4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/delayacct.h>
45 #include <linux/sysctl.h>
46 #include <linux/oom.h>
47 #include <linux/prefetch.h>
48 #include <linux/printk.h>
49 #include <linux/dax.h>
51 #include <asm/tlbflush.h>
52 #include <asm/div64.h>
54 #include <linux/swapops.h>
55 #include <linux/balloon_compaction.h>
59 #define CREATE_TRACE_POINTS
60 #include <trace/events/vmscan.h>
63 /* How many pages shrink_list() should reclaim */
64 unsigned long nr_to_reclaim
;
66 /* This context's GFP mask */
69 /* Allocation order */
73 * Nodemask of nodes allowed by the caller. If NULL, all nodes
79 * The memory cgroup that hit its limit and as a result is the
80 * primary target of this reclaim invocation.
82 struct mem_cgroup
*target_mem_cgroup
;
84 /* Scan (total_size >> priority) pages at once */
87 /* The highest zone to isolate pages for reclaim from */
88 enum zone_type reclaim_idx
;
90 unsigned int may_writepage
:1;
92 /* Can mapped pages be reclaimed? */
93 unsigned int may_unmap
:1;
95 /* Can pages be swapped as part of reclaim? */
96 unsigned int may_swap
:1;
98 /* Can cgroups be reclaimed below their normal consumption range? */
99 unsigned int may_thrash
:1;
101 unsigned int hibernation_mode
:1;
103 /* One of the zones is ready for compaction */
104 unsigned int compaction_ready
:1;
106 /* Incremented by the number of inactive pages that were scanned */
107 unsigned long nr_scanned
;
109 /* Number of pages freed so far during a call to shrink_zones() */
110 unsigned long nr_reclaimed
;
113 #ifdef ARCH_HAS_PREFETCH
114 #define prefetch_prev_lru_page(_page, _base, _field) \
116 if ((_page)->lru.prev != _base) { \
119 prev = lru_to_page(&(_page->lru)); \
120 prefetch(&prev->_field); \
124 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
127 #ifdef ARCH_HAS_PREFETCHW
128 #define prefetchw_prev_lru_page(_page, _base, _field) \
130 if ((_page)->lru.prev != _base) { \
133 prev = lru_to_page(&(_page->lru)); \
134 prefetchw(&prev->_field); \
138 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
142 * From 0 .. 100. Higher means more swappy.
144 int vm_swappiness
= 60;
146 * The total number of pages which are beyond the high watermark within all
149 unsigned long vm_total_pages
;
151 static LIST_HEAD(shrinker_list
);
152 static DECLARE_RWSEM(shrinker_rwsem
);
155 static bool global_reclaim(struct scan_control
*sc
)
157 return !sc
->target_mem_cgroup
;
161 * sane_reclaim - is the usual dirty throttling mechanism operational?
162 * @sc: scan_control in question
164 * The normal page dirty throttling mechanism in balance_dirty_pages() is
165 * completely broken with the legacy memcg and direct stalling in
166 * shrink_page_list() is used for throttling instead, which lacks all the
167 * niceties such as fairness, adaptive pausing, bandwidth proportional
168 * allocation and configurability.
170 * This function tests whether the vmscan currently in progress can assume
171 * that the normal dirty throttling mechanism is operational.
173 static bool sane_reclaim(struct scan_control
*sc
)
175 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
179 #ifdef CONFIG_CGROUP_WRITEBACK
180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
186 static bool global_reclaim(struct scan_control
*sc
)
191 static bool sane_reclaim(struct scan_control
*sc
)
198 * This misses isolated pages which are not accounted for to save counters.
199 * As the data only determines if reclaim or compaction continues, it is
200 * not expected that isolated pages will be a dominating factor.
202 unsigned long zone_reclaimable_pages(struct zone
*zone
)
206 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
207 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
208 if (get_nr_swap_pages() > 0)
209 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
210 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
215 unsigned long pgdat_reclaimable_pages(struct pglist_data
*pgdat
)
219 nr
= node_page_state_snapshot(pgdat
, NR_ACTIVE_FILE
) +
220 node_page_state_snapshot(pgdat
, NR_INACTIVE_FILE
) +
221 node_page_state_snapshot(pgdat
, NR_ISOLATED_FILE
);
223 if (get_nr_swap_pages() > 0)
224 nr
+= node_page_state_snapshot(pgdat
, NR_ACTIVE_ANON
) +
225 node_page_state_snapshot(pgdat
, NR_INACTIVE_ANON
) +
226 node_page_state_snapshot(pgdat
, NR_ISOLATED_ANON
);
231 bool pgdat_reclaimable(struct pglist_data
*pgdat
)
233 return node_page_state_snapshot(pgdat
, NR_PAGES_SCANNED
) <
234 pgdat_reclaimable_pages(pgdat
) * 6;
238 * lruvec_lru_size - Returns the number of pages on the given LRU list.
239 * @lruvec: lru vector
241 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
243 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
245 unsigned long lru_size
;
248 if (!mem_cgroup_disabled())
249 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
251 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
253 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
254 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
257 if (!managed_zone(zone
))
260 if (!mem_cgroup_disabled())
261 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
263 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
264 NR_ZONE_LRU_BASE
+ lru
);
265 lru_size
-= min(size
, lru_size
);
273 * Add a shrinker callback to be called from the vm.
275 int register_shrinker(struct shrinker
*shrinker
)
277 size_t size
= sizeof(*shrinker
->nr_deferred
);
279 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
282 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
283 if (!shrinker
->nr_deferred
)
286 down_write(&shrinker_rwsem
);
287 list_add_tail(&shrinker
->list
, &shrinker_list
);
288 up_write(&shrinker_rwsem
);
291 EXPORT_SYMBOL(register_shrinker
);
296 void unregister_shrinker(struct shrinker
*shrinker
)
298 down_write(&shrinker_rwsem
);
299 list_del(&shrinker
->list
);
300 up_write(&shrinker_rwsem
);
301 kfree(shrinker
->nr_deferred
);
303 EXPORT_SYMBOL(unregister_shrinker
);
305 #define SHRINK_BATCH 128
307 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
308 struct shrinker
*shrinker
,
309 unsigned long nr_scanned
,
310 unsigned long nr_eligible
)
312 unsigned long freed
= 0;
313 unsigned long long delta
;
318 int nid
= shrinkctl
->nid
;
319 long batch_size
= shrinker
->batch
? shrinker
->batch
321 long scanned
= 0, next_deferred
;
323 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
328 * copy the current shrinker scan count into a local variable
329 * and zero it so that other concurrent shrinker invocations
330 * don't also do this scanning work.
332 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
335 delta
= (4 * nr_scanned
) / shrinker
->seeks
;
337 do_div(delta
, nr_eligible
+ 1);
339 if (total_scan
< 0) {
340 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
341 shrinker
->scan_objects
, total_scan
);
342 total_scan
= freeable
;
345 next_deferred
= total_scan
;
348 * We need to avoid excessive windup on filesystem shrinkers
349 * due to large numbers of GFP_NOFS allocations causing the
350 * shrinkers to return -1 all the time. This results in a large
351 * nr being built up so when a shrink that can do some work
352 * comes along it empties the entire cache due to nr >>>
353 * freeable. This is bad for sustaining a working set in
356 * Hence only allow the shrinker to scan the entire cache when
357 * a large delta change is calculated directly.
359 if (delta
< freeable
/ 4)
360 total_scan
= min(total_scan
, freeable
/ 2);
363 * Avoid risking looping forever due to too large nr value:
364 * never try to free more than twice the estimate number of
367 if (total_scan
> freeable
* 2)
368 total_scan
= freeable
* 2;
370 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
371 nr_scanned
, nr_eligible
,
372 freeable
, delta
, total_scan
);
375 * Normally, we should not scan less than batch_size objects in one
376 * pass to avoid too frequent shrinker calls, but if the slab has less
377 * than batch_size objects in total and we are really tight on memory,
378 * we will try to reclaim all available objects, otherwise we can end
379 * up failing allocations although there are plenty of reclaimable
380 * objects spread over several slabs with usage less than the
383 * We detect the "tight on memory" situations by looking at the total
384 * number of objects we want to scan (total_scan). If it is greater
385 * than the total number of objects on slab (freeable), we must be
386 * scanning at high prio and therefore should try to reclaim as much as
389 while (total_scan
>= batch_size
||
390 total_scan
>= freeable
) {
392 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
394 shrinkctl
->nr_to_scan
= nr_to_scan
;
395 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
396 if (ret
== SHRINK_STOP
)
400 count_vm_events(SLABS_SCANNED
, nr_to_scan
);
401 total_scan
-= nr_to_scan
;
402 scanned
+= nr_to_scan
;
407 if (next_deferred
>= scanned
)
408 next_deferred
-= scanned
;
412 * move the unused scan count back into the shrinker in a
413 * manner that handles concurrent updates. If we exhausted the
414 * scan, there is no need to do an update.
416 if (next_deferred
> 0)
417 new_nr
= atomic_long_add_return(next_deferred
,
418 &shrinker
->nr_deferred
[nid
]);
420 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
422 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
427 * shrink_slab - shrink slab caches
428 * @gfp_mask: allocation context
429 * @nid: node whose slab caches to target
430 * @memcg: memory cgroup whose slab caches to target
431 * @nr_scanned: pressure numerator
432 * @nr_eligible: pressure denominator
434 * Call the shrink functions to age shrinkable caches.
436 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
437 * unaware shrinkers will receive a node id of 0 instead.
439 * @memcg specifies the memory cgroup to target. If it is not NULL,
440 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
441 * objects from the memory cgroup specified. Otherwise, only unaware
442 * shrinkers are called.
444 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
445 * the available objects should be scanned. Page reclaim for example
446 * passes the number of pages scanned and the number of pages on the
447 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
448 * when it encountered mapped pages. The ratio is further biased by
449 * the ->seeks setting of the shrink function, which indicates the
450 * cost to recreate an object relative to that of an LRU page.
452 * Returns the number of reclaimed slab objects.
454 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
455 struct mem_cgroup
*memcg
,
456 unsigned long nr_scanned
,
457 unsigned long nr_eligible
)
459 struct shrinker
*shrinker
;
460 unsigned long freed
= 0;
462 if (memcg
&& (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
)))
466 nr_scanned
= SWAP_CLUSTER_MAX
;
468 if (!down_read_trylock(&shrinker_rwsem
)) {
470 * If we would return 0, our callers would understand that we
471 * have nothing else to shrink and give up trying. By returning
472 * 1 we keep it going and assume we'll be able to shrink next
479 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
480 struct shrink_control sc
= {
481 .gfp_mask
= gfp_mask
,
487 * If kernel memory accounting is disabled, we ignore
488 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
489 * passing NULL for memcg.
491 if (memcg_kmem_enabled() &&
492 !!memcg
!= !!(shrinker
->flags
& SHRINKER_MEMCG_AWARE
))
495 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
498 freed
+= do_shrink_slab(&sc
, shrinker
, nr_scanned
, nr_eligible
);
501 up_read(&shrinker_rwsem
);
507 void drop_slab_node(int nid
)
512 struct mem_cgroup
*memcg
= NULL
;
516 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
,
518 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
519 } while (freed
> 10);
526 for_each_online_node(nid
)
530 static inline int is_page_cache_freeable(struct page
*page
)
533 * A freeable page cache page is referenced only by the caller
534 * that isolated the page, the page cache radix tree and
535 * optional buffer heads at page->private.
537 return page_count(page
) - page_has_private(page
) == 2;
540 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
542 if (current
->flags
& PF_SWAPWRITE
)
544 if (!inode_write_congested(inode
))
546 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
552 * We detected a synchronous write error writing a page out. Probably
553 * -ENOSPC. We need to propagate that into the address_space for a subsequent
554 * fsync(), msync() or close().
556 * The tricky part is that after writepage we cannot touch the mapping: nothing
557 * prevents it from being freed up. But we have a ref on the page and once
558 * that page is locked, the mapping is pinned.
