alloc)
4592 int len = 0;
4593 unsigned long i;
4594 struct loc_track t = { 0, 0, NULL };
4595 int node;
4596 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4597 sizeof(unsigned long), GFP_KERNEL);
4598 struct kmem_cache_node *n;
4600 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4601 GFP_KERNEL)) {
4602 kfree(map);
4603 return sprintf(buf, "Out of memory\n");
4605 /* Push back cpu slabs */
4606 flush_all(s);
4608 for_each_kmem_cache_node(s, node, n) {
4609 unsigned long flags;
4610 struct page *page;
4612 if (!atomic_long_read(&n->nr_slabs))
4613 continue;
4615 spin_lock_irqsave(&n->list_lock, flags);
4616 list_for_each_entry(page, &n->partial, lru)
4617 process_slab(&t, s, page, alloc, map);
4618 list_for_each_entry(page, &n->full, lru)
4619 process_slab(&t, s, page, alloc, map);
4620 spin_unlock_irqrestore(&n->list_lock, flags);
4623 for (i = 0; i < t.count; i++) {
4624 struct location *l = &t.loc[i];
4626 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4627 break;
4628 len += sprintf(buf + len, "%7ld ", l->count);
4630 if (l->addr)
4631 len += sprintf(buf + len, "%pS", (void *)l->addr);
4632 else
4633 len += sprintf(buf + len, "<not-available>");
4635 if (l->sum_time != l->min_time) {
4636 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4637 l->min_time,
4638 (long)div_u64(l->sum_time, l->count),
4639 l->max_time);
4640 } else
4641 len += sprintf(buf + len, " age=%ld",
4642 l->min_time);
4644 if (l->min_pid != l->max_pid)
4645 len += sprintf(buf + len, " pid=%ld-%ld",
4646 l->min_pid, l->max_pid);
4647 else
4648 len += sprintf(buf + len, " pid=%ld",
4649 l->min_pid);
4651 if (num_online_cpus() > 1 &&
4652 !cpumask_empty(to_cpumask(l->cpus)) &&
4653 len < PAGE_SIZE - 60)
4654 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4655 " cpus=%*pbl",
4656 cpumask_pr_args(to_cpumask(l->cpus)));
4658 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4659 len < PAGE_SIZE - 60)
4660 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4661 " nodes=%*pbl",
4662 nodemask_pr_args(&l->nodes));
4664 len += sprintf(buf + len, "\n");
4667 free_loc_track(&t);
4668 kfree(map);
4669 if (!t.count)
4670 len += sprintf(buf, "No data\n");
4671 return len;
4673 #endif
4675 #ifdef SLUB_RESILIENCY_TEST
4676 static void __init resiliency_test(void)
4678 u8 *p;
4680 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4682 pr_err("SLUB resiliency testing\n");
4683 pr_err("-----------------------\n");
4684 pr_err("A. Corruption after allocation\n");
4686 p = kzalloc(16, GFP_KERNEL);
4687 p[16] = 0x12;
4688 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4689 p + 16);
4691 validate_slab_cache(kmalloc_caches[4]);
4693 /* Hmmm... The next two are dangerous */
4694 p = kzalloc(32, GFP_KERNEL);
4695 p[32 + sizeof(void *)] = 0x34;
4696 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4698 pr_err("If allocated object is overwritten then not detectable\n\n");
4700 validate_slab_cache(kmalloc_caches[5]);
4701 p = kzalloc(64, GFP_KERNEL);
4702 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4703 *p = 0x56;
4704 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4706 pr_err("If allocated object is overwritten then not detectable\n\n");
4707 validate_slab_cache(kmalloc_caches[6]);
4709 pr_err("\nB. Corruption after free\n");
4710 p = kzalloc(128, GFP_KERNEL);
4711 kfree(p);
4712 *p = 0x78;
4713 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4714 validate_slab_cache(kmalloc_caches[7]);
4716 p = kzalloc(256, GFP_KERNEL);
4717 kfree(p);
4718 p[50] = 0x9a;
4719 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4720 validate_slab_cache(kmalloc_caches[8]);
4722 p = kzalloc(512, GFP_KERNEL);
4723 kfree(p);
4724 p[512] = 0xab;
4725 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4726 validate_slab_cache(kmalloc_caches[9]);
4728 #else
4729 #ifdef CONFIG_SYSFS
4730 static void resiliency_test(void) {};
4731 #endif
4732 #endif
4734 #ifdef CONFIG_SYSFS
4735 enum slab_stat_type {
4736 SL_ALL, /* All slabs */
