2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
35 * RAID10 provides a combination of RAID0 and RAID1 functionality.
36 * The layout of data is defined by
39 * near_copies (stored in low byte of layout)
40 * far_copies (stored in second byte of layout)
41 * far_offset (stored in bit 16 of layout )
42 * use_far_sets (stored in bit 17 of layout )
43 * use_far_sets_bugfixed (stored in bit 18 of layout )
45 * The data to be stored is divided into chunks using chunksize. Each device
46 * is divided into far_copies sections. In each section, chunks are laid out
47 * in a style similar to raid0, but near_copies copies of each chunk is stored
48 * (each on a different drive). The starting device for each section is offset
49 * near_copies from the starting device of the previous section. Thus there
50 * are (near_copies * far_copies) of each chunk, and each is on a different
51 * drive. near_copies and far_copies must be at least one, and their product
52 * is at most raid_disks.
54 * If far_offset is true, then the far_copies are handled a bit differently.
55 * The copies are still in different stripes, but instead of being very far
56 * apart on disk, there are adjacent stripes.
58 * The far and offset algorithms are handled slightly differently if
59 * 'use_far_sets' is true. In this case, the array's devices are grouped into
60 * sets that are (near_copies * far_copies) in size. The far copied stripes
61 * are still shifted by 'near_copies' devices, but this shifting stays confined
62 * to the set rather than the entire array. This is done to improve the number
63 * of device combinations that can fail without causing the array to fail.
64 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
69 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70 * [A B] [C D] [A B] [C D E]
71 * |...| |...| |...| | ... |
72 * [B A] [D C] [B A] [E C D]
76 * Number of guaranteed r10bios in case of extreme VM load:
78 #define NR_RAID10_BIOS 256
80 /* when we get a read error on a read-only array, we redirect to another
81 * device without failing the first device, or trying to over-write to
82 * correct the read error. To keep track of bad blocks on a per-bio
83 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87 * bad-block marking which must be done from process context. So we record
88 * the success by setting devs[n].bio to IO_MADE_GOOD
90 #define IO_MADE_GOOD ((struct bio *)2)
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
94 /* When there are this many requests queued to be written by
95 * the raid10 thread, we become 'congested' to provide back-pressure
98 static int max_queued_requests
= 1024;
100 static void allow_barrier(struct r10conf
*conf
);
101 static void lower_barrier(struct r10conf
*conf
);
102 static int _enough(struct r10conf
*conf
, int previous
, int ignore
);
103 static int enough(struct r10conf
*conf
, int ignore
);
104 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
106 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
);
107 static void end_reshape_write(struct bio
*bio
);
108 static void end_reshape(struct r10conf
*conf
);
110 #define raid10_log(md, fmt, args...) \
111 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
113 #include "raid1-10.c"
116 * for resync bio, r10bio pointer can be retrieved from the per-bio
117 * 'struct resync_pages'.
119 static inline struct r10bio
*get_resync_r10bio(struct bio
*bio
)
121 return get_resync_pages(bio
)->raid_bio
;
124 static void * r10bio_pool_alloc(gfp_t gfp_flags
, void *data
)
126 struct r10conf
*conf
= data
;
127 int size
= offsetof(struct r10bio
, devs
[conf
->copies
]);
129 /* allocate a r10bio with room for raid_disks entries in the
131 return kzalloc(size
, gfp_flags
);
134 static void r10bio_pool_free(void *r10_bio
, void *data
)
139 /* amount of memory to reserve for resync requests */
140 #define RESYNC_WINDOW (1024*1024)
141 /* maximum number of concurrent requests, memory permitting */
142 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
145 * When performing a resync, we need to read and compare, so
146 * we need as many pages are there are copies.