560 * We're allowed to run sleeping lock_page() here because we know the caller has
563 static void handle_write_error(struct address_space
*mapping
,
564 struct page
*page
, int error
)
567 if (page_mapping(page
) == mapping
)
568 mapping_set_error(mapping
, error
);
572 /* possible outcome of pageout() */
574 /* failed to write page out, page is locked */
576 /* move page to the active list, page is locked */
578 /* page has been sent to the disk successfully, page is unlocked */
580 /* page is clean and locked */
585 * pageout is called by shrink_page_list() for each dirty page.
586 * Calls ->writepage().
588 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
589 struct scan_control
*sc
)
592 * If the page is dirty, only perform writeback if that write
593 * will be non-blocking. To prevent this allocation from being
594 * stalled by pagecache activity. But note that there may be
595 * stalls if we need to run get_block(). We could test
596 * PagePrivate for that.
598 * If this process is currently in __generic_file_write_iter() against
599 * this page's queue, we can perform writeback even if that
602 * If the page is swapcache, write it back even if that would
603 * block, for some throttling. This happens by accident, because
604 * swap_backing_dev_info is bust: it doesn't reflect the
605 * congestion state of the swapdevs. Easy to fix, if needed.
607 if (!is_page_cache_freeable(page
))
611 * Some data journaling orphaned pages can have
612 * page->mapping == NULL while being dirty with clean buffers.
614 if (page_has_private(page
)) {
615 if (try_to_free_buffers(page
)) {
616 ClearPageDirty(page
);
617 pr_info("%s: orphaned page\n", __func__
);
623 if (mapping
->a_ops
->writepage
== NULL
)
624 return PAGE_ACTIVATE
;
625 if (!may_write_to_inode(mapping
->host
, sc
))
628 if (clear_page_dirty_for_io(page
)) {
630 struct writeback_control wbc
= {
631 .sync_mode
= WB_SYNC_NONE
,
632 .nr_to_write
= SWAP_CLUSTER_MAX
,
634 .range_end
= LLONG_MAX
,
638 SetPageReclaim(page
);
639 res
= mapping
->a_ops
->writepage(page
, &wbc
);
641 handle_write_error(mapping
, page
, res
);
642 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
643 ClearPageReclaim(page
);
644 return PAGE_ACTIVATE
;
647 if (!PageWriteback(page
)) {
648 /* synchronous write or broken a_ops? */
649 ClearPageReclaim(page
);
651 trace_mm_vmscan_writepage(page
);
652 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
660 * Same as remove_mapping, but if the page is removed from the mapping, it
661 * gets returned with a refcount of 0.
663 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
668 BUG_ON(!PageLocked(page
));
669 BUG_ON(mapping
!= page_mapping(page
));
671 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
673 * The non racy check for a busy page.
675 * Must be careful with the order of the tests. When someone has
676 * a ref to the page, it may be possible that they dirty it then
677 * drop the reference. So if PageDirty is tested before page_count
678 * here, then the following race may occur:
680 * get_user_pages(&page);
681 * [user mapping goes away]
683 * !PageDirty(page) [good]
684 * SetPageDirty(page);
686 * !page_count(page) [good, discard it]
688 * [oops, our write_to data is lost]
690 * Reversing the order of the tests ensures such a situation cannot
691 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
692 * load is not satisfied before that of page->_refcount.
694 * Note that if SetPageDirty is always performed via set_page_dirty,
695 * and thus under tree_lock, then this ordering is not required.
697 if (!page_ref_freeze(page
, 2))
699 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
700 if (unlikely(PageDirty(page
))) {
701 page_ref_unfreeze(page
, 2);
705 if (PageSwapCache(page
)) {
706 swp_entry_t swap
= { .val
= page_private(page
) };
707 mem_cgroup_swapout(page
, swap
);
708 __delete_from_swap_cache(page
);
709 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
710 swapcache_free(swap
);
712 void (*freepage
)(struct page
*);
715 freepage
= mapping
->a_ops
->freepage
;
717 * Remember a shadow entry for reclaimed file cache in
718 * order to detect refaults, thus thrashing, later on.
720 * But don't store shadows in an address space that is
721 * already exiting. This is not just an optizimation,
722 * inode reclaim needs to empty out the radix tree or
723 * the nodes are lost. Don't plant shadows behind its
726 * We also don't store shadows for DAX mappings because the
727 * only page cache pages found in these are zero pages
728 * covering holes, and because we don't want to mix DAX
729 * exceptional entries and shadow exceptional entries in the
732 if (reclaimed
&& page_is_file_cache(page
) &&
733 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
734 shadow
= workingset_eviction(mapping
, page
);
735 __delete_from_page_cache(page
, shadow
);
736 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
738 if (freepage
!= NULL
)
745 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
750 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
751 * someone else has a ref on the page, abort and return 0. If it was
752 * successfully detached, return 1. Assumes the caller has a single ref on
755 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
757 if (__remove_mapping(mapping
, page
, false)) {
759 * Unfreezing the refcount with 1 rather than 2 effectively
760 * drops the pagecache ref for us without requiring another
763 page_ref_unfreeze(page
, 1);
770 * putback_lru_page - put previously isolated page onto appropriate LRU list
771 * @page: page to be put back to appropriate lru list
773 * Add previously isolated @page to appropriate LRU list.
774 * Page may still be unevictable for other reasons.
776 * lru_lock must not be held, interrupts must be enabled.
778 void putback_lru_page(struct page
*page
)
781 int was_unevictable
= PageUnevictable(page
);
783 VM_BUG_ON_PAGE(PageLRU(page
), page
);
786 ClearPageUnevictable(page
);
788 if (page_evictable(page
)) {
790 * For evictable pages, we can use the cache.
791 * In event of a race, worst case is we end up with an
792 * unevictable page on [in]active list.
793 * We know how to handle that.
795 is_unevictable
= false;
799 * Put unevictable pages directly on zone's unevictable
802 is_unevictable
= true;
803 add_page_to_unevictable_list(page
);
805 * When racing with an mlock or AS_UNEVICTABLE clearing
806 * (page is unlocked) make sure that if the other thread
807 * does not observe our setting of PG_lru and fails
808 * isolation/check_move_unevictable_pages,
809 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
810 * the page back to the evictable list.
812 * The other side is TestClearPageMlocked() or shmem_lock().
818 * page's status can change while we move it among lru. If an evictable
819 * page is on unevictable list, it never be freed. To avoid that,
820 * check after we added it to the list, again.
822 if (is_unevictable
&& page_evictable(page
)) {
823 if (!isolate_lru_page(page
)) {
827 /* This means someone else dropped this page from LRU
828 * So, it will be freed or putback to LRU again. There is
829 * nothing to do here.
833 if (was_unevictable
&& !is_unevictable
)
834 count_vm_event(UNEVICTABLE_PGRESCUED
);
835 else if (!was_unevictable
&& is_unevictable
)
836 count_vm_event(UNEVICTABLE_PGCULLED
);
838 put_page(page
); /* drop ref from isolate */
841 enum page_references
{
843 PAGEREF_RECLAIM_CLEAN
,
848 static enum page_references
page_check_references(struct page
*page
,
849 struct scan_control
*sc
)
851 int referenced_ptes
, referenced_page
;
852 unsigned long vm_flags
;
854 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
856 referenced_page
= TestClearPageReferenced(page
);
859 * Mlock lost the isolation race with us. Let try_to_unmap()
860 * move the page to the unevictable list.
862 if (vm_flags
& VM_LOCKED
)
863 return PAGEREF_RECLAIM
;
865 if (referenced_ptes
) {
866 if (PageSwapBacked(page
))
867 return PAGEREF_ACTIVATE
;
869 * All mapped pages start out with page table
870 * references from the instantiating fault, so we need
871 * to look twice if a mapped file page is used more
874 * Mark it and spare it for another trip around the
875 * inactive list. Another page table reference will
876 * lead to its activation.
878 * Note: the mark is set for activated pages as well
879 * so that recently deactivated but used pages are
882 SetPageReferenced(page
);
884 if (referenced_page
|| referenced_ptes
> 1)
885 return PAGEREF_ACTIVATE
;
888 * Activate file-backed executable pages after first usage.
890 if (vm_flags
& VM_EXEC
)
891 return PAGEREF_ACTIVATE
;
896 /* Reclaim if clean, defer dirty pages to writeback */
897 if (referenced_page
&& !PageSwapBacked(page
))
898 return PAGEREF_RECLAIM_CLEAN
;
900 return PAGEREF_RECLAIM
;
903 /* Check if a page is dirty or under writeback */
904 static void page_check_dirty_writeback(struct page
*page
,
905 bool *dirty
, bool *writeback
)
907 struct address_space
*mapping
;
910 * Anonymous pages are not handled by flushers and must be written
911 * from reclaim context. Do not stall reclaim based on them
913 if (!page_is_file_cache(page
)) {
919 /* By default assume that the page flags are accurate */
920 *dirty
= PageDirty(page
);
921 *writeback
= PageWriteback(page
);
923 /* Verify dirty/writeback state if the filesystem supports it */
924 if (!page_has_private(page
))
927 mapping
= page_mapping(page
);
928 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
929 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
933 * shrink_page_list() returns the number of reclaimed pages
935 static unsigned long shrink_page_list(struct list_head
*page_list
,
936 struct pglist_data
*pgdat
,
937 struct scan_control
*sc
,
938 enum ttu_flags ttu_flags
,
939 unsigned long *ret_nr_dirty
,
940 unsigned long *ret_nr_unqueued_dirty
,
941 unsigned long *ret_nr_congested
,
942 unsigned long *ret_nr_writeback
,
943 unsigned long *ret_nr_immediate
,
946 LIST_HEAD(ret_pages
);
947 LIST_HEAD(free_pages
);
949 unsigned long nr_unqueued_dirty
= 0;
950 unsigned long nr_dirty
= 0;
951 unsigned long nr_congested
= 0;
952 unsigned long nr_reclaimed
= 0;
953 unsigned long nr_writeback
= 0;
954 unsigned long nr_immediate
= 0;
958 while (!list_empty(page_list
)) {
959 struct address_space
*mapping
;
962 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
963 bool dirty
, writeback
;
964 bool lazyfree
= false;
965 int ret
= SWAP_SUCCESS
;
969 page
= lru_to_page(page_list
);
970 list_del(&page
->lru
);
972 if (!trylock_page(page
))
975 VM_BUG_ON_PAGE(PageActive(page
), page
);
979 if (unlikely(!page_evictable(page
)))
982 if (!sc
->may_unmap
&& page_mapped(page
))
985 /* Double the slab pressure for mapped and swapcache pages */
986 if (page_mapped(page
) || PageSwapCache(page
))
989 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
990 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
993 * The number of dirty pages determines if a zone is marked
994 * reclaim_congested which affects wait_iff_congested. kswapd
995 * will stall and start writing pages if the tail of the LRU
996 * is all dirty unqueued pages.
998 page_check_dirty_writeback(page
, &dirty
, &writeback
);
999 if (dirty
|| writeback
)
1002 if (dirty
&& !writeback
)
1003 nr_unqueued_dirty
++;
1006 * Treat this page as congested if the underlying BDI is or if
1007 * pages are cycling through the LRU so quickly that the
1008 * pages marked for immediate reclaim are making it to the
1009 * end of the LRU a second time.
1011 mapping
= page_mapping(page
);
1012 if (((dirty
|| writeback
) && mapping
&&
1013 inode_write_congested(mapping
->host
)) ||
1014 (writeback
&& PageReclaim(page
)))
1018 * If a page at the tail of the LRU is under writeback, there
1019 * are three cases to consider.
1021 * 1) If reclaim is encountering an excessive number of pages
1022 * under writeback and this page is both under writeback and
1023 * PageReclaim then it indicates that pages are being queued
1024 * for IO but are being recycled through the LRU before the
1025 * IO can complete. Waiting on the page itself risks an
1026 * indefinite stall if it is impossible to writeback the
1027 * page due to IO error or disconnected storage so instead
1028 * note that the LRU is being scanned too quickly and the
1029 * caller can stall after page list has been processed.
1031 * 2) Global or new memcg reclaim encounters a page that is
1032 * not marked for immediate reclaim, or the caller does not
1033 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1034 * not to fs). In this case mark the page for immediate
1035 * reclaim and continue scanning.
1037 * Require may_enter_fs because we would wait on fs, which
1038 * may not have submitted IO yet. And the loop driver might
1039 * enter reclaim, and deadlock if it waits on a page for
1040 * which it is needed to do the write (loop masks off
1041 * __GFP_IO|__GFP_FS for this reason); but more thought
1042 * would probably show more reasons.