4737 SL_PARTIAL, /* Only partially allocated slabs */
4738 SL_CPU, /* Only slabs used for cpu caches */
4739 SL_OBJECTS, /* Determine allocated objects not slabs */
4740 SL_TOTAL /* Determine object capacity not slabs */
4743 #define SO_ALL (1 << SL_ALL)
4744 #define SO_PARTIAL (1 << SL_PARTIAL)
4745 #define SO_CPU (1 << SL_CPU)
4746 #define SO_OBJECTS (1 << SL_OBJECTS)
4747 #define SO_TOTAL (1 << SL_TOTAL)
4749 #ifdef CONFIG_MEMCG
4750 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4752 static int __init setup_slub_memcg_sysfs(char *str)
4754 int v;
4756 if (get_option(&str, &v) > 0)
4757 memcg_sysfs_enabled = v;
4759 return 1;
4762 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4763 #endif
4765 static ssize_t show_slab_objects(struct kmem_cache *s,
4766 char *buf, unsigned long flags)
4768 unsigned long total = 0;
4769 int node;
4770 int x;
4771 unsigned long *nodes;
4773 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4774 if (!nodes)
4775 return -ENOMEM;
4777 if (flags & SO_CPU) {
4778 int cpu;
4780 for_each_possible_cpu(cpu) {
4781 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4782 cpu);
4783 int node;
4784 struct page *page;
4786 page = READ_ONCE(c->page);
4787 if (!page)
4788 continue;
4790 node = page_to_nid(page);
4791 if (flags & SO_TOTAL)
4792 x = page->objects;
4793 else if (flags & SO_OBJECTS)
4794 x = page->inuse;
4795 else
4796 x = 1;
4798 total += x;
4799 nodes[node] += x;
4801 page = slub_percpu_partial_read_once(c);
4802 if (page) {
4803 node = page_to_nid(page);
4804 if (flags & SO_TOTAL)
4805 WARN_ON_ONCE(1);
4806 else if (flags & SO_OBJECTS)
4807 WARN_ON_ONCE(1);
4808 else
4809 x = page->pages;
4810 total += x;
4811 nodes[node] += x;
4816 get_online_mems();
4817 #ifdef CONFIG_SLUB_DEBUG
4818 if (flags & SO_ALL) {
4819 struct kmem_cache_node *n;
4821 for_each_kmem_cache_node(s, node, n) {
4823 if (flags & SO_TOTAL)
4824 x = atomic_long_read(&n->total_objects);
4825 else if (flags & SO_OBJECTS)
4826 x = atomic_long_read(&n->total_objects) -
4827 count_partial(n, count_free);
4828 else
4829 x = atomic_long_read(&n->nr_slabs);
4830 total += x;
4831 nodes[node] += x;
4834 } else
4835 #endif
4836 if (flags & SO_PARTIAL) {
4837 struct kmem_cache_node *n;
4839 for_each_kmem_cache_node(s, node, n) {
4840 if (flags & SO_TOTAL)
4841 x = count_partial(n, count_total);
4842 else if (flags & SO_OBJECTS)
4843 x = count_partial(n, count_inuse);
4844 else
4845 x = n->nr_partial;
4846 total += x;
4847 nodes[node] += x;
4850 x = sprintf(buf, "%lu", total);
4851 #ifdef CONFIG_NUMA
4852 for (node = 0; node < nr_node_ids; node++)
4853 if (nodes[node])
4854 x += sprintf(buf + x, " N%d=%lu",
4855 node, nodes[node]);
4856 #endif
4857 put_online_mems();
4858 kfree(nodes);
4859 return x + sprintf(buf + x, "\n");
4862 #ifdef CONFIG_SLUB_DEBUG
4863 static int any_slab_objects(struct kmem_cache *s)
4865 int node;
4866 struct kmem_cache_node *n;
4868 for_each_kmem_cache_node(s, node, n)
4869 if (atomic_long_read(&n->total_objects))
4870 return 1;
4872 return 0;
4874 #endif
4876 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4877 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4879 struct slab_attribute {
4880 struct attribute attr;
4881 ssize_t (*show)(struct kmem_cache *s, char *buf);
4882 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4885 #define SLAB_ATTR_RO(_name) \
4886 static struct slab_attribute _name##_attr = \
4887 __ATTR(_name, 0400, _name##_show, NULL)
4889 #define SLAB_ATTR(_name) \
4890 static struct slab_attribute _name##_attr = \
4891 __ATTR(_name, 0600, _name##_show, _name##_store)
4893 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4895 return sprintf(buf, "%d\n", s->size);
4897 SLAB_ATTR_RO(slab_size);
4899 static ssize_t align_show(struct kmem_cache *s, char *buf)
4901 return sprintf(buf, "%d\n", s->align);
4903 SLAB_ATTR_RO(align);
4905 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4907 return sprintf(buf, "%d\n", s->object_size);
4909 SLAB_ATTR_RO(object_size);
