2 * Cell Broadband Engine OProfile Support
4 * (C) Copyright IBM Corporation 2006
6 * Author: Maynard Johnson <maynardj@us.ibm.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
14 /* The purpose of this file is to handle SPU event task switching
15 * and to record SPU context information into the OProfile
18 * Additionally, the spu_sync_buffer function is provided as a helper
19 * for recoding actual SPU program counter samples to the event buffer.
21 #include <linux/dcookies.h>
22 #include <linux/kref.h>
25 #include <linux/module.h>
26 #include <linux/notifier.h>
27 #include <linux/numa.h>
28 #include <linux/oprofile.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
33 #define RELEASE_ALL 9999
35 static DEFINE_SPINLOCK(buffer_lock
);
36 static DEFINE_SPINLOCK(cache_lock
);
37 static int num_spu_nodes
;
38 int spu_prof_num_nodes
;
40 struct spu_buffer spu_buff
[MAX_NUMNODES
* SPUS_PER_NODE
];
41 struct delayed_work spu_work
;
42 static unsigned max_spu_buff
;
44 static void spu_buff_add(unsigned long int value
, int spu
)
46 /* spu buff is a circular buffer. Add entries to the
47 * head. Head is the index to store the next value.
48 * The buffer is full when there is one available entry
49 * in the queue, i.e. head and tail can't be equal.
50 * That way we can tell the difference between the
51 * buffer being full versus empty.
53 * ASSUPTION: the buffer_lock is held when this function
54 * is called to lock the buffer, head and tail.
58 if (spu_buff
[spu
].head
>= spu_buff
[spu
].tail
) {
59 if ((spu_buff
[spu
].head
- spu_buff
[spu
].tail
)
63 } else if (spu_buff
[spu
].tail
> spu_buff
[spu
].head
) {
64 if ((spu_buff
[spu
].tail
- spu_buff
[spu
].head
)
70 spu_buff
[spu
].buff
[spu_buff
[spu
].head
] = value
;
73 if (spu_buff
[spu
].head
>= max_spu_buff
)
74 spu_buff
[spu
].head
= 0;
76 /* From the user's perspective make the SPU buffer
77 * size management/overflow look like we are using
78 * per cpu buffers. The user uses the same
79 * per cpu parameter to adjust the SPU buffer size.
80 * Increment the sample_lost_overflow to inform
81 * the user the buffer size needs to be increased.
83 oprofile_cpu_buffer_inc_smpl_lost();
87 /* This function copies the per SPU buffers to the
88 * OProfile kernel buffer.
90 void sync_spu_buff(void)
96 for (spu
= 0; spu
< num_spu_nodes
; spu
++) {
97 /* In case there was an issue and the buffer didn't
98 * get created skip it.
100 if (spu_buff
[spu
].buff
== NULL
)
103 /* Hold the lock to make sure the head/tail
104 * doesn't change while spu_buff_add() is
105 * deciding if the buffer is full or not.
106 * Being a little paranoid.
108 spin_lock_irqsave(&buffer_lock
, flags
);
109 curr_head
= spu_buff
[spu
].head
;
110 spin_unlock_irqrestore(&buffer_lock
, flags
);
112 /* Transfer the current contents to the kernel buffer.
113 * data can still be added to the head of the buffer.
115 oprofile_put_buff(spu_buff
[spu
].buff
,
117 curr_head
, max_spu_buff
);
119 spin_lock_irqsave(&buffer_lock
, flags
);
120 spu_buff
[spu
].tail
= curr_head
;
121 spin_unlock_irqrestore(&buffer_lock
, flags
);
126 static void wq_sync_spu_buff(struct work_struct
*work
)
128 /* move data from spu buffers to kernel buffer */
131 /* only reschedule if profiling is not done */
132 if (spu_prof_running
)
133 schedule_delayed_work(&spu_work
, DEFAULT_TIMER_EXPIRE
);
136 /* Container for caching information about an active SPU task. */
138 struct vma_to_fileoffset_map
*map
;
139 struct spu
*the_spu
; /* needed to access pointer to local_store */
140 struct kref cache_ref
;
143 static struct cached_info
*spu_info
[MAX_NUMNODES
* 8];
145 static void destroy_cached_info(struct kref
*kref
)
147 struct cached_info
*info
;
149 info
= container_of(kref
, struct cached_info
, cache_ref
);
150 vma_map_free(info
->map
);
152 module_put(THIS_MODULE
);
155 /* Return the cached_info for the passed SPU number.
156 * ATTENTION: Callers are responsible for obtaining the
157 * cache_lock if needed prior to invoking this function.