1044 * 3) Legacy memcg encounters a page that is already marked
1045 * PageReclaim. memcg does not have any dirty pages
1046 * throttling so we could easily OOM just because too many
1047 * pages are in writeback and there is nothing else to
1048 * reclaim. Wait for the writeback to complete.
1050 if (PageWriteback(page
)) {
1052 if (current_is_kswapd() &&
1053 PageReclaim(page
) &&
1054 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1059 } else if (sane_reclaim(sc
) ||
1060 !PageReclaim(page
) || !may_enter_fs
) {
1062 * This is slightly racy - end_page_writeback()
1063 * might have just cleared PageReclaim, then
1064 * setting PageReclaim here end up interpreted
1065 * as PageReadahead - but that does not matter
1066 * enough to care. What we do want is for this
1067 * page to have PageReclaim set next time memcg
1068 * reclaim reaches the tests above, so it will
1069 * then wait_on_page_writeback() to avoid OOM;
1070 * and it's also appropriate in global reclaim.
1072 SetPageReclaim(page
);
1079 wait_on_page_writeback(page
);
1080 /* then go back and try same page again */
1081 list_add_tail(&page
->lru
, page_list
);
1087 references
= page_check_references(page
, sc
);
1089 switch (references
) {
1090 case PAGEREF_ACTIVATE
:
1091 goto activate_locked
;
1094 case PAGEREF_RECLAIM
:
1095 case PAGEREF_RECLAIM_CLEAN
:
1096 ; /* try to reclaim the page below */
1100 * Anonymous process memory has backing store?
1101 * Try to allocate it some swap space here.
1103 if (PageAnon(page
) && !PageSwapCache(page
)) {
1104 if (!(sc
->gfp_mask
& __GFP_IO
))
1106 if (!add_to_swap(page
, page_list
))
1107 goto activate_locked
;
1111 /* Adding to swap updated mapping */
1112 mapping
= page_mapping(page
);
1113 } else if (unlikely(PageTransHuge(page
))) {
1114 /* Split file THP */
1115 if (split_huge_page_to_list(page
, page_list
))
1119 VM_BUG_ON_PAGE(PageTransHuge(page
), page
);
1122 * The page is mapped into the page tables of one or more
1123 * processes. Try to unmap it here.
1125 if (page_mapped(page
) && mapping
) {
1126 switch (ret
= try_to_unmap(page
, lazyfree
?
1127 (ttu_flags
| TTU_BATCH_FLUSH
| TTU_LZFREE
) :
1128 (ttu_flags
| TTU_BATCH_FLUSH
))) {
1130 goto activate_locked
;
1138 ; /* try to free the page below */
1142 if (PageDirty(page
)) {
1144 * Only kswapd can writeback filesystem pages to
1145 * avoid risk of stack overflow but only writeback
1146 * if many dirty pages have been encountered.
1148 if (page_is_file_cache(page
) &&
1149 (!current_is_kswapd() ||
1150 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1152 * Immediately reclaim when written back.
1153 * Similar in principal to deactivate_page()
1154 * except we already have the page isolated
1155 * and know it's dirty
1157 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1158 SetPageReclaim(page
);
1163 if (references
== PAGEREF_RECLAIM_CLEAN
)
1167 if (!sc
->may_writepage
)
1171 * Page is dirty. Flush the TLB if a writable entry
1172 * potentially exists to avoid CPU writes after IO
1173 * starts and then write it out here.
1175 try_to_unmap_flush_dirty();
1176 switch (pageout(page
, mapping
, sc
)) {
1180 goto activate_locked
;
1182 if (PageWriteback(page
))
1184 if (PageDirty(page
))
1188 * A synchronous write - probably a ramdisk. Go
1189 * ahead and try to reclaim the page.
1191 if (!trylock_page(page
))
1193 if (PageDirty(page
) || PageWriteback(page
))
1195 mapping
= page_mapping(page
);
1197 ; /* try to free the page below */
1202 * If the page has buffers, try to free the buffer mappings
1203 * associated with this page. If we succeed we try to free
1206 * We do this even if the page is PageDirty().
1207 * try_to_release_page() does not perform I/O, but it is
1208 * possible for a page to have PageDirty set, but it is actually
1209 * clean (all its buffers are clean). This happens if the
1210 * buffers were written out directly, with submit_bh(). ext3
1211 * will do this, as well as the blockdev mapping.
1212 * try_to_release_page() will discover that cleanness and will
1213 * drop the buffers and mark the page clean - it can be freed.
1215 * Rarely, pages can have buffers and no ->mapping. These are
1216 * the pages which were not successfully invalidated in
1217 * truncate_complete_page(). We try to drop those buffers here
1218 * and if that worked, and the page is no longer mapped into
1219 * process address space (page_count == 1) it can be freed.
1220 * Otherwise, leave the page on the LRU so it is swappable.
1222 if (page_has_private(page
)) {
1223 if (!try_to_release_page(page
, sc
->gfp_mask
))
1224 goto activate_locked
;
1225 if (!mapping
&& page_count(page
) == 1) {
1227 if (put_page_testzero(page
))
1231 * rare race with speculative reference.
1232 * the speculative reference will free
1233 * this page shortly, so we may
1234 * increment nr_reclaimed here (and
1235 * leave it off the LRU).
1244 if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1248 * At this point, we have no other references and there is
1249 * no way to pick any more up (removed from LRU, removed
1250 * from pagecache). Can use non-atomic bitops now (and
1251 * we obviously don't have to worry about waking up a process
1252 * waiting on the page lock, because there are no references.
1254 __ClearPageLocked(page
);
1256 if (ret
== SWAP_LZFREE
)
1257 count_vm_event(PGLAZYFREED
);
1262 * Is there need to periodically free_page_list? It would
1263 * appear not as the counts should be low
1265 list_add(&page
->lru
, &free_pages
);
1269 if (PageSwapCache(page
))
1270 try_to_free_swap(page
);
1272 list_add(&page
->lru
, &ret_pages
);
1276 /* Not a candidate for swapping, so reclaim swap space. */
1277 if (PageSwapCache(page
) && mem_cgroup_swap_full(page
))
1278 try_to_free_swap(page
);
1279 VM_BUG_ON_PAGE(PageActive(page
), page
);
1280 SetPageActive(page
);
1285 list_add(&page
->lru
, &ret_pages
);
1286 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1289 mem_cgroup_uncharge_list(&free_pages
);
1290 try_to_unmap_flush();
1291 free_hot_cold_page_list(&free_pages
, true);
1293 list_splice(&ret_pages
, page_list
);
1294 count_vm_events(PGACTIVATE
, pgactivate
);
1296 *ret_nr_dirty
+= nr_dirty
;
1297 *ret_nr_congested
+= nr_congested
;
1298 *ret_nr_unqueued_dirty
+= nr_unqueued_dirty
;
1299 *ret_nr_writeback
+= nr_writeback
;
1300 *ret_nr_immediate
+= nr_immediate
;
1301 return nr_reclaimed
;
1304 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1305 struct list_head
*page_list
)
1307 struct scan_control sc
= {
1308 .gfp_mask
= GFP_KERNEL
,
1309 .priority
= DEF_PRIORITY
,
1312 unsigned long ret
, dummy1
, dummy2
, dummy3
, dummy4
, dummy5
;
1313 struct page
*page
, *next
;
1314 LIST_HEAD(clean_pages
);
1316 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1317 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1318 !__PageMovable(page
)) {
1319 ClearPageActive(page
);
1320 list_move(&page
->lru
, &clean_pages
);
1324 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1325 TTU_UNMAP
|TTU_IGNORE_ACCESS
,
1326 &dummy1
, &dummy2
, &dummy3
, &dummy4
, &dummy5
, true);
1327 list_splice(&clean_pages
, page_list
);
1328 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1333 * Attempt to remove the specified page from its LRU. Only take this page
1334 * if it is of the appropriate PageActive status. Pages which are being
1335 * freed elsewhere are also ignored.
1337 * page: page to consider
1338 * mode: one of the LRU isolation modes defined above
1340 * returns 0 on success, -ve errno on failure.
1342 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1346 /* Only take pages on the LRU. */
1350 /* Compaction should not handle unevictable pages but CMA can do so */
1351 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1357 * To minimise LRU disruption, the caller can indicate that it only
1358 * wants to isolate pages it will be able to operate on without
1359 * blocking - clean pages for the most part.
1361 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1362 * is used by reclaim when it is cannot write to backing storage
1364 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1365 * that it is possible to migrate without blocking
1367 if (mode
& (ISOLATE_CLEAN
|ISOLATE_ASYNC_MIGRATE
)) {
1368 /* All the caller can do on PageWriteback is block */
1369 if (PageWriteback(page
))
1372 if (PageDirty(page
)) {
1373 struct address_space
*mapping
;
1375 /* ISOLATE_CLEAN means only clean pages */
1376 if (mode
& ISOLATE_CLEAN
)
1380 * Only pages without mappings or that have a
1381 * ->migratepage callback are possible to migrate
1384 mapping
= page_mapping(page
);
1385 if (mapping
&& !mapping
->a_ops
->migratepage
)
1390 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1393 if (likely(get_page_unless_zero(page
))) {
1395 * Be careful not to clear PageLRU until after we're
1396 * sure the page is not being freed elsewhere -- the
1397 * page release code relies on it.
1408 * Update LRU sizes after isolating pages. The LRU size updates must
1409 * be complete before mem_cgroup_update_lru_size due to a santity check.
1411 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1412 enum lru_list lru
, unsigned long *nr_zone_taken
)
1416 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1417 if (!nr_zone_taken
[zid
])
1420 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1422 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1429 * zone_lru_lock is heavily contended. Some of the functions that
1430 * shrink the lists perform better by taking out a batch of pages
1431 * and working on them outside the LRU lock.
1433 * For pagecache intensive workloads, this function is the hottest
1434 * spot in the kernel (apart from copy_*_user functions).
1436 * Appropriate locks must be held before calling this function.
1438 * @nr_to_scan: The number of pages to look through on the list.
1439 * @lruvec: The LRU vector to pull pages from.
1440 * @dst: The temp list to put pages on to.
1441 * @nr_scanned: The number of pages that were scanned.
1442 * @sc: The scan_control struct for this reclaim session
1443 * @mode: One of the LRU isolation modes
1444 * @lru: LRU list id for isolating
1446 * returns how many pages were moved onto *@dst.
1448 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1449 struct lruvec
*lruvec
, struct list_head
*dst
,
1450 unsigned long *nr_scanned
, struct scan_control
*sc
,
1451 isolate_mode_t mode
, enum lru_list lru
)
1453 struct list_head
*src
= &lruvec
->lists
[lru
];
1454 unsigned long nr_taken
= 0;
1455 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1456 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1457 unsigned long scan
, nr_pages
;
1458 LIST_HEAD(pages_skipped
);
1460 for (scan
= 0; scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&&
1461 !list_empty(src
);) {
1464 page
= lru_to_page(src
);
1465 prefetchw_prev_lru_page(page
, src
, flags
);
1467 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1469 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1470 list_move(&page
->lru
, &pages_skipped
);
1471 nr_skipped
[page_zonenum(page
)]++;
1476 * Account for scanned and skipped separetly to avoid the pgdat
1477 * being prematurely marked unreclaimable by pgdat_reclaimable.
1481 switch (__isolate_lru_page(page
, mode
)) {
1483 nr_pages
= hpage_nr_pages(page
);
1484 nr_taken
+= nr_pages
;
1485 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1486 list_move(&page
->lru
, dst
);
1490 /* else it is being freed elsewhere */
1491 list_move(&page
->lru
, src
);
1500 * Splice any skipped pages to the start of the LRU list. Note that
1501 * this disrupts the LRU order when reclaiming for lower zones but
1502 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1503 * scanning would soon rescan the same pages to skip and put the
1504 * system at risk of premature OOM.
1506 if (!list_empty(&pages_skipped
)) {
1508 unsigned long total_skipped
= 0;
1510 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1511 if (!nr_skipped
[zid
])
1514 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1515 total_skipped
+= nr_skipped
[zid
];
1519 * Account skipped pages as a partial scan as the pgdat may be
1520 * close to unreclaimable. If the LRU list is empty, account
1521 * skipped pages as a full scan.
