xfs: fix compiler warnings
[linux/fpc-iii.git] / mm / huge_memory.c
blob8258e9eee80640024e28c41292a79148723c578e
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/khugepaged.h>
22 #include <linux/freezer.h>
23 #include <linux/pfn_t.h>
24 #include <linux/mman.h>
25 #include <linux/memremap.h>
26 #include <linux/pagemap.h>
27 #include <linux/debugfs.h>
28 #include <linux/migrate.h>
29 #include <linux/hashtable.h>
30 #include <linux/userfaultfd_k.h>
31 #include <linux/page_idle.h>
32 #include <linux/shmem_fs.h>
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
46 unsigned long transparent_hugepage_flags __read_mostly =
47 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
49 #endif
50 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52 #endif
53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
57 static struct shrinker deferred_split_shrinker;
59 static atomic_t huge_zero_refcount;
60 struct page *huge_zero_page __read_mostly;
62 static struct page *get_huge_zero_page(void)
64 struct page *zero_page;
65 retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
67 return READ_ONCE(huge_zero_page);
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
70 HPAGE_PMD_ORDER);
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
73 return NULL;
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
76 preempt_disable();
77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
78 preempt_enable();
79 __free_pages(zero_page, compound_order(zero_page));
80 goto retry;
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
86 return READ_ONCE(huge_zero_page);
89 static void put_huge_zero_page(void)
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
98 struct page *mm_get_huge_zero_page(struct mm_struct *mm)
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
103 if (!get_huge_zero_page())
104 return NULL;
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
109 return READ_ONCE(huge_zero_page);
112 void mm_put_huge_zero_page(struct mm_struct *mm)
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
118 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
125 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
131 __free_pages(zero_page, compound_order(zero_page));
132 return HPAGE_PMD_NR;
135 return 0;
138 static struct shrinker huge_zero_page_shrinker = {
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
141 .seeks = DEFAULT_SEEKS,
144 #ifdef CONFIG_SYSFS
146 static ssize_t triple_flag_store(struct kobject *kobj,
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
150 enum transparent_hugepage_flag deferred,
151 enum transparent_hugepage_flag req_madv)
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
161 min(sizeof("always")-1, count))) {
162 clear_bit(deferred, &transparent_hugepage_flags);
163 clear_bit(req_madv, &transparent_hugepage_flags);
164 set_bit(enabled, &transparent_hugepage_flags);
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
168 clear_bit(deferred, &transparent_hugepage_flags);
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
174 clear_bit(deferred, &transparent_hugepage_flags);
175 } else
176 return -EINVAL;
178 return count;
181 static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
192 static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
196 ssize_t ret;
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
203 if (ret > 0) {
204 int err = start_stop_khugepaged();
205 if (err)
206 ret = err;
209 return ret;
211 static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
214 ssize_t single_hugepage_flag_show(struct kobject *kobj,
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
222 ssize_t single_hugepage_flag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
227 unsigned long value;
228 int ret;
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
236 if (value)
237 set_bit(flag, &transparent_hugepage_flags);
238 else
239 clear_bit(flag, &transparent_hugepage_flags);
241 return count;
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
249 static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
262 static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
271 static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
274 static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
277 return single_hugepage_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
280 static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
283 return single_hugepage_flag_store(kobj, attr, buf, count,
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
286 static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
288 #ifdef CONFIG_DEBUG_VM
289 static ssize_t debug_cow_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
292 return single_hugepage_flag_show(kobj, attr, buf,
293 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
295 static ssize_t debug_cow_store(struct kobject *kobj,
296 struct kobj_attribute *attr,
297 const char *buf, size_t count)
299 return single_hugepage_flag_store(kobj, attr, buf, count,
300 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302 static struct kobj_attribute debug_cow_attr =
303 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304 #endif /* CONFIG_DEBUG_VM */
306 static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309 &use_zero_page_attr.attr,
310 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
311 &shmem_enabled_attr.attr,
312 #endif
313 #ifdef CONFIG_DEBUG_VM
314 &debug_cow_attr.attr,
315 #endif
316 NULL,
319 static struct attribute_group hugepage_attr_group = {
320 .attrs = hugepage_attr,
323 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
325 int err;
327 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
328 if (unlikely(!*hugepage_kobj)) {
329 pr_err("failed to create transparent hugepage kobject\n");
330 return -ENOMEM;
333 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
334 if (err) {
335 pr_err("failed to register transparent hugepage group\n");
336 goto delete_obj;
339 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
340 if (err) {
341 pr_err("failed to register transparent hugepage group\n");
342 goto remove_hp_group;
345 return 0;
347 remove_hp_group:
348 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
349 delete_obj:
350 kobject_put(*hugepage_kobj);
351 return err;
354 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
356 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
357 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
358 kobject_put(hugepage_kobj);
360 #else
361 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
363 return 0;
366 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
369 #endif /* CONFIG_SYSFS */
371 static int __init hugepage_init(void)
373 int err;
374 struct kobject *hugepage_kobj;
376 if (!has_transparent_hugepage()) {
377 transparent_hugepage_flags = 0;
378 return -EINVAL;
382 * hugepages can't be allocated by the buddy allocator
384 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
386 * we use page->mapping and page->index in second tail page
387 * as list_head: assuming THP order >= 2
389 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
391 err = hugepage_init_sysfs(&hugepage_kobj);
392 if (err)
393 goto err_sysfs;
395 err = khugepaged_init();
396 if (err)
397 goto err_slab;
399 err = register_shrinker(&huge_zero_page_shrinker);
400 if (err)
401 goto err_hzp_shrinker;
402 err = register_shrinker(&deferred_split_shrinker);
403 if (err)
404 goto err_split_shrinker;
407 * By default disable transparent hugepages on smaller systems,
408 * where the extra memory used could hurt more than TLB overhead
409 * is likely to save. The admin can still enable it through /sys.
411 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
412 transparent_hugepage_flags = 0;
413 return 0;
416 err = start_stop_khugepaged();
417 if (err)
418 goto err_khugepaged;
420 return 0;
421 err_khugepaged:
422 unregister_shrinker(&deferred_split_shrinker);
423 err_split_shrinker:
424 unregister_shrinker(&huge_zero_page_shrinker);
425 err_hzp_shrinker:
426 khugepaged_destroy();
427 err_slab:
428 hugepage_exit_sysfs(hugepage_kobj);
429 err_sysfs:
430 return err;
432 subsys_initcall(hugepage_init);
434 static int __init setup_transparent_hugepage(char *str)
436 int ret = 0;
437 if (!str)
438 goto out;
439 if (!strcmp(str, "always")) {
440 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
441 &transparent_hugepage_flags);
442 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
443 &transparent_hugepage_flags);
444 ret = 1;
445 } else if (!strcmp(str, "madvise")) {
446 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
447 &transparent_hugepage_flags);
448 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
449 &transparent_hugepage_flags);
450 ret = 1;
451 } else if (!strcmp(str, "never")) {
452 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
458 out:
459 if (!ret)
460 pr_warn("transparent_hugepage= cannot parse, ignored\n");
461 return ret;
463 __setup("transparent_hugepage=", setup_transparent_hugepage);
465 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
467 if (likely(vma->vm_flags & VM_WRITE))
468 pmd = pmd_mkwrite(pmd);
469 return pmd;
472 static inline struct list_head *page_deferred_list(struct page *page)
475 * ->lru in the tail pages is occupied by compound_head.
476 * Let's use ->mapping + ->index in the second tail page as list_head.
