4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 /* start node id of a node block dedicated to the given node id */
12 #define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
14 /* node block offset on the NAT area dedicated to the given start node id */
15 #define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
17 /* # of pages to perform readahead before building free nids */
18 #define FREE_NID_PAGES 4
20 /* maximum # of free node ids to produce during build_free_nids */
21 #define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
23 /* maximum readahead size for node during getting data blocks */
24 #define MAX_RA_NODE 128
26 /* maximum cached nat entries to manage memory footprint */
27 #define NM_WOUT_THRESHOLD (64 * NAT_ENTRY_PER_BLOCK)
29 /* vector size for gang look-up from nat cache that consists of radix tree */
30 #define NATVEC_SIZE 64
32 /* return value for read_node_page */
36 * For node information
39 nid_t nid
; /* node id */
40 nid_t ino
; /* inode number of the node's owner */
41 block_t blk_addr
; /* block address of the node */
42 unsigned char version
; /* version of the node */
46 struct list_head list
; /* for clean or dirty nat list */
47 bool checkpointed
; /* whether it is checkpointed or not */
48 struct node_info ni
; /* in-memory node information */
51 #define nat_get_nid(nat) (nat->ni.nid)
52 #define nat_set_nid(nat, n) (nat->ni.nid = n)
53 #define nat_get_blkaddr(nat) (nat->ni.blk_addr)
54 #define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
55 #define nat_get_ino(nat) (nat->ni.ino)
56 #define nat_set_ino(nat, i) (nat->ni.ino = i)
57 #define nat_get_version(nat) (nat->ni.version)
58 #define nat_set_version(nat, v) (nat->ni.version = v)
60 #define __set_nat_cache_dirty(nm_i, ne) \
61 list_move_tail(&ne->list, &nm_i->dirty_nat_entries);
62 #define __clear_nat_cache_dirty(nm_i, ne) \
63 list_move_tail(&ne->list, &nm_i->nat_entries);
64 #define inc_node_version(version) (++version)
66 static inline void node_info_from_raw_nat(struct node_info
*ni
,
67 struct f2fs_nat_entry
*raw_ne
)
69 ni
->ino
= le32_to_cpu(raw_ne
->ino
);
70 ni
->blk_addr
= le32_to_cpu(raw_ne
->block_addr
);
71 ni
->version
= raw_ne
->version
;
75 * For free nid mangement
78 NID_NEW
, /* newly added to free nid list */
79 NID_ALLOC
/* it is allocated */
83 struct list_head list
; /* for free node id list */
84 nid_t nid
; /* node id */
85 int state
; /* in use or not: NID_NEW or NID_ALLOC */
88 static inline int next_free_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
90 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
91 struct free_nid
*fnid
;
95 spin_lock(&nm_i
->free_nid_list_lock
);
96 fnid
= list_entry(nm_i
->free_nid_list
.next
, struct free_nid
, list
);
98 spin_unlock(&nm_i
->free_nid_list_lock
);
105 static inline void get_nat_bitmap(struct f2fs_sb_info
*sbi
, void *addr
)
107 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
108 memcpy(addr
, nm_i
->nat_bitmap
, nm_i
->bitmap_size
);
111 static inline pgoff_t
current_nat_addr(struct f2fs_sb_info
*sbi
, nid_t start
)
113 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
118 block_off
= NAT_BLOCK_OFFSET(start
);
119 seg_off
= block_off
>> sbi
->log_blocks_per_seg
;
121 block_addr
= (pgoff_t
)(nm_i
->nat_blkaddr
+
122 (seg_off
<< sbi
->log_blocks_per_seg
<< 1) +
123 (block_off
& ((1 << sbi
->log_blocks_per_seg
) - 1)));
125 if (f2fs_test_bit(block_off
, nm_i
->nat_bitmap
))
126 block_addr
+= sbi
->blocks_per_seg
;
131 static inline pgoff_t
next_nat_addr(struct f2fs_sb_info
*sbi
,
134 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
136 block_addr
-= nm_i
->nat_blkaddr
;
137 if ((block_addr
>> sbi
->log_blocks_per_seg
) % 2)
138 block_addr
-= sbi
->blocks_per_seg
;
140 block_addr
+= sbi
->blocks_per_seg
;
142 return block_addr
+ nm_i
->nat_blkaddr
;
145 static inline void set_to_next_nat(struct f2fs_nm_info
*nm_i
, nid_t start_nid
)
147 unsigned int block_off
= NAT_BLOCK_OFFSET(start_nid
);
149 if (f2fs_test_bit(block_off
, nm_i
->nat_bitmap
))
150 f2fs_clear_bit(block_off
, nm_i
->nat_bitmap
);
152 f2fs_set_bit(block_off
, nm_i
->nat_bitmap
);
155 static inline void fill_node_footer(struct page
*page
, nid_t nid
,
156 nid_t ino
, unsigned int ofs
, bool reset
)
158 struct f2fs_node
*rn
= F2FS_NODE(page
);
160 memset(rn
, 0, sizeof(*rn
));
161 rn
->footer
.nid
= cpu_to_le32(nid
);
162 rn
->footer
.ino
= cpu_to_le32(ino
);
163 rn
->footer
.flag
= cpu_to_le32(ofs
<< OFFSET_BIT_SHIFT
);
166 static inline void copy_node_footer(struct page
*dst
, struct page
*src
)
168 struct f2fs_node
*src_rn
= F2FS_NODE(src
);
169 struct f2fs_node
*dst_rn
= F2FS_NODE(dst
);