1523 scan
+= list_empty(src
) ? total_skipped
: total_skipped
>> 2;
1525 list_splice(&pages_skipped
, src
);
1528 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
, scan
,
1529 nr_taken
, mode
, is_file_lru(lru
));
1530 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1535 * isolate_lru_page - tries to isolate a page from its LRU list
1536 * @page: page to isolate from its LRU list
1538 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1539 * vmstat statistic corresponding to whatever LRU list the page was on.
1541 * Returns 0 if the page was removed from an LRU list.
1542 * Returns -EBUSY if the page was not on an LRU list.
1544 * The returned page will have PageLRU() cleared. If it was found on
1545 * the active list, it will have PageActive set. If it was found on
1546 * the unevictable list, it will have the PageUnevictable bit set. That flag
1547 * may need to be cleared by the caller before letting the page go.
1549 * The vmstat statistic corresponding to the list on which the page was
1550 * found will be decremented.
1553 * (1) Must be called with an elevated refcount on the page. This is a
1554 * fundamentnal difference from isolate_lru_pages (which is called
1555 * without a stable reference).
1556 * (2) the lru_lock must not be held.
1557 * (3) interrupts must be enabled.
1559 int isolate_lru_page(struct page
*page
)
1563 VM_BUG_ON_PAGE(!page_count(page
), page
);
1564 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1566 if (PageLRU(page
)) {
1567 struct zone
*zone
= page_zone(page
);
1568 struct lruvec
*lruvec
;
1570 spin_lock_irq(zone_lru_lock(zone
));
1571 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1572 if (PageLRU(page
)) {
1573 int lru
= page_lru(page
);
1576 del_page_from_lru_list(page
, lruvec
, lru
);
1579 spin_unlock_irq(zone_lru_lock(zone
));
1585 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1586 * then get resheduled. When there are massive number of tasks doing page
1587 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1588 * the LRU list will go small and be scanned faster than necessary, leading to
1589 * unnecessary swapping, thrashing and OOM.
1591 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1592 struct scan_control
*sc
)
1594 unsigned long inactive
, isolated
;
1596 if (current_is_kswapd())
1599 if (!sane_reclaim(sc
))
1603 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1604 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1606 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1607 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1611 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1612 * won't get blocked by normal direct-reclaimers, forming a circular
1615 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1618 return isolated
> inactive
;
1621 static noinline_for_stack
void
1622 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1624 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1625 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1626 LIST_HEAD(pages_to_free
);
1629 * Put back any unfreeable pages.
1631 while (!list_empty(page_list
)) {
1632 struct page
*page
= lru_to_page(page_list
);
1635 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1636 list_del(&page
->lru
);
1637 if (unlikely(!page_evictable(page
))) {
1638 spin_unlock_irq(&pgdat
->lru_lock
);
1639 putback_lru_page(page
);
1640 spin_lock_irq(&pgdat
->lru_lock
);
1644 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1647 lru
= page_lru(page
);
1648 add_page_to_lru_list(page
, lruvec
, lru
);
1650 if (is_active_lru(lru
)) {
1651 int file
= is_file_lru(lru
);
1652 int numpages
= hpage_nr_pages(page
);
1653 reclaim_stat
->recent_rotated
[file
] += numpages
;
1655 if (put_page_testzero(page
)) {
1656 __ClearPageLRU(page
);
1657 __ClearPageActive(page
);
1658 del_page_from_lru_list(page
, lruvec
, lru
);
1660 if (unlikely(PageCompound(page
))) {
1661 spin_unlock_irq(&pgdat
->lru_lock
);
1662 mem_cgroup_uncharge(page
);
1663 (*get_compound_page_dtor(page
))(page
);
1664 spin_lock_irq(&pgdat
->lru_lock
);
1666 list_add(&page
->lru
, &pages_to_free
);
1671 * To save our caller's stack, now use input list for pages to free.
1673 list_splice(&pages_to_free
, page_list
);
1677 * If a kernel thread (such as nfsd for loop-back mounts) services
1678 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1679 * In that case we should only throttle if the backing device it is
1680 * writing to is congested. In other cases it is safe to throttle.
1682 static int current_may_throttle(void)
1684 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1685 current
->backing_dev_info
== NULL
||
1686 bdi_write_congested(current
->backing_dev_info
);
1689 static bool inactive_reclaimable_pages(struct lruvec
*lruvec
,
1690 struct scan_control
*sc
, enum lru_list lru
)
1694 int file
= is_file_lru(lru
);
1695 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1697 if (!global_reclaim(sc
))
1700 for (zid
= sc
->reclaim_idx
; zid
>= 0; zid
--) {
1701 zone
= &pgdat
->node_zones
[zid
];
1702 if (!managed_zone(zone
))
1705 if (zone_page_state_snapshot(zone
, NR_ZONE_LRU_BASE
+
1706 LRU_FILE
* file
) >= SWAP_CLUSTER_MAX
)
1714 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1715 * of reclaimed pages
1717 static noinline_for_stack
unsigned long
1718 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1719 struct scan_control
*sc
, enum lru_list lru
)
1721 LIST_HEAD(page_list
);
1722 unsigned long nr_scanned
;
1723 unsigned long nr_reclaimed
= 0;
1724 unsigned long nr_taken
;
1725 unsigned long nr_dirty
= 0;
1726 unsigned long nr_congested
= 0;
1727 unsigned long nr_unqueued_dirty
= 0;
1728 unsigned long nr_writeback
= 0;
1729 unsigned long nr_immediate
= 0;
1730 isolate_mode_t isolate_mode
= 0;
1731 int file
= is_file_lru(lru
);
1732 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1733 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1735 if (!inactive_reclaimable_pages(lruvec
, sc
, lru
))
1738 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1739 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1741 /* We are about to die and free our memory. Return now. */
1742 if (fatal_signal_pending(current
))
1743 return SWAP_CLUSTER_MAX
;
1749 isolate_mode
|= ISOLATE_UNMAPPED
;
1750 if (!sc
->may_writepage
)
1751 isolate_mode
|= ISOLATE_CLEAN
;
1753 spin_lock_irq(&pgdat
->lru_lock
);
1755 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1756 &nr_scanned
, sc
, isolate_mode
, lru
);
1758 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1759 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1761 if (global_reclaim(sc
)) {
1762 __mod_node_page_state(pgdat
, NR_PAGES_SCANNED
, nr_scanned
);
1763 if (current_is_kswapd())
1764 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1766 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1768 spin_unlock_irq(&pgdat
->lru_lock
);
1773 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, TTU_UNMAP
,
1774 &nr_dirty
, &nr_unqueued_dirty
, &nr_congested
,
1775 &nr_writeback
, &nr_immediate
,
1778 spin_lock_irq(&pgdat
->lru_lock
);
1780 if (global_reclaim(sc
)) {
1781 if (current_is_kswapd())
1782 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1784 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1787 putback_inactive_pages(lruvec
, &page_list
);
1789 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1791 spin_unlock_irq(&pgdat
->lru_lock
);
1793 mem_cgroup_uncharge_list(&page_list
);
1794 free_hot_cold_page_list(&page_list
, true);
1797 * If reclaim is isolating dirty pages under writeback, it implies
1798 * that the long-lived page allocation rate is exceeding the page
1799 * laundering rate. Either the global limits are not being effective
1800 * at throttling processes due to the page distribution throughout
1801 * zones or there is heavy usage of a slow backing device. The
1802 * only option is to throttle from reclaim context which is not ideal
1803 * as there is no guarantee the dirtying process is throttled in the
1804 * same way balance_dirty_pages() manages.
1806 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1807 * of pages under pages flagged for immediate reclaim and stall if any
1808 * are encountered in the nr_immediate check below.
1810 if (nr_writeback
&& nr_writeback
== nr_taken
)
1811 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
1814 * Legacy memcg will stall in page writeback so avoid forcibly
1817 if (sane_reclaim(sc
)) {
1819 * Tag a zone as congested if all the dirty pages scanned were
1820 * backed by a congested BDI and wait_iff_congested will stall.
1822 if (nr_dirty
&& nr_dirty
== nr_congested
)
1823 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
1826 * If dirty pages are scanned that are not queued for IO, it
1827 * implies that flushers are not keeping up. In this case, flag
1828 * the pgdat PGDAT_DIRTY and kswapd will start writing pages from
1831 if (nr_unqueued_dirty
== nr_taken
)
1832 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
1835 * If kswapd scans pages marked marked for immediate
1836 * reclaim and under writeback (nr_immediate), it implies
1837 * that pages are cycling through the LRU faster than
1838 * they are written so also forcibly stall.
1840 if (nr_immediate
&& current_may_throttle())
1841 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
1845 * Stall direct reclaim for IO completions if underlying BDIs or zone
1846 * is congested. Allow kswapd to continue until it starts encountering
1847 * unqueued dirty pages or cycling through the LRU too quickly.
1849 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
1850 current_may_throttle())
1851 wait_iff_congested(pgdat
, BLK_RW_ASYNC
, HZ
/10);
1853 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
1854 nr_scanned
, nr_reclaimed
,
1855 sc
->priority
, file
);
1856 return nr_reclaimed
;
1860 * This moves pages from the active list to the inactive list.
1862 * We move them the other way if the page is referenced by one or more
1863 * processes, from rmap.
1865 * If the pages are mostly unmapped, the processing is fast and it is
1866 * appropriate to hold zone_lru_lock across the whole operation. But if
1867 * the pages are mapped, the processing is slow (page_referenced()) so we
1868 * should drop zone_lru_lock around each page. It's impossible to balance
1869 * this, so instead we remove the pages from the LRU while processing them.
1870 * It is safe to rely on PG_active against the non-LRU pages in here because
1871 * nobody will play with that bit on a non-LRU page.
1873 * The downside is that we have to touch page->_refcount against each page.
1874 * But we had to alter page->flags anyway.
1877 static void move_active_pages_to_lru(struct lruvec
*lruvec
,
1878 struct list_head
*list
,
1879 struct list_head
*pages_to_free
,
1882 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1883 unsigned long pgmoved
= 0;
1887 while (!list_empty(list
)) {
1888 page
= lru_to_page(list
);
1889 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1891 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1894 nr_pages
= hpage_nr_pages(page
);
1895 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
1896 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
1897 pgmoved
+= nr_pages
;
1899 if (put_page_testzero(page
)) {
1900 __ClearPageLRU(page
);
1901 __ClearPageActive(page
);
1902 del_page_from_lru_list(page
, lruvec
, lru
);
1904 if (unlikely(PageCompound(page
))) {
1905 spin_unlock_irq(&pgdat
->lru_lock
);
1906 mem_cgroup_uncharge(page
);
1907 (*get_compound_page_dtor(page
))(page
);
1908 spin_lock_irq(&pgdat
->lru_lock
);
1910 list_add(&page
->lru
, pages_to_free
);
1914 if (!is_active_lru(lru
))
1915 __count_vm_events(PGDEACTIVATE
, pgmoved
);
1918 static void shrink_active_list(unsigned long nr_to_scan
,
1919 struct lruvec
*lruvec
,
1920 struct scan_control
*sc
,
1923 unsigned long nr_taken
;
1924 unsigned long nr_scanned
;
1925 unsigned long vm_flags
;
1926 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1927 LIST_HEAD(l_active
);
1928 LIST_HEAD(l_inactive
);
1930 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1931 unsigned long nr_rotated
= 0;
1932 isolate_mode_t isolate_mode
= 0;
1933 int file
= is_file_lru(lru
);
1934 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1939 isolate_mode
|= ISOLATE_UNMAPPED
;
1940 if (!sc
->may_writepage
)
1941 isolate_mode
|= ISOLATE_CLEAN
;
1943 spin_lock_irq(&pgdat
->lru_lock
);
1945 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
1946 &nr_scanned
, sc
, isolate_mode
, lru
);
1948 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1949 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1951 if (global_reclaim(sc
))
1952 __mod_node_page_state(pgdat
, NR_PAGES_SCANNED
, nr_scanned
);
1953 __count_vm_events(PGREFILL
, nr_scanned
);
1955 spin_unlock_irq(&pgdat
->lru_lock
);
1957 while (!list_empty(&l_hold
)) {
1959 page
= lru_to_page(&l_hold
);
1960 list_del(&page
->lru
);
1962 if (unlikely(!page_evictable(page
))) {
1963 putback_lru_page(page
);
1967 if (unlikely(buffer_heads_over_limit
)) {
1968 if (page_has_private(page
) && trylock_page(page
)) {
1969 if (page_has_private(page
))
1970 try_to_release_page(page
, 0);
1975 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
1977 nr_rotated
+= hpage_nr_pages(page
);
1979 * Identify referenced, file-backed active pages and
1980 * give them one more trip around the active list. So
1981 * that executable code get better chances to stay in
1982 * memory under moderate memory pressure. Anon pages
1983 * are not likely to be evicted by use-once streaming
1984 * IO, plus JVM can create lots of anon VM_EXEC pages,
1985 * so we ignore them here.