478 return (struct list_head *)&page[2].mapping;
481 void prep_transhuge_page(struct page *page)
484 * we use page->mapping and page->indexlru in second tail page
485 * as list_head: assuming THP order >= 2
488 INIT_LIST_HEAD(page_deferred_list(page));
489 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
492 unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
493 loff_t off, unsigned long flags, unsigned long size)
495 unsigned long addr;
496 loff_t off_end = off + len;
497 loff_t off_align = round_up(off, size);
498 unsigned long len_pad;
500 if (off_end <= off_align || (off_end - off_align) < size)
501 return 0;
503 len_pad = len + size;
504 if (len_pad < len || (off + len_pad) < off)
505 return 0;
507 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
508 off >> PAGE_SHIFT, flags);
509 if (IS_ERR_VALUE(addr))
510 return 0;
512 addr += (off - addr) & (size - 1);
513 return addr;
516 unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
517 unsigned long len, unsigned long pgoff, unsigned long flags)
519 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
521 if (addr)
522 goto out;
523 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
524 goto out;
526 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
527 if (addr)
528 return addr;
530 out:
531 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
533 EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
535 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
536 gfp_t gfp)
538 struct vm_area_struct *vma = fe->vma;
539 struct mem_cgroup *memcg;
540 pgtable_t pgtable;
541 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
543 VM_BUG_ON_PAGE(!PageCompound(page), page);
545 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
546 put_page(page);
547 count_vm_event(THP_FAULT_FALLBACK);
548 return VM_FAULT_FALLBACK;
551 pgtable = pte_alloc_one(vma->vm_mm, haddr);
552 if (unlikely(!pgtable)) {
553 mem_cgroup_cancel_charge(page, memcg, true);
554 put_page(page);
555 return VM_FAULT_OOM;
558 clear_huge_page(page, haddr, HPAGE_PMD_NR);
560 * The memory barrier inside __SetPageUptodate makes sure that
561 * clear_huge_page writes become visible before the set_pmd_at()
562 * write.
564 __SetPageUptodate(page);
566 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
567 if (unlikely(!pmd_none(*fe->pmd))) {
568 spin_unlock(fe->ptl);
569 mem_cgroup_cancel_charge(page, memcg, true);
570 put_page(page);
571 pte_free(vma->vm_mm, pgtable);
572 } else {
573 pmd_t entry;
575 /* Deliver the page fault to userland */
576 if (userfaultfd_missing(vma)) {
577 int ret;
579 spin_unlock(fe->ptl);
580 mem_cgroup_cancel_charge(page, memcg, true);
581 put_page(page);
582 pte_free(vma->vm_mm, pgtable);
583 ret = handle_userfault(fe, VM_UFFD_MISSING);
584 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
585 return ret;
588 entry = mk_huge_pmd(page, vma->vm_page_prot);
589 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
590 page_add_new_anon_rmap(page, vma, haddr, true);
591 mem_cgroup_commit_charge(page, memcg, false, true);
592 lru_cache_add_active_or_unevictable(page, vma);
593 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
594 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
595 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
596 atomic_long_inc(&vma->vm_mm->nr_ptes);
597 spin_unlock(fe->ptl);
598 count_vm_event(THP_FAULT_ALLOC);
601 return 0;
605 * If THP defrag is set to always then directly reclaim/compact as necessary
606 * If set to defer then do only background reclaim/compact and defer to khugepaged
607 * If set to madvise and the VMA is flagged then directly reclaim/compact
608 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
610 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
612 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
614 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
615 &transparent_hugepage_flags) && vma_madvised)
616 return GFP_TRANSHUGE;
617 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
618 &transparent_hugepage_flags))
619 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
620 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
621 &transparent_hugepage_flags))
622 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
624 return GFP_TRANSHUGE_LIGHT;
627 /* Caller must hold page table lock. */
628 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
629 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
630 struct page *zero_page)
632 pmd_t entry;
633 if (!pmd_none(*pmd))
634 return false;
635 entry = mk_pmd(zero_page, vma->vm_page_prot);
636 entry = pmd_mkhuge(entry);
637 if (pgtable)
638 pgtable_trans_huge_deposit(mm, pmd, pgtable);
639 set_pmd_at(mm, haddr, pmd, entry);
640 atomic_long_inc(&mm->nr_ptes);
641 return true;
644 int do_huge_pmd_anonymous_page(struct fault_env *fe)
646 struct vm_area_struct *vma = fe->vma;
647 gfp_t gfp;
648 struct page *page;
649 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
651 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
652 return VM_FAULT_FALLBACK;
653 if (unlikely(anon_vma_prepare(vma)))
654 return VM_FAULT_OOM;
655 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
656 return VM_FAULT_OOM;
657 if (!(fe->flags & FAULT_FLAG_WRITE) &&
658 !mm_forbids_zeropage(vma->vm_mm) &&
659 transparent_hugepage_use_zero_page()) {
660 pgtable_t pgtable;
661 struct page *zero_page;
662 bool set;
663 int ret;
664 pgtable = pte_alloc_one(vma->vm_mm, haddr);
665 if (unlikely(!pgtable))
666 return VM_FAULT_OOM;
667 zero_page = mm_get_huge_zero_page(vma->vm_mm);
668 if (unlikely(!zero_page)) {
669 pte_free(vma->vm_mm, pgtable);
670 count_vm_event(THP_FAULT_FALLBACK);
671 return VM_FAULT_FALLBACK;
673 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
674 ret = 0;
675 set = false;
676 if (pmd_none(*fe->pmd)) {
677 if (userfaultfd_missing(vma)) {
678 spin_unlock(fe->ptl);
679 ret = handle_userfault(fe, VM_UFFD_MISSING);
680 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
681 } else {
682 set_huge_zero_page(pgtable, vma->vm_mm, vma,
683 haddr, fe->pmd, zero_page);
684 spin_unlock(fe->ptl);
685 set = true;
687 } else
688 spin_unlock(fe->ptl);
689 if (!set)
690 pte_free(vma->vm_mm, pgtable);
691 return ret;
693 gfp = alloc_hugepage_direct_gfpmask(vma);
694 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
695 if (unlikely(!page)) {
696 count_vm_event(THP_FAULT_FALLBACK);
697 return VM_FAULT_FALLBACK;
699 prep_transhuge_page(page);
700 return __do_huge_pmd_anonymous_page(fe, page, gfp);
703 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
704 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
706 struct mm_struct *mm = vma->vm_mm;
707 pmd_t entry;
708 spinlock_t *ptl;
710 ptl = pmd_lock(mm, pmd);
711 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
712 if (pfn_t_devmap(pfn))
713 entry = pmd_mkdevmap(entry);
714 if (write) {
715 entry = pmd_mkyoung(pmd_mkdirty(entry));
716 entry = maybe_pmd_mkwrite(entry, vma);
718 set_pmd_at(mm, addr, pmd, entry);
719 update_mmu_cache_pmd(vma, addr, pmd);
720 spin_unlock(ptl);
723 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
724 pmd_t *pmd, pfn_t pfn, bool write)
726 pgprot_t pgprot = vma->vm_page_prot;
728 * If we had pmd_special, we could avoid all these restrictions,
729 * but we need to be consistent with PTEs and architectures that
730 * can't support a 'special' bit.
732 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
733 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
734 (VM_PFNMAP|VM_MIXEDMAP));
735 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
736 BUG_ON(!pfn_t_devmap(pfn));
738 if (addr < vma->vm_start || addr >= vma->vm_end)
739 return VM_FAULT_SIGBUS;
740 if (track_pfn_insert(vma, &pgprot, pfn))
741 return VM_FAULT_SIGBUS;
742 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
743 return VM_FAULT_NOPAGE;
745 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
747 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
748 pmd_t *pmd)
750 pmd_t _pmd;
753 * We should set the dirty bit only for FOLL_WRITE but for now
754 * the dirty bit in the pmd is meaningless. And if the dirty
755 * bit will become meaningful and we'll only set it with
756 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
757 * set the young bit, instead of the current set_pmd_at.
