2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
35 #include <asm/pgalloc.h>
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
46 unsigned long transparent_hugepage_flags __read_mostly
=
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG
)|
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
)|
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
57 static struct shrinker deferred_split_shrinker
;
59 static atomic_t huge_zero_refcount
;
60 struct page
*huge_zero_page __read_mostly
;
62 static struct page
*get_huge_zero_page(void)
64 struct page
*zero_page
;
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount
)))
67 return READ_ONCE(huge_zero_page
);
69 zero_page
= alloc_pages((GFP_TRANSHUGE
| __GFP_ZERO
) & ~__GFP_MOVABLE
,
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED
);
75 count_vm_event(THP_ZERO_PAGE_ALLOC
);
77 if (cmpxchg(&huge_zero_page
, NULL
, zero_page
)) {
79 __free_pages(zero_page
, compound_order(zero_page
));
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount
, 2);
86 return READ_ONCE(huge_zero_page
);
89 static void put_huge_zero_page(void)
92 * Counter should never go to zero here. Only shrinker can put
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount
));
98 struct page
*mm_get_huge_zero_page(struct mm_struct
*mm
)
100 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
101 return READ_ONCE(huge_zero_page
);
103 if (!get_huge_zero_page())
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
107 put_huge_zero_page();
109 return READ_ONCE(huge_zero_page
);
112 void mm_put_huge_zero_page(struct mm_struct
*mm
)
114 if (test_bit(MMF_HUGE_ZERO_PAGE
, &mm
->flags
))
115 put_huge_zero_page();
118 static unsigned long shrink_huge_zero_page_count(struct shrinker
*shrink
,
119 struct shrink_control
*sc
)
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount
) == 1 ? HPAGE_PMD_NR
: 0;
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker
*shrink
,
126 struct shrink_control
*sc
)
128 if (atomic_cmpxchg(&huge_zero_refcount
, 1, 0) == 1) {
129 struct page
*zero_page
= xchg(&huge_zero_page
, NULL
);
130 BUG_ON(zero_page
== NULL
);
131 __free_pages(zero_page
, compound_order(zero_page
));
138 static struct shrinker huge_zero_page_shrinker
= {
139 .count_objects
= shrink_huge_zero_page_count
,
140 .scan_objects
= shrink_huge_zero_page_scan
,
141 .seeks
= DEFAULT_SEEKS
,
146 static ssize_t
triple_flag_store(struct kobject
*kobj
,
147 struct kobj_attribute
*attr
,
148 const char *buf
, size_t count
,
149 enum transparent_hugepage_flag enabled
,
150 enum transparent_hugepage_flag deferred
,
151 enum transparent_hugepage_flag req_madv
)
153 if (!memcmp("defer", buf
,
154 min(sizeof("defer")-1, count
))) {
155 if (enabled
== deferred
)
157 clear_bit(enabled
, &transparent_hugepage_flags
);
158 clear_bit(req_madv
, &transparent_hugepage_flags
);
159 set_bit(deferred
, &transparent_hugepage_flags
);
160 } else if (!memcmp("always", buf
,
161 min(sizeof("always")-1, count
))) {
162 clear_bit(deferred
, &transparent_hugepage_flags
);
163 clear_bit(req_madv
, &transparent_hugepage_flags
);
164 set_bit(enabled
, &transparent_hugepage_flags
);
165 } else if (!memcmp("madvise", buf
,
166 min(sizeof("madvise")-1, count
))) {
167 clear_bit(enabled
, &transparent_hugepage_flags
);
168 clear_bit(deferred
, &transparent_hugepage_flags
);
169 set_bit(req_madv
, &transparent_hugepage_flags
);
170 } else if (!memcmp("never", buf
,
171 min(sizeof("never")-1, count
))) {
172 clear_bit(enabled
, &transparent_hugepage_flags
);
173 clear_bit(req_madv
, &transparent_hugepage_flags
);
174 clear_bit(deferred
, &transparent_hugepage_flags
);
181 static ssize_t
enabled_show(struct kobject
*kobj
,
182 struct kobj_attribute
*attr
, char *buf
)
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG
, &transparent_hugepage_flags
))
185 return sprintf(buf
, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
187 return sprintf(buf
, "always [madvise] never\n");
189 return sprintf(buf
, "always madvise [never]\n");
192 static ssize_t
enabled_store(struct kobject
*kobj
,
193 struct kobj_attribute
*attr
,
194 const char *buf
, size_t count
)
198 ret
= triple_flag_store(kobj
, attr
, buf
, count
,
199 TRANSPARENT_HUGEPAGE_FLAG
,
200 TRANSPARENT_HUGEPAGE_FLAG
,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
);
204 int err
= start_stop_khugepaged();
211 static struct kobj_attribute enabled_attr
=
212 __ATTR(enabled
, 0644, enabled_show
, enabled_store
);
214 ssize_t
single_hugepage_flag_show(struct kobject
*kobj
,
215 struct kobj_attribute
*attr
, char *buf
,
216 enum transparent_hugepage_flag flag
)
218 return sprintf(buf
, "%d\n",
219 !!test_bit(flag
, &transparent_hugepage_flags
));
222 ssize_t
single_hugepage_flag_store(struct kobject
*kobj
,
223 struct kobj_attribute
*attr
,
224 const char *buf
, size_t count
,
225 enum transparent_hugepage_flag flag
)
230 ret
= kstrtoul(buf
, 10, &value
);
237 set_bit(flag
, &transparent_hugepage_flags
);
239 clear_bit(flag
, &transparent_hugepage_flags
);
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
249 static ssize_t
defrag_show(struct kobject
*kobj
,
250 struct kobj_attribute
*attr
, char *buf
)
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
, &transparent_hugepage_flags
))
253 return sprintf(buf
, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
, &transparent_hugepage_flags
))
255 return sprintf(buf
, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
, &transparent_hugepage_flags
))
257 return sprintf(buf
, "always defer [madvise] never\n");
259 return sprintf(buf
, "always defer madvise [never]\n");
262 static ssize_t
defrag_store(struct kobject
*kobj
,
263 struct kobj_attribute
*attr
,
264 const char *buf
, size_t count
)
266 return triple_flag_store(kobj
, attr
, buf
, count
,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
);
271 static struct kobj_attribute defrag_attr
=
272 __ATTR(defrag
, 0644, defrag_show
, defrag_store
);
274 static ssize_t
use_zero_page_show(struct kobject
*kobj
,
275 struct kobj_attribute
*attr
, char *buf
)
277 return single_hugepage_flag_show(kobj
, attr
, buf
,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
280 static ssize_t
use_zero_page_store(struct kobject
*kobj
,
281 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
283 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG
);
286 static struct kobj_attribute use_zero_page_attr
=
287 __ATTR(use_zero_page
, 0644, use_zero_page_show
, use_zero_page_store
);
288 #ifdef CONFIG_DEBUG_VM
289 static ssize_t
debug_cow_show(struct kobject
*kobj
,
290 struct kobj_attribute
*attr
, char *buf
)
292 return single_hugepage_flag_show(kobj
, attr
, buf
,
293 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
295 static ssize_t
debug_cow_store(struct kobject
*kobj
,
296 struct kobj_attribute
*attr
,
297 const char *buf
, size_t count
)
299 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
300 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG
);
302 static struct kobj_attribute debug_cow_attr
=
303 __ATTR(debug_cow
, 0644, debug_cow_show
, debug_cow_store
);
304 #endif /* CONFIG_DEBUG_VM */
306 static struct attribute
*hugepage_attr
[] = {
309 &use_zero_page_attr
.attr
,
310 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 &shmem_enabled_attr
.attr
,
313 #ifdef CONFIG_DEBUG_VM
314 &debug_cow_attr
.attr
,
319 static struct attribute_group hugepage_attr_group
= {
320 .attrs
= hugepage_attr
,
323 static int __init
hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
327 *hugepage_kobj
= kobject_create_and_add("transparent_hugepage", mm_kobj
);
328 if (unlikely(!*hugepage_kobj
)) {
329 pr_err("failed to create transparent hugepage kobject\n");
333 err
= sysfs_create_group(*hugepage_kobj
, &hugepage_attr_group
);
335 pr_err("failed to register transparent hugepage group\n");
339 err
= sysfs_create_group(*hugepage_kobj
, &khugepaged_attr_group
);
341 pr_err("failed to register transparent hugepage group\n");
342 goto remove_hp_group
;
348 sysfs_remove_group(*hugepage_kobj
, &hugepage_attr_group
);
350 kobject_put(*hugepage_kobj
);
354 static void __init
hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
356 sysfs_remove_group(hugepage_kobj
, &khugepaged_attr_group
);
357 sysfs_remove_group(hugepage_kobj
, &hugepage_attr_group
);
358 kobject_put(hugepage_kobj
);
361 static inline int hugepage_init_sysfs(struct kobject
**hugepage_kobj
)
366 static inline void hugepage_exit_sysfs(struct kobject
*hugepage_kobj
)
369 #endif /* CONFIG_SYSFS */
371 static int __init
hugepage_init(void)
374 struct kobject
*hugepage_kobj
;
376 if (!has_transparent_hugepage()) {
377 transparent_hugepage_flags
= 0;
382 * hugepages can't be allocated by the buddy allocator
384 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
>= MAX_ORDER
);
386 * we use page->mapping and page->index in second tail page
387 * as list_head: assuming THP order >= 2
389 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER
< 2);
391 err
= hugepage_init_sysfs(&hugepage_kobj
);
395 err
= khugepaged_init();
399 err
= register_shrinker(&huge_zero_page_shrinker
);
401 goto err_hzp_shrinker
;
402 err
= register_shrinker(&deferred_split_shrinker
);
404 goto err_split_shrinker
;
407 * By default disable transparent hugepages on smaller systems,
408 * where the extra memory used could hurt more than TLB overhead
409 * is likely to save. The admin can still enable it through /sys.