147 * When performing a recovery, we need 2 bios, one for read,
148 * one for write (we recover only one drive per r10buf)
151 static void * r10buf_pool_alloc(gfp_t gfp_flags
, void *data
)
153 struct r10conf
*conf
= data
;
154 struct r10bio
*r10_bio
;
157 int nalloc
, nalloc_rp
;
158 struct resync_pages
*rps
;
160 r10_bio
= r10bio_pool_alloc(gfp_flags
, conf
);
164 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
165 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
166 nalloc
= conf
->copies
; /* resync */
168 nalloc
= 2; /* recovery */
170 /* allocate once for all bios */
171 if (!conf
->have_replacement
)
174 nalloc_rp
= nalloc
* 2;
175 rps
= kmalloc(sizeof(struct resync_pages
) * nalloc_rp
, gfp_flags
);
177 goto out_free_r10bio
;
182 for (j
= nalloc
; j
-- ; ) {
183 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
186 r10_bio
->devs
[j
].bio
= bio
;
187 if (!conf
->have_replacement
)
189 bio
= bio_kmalloc(gfp_flags
, RESYNC_PAGES
);
192 r10_bio
->devs
[j
].repl_bio
= bio
;
195 * Allocate RESYNC_PAGES data pages and attach them
198 for (j
= 0; j
< nalloc
; j
++) {
199 struct bio
*rbio
= r10_bio
->devs
[j
].repl_bio
;
200 struct resync_pages
*rp
, *rp_repl
;
204 rp_repl
= &rps
[nalloc
+ j
];
206 bio
= r10_bio
->devs
[j
].bio
;
208 if (!j
|| test_bit(MD_RECOVERY_SYNC
,
209 &conf
->mddev
->recovery
)) {
210 if (resync_alloc_pages(rp
, gfp_flags
))
213 memcpy(rp
, &rps
[0], sizeof(*rp
));
214 resync_get_all_pages(rp
);
217 rp
->raid_bio
= r10_bio
;
218 bio
->bi_private
= rp
;
220 memcpy(rp_repl
, rp
, sizeof(*rp
));
221 rbio
->bi_private
= rp_repl
;
229 resync_free_pages(&rps
[j
* 2]);
233 for ( ; j
< nalloc
; j
++) {
234 if (r10_bio
->devs
[j
].bio
)
235 bio_put(r10_bio
->devs
[j
].bio
);
236 if (r10_bio
->devs
[j
].repl_bio
)
237 bio_put(r10_bio
->devs
[j
].repl_bio
);
241 r10bio_pool_free(r10_bio
, conf
);
245 static void r10buf_pool_free(void *__r10_bio
, void *data
)
247 struct r10conf
*conf
= data
;
248 struct r10bio
*r10bio
= __r10_bio
;
250 struct resync_pages
*rp
= NULL
;
252 for (j
= conf
->copies
; j
--; ) {
253 struct bio
*bio
= r10bio
->devs
[j
].bio
;
255 rp
= get_resync_pages(bio
);
256 resync_free_pages(rp
);
259 bio
= r10bio
->devs
[j
].repl_bio
;
264 /* resync pages array stored in the 1st bio's .bi_private */
267 r10bio_pool_free(r10bio
, conf
);
270 static void put_all_bios(struct r10conf
*conf
, struct r10bio
*r10_bio
)
274 for (i
= 0; i
< conf
->copies
; i
++) {
275 struct bio
**bio
= & r10_bio
->devs
[i
].bio
;
276 if (!BIO_SPECIAL(*bio
))
279 bio
= &r10_bio
->devs
[i
].repl_bio
;
280 if (r10_bio
->read_slot
< 0 && !BIO_SPECIAL(*bio
))
286 static void free_r10bio(struct r10bio
*r10_bio
)
288 struct r10conf
*conf
= r10_bio
->mddev
->private;
290 put_all_bios(conf
, r10_bio
);
291 mempool_free(r10_bio
, conf
->r10bio_pool
);
294 static void put_buf(struct r10bio
*r10_bio
)
296 struct r10conf
*conf
= r10_bio
->mddev
->private;
298 mempool_free(r10_bio
, conf
->r10buf_pool
);
303 static void reschedule_retry(struct r10bio
*r10_bio
)
306 struct mddev
*mddev
= r10_bio
->mddev
;
307 struct r10conf
*conf
= mddev
->private;
309 spin_lock_irqsave(&conf
->device_lock
, flags
);
310 list_add(&r10_bio
->retry_list
, &conf
->retry_list
);
312 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
314 /* wake up frozen array... */
315 wake_up(&conf
->wait_barrier
);
317 md_wakeup_thread(mddev
->thread
);
321 * raid_end_bio_io() is called when we have finished servicing a mirrored
322 * operation and are ready to return a success/failure code to the buffer
325 static void raid_end_bio_io(struct r10bio
*r10_bio
)
327 struct bio
*bio
= r10_bio
->master_bio
;
328 struct r10conf
*conf
= r10_bio
->mddev
->private;
330 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
331 bio
->bi_status
= BLK_STS_IOERR
;
335 * Wake up any possible resync thread that waits for the device
340 free_r10bio(r10_bio
);
344 * Update disk head position estimator based on IRQ completion info.