759 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
760 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
761 pmd, _pmd, 1))
762 update_mmu_cache_pmd(vma, addr, pmd);
765 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
766 pmd_t *pmd, int flags)
768 unsigned long pfn = pmd_pfn(*pmd);
769 struct mm_struct *mm = vma->vm_mm;
770 struct dev_pagemap *pgmap;
771 struct page *page;
773 assert_spin_locked(pmd_lockptr(mm, pmd));
776 * When we COW a devmap PMD entry, we split it into PTEs, so we should
777 * not be in this function with `flags & FOLL_COW` set.
779 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
781 if (flags & FOLL_WRITE && !pmd_write(*pmd))
782 return NULL;
784 if (pmd_present(*pmd) && pmd_devmap(*pmd))
785 /* pass */;
786 else
787 return NULL;
789 if (flags & FOLL_TOUCH)
790 touch_pmd(vma, addr, pmd);
793 * device mapped pages can only be returned if the
794 * caller will manage the page reference count.
796 if (!(flags & FOLL_GET))
797 return ERR_PTR(-EEXIST);
799 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
800 pgmap = get_dev_pagemap(pfn, NULL);
801 if (!pgmap)
802 return ERR_PTR(-EFAULT);
803 page = pfn_to_page(pfn);
804 get_page(page);
805 put_dev_pagemap(pgmap);
807 return page;
810 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
811 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
812 struct vm_area_struct *vma)
814 spinlock_t *dst_ptl, *src_ptl;
815 struct page *src_page;
816 pmd_t pmd;
817 pgtable_t pgtable = NULL;
818 int ret = -ENOMEM;
820 /* Skip if can be re-fill on fault */
821 if (!vma_is_anonymous(vma))
822 return 0;
824 pgtable = pte_alloc_one(dst_mm, addr);
825 if (unlikely(!pgtable))
826 goto out;
828 dst_ptl = pmd_lock(dst_mm, dst_pmd);
829 src_ptl = pmd_lockptr(src_mm, src_pmd);
830 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
832 ret = -EAGAIN;
833 pmd = *src_pmd;
834 if (unlikely(!pmd_trans_huge(pmd))) {
835 pte_free(dst_mm, pgtable);
836 goto out_unlock;
839 * When page table lock is held, the huge zero pmd should not be
840 * under splitting since we don't split the page itself, only pmd to
841 * a page table.
843 if (is_huge_zero_pmd(pmd)) {
844 struct page *zero_page;
846 * get_huge_zero_page() will never allocate a new page here,
847 * since we already have a zero page to copy. It just takes a
848 * reference.
850 zero_page = mm_get_huge_zero_page(dst_mm);
851 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
852 zero_page);
853 ret = 0;
854 goto out_unlock;
857 src_page = pmd_page(pmd);
858 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
859 get_page(src_page);
860 page_dup_rmap(src_page, true);
861 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
862 atomic_long_inc(&dst_mm->nr_ptes);
863 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
865 pmdp_set_wrprotect(src_mm, addr, src_pmd);
866 pmd = pmd_mkold(pmd_wrprotect(pmd));
867 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
869 ret = 0;
870 out_unlock:
871 spin_unlock(src_ptl);
872 spin_unlock(dst_ptl);
873 out:
874 return ret;
877 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
879 pmd_t entry;
880 unsigned long haddr;
881 bool write = fe->flags & FAULT_FLAG_WRITE;
883 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
884 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
885 goto unlock;
887 entry = pmd_mkyoung(orig_pmd);
888 if (write)
889 entry = pmd_mkdirty(entry);
890 haddr = fe->address & HPAGE_PMD_MASK;
891 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry, write))
892 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
894 unlock:
895 spin_unlock(fe->ptl);
898 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
899 struct page *page)
901 struct vm_area_struct *vma = fe->vma;
902 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
903 struct mem_cgroup *memcg;
904 pgtable_t pgtable;
905 pmd_t _pmd;
906 int ret = 0, i;
907 struct page **pages;
908 unsigned long mmun_start; /* For mmu_notifiers */
909 unsigned long mmun_end; /* For mmu_notifiers */
911 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
912 GFP_KERNEL);
913 if (unlikely(!pages)) {
914 ret |= VM_FAULT_OOM;
915 goto out;
918 for (i = 0; i < HPAGE_PMD_NR; i++) {
919 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
920 __GFP_OTHER_NODE, vma,
921 fe->address, page_to_nid(page));
922 if (unlikely(!pages[i] ||
923 mem_cgroup_try_charge(pages[i], vma->vm_mm,
924 GFP_KERNEL, &memcg, false))) {
925 if (pages[i])
926 put_page(pages[i]);
927 while (--i >= 0) {
928 memcg = (void *)page_private(pages[i]);
929 set_page_private(pages[i], 0);
930 mem_cgroup_cancel_charge(pages[i], memcg,
931 false);
932 put_page(pages[i]);
934 kfree(pages);
935 ret |= VM_FAULT_OOM;
936 goto out;
938 set_page_private(pages[i], (unsigned long)memcg);
941 for (i = 0; i < HPAGE_PMD_NR; i++) {
942 copy_user_highpage(pages[i], page + i,
943 haddr + PAGE_SIZE * i, vma);
944 __SetPageUptodate(pages[i]);
945 cond_resched();
948 mmun_start = haddr;
949 mmun_end = haddr + HPAGE_PMD_SIZE;
950 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
952 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
953 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
954 goto out_free_pages;
955 VM_BUG_ON_PAGE(!PageHead(page), page);
957 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
958 /* leave pmd empty until pte is filled */
960 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
961 pmd_populate(vma->vm_mm, &_pmd, pgtable);
963 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
964 pte_t entry;
965 entry = mk_pte(pages[i], vma->vm_page_prot);
966 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
967 memcg = (void *)page_private(pages[i]);
968 set_page_private(pages[i], 0);
969 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
970 mem_cgroup_commit_charge(pages[i], memcg, false, false);
971 lru_cache_add_active_or_unevictable(pages[i], vma);
972 fe->pte = pte_offset_map(&_pmd, haddr);
973 VM_BUG_ON(!pte_none(*fe->pte));
974 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
975 pte_unmap(fe->pte);
977 kfree(pages);
979 smp_wmb(); /* make pte visible before pmd */
980 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
981 page_remove_rmap(page, true);
982 spin_unlock(fe->ptl);
984 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
986 ret |= VM_FAULT_WRITE;
987 put_page(page);
989 out:
990 return ret;
992 out_free_pages:
993 spin_unlock(fe->ptl);
994 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
995 for (i = 0; i < HPAGE_PMD_NR; i++) {
996 memcg = (void *)page_private(pages[i]);
997 set_page_private(pages[i], 0);
998 mem_cgroup_cancel_charge(pages[i], memcg, false);
999 put_page(pages[i]);
1001 kfree(pages);
1002 goto out;
1005 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1007 struct vm_area_struct *vma = fe->vma;
1008 struct page *page = NULL, *new_page;
1009 struct mem_cgroup *memcg;
1010 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1011 unsigned long mmun_start; /* For mmu_notifiers */
1012 unsigned long mmun_end; /* For mmu_notifiers */
1013 gfp_t huge_gfp; /* for allocation and charge */
1014 int ret = 0;
1016 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1017 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1018 if (is_huge_zero_pmd(orig_pmd))
1019 goto alloc;
1020 spin_lock(fe->ptl);
1021 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1022 goto out_unlock;
1024 page = pmd_page(orig_pmd);
1025 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1027 * We can only reuse the page if nobody else maps the huge page or it's
1028 * part.