411 if (totalram_pages
< (512 << (20 - PAGE_SHIFT
))) {
412 transparent_hugepage_flags
= 0;
416 err
= start_stop_khugepaged();
422 unregister_shrinker(&deferred_split_shrinker
);
424 unregister_shrinker(&huge_zero_page_shrinker
);
426 khugepaged_destroy();
428 hugepage_exit_sysfs(hugepage_kobj
);
432 subsys_initcall(hugepage_init
);
434 static int __init
setup_transparent_hugepage(char *str
)
439 if (!strcmp(str
, "always")) {
440 set_bit(TRANSPARENT_HUGEPAGE_FLAG
,
441 &transparent_hugepage_flags
);
442 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
443 &transparent_hugepage_flags
);
445 } else if (!strcmp(str
, "madvise")) {
446 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
447 &transparent_hugepage_flags
);
448 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
449 &transparent_hugepage_flags
);
451 } else if (!strcmp(str
, "never")) {
452 clear_bit(TRANSPARENT_HUGEPAGE_FLAG
,
453 &transparent_hugepage_flags
);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG
,
455 &transparent_hugepage_flags
);
460 pr_warn("transparent_hugepage= cannot parse, ignored\n");
463 __setup("transparent_hugepage=", setup_transparent_hugepage
);
465 pmd_t
maybe_pmd_mkwrite(pmd_t pmd
, struct vm_area_struct
*vma
)
467 if (likely(vma
->vm_flags
& VM_WRITE
))
468 pmd
= pmd_mkwrite(pmd
);
472 static inline struct list_head
*page_deferred_list(struct page
*page
)
475 * ->lru in the tail pages is occupied by compound_head.
476 * Let's use ->mapping + ->index in the second tail page as list_head.
478 return (struct list_head
*)&page
[2].mapping
;
481 void prep_transhuge_page(struct page
*page
)
484 * we use page->mapping and page->indexlru in second tail page
485 * as list_head: assuming THP order >= 2
488 INIT_LIST_HEAD(page_deferred_list(page
));
489 set_compound_page_dtor(page
, TRANSHUGE_PAGE_DTOR
);
492 unsigned long __thp_get_unmapped_area(struct file
*filp
, unsigned long len
,
493 loff_t off
, unsigned long flags
, unsigned long size
)
496 loff_t off_end
= off
+ len
;
497 loff_t off_align
= round_up(off
, size
);
498 unsigned long len_pad
;
500 if (off_end
<= off_align
|| (off_end
- off_align
) < size
)
503 len_pad
= len
+ size
;
504 if (len_pad
< len
|| (off
+ len_pad
) < off
)
507 addr
= current
->mm
->get_unmapped_area(filp
, 0, len_pad
,
508 off
>> PAGE_SHIFT
, flags
);
509 if (IS_ERR_VALUE(addr
))
512 addr
+= (off
- addr
) & (size
- 1);
516 unsigned long thp_get_unmapped_area(struct file
*filp
, unsigned long addr
,
517 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
519 loff_t off
= (loff_t
)pgoff
<< PAGE_SHIFT
;
523 if (!IS_DAX(filp
->f_mapping
->host
) || !IS_ENABLED(CONFIG_FS_DAX_PMD
))
526 addr
= __thp_get_unmapped_area(filp
, len
, off
, flags
, PMD_SIZE
);
531 return current
->mm
->get_unmapped_area(filp
, addr
, len
, pgoff
, flags
);
533 EXPORT_SYMBOL_GPL(thp_get_unmapped_area
);
535 static int __do_huge_pmd_anonymous_page(struct fault_env
*fe
, struct page
*page
,
538 struct vm_area_struct
*vma
= fe
->vma
;
539 struct mem_cgroup
*memcg
;
541 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
543 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
545 if (mem_cgroup_try_charge(page
, vma
->vm_mm
, gfp
, &memcg
, true)) {
547 count_vm_event(THP_FAULT_FALLBACK
);
548 return VM_FAULT_FALLBACK
;
551 pgtable
= pte_alloc_one(vma
->vm_mm
, haddr
);
552 if (unlikely(!pgtable
)) {
553 mem_cgroup_cancel_charge(page
, memcg
, true);
558 clear_huge_page(page
, haddr
, HPAGE_PMD_NR
);
560 * The memory barrier inside __SetPageUptodate makes sure that
561 * clear_huge_page writes become visible before the set_pmd_at()
564 __SetPageUptodate(page
);
566 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
567 if (unlikely(!pmd_none(*fe
->pmd
))) {
568 spin_unlock(fe
->ptl
);
569 mem_cgroup_cancel_charge(page
, memcg
, true);
571 pte_free(vma
->vm_mm
, pgtable
);
575 /* Deliver the page fault to userland */
576 if (userfaultfd_missing(vma
)) {
579 spin_unlock(fe
->ptl
);
580 mem_cgroup_cancel_charge(page
, memcg
, true);
582 pte_free(vma
->vm_mm
, pgtable
);
583 ret
= handle_userfault(fe
, VM_UFFD_MISSING
);
584 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
588 entry
= mk_huge_pmd(page
, vma
->vm_page_prot
);
589 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
590 page_add_new_anon_rmap(page
, vma
, haddr
, true);
591 mem_cgroup_commit_charge(page
, memcg
, false, true);
592 lru_cache_add_active_or_unevictable(page
, vma
);
593 pgtable_trans_huge_deposit(vma
->vm_mm
, fe
->pmd
, pgtable
);
594 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, entry
);
595 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
596 atomic_long_inc(&vma
->vm_mm
->nr_ptes
);
597 spin_unlock(fe
->ptl
);
598 count_vm_event(THP_FAULT_ALLOC
);
605 * If THP defrag is set to always then directly reclaim/compact as necessary
606 * If set to defer then do only background reclaim/compact and defer to khugepaged
607 * If set to madvise and the VMA is flagged then directly reclaim/compact
608 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
610 static inline gfp_t
alloc_hugepage_direct_gfpmask(struct vm_area_struct
*vma
)
612 bool vma_madvised
= !!(vma
->vm_flags
& VM_HUGEPAGE
);
614 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG
,
615 &transparent_hugepage_flags
) && vma_madvised
)
616 return GFP_TRANSHUGE
;
617 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG
,
618 &transparent_hugepage_flags
))
619 return GFP_TRANSHUGE_LIGHT
| __GFP_KSWAPD_RECLAIM
;
620 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG
,
621 &transparent_hugepage_flags
))
622 return GFP_TRANSHUGE
| (vma_madvised
? 0 : __GFP_NORETRY
);
624 return GFP_TRANSHUGE_LIGHT
;
627 /* Caller must hold page table lock. */
628 static bool set_huge_zero_page(pgtable_t pgtable
, struct mm_struct
*mm
,
629 struct vm_area_struct
*vma
, unsigned long haddr
, pmd_t
*pmd
,
630 struct page
*zero_page
)
635 entry
= mk_pmd(zero_page
, vma
->vm_page_prot
);
636 entry
= pmd_mkhuge(entry
);
638 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
639 set_pmd_at(mm
, haddr
, pmd
, entry
);
640 atomic_long_inc(&mm
->nr_ptes
);
644 int do_huge_pmd_anonymous_page(struct fault_env
*fe
)
646 struct vm_area_struct
*vma
= fe
->vma
;
649 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
651 if (haddr
< vma
->vm_start
|| haddr
+ HPAGE_PMD_SIZE
> vma
->vm_end
)
652 return VM_FAULT_FALLBACK
;
653 if (unlikely(anon_vma_prepare(vma
)))
655 if (unlikely(khugepaged_enter(vma
, vma
->vm_flags
)))
657 if (!(fe
->flags
& FAULT_FLAG_WRITE
) &&
658 !mm_forbids_zeropage(vma
->vm_mm
) &&
659 transparent_hugepage_use_zero_page()) {
661 struct page
*zero_page
;
664 pgtable
= pte_alloc_one(vma
->vm_mm
, haddr
);
665 if (unlikely(!pgtable
))
667 zero_page
= mm_get_huge_zero_page(vma
->vm_mm
);
668 if (unlikely(!zero_page
)) {
669 pte_free(vma
->vm_mm
, pgtable
);
670 count_vm_event(THP_FAULT_FALLBACK
);
671 return VM_FAULT_FALLBACK
;
673 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
676 if (pmd_none(*fe
->pmd
)) {
677 if (userfaultfd_missing(vma
)) {
678 spin_unlock(fe
->ptl
);
679 ret
= handle_userfault(fe
, VM_UFFD_MISSING
);
680 VM_BUG_ON(ret
& VM_FAULT_FALLBACK
);
682 set_huge_zero_page(pgtable
, vma
->vm_mm
, vma
,
683 haddr
, fe
->pmd
, zero_page
);
684 spin_unlock(fe
->ptl
);
688 spin_unlock(fe
->ptl
);
690 pte_free(vma
->vm_mm
, pgtable
);
693 gfp
= alloc_hugepage_direct_gfpmask(vma
);
694 page
= alloc_hugepage_vma(gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
695 if (unlikely(!page
)) {
696 count_vm_event(THP_FAULT_FALLBACK
);
697 return VM_FAULT_FALLBACK
;
699 prep_transhuge_page(page
);
700 return __do_huge_pmd_anonymous_page(fe
, page
, gfp
);
703 static void insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
704 pmd_t
*pmd
, pfn_t pfn
, pgprot_t prot
, bool write
)
706 struct mm_struct
*mm
= vma
->vm_mm
;
710 ptl
= pmd_lock(mm
, pmd
);
711 entry
= pmd_mkhuge(pfn_t_pmd(pfn
, prot
));
712 if (pfn_t_devmap(pfn
))
713 entry
= pmd_mkdevmap(entry
);
715 entry
= pmd_mkyoung(pmd_mkdirty(entry
));
716 entry
= maybe_pmd_mkwrite(entry
, vma
);
718 set_pmd_at(mm
, addr
, pmd
, entry
);
719 update_mmu_cache_pmd(vma
, addr
, pmd
);
723 int vmf_insert_pfn_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
724 pmd_t
*pmd
, pfn_t pfn
, bool write
)
726 pgprot_t pgprot
= vma
->vm_page_prot
;
728 * If we had pmd_special, we could avoid all these restrictions,
729 * but we need to be consistent with PTEs and architectures that
730 * can't support a 'special' bit.