346 static inline void update_head_pos(int slot
, struct r10bio
*r10_bio
)
348 struct r10conf
*conf
= r10_bio
->mddev
->private;
350 conf
->mirrors
[r10_bio
->devs
[slot
].devnum
].head_position
=
351 r10_bio
->devs
[slot
].addr
+ (r10_bio
->sectors
);
355 * Find the disk number which triggered given bio
357 static int find_bio_disk(struct r10conf
*conf
, struct r10bio
*r10_bio
,
358 struct bio
*bio
, int *slotp
, int *replp
)
363 for (slot
= 0; slot
< conf
->copies
; slot
++) {
364 if (r10_bio
->devs
[slot
].bio
== bio
)
366 if (r10_bio
->devs
[slot
].repl_bio
== bio
) {
372 BUG_ON(slot
== conf
->copies
);
373 update_head_pos(slot
, r10_bio
);
379 return r10_bio
->devs
[slot
].devnum
;
382 static void raid10_end_read_request(struct bio
*bio
)
384 int uptodate
= !bio
->bi_status
;
385 struct r10bio
*r10_bio
= bio
->bi_private
;
387 struct md_rdev
*rdev
;
388 struct r10conf
*conf
= r10_bio
->mddev
->private;
390 slot
= r10_bio
->read_slot
;
391 dev
= r10_bio
->devs
[slot
].devnum
;
392 rdev
= r10_bio
->devs
[slot
].rdev
;
394 * this branch is our 'one mirror IO has finished' event handler:
396 update_head_pos(slot
, r10_bio
);
400 * Set R10BIO_Uptodate in our master bio, so that
401 * we will return a good error code to the higher
402 * levels even if IO on some other mirrored buffer fails.
404 * The 'master' represents the composite IO operation to
405 * user-side. So if something waits for IO, then it will
406 * wait for the 'master' bio.
408 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
410 /* If all other devices that store this block have
411 * failed, we want to return the error upwards rather
412 * than fail the last device. Here we redefine
413 * "uptodate" to mean "Don't want to retry"
415 if (!_enough(conf
, test_bit(R10BIO_Previous
, &r10_bio
->state
),
420 raid_end_bio_io(r10_bio
);
421 rdev_dec_pending(rdev
, conf
->mddev
);
424 * oops, read error - keep the refcount on the rdev
426 char b
[BDEVNAME_SIZE
];
427 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
429 bdevname(rdev
->bdev
, b
),
430 (unsigned long long)r10_bio
->sector
);
431 set_bit(R10BIO_ReadError
, &r10_bio
->state
);
432 reschedule_retry(r10_bio
);
436 static void close_write(struct r10bio
*r10_bio
)
438 /* clear the bitmap if all writes complete successfully */
439 bitmap_endwrite(r10_bio
->mddev
->bitmap
, r10_bio
->sector
,
441 !test_bit(R10BIO_Degraded
, &r10_bio
->state
),
443 md_write_end(r10_bio
->mddev
);
446 static void one_write_done(struct r10bio
*r10_bio
)
448 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
449 if (test_bit(R10BIO_WriteError
, &r10_bio
->state
))
450 reschedule_retry(r10_bio
);
452 close_write(r10_bio
);
453 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
))
454 reschedule_retry(r10_bio
);
456 raid_end_bio_io(r10_bio
);
461 static void raid10_end_write_request(struct bio
*bio
)
463 struct r10bio
*r10_bio
= bio
->bi_private
;
466 struct r10conf
*conf
= r10_bio
->mddev
->private;
468 struct md_rdev
*rdev
= NULL
;
469 struct bio
*to_put
= NULL
;
472 discard_error
= bio
->bi_status
&& bio_op(bio
) == REQ_OP_DISCARD