170 memcpy(&dst_rn
->footer
, &src_rn
->footer
, sizeof(struct node_footer
));
173 static inline void fill_node_footer_blkaddr(struct page
*page
, block_t blkaddr
)
175 struct f2fs_sb_info
*sbi
= F2FS_SB(page
->mapping
->host
->i_sb
);
176 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
177 struct f2fs_node
*rn
= F2FS_NODE(page
);
179 rn
->footer
.cp_ver
= ckpt
->checkpoint_ver
;
180 rn
->footer
.next_blkaddr
= cpu_to_le32(blkaddr
);
183 static inline nid_t
ino_of_node(struct page
*node_page
)
185 struct f2fs_node
*rn
= F2FS_NODE(node_page
);
186 return le32_to_cpu(rn
->footer
.ino
);
189 static inline nid_t
nid_of_node(struct page
*node_page
)
191 struct f2fs_node
*rn
= F2FS_NODE(node_page
);
192 return le32_to_cpu(rn
->footer
.nid
);
195 static inline unsigned int ofs_of_node(struct page
*node_page
)
197 struct f2fs_node
*rn
= F2FS_NODE(node_page
);
198 unsigned flag
= le32_to_cpu(rn
->footer
.flag
);
199 return flag
>> OFFSET_BIT_SHIFT
;
202 static inline unsigned long long cpver_of_node(struct page
*node_page
)
204 struct f2fs_node
*rn
= F2FS_NODE(node_page
);
205 return le64_to_cpu(rn
->footer
.cp_ver
);
208 static inline block_t
next_blkaddr_of_node(struct page
*node_page
)
210 struct f2fs_node
*rn
= F2FS_NODE(node_page
);
211 return le32_to_cpu(rn
->footer
.next_blkaddr
);
215 * f2fs assigns the following node offsets described as (num).
221 * |- indirect node (3)
222 * | `- direct node (4 => 4 + N - 1)
223 * |- indirect node (4 + N)
224 * | `- direct node (5 + N => 5 + 2N - 1)
225 * `- double indirect node (5 + 2N)
226 * `- indirect node (6 + 2N)
227 * `- direct node (x(N + 1))
229 static inline bool IS_DNODE(struct page
*node_page
)
231 unsigned int ofs
= ofs_of_node(node_page
);
233 if (ofs
== XATTR_NODE_OFFSET
)
236 if (ofs
== 3 || ofs
== 4 + NIDS_PER_BLOCK
||
237 ofs
== 5 + 2 * NIDS_PER_BLOCK
)
239 if (ofs
>= 6 + 2 * NIDS_PER_BLOCK
) {
240 ofs
-= 6 + 2 * NIDS_PER_BLOCK
;
241 if (!((long int)ofs
% (NIDS_PER_BLOCK
+ 1)))
247 static inline void set_nid(struct page
*p
, int off
, nid_t nid
, bool i
)
249 struct f2fs_node
*rn
= F2FS_NODE(p
);
251 wait_on_page_writeback(p
);
254 rn
->i
.i_nid
[off
- NODE_DIR1_BLOCK
] = cpu_to_le32(nid
);
256 rn
->in
.nid
[off
] = cpu_to_le32(nid
);
260 static inline nid_t
get_nid(struct page
*p
, int off
, bool i
)
262 struct f2fs_node
*rn
= F2FS_NODE(p
);
265 return le32_to_cpu(rn
->i
.i_nid
[off
- NODE_DIR1_BLOCK
]);
266 return le32_to_cpu(rn
->in
.nid
[off
]);
270 * Coldness identification:
271 * - Mark cold files in f2fs_inode_info
272 * - Mark cold node blocks in their node footer
273 * - Mark cold data pages in page cache
275 static inline int is_file(struct inode
*inode
, int type
)
277 return F2FS_I(inode
)->i_advise
& type
;
280 static inline void set_file(struct inode
*inode
, int type
)
282 F2FS_I(inode
)->i_advise
|= type
;
285 static inline void clear_file(struct inode
*inode
, int type
)
287 F2FS_I(inode
)->i_advise
&= ~type
;
290 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
291 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
292 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
293 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
294 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
295 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
297 static inline int is_cold_data(struct page
*page
)
299 return PageChecked(page
);
302 static inline void set_cold_data(struct page
*page
)
304 SetPageChecked(page
);
307 static inline void clear_cold_data(struct page
*page
)
309 ClearPageChecked(page
);
312 static inline int is_node(struct page
*page
, int type
)
314 struct f2fs_node
*rn
= F2FS_NODE(page
);
315 return le32_to_cpu(rn
->footer
.flag
) & (1 << type
);
318 #define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
319 #define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
320 #define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
322 static inline void set_cold_node(struct inode
*inode
, struct page
*page
)
324 struct f2fs_node
*rn
= F2FS_NODE(page
);
325 unsigned int flag
= le32_to_cpu(rn
->footer
.flag
);
327 if (S_ISDIR(inode
->i_mode
))
328 flag
&= ~(0x1 << COLD_BIT_SHIFT
);
330 flag
|= (0x1 << COLD_BIT_SHIFT
);
331 rn
->footer
.flag
= cpu_to_le32(flag
);
334 static inline void set_mark(struct page
*page
, int mark
, int type
)
336 struct f2fs_node
*rn
= F2FS_NODE(page
);
337 unsigned int flag
= le32_to_cpu(rn
->footer
.flag
);
339 flag
|= (0x1 << type
);
341 flag
&= ~(0x1 << type
);
342 rn
->footer
.flag
= cpu_to_le32(flag
);
344 #define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
345 #define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)