732 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
733 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
734 (VM_PFNMAP
|VM_MIXEDMAP
));
735 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
736 BUG_ON(!pfn_t_devmap(pfn
));
738 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
739 return VM_FAULT_SIGBUS
;
740 if (track_pfn_insert(vma
, &pgprot
, pfn
))
741 return VM_FAULT_SIGBUS
;
742 insert_pfn_pmd(vma
, addr
, pmd
, pfn
, pgprot
, write
);
743 return VM_FAULT_NOPAGE
;
745 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd
);
747 static void touch_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
753 * We should set the dirty bit only for FOLL_WRITE but for now
754 * the dirty bit in the pmd is meaningless. And if the dirty
755 * bit will become meaningful and we'll only set it with
756 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
757 * set the young bit, instead of the current set_pmd_at.
759 _pmd
= pmd_mkyoung(pmd_mkdirty(*pmd
));
760 if (pmdp_set_access_flags(vma
, addr
& HPAGE_PMD_MASK
,
762 update_mmu_cache_pmd(vma
, addr
, pmd
);
765 struct page
*follow_devmap_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
766 pmd_t
*pmd
, int flags
)
768 unsigned long pfn
= pmd_pfn(*pmd
);
769 struct mm_struct
*mm
= vma
->vm_mm
;
770 struct dev_pagemap
*pgmap
;
773 assert_spin_locked(pmd_lockptr(mm
, pmd
));
776 * When we COW a devmap PMD entry, we split it into PTEs, so we should
777 * not be in this function with `flags & FOLL_COW` set.
779 WARN_ONCE(flags
& FOLL_COW
, "mm: In follow_devmap_pmd with FOLL_COW set");
781 if (flags
& FOLL_WRITE
&& !pmd_write(*pmd
))
784 if (pmd_present(*pmd
) && pmd_devmap(*pmd
))
789 if (flags
& FOLL_TOUCH
)
790 touch_pmd(vma
, addr
, pmd
);
793 * device mapped pages can only be returned if the
794 * caller will manage the page reference count.
796 if (!(flags
& FOLL_GET
))
797 return ERR_PTR(-EEXIST
);
799 pfn
+= (addr
& ~PMD_MASK
) >> PAGE_SHIFT
;
800 pgmap
= get_dev_pagemap(pfn
, NULL
);
802 return ERR_PTR(-EFAULT
);
803 page
= pfn_to_page(pfn
);
805 put_dev_pagemap(pgmap
);
810 int copy_huge_pmd(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
811 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, unsigned long addr
,
812 struct vm_area_struct
*vma
)
814 spinlock_t
*dst_ptl
, *src_ptl
;
815 struct page
*src_page
;
817 pgtable_t pgtable
= NULL
;
820 /* Skip if can be re-fill on fault */
821 if (!vma_is_anonymous(vma
))
824 pgtable
= pte_alloc_one(dst_mm
, addr
);
825 if (unlikely(!pgtable
))
828 dst_ptl
= pmd_lock(dst_mm
, dst_pmd
);
829 src_ptl
= pmd_lockptr(src_mm
, src_pmd
);
830 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
834 if (unlikely(!pmd_trans_huge(pmd
))) {
835 pte_free(dst_mm
, pgtable
);
839 * When page table lock is held, the huge zero pmd should not be
840 * under splitting since we don't split the page itself, only pmd to
843 if (is_huge_zero_pmd(pmd
)) {
844 struct page
*zero_page
;
846 * get_huge_zero_page() will never allocate a new page here,
847 * since we already have a zero page to copy. It just takes a
850 zero_page
= mm_get_huge_zero_page(dst_mm
);
851 set_huge_zero_page(pgtable
, dst_mm
, vma
, addr
, dst_pmd
,
857 src_page
= pmd_page(pmd
);
858 VM_BUG_ON_PAGE(!PageHead(src_page
), src_page
);
860 page_dup_rmap(src_page
, true);
861 add_mm_counter(dst_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
862 atomic_long_inc(&dst_mm
->nr_ptes
);
863 pgtable_trans_huge_deposit(dst_mm
, dst_pmd
, pgtable
);
865 pmdp_set_wrprotect(src_mm
, addr
, src_pmd
);
866 pmd
= pmd_mkold(pmd_wrprotect(pmd
));
867 set_pmd_at(dst_mm
, addr
, dst_pmd
, pmd
);
871 spin_unlock(src_ptl
);
872 spin_unlock(dst_ptl
);
877 void huge_pmd_set_accessed(struct fault_env
*fe
, pmd_t orig_pmd
)
881 bool write
= fe
->flags
& FAULT_FLAG_WRITE
;
883 fe
->ptl
= pmd_lock(fe
->vma
->vm_mm
, fe
->pmd
);
884 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
)))
887 entry
= pmd_mkyoung(orig_pmd
);
889 entry
= pmd_mkdirty(entry
);
890 haddr
= fe
->address
& HPAGE_PMD_MASK
;
891 if (pmdp_set_access_flags(fe
->vma
, haddr
, fe
->pmd
, entry
, write
))
892 update_mmu_cache_pmd(fe
->vma
, fe
->address
, fe
->pmd
);
895 spin_unlock(fe
->ptl
);
898 static int do_huge_pmd_wp_page_fallback(struct fault_env
*fe
, pmd_t orig_pmd
,
901 struct vm_area_struct
*vma
= fe
->vma
;
902 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
903 struct mem_cgroup
*memcg
;
908 unsigned long mmun_start
; /* For mmu_notifiers */
909 unsigned long mmun_end
; /* For mmu_notifiers */
911 pages
= kmalloc(sizeof(struct page
*) * HPAGE_PMD_NR
,
913 if (unlikely(!pages
)) {
918 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
919 pages
[i
] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE
|
920 __GFP_OTHER_NODE
, vma
,
921 fe
->address
, page_to_nid(page
));
922 if (unlikely(!pages
[i
] ||
923 mem_cgroup_try_charge(pages
[i
], vma
->vm_mm
,
924 GFP_KERNEL
, &memcg
, false))) {
928 memcg
= (void *)page_private(pages
[i
]);
929 set_page_private(pages
[i
], 0);
930 mem_cgroup_cancel_charge(pages
[i
], memcg
,
938 set_page_private(pages
[i
], (unsigned long)memcg
);
941 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
942 copy_user_highpage(pages
[i
], page
+ i
,
943 haddr
+ PAGE_SIZE
* i
, vma
);
944 __SetPageUptodate(pages
[i
]);
949 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
950 mmu_notifier_invalidate_range_start(vma
->vm_mm
, mmun_start
, mmun_end
);
952 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
953 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
)))
955 VM_BUG_ON_PAGE(!PageHead(page
), page
);
957 pmdp_huge_clear_flush_notify(vma
, haddr
, fe
->pmd
);
958 /* leave pmd empty until pte is filled */
960 pgtable
= pgtable_trans_huge_withdraw(vma
->vm_mm
, fe
->pmd
);
961 pmd_populate(vma
->vm_mm
, &_pmd
, pgtable
);
963 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
965 entry
= mk_pte(pages
[i
], vma
->vm_page_prot
);
966 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
967 memcg
= (void *)page_private(pages
[i
]);
968 set_page_private(pages
[i
], 0);
969 page_add_new_anon_rmap(pages
[i
], fe
->vma
, haddr
, false);
970 mem_cgroup_commit_charge(pages
[i
], memcg
, false, false);
971 lru_cache_add_active_or_unevictable(pages
[i
], vma
);
972 fe
->pte
= pte_offset_map(&_pmd
, haddr
);
973 VM_BUG_ON(!pte_none(*fe
->pte
));
974 set_pte_at(vma
->vm_mm
, haddr
, fe
->pte
, entry
);
979 smp_wmb(); /* make pte visible before pmd */
980 pmd_populate(vma