;
474 dev
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
477 rdev
= conf
->mirrors
[dev
].replacement
;
481 rdev
= conf
->mirrors
[dev
].rdev
;
484 * this branch is our 'one mirror IO has finished' event handler:
486 if (bio
->bi_status
&& !discard_error
) {
488 /* Never record new bad blocks to replacement,
491 md_error(rdev
->mddev
, rdev
);
493 set_bit(WriteErrorSeen
, &rdev
->flags
);
494 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
495 set_bit(MD_RECOVERY_NEEDED
,
496 &rdev
->mddev
->recovery
);
499 if (test_bit(FailFast
, &rdev
->flags
) &&
500 (bio
->bi_opf
& MD_FAILFAST
)) {
501 md_error(rdev
->mddev
, rdev
);
502 if (!test_bit(Faulty
, &rdev
->flags
))
503 /* This is the only remaining device,
504 * We need to retry the write without
507 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
509 r10_bio
->devs
[slot
].bio
= NULL
;
514 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
518 * Set R10BIO_Uptodate in our master bio, so that
519 * we will return a good error code for to the higher
520 * levels even if IO on some other mirrored buffer fails.
522 * The 'master' represents the composite IO operation to
523 * user-side. So if something waits for IO, then it will
524 * wait for the 'master' bio.
530 * Do not set R10BIO_Uptodate if the current device is
531 * rebuilding or Faulty. This is because we cannot use
532 * such device for properly reading the data back (we could
533 * potentially use it, if the current write would have felt
534 * before rdev->recovery_offset, but for simplicity we don't
537 if (test_bit(In_sync
, &rdev
->flags
) &&
538 !test_bit(Faulty
, &rdev
->flags
))
539 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
541 /* Maybe we can clear some bad blocks. */
542 if (is_badblock(rdev
,
543 r10_bio
->devs
[slot
].addr
,
545 &first_bad
, &bad_sectors
) && !discard_error
) {
548 r10_bio
->devs
[slot
].repl_bio
= IO_MADE_GOOD
;
550 r10_bio
->devs
[slot
].bio
= IO_MADE_GOOD
;
552 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
558 * Let's see if all mirrored write operations have finished
561 one_write_done(r10_bio
);
563 rdev_dec_pending(rdev
, conf
->mddev
);
569 * RAID10 layout manager
570 * As well as the chunksize and raid_disks count, there are two
571 * parameters: near_copies and far_copies.
572 * near_copies * far_copies must be <= raid_disks.
573 * Normally one of these will be 1.
574 * If both are 1, we get raid0.
575 * If near_copies == raid_disks, we get raid1.
577 * Chunks are laid out in raid0 style with near_copies copies of the
578 * first chunk, followed by near_copies copies of the next chunk and
580 * If far_copies > 1, then after 1/far_copies of the array has been assigned
581 * as described above, we start again with a device offset of near_copies.
582 * So we effectively have another copy of the whole array further down all
583 * the drives, but with blocks on different drives.
584 * With this layout, and block is never stored twice on the one device.
586 * raid10_find_phys finds the sector offset of a given virtual sector
587 * on each device that it is on.