159 static struct cached_info
*get_cached_info(struct spu
*the_spu
, int spu_num
)
162 struct cached_info
*ret_info
;
164 if (spu_num
>= num_spu_nodes
) {
165 printk(KERN_ERR
"SPU_PROF: "
166 "%s, line %d: Invalid index %d into spu info cache\n",
167 __func__
, __LINE__
, spu_num
);
171 if (!spu_info
[spu_num
] && the_spu
) {
172 ref
= spu_get_profile_private_kref(the_spu
->ctx
);
174 spu_info
[spu_num
] = container_of(ref
, struct cached_info
, cache_ref
);
175 kref_get(&spu_info
[spu_num
]->cache_ref
);
179 ret_info
= spu_info
[spu_num
];
185 /* Looks for cached info for the passed spu. If not found, the
186 * cached info is created for the passed spu.
187 * Returns 0 for success; otherwise, -1 for error.
190 prepare_cached_spu_info(struct spu
*spu
, unsigned long objectId
)
193 struct vma_to_fileoffset_map
*new_map
;
195 struct cached_info
*info
;
197 /* We won't bother getting cache_lock here since
198 * don't do anything with the cached_info that's returned.
200 info
= get_cached_info(spu
, spu
->number
);
203 pr_debug("Found cached SPU info.\n");
207 /* Create cached_info and set spu_info[spu->number] to point to it.
208 * spu->number is a system-wide value, not a per-node value.
210 info
= kzalloc(sizeof(struct cached_info
), GFP_KERNEL
);
212 printk(KERN_ERR
"SPU_PROF: "
213 "%s, line %d: create vma_map failed\n",
218 new_map
= create_vma_map(spu
, objectId
);
220 printk(KERN_ERR
"SPU_PROF: "
221 "%s, line %d: create vma_map failed\n",
227 pr_debug("Created vma_map\n");
230 kref_init(&info
->cache_ref
);
231 spin_lock_irqsave(&cache_lock
, flags
);
232 spu_info
[spu
->number
] = info
;
233 /* Increment count before passing off ref to SPUFS. */
234 kref_get(&info
->cache_ref
);
236 /* We increment the module refcount here since SPUFS is
237 * responsible for the final destruction of the cached_info,
238 * and it must be able to access the destroy_cached_info()
239 * function defined in the OProfile module. We decrement
240 * the module refcount in destroy_cached_info.
242 try_module_get(THIS_MODULE
);
243 spu_set_profile_private_kref(spu
->ctx
, &info
->cache_ref
,
244 destroy_cached_info
);
245 spin_unlock_irqrestore(&cache_lock
, flags
);
255 * NOTE: The caller is responsible for locking the
256 * cache_lock prior to calling this function.
258 static int release_cached_info(int spu_index
)
262 if (spu_index
== RELEASE_ALL
) {
266 if (spu_index
>= num_spu_nodes
) {
267 printk(KERN_ERR
"SPU_PROF: "
269 "Invalid index %d into spu info cache\n",
270 __func__
, __LINE__
, spu_index
);
276 for (; index
< end
; index
++) {
277 if (spu_info
[index
]) {
278 kref_put(&spu_info
[index
]->cache_ref
,
279 destroy_cached_info
);
280 spu_info
[index
] = NULL
;
288 /* The source code for fast_get_dcookie was "borrowed"
289 * from drivers/oprofile/buffer_sync.c.
292 /* Optimisation. We can manage without taking the dcookie sem
293 * because we cannot reach this code without at least one
294 * dcookie user still being registered (namely, the reader
295 * of the event buffer).
297 static inline unsigned long fast_get_dcookie(struct path
*path
)
299 unsigned long cookie
;
301 if (path
->dentry
->d_flags
& DCACHE_COOKIE
)
302 return (unsigned long)path
->dentry
;
303 get_dcookie(path
, &cookie
);
307 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
308 * which corresponds loosely to "application name". Also, determine
309 * the offset for the SPU ELF object. If computed offset is
310 * non-zero, it implies an embedded SPU object; otherwise, it's a
311 * separate SPU binary, in which case we retrieve it's dcookie.
312 * For the embedded case, we must determine if SPU ELF is embedded
313 * in the executable application or another file (i.e., shared lib).
314 * If embedded in a shared lib, we must get the dcookie and return
315 * that to the caller.