1030 if (page_trans_huge_mapcount(page, NULL) == 1) {
1031 pmd_t entry;
1032 entry = pmd_mkyoung(orig_pmd);
1033 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1034 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1035 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1036 ret |= VM_FAULT_WRITE;
1037 goto out_unlock;
1039 get_page(page);
1040 spin_unlock(fe->ptl);
1041 alloc:
1042 if (transparent_hugepage_enabled(vma) &&
1043 !transparent_hugepage_debug_cow()) {
1044 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1045 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1046 } else
1047 new_page = NULL;
1049 if (likely(new_page)) {
1050 prep_transhuge_page(new_page);
1051 } else {
1052 if (!page) {
1053 split_huge_pmd(vma, fe->pmd, fe->address);
1054 ret |= VM_FAULT_FALLBACK;
1055 } else {
1056 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1057 if (ret & VM_FAULT_OOM) {
1058 split_huge_pmd(vma, fe->pmd, fe->address);
1059 ret |= VM_FAULT_FALLBACK;
1061 put_page(page);
1063 count_vm_event(THP_FAULT_FALLBACK);
1064 goto out;
1067 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1068 huge_gfp, &memcg, true))) {
1069 put_page(new_page);
1070 split_huge_pmd(vma, fe->pmd, fe->address);
1071 if (page)
1072 put_page(page);
1073 ret |= VM_FAULT_FALLBACK;
1074 count_vm_event(THP_FAULT_FALLBACK);
1075 goto out;
1078 count_vm_event(THP_FAULT_ALLOC);
1080 if (!page)
1081 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1082 else
1083 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1084 __SetPageUptodate(new_page);
1086 mmun_start = haddr;
1087 mmun_end = haddr + HPAGE_PMD_SIZE;
1088 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1090 spin_lock(fe->ptl);
1091 if (page)
1092 put_page(page);
1093 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1094 spin_unlock(fe->ptl);
1095 mem_cgroup_cancel_charge(new_page, memcg, true);
1096 put_page(new_page);
1097 goto out_mn;
1098 } else {
1099 pmd_t entry;
1100 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1101 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1102 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1103 page_add_new_anon_rmap(new_page, vma, haddr, true);
1104 mem_cgroup_commit_charge(new_page, memcg, false, true);
1105 lru_cache_add_active_or_unevictable(new_page, vma);
1106 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1107 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1108 if (!page) {
1109 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1110 } else {
1111 VM_BUG_ON_PAGE(!PageHead(page), page);
1112 page_remove_rmap(page, true);
1113 put_page(page);
1115 ret |= VM_FAULT_WRITE;
1117 spin_unlock(fe->ptl);
1118 out_mn:
1119 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1120 out:
1121 return ret;
1122 out_unlock:
1123 spin_unlock(fe->ptl);
1124 return ret;
1128 * FOLL_FORCE can write to even unwritable pmd's, but only
1129 * after we've gone through a COW cycle and they are dirty.
1131 static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1133 return pmd_write(pmd) ||
1134 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1137 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1138 unsigned long addr,
1139 pmd_t *pmd,
1140 unsigned int flags)
1142 struct mm_struct *mm = vma->vm_mm;
1143 struct page *page = NULL;
1145 assert_spin_locked(pmd_lockptr(mm, pmd));
1147 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1148 goto out;
1150 /* Avoid dumping huge zero page */
1151 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1152 return ERR_PTR(-EFAULT);
1154 /* Full NUMA hinting faults to serialise migration in fault paths */
1155 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1156 goto out;
1158 page = pmd_page(*pmd);
1159 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1160 if (flags & FOLL_TOUCH)
1161 touch_pmd(vma, addr, pmd);
1162 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1164 * We don't mlock() pte-mapped THPs. This way we can avoid
1165 * leaking mlocked pages into non-VM_LOCKED VMAs.
1167 * For anon THP:
1169 * In most cases the pmd is the only mapping of the page as we
1170 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1171 * writable private mappings in populate_vma_page_range().
1173 * The only scenario when we have the page shared here is if we
1174 * mlocking read-only mapping shared over fork(). We skip
1175 * mlocking such pages.
1177 * For file THP:
1179 * We can expect PageDoubleMap() to be stable under page lock:
1180 * for file pages we set it in page_add_file_rmap(), which
1181 * requires page to be locked.
1184 if (PageAnon(page) && compound_mapcount(page) != 1)
1185 goto skip_mlock;
1186 if (PageDoubleMap(page) || !page->mapping)
1187 goto skip_mlock;
1188 if (!trylock_page(page))
1189 goto skip_mlock;
1190 lru_add_drain();
1191 if (page->mapping && !PageDoubleMap(page))
1192 mlock_vma_page(page);
1193 unlock_page(page);
1195 skip_mlock:
1196 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1197 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1198 if (flags & FOLL_GET)
1199 get_page(page);
1201 out:
1202 return page;
1205 /* NUMA hinting page fault entry point for trans huge pmds */
1206 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1208 struct vm_area_struct *vma = fe->vma;
1209 struct anon_vma *anon_vma = NULL;
1210 struct page *page;
1211 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1212 int page_nid = -1, this_nid = numa_node_id();
1213 int target_nid, last_cpupid = -1;
1214 bool page_locked;
1215 bool migrated = false;
1216 bool was_writable;
1217 int flags = 0;
1219 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1220 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1221 goto out_unlock;
1224 * If there are potential migrations, wait for completion and retry
1225 * without disrupting NUMA hinting information. Do not relock and
1226 * check_same as the page may no longer be mapped.
1228 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1229 page = pmd_page(*fe->pmd);
1230 if (!get_page_unless_zero(page))
1231 goto out_unlock;
1232 spin_unlock(fe->ptl);
1233 wait_on_page_locked(page);
1234 put_page(page);
1235 goto out;
1238 page = pmd_page(pmd);
1239 BUG_ON(is_huge_zero_page(page));
1240 page_nid = page_to_nid(page);
1241 last_cpupid = page_cpupid_last(page);
1242 count_vm_numa_event(NUMA_HINT_FAULTS);
1243 if (page_nid == this_nid) {
1244 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1245 flags |= TNF_FAULT_LOCAL;
1248 /* See similar comment in do_numa_page for explanation */
1249 if (!pmd_write(pmd))
1250 flags |= TNF_NO_GROUP;
1253 * Acquire the page lock to serialise THP migrations but avoid dropping
1254 * page_table_lock if at all possible
1256 page_locked = trylock_page(page);
1257 target_nid = mpol_misplaced(page, vma, haddr);
1258 if (target_nid == -1) {
1259 /* If the page was locked, there are no parallel migrations */
1260 if (page_locked)
1261 goto clear_pmdnuma;
1264 /* Migration could have started since the pmd_trans_migrating check */
1265 if (!page_locked) {
1266 if (!get_page_unless_zero(page))
1267 goto out_unlock;
1268 spin_unlock(fe->ptl);
1269 wait_on_page_locked(page);
1270 put_page(page);
1271 page_nid = -1;
1272 goto out;
1276 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1277 * to serialises splits
1279 get_page(page);
1280 spin_unlock(fe->ptl);
1281 anon_vma = page_lock_anon_vma_read(page);
1283 /* Confirm the PMD did not change while page_table_lock was released */
1284 spin_lock(fe->ptl);
1285 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1286 unlock_page(page);
1287 put_page(page);
1288 page_nid = -1;
1289 goto out_unlock;
1292 /* Bail if we fail to protect against THP splits for any reason */
1293 if (unlikely(!anon_vma)) {
1294 put_page(page);
1295 page_nid = -1;
1296 goto clear_pmdnuma;
1300 * Migrate the THP to the requested node, returns with page unlocked
1301 * and access rights restored.