589 * raid10_find_virt does the reverse mapping, from a device and a
590 * sector offset to a virtual address
593 static void __raid10_find_phys(struct geom
*geo
, struct r10bio
*r10bio
)
601 int last_far_set_start
, last_far_set_size
;
603 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
604 last_far_set_start
*= geo
->far_set_size
;
606 last_far_set_size
= geo
->far_set_size
;
607 last_far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
609 /* now calculate first sector/dev */
610 chunk
= r10bio
->sector
>> geo
->chunk_shift
;
611 sector
= r10bio
->sector
& geo
->chunk_mask
;
613 chunk
*= geo
->near_copies
;
615 dev
= sector_div(stripe
, geo
->raid_disks
);
617 stripe
*= geo
->far_copies
;
619 sector
+= stripe
<< geo
->chunk_shift
;
621 /* and calculate all the others */
622 for (n
= 0; n
< geo
->near_copies
; n
++) {
626 r10bio
->devs
[slot
].devnum
= d
;
627 r10bio
->devs
[slot
].addr
= s
;
630 for (f
= 1; f
< geo
->far_copies
; f
++) {
631 set
= d
/ geo
->far_set_size
;
632 d
+= geo
->near_copies
;
634 if ((geo
->raid_disks
% geo
->far_set_size
) &&
635 (d
> last_far_set_start
)) {
636 d
-= last_far_set_start
;
637 d
%= last_far_set_size
;
638 d
+= last_far_set_start
;
640 d
%= geo
->far_set_size
;
641 d
+= geo
->far_set_size
* set
;
644 r10bio
->devs
[slot
].devnum
= d
;
645 r10bio
->devs
[slot
].addr
= s
;
649 if (dev
>= geo
->raid_disks
) {
651 sector
+= (geo
->chunk_mask
+ 1);
656 static void raid10_find_phys(struct r10conf
*conf
, struct r10bio
*r10bio
)
658 struct geom
*geo
= &conf
->geo
;
660 if (conf
->reshape_progress
!= MaxSector
&&
661 ((r10bio
->sector
>= conf
->reshape_progress
) !=
662 conf
->mddev
->reshape_backwards
)) {
663 set_bit(R10BIO_Previous
, &r10bio
->state
);
666 clear_bit(R10BIO_Previous
, &r10bio
->state
);
668 __raid10_find_phys(geo
, r10bio
);
671 static sector_t
raid10_find_virt(struct r10conf
*conf
, sector_t sector
, int dev
)
673 sector_t offset
, chunk
, vchunk
;
674 /* Never use conf->prev as this is only called during resync
675 * or recovery, so reshape isn't happening
677 struct geom
*geo
= &conf
->geo
;
678 int far_set_start
= (dev
/ geo
->far_set_size
) * geo
->far_set_size
;
679 int far_set_size
= geo
->far_set_size
;
680 int last_far_set_start
;
682 if (geo
->raid_disks
% geo
->far_set_size
) {
683 last_far_set_start
= (geo
->raid_disks
/ geo
->far_set_size
) - 1;
684 last_far_set_start
*= geo
->far_set_size
;
686 if (dev
>= last_far_set_start
) {
687 far_set_size
= geo
->far_set_size
;
688 far_set_size
+= (geo
->raid_disks
% geo
->far_set_size
);
689 far_set_start
= last_far_set_start
;
693 offset
= sector
& geo
->chunk_mask
;
694 if (geo
->far_offset
) {
696 chunk
= sector
>> geo
->chunk_shift
;
697 fc
= sector_div(chunk
, geo
->far_copies
);
698 dev
-= fc
* geo
->near_copies
;
699 if (dev
< far_set_start
)
702 while (sector
>= geo
->stride
) {
703 sector
-= geo
->stride
;
704 if (dev
< (geo
->near_copies
+ far_set_start
))
705 dev
+= far_set_size
- geo
->near_copies
;
707 dev
-= geo
->near_copies
;
709 chunk
= sector
>> geo
->chunk_shift
;
711 vchunk
= chunk
* geo
->raid_disks
+ dev
;
712 sector_div(vchunk
, geo
->near_copies
);
713 return (vchunk
<< geo
->chunk_shift
) + offset
;
717 * This routine returns the disk from which the requested read should
718 * be done. There is a per-array 'next expected sequential IO' sector
719 * number - if this matches on the next IO then we use the last disk.
720 * There is also a per-disk 'last know head position' sector that is
721 * maintained from IRQ contexts, both the normal and the resync IO
722 * completion handlers update this position correctly. If there is no
723 * perfect sequential match then we pick the disk whose head is closest.