->vm_mm
, fe
->pmd
, pgtable
);
981 page_remove_rmap(page
, true);
982 spin_unlock(fe
->ptl
);
984 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
986 ret
|= VM_FAULT_WRITE
;
993 spin_unlock(fe
->ptl
);
994 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
995 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
996 memcg
= (void *)page_private(pages
[i
]);
997 set_page_private(pages
[i
], 0);
998 mem_cgroup_cancel_charge(pages
[i
], memcg
, false);
1005 int do_huge_pmd_wp_page(struct fault_env
*fe
, pmd_t orig_pmd
)
1007 struct vm_area_struct
*vma
= fe
->vma
;
1008 struct page
*page
= NULL
, *new_page
;
1009 struct mem_cgroup
*memcg
;
1010 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
1011 unsigned long mmun_start
; /* For mmu_notifiers */
1012 unsigned long mmun_end
; /* For mmu_notifiers */
1013 gfp_t huge_gfp
; /* for allocation and charge */
1016 fe
->ptl
= pmd_lockptr(vma
->vm_mm
, fe
->pmd
);
1017 VM_BUG_ON_VMA(!vma
->anon_vma
, vma
);
1018 if (is_huge_zero_pmd(orig_pmd
))
1021 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
)))
1024 page
= pmd_page(orig_pmd
);
1025 VM_BUG_ON_PAGE(!PageCompound(page
) || !PageHead(page
), page
);
1027 * We can only reuse the page if nobody else maps the huge page or it's
1030 if (page_trans_huge_mapcount(page
, NULL
) == 1) {
1032 entry
= pmd_mkyoung(orig_pmd
);
1033 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1034 if (pmdp_set_access_flags(vma
, haddr
, fe
->pmd
, entry
, 1))
1035 update_mmu_cache_pmd(vma
, fe
->address
, fe
->pmd
);
1036 ret
|= VM_FAULT_WRITE
;
1040 spin_unlock(fe
->ptl
);
1042 if (transparent_hugepage_enabled(vma
) &&
1043 !transparent_hugepage_debug_cow()) {
1044 huge_gfp
= alloc_hugepage_direct_gfpmask(vma
);
1045 new_page
= alloc_hugepage_vma(huge_gfp
, vma
, haddr
, HPAGE_PMD_ORDER
);
1049 if (likely(new_page
)) {
1050 prep_transhuge_page(new_page
);
1053 split_huge_pmd(vma
, fe
->pmd
, fe
->address
);
1054 ret
|= VM_FAULT_FALLBACK
;
1056 ret
= do_huge_pmd_wp_page_fallback(fe
, orig_pmd
, page
);
1057 if (ret
& VM_FAULT_OOM
) {
1058 split_huge_pmd(vma
, fe
->pmd
, fe
->address
);
1059 ret
|= VM_FAULT_FALLBACK
;
1063 count_vm_event(THP_FAULT_FALLBACK
);
1067 if (unlikely(mem_cgroup_try_charge(new_page
, vma
->vm_mm
,
1068 huge_gfp
, &memcg
, true))) {
1070 split_huge_pmd(vma
, fe
->pmd
, fe
->address
);
1073 ret
|= VM_FAULT_FALLBACK
;
1074 count_vm_event(THP_FAULT_FALLBACK
);
1078 count_vm_event(THP_FAULT_ALLOC
);
1081 clear_huge_page(new_page
, haddr
, HPAGE_PMD_NR
);
1083 copy_user_huge_page(new_page
, page
, haddr
, vma
, HPAGE_PMD_NR
);
1084 __SetPageUptodate(new_page
);
1087 mmun_end
= haddr
+ HPAGE_PMD_SIZE
;
1088 mmu_notifier_invalidate_range_start(vma
->vm_mm
, mmun_start
, mmun_end
);
1093 if (unlikely(!pmd_same(*fe
->pmd
, orig_pmd
))) {
1094 spin_unlock(fe
->ptl
);
1095 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1100 entry
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1101 entry
= maybe_pmd_mkwrite(pmd_mkdirty(entry
), vma
);
1102 pmdp_huge_clear_flush_notify(vma
, haddr
, fe
->pmd
);
1103 page_add_new_anon_rmap(new_page
, vma
, haddr
, true);
1104 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1105 lru_cache_add_active_or_unevictable(new_page
, vma
);
1106 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, entry
);
1107 update_mmu_cache_pmd(vma
, fe
->address
, fe
->pmd
);
1109 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, HPAGE_PMD_NR
);
1111 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1112 page_remove_rmap(page
, true);
1115 ret
|= VM_FAULT_WRITE
;
1117 spin_unlock(fe
->ptl
);
1119 mmu_notifier_invalidate_range_end(vma
->vm_mm
, mmun_start
, mmun_end
);
1123 spin_unlock(fe
->ptl
);
1128 * FOLL_FORCE can write to even unwritable pmd's, but only
1129 * after we've gone through a COW cycle and they are dirty.
1131 static inline bool can_follow_write_pmd(pmd_t pmd
, unsigned int flags
)
1133 return pmd_write(pmd
) ||
1134 ((flags
& FOLL_FORCE
) && (flags
& FOLL_COW
) && pmd_dirty(pmd
));
1137 struct page
*follow_trans_huge_pmd(struct vm_area_struct
*vma
,
1142 struct mm_struct
*mm
= vma
->vm_mm
;
1143 struct page
*page
= NULL
;
1145 assert_spin_locked(pmd_lockptr(mm
, pmd
));
1147 if (flags
& FOLL_WRITE
&& !can_follow_write_pmd(*pmd
, flags
))
1150 /* Avoid dumping huge zero page */
1151 if ((flags
& FOLL_DUMP
) && is_huge_zero_pmd(*pmd
))
1152 return ERR_PTR(-EFAULT
);
1154 /* Full NUMA hinting faults to serialise migration in fault paths */
1155 if ((flags
& FOLL_NUMA
) && pmd_protnone(*pmd
))
1158 page
= pmd_page(*pmd
);
1159 VM_BUG_ON_PAGE(!PageHead(page
) && !is_zone_device_page(page
), page
);
1160 if (flags
& FOLL_TOUCH
)
1161 touch_pmd(vma
, addr
, pmd
);
1162 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1164 * We don't mlock() pte-mapped THPs. This way we can avoid
1165 * leaking mlocked pages into non-VM_LOCKED VMAs.
1169 * In most cases the pmd is the only mapping of the page as we
1170 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1171 * writable private mappings in populate_vma_page_range().
1173 * The only scenario when we have the page shared here is if we
1174 * mlocking read-only mapping shared over fork(). We skip
1175 * mlocking such pages.
1179 * We can expect PageDoubleMap() to be stable under page lock:
1180 * for file pages we set it in page_add_file_rmap(), which
1181 * requires page to be locked.
1184 if (PageAnon(page
) && compound_mapcount(page
) != 1)
1186 if (PageDoubleMap(page
) || !page
->mapping
)
1188 if (!trylock_page(page
))
1191 if (page
->mapping
&& !PageDoubleMap(page
))
1192 mlock_vma_page(page
);
1196 page
+= (addr
& ~HPAGE_PMD_MASK
) >> PAGE_SHIFT
;
1197 VM_BUG_ON_PAGE(!PageCompound(page
) && !is_zone_device_page(page
), page
);
1198 if (flags
& FOLL_GET
)
1205 /* NUMA hinting page fault entry point for trans huge pmds */
1206 int do_huge_pmd_numa_page(struct fault_env
*fe
, pmd_t pmd
)
1208 struct vm_area_struct
*vma
= fe
->vma
;
1209 struct anon_vma
*anon_vma
= NULL
;
1211 unsigned long haddr
= fe
->address
& HPAGE_PMD_MASK
;
1212 int page_nid
= -1, this_nid
= numa_node_id();
1213 int target_nid
, last_cpupid
= -1;
1215 bool migrated
= false;
1219 fe
->ptl
= pmd_lock(vma
->vm_mm
, fe
->pmd
);
1220 if (unlikely(!pmd_same(pmd
, *fe
->pmd
)))
1224 * If there are potential migrations, wait for completion and retry
1225 * without disrupting NUMA hinting information. Do not relock and
1226 * check_same as the page may no longer be mapped.