1303 spin_unlock(fe->ptl);
1304 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1305 fe->pmd, pmd, fe->address, page, target_nid);
1306 if (migrated) {
1307 flags |= TNF_MIGRATED;
1308 page_nid = target_nid;
1309 } else
1310 flags |= TNF_MIGRATE_FAIL;
1312 goto out;
1313 clear_pmdnuma:
1314 BUG_ON(!PageLocked(page));
1315 was_writable = pmd_write(pmd);
1316 pmd = pmd_modify(pmd, vma->vm_page_prot);
1317 pmd = pmd_mkyoung(pmd);
1318 if (was_writable)
1319 pmd = pmd_mkwrite(pmd);
1320 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1321 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1322 unlock_page(page);
1323 out_unlock:
1324 spin_unlock(fe->ptl);
1326 out:
1327 if (anon_vma)
1328 page_unlock_anon_vma_read(anon_vma);
1330 if (page_nid != -1)
1331 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1333 return 0;
1337 * Return true if we do MADV_FREE successfully on entire pmd page.
1338 * Otherwise, return false.
1340 bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1341 pmd_t *pmd, unsigned long addr, unsigned long next)
1343 spinlock_t *ptl;
1344 pmd_t orig_pmd;
1345 struct page *page;
1346 struct mm_struct *mm = tlb->mm;
1347 bool ret = false;
1349 ptl = pmd_trans_huge_lock(pmd, vma);
1350 if (!ptl)
1351 goto out_unlocked;
1353 orig_pmd = *pmd;
1354 if (is_huge_zero_pmd(orig_pmd))
1355 goto out;
1357 page = pmd_page(orig_pmd);
1359 * If other processes are mapping this page, we couldn't discard
1360 * the page unless they all do MADV_FREE so let's skip the page.
1362 if (page_mapcount(page) != 1)
1363 goto out;
1365 if (!trylock_page(page))
1366 goto out;
1369 * If user want to discard part-pages of THP, split it so MADV_FREE
1370 * will deactivate only them.
1372 if (next - addr != HPAGE_PMD_SIZE) {
1373 get_page(page);
1374 spin_unlock(ptl);
1375 split_huge_page(page);
1376 unlock_page(page);
1377 put_page(page);
1378 goto out_unlocked;
1381 if (PageDirty(page))
1382 ClearPageDirty(page);
1383 unlock_page(page);
1385 if (PageActive(page))
1386 deactivate_page(page);
1388 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1389 pmdp_invalidate(vma, addr, pmd);
1390 orig_pmd = pmd_mkold(orig_pmd);
1391 orig_pmd = pmd_mkclean(orig_pmd);
1393 set_pmd_at(mm, addr, pmd, orig_pmd);
1394 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1396 ret = true;
1397 out:
1398 spin_unlock(ptl);
1399 out_unlocked:
1400 return ret;
1403 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1404 pmd_t *pmd, unsigned long addr)
1406 pmd_t orig_pmd;
1407 spinlock_t *ptl;
1409 ptl = __pmd_trans_huge_lock(pmd, vma);
1410 if (!ptl)
1411 return 0;
1413 * For architectures like ppc64 we look at deposited pgtable
1414 * when calling pmdp_huge_get_and_clear. So do the
1415 * pgtable_trans_huge_withdraw after finishing pmdp related
1416 * operations.
1418 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1419 tlb->fullmm);
1420 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1421 if (vma_is_dax(vma)) {
1422 spin_unlock(ptl);
1423 if (is_huge_zero_pmd(orig_pmd))
1424 tlb_remove_page(tlb, pmd_page(orig_pmd));
1425 } else if (is_huge_zero_pmd(orig_pmd)) {
1426 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1427 atomic_long_dec(&tlb->mm->nr_ptes);
1428 spin_unlock(ptl);
1429 tlb_remove_page(tlb, pmd_page(orig_pmd));
1430 } else {
1431 struct page *page = pmd_page(orig_pmd);
1432 page_remove_rmap(page, true);
1433 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1434 VM_BUG_ON_PAGE(!PageHead(page), page);
1435 if (PageAnon(page)) {
1436 pgtable_t pgtable;
1437 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1438 pte_free(tlb->mm, pgtable);
1439 atomic_long_dec(&tlb->mm->nr_ptes);
1440 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1441 } else {
1442 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1444 spin_unlock(ptl);
1445 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1447 return 1;
1450 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1451 unsigned long new_addr, unsigned long old_end,
1452 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
1454 spinlock_t *old_ptl, *new_ptl;
1455 pmd_t pmd;
1456 struct mm_struct *mm = vma->vm_mm;
1457 bool force_flush = false;
1459 if ((old_addr & ~HPAGE_PMD_MASK) ||
1460 (new_addr & ~HPAGE_PMD_MASK) ||
1461 old_end - old_addr < HPAGE_PMD_SIZE)
1462 return false;
1465 * The destination pmd shouldn't be established, free_pgtables()
1466 * should have release it.
1468 if (WARN_ON(!pmd_none(*new_pmd))) {
1469 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1470 return false;
1474 * We don't have to worry about the ordering of src and dst
1475 * ptlocks because exclusive mmap_sem prevents deadlock.
1477 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1478 if (old_ptl) {
1479 new_ptl = pmd_lockptr(mm, new_pmd);
1480 if (new_ptl != old_ptl)
1481 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1482 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1483 if (pmd_present(pmd) && pmd_dirty(pmd))
1484 force_flush = true;
1485 VM_BUG_ON(!pmd_none(*new_pmd));
1487 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1488 vma_is_anonymous(vma)) {
1489 pgtable_t pgtable;
1490 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1491 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1493 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1494 if (new_ptl != old_ptl)
1495 spin_unlock(new_ptl);
1496 if (force_flush)
1497 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1498 else
1499 *need_flush = true;
1500 spin_unlock(old_ptl);
1501 return true;
1503 return false;
1507 * Returns
1508 * - 0 if PMD could not be locked
1509 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1510 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1512 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1513 unsigned long addr, pgprot_t newprot, int prot_numa)
1515 struct mm_struct *mm = vma->vm_mm;
1516 spinlock_t *ptl;
1517 int ret = 0;
1519 ptl = __pmd_trans_huge_lock(pmd, vma);
1520 if (ptl) {
1521 pmd_t entry;
1522 bool preserve_write = prot_numa && pmd_write(*pmd);
1523 ret = 1;
1526 * Avoid trapping faults against the zero page. The read-only
1527 * data is likely to be read-cached on the local CPU and
1528 * local/remote hits to the zero page are not interesting.
1530 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1531 spin_unlock(ptl);
1532 return ret;
1535 if (!prot_numa || !pmd_protnone(*pmd)) {
1536 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1537 entry = pmd_modify(entry, newprot);
1538 if (preserve_write)
1539 entry = pmd_mkwrite(entry);
1540 ret = HPAGE_PMD_NR;
1541 set_pmd_at(mm, addr, pmd, entry);
1542 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1543 pmd_write(entry));
1545 spin_unlock(ptl);
1548 return ret;
1552 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1554 * Note that if it returns page table lock pointer, this routine returns without
1555 * unlocking page table lock. So callers must unlock it.