725 * If there are 2 mirrors in the same 2 devices, performance degrades
726 * because position is mirror, not device based.
728 * The rdev for the device selected will have nr_pending incremented.
732 * FIXME: possibly should rethink readbalancing and do it differently
733 * depending on near_copies / far_copies geometry.
735 static struct md_rdev
*read_balance(struct r10conf
*conf
,
736 struct r10bio
*r10_bio
,
739 const sector_t this_sector
= r10_bio
->sector
;
741 int sectors
= r10_bio
->sectors
;
742 int best_good_sectors
;
743 sector_t new_distance
, best_dist
;
744 struct md_rdev
*best_rdev
, *rdev
= NULL
;
747 struct geom
*geo
= &conf
->geo
;
749 raid10_find_phys(conf
, r10_bio
);
751 sectors
= r10_bio
->sectors
;
754 best_dist
= MaxSector
;
755 best_good_sectors
= 0;
757 clear_bit(R10BIO_FailFast
, &r10_bio
->state
);
759 * Check if we can balance. We can balance on the whole
760 * device if no resync is going on (recovery is ok), or below
761 * the resync window. We take the first readable disk when
762 * above the resync window.
764 if (conf
->mddev
->recovery_cp
< MaxSector
765 && (this_sector
+ sectors
>= conf
->next_resync
))
768 for (slot
= 0; slot
< conf
->copies
; slot
++) {
773 if (r10_bio
->devs
[slot
].bio
== IO_BLOCKED
)
775 disk
= r10_bio
->devs
[slot
].devnum
;
776 rdev
= rcu_dereference(conf
->mirrors
[disk
].replacement
);
777 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
) ||
778 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
779 rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
781 test_bit(Faulty
, &rdev
->flags
))
783 if (!test_bit(In_sync
, &rdev
->flags
) &&
784 r10_bio
->devs
[slot
].addr
+ sectors
> rdev
->recovery_offset
)
787 dev_sector
= r10_bio
->devs
[slot
].addr
;
788 if (is_badblock(rdev
, dev_sector
, sectors
,
789 &first_bad
, &bad_sectors
)) {
790 if (best_dist
< MaxSector
)
791 /* Already have a better slot */
793 if (first_bad
<= dev_sector
) {
794 /* Cannot read here. If this is the
795 * 'primary' device, then we must not read
796 * beyond 'bad_sectors' from another device.
798 bad_sectors
-= (dev_sector
- first_bad
);
799 if (!do_balance
&& sectors
> bad_sectors
)
800 sectors
= bad_sectors
;
801 if (best_good_sectors
> sectors
)
802 best_good_sectors
= sectors
;
804 sector_t good_sectors
=
805 first_bad
- dev_sector
;
806 if (good_sectors
> best_good_sectors
) {
807 best_good_sectors
= good_sectors
;
812 /* Must read from here */
817 best_good_sectors
= sectors
;
823 /* At least 2 disks to choose from so failfast is OK */
824 set_bit(R10BIO_FailFast
, &r10_bio
->state
);
825 /* This optimisation is debatable, and completely destroys
826 * sequential read speed for 'far copies' arrays. So only
827 * keep it for 'near' arrays, and review those later.
829 if (geo
->near_copies
> 1 && !atomic_read(&rdev
->nr_pending
))
832 /* for far > 1 always use the lowest address */
833 else if (geo
->far_copies
> 1)
834 new_distance
= r10_bio
->devs
[slot
].addr
;
836 new_distance
= abs(r10_bio
->devs
[slot
].addr
-
837 conf
->mirrors
[disk
].head_position
);
838 if (new_distance
< best_dist
) {
839 best_dist
= new_distance
;
844 if (slot
>= conf
->copies
) {
850 atomic_inc(&rdev
->nr_pending
);
851 r10_bio
->read_slot
= slot
;
855 *max_sectors
= best_good_sectors
;
860 static int raid10_congested(struct mddev
*mddev
, int bits
)
862 struct r10conf
*conf
= mddev
->private;
865 if ((bits
& (1 << WB_async_congested
)) &&
866 conf
->pending_count
>= max_queued_requests
)
871 (i
< conf
->geo
.raid_disks
|| i
< conf
->prev
.raid_disks
)
874 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
875 if (rdev
&& !test_bit(Faulty
, &rdev
->flags
)) {
876 struct request_queue
*q
= bdev_get_queue(rdev
->bdev
);
878 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
885 static void flush_pending_writes(struct r10conf
*conf
)
887 /* Any writes that have been queued but are awaiting
888 * bitmap updates get flushed here.