4911 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4913 return sprintf(buf, "%d\n", oo_objects(s->oo));
4915 SLAB_ATTR_RO(objs_per_slab);
4917 static ssize_t order_store(struct kmem_cache *s,
4918 const char *buf, size_t length)
4920 unsigned long order;
4921 int err;
4923 err = kstrtoul(buf, 10, &order);
4924 if (err)
4925 return err;
4927 if (order > slub_max_order || order < slub_min_order)
4928 return -EINVAL;
4930 calculate_sizes(s, order);
4931 return length;
4934 static ssize_t order_show(struct kmem_cache *s, char *buf)
4936 return sprintf(buf, "%d\n", oo_order(s->oo));
4938 SLAB_ATTR(order);
4940 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4942 return sprintf(buf, "%lu\n", s->min_partial);
4945 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4946 size_t length)
4948 unsigned long min;
4949 int err;
4951 err = kstrtoul(buf, 10, &min);
4952 if (err)
4953 return err;
4955 set_min_partial(s, min);
4956 return length;
4958 SLAB_ATTR(min_partial);
4960 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4962 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4965 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4966 size_t length)
4968 unsigned long objects;
4969 int err;
4971 err = kstrtoul(buf, 10, &objects);
4972 if (err)
4973 return err;
4974 if (objects && !kmem_cache_has_cpu_partial(s))
4975 return -EINVAL;
4977 slub_set_cpu_partial(s, objects);
4978 flush_all(s);
4979 return length;
4981 SLAB_ATTR(cpu_partial);
4983 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4985 if (!s->ctor)
4986 return 0;
4987 return sprintf(buf, "%pS\n", s->ctor);
4989 SLAB_ATTR_RO(ctor);
4991 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4993 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4995 SLAB_ATTR_RO(aliases);
4997 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4999 return show_slab_objects(s, buf, SO_PARTIAL);
5001 SLAB_ATTR_RO(partial);
5003 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5005 return show_slab_objects(s, buf, SO_CPU);
5007 SLAB_ATTR_RO(cpu_slabs);
5009 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5011 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5013 SLAB_ATTR_RO(objects);
5015 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5017 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5019 SLAB_ATTR_RO(objects_partial);
5021 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5023 int objects = 0;
5024 int pages = 0;
5025 int cpu;
5026 int len;
5028 for_each_online_cpu(cpu) {
5029 struct page *page;
5031 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5033 if (page) {
5034 pages += page->pages;
5035 objects += page->pobjects;
5039 len = sprintf(buf, "%d(%d)", objects, pages);
5041 #ifdef CONFIG_SMP
5042 for_each_online_cpu(cpu) {
5043 struct page *page;
5045 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5047 if (page && len < PAGE_SIZE - 20)
5048 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5049 page->pobjects, page->pages);
5051 #endif
5052 return len + sprintf(buf + len, "\n");
5054 SLAB_ATTR_RO(slabs_cpu_partial);
5056 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5058 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5061 static ssize_t reclaim_account_store(struct kmem_cache *s,
5062 const char *buf, size_t length)
5064 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5065 if (buf[0] == '1')
5066 s->flags |= SLAB_RECLAIM_ACCOUNT;
5067 return length;
5069 SLAB_ATTR(reclaim_account);
5071 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5073 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5075 SLAB_ATTR_RO(hwcache_align);
5077 #ifdef CONFIG_ZONE_DMA
5078 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5080 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5082 SLAB_ATTR_RO(cache_dma);
5083 #endif
5085 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5087 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5089 SLAB_ATTR_RO(destroy_by_rcu);
5091 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5093 return sprintf(buf, "%d\n", s->reserved);