1987 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
1988 list_add(&page
->lru
, &l_active
);
1993 ClearPageActive(page
); /* we are de-activating */
1994 list_add(&page
->lru
, &l_inactive
);
1998 * Move pages back to the lru list.
2000 spin_lock_irq(&pgdat
->lru_lock
);
2002 * Count referenced pages from currently used mappings as rotated,
2003 * even though only some of them are actually re-activated. This
2004 * helps balance scan pressure between file and anonymous pages in
2007 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2009 move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
2010 move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
2011 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2012 spin_unlock_irq(&pgdat
->lru_lock
);
2014 mem_cgroup_uncharge_list(&l_hold
);
2015 free_hot_cold_page_list(&l_hold
, true);
2019 * The inactive anon list should be small enough that the VM never has
2020 * to do too much work.
2022 * The inactive file list should be small enough to leave most memory
2023 * to the established workingset on the scan-resistant active list,
2024 * but large enough to avoid thrashing the aggregate readahead window.
2026 * Both inactive lists should also be large enough that each inactive
2027 * page has a chance to be referenced again before it is reclaimed.
2029 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2030 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2031 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2034 * memory ratio inactive
2035 * -------------------------------------
2044 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2045 struct scan_control
*sc
)
2047 unsigned long inactive_ratio
;
2048 unsigned long inactive
, active
;
2049 enum lru_list inactive_lru
= file
* LRU_FILE
;
2050 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2054 * If we don't have swap space, anonymous page deactivation
2057 if (!file
&& !total_swap_pages
)
2060 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2061 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2063 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2065 inactive_ratio
= int_sqrt(10 * gb
);
2069 return inactive
* inactive_ratio
< active
;
2072 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2073 struct lruvec
*lruvec
, struct scan_control
*sc
)
2075 if (is_active_lru(lru
)) {
2076 if (inactive_list_is_low(lruvec
, is_file_lru(lru
), sc
))
2077 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2081 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2092 * Determine how aggressively the anon and file LRU lists should be
2093 * scanned. The relative value of each set of LRU lists is determined
2094 * by looking at the fraction of the pages scanned we did rotate back
2095 * onto the active list instead of evict.
2097 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2098 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2100 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2101 struct scan_control
*sc
, unsigned long *nr
,
2102 unsigned long *lru_pages
)
2104 int swappiness
= mem_cgroup_swappiness(memcg
);
2105 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2107 u64 denominator
= 0; /* gcc */
2108 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2109 unsigned long anon_prio
, file_prio
;
2110 enum scan_balance scan_balance
;
2111 unsigned long anon
, file
;
2112 bool force_scan
= false;
2113 unsigned long ap
, fp
;
2119 * If the zone or memcg is small, nr[l] can be 0. This
2120 * results in no scanning on this priority and a potential
2121 * priority drop. Global direct reclaim can go to the next
2122 * zone and tends to have no problems. Global kswapd is for
2123 * zone balancing and it needs to scan a minimum amount. When
2124 * reclaiming for a memcg, a priority drop can cause high
2125 * latencies, so it's better to scan a minimum amount there as
2128 if (current_is_kswapd()) {
2129 if (!pgdat_reclaimable(pgdat
))
2131 if (!mem_cgroup_online(memcg
))
2134 if (!global_reclaim(sc
))
2137 /* If we have no swap space, do not bother scanning anon pages. */
2138 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2139 scan_balance
= SCAN_FILE
;
2144 * Global reclaim will swap to prevent OOM even with no
2145 * swappiness, but memcg users want to use this knob to
2146 * disable swapping for individual groups completely when
2147 * using the memory controller's swap limit feature would be
2150 if (!global_reclaim(sc
) && !swappiness
) {
2151 scan_balance
= SCAN_FILE
;
2156 * Do not apply any pressure balancing cleverness when the
2157 * system is close to OOM, scan both anon and file equally
2158 * (unless the swappiness setting disagrees with swapping).
2160 if (!sc
->priority
&& swappiness
) {
2161 scan_balance
= SCAN_EQUAL
;
2166 * Prevent the reclaimer from falling into the cache trap: as
2167 * cache pages start out inactive, every cache fault will tip
2168 * the scan balance towards the file LRU. And as the file LRU
2169 * shrinks, so does the window for rotation from references.
2170 * This means we have a runaway feedback loop where a tiny
2171 * thrashing file LRU becomes infinitely more attractive than
2172 * anon pages. Try to detect this based on file LRU size.
2174 if (global_reclaim(sc
)) {
2175 unsigned long pgdatfile
;
2176 unsigned long pgdatfree
;
2178 unsigned long total_high_wmark
= 0;
2180 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2181 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2182 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2184 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2185 struct zone
*zone
= &pgdat
->node_zones
[z
];
2186 if (!managed_zone(zone
))
2189 total_high_wmark
+= high_wmark_pages(zone
);
2192 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2193 scan_balance
= SCAN_ANON
;
2199 * If there is enough inactive page cache, i.e. if the size of the
2200 * inactive list is greater than that of the active list *and* the
2201 * inactive list actually has some pages to scan on this priority, we
2202 * do not reclaim anything from the anonymous working set right now.
2203 * Without the second condition we could end up never scanning an
2204 * lruvec even if it has plenty of old anonymous pages unless the
2205 * system is under heavy pressure.
2207 if (!inactive_list_is_low(lruvec
, true, sc
) &&
2208 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2209 scan_balance
= SCAN_FILE
;
2213 scan_balance
= SCAN_FRACT
;
2216 * With swappiness at 100, anonymous and file have the same priority.
2217 * This scanning priority is essentially the inverse of IO cost.
2219 anon_prio
= swappiness
;
2220 file_prio
= 200 - anon_prio
;
2223 * OK, so we have swap space and a fair amount of page cache
2224 * pages. We use the recently rotated / recently scanned
2225 * ratios to determine how valuable each cache is.
2227 * Because workloads change over time (and to avoid overflow)
2228 * we keep these statistics as a floating average, which ends
2229 * up weighing recent references more than old ones.
2231 * anon in [0], file in [1]
2234 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2235 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2236 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2237 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2239 spin_lock_irq(&pgdat
->lru_lock
);
2240 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2241 reclaim_stat
->recent_scanned
[0] /= 2;
2242 reclaim_stat
->recent_rotated
[0] /= 2;
2245 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2246 reclaim_stat
->recent_scanned
[1] /= 2;
2247 reclaim_stat
->recent_rotated
[1] /= 2;
2251 * The amount of pressure on anon vs file pages is inversely
2252 * proportional to the fraction of recently scanned pages on
2253 * each list that were recently referenced and in active use.
2255 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2256 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2258 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2259 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2260 spin_unlock_irq(&pgdat
->lru_lock
);
2264 denominator
= ap
+ fp
+ 1;
2266 some_scanned
= false;
2267 /* Only use force_scan on second pass. */
2268 for (pass
= 0; !some_scanned
&& pass
< 2; pass
++) {
2270 for_each_evictable_lru(lru
) {
2271 int file
= is_file_lru(lru
);
2275 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2276 scan
= size
>> sc
->priority
;
2278 if (!scan
&& pass
&& force_scan
)
2279 scan
= min(size
, SWAP_CLUSTER_MAX
);
2281 switch (scan_balance
) {
2283 /* Scan lists relative to size */
2287 * Scan types proportional to swappiness and
2288 * their relative recent reclaim efficiency.
2290 scan
= div64_u64(scan
* fraction
[file
],
2295 /* Scan one type exclusively */
2296 if ((scan_balance
== SCAN_FILE
) != file
) {
2302 /* Look ma, no brain */
2310 * Skip the second pass and don't force_scan,
2311 * if we found something to scan.
2313 some_scanned
|= !!scan
;
2319 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2321 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2322 struct scan_control
*sc
, unsigned long *lru_pages
)
2324 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2325 unsigned long nr
[NR_LRU_LISTS
];
2326 unsigned long targets
[NR_LRU_LISTS
];
2327 unsigned long nr_to_scan
;
2329 unsigned long nr_reclaimed
= 0;
2330 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2331 struct blk_plug plug
;
2334 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2336 /* Record the original scan target for proportional adjustments later */
2337 memcpy(targets
, nr
, sizeof(nr
));
2340 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2341 * event that can occur when there is little memory pressure e.g.
2342 * multiple streaming readers/writers. Hence, we do not abort scanning
2343 * when the requested number of pages are reclaimed when scanning at
2344 * DEF_PRIORITY on the assumption that the fact we are direct
2345 * reclaiming implies that kswapd is not keeping up and it is best to
2346 * do a batch of work at once. For memcg reclaim one check is made to
2347 * abort proportional reclaim if either the file or anon lru has already
2348 * dropped to zero at the first pass.
2350 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2351 sc
->priority
== DEF_PRIORITY
);
2353 blk_start_plug(&plug
);
2354 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2355 nr
[LRU_INACTIVE_FILE
]) {
2356 unsigned long nr_anon
, nr_file
, percentage
;
2357 unsigned long nr_scanned
;
2359 for_each_evictable_lru(lru
) {
2361 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2362 nr
[lru
] -= nr_to_scan
;
2364 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2371 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2375 * For kswapd and memcg, reclaim at least the number of pages
2376 * requested. Ensure that the anon and file LRUs are scanned
2377 * proportionally what was requested by get_scan_count(). We
2378 * stop reclaiming one LRU and reduce the amount scanning
2379 * proportional to the original scan target.
2381 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2382 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2385 * It's just vindictive to attack the larger once the smaller
2386 * has gone to zero. And given the way we stop scanning the
2387 * smaller below, this makes sure that we only make one nudge
2388 * towards proportionality once we've got nr_to_reclaim.
2390 if (!nr_file
|| !nr_anon
)
2393 if (nr_file
> nr_anon
) {
2394 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2395 targets
[LRU_ACTIVE_ANON
] + 1;
2397 percentage
= nr_anon
* 100 / scan_target
;
2399 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2400 targets
[LRU_ACTIVE_FILE
] + 1;
2402 percentage
= nr_file
* 100 / scan_target
;
2405 /* Stop scanning the smaller of the LRU */
2407 nr
[lru
+ LRU_ACTIVE
] = 0;
2410 * Recalculate the other LRU scan count based on its original
2411 * scan target and the percentage scanning already complete
2413 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2414 nr_scanned
= targets
[lru
] - nr
[lru
];
2415 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2416 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2419 nr_scanned
= targets
[lru
] - nr
[lru
];
2420 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2421 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2423 scan_adjusted
= true;
2425 blk_finish_plug(&plug
);
2426 sc
->nr_reclaimed
+= nr_reclaimed
;
2429 * Even if we did not try to evict anon pages at all, we want to
2430 * rebalance the anon lru active/inactive ratio.
2432 if (inactive_list_is_low(lruvec
, false, sc
))
2433 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2434 sc
, LRU_ACTIVE_ANON
);
2437 /* Use reclaim/compaction for costly allocs or under memory pressure */
2438 static bool in_reclaim_compaction(struct scan_control
*sc
)
2440 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2441 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2442 sc
->priority
< DEF_PRIORITY
- 2))
2449 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2450 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2451 * true if more pages should be reclaimed such that when the page allocator
2452 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2453 * It will give up earlier than that if there is difficulty reclaiming pages.