1557 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1559 spinlock_t *ptl;
1560 ptl = pmd_lock(vma->vm_mm, pmd);
1561 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1562 return ptl;
1563 spin_unlock(ptl);
1564 return NULL;
1567 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1568 unsigned long haddr, pmd_t *pmd)
1570 struct mm_struct *mm = vma->vm_mm;
1571 pgtable_t pgtable;
1572 pmd_t _pmd;
1573 int i;
1575 /* leave pmd empty until pte is filled */
1576 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1578 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1579 pmd_populate(mm, &_pmd, pgtable);
1581 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1582 pte_t *pte, entry;
1583 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1584 entry = pte_mkspecial(entry);
1585 pte = pte_offset_map(&_pmd, haddr);
1586 VM_BUG_ON(!pte_none(*pte));
1587 set_pte_at(mm, haddr, pte, entry);
1588 pte_unmap(pte);
1590 smp_wmb(); /* make pte visible before pmd */
1591 pmd_populate(mm, pmd, pgtable);
1594 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
1595 unsigned long haddr, bool freeze)
1597 struct mm_struct *mm = vma->vm_mm;
1598 struct page *page;
1599 pgtable_t pgtable;
1600 pmd_t _pmd;
1601 bool young, write, dirty, soft_dirty;
1602 unsigned long addr;
1603 int i;
1605 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1606 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1607 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
1608 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
1610 count_vm_event(THP_SPLIT_PMD);
1612 if (!vma_is_anonymous(vma)) {
1613 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1614 if (vma_is_dax(vma))
1615 return;
1616 page = pmd_page(_pmd);
1617 if (!PageReferenced(page) && pmd_young(_pmd))
1618 SetPageReferenced(page);
1619 page_remove_rmap(page, true);
1620 put_page(page);
1621 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1622 return;
1623 } else if (is_huge_zero_pmd(*pmd)) {
1624 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1627 page = pmd_page(*pmd);
1628 VM_BUG_ON_PAGE(!page_count(page), page);
1629 page_ref_add(page, HPAGE_PMD_NR - 1);
1630 write = pmd_write(*pmd);
1631 young = pmd_young(*pmd);
1632 dirty = pmd_dirty(*pmd);
1633 soft_dirty = pmd_soft_dirty(*pmd);
1635 pmdp_huge_split_prepare(vma, haddr, pmd);
1636 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1637 pmd_populate(mm, &_pmd, pgtable);
1639 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
1640 pte_t entry, *pte;
1642 * Note that NUMA hinting access restrictions are not
1643 * transferred to avoid any possibility of altering
1644 * permissions across VMAs.
1646 if (freeze) {
1647 swp_entry_t swp_entry;
1648 swp_entry = make_migration_entry(page + i, write);
1649 entry = swp_entry_to_pte(swp_entry);
1650 if (soft_dirty)
1651 entry = pte_swp_mksoft_dirty(entry);
1652 } else {
1653 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
1654 entry = maybe_mkwrite(entry, vma);
1655 if (!write)
1656 entry = pte_wrprotect(entry);
1657 if (!young)
1658 entry = pte_mkold(entry);
1659 if (soft_dirty)
1660 entry = pte_mksoft_dirty(entry);
1662 if (dirty)
1663 SetPageDirty(page + i);
1664 pte = pte_offset_map(&_pmd, addr);
1665 BUG_ON(!pte_none(*pte));
1666 set_pte_at(mm, addr, pte, entry);
1667 atomic_inc(&page[i]._mapcount);
1668 pte_unmap(pte);
1672 * Set PG_double_map before dropping compound_mapcount to avoid
1673 * false-negative page_mapped().
1675 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1676 for (i = 0; i < HPAGE_PMD_NR; i++)
1677 atomic_inc(&page[i]._mapcount);
1680 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1681 /* Last compound_mapcount is gone. */
1682 __dec_node_page_state(page, NR_ANON_THPS);
1683 if (TestClearPageDoubleMap(page)) {
1684 /* No need in mapcount reference anymore */
1685 for (i = 0; i < HPAGE_PMD_NR; i++)
1686 atomic_dec(&page[i]._mapcount);
1690 smp_wmb(); /* make pte visible before pmd */
1692 * Up to this point the pmd is present and huge and userland has the
1693 * whole access to the hugepage during the split (which happens in
1694 * place). If we overwrite the pmd with the not-huge version pointing
1695 * to the pte here (which of course we could if all CPUs were bug
1696 * free), userland could trigger a small page size TLB miss on the
1697 * small sized TLB while the hugepage TLB entry is still established in
1698 * the huge TLB. Some CPU doesn't like that.
1699 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1700 * 383 on page 93. Intel should be safe but is also warns that it's
1701 * only safe if the permission and cache attributes of the two entries
1702 * loaded in the two TLB is identical (which should be the case here).
1703 * But it is generally safer to never allow small and huge TLB entries
1704 * for the same virtual address to be loaded simultaneously. So instead
1705 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1706 * current pmd notpresent (atomically because here the pmd_trans_huge
1707 * and pmd_trans_splitting must remain set at all times on the pmd
1708 * until the split is complete for this pmd), then we flush the SMP TLB
1709 * and finally we write the non-huge version of the pmd entry with
1710 * pmd_populate.
1712 pmdp_invalidate(vma, haddr, pmd);
1713 pmd_populate(mm, pmd, pgtable);
1715 if (freeze) {
1716 for (i = 0; i < HPAGE_PMD_NR; i++) {
1717 page_remove_rmap(page + i, false);
1718 put_page(page + i);
1723 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1724 unsigned long address, bool freeze, struct page *page)
1726 spinlock_t *ptl;
1727 struct mm_struct *mm = vma->vm_mm;
1728 unsigned long haddr = address & HPAGE_PMD_MASK;
1730 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1731 ptl = pmd_lock(mm, pmd);
1734 * If caller asks to setup a migration entries, we need a page to check
1735 * pmd against. Otherwise we can end up replacing wrong page.
1737 VM_BUG_ON(freeze && !page);
1738 if (page && page != pmd_page(*pmd))
1739 goto out;
1741 if (pmd_trans_huge(*pmd)) {
1742 page = pmd_page(*pmd);
1743 if (PageMlocked(page))
1744 clear_page_mlock(page);
1745 } else if (!pmd_devmap(*pmd))
1746 goto out;
1747 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
1748 out:
1749 spin_unlock(ptl);
1750 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1753 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1754 bool freeze, struct page *page)
1756 pgd_t *pgd;
1757 pud_t *pud;
1758 pmd_t *pmd;
1760 pgd = pgd_offset(vma->vm_mm, address);
1761 if (!pgd_present(*pgd))
1762 return;
1764 pud = pud_offset(pgd, address);
1765 if (!pud_present(*pud))
1766 return;
1768 pmd = pmd_offset(pud, address);
1770 __split_huge_pmd(vma, pmd, address, freeze, page);
1773 void vma_adjust_trans_huge(struct vm_area_struct *vma,
1774 unsigned long start,
1775 unsigned long end,
1776 long adjust_next)
1779 * If the new start address isn't hpage aligned and it could
1780 * previously contain an hugepage: check if we need to split
1781 * an huge pmd.
1783 if (start & ~HPAGE_PMD_MASK &&
1784 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1785 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1786 split_huge_pmd_address(vma, start, false, NULL);
1789 * If the new end address isn't hpage aligned and it could
1790 * previously contain an hugepage: check if we need to split
1791 * an huge pmd.
1793 if (end & ~HPAGE_PMD_MASK &&
1794 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1795 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
1796 split_huge_pmd_address(vma, end, false, NULL);
1799 * If we're also updating the vma->vm_next->vm_start, if the new
1800 * vm_next->vm_start isn't page aligned and it could previously
1801 * contain an hugepage: check if we need to split an huge pmd.