1228 if (unlikely(pmd_trans_migrating(*fe
->pmd
))) {
1229 page
= pmd_page(*fe
->pmd
);
1230 if (!get_page_unless_zero(page
))
1232 spin_unlock(fe
->ptl
);
1233 wait_on_page_locked(page
);
1238 page
= pmd_page(pmd
);
1239 BUG_ON(is_huge_zero_page(page
));
1240 page_nid
= page_to_nid(page
);
1241 last_cpupid
= page_cpupid_last(page
);
1242 count_vm_numa_event(NUMA_HINT_FAULTS
);
1243 if (page_nid
== this_nid
) {
1244 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL
);
1245 flags
|= TNF_FAULT_LOCAL
;
1248 /* See similar comment in do_numa_page for explanation */
1249 if (!pmd_write(pmd
))
1250 flags
|= TNF_NO_GROUP
;
1253 * Acquire the page lock to serialise THP migrations but avoid dropping
1254 * page_table_lock if at all possible
1256 page_locked
= trylock_page(page
);
1257 target_nid
= mpol_misplaced(page
, vma
, haddr
);
1258 if (target_nid
== -1) {
1259 /* If the page was locked, there are no parallel migrations */
1264 /* Migration could have started since the pmd_trans_migrating check */
1266 if (!get_page_unless_zero(page
))
1268 spin_unlock(fe
->ptl
);
1269 wait_on_page_locked(page
);
1276 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1277 * to serialises splits
1280 spin_unlock(fe
->ptl
);
1281 anon_vma
= page_lock_anon_vma_read(page
);
1283 /* Confirm the PMD did not change while page_table_lock was released */
1285 if (unlikely(!pmd_same(pmd
, *fe
->pmd
))) {
1292 /* Bail if we fail to protect against THP splits for any reason */
1293 if (unlikely(!anon_vma
)) {
1300 * Migrate the THP to the requested node, returns with page unlocked
1301 * and access rights restored.
1303 spin_unlock(fe
->ptl
);
1304 migrated
= migrate_misplaced_transhuge_page(vma
->vm_mm
, vma
,
1305 fe
->pmd
, pmd
, fe
->address
, page
, target_nid
);
1307 flags
|= TNF_MIGRATED
;
1308 page_nid
= target_nid
;
1310 flags
|= TNF_MIGRATE_FAIL
;
1314 BUG_ON(!PageLocked(page
));
1315 was_writable
= pmd_write(pmd
);
1316 pmd
= pmd_modify(pmd
, vma
->vm_page_prot
);
1317 pmd
= pmd_mkyoung(pmd
);
1319 pmd
= pmd_mkwrite(pmd
);
1320 set_pmd_at(vma
->vm_mm
, haddr
, fe
->pmd
, pmd
);
1321 update_mmu_cache_pmd(vma
, fe
->address
, fe
->pmd
);
1324 spin_unlock(fe
->ptl
);
1328 page_unlock_anon_vma_read(anon_vma
);
1331 task_numa_fault(last_cpupid
, page_nid
, HPAGE_PMD_NR
, fe
->flags
);
1337 * Return true if we do MADV_FREE successfully on entire pmd page.
1338 * Otherwise, return false.
1340 bool madvise_free_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1341 pmd_t
*pmd
, unsigned long addr
, unsigned long next
)
1346 struct mm_struct
*mm
= tlb
->mm
;
1349 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1354 if (is_huge_zero_pmd(orig_pmd
))
1357 page
= pmd_page(orig_pmd
);
1359 * If other processes are mapping this page, we couldn't discard
1360 * the page unless they all do MADV_FREE so let's skip the page.
1362 if (page_mapcount(page
) != 1)
1365 if (!trylock_page(page
))
1369 * If user want to discard part-pages of THP, split it so MADV_FREE
1370 * will deactivate only them.
1372 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1375 split_huge_page(page
);
1381 if (PageDirty(page
))
1382 ClearPageDirty(page
);
1385 if (PageActive(page
))
1386 deactivate_page(page
);
1388 if (pmd_young(orig_pmd
) || pmd_dirty(orig_pmd
)) {
1389 pmdp_invalidate(vma
, addr
, pmd
);
1390 orig_pmd
= pmd_mkold(orig_pmd
);
1391 orig_pmd
= pmd_mkclean(orig_pmd
);
1393 set_pmd_at(mm
, addr
, pmd
, orig_pmd
);
1394 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1403 int zap_huge_pmd(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
1404 pmd_t
*pmd
, unsigned long addr
)
1409 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1413 * For architectures like ppc64 we look at deposited pgtable
1414 * when calling pmdp_huge_get_and_clear. So do the
1415 * pgtable_trans_huge_withdraw after finishing pmdp related
1418 orig_pmd
= pmdp_huge_get_and_clear_full(tlb
->mm
, addr
, pmd
,
1420 tlb_remove_pmd_tlb_entry(tlb
, pmd
, addr
);
1421 if (vma_is_dax(vma
)) {
1423 if (is_huge_zero_pmd(orig_pmd
))
1424 tlb_remove_page(tlb
, pmd_page(orig_pmd
));
1425 } else if (is_huge_zero_pmd(orig_pmd
)) {
1426 pte_free(tlb
->mm
, pgtable_trans_huge_withdraw(tlb
->mm
, pmd
));
1427 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1429 tlb_remove_page(tlb
, pmd_page(orig_pmd
));
1431 struct page
*page
= pmd_page(orig_pmd
);
1432 page_remove_rmap(page
, true);
1433 VM_BUG_ON_PAGE(page_mapcount(page
) < 0, page
);
1434 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1435 if (PageAnon(page
)) {
1437 pgtable
= pgtable_trans_huge_withdraw(tlb
->mm
, pmd
);
1438 pte_free(tlb
->mm
, pgtable
);
1439 atomic_long_dec(&tlb
->mm
->nr_ptes
);
1440 add_mm_counter(tlb
->mm
, MM_ANONPAGES
, -HPAGE_PMD_NR
);
1442 add_mm_counter(tlb
->mm
, MM_FILEPAGES
, -HPAGE_PMD_NR
);
1445 tlb_remove_page_size(tlb
, page
, HPAGE_PMD_SIZE
);
1450 bool move_huge_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
1451 unsigned long new_addr
, unsigned long old_end
,
1452 pmd_t
*old_pmd
, pmd_t
*new_pmd
, bool *need_flush
)
1454 spinlock_t
*old_ptl
, *new_ptl
;
1456 struct mm_struct
*mm
= vma
->vm_mm
;
1457 bool force_flush
= false;
1459 if ((old_addr
& ~HPAGE_PMD_MASK
) ||
1460 (new_addr
& ~HPAGE_PMD_MASK
) ||
1461 old_end
- old_addr
< HPAGE_PMD_SIZE
)
1465 * The destination pmd shouldn't be established, free_pgtables()
1466 * should have release it.
1468 if (WARN_ON(!pmd_none(*new_pmd
))) {
1469 VM_BUG_ON(pmd_trans_huge(*new_pmd
));
1474 * We don't have to worry about the ordering of src and dst
1475 * ptlocks because exclusive mmap_sem prevents deadlock.
1477 old_ptl
= __pmd_trans_huge_lock(old_pmd
, vma
);
1479 new_ptl
= pmd_lockptr(mm
, new_pmd
);
1480 if (new_ptl
!= old_ptl
)
1481 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
1482 pmd
= pmdp_huge_get_and_clear(mm
, old_addr
, old_pmd
);
1483 if (pmd_present(pmd
) && pmd_dirty(pmd
))
1485 VM_BUG_ON(!pmd_none(*new_pmd
));
1487 if (pmd_move_must_withdraw(new_ptl
, old_ptl
) &&
1488 vma_is_anonymous(vma
)) {
1490 pgtable
= pgtable_trans_huge_withdraw(mm
, old_pmd
);
1491 pgtable_trans_huge_deposit(mm
, new_pmd
, pgtable
);
1493 set_pmd_at(mm
, new_addr
, new_pmd
, pmd_mksoft_dirty(pmd
));
1494 if (new_ptl
!= old_ptl
)
1495 spin_unlock(new_ptl
);
1497 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
1500 spin_unlock(old_ptl
);
1508 * - 0 if PMD could not be locked
1509 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1510 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1512 int change_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1513 unsigned long addr
, pgprot_t newprot
, int prot_numa
)
1515 struct mm_struct
*mm
= vma
->vm_mm
;
1519 ptl
= __pmd_trans_huge_lock(pmd
, vma
);
1522 bool preserve_write
= prot_numa
&& pmd_write(*pmd
);
1526 * Avoid trapping faults against the zero page. The read-only
1527 * data is likely to be read-cached on the local CPU and
1528 * local/remote hits to the zero page are not interesting.