890 spin_lock_irq(&conf
->device_lock
);
892 if (conf
->pending_bio_list
.head
) {
893 struct blk_plug plug
;
896 bio
= bio_list_get(&conf
->pending_bio_list
);
897 conf
->pending_count
= 0;
898 spin_unlock_irq(&conf
->device_lock
);
899 blk_start_plug(&plug
);
900 /* flush any pending bitmap writes to disk
901 * before proceeding w/ I/O */
902 bitmap_unplug(conf
->mddev
->bitmap
);
903 wake_up(&conf
->wait_barrier
);
905 while (bio
) { /* submit pending writes */
906 struct bio
*next
= bio
->bi_next
;
907 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
909 bio_set_dev(bio
, rdev
->bdev
);
910 if (test_bit(Faulty
, &rdev
->flags
)) {
912 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
913 !blk_queue_discard(bio
->bi_disk
->queue
)))
917 generic_make_request(bio
);
920 blk_finish_plug(&plug
);
922 spin_unlock_irq(&conf
->device_lock
);
926 * Sometimes we need to suspend IO while we do something else,
927 * either some resync/recovery, or reconfigure the array.
928 * To do this we raise a 'barrier'.
929 * The 'barrier' is a counter that can be raised multiple times
930 * to count how many activities are happening which preclude
932 * We can only raise the barrier if there is no pending IO.
933 * i.e. if nr_pending == 0.
934 * We choose only to raise the barrier if no-one is waiting for the
935 * barrier to go down. This means that as soon as an IO request
936 * is ready, no other operations which require a barrier will start
937 * until the IO request has had a chance.
939 * So: regular IO calls 'wait_barrier'. When that returns there
940 * is no backgroup IO happening, It must arrange to call
941 * allow_barrier when it has finished its IO.
942 * backgroup IO calls must call raise_barrier. Once that returns
943 * there is no normal IO happeing. It must arrange to call
944 * lower_barrier when the particular background IO completes.
947 static void raise_barrier(struct r10conf
*conf
, int force
)
949 BUG_ON(force
&& !conf
->barrier
);
950 spin_lock_irq(&conf
->resync_lock
);
952 /* Wait until no block IO is waiting (unless 'force') */
953 wait_event_lock_irq(conf
->wait_barrier
, force
|| !conf
->nr_waiting
,
956 /* block any new IO from starting */
959 /* Now wait for all pending IO to complete */
960 wait_event_lock_irq(conf
->wait_barrier
,
961 !atomic_read(&conf
->nr_pending
) && conf
->barrier
< RESYNC_DEPTH
,
964 spin_unlock_irq(&conf
->resync_lock
);
967 static void lower_barrier(struct r10conf
*conf
)
970 spin_lock_irqsave(&conf
->resync_lock
, flags
);
972 spin_unlock_irqrestore(&conf
->resync_lock
, flags
);
973 wake_up(&conf
->wait_barrier
);
976 static void wait_barrier(struct r10conf
*conf
)
978 spin_lock_irq(&conf
->resync_lock
);
981 /* Wait for the barrier to drop.