1803 if (adjust_next > 0) {
1804 struct vm_area_struct *next = vma->vm_next;
1805 unsigned long nstart = next->vm_start;
1806 nstart += adjust_next << PAGE_SHIFT;
1807 if (nstart & ~HPAGE_PMD_MASK &&
1808 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1809 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
1810 split_huge_pmd_address(next, nstart, false, NULL);
1814 static void freeze_page(struct page *page)
1816 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1817 TTU_RMAP_LOCKED;
1818 int i, ret;
1820 VM_BUG_ON_PAGE(!PageHead(page), page);
1822 if (PageAnon(page))
1823 ttu_flags |= TTU_MIGRATION;
1825 /* We only need TTU_SPLIT_HUGE_PMD once */
1826 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1827 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1828 /* Cut short if the page is unmapped */
1829 if (page_count(page) == 1)
1830 return;
1832 ret = try_to_unmap(page + i, ttu_flags);
1834 VM_BUG_ON_PAGE(ret, page + i - 1);
1837 static void unfreeze_page(struct page *page)
1839 int i;
1841 for (i = 0; i < HPAGE_PMD_NR; i++)
1842 remove_migration_ptes(page + i, page + i, true);
1845 static void __split_huge_page_tail(struct page *head, int tail,
1846 struct lruvec *lruvec, struct list_head *list)
1848 struct page *page_tail = head + tail;
1850 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
1851 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
1854 * tail_page->_refcount is zero and not changing from under us. But
1855 * get_page_unless_zero() may be running from under us on the
1856 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1857 * atomic_add(), we would then run atomic_set() concurrently with
1858 * get_page_unless_zero(), and atomic_set() is implemented in C not
1859 * using locked ops. spin_unlock on x86 sometime uses locked ops
1860 * because of PPro errata 66, 92, so unless somebody can guarantee
1861 * atomic_set() here would be safe on all archs (and not only on x86),
1862 * it's safer to use atomic_inc()/atomic_add().
1864 if (PageAnon(head)) {
1865 page_ref_inc(page_tail);
1866 } else {
1867 /* Additional pin to radix tree */
1868 page_ref_add(page_tail, 2);
1871 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1872 page_tail->flags |= (head->flags &
1873 ((1L << PG_referenced) |
1874 (1L << PG_swapbacked) |
1875 (1L << PG_mlocked) |
1876 (1L << PG_uptodate) |
1877 (1L << PG_active) |
1878 (1L << PG_locked) |
1879 (1L << PG_unevictable) |
1880 (1L << PG_dirty)));
1883 * After clearing PageTail the gup refcount can be released.
1884 * Page flags also must be visible before we make the page non-compound.
1886 smp_wmb();
1888 clear_compound_head(page_tail);
1890 if (page_is_young(head))
1891 set_page_young(page_tail);
1892 if (page_is_idle(head))
1893 set_page_idle(page_tail);
1895 /* ->mapping in first tail page is compound_mapcount */
1896 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
1897 page_tail);
1898 page_tail->mapping = head->mapping;
1900 page_tail->index = head->index + tail;
1901 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1902 lru_add_page_tail(head, page_tail, lruvec, list);
1905 static void __split_huge_page(struct page *page, struct list_head *list,
1906 unsigned long flags)
1908 struct page *head = compound_head(page);
1909 struct zone *zone = page_zone(head);
1910 struct lruvec *lruvec;
1911 pgoff_t end = -1;
1912 int i;
1914 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
1916 /* complete memcg works before add pages to LRU */
1917 mem_cgroup_split_huge_fixup(head);
1919 if (!PageAnon(page))
1920 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1922 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1923 __split_huge_page_tail(head, i, lruvec, list);
1924 /* Some pages can be beyond i_size: drop them from page cache */
1925 if (head[i].index >= end) {
1926 __ClearPageDirty(head + i);
1927 __delete_from_page_cache(head + i, NULL);
1928 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1929 shmem_uncharge(head->mapping->host, 1);
1930 put_page(head + i);
1934 ClearPageCompound(head);
1935 /* See comment in __split_huge_page_tail() */
1936 if (PageAnon(head)) {
1937 page_ref_inc(head);
1938 } else {
1939 /* Additional pin to radix tree */
1940 page_ref_add(head, 2);
1941 spin_unlock(&head->mapping->tree_lock);
1944 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
1946 unfreeze_page(head);
1948 for (i = 0; i < HPAGE_PMD_NR; i++) {
1949 struct page *subpage = head + i;
1950 if (subpage == page)
1951 continue;
1952 unlock_page(subpage);
1955 * Subpages may be freed if there wasn't any mapping
1956 * like if add_to_swap() is running on a lru page that
1957 * had its mapping zapped. And freeing these pages
1958 * requires taking the lru_lock so we do the put_page
1959 * of the tail pages after the split is complete.
1961 put_page(subpage);
1965 int total_mapcount(struct page *page)
1967 int i, compound, ret;
1969 VM_BUG_ON_PAGE(PageTail(page), page);
1971 if (likely(!PageCompound(page)))
1972 return atomic_read(&page->_mapcount) + 1;
1974 compound = compound_mapcount(page);
1975 if (PageHuge(page))
1976 return compound;
1977 ret = compound;
1978 for (i = 0; i < HPAGE_PMD_NR; i++)
1979 ret += atomic_read(&page[i]._mapcount) + 1;
1980 /* File pages has compound_mapcount included in _mapcount */
1981 if (!PageAnon(page))
1982 return ret - compound * HPAGE_PMD_NR;
1983 if (PageDoubleMap(page))
1984 ret -= HPAGE_PMD_NR;
1985 return ret;
1989 * This calculates accurately how many mappings a transparent hugepage
1990 * has (unlike page_mapcount() which isn't fully accurate). This full
1991 * accuracy is primarily needed to know if copy-on-write faults can
1992 * reuse the page and change the mapping to read-write instead of
1993 * copying them. At the same time this returns the total_mapcount too.
1995 * The function returns the highest mapcount any one of the subpages
1996 * has. If the return value is one, even if different processes are
1997 * mapping different subpages of the transparent hugepage, they can
1998 * all reuse it, because each process is reusing a different subpage.
2000 * The total_mapcount is instead counting all virtual mappings of the
2001 * subpages. If the total_mapcount is equal to "one", it tells the
2002 * caller all mappings belong to the same "mm" and in turn the
2003 * anon_vma of the transparent hugepage can become the vma->anon_vma
2004 * local one as no other process may be mapping any of the subpages.
2006 * It would be more accurate to replace page_mapcount() with
2007 * page_trans_huge_mapcount(), however we only use
2008 * page_trans_huge_mapcount() in the copy-on-write faults where we
2009 * need full accuracy to avoid breaking page pinning, because
2010 * page_trans_huge_mapcount() is slower than page_mapcount().
2012 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2014 int i, ret, _total_mapcount, mapcount;
2016 /* hugetlbfs shouldn't call it */
2017 VM_BUG_ON_PAGE(PageHuge(page), page);
2019 if (likely(!PageTransCompound(page))) {
2020 mapcount = atomic_read(&page->_mapcount) + 1;
2021 if (total_mapcount)
2022 *total_mapcount = mapcount;
2023 return mapcount;
2026 page = compound_head(page);
2028 _total_mapcount = ret = 0;
2029 for (i = 0; i < HPAGE_PMD_NR; i++) {
2030 mapcount = atomic_read(&page[i]._mapcount) + 1;
2031 ret = max(ret, mapcount);
2032 _total_mapcount += mapcount;
2034 if (PageDoubleMap(page)) {
2035 ret -= 1;
2036 _total_mapcount -= HPAGE_PMD_NR;
2038 mapcount = compound_mapcount(page);
2039 ret += mapcount;
2040 _total_mapcount += mapcount;
2041 if (total_mapcount)
2042 *total_mapcount = _total_mapcount;
2043 return ret;
2047 * This function splits huge page into normal pages. @page can point to any
2048 * subpage of huge page to split. Split doesn't change the position of @page.
2050 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2051 * The huge page must be locked.