5095 SLAB_ATTR_RO(reserved);
5097 #ifdef CONFIG_SLUB_DEBUG
5098 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5100 return show_slab_objects(s, buf, SO_ALL);
5102 SLAB_ATTR_RO(slabs);
5104 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5106 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5108 SLAB_ATTR_RO(total_objects);
5110 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5112 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5115 static ssize_t sanity_checks_store(struct kmem_cache *s,
5116 const char *buf, size_t length)
5118 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5119 if (buf[0] == '1') {
5120 s->flags &= ~__CMPXCHG_DOUBLE;
5121 s->flags |= SLAB_CONSISTENCY_CHECKS;
5123 return length;
5125 SLAB_ATTR(sanity_checks);
5127 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5129 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5132 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5133 size_t length)
5136 * Tracing a merged cache is going to give confusing results
5137 * as well as cause other issues like converting a mergeable
5138 * cache into an umergeable one.
5140 if (s->refcount > 1)
5141 return -EINVAL;
5143 s->flags &= ~SLAB_TRACE;
5144 if (buf[0] == '1') {
5145 s->flags &= ~__CMPXCHG_DOUBLE;
5146 s->flags |= SLAB_TRACE;
5148 return length;
5150 SLAB_ATTR(trace);
5152 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5154 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5157 static ssize_t red_zone_store(struct kmem_cache *s,
5158 const char *buf, size_t length)
5160 if (any_slab_objects(s))
5161 return -EBUSY;
5163 s->flags &= ~SLAB_RED_ZONE;
5164 if (buf[0] == '1') {
5165 s->flags |= SLAB_RED_ZONE;
5167 calculate_sizes(s, -1);
5168 return length;
5170 SLAB_ATTR(red_zone);
5172 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5174 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5177 static ssize_t poison_store(struct kmem_cache *s,
5178 const char *buf, size_t length)
5180 if (any_slab_objects(s))
5181 return -EBUSY;
5183 s->flags &= ~SLAB_POISON;
5184 if (buf[0] == '1') {
5185 s->flags |= SLAB_POISON;
5187 calculate_sizes(s, -1);
5188 return length;
5190 SLAB_ATTR(poison);
5192 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5194 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5197 static ssize_t store_user_store(struct kmem_cache *s,
5198 const char *buf, size_t length)
5200 if (any_slab_objects(s))
5201 return -EBUSY;
5203 s->flags &= ~SLAB_STORE_USER;
5204 if (buf[0] == '1') {
5205 s->flags &= ~__CMPXCHG_DOUBLE;
5206 s->flags |= SLAB_STORE_USER;
5208 calculate_sizes(s, -1);
5209 return length;
5211 SLAB_ATTR(store_user);
5213 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5215 return 0;
5218 static ssize_t validate_store(struct kmem_cache *s,
5219 const char *buf, size_t length)
5221 int ret = -EINVAL;
5223 if (buf[0] == '1') {
5224 ret = validate_slab_cache(s);
5225 if (ret >= 0)
5226 ret = length;
5228 return ret;
5230 SLAB_ATTR(validate);
5232 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5234 if (!(s->flags & SLAB_STORE_USER))
5235 return -ENOSYS;
5236 return list_locations(s, buf, TRACK_ALLOC);
5238 SLAB_ATTR_RO(alloc_calls);
5240 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5242 if (!(s->flags & SLAB_STORE_USER))
5243 return -ENOSYS;
5244 return list_locations(s, buf, TRACK_FREE);
5246 SLAB_ATTR_RO(free_calls);
5247 #endif /* CONFIG_SLUB_DEBUG */
5249 #ifdef CONFIG_FAILSLAB
5250 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5252 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5255 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5256 size_t length)
5258 if (s->refcount > 1)
5259 return -EINVAL;
5261 s->flags &= ~SLAB_FAILSLAB;
5262 if (buf[0] == '1')
5263 s->flags |= SLAB_FAILSLAB;
5264 return length;
5266 SLAB_ATTR(failslab);
5267 #endif
5269 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5271 return 0;
5274 static ssize_t shrink_store(struct kmem_cache *s,