318 get_exec_dcookie_and_offset(struct spu
*spu
, unsigned int *offsetp
,
319 unsigned long *spu_bin_dcookie
,
320 unsigned long spu_ref
)
322 unsigned long app_cookie
= 0;
323 unsigned int my_offset
= 0;
324 struct file
*app
= NULL
;
325 struct vm_area_struct
*vma
;
326 struct mm_struct
*mm
= spu
->mm
;
331 down_read(&mm
->mmap_sem
);
333 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
336 if (!(vma
->vm_flags
& VM_EXECUTABLE
))
338 app_cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
339 pr_debug("got dcookie for %s\n",
340 vma
->vm_file
->f_dentry
->d_name
.name
);
345 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
346 if (vma
->vm_start
> spu_ref
|| vma
->vm_end
<= spu_ref
)
348 my_offset
= spu_ref
- vma
->vm_start
;
350 goto fail_no_image_cookie
;
352 pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
354 vma
->vm_file
->f_dentry
->d_name
.name
);
355 *offsetp
= my_offset
;
359 *spu_bin_dcookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
360 pr_debug("got dcookie for %s\n", vma
->vm_file
->f_dentry
->d_name
.name
);
362 up_read(&mm
->mmap_sem
);
367 fail_no_image_cookie
:
368 up_read(&mm
->mmap_sem
);
370 printk(KERN_ERR
"SPU_PROF: "
371 "%s, line %d: Cannot find dcookie for SPU binary\n",
378 /* This function finds or creates cached context information for the
379 * passed SPU and records SPU context information into the OProfile
382 static int process_context_switch(struct spu
*spu
, unsigned long objectId
)
386 unsigned int offset
= 0;
387 unsigned long spu_cookie
= 0, app_dcookie
;
389 retval
= prepare_cached_spu_info(spu
, objectId
);
393 /* Get dcookie first because a mutex_lock is taken in that
394 * code path, so interrupts must not be disabled.
396 app_dcookie
= get_exec_dcookie_and_offset(spu
, &offset
, &spu_cookie
, objectId
);
397 if (!app_dcookie
|| !spu_cookie
) {
402 /* Record context info in event buffer */
403 spin_lock_irqsave(&buffer_lock
, flags
);
404 spu_buff_add(ESCAPE_CODE
, spu
->number
);
405 spu_buff_add(SPU_CTX_SWITCH_CODE
, spu
->number
);
406 spu_buff_add(spu
->number
, spu
->number
);
407 spu_buff_add(spu
->pid
, spu
->number
);
408 spu_buff_add(spu
->tgid
, spu
->number
);
409 spu_buff_add(app_dcookie
, spu
->number
);
410 spu_buff_add(spu_cookie
, spu
->number
);
411 spu_buff_add(offset
, spu
->number
);
413 /* Set flag to indicate SPU PC data can now be written out. If
414 * the SPU program counter data is seen before an SPU context
415 * record is seen, the postprocessing will fail.
417 spu_buff
[spu
->number
].ctx_sw_seen
= 1;
419 spin_unlock_irqrestore(&buffer_lock
, flags
);
420 smp_wmb(); /* insure spu event buffer updates are written */
421 /* don't want entries intermingled... */
427 * This function is invoked on either a bind_context or unbind_context.
428 * If called for an unbind_context, the val arg is 0; otherwise,
429 * it is the object-id value for the spu context.
430 * The data arg is of type 'struct spu *'.
432 static int spu_active_notify(struct notifier_block
*self
, unsigned long val
,
437 struct spu
*the_spu
= data
;
439 pr_debug("SPU event notification arrived\n");
441 spin_lock_irqsave(&cache_lock
, flags
);
442 retval
= release_cached_info(the_spu
->number
);
443 spin_unlock_irqrestore(&cache_lock
, flags
);
445 retval
= process_context_switch(the_spu
, val
);
450 static struct notifier_block spu_active
= {
451 .notifier_call
= spu_active_notify
,
454 static int number_of_online_nodes(void)
458 for_each_online_cpu(cpu
) {
459 tmp
= cbe_cpu_to_node(cpu
) + 1;
466 static int oprofile_spu_buff_create(void)
470 max_spu_buff
= oprofile_get_cpu_buffer_size();
472 for (spu
= 0; spu
< num_spu_nodes
; spu
++) {
473 /* create circular buffers to store the data in.
474 * use locks to manage accessing the buffers
476 spu_buff
[spu
].head
= 0;
477 spu_buff
[spu
].tail
= 0;
480 * Create a buffer for each SPU. Can't reliably
481 * create a single buffer for all spus due to not
482 * enough contiguous kernel memory.