2053 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2055 * Both head page and tail pages will inherit mapping, flags, and so on from
2056 * the hugepage.
2058 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2059 * they are not mapped.
2061 * Returns 0 if the hugepage is split successfully.
2062 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2063 * us.
2065 int split_huge_page_to_list(struct page *page, struct list_head *list)
2067 struct page *head = compound_head(page);
2068 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2069 struct anon_vma *anon_vma = NULL;
2070 struct address_space *mapping = NULL;
2071 int count, mapcount, extra_pins, ret;
2072 bool mlocked;
2073 unsigned long flags;
2075 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2076 VM_BUG_ON_PAGE(!PageLocked(page), page);
2077 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2078 VM_BUG_ON_PAGE(!PageCompound(page), page);
2080 if (PageAnon(head)) {
2082 * The caller does not necessarily hold an mmap_sem that would
2083 * prevent the anon_vma disappearing so we first we take a
2084 * reference to it and then lock the anon_vma for write. This
2085 * is similar to page_lock_anon_vma_read except the write lock
2086 * is taken to serialise against parallel split or collapse
2087 * operations.
2089 anon_vma = page_get_anon_vma(head);
2090 if (!anon_vma) {
2091 ret = -EBUSY;
2092 goto out;
2094 extra_pins = 0;
2095 mapping = NULL;
2096 anon_vma_lock_write(anon_vma);
2097 } else {
2098 mapping = head->mapping;
2100 /* Truncated ? */
2101 if (!mapping) {
2102 ret = -EBUSY;
2103 goto out;
2106 /* Addidional pins from radix tree */
2107 extra_pins = HPAGE_PMD_NR;
2108 anon_vma = NULL;
2109 i_mmap_lock_read(mapping);
2113 * Racy check if we can split the page, before freeze_page() will
2114 * split PMDs
2116 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
2117 ret = -EBUSY;
2118 goto out_unlock;
2121 mlocked = PageMlocked(page);
2122 freeze_page(head);
2123 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2125 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2126 if (mlocked)
2127 lru_add_drain();
2129 /* prevent PageLRU to go away from under us, and freeze lru stats */
2130 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2132 if (mapping) {
2133 void **pslot;
2135 spin_lock(&mapping->tree_lock);
2136 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2137 page_index(head));
2139 * Check if the head page is present in radix tree.
2140 * We assume all tail are present too, if head is there.
2142 if (radix_tree_deref_slot_protected(pslot,
2143 &mapping->tree_lock) != head)
2144 goto fail;
2147 /* Prevent deferred_split_scan() touching ->_refcount */
2148 spin_lock(&pgdata->split_queue_lock);
2149 count = page_count(head);
2150 mapcount = total_mapcount(head);
2151 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2152 if (!list_empty(page_deferred_list(head))) {
2153 pgdata->split_queue_len--;
2154 list_del(page_deferred_list(head));
2156 if (mapping)
2157 __dec_node_page_state(page, NR_SHMEM_THPS);
2158 spin_unlock(&pgdata->split_queue_lock);
2159 __split_huge_page(page, list, flags);
2160 ret = 0;
2161 } else {
2162 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2163 pr_alert("total_mapcount: %u, page_count(): %u\n",
2164 mapcount, count);
2165 if (PageTail(page))
2166 dump_page(head, NULL);
2167 dump_page(page, "total_mapcount(head) > 0");
2168 BUG();
2170 spin_unlock(&pgdata->split_queue_lock);
2171 fail: if (mapping)
2172 spin_unlock(&mapping->tree_lock);
2173 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2174 unfreeze_page(head);
2175 ret = -EBUSY;
2178 out_unlock:
2179 if (anon_vma) {
2180 anon_vma_unlock_write(anon_vma);
2181 put_anon_vma(anon_vma);
2183 if (mapping)
2184 i_mmap_unlock_read(mapping);
2185 out:
2186 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2187 return ret;
2190 void free_transhuge_page(struct page *page)
2192 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2193 unsigned long flags;
2195 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2196 if (!list_empty(page_deferred_list(page))) {
2197 pgdata->split_queue_len--;
2198 list_del(page_deferred_list(page));
2200 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2201 free_compound_page(page);
2204 void deferred_split_huge_page(struct page *page)
2206 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2207 unsigned long flags;
2209 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2211 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2212 if (list_empty(page_deferred_list(page))) {
2213 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2214 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2215 pgdata->split_queue_len++;
2217 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2220 static unsigned long deferred_split_count(struct shrinker *shrink,
2221 struct shrink_control *sc)
2223 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2224 return ACCESS_ONCE(pgdata->split_queue_len);
2227 static unsigned long deferred_split_scan(struct shrinker *shrink,
2228 struct shrink_control *sc)
2230 struct pglist_data *pgdata = NODE_DATA(sc->nid);
2231 unsigned long flags;
2232 LIST_HEAD(list), *pos, *next;
2233 struct page *page;
2234 int split = 0;
2236 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2237 /* Take pin on all head pages to avoid freeing them under us */
2238 list_for_each_safe(pos, next, &pgdata->split_queue) {
2239 page = list_entry((void *)pos, struct page, mapping);
2240 page = compound_head(page);
2241 if (get_page_unless_zero(page)) {
2242 list_move(page_deferred_list(page), &list);
2243 } else {
2244 /* We lost race with put_compound_page() */
2245 list_del_init(page_deferred_list(page));
2246 pgdata->split_queue_len--;
2248 if (!--sc->nr_to_scan)
2249 break;
2251 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2253 list_for_each_safe(pos, next, &list) {
2254 page = list_entry((void *)pos, struct page, mapping);
2255 lock_page(page);
2256 /* split_huge_page() removes page from list on success */
2257 if (!split_huge_page(page))
2258 split++;
2259 unlock_page(page);
2260 put_page(page);
2263 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2264 list_splice_tail(&list, &pgdata->split_queue);
2265 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2268 * Stop shrinker if we didn't split any page, but the queue is empty.
2269 * This can happen if pages were freed under us.
2271 if (!split && list_empty(&pgdata->split_queue))
2272 return SHRINK_STOP;
2273 return split;
2276 static struct shrinker deferred_split_shrinker = {
2277 .count_objects = deferred_split_count,
2278 .scan_objects = deferred_split_scan,
2279 .seeks = DEFAULT_SEEKS,
2280 .flags = SHRINKER_NUMA_AWARE,
2283 #ifdef CONFIG_DEBUG_FS
2284 static int split_huge_pages_set(void *data, u64 val)
2286 struct zone *zone;
2287 struct page *page;
2288 unsigned long pfn, max_zone_pfn;
2289 unsigned long total = 0, split = 0;
2291 if (val != 1)
2292 return -EINVAL;
2294 for_each_populated_zone(zone) {
2295 max_zone_pfn = zone_end_pfn(zone);
2296 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2297 if (!pfn_valid(pfn))
2298 continue;
2300 page = pfn_to_page(pfn);
2301 if (!get_page_unless_zero(page))
2302 continue;
2304 if (zone != page_zone(page))
2305 goto next;
2307 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2308 goto next;
2310 total++;
2311 lock_page(page);
2312 if (!split_huge_page(page))
2313 split++;
2314 unlock_page(page);
2315 next:
2316 put_page(page);
2320 pr_info("%lu of %lu THP split\n", split, total);
2322 return 0;
2324 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2325 "%llu\n");
2327 static int __init split_huge_pages_debugfs(void)
2329 void *ret;
2331 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2332 &split_huge_pages_fops);
2333 if (!ret)
2334 pr_warn("Failed to create split_huge_pages in debugfs");
2335 return 0;
2337 late_initcall(split_huge_pages_debugfs);
2338 #endif