5275 const char *buf, size_t length)
5277 if (buf[0] == '1')
5278 kmem_cache_shrink(s);
5279 else
5280 return -EINVAL;
5281 return length;
5283 SLAB_ATTR(shrink);
5285 #ifdef CONFIG_NUMA
5286 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5288 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5291 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5292 const char *buf, size_t length)
5294 unsigned long ratio;
5295 int err;
5297 err = kstrtoul(buf, 10, &ratio);
5298 if (err)
5299 return err;
5301 if (ratio <= 100)
5302 s->remote_node_defrag_ratio = ratio * 10;
5304 return length;
5306 SLAB_ATTR(remote_node_defrag_ratio);
5307 #endif
5309 #ifdef CONFIG_SLUB_STATS
5310 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5312 unsigned long sum = 0;
5313 int cpu;
5314 int len;
5315 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5317 if (!data)
5318 return -ENOMEM;
5320 for_each_online_cpu(cpu) {
5321 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5323 data[cpu] = x;
5324 sum += x;
5327 len = sprintf(buf, "%lu", sum);
5329 #ifdef CONFIG_SMP
5330 for_each_online_cpu(cpu) {
5331 if (data[cpu] && len < PAGE_SIZE - 20)
5332 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5334 #endif
5335 kfree(data);
5336 return len + sprintf(buf + len, "\n");
5339 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5341 int cpu;
5343 for_each_online_cpu(cpu)
5344 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5347 #define STAT_ATTR(si, text) \
5348 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5350 return show_stat(s, buf, si); \
5352 static ssize_t text##_store(struct kmem_cache *s, \
5353 const char *buf, size_t length) \
5355 if (buf[0] != '0') \
5356 return -EINVAL; \
5357 clear_stat(s, si); \
5358 return length; \
5360 SLAB_ATTR(text); \
5362 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5363 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5364 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5365 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5366 STAT_ATTR(FREE_FROZEN, free_frozen);
5367 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5368 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5369 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5370 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5371 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5372 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5373 STAT_ATTR(FREE_SLAB, free_slab);
5374 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5375 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5376 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5377 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5378 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5379 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5380 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5381 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5382 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5383 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5384 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5385 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5386 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5387 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5388 #endif
5390 static struct attribute *slab_attrs[] = {
5391 &slab_size_attr.attr,
5392 &object_size_attr.attr,
5393 &objs_per_slab_attr.attr,
5394 &order_attr.attr,
5395 &min_partial_attr.attr,
5396 &cpu_partial_attr.attr,
5397 &objects_attr.attr,
5398 &objects_partial_attr.attr,
5399 &partial_attr.attr,
5400 &cpu_slabs_attr.attr,
5401 &ctor_attr.attr,
5402 &aliases_attr.attr,
5403 &align_attr.attr,
5404 &hwcache_align_attr.attr,
5405 &reclaim_account_attr.attr,
5406 &destroy_by_rcu_attr.attr,
5407 &shrink_attr.attr,
5408 &reserved_attr.attr,
5409 &slabs_cpu_partial_attr.attr,
5410 #ifdef CONFIG_SLUB_DEBUG
5411 &total_objects_attr.attr,
5412 &slabs_attr.attr,
5413 &sanity_checks_attr.attr,
5414 &trace_attr.attr,
5415 &red_zone_attr.attr,