2455 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2456 unsigned long nr_reclaimed
,
2457 unsigned long nr_scanned
,
2458 struct scan_control
*sc
)
2460 unsigned long pages_for_compaction
;
2461 unsigned long inactive_lru_pages
;
2464 /* If not in reclaim/compaction mode, stop */
2465 if (!in_reclaim_compaction(sc
))
2468 /* Consider stopping depending on scan and reclaim activity */
2469 if (sc
->gfp_mask
& __GFP_REPEAT
) {
2471 * For __GFP_REPEAT allocations, stop reclaiming if the
2472 * full LRU list has been scanned and we are still failing
2473 * to reclaim pages. This full LRU scan is potentially
2474 * expensive but a __GFP_REPEAT caller really wants to succeed
2476 if (!nr_reclaimed
&& !nr_scanned
)
2480 * For non-__GFP_REPEAT allocations which can presumably
2481 * fail without consequence, stop if we failed to reclaim
2482 * any pages from the last SWAP_CLUSTER_MAX number of
2483 * pages that were scanned. This will return to the
2484 * caller faster at the risk reclaim/compaction and
2485 * the resulting allocation attempt fails
2492 * If we have not reclaimed enough pages for compaction and the
2493 * inactive lists are large enough, continue reclaiming
2495 pages_for_compaction
= compact_gap(sc
->order
);
2496 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2497 if (get_nr_swap_pages() > 0)
2498 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2499 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2500 inactive_lru_pages
> pages_for_compaction
)
2503 /* If compaction would go ahead or the allocation would succeed, stop */
2504 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2505 struct zone
*zone
= &pgdat
->node_zones
[z
];
2506 if (!managed_zone(zone
))
2509 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2510 case COMPACT_SUCCESS
:
2511 case COMPACT_CONTINUE
:
2514 /* check next zone */
2521 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2523 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2524 unsigned long nr_reclaimed
, nr_scanned
;
2525 bool reclaimable
= false;
2528 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2529 struct mem_cgroup_reclaim_cookie reclaim
= {
2531 .priority
= sc
->priority
,
2533 unsigned long node_lru_pages
= 0;
2534 struct mem_cgroup
*memcg
;
2536 nr_reclaimed
= sc
->nr_reclaimed
;
2537 nr_scanned
= sc
->nr_scanned
;
2539 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2541 unsigned long lru_pages
;
2542 unsigned long reclaimed
;
2543 unsigned long scanned
;
2545 if (mem_cgroup_low(root
, memcg
)) {
2546 if (!sc
->may_thrash
)
2548 mem_cgroup_events(memcg
, MEMCG_LOW
, 1);
2551 reclaimed
= sc
->nr_reclaimed
;
2552 scanned
= sc
->nr_scanned
;
2554 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2555 node_lru_pages
+= lru_pages
;
2558 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2559 memcg
, sc
->nr_scanned
- scanned
,
2562 /* Record the group's reclaim efficiency */
2563 vmpressure(sc
->gfp_mask
, memcg
, false,
2564 sc
->nr_scanned
- scanned
,
2565 sc
->nr_reclaimed
- reclaimed
);
2568 * Direct reclaim and kswapd have to scan all memory
2569 * cgroups to fulfill the overall scan target for the
2572 * Limit reclaim, on the other hand, only cares about
2573 * nr_to_reclaim pages to be reclaimed and it will
2574 * retry with decreasing priority if one round over the
2575 * whole hierarchy is not sufficient.
2577 if (!global_reclaim(sc
) &&
2578 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2579 mem_cgroup_iter_break(root
, memcg
);
2582 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2585 * Shrink the slab caches in the same proportion that
2586 * the eligible LRU pages were scanned.
2588 if (global_reclaim(sc
))
2589 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
, NULL
,
2590 sc
->nr_scanned
- nr_scanned
,
2593 if (reclaim_state
) {
2594 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2595 reclaim_state
->reclaimed_slab
= 0;
2598 /* Record the subtree's reclaim efficiency */
2599 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2600 sc
->nr_scanned
- nr_scanned
,
2601 sc
->nr_reclaimed
- nr_reclaimed
);
2603 if (sc
->nr_reclaimed
- nr_reclaimed
)
2606 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2607 sc
->nr_scanned
- nr_scanned
, sc
));
2613 * Returns true if compaction should go ahead for a costly-order request, or
2614 * the allocation would already succeed without compaction. Return false if we
2615 * should reclaim first.
2617 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2619 unsigned long watermark
;
2620 enum compact_result suitable
;
2622 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2623 if (suitable
== COMPACT_SUCCESS
)
2624 /* Allocation should succeed already. Don't reclaim. */
2626 if (suitable
== COMPACT_SKIPPED
)
2627 /* Compaction cannot yet proceed. Do reclaim. */
2631 * Compaction is already possible, but it takes time to run and there
2632 * are potentially other callers using the pages just freed. So proceed
2633 * with reclaim to make a buffer of free pages available to give
2634 * compaction a reasonable chance of completing and allocating the page.
2635 * Note that we won't actually reclaim the whole buffer in one attempt
2636 * as the target watermark in should_continue_reclaim() is lower. But if
2637 * we are already above the high+gap watermark, don't reclaim at all.
2639 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2641 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2645 * This is the direct reclaim path, for page-allocating processes. We only
2646 * try to reclaim pages from zones which will satisfy the caller's allocation
2649 * If a zone is deemed to be full of pinned pages then just give it a light
2650 * scan then give up on it.
2652 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2656 unsigned long nr_soft_reclaimed
;
2657 unsigned long nr_soft_scanned
;
2659 pg_data_t
*last_pgdat
= NULL
;
2662 * If the number of buffer_heads in the machine exceeds the maximum
2663 * allowed level, force direct reclaim to scan the highmem zone as
2664 * highmem pages could be pinning lowmem pages storing buffer_heads
2666 orig_mask
= sc
->gfp_mask
;
2667 if (buffer_heads_over_limit
) {
2668 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2669 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2672 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2673 sc
->reclaim_idx
, sc
->nodemask
) {
2675 * Take care memory controller reclaiming has small influence
2678 if (global_reclaim(sc
)) {
2679 if (!cpuset_zone_allowed(zone
,
2680 GFP_KERNEL
| __GFP_HARDWALL
))
2683 if (sc
->priority
!= DEF_PRIORITY
&&
2684 !pgdat_reclaimable(zone
->zone_pgdat
))
2685 continue; /* Let kswapd poll it */
2688 * If we already have plenty of memory free for
2689 * compaction in this zone, don't free any more.
2690 * Even though compaction is invoked for any
2691 * non-zero order, only frequent costly order
2692 * reclamation is disruptive enough to become a
2693 * noticeable problem, like transparent huge
2696 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2697 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2698 compaction_ready(zone
, sc
)) {
2699 sc
->compaction_ready
= true;
2704 * Shrink each node in the zonelist once. If the
2705 * zonelist is ordered by zone (not the default) then a
2706 * node may be shrunk multiple times but in that case
2707 * the user prefers lower zones being preserved.
2709 if (zone
->zone_pgdat
== last_pgdat
)
2713 * This steals pages from memory cgroups over softlimit
2714 * and returns the number of reclaimed pages and
2715 * scanned pages. This works for global memory pressure
2716 * and balancing, not for a memcg's limit.
2718 nr_soft_scanned
= 0;
2719 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2720 sc
->order
, sc
->gfp_mask
,
2722 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2723 sc
->nr_scanned
+= nr_soft_scanned
;
2724 /* need some check for avoid more shrink_zone() */
2727 /* See comment about same check for global reclaim above */
2728 if (zone
->zone_pgdat
== last_pgdat
)
2730 last_pgdat
= zone
->zone_pgdat
;
2731 shrink_node(zone
->zone_pgdat
, sc
);
2735 * Restore to original mask to avoid the impact on the caller if we
2736 * promoted it to __GFP_HIGHMEM.
2738 sc
->gfp_mask
= orig_mask
;
2742 * This is the main entry point to direct page reclaim.
2744 * If a full scan of the inactive list fails to free enough memory then we
2745 * are "out of memory" and something needs to be killed.
2747 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2748 * high - the zone may be full of dirty or under-writeback pages, which this
2749 * caller can't do much about. We kick the writeback threads and take explicit
2750 * naps in the hope that some of these pages can be written. But if the
2751 * allocating task holds filesystem locks which prevent writeout this might not
2752 * work, and the allocation attempt will fail.
2754 * returns: 0, if no pages reclaimed
2755 * else, the number of pages reclaimed
2757 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
2758 struct scan_control
*sc
)
2760 int initial_priority
= sc
->priority
;
2761 unsigned long total_scanned
= 0;
2762 unsigned long writeback_threshold
;
2764 delayacct_freepages_start();
2766 if (global_reclaim(sc
))
2767 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
2770 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
2773 shrink_zones(zonelist
, sc
);
2775 total_scanned
+= sc
->nr_scanned
;
2776 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
2779 if (sc
->compaction_ready
)
2783 * If we're getting trouble reclaiming, start doing
2784 * writepage even in laptop mode.
2786 if (sc
->priority
< DEF_PRIORITY
- 2)
2787 sc
->may_writepage
= 1;
2790 * Try to write back as many pages as we just scanned. This
2791 * tends to cause slow streaming writers to write data to the
2792 * disk smoothly, at the dirtying rate, which is nice. But
2793 * that's undesirable in laptop mode, where we *want* lumpy
2794 * writeout. So in laptop mode, write out the whole world.
2796 writeback_threshold
= sc
->nr_to_reclaim
+ sc
->nr_to_reclaim
/ 2;
2797 if (total_scanned
> writeback_threshold
) {
2798 wakeup_flusher_threads(laptop_mode
? 0 : total_scanned
,
2799 WB_REASON_TRY_TO_FREE_PAGES
);
2800 sc
->may_writepage
= 1;
2802 } while (--sc
->priority
>= 0);
2804 delayacct_freepages_end();
2806 if (sc
->nr_reclaimed
)
2807 return sc
->nr_reclaimed
;
2809 /* Aborted reclaim to try compaction? don't OOM, then */
2810 if (sc
->compaction_ready
)
2813 /* Untapped cgroup reserves? Don't OOM, retry. */
2814 if (!sc
->may_thrash
) {
2815 sc
->priority
= initial_priority
;
2823 static bool pfmemalloc_watermark_ok(pg_data_t
*pgdat
)
2826 unsigned long pfmemalloc_reserve
= 0;
2827 unsigned long free_pages
= 0;
2831 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
2832 zone
= &pgdat
->node_zones
[i
];
2833 if (!managed_zone(zone
) ||
2834 pgdat_reclaimable_pages(pgdat
) == 0)
2837 pfmemalloc_reserve
+= min_wmark_pages(zone
);
2838 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
2841 /* If there are no reserves (unexpected config) then do not throttle */
2842 if (!pfmemalloc_reserve
)
2845 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
2847 /* kswapd must be awake if processes are being throttled */
2848 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
2849 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
2850 (enum zone_type
)ZONE_NORMAL
);
2851 wake_up_interruptible(&pgdat
->kswapd_wait
);
2858 * Throttle direct reclaimers if backing storage is backed by the network
2859 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2860 * depleted. kswapd will continue to make progress and wake the processes
2861 * when the low watermark is reached.
2863 * Returns true if a fatal signal was delivered during throttling. If this
2864 * happens, the page allocator should not consider triggering the OOM killer.
2866 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
2867 nodemask_t
*nodemask
)
2871 pg_data_t
*pgdat
= NULL
;
2874 * Kernel threads should not be throttled as they may be indirectly
2875 * responsible for cleaning pages necessary for reclaim to make forward
2876 * progress. kjournald for example may enter direct reclaim while
2877 * committing a transaction where throttling it could forcing other
2878 * processes to block on log_wait_commit().
2880 if (current
->flags
& PF_KTHREAD
)
2884 * If a fatal signal is pending, this process should not throttle.
2885 * It should return quickly so it can exit and free its memory
2887 if (fatal_signal_pending(current
))
2891 * Check if the pfmemalloc reserves are ok by finding the first node
2892 * with a usable ZONE_NORMAL or lower zone. The expectation is that
2893 * GFP_KERNEL will be required for allocating network buffers when
2894 * swapping over the network so ZONE_HIGHMEM is unusable.