1530 if (prot_numa
&& is_huge_zero_pmd(*pmd
)) {
1535 if (!prot_numa
|| !pmd_protnone(*pmd
)) {
1536 entry
= pmdp_huge_get_and_clear_notify(mm
, addr
, pmd
);
1537 entry
= pmd_modify(entry
, newprot
);
1539 entry
= pmd_mkwrite(entry
);
1541 set_pmd_at(mm
, addr
, pmd
, entry
);
1542 BUG_ON(vma_is_anonymous(vma
) && !preserve_write
&&
1552 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1554 * Note that if it returns page table lock pointer, this routine returns without
1555 * unlocking page table lock. So callers must unlock it.
1557 spinlock_t
*__pmd_trans_huge_lock(pmd_t
*pmd
, struct vm_area_struct
*vma
)
1560 ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1561 if (likely(pmd_trans_huge(*pmd
) || pmd_devmap(*pmd
)))
1567 static void __split_huge_zero_page_pmd(struct vm_area_struct
*vma
,
1568 unsigned long haddr
, pmd_t
*pmd
)
1570 struct mm_struct
*mm
= vma
->vm_mm
;
1575 /* leave pmd empty until pte is filled */
1576 pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
1578 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1579 pmd_populate(mm
, &_pmd
, pgtable
);
1581 for (i
= 0; i
< HPAGE_PMD_NR
; i
++, haddr
+= PAGE_SIZE
) {
1583 entry
= pfn_pte(my_zero_pfn(haddr
), vma
->vm_page_prot
);
1584 entry
= pte_mkspecial(entry
);
1585 pte
= pte_offset_map(&_pmd
, haddr
);
1586 VM_BUG_ON(!pte_none(*pte
));
1587 set_pte_at(mm
, haddr
, pte
, entry
);
1590 smp_wmb(); /* make pte visible before pmd */
1591 pmd_populate(mm
, pmd
, pgtable
);
1594 static void __split_huge_pmd_locked(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1595 unsigned long haddr
, bool freeze
)
1597 struct mm_struct
*mm
= vma
->vm_mm
;
1601 bool young
, write
, dirty
, soft_dirty
;
1605 VM_BUG_ON(haddr
& ~HPAGE_PMD_MASK
);
1606 VM_BUG_ON_VMA(vma
->vm_start
> haddr
, vma
);
1607 VM_BUG_ON_VMA(vma
->vm_end
< haddr
+ HPAGE_PMD_SIZE
, vma
);
1608 VM_BUG_ON(!pmd_trans_huge(*pmd
) && !pmd_devmap(*pmd
));
1610 count_vm_event(THP_SPLIT_PMD
);
1612 if (!vma_is_anonymous(vma
)) {
1613 _pmd
= pmdp_huge_clear_flush_notify(vma
, haddr
, pmd
);
1614 if (vma_is_dax(vma
))
1616 page
= pmd_page(_pmd
);
1617 if (!PageReferenced(page
) && pmd_young(_pmd
))
1618 SetPageReferenced(page
);
1619 page_remove_rmap(page
, true);
1621 add_mm_counter(mm
, MM_FILEPAGES
, -HPAGE_PMD_NR
);
1623 } else if (is_huge_zero_pmd(*pmd
)) {
1624 return __split_huge_zero_page_pmd(vma
, haddr
, pmd
);
1627 page
= pmd_page(*pmd
);
1628 VM_BUG_ON_PAGE(!page_count(page
), page
);
1629 page_ref_add(page
, HPAGE_PMD_NR
- 1);
1630 write
= pmd_write(*pmd
);
1631 young
= pmd_young(*pmd
);
1632 dirty
= pmd_dirty(*pmd
);
1633 soft_dirty
= pmd_soft_dirty(*pmd
);
1635 pmdp_huge_split_prepare(vma
, haddr
, pmd
);
1636 pgtable
= pgtable_trans_huge_withdraw(mm
, pmd
);
1637 pmd_populate(mm
, &_pmd
, pgtable
);
1639 for (i
= 0, addr
= haddr
; i
< HPAGE_PMD_NR
; i
++, addr
+= PAGE_SIZE
) {
1642 * Note that NUMA hinting access restrictions are not
1643 * transferred to avoid any possibility of altering
1644 * permissions across VMAs.
1647 swp_entry_t swp_entry
;
1648 swp_entry
= make_migration_entry(page
+ i
, write
);
1649 entry
= swp_entry_to_pte(swp_entry
);
1651 entry
= pte_swp_mksoft_dirty(entry
);
1653 entry
= mk_pte(page
+ i
, READ_ONCE(vma
->vm_page_prot
));
1654 entry
= maybe_mkwrite(entry
, vma
);
1656 entry
= pte_wrprotect(entry
);
1658 entry
= pte_mkold(entry
);
1660 entry
= pte_mksoft_dirty(entry
);
1663 SetPageDirty(page
+ i
);
1664 pte
= pte_offset_map(&_pmd
, addr
);
1665 BUG_ON(!pte_none(*pte
));
1666 set_pte_at(mm
, addr
, pte
, entry
);
1667 atomic_inc(&page
[i
]._mapcount
);
1672 * Set PG_double_map before dropping compound_mapcount to avoid
1673 * false-negative page_mapped().
1675 if (compound_mapcount(page
) > 1 && !TestSetPageDoubleMap(page
)) {
1676 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1677 atomic_inc(&page
[i
]._mapcount
);
1680 if (atomic_add_negative(-1, compound_mapcount_ptr(page
))) {
1681 /* Last compound_mapcount is gone. */
1682 __dec_node_page_state(page
, NR_ANON_THPS
);
1683 if (TestClearPageDoubleMap(page
)) {
1684 /* No need in mapcount reference anymore */
1685 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1686 atomic_dec(&page
[i
]._mapcount
);
1690 smp_wmb(); /* make pte visible before pmd */
1692 * Up to this point the pmd is present and huge and userland has the
1693 * whole access to the hugepage during the split (which happens in
1694 * place). If we overwrite the pmd with the not-huge version pointing
1695 * to the pte here (which of course we could if all CPUs were bug
1696 * free), userland could trigger a small page size TLB miss on the
1697 * small sized TLB while the hugepage TLB entry is still established in
1698 * the huge TLB. Some CPU doesn't like that.
1699 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1700 * 383 on page 93. Intel should be safe but is also warns that it's
1701 * only safe if the permission and cache attributes of the two entries
1702 * loaded in the two TLB is identical (which should be the case here).
1703 * But it is generally safer to never allow small and huge TLB entries
1704 * for the same virtual address to be loaded simultaneously. So instead
1705 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1706 * current pmd notpresent (atomically because here the pmd_trans_huge
1707 * and pmd_trans_splitting must remain set at all times on the pmd
1708 * until the split is complete for this pmd), then we flush the SMP TLB
1709 * and finally we write the non-huge version of the pmd entry with
1712 pmdp_invalidate(vma
, haddr
, pmd
);
1713 pmd_populate(mm
, pmd
, pgtable
);
1716 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1717 page_remove_rmap(page
+ i
, false);
1723 void __split_huge_pmd(struct vm_area_struct
*vma
, pmd_t
*pmd
,
1724 unsigned long address
, bool freeze
, struct page
*page
)
1727 struct mm_struct
*mm
= vma
->vm_mm
;
1728 unsigned long haddr
= address
& HPAGE_PMD_MASK
;
1730 mmu_notifier_invalidate_range_start(mm
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1731 ptl
= pmd_lock(mm
, pmd
);
1734 * If caller asks to setup a migration entries, we need a page to check
1735 * pmd against. Otherwise we can end up replacing wrong page.