485 spu_buff
[spu
].buff
= kzalloc((max_spu_buff
486 * sizeof(unsigned long)),
489 if (!spu_buff
[spu
].buff
) {
490 printk(KERN_ERR
"SPU_PROF: "
491 "%s, line %d: oprofile_spu_buff_create "
492 "failed to allocate spu buffer %d.\n",
493 __func__
, __LINE__
, spu
);
495 /* release the spu buffers that have been allocated */
497 kfree(spu_buff
[spu
].buff
);
498 spu_buff
[spu
].buff
= 0;
507 /* The main purpose of this function is to synchronize
508 * OProfile with SPUFS by registering to be notified of
511 * NOTE: When profiling SPUs, we must ensure that only
512 * spu_sync_start is invoked and not the generic sync_start
513 * in drivers/oprofile/oprof.c. A return value of
514 * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
517 int spu_sync_start(void)
520 int ret
= SKIP_GENERIC_SYNC
;
522 unsigned long flags
= 0;
524 spu_prof_num_nodes
= number_of_online_nodes();
525 num_spu_nodes
= spu_prof_num_nodes
* 8;
526 INIT_DELAYED_WORK(&spu_work
, wq_sync_spu_buff
);
528 /* create buffer for storing the SPU data to put in
531 ret
= oprofile_spu_buff_create();
535 spin_lock_irqsave(&buffer_lock
, flags
);
536 for (spu
= 0; spu
< num_spu_nodes
; spu
++) {
537 spu_buff_add(ESCAPE_CODE
, spu
);
538 spu_buff_add(SPU_PROFILING_CODE
, spu
);
539 spu_buff_add(num_spu_nodes
, spu
);
541 spin_unlock_irqrestore(&buffer_lock
, flags
);
543 for (spu
= 0; spu
< num_spu_nodes
; spu
++) {
544 spu_buff
[spu
].ctx_sw_seen
= 0;
545 spu_buff
[spu
].last_guard_val
= 0;
548 /* Register for SPU events */
549 register_ret
= spu_switch_event_register(&spu_active
);
551 ret
= SYNC_START_ERROR
;
555 pr_debug("spu_sync_start -- running.\n");
560 /* Record SPU program counter samples to the oprofile event buffer. */
561 void spu_sync_buffer(int spu_num
, unsigned int *samples
,
564 unsigned long long file_offset
;
567 struct vma_to_fileoffset_map
*map
;
569 unsigned long long spu_num_ll
= spu_num
;
570 unsigned long long spu_num_shifted
= spu_num_ll
<< 32;
571 struct cached_info
*c_info
;
573 /* We need to obtain the cache_lock here because it's
574 * possible that after getting the cached_info, the SPU job
575 * corresponding to this cached_info may end, thus resulting
576 * in the destruction of the cached_info.
578 spin_lock_irqsave(&cache_lock
, flags
);
579 c_info
= get_cached_info(NULL
, spu_num
);
581 /* This legitimately happens when the SPU task ends before all
582 * samples are recorded.
583 * No big deal -- so we just drop a few samples.
585 pr_debug("SPU_PROF: No cached SPU contex "
586 "for SPU #%d. Dropping samples.\n", spu_num
);
591 the_spu
= c_info
->the_spu
;
592 spin_lock(&buffer_lock
);
593 for (i
= 0; i
< num_samples
; i
++) {
594 unsigned int sample
= *(samples
+i
);
599 file_offset
= vma_map_lookup( map
, sample
, the_spu
, &grd_val
);
601 /* If overlays are used by this SPU application, the guard
602 * value is non-zero, indicating which overlay section is in
603 * use. We need to discard samples taken during the time
604 * period which an overlay occurs (i.e., guard value changes).
606 if (grd_val
&& grd_val
!= spu_buff
[spu_num
].last_guard_val
) {
607 spu_buff
[spu_num
].last_guard_val
= grd_val
;
608 /* Drop the rest of the samples. */
612 /* We must ensure that the SPU context switch has been written
613 * out before samples for the SPU. Otherwise, the SPU context
614 * information is not available and the postprocessing of the
615 * SPU PC will fail with no available anonymous map information.
617 if (spu_buff
[spu_num
].ctx_sw_seen
)
618 spu_buff_add((file_offset
| spu_num_shifted
),
621 spin_unlock(&buffer_lock
);
623 spin_unlock_irqrestore(&cache_lock
, flags
);
627 int spu_sync_stop(void)
629 unsigned long flags
= 0;
633 ret
= spu_switch_event_unregister(&spu_active
);
636 printk(KERN_ERR
"SPU_PROF: "
637 "%s, line %d: spu_switch_event_unregister " \
639 __func__
, __LINE__
, ret
);
641 /* flush any remaining data in the per SPU buffers */
644 spin_lock_irqsave(&cache_lock
, flags
);
645 ret
= release_cached_info(RELEASE_ALL
);
646 spin_unlock_irqrestore(&cache_lock
, flags
);
648 /* remove scheduled work queue item rather then waiting
649 * for every queued entry to execute. Then flush pending
650 * system wide buffer to event buffer.
652 cancel_delayed_work(&spu_work
);
654 for (k
= 0; k
< num_spu_nodes
; k
++) {
655 spu_buff
[k
].ctx_sw_seen
= 0;
658 * spu_sys_buff will be null if there was a problem
659 * allocating the buffer. Only delete if it exists.
661 kfree(spu_buff
[k
].buff
);
662 spu_buff
[k
].buff
= 0;
664 pr_debug("spu_sync_stop -- done.\n");