2896 * Throttling is based on the first usable node and throttled processes
2897 * wait on a queue until kswapd makes progress and wakes them. There
2898 * is an affinity then between processes waking up and where reclaim
2899 * progress has been made assuming the process wakes on the same node.
2900 * More importantly, processes running on remote nodes will not compete
2901 * for remote pfmemalloc reserves and processes on different nodes
2902 * should make reasonable progress.
2904 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2905 gfp_zone(gfp_mask
), nodemask
) {
2906 if (zone_idx(zone
) > ZONE_NORMAL
)
2909 /* Throttle based on the first usable node */
2910 pgdat
= zone
->zone_pgdat
;
2911 if (pfmemalloc_watermark_ok(pgdat
))
2916 /* If no zone was usable by the allocation flags then do not throttle */
2920 /* Account for the throttling */
2921 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
2924 * If the caller cannot enter the filesystem, it's possible that it
2925 * is due to the caller holding an FS lock or performing a journal
2926 * transaction in the case of a filesystem like ext[3|4]. In this case,
2927 * it is not safe to block on pfmemalloc_wait as kswapd could be
2928 * blocked waiting on the same lock. Instead, throttle for up to a
2929 * second before continuing.
2931 if (!(gfp_mask
& __GFP_FS
)) {
2932 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
2933 pfmemalloc_watermark_ok(pgdat
), HZ
);
2938 /* Throttle until kswapd wakes the process */
2939 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
2940 pfmemalloc_watermark_ok(pgdat
));
2943 if (fatal_signal_pending(current
))
2950 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
2951 gfp_t gfp_mask
, nodemask_t
*nodemask
)
2953 unsigned long nr_reclaimed
;
2954 struct scan_control sc
= {
2955 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2956 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
2957 .reclaim_idx
= gfp_zone(gfp_mask
),
2959 .nodemask
= nodemask
,
2960 .priority
= DEF_PRIORITY
,
2961 .may_writepage
= !laptop_mode
,
2967 * Do not enter reclaim if fatal signal was delivered while throttled.
2968 * 1 is returned so that the page allocator does not OOM kill at this
2971 if (throttle_direct_reclaim(gfp_mask
, zonelist
, nodemask
))
2974 trace_mm_vmscan_direct_reclaim_begin(order
,
2979 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
2981 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
2983 return nr_reclaimed
;
2988 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
2989 gfp_t gfp_mask
, bool noswap
,
2991 unsigned long *nr_scanned
)
2993 struct scan_control sc
= {
2994 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
2995 .target_mem_cgroup
= memcg
,
2996 .may_writepage
= !laptop_mode
,
2998 .reclaim_idx
= MAX_NR_ZONES
- 1,
2999 .may_swap
= !noswap
,
3001 unsigned long lru_pages
;
3003 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3004 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3006 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3012 * NOTE: Although we can get the priority field, using it
3013 * here is not a good idea, since it limits the pages we can scan.
3014 * if we don't reclaim here, the shrink_node from balance_pgdat
3015 * will pick up pages from other mem cgroup's as well. We hack
3016 * the priority and make it zero.
3018 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3020 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3022 *nr_scanned
= sc
.nr_scanned
;
3023 return sc
.nr_reclaimed
;
3026 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3027 unsigned long nr_pages
,
3031 struct zonelist
*zonelist
;
3032 unsigned long nr_reclaimed
;
3034 struct scan_control sc
= {
3035 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3036 .gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3037 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3038 .reclaim_idx
= MAX_NR_ZONES
- 1,
3039 .target_mem_cgroup
= memcg
,
3040 .priority
= DEF_PRIORITY
,
3041 .may_writepage
= !laptop_mode
,
3043 .may_swap
= may_swap
,
3047 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3048 * take care of from where we get pages. So the node where we start the
3049 * scan does not need to be the current node.
3051 nid
= mem_cgroup_select_victim_node(memcg
);
3053 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3055 trace_mm_vmscan_memcg_reclaim_begin(0,
3060 current
->flags
|= PF_MEMALLOC
;
3061 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3062 current
->flags
&= ~PF_MEMALLOC
;
3064 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3066 return nr_reclaimed
;
3070 static void age_active_anon(struct pglist_data
*pgdat
,
3071 struct scan_control
*sc
)
3073 struct mem_cgroup
*memcg
;
3075 if (!total_swap_pages
)
3078 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3080 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3082 if (inactive_list_is_low(lruvec
, false, sc
))
3083 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3084 sc
, LRU_ACTIVE_ANON
);
3086 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3090 static bool zone_balanced(struct zone
*zone
, int order
, int classzone_idx
)
3092 unsigned long mark
= high_wmark_pages(zone
);
3094 if (!zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3098 * If any eligible zone is balanced then the node is not considered
3099 * to be congested or dirty
3101 clear_bit(PGDAT_CONGESTED
, &zone
->zone_pgdat
->flags
);
3102 clear_bit(PGDAT_DIRTY
, &zone
->zone_pgdat
->flags
);
3108 * Prepare kswapd for sleeping. This verifies that there are no processes
3109 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3111 * Returns true if kswapd is ready to sleep
3113 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3118 * The throttled processes are normally woken up in balance_pgdat() as
3119 * soon as pfmemalloc_watermark_ok() is true. But there is a potential
3120 * race between when kswapd checks the watermarks and a process gets
3121 * throttled. There is also a potential race if processes get
3122 * throttled, kswapd wakes, a large process exits thereby balancing the
3123 * zones, which causes kswapd to exit balance_pgdat() before reaching
3124 * the wake up checks. If kswapd is going to sleep, no process should
3125 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3126 * the wake up is premature, processes will wake kswapd and get
3127 * throttled again. The difference from wake ups in balance_pgdat() is
3128 * that here we are under prepare_to_wait().
3130 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3131 wake_up_all(&pgdat
->pfmemalloc_wait
);
3133 for (i
= 0; i
<= classzone_idx
; i
++) {
3134 struct zone
*zone
= pgdat
->node_zones
+ i
;
3136 if (!managed_zone(zone
))
3139 if (!zone_balanced(zone
, order
, classzone_idx
))
3147 * kswapd shrinks a node of pages that are at or below the highest usable
3148 * zone that is currently unbalanced.
3150 * Returns true if kswapd scanned at least the requested number of pages to
3151 * reclaim or if the lack of progress was due to pages under writeback.
3152 * This is used to determine if the scanning priority needs to be raised.
3154 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3155 struct scan_control
*sc
)
3160 /* Reclaim a number of pages proportional to the number of zones */
3161 sc
->nr_to_reclaim
= 0;
3162 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3163 zone
= pgdat
->node_zones
+ z
;
3164 if (!managed_zone(zone
))
3167 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3171 * Historically care was taken to put equal pressure on all zones but
3172 * now pressure is applied based on node LRU order.
3174 shrink_node(pgdat
, sc
);
3177 * Fragmentation may mean that the system cannot be rebalanced for
3178 * high-order allocations. If twice the allocation size has been
3179 * reclaimed then recheck watermarks only at order-0 to prevent
3180 * excessive reclaim. Assume that a process requested a high-order
3181 * can direct reclaim/compact.
3183 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3186 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3190 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3191 * that are eligible for use by the caller until at least one zone is
3194 * Returns the order kswapd finished reclaiming at.
3196 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3197 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3198 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3199 * or lower is eligible for reclaim until at least one usable zone is
3202 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3205 unsigned long nr_soft_reclaimed
;
3206 unsigned long nr_soft_scanned
;
3208 struct scan_control sc
= {
3209 .gfp_mask
= GFP_KERNEL
,
3211 .priority
= DEF_PRIORITY
,
3212 .may_writepage
= !laptop_mode
,
3216 count_vm_event(PAGEOUTRUN
);
3219 bool raise_priority
= true;
3221 sc
.nr_reclaimed
= 0;
3222 sc
.reclaim_idx
= classzone_idx
;
3225 * If the number of buffer_heads exceeds the maximum allowed
3226 * then consider reclaiming from all zones. This has a dual
3227 * purpose -- on 64-bit systems it is expected that
3228 * buffer_heads are stripped during active rotation. On 32-bit
3229 * systems, highmem pages can pin lowmem memory and shrinking
3230 * buffers can relieve lowmem pressure. Reclaim may still not
3231 * go ahead if all eligible zones for the original allocation
3232 * request are balanced to avoid excessive reclaim from kswapd.
3234 if (buffer_heads_over_limit
) {
3235 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3236 zone
= pgdat
->node_zones
+ i
;
3237 if (!managed_zone(zone
))
3246 * Only reclaim if there are no eligible zones. Check from
3247 * high to low zone as allocations prefer higher zones.
3248 * Scanning from low to high zone would allow congestion to be
3249 * cleared during a very small window when a small low
3250 * zone was balanced even under extreme pressure when the
3251 * overall node may be congested. Note that sc.reclaim_idx
3252 * is not used as buffer_heads_over_limit may have adjusted
3255 for (i
= classzone_idx
; i
>= 0; i
--) {
3256 zone
= pgdat
->node_zones
+ i
;
3257 if (!managed_zone(zone
))
3260 if (zone_balanced(zone
, sc
.order
, classzone_idx
))
3265 * Do some background aging of the anon list, to give
3266 * pages a chance to be referenced before reclaiming. All
3267 * pages are rotated regardless of classzone as this is
3268 * about consistent aging.
3270 age_active_anon(pgdat
, &sc
);
3273 * If we're getting trouble reclaiming, start doing writepage
3274 * even in laptop mode.
3276 if (sc
.priority
< DEF_PRIORITY
- 2 || !pgdat_reclaimable(pgdat
))
3277 sc
.may_writepage
= 1;
3279 /* Call soft limit reclaim before calling shrink_node. */
3281 nr_soft_scanned
= 0;
3282 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3283 sc
.gfp_mask
, &nr_soft_scanned
);
3284 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3287 * There should be no need to raise the scanning priority if
3288 * enough pages are already being scanned that that high
3289 * watermark would be met at 100% efficiency.
3291 if (kswapd_shrink_node(pgdat
, &sc
))
3292 raise_priority
= false;
3295 * If the low watermark is met there is no need for processes
3296 * to be throttled on pfmemalloc_wait as they should not be
3297 * able to safely make forward progress. Wake them
3299 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3300 pfmemalloc_watermark_ok(pgdat
))
3301 wake_up_all(&pgdat
->pfmemalloc_wait
);
3303 /* Check if kswapd should be suspending */
3304 if (try_to_freeze() || kthread_should_stop())
3308 * Raise priority if scanning rate is too low or there was no
3309 * progress in reclaiming pages
3311 if (raise_priority
|| !sc
.nr_reclaimed
)
3313 } while (sc
.priority
>= 1);
3317 * Return the order kswapd stopped reclaiming at as
3318 * prepare_kswapd_sleep() takes it into account. If another caller
3319 * entered the allocator slow path while kswapd was awake, order will
3320 * remain at the higher level.
3325 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3326 unsigned int classzone_idx
)
3331 if (freezing(current
) || kthread_should_stop())
3334 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3336 /* Try to sleep for a short interval */
3337 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3339 * Compaction records what page blocks it recently failed to
3340 * isolate pages from and skips them in the future scanning.
3341 * When kswapd is going to sleep, it is reasonable to assume
3342 * that pages and compaction may succeed so reset the cache.
3344 reset_isolation_suitable(pgdat
);
3347 * We have freed the memory, now we should compact it to make
3348 * allocation of the requested order possible.
3350 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3352 remaining
= schedule_timeout(HZ
/10);
3355 * If woken prematurely then reset kswapd_classzone_idx and
3356 * order. The values will either be from a wakeup request or
3357 * the previous request that slept prematurely.
3360 pgdat
->kswapd_classzone_idx
= max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3361 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3364 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3365 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3369 * After a short sleep, check if it was a premature sleep. If not, then
3370 * go fully to sleep until explicitly woken up.
3373 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3374 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3377 * vmstat counters are not perfectly accurate and the estimated
3378 * value for counters such as NR_FREE_PAGES can deviate from the
3379 * true value by nr_online_cpus * threshold. To avoid the zone
3380 * watermarks being breached while under pressure, we reduce the
3381 * per-cpu vmstat threshold while kswapd is awake and restore
3382 * them before going back to sleep.