1737 VM_BUG_ON(freeze
&& !page
);
1738 if (page
&& page
!= pmd_page(*pmd
))
1741 if (pmd_trans_huge(*pmd
)) {
1742 page
= pmd_page(*pmd
);
1743 if (PageMlocked(page
))
1744 clear_page_mlock(page
);
1745 } else if (!pmd_devmap(*pmd
))
1747 __split_huge_pmd_locked(vma
, pmd
, haddr
, freeze
);
1750 mmu_notifier_invalidate_range_end(mm
, haddr
, haddr
+ HPAGE_PMD_SIZE
);
1753 void split_huge_pmd_address(struct vm_area_struct
*vma
, unsigned long address
,
1754 bool freeze
, struct page
*page
)
1760 pgd
= pgd_offset(vma
->vm_mm
, address
);
1761 if (!pgd_present(*pgd
))
1764 pud
= pud_offset(pgd
, address
);
1765 if (!pud_present(*pud
))
1768 pmd
= pmd_offset(pud
, address
);
1770 __split_huge_pmd(vma
, pmd
, address
, freeze
, page
);
1773 void vma_adjust_trans_huge(struct vm_area_struct
*vma
,
1774 unsigned long start
,
1779 * If the new start address isn't hpage aligned and it could
1780 * previously contain an hugepage: check if we need to split
1783 if (start
& ~HPAGE_PMD_MASK
&&
1784 (start
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
1785 (start
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
1786 split_huge_pmd_address(vma
, start
, false, NULL
);
1789 * If the new end address isn't hpage aligned and it could
1790 * previously contain an hugepage: check if we need to split
1793 if (end
& ~HPAGE_PMD_MASK
&&
1794 (end
& HPAGE_PMD_MASK
) >= vma
->vm_start
&&
1795 (end
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= vma
->vm_end
)
1796 split_huge_pmd_address(vma
, end
, false, NULL
);
1799 * If we're also updating the vma->vm_next->vm_start, if the new
1800 * vm_next->vm_start isn't page aligned and it could previously
1801 * contain an hugepage: check if we need to split an huge pmd.
1803 if (adjust_next
> 0) {
1804 struct vm_area_struct
*next
= vma
->vm_next
;
1805 unsigned long nstart
= next
->vm_start
;
1806 nstart
+= adjust_next
<< PAGE_SHIFT
;
1807 if (nstart
& ~HPAGE_PMD_MASK
&&
1808 (nstart
& HPAGE_PMD_MASK
) >= next
->vm_start
&&
1809 (nstart
& HPAGE_PMD_MASK
) + HPAGE_PMD_SIZE
<= next
->vm_end
)
1810 split_huge_pmd_address(next
, nstart
, false, NULL
);
1814 static void freeze_page(struct page
*page
)
1816 enum ttu_flags ttu_flags
= TTU_IGNORE_MLOCK
| TTU_IGNORE_ACCESS
|
1820 VM_BUG_ON_PAGE(!PageHead(page
), page
);
1823 ttu_flags
|= TTU_MIGRATION
;
1825 /* We only need TTU_SPLIT_HUGE_PMD once */
1826 ret
= try_to_unmap(page
, ttu_flags
| TTU_SPLIT_HUGE_PMD
);
1827 for (i
= 1; !ret
&& i
< HPAGE_PMD_NR
; i
++) {
1828 /* Cut short if the page is unmapped */
1829 if (page_count(page
) == 1)
1832 ret
= try_to_unmap(page
+ i
, ttu_flags
);
1834 VM_BUG_ON_PAGE(ret
, page
+ i
- 1);
1837 static void unfreeze_page(struct page
*page
)
1841 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1842 remove_migration_ptes(page
+ i
, page
+ i
, true);
1845 static void __split_huge_page_tail(struct page
*head
, int tail
,
1846 struct lruvec
*lruvec
, struct list_head
*list
)
1848 struct page
*page_tail
= head
+ tail
;
1850 VM_BUG_ON_PAGE(atomic_read(&page_tail
->_mapcount
) != -1, page_tail
);
1851 VM_BUG_ON_PAGE(page_ref_count(page_tail
) != 0, page_tail
);
1854 * tail_page->_refcount is zero and not changing from under us. But
1855 * get_page_unless_zero() may be running from under us on the
1856 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1857 * atomic_add(), we would then run atomic_set() concurrently with
1858 * get_page_unless_zero(), and atomic_set() is implemented in C not
1859 * using locked ops. spin_unlock on x86 sometime uses locked ops
1860 * because of PPro errata 66, 92, so unless somebody can guarantee
1861 * atomic_set() here would be safe on all archs (and not only on x86),
1862 * it's safer to use atomic_inc()/atomic_add().
1864 if (PageAnon(head
)) {
1865 page_ref_inc(page_tail
);
1867 /* Additional pin to radix tree */
1868 page_ref_add(page_tail
, 2);
1871 page_tail
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1872 page_tail
->flags
|= (head
->flags
&
1873 ((1L << PG_referenced
) |
1874 (1L << PG_swapbacked
) |
1875 (1L << PG_mlocked
) |
1876 (1L << PG_uptodate
) |
1879 (1L << PG_unevictable
) |
1883 * After clearing PageTail the gup refcount can be released.
1884 * Page flags also must be visible before we make the page non-compound.
1888 clear_compound_head(page_tail
);
1890 if (page_is_young(head
))
1891 set_page_young(page_tail
);
1892 if (page_is_idle(head
))
1893 set_page_idle(page_tail
);
1895 /* ->mapping in first tail page is compound_mapcount */
1896 VM_BUG_ON_PAGE(tail
> 2 && page_tail
->mapping
!= TAIL_MAPPING
,
1898 page_tail
->mapping
= head
->mapping
;
1900 page_tail
->index
= head
->index
+ tail
;
1901 page_cpupid_xchg_last(page_tail
, page_cpupid_last(head
));
1902 lru_add_page_tail(head
, page_tail
, lruvec
, list
);
1905 static void __split_huge_page(struct page
*page
, struct list_head
*list
,
1906 unsigned long flags
)
1908 struct page
*head
= compound_head(page
);
1909 struct zone
*zone
= page_zone(head
);
1910 struct lruvec
*lruvec
;
1914 lruvec
= mem_cgroup_page_lruvec(head
, zone
->zone_pgdat
);
1916 /* complete memcg works before add pages to LRU */
1917 mem_cgroup_split_huge_fixup(head
);
1919 if (!PageAnon(page
))
1920 end
= DIV_ROUND_UP(i_size_read(head
->mapping
->host
), PAGE_SIZE
);
1922 for (i
= HPAGE_PMD_NR
- 1; i
>= 1; i
--) {
1923 __split_huge_page_tail(head
, i
, lruvec
, list
);
1924 /* Some pages can be beyond i_size: drop them from page cache */
1925 if (head
[i
].index
>= end
) {
1926 __ClearPageDirty(head
+ i
);
1927 __delete_from_page_cache(head
+ i
, NULL
);
1928 if (IS_ENABLED(CONFIG_SHMEM
) && PageSwapBacked(head
))
1929 shmem_uncharge(head
->mapping
->host
, 1);
1934 ClearPageCompound(head
);
1935 /* See comment in __split_huge_page_tail() */
1936 if (PageAnon(head
)) {
1939 /* Additional pin to radix tree */
1940 page_ref_add(head
, 2);
1941 spin_unlock(&head
->mapping
->tree_lock
);
1944 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
1946 unfreeze_page(head
);
1948 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
1949 struct page
*subpage
= head
+ i
;
1950 if (subpage
== page
)
1952 unlock_page(subpage
);
1955 * Subpages may be freed if there wasn't any mapping
1956 * like if add_to_swap() is running on a lru page that
1957 * had its mapping zapped. And freeing these pages
1958 * requires taking the lru_lock so we do the put_page
1959 * of the tail pages after the split is complete.
1965 int total_mapcount(struct page
*page
)
1967 int i
, compound
, ret
;
1969 VM_BUG_ON_PAGE(PageTail(page
), page
);
1971 if (likely(!PageCompound(page
)))
1972 return atomic_read(&page
->_mapcount
) + 1;
1974 compound
= compound_mapcount(page
);
1978 for (i
= 0; i
< HPAGE_PMD_NR
; i
++)
1979 ret
+= atomic_read(&page
[i
]._mapcount
) + 1;
1980 /* File pages has compound_mapcount included in _mapcount */
1981 if (!PageAnon(page
))
1982 return ret
- compound
* HPAGE_PMD_NR
;
1983 if (PageDoubleMap(page
))
1984 ret
-= HPAGE_PMD_NR
;
1989 * This calculates accurately how many mappings a transparent hugepage
1990 * has (unlike page_mapcount() which isn't fully accurate). This full
1991 * accuracy is primarily needed to know if copy-on-write faults can
1992 * reuse the page and change the mapping to read-write instead of
1993 * copying them. At the same time this returns the total_mapcount too.
1995 * The function returns the highest mapcount any one of the subpages
1996 * has. If the return value is one, even if different processes are
1997 * mapping different subpages of the transparent hugepage, they can
1998 * all reuse it, because each process is reusing a different subpage.
2000 * The total_mapcount is instead counting all virtual mappings of the
2001 * subpages. If the total_mapcount is equal to "one", it tells the
2002 * caller all mappings belong to the same "mm" and in turn the
2003 * anon_vma of the transparent hugepage can become the vma->anon_vma
2004 * local one as no other process may be mapping any of the subpages.
2006 * It would be more accurate to replace page_mapcount() with
2007 * page_trans_huge_mapcount(), however we only use
2008 * page_trans_huge_mapcount() in the copy-on-write faults where we
2009 * need full accuracy to avoid breaking page pinning, because
2010 * page_trans_huge_mapcount() is slower than page_mapcount().