5416 &poison_attr.attr,
5417 &store_user_attr.attr,
5418 &validate_attr.attr,
5419 &alloc_calls_attr.attr,
5420 &free_calls_attr.attr,
5421 #endif
5422 #ifdef CONFIG_ZONE_DMA
5423 &cache_dma_attr.attr,
5424 #endif
5425 #ifdef CONFIG_NUMA
5426 &remote_node_defrag_ratio_attr.attr,
5427 #endif
5428 #ifdef CONFIG_SLUB_STATS
5429 &alloc_fastpath_attr.attr,
5430 &alloc_slowpath_attr.attr,
5431 &free_fastpath_attr.attr,
5432 &free_slowpath_attr.attr,
5433 &free_frozen_attr.attr,
5434 &free_add_partial_attr.attr,
5435 &free_remove_partial_attr.attr,
5436 &alloc_from_partial_attr.attr,
5437 &alloc_slab_attr.attr,
5438 &alloc_refill_attr.attr,
5439 &alloc_node_mismatch_attr.attr,
5440 &free_slab_attr.attr,
5441 &cpuslab_flush_attr.attr,
5442 &deactivate_full_attr.attr,
5443 &deactivate_empty_attr.attr,
5444 &deactivate_to_head_attr.attr,
5445 &deactivate_to_tail_attr.attr,
5446 &deactivate_remote_frees_attr.attr,
5447 &deactivate_bypass_attr.attr,
5448 &order_fallback_attr.attr,
5449 &cmpxchg_double_fail_attr.attr,
5450 &cmpxchg_double_cpu_fail_attr.attr,
5451 &cpu_partial_alloc_attr.attr,
5452 &cpu_partial_free_attr.attr,
5453 &cpu_partial_node_attr.attr,
5454 &cpu_partial_drain_attr.attr,
5455 #endif
5456 #ifdef CONFIG_FAILSLAB
5457 &failslab_attr.attr,
5458 #endif
5460 NULL
5463 static const struct attribute_group slab_attr_group = {
5464 .attrs = slab_attrs,
5467 static ssize_t slab_attr_show(struct kobject *kobj,
5468 struct attribute *attr,
5469 char *buf)
5471 struct slab_attribute *attribute;
5472 struct kmem_cache *s;
5473 int err;
5475 attribute = to_slab_attr(attr);
5476 s = to_slab(kobj);
5478 if (!attribute->show)
5479 return -EIO;
5481 err = attribute->show(s, buf);
5483 return err;
5486 static ssize_t slab_attr_store(struct kobject *kobj,
5487 struct attribute *attr,
5488 const char *buf, size_t len)
5490 struct slab_attribute *attribute;
5491 struct kmem_cache *s;
5492 int err;
5494 attribute = to_slab_attr(attr);
5495 s = to_slab(kobj);
5497 if (!attribute->store)
5498 return -EIO;
5500 err = attribute->store(s, buf, len);
5501 #ifdef CONFIG_MEMCG
5502 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5503 struct kmem_cache *c;
5505 mutex_lock(&slab_mutex);
5506 if (s->max_attr_size < len)
5507 s->max_attr_size = len;
5510 * This is a best effort propagation, so this function's return
5511 * value will be determined by the parent cache only. This is
5512 * basically because not all attributes will have a well
5513 * defined semantics for rollbacks - most of the actions will
5514 * have permanent effects.
5516 * Returning the error value of any of the children that fail
5517 * is not 100 % defined, in the sense that users seeing the
5518 * error code won't be able to know anything about the state of
5519 * the cache.
5521 * Only returning the error code for the parent cache at least
5522 * has well defined semantics. The cache being written to
5523 * directly either failed or succeeded, in which case we loop
5524 * through the descendants with best-effort propagation.
5526 for_each_memcg_cache(c, s)
5527 attribute->store(c, buf, len);
5528 mutex_unlock(&slab_mutex);
5530 #endif
5531 return err;
5534 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5536 #ifdef CONFIG_MEMCG
5537 int i;
5538 char *buffer = NULL;
5539 struct kmem_cache *root_cache;
5541 if (is_root_cache(s))
5542 return;
5544 root_cache = s->memcg_params.root_cache;
5547 * This mean this cache had no attribute written. Therefore, no point
5548 * in copying default values around
5550 if (!root_cache->max_attr_size)
5551 return;
5553 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5554 char mbuf[64];
5555 char *buf;
5556 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5557 ssize_t len;
5559 if (!attr || !attr->store || !attr->show)
5560 continue;
5563 * It is really bad that we have to allocate here, so we will
5564 * do it only as a fallback. If we actually allocate, though,
5565 * we can just use the allocated buffer until the end.