3384 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3386 if (!kthread_should_stop())
3389 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3392 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3394 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3396 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3400 * The background pageout daemon, started as a kernel thread
3401 * from the init process.
3403 * This basically trickles out pages so that we have _some_
3404 * free memory available even if there is no other activity
3405 * that frees anything up. This is needed for things like routing
3406 * etc, where we otherwise might have all activity going on in
3407 * asynchronous contexts that cannot page things out.
3409 * If there are applications that are active memory-allocators
3410 * (most normal use), this basically shouldn't matter.
3412 static int kswapd(void *p
)
3414 unsigned int alloc_order
, reclaim_order
, classzone_idx
;
3415 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3416 struct task_struct
*tsk
= current
;
3418 struct reclaim_state reclaim_state
= {
3419 .reclaimed_slab
= 0,
3421 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3423 lockdep_set_current_reclaim_state(GFP_KERNEL
);
3425 if (!cpumask_empty(cpumask
))
3426 set_cpus_allowed_ptr(tsk
, cpumask
);
3427 current
->reclaim_state
= &reclaim_state
;
3430 * Tell the memory management that we're a "memory allocator",
3431 * and that if we need more memory we should get access to it
3432 * regardless (see "__alloc_pages()"). "kswapd" should
3433 * never get caught in the normal page freeing logic.
3435 * (Kswapd normally doesn't need memory anyway, but sometimes
3436 * you need a small amount of memory in order to be able to
3437 * page out something else, and this flag essentially protects
3438 * us from recursively trying to free more memory as we're
3439 * trying to free the first piece of memory in the first place).
3441 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3444 pgdat
->kswapd_order
= alloc_order
= reclaim_order
= 0;
3445 pgdat
->kswapd_classzone_idx
= classzone_idx
= 0;
3450 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3453 /* Read the new order and classzone_idx */
3454 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3455 classzone_idx
= pgdat
->kswapd_classzone_idx
;
3456 pgdat
->kswapd_order
= 0;
3457 pgdat
->kswapd_classzone_idx
= 0;
3459 ret
= try_to_freeze();
3460 if (kthread_should_stop())
3464 * We can speed up thawing tasks if we don't call balance_pgdat
3465 * after returning from the refrigerator
3471 * Reclaim begins at the requested order but if a high-order
3472 * reclaim fails then kswapd falls back to reclaiming for
3473 * order-0. If that happens, kswapd will consider sleeping
3474 * for the order it finished reclaiming at (reclaim_order)
3475 * but kcompactd is woken to compact for the original
3476 * request (alloc_order).
3478 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3480 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3481 if (reclaim_order
< alloc_order
)
3482 goto kswapd_try_sleep
;
3484 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3485 classzone_idx
= pgdat
->kswapd_classzone_idx
;
3488 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3489 current
->reclaim_state
= NULL
;
3490 lockdep_clear_current_reclaim_state();
3496 * A zone is low on free memory, so wake its kswapd task to service it.
3498 void wakeup_kswapd(struct zone
*zone
, int order
, enum zone_type classzone_idx
)
3503 if (!managed_zone(zone
))
3506 if (!cpuset_zone_allowed(zone
, GFP_KERNEL
| __GFP_HARDWALL
))
3508 pgdat
= zone
->zone_pgdat
;
3509 pgdat
->kswapd_classzone_idx
= max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3510 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3511 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3514 /* Only wake kswapd if all zones are unbalanced */
3515 for (z
= 0; z
<= classzone_idx
; z
++) {
3516 zone
= pgdat
->node_zones
+ z
;
3517 if (!managed_zone(zone
))
3520 if (zone_balanced(zone
, order
, classzone_idx
))
3524 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, zone_idx(zone
), order
);
3525 wake_up_interruptible(&pgdat
->kswapd_wait
);
3528 #ifdef CONFIG_HIBERNATION
3530 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3533 * Rather than trying to age LRUs the aim is to preserve the overall
3534 * LRU order by reclaiming preferentially
3535 * inactive > active > active referenced > active mapped
3537 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3539 struct reclaim_state reclaim_state
;
3540 struct scan_control sc
= {
3541 .nr_to_reclaim
= nr_to_reclaim
,
3542 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3543 .reclaim_idx
= MAX_NR_ZONES
- 1,
3544 .priority
= DEF_PRIORITY
,
3548 .hibernation_mode
= 1,
3550 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3551 struct task_struct
*p
= current
;
3552 unsigned long nr_reclaimed
;
3554 p
->flags
|= PF_MEMALLOC
;
3555 lockdep_set_current_reclaim_state(sc
.gfp_mask
);
3556 reclaim_state
.reclaimed_slab
= 0;
3557 p
->reclaim_state
= &reclaim_state
;
3559 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3561 p
->reclaim_state
= NULL
;
3562 lockdep_clear_current_reclaim_state();
3563 p
->flags
&= ~PF_MEMALLOC
;
3565 return nr_reclaimed
;
3567 #endif /* CONFIG_HIBERNATION */
3569 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3570 not required for correctness. So if the last cpu in a node goes
3571 away, we get changed to run anywhere: as the first one comes back,
3572 restore their cpu bindings. */
3573 static int cpu_callback(struct notifier_block
*nfb
, unsigned long action
,
3578 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
3579 for_each_node_state(nid
, N_MEMORY
) {
3580 pg_data_t
*pgdat
= NODE_DATA(nid
);
3581 const struct cpumask
*mask
;
3583 mask
= cpumask_of_node(pgdat
->node_id
);
3585 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3586 /* One of our CPUs online: restore mask */
3587 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3594 * This kswapd start function will be called by init and node-hot-add.
3595 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3597 int kswapd_run(int nid
)
3599 pg_data_t
*pgdat
= NODE_DATA(nid
);
3605 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3606 if (IS_ERR(pgdat
->kswapd
)) {
3607 /* failure at boot is fatal */
3608 BUG_ON(system_state
== SYSTEM_BOOTING
);
3609 pr_err("Failed to start kswapd on node %d\n", nid
);
3610 ret
= PTR_ERR(pgdat
->kswapd
);
3611 pgdat
->kswapd
= NULL
;
3617 * Called by memory hotplug when all memory in a node is offlined. Caller must
3618 * hold mem_hotplug_begin/end().
3620 void kswapd_stop(int nid
)
3622 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3625 kthread_stop(kswapd
);
3626 NODE_DATA(nid
)->kswapd
= NULL
;
3630 static int __init
kswapd_init(void)
3635 for_each_node_state(nid
, N_MEMORY
)
3637 hotcpu_notifier(cpu_callback
, 0);
3641 module_init(kswapd_init
)
3647 * If non-zero call node_reclaim when the number of free pages falls below
3650 int node_reclaim_mode __read_mostly
;
3652 #define RECLAIM_OFF 0
3653 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3654 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3655 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3658 * Priority for NODE_RECLAIM. This determines the fraction of pages
3659 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3662 #define NODE_RECLAIM_PRIORITY 4
3665 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3668 int sysctl_min_unmapped_ratio
= 1;
3671 * If the number of slab pages in a zone grows beyond this percentage then
3672 * slab reclaim needs to occur.
3674 int sysctl_min_slab_ratio
= 5;
3676 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
3678 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
3679 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
3680 node_page_state(pgdat
, NR_ACTIVE_FILE
);
3683 * It's possible for there to be more file mapped pages than
3684 * accounted for by the pages on the file LRU lists because
3685 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3687 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
3690 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3691 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
3693 unsigned long nr_pagecache_reclaimable
;
3694 unsigned long delta
= 0;
3697 * If RECLAIM_UNMAP is set, then all file pages are considered
3698 * potentially reclaimable. Otherwise, we have to worry about
3699 * pages like swapcache and node_unmapped_file_pages() provides
3702 if (node_reclaim_mode
& RECLAIM_UNMAP
)
3703 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
3705 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
3707 /* If we can't clean pages, remove dirty pages from consideration */
3708 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
3709 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
3711 /* Watch for any possible underflows due to delta */
3712 if (unlikely(delta
> nr_pagecache_reclaimable
))
3713 delta
= nr_pagecache_reclaimable
;
3715 return nr_pagecache_reclaimable
- delta
;
3719 * Try to free up some pages from this node through reclaim.
3721 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3723 /* Minimum pages needed in order to stay on node */
3724 const unsigned long nr_pages
= 1 << order
;
3725 struct task_struct
*p
= current
;
3726 struct reclaim_state reclaim_state
;
3727 int classzone_idx
= gfp_zone(gfp_mask
);
3728 struct scan_control sc
= {
3729 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3730 .gfp_mask
= (gfp_mask
= memalloc_noio_flags(gfp_mask
)),
3732 .priority
= NODE_RECLAIM_PRIORITY
,
3733 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
3734 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
3736 .reclaim_idx
= classzone_idx
,
3741 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3742 * and we also need to be able to write out pages for RECLAIM_WRITE
3743 * and RECLAIM_UNMAP.
3745 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
3746 lockdep_set_current_reclaim_state(gfp_mask
);
3747 reclaim_state
.reclaimed_slab
= 0;
3748 p
->reclaim_state
= &reclaim_state
;
3750 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
3752 * Free memory by calling shrink zone with increasing
3753 * priorities until we have enough memory freed.
3756 shrink_node(pgdat
, &sc
);
3757 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
3760 p
->reclaim_state
= NULL
;
3761 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
3762 lockdep_clear_current_reclaim_state();
3763 return sc
.nr_reclaimed
>= nr_pages
;
3766 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
3771 * Node reclaim reclaims unmapped file backed pages and
3772 * slab pages if we are over the defined limits.
3774 * A small portion of unmapped file backed pages is needed for
3775 * file I/O otherwise pages read by file I/O will be immediately
3776 * thrown out if the node is overallocated. So we do not reclaim
3777 * if less than a specified percentage of the node is used by
3778 * unmapped file backed pages.
3780 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
3781 sum_zone_node_page_state(pgdat
->node_id
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
3782 return NODE_RECLAIM_FULL
;
3784 if (!pgdat_reclaimable(pgdat
))
3785 return NODE_RECLAIM_FULL
;
3788 * Do not scan if the allocation should not be delayed.
3790 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
3791 return NODE_RECLAIM_NOSCAN
;
3794 * Only run node reclaim on the local node or on nodes that do not
3795 * have associated processors. This will favor the local processor
3796 * over remote processors and spread off node memory allocations
3797 * as wide as possible.
3799 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
3800 return NODE_RECLAIM_NOSCAN
;
3802 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
3803 return NODE_RECLAIM_NOSCAN
;
3805 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
3806 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
3809 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
3816 * page_evictable - test whether a page is evictable
3817 * @page: the page to test
3819 * Test whether page is evictable--i.e., should be placed on active/inactive
3820 * lists vs unevictable list.
3822 * Reasons page might not be evictable:
3823 * (1) page's mapping marked unevictable
3824 * (2) page is part of an mlocked VMA
3827 int page_evictable(struct page
*page
)
3829 return !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
3834 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3835 * @pages: array of pages to check
3836 * @nr_pages: number of pages to check
3838 * Checks pages for evictability and moves them to the appropriate lru list.
3840 * This function is only used for SysV IPC SHM_UNLOCK.
3842 void check_move_unevictable_pages(struct page
**pages
, int nr_pages
)
3844 struct lruvec
*lruvec
;
3845 struct pglist_data
*pgdat
= NULL
;
3850 for (i
= 0; i
< nr_pages
; i
++) {
3851 struct page
*page
= pages
[i
];
3852 struct pglist_data
*pagepgdat
= page_pgdat(page
);
3855 if (pagepgdat
!= pgdat
) {
3857 spin_unlock_irq(&pgdat
->lru_lock
);
3859 spin_lock_irq(&pgdat
->lru_lock
);
3861 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
3863 if (!PageLRU(page
) || !PageUnevictable(page
))
3866 if (page_evictable(page
)) {
3867 enum lru_list lru
= page_lru_base_type(page
);
3869 VM_BUG_ON_PAGE(PageActive(page
), page
);
3870 ClearPageUnevictable(page
);
3871 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
3872 add_page_to_lru_list(page
, lruvec
, lru
);
3878 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
3879 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
3880 spin_unlock_irq(&pgdat
->lru_lock
);
3883 #endif /* CONFIG_SHMEM */