2012 int page_trans_huge_mapcount(struct page
*page
, int *total_mapcount
)
2014 int i
, ret
, _total_mapcount
, mapcount
;
2016 /* hugetlbfs shouldn't call it */
2017 VM_BUG_ON_PAGE(PageHuge(page
), page
);
2019 if (likely(!PageTransCompound(page
))) {
2020 mapcount
= atomic_read(&page
->_mapcount
) + 1;
2022 *total_mapcount
= mapcount
;
2026 page
= compound_head(page
);
2028 _total_mapcount
= ret
= 0;
2029 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2030 mapcount
= atomic_read(&page
[i
]._mapcount
) + 1;
2031 ret
= max(ret
, mapcount
);
2032 _total_mapcount
+= mapcount
;
2034 if (PageDoubleMap(page
)) {
2036 _total_mapcount
-= HPAGE_PMD_NR
;
2038 mapcount
= compound_mapcount(page
);
2040 _total_mapcount
+= mapcount
;
2042 *total_mapcount
= _total_mapcount
;
2047 * This function splits huge page into normal pages. @page can point to any
2048 * subpage of huge page to split. Split doesn't change the position of @page.
2050 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2051 * The huge page must be locked.
2053 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2055 * Both head page and tail pages will inherit mapping, flags, and so on from
2058 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2059 * they are not mapped.
2061 * Returns 0 if the hugepage is split successfully.
2062 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2065 int split_huge_page_to_list(struct page
*page
, struct list_head
*list
)
2067 struct page
*head
= compound_head(page
);
2068 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(head
));
2069 struct anon_vma
*anon_vma
= NULL
;
2070 struct address_space
*mapping
= NULL
;
2071 int count
, mapcount
, extra_pins
, ret
;
2073 unsigned long flags
;
2075 VM_BUG_ON_PAGE(is_huge_zero_page(page
), page
);
2076 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2077 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
2078 VM_BUG_ON_PAGE(!PageCompound(page
), page
);
2080 if (PageAnon(head
)) {
2082 * The caller does not necessarily hold an mmap_sem that would
2083 * prevent the anon_vma disappearing so we first we take a
2084 * reference to it and then lock the anon_vma for write. This
2085 * is similar to page_lock_anon_vma_read except the write lock
2086 * is taken to serialise against parallel split or collapse
2089 anon_vma
= page_get_anon_vma(head
);
2096 anon_vma_lock_write(anon_vma
);
2098 mapping
= head
->mapping
;
2106 /* Addidional pins from radix tree */
2107 extra_pins
= HPAGE_PMD_NR
;
2109 i_mmap_lock_read(mapping
);
2113 * Racy check if we can split the page, before freeze_page() will
2116 if (total_mapcount(head
) != page_count(head
) - extra_pins
- 1) {
2121 mlocked
= PageMlocked(page
);
2123 VM_BUG_ON_PAGE(compound_mapcount(head
), head
);
2125 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2129 /* prevent PageLRU to go away from under us, and freeze lru stats */
2130 spin_lock_irqsave(zone_lru_lock(page_zone(head
)), flags
);
2135 spin_lock(&mapping
->tree_lock
);
2136 pslot
= radix_tree_lookup_slot(&mapping
->page_tree
,
2139 * Check if the head page is present in radix tree.
2140 * We assume all tail are present too, if head is there.
2142 if (radix_tree_deref_slot_protected(pslot
,
2143 &mapping
->tree_lock
) != head
)
2147 /* Prevent deferred_split_scan() touching ->_refcount */
2148 spin_lock(&pgdata
->split_queue_lock
);
2149 count
= page_count(head
);
2150 mapcount
= total_mapcount(head
);
2151 if (!mapcount
&& page_ref_freeze(head
, 1 + extra_pins
)) {
2152 if (!list_empty(page_deferred_list(head
))) {
2153 pgdata
->split_queue_len
--;
2154 list_del(page_deferred_list(head
));
2157 __dec_node_page_state(page
, NR_SHMEM_THPS
);
2158 spin_unlock(&pgdata
->split_queue_lock
);
2159 __split_huge_page(page
, list
, flags
);
2162 if (IS_ENABLED(CONFIG_DEBUG_VM
) && mapcount
) {
2163 pr_alert("total_mapcount: %u, page_count(): %u\n",
2166 dump_page(head
, NULL
);
2167 dump_page(page
, "total_mapcount(head) > 0");
2170 spin_unlock(&pgdata
->split_queue_lock
);
2172 spin_unlock(&mapping
->tree_lock
);
2173 spin_unlock_irqrestore(zone_lru_lock(page_zone(head
)), flags
);
2174 unfreeze_page(head
);
2180 anon_vma_unlock_write(anon_vma
);
2181 put_anon_vma(anon_vma
);
2184 i_mmap_unlock_read(mapping
);
2186 count_vm_event(!ret
? THP_SPLIT_PAGE
: THP_SPLIT_PAGE_FAILED
);
2190 void free_transhuge_page(struct page
*page
)
2192 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2193 unsigned long flags
;
2195 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2196 if (!list_empty(page_deferred_list(page
))) {
2197 pgdata
->split_queue_len
--;
2198 list_del(page_deferred_list(page
));
2200 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2201 free_compound_page(page
);
2204 void deferred_split_huge_page(struct page
*page
)
2206 struct pglist_data
*pgdata
= NODE_DATA(page_to_nid(page
));
2207 unsigned long flags
;
2209 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
2211 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2212 if (list_empty(page_deferred_list(page
))) {
2213 count_vm_event(THP_DEFERRED_SPLIT_PAGE
);
2214 list_add_tail(page_deferred_list(page
), &pgdata
->split_queue
);
2215 pgdata
->split_queue_len
++;
2217 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2220 static unsigned long deferred_split_count(struct shrinker
*shrink
,
2221 struct shrink_control
*sc
)
2223 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2224 return ACCESS_ONCE(pgdata
->split_queue_len
);
2227 static unsigned long deferred_split_scan(struct shrinker
*shrink
,
2228 struct shrink_control
*sc
)
2230 struct pglist_data
*pgdata
= NODE_DATA(sc
->nid
);
2231 unsigned long flags
;
2232 LIST_HEAD(list
), *pos
, *next
;
2236 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2237 /* Take pin on all head pages to avoid freeing them under us */
2238 list_for_each_safe(pos
, next
, &pgdata
->split_queue
) {
2239 page
= list_entry((void *)pos
, struct page
, mapping
);
2240 page
= compound_head(page
);
2241 if (get_page_unless_zero(page
)) {
2242 list_move(page_deferred_list(page
), &list
);
2244 /* We lost race with put_compound_page() */
2245 list_del_init(page_deferred_list(page
));
2246 pgdata
->split_queue_len
--;
2248 if (!--sc
->nr_to_scan
)
2251 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2253 list_for_each_safe(pos
, next
, &list
) {
2254 page
= list_entry((void *)pos
, struct page
, mapping
);
2256 /* split_huge_page() removes page from list on success */
2257 if (!split_huge_page(page
))
2263 spin_lock_irqsave(&pgdata
->split_queue_lock
, flags
);
2264 list_splice_tail(&list
, &pgdata
->split_queue
);
2265 spin_unlock_irqrestore(&pgdata
->split_queue_lock
, flags
);
2268 * Stop shrinker if we didn't split any page, but the queue is empty.
2269 * This can happen if pages were freed under us.
2271 if (!split
&& list_empty(&pgdata
->split_queue
))
2276 static struct shrinker deferred_split_shrinker
= {
2277 .count_objects
= deferred_split_count
,
2278 .scan_objects
= deferred_split_scan
,
2279 .seeks
= DEFAULT_SEEKS
,
2280 .flags
= SHRINKER_NUMA_AWARE
,
2283 #ifdef CONFIG_DEBUG_FS
2284 static int split_huge_pages_set(void *data
, u64 val
)
2288 unsigned long pfn
, max_zone_pfn
;
2289 unsigned long total
= 0, split
= 0;
2294 for_each_populated_zone(zone
) {
2295 max_zone_pfn
= zone_end_pfn(zone
);
2296 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++) {
2297 if (!pfn_valid(pfn
))
2300 page
= pfn_to_page(pfn
);
2301 if (!get_page_unless_zero(page
))
2304 if (zone
!= page_zone(page
))
2307 if (!PageHead(page
) || PageHuge(page
) || !PageLRU(page
))
2312 if (!split_huge_page(page
))
2320 pr_info("%lu of %lu THP split\n", split
, total
);
2324 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops
, NULL
, split_huge_pages_set
,
2327 static int __init
split_huge_pages_debugfs(void)
2331 ret
= debugfs_create_file("split_huge_pages", 0200, NULL
, NULL
,
2332 &split_huge_pages_fops
);
2334 pr_warn("Failed to create split_huge_pages in debugfs");
2337 late_initcall(split_huge_pages_debugfs
);