5567 * Most of the slub attributes will tend to be very small in
5568 * size, but sysfs allows buffers up to a page, so they can
5569 * theoretically happen.
5571 if (buffer)
5572 buf = buffer;
5573 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5574 buf = mbuf;
5575 else {
5576 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5577 if (WARN_ON(!buffer))
5578 continue;
5579 buf = buffer;
5582 len = attr->show(root_cache, buf);
5583 if (len > 0)
5584 attr->store(s, buf, len);
5587 if (buffer)
5588 free_page((unsigned long)buffer);
5589 #endif
5592 static void kmem_cache_release(struct kobject *k)
5594 slab_kmem_cache_release(to_slab(k));
5597 static const struct sysfs_ops slab_sysfs_ops = {
5598 .show = slab_attr_show,
5599 .store = slab_attr_store,
5602 static struct kobj_type slab_ktype = {
5603 .sysfs_ops = &slab_sysfs_ops,
5604 .release = kmem_cache_release,
5607 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5609 struct kobj_type *ktype = get_ktype(kobj);
5611 if (ktype == &slab_ktype)
5612 return 1;
5613 return 0;
5616 static const struct kset_uevent_ops slab_uevent_ops = {
5617 .filter = uevent_filter,
5620 static struct kset *slab_kset;
5622 static inline struct kset *cache_kset(struct kmem_cache *s)
5624 #ifdef CONFIG_MEMCG
5625 if (!is_root_cache(s))
5626 return s->memcg_params.root_cache->memcg_kset;
5627 #endif
5628 return slab_kset;
5631 #define ID_STR_LENGTH 64
5633 /* Create a unique string id for a slab cache:
5635 * Format :[flags-]size
5637 static char *create_unique_id(struct kmem_cache *s)
5639 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5640 char *p = name;
5642 BUG_ON(!name);
5644 *p++ = ':';
5646 * First flags affecting slabcache operations. We will only
5647 * get here for aliasable slabs so we do not need to support
5648 * too many flags. The flags here must cover all flags that
5649 * are matched during merging to guarantee that the id is
5650 * unique.
5652 if (s->flags & SLAB_CACHE_DMA)
5653 *p++ = 'd';
5654 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5655 *p++ = 'a';
5656 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5657 *p++ = 'F';
5658 if (!(s->flags & SLAB_NOTRACK))
5659 *p++ = 't';
5660 if (s->flags & SLAB_ACCOUNT)
5661 *p++ = 'A';
5662 if (p != name + 1)
5663 *p++ = '-';
5664 p += sprintf(p, "%07d", s->size);
5666 BUG_ON(p > name + ID_STR_LENGTH - 1);
5667 return name;
5670 static void sysfs_slab_remove_workfn(struct work_struct *work)
5672 struct kmem_cache *s =
5673 container_of(work, struct kmem_cache, kobj_remove_work);
5675 if (!s->kobj.state_in_sysfs)
5677 * For a memcg cache, this may be called during
5678 * deactivation and again on shutdown. Remove only once.
5679 * A cache is never shut down before deactivation is
5680 * complete, so no need to worry about synchronization.
5682 goto out;
5684 #ifdef CONFIG_MEMCG
5685 kset_unregister(s->memcg_kset);
5686 #endif
5687 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5688 kobject_del(&s->kobj);
5689 out:
5690 kobject_put(&s->kobj);
5693 static int sysfs_slab_add(struct kmem_cache *s)
5695 int err;
5696 const char *name;
5697 struct kset *kset = cache_kset(s);
5698 int unmergeable = slab_unmergeable(s);
5700 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5702 if (!kset) {
5703 kobject_init(&s->kobj, &slab_ktype);
5704 return 0;
5707 if (!unmergeable && disable_higher_order_debug &&
5708 (slub_debug & DEBUG_METADATA_FLAGS))
5709 unmergeable = 1;
5711 if (unmergeable) {
5713 * Slabcache can never be merged so we can use the name proper.
5714 * This is typically the case for debug situations. In that
5715 * case we can catch duplicate names easily.
5717 sysfs_remove_link(&slab_kset->kobj, s->name);
5718 name = s->name;
5719 } else {
5721 * Create a unique name for the slab as a target
5722 * for the symlinks.
5724 name = create_unique_id(s);
5727 s->kobj.kset = kset;
5728 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5729 if (err)
5730 goto out;
5732 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5733 if (err)
5734 goto out_del_kobj;
5736 #ifdef CONFIG_MEMCG
5737 if (is_root_cache(s) && memcg_sysfs_enabled) {
5738 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5739 if (!s->memcg_kset) {
5740 err = -ENOMEM;
5741 goto out_del_kobj;
5744 #endif
5746 kobject_uevent(&s->kobj, KOBJ_ADD);
5747 if (!unmergeable) {
5748 /* Setup first alias */
5749 sysfs_slab_alias(s, s->name);
5751 out:
5752 if (!unmergeable)
5753 kfree(name);
5754 return err;
5755 out_del_kobj:
5756 kobject_del(&s->kobj);
5757 goto out;
5760 static void sysfs_slab_remove(struct kmem_cache *s)
5762 if (slab_state < FULL)
5764 * Sysfs has not been setup yet so no need to remove the
5765 * cache from sysfs.
5767 return;
5769 kobject_get(&s->kobj);
5770 schedule_work(&s->kobj_remove_work);
5773 void sysfs_slab_release(struct kmem_cache *s)
5775 if (slab_state >= FULL)
5776 kobject_put(&s->kobj);
5780 * Need to buffer aliases during bootup until sysfs becomes
5781 * available lest we lose that information.
5783 struct saved_alias {
5784 struct kmem_cache *s;
5785 const char *name;
5786 struct saved_alias *next;
5789 static struct saved_alias *alias_list;
5791 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5793 struct saved_alias *al;
5795 if (slab_state == FULL) {
5797 * If we have a leftover link then remove it.
5799 sysfs_remove_link(&slab_kset->kobj, name);
5800 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5803 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5804 if (!al)
5805 return -ENOMEM;
5807 al->s = s;
5808 al->name = name;
5809 al->next = alias_list;
5810 alias_list = al;
5811 return 0;
5814 static int __init slab_sysfs_init(void)
5816 struct kmem_cache *s;
5817 int err;
5819 mutex_lock(&slab_mutex);
5821 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5822 if (!slab_kset) {
5823 mutex_unlock(&slab_mutex);
5824 pr_err("Cannot register slab subsystem.\n");
5825 return -ENOSYS;
5828 slab_state = FULL;
5830 list_for_each_entry(s, &slab_caches, list) {
5831 err = sysfs_slab_add(s);
5832 if (err)
5833 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5834 s->name);
5837 while (alias_list) {
5838 struct saved_alias *al = alias_list;
5840 alias_list = alias_list->next;
5841 err = sysfs_slab_alias(al->s, al->name);
5842 if (err)
5843 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5844 al->name);
5845 kfree(al);
5848 mutex_unlock(&slab_mutex);
5849 resiliency_test();
5850 return 0;
5853 __initcall(slab_sysfs_init);
5854 #endif /* CONFIG_SYSFS */
5857 * The /proc/slabinfo ABI
5859 #ifdef CONFIG_SLABINFO
5860 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5862 unsigned long nr_slabs = 0;
5863 unsigned long nr_objs = 0;
5864 unsigned long nr_free = 0;
5865 int node;
5866 struct kmem_cache_node *n;
5868 for_each_kmem_cache_node(s, node, n) {
5869 nr_slabs += node_nr_slabs(n);
5870 nr_objs += node_nr_objs(n);
5871 nr_free += count_partial(n, count_free);
5874 sinfo->active_objs = nr_objs - nr_free;
5875 sinfo->num_objs = nr_objs;
5876 sinfo->active_slabs = nr_slabs;
5877 sinfo->num_slabs = nr_slabs;
5878 sinfo->objects_per_slab = oo_objects(s->oo);
5879 sinfo->cache_order = oo_order(s->oo);
5882 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5886 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5887 size_t count, loff_t *ppos)
5889 return -EIO;
5891 #endif /* CONFIG_SLABINFO */