982 * However if there are already pending
983 * requests (preventing the barrier from
984 * rising completely), and the
985 * pre-process bio queue isn't empty,
986 * then don't wait, as we need to empty
987 * that queue to get the nr_pending
990 raid10_log(conf
->mddev
, "wait barrier");
991 wait_event_lock_irq(conf
->wait_barrier
,
993 (atomic_read(&conf
->nr_pending
) &&
995 (!bio_list_empty(¤t
->bio_list
[0]) ||
996 !bio_list_empty(¤t
->bio_list
[1]))),
999 if (!conf
->nr_waiting
)
1000 wake_up(&conf
->wait_barrier
);
1002 atomic_inc(&conf
->nr_pending
);
1003 spin_unlock_irq(&conf
->resync_lock
);
1006 static void allow_barrier(struct r10conf
*conf
)
1008 if ((atomic_dec_and_test(&conf
->nr_pending
)) ||
1009 (conf
->array_freeze_pending
))
1010 wake_up(&conf
->wait_barrier
);
1013 static void freeze_array(struct r10conf
*conf
, int extra
)
1015 /* stop syncio and normal IO and wait for everything to
1017 * We increment barrier and nr_waiting, and then
1018 * wait until nr_pending match nr_queued+extra
1019 * This is called in the context of one normal IO request
1020 * that has failed. Thus any sync request that might be pending
1021 * will be blocked by nr_pending, and we need to wait for
1022 * pending IO requests to complete or be queued for re-try.
1023 * Thus the number queued (nr_queued) plus this request (extra)
1024 * must match the number of pending IOs (nr_pending) before
1027 spin_lock_irq(&conf
->resync_lock
);
1028 conf
->array_freeze_pending
++;
1031 wait_event_lock_irq_cmd(conf
->wait_barrier
,
1032 atomic_read(&conf
->nr_pending
) == conf
->nr_queued
+extra
,
1034 flush_pending_writes(conf
));
1036 conf
->array_freeze_pending
--;
1037 spin_unlock_irq(&conf
->resync_lock
);
1040 static void unfreeze_array(struct r10conf
*conf
)
1042 /* reverse the effect of the freeze */
1043 spin_lock_irq(&conf
->resync_lock
);
1046 wake_up(&conf
->wait_barrier
);
1047 spin_unlock_irq(&conf
->resync_lock
);
1050 static sector_t
choose_data_offset(struct r10bio
*r10_bio
,
1051 struct md_rdev
*rdev
)
1053 if (!test_bit(MD_RECOVERY_RESHAPE
, &rdev
->mddev
->recovery
) ||
1054 test_bit(R10BIO_Previous
, &r10_bio
->state
))
1055 return rdev
->data_offset
;
1057 return rdev
->new_data_offset
;
1060 struct raid10_plug_cb
{
1061 struct blk_plug_cb cb
;
1062 struct bio_list pending
;
1066 static void raid10_unplug(struct blk_plug_cb
*cb
, bool from_schedule
)
1068 struct raid10_plug_cb
*plug
= container_of(cb
, struct raid10_plug_cb
,
1070 struct mddev
*mddev
= plug
->cb
.data
;
1071 struct r10conf
*conf
= mddev
->private;
1074 if (from_schedule
|| current
->bio_list
) {
1075 spin_lock_irq(&conf
->device_lock
);
1076 bio_list_merge(&conf
->pending_bio_list
, &plug
->pending
);
1077 conf
->pending_count
+= plug
->pending_cnt
;
1078 spin_unlock_irq(&conf
->device_lock
);
1079 wake_up(&conf
->wait_barrier
);
1080 md_wakeup_thread(mddev
->thread
);
1085 /* we aren't scheduling, so we can do the write-out directly. */
1086 bio
= bio_list_get(&plug
->pending
);
1087 bitmap_unplug(mddev
->bitmap
);
1088 wake_up(&conf
->wait_barrier
);
1090 while (bio
) { /* submit pending writes */
1091 struct bio
*next
= bio
->bi_next
;
1092 struct md_rdev
*rdev
= (void*)bio
->bi_disk
;
1093 bio
->bi_next
= NULL
;
1094 bio_set_dev(bio
, rdev
->bdev
);
1095 if (test_bit(Faulty
, &rdev
->flags
)) {
1097 } else if (unlikely((bio_op(bio
) == REQ_OP_DISCARD
) &&
1098 !blk_queue_discard(bio
->bi_disk
->queue
)))
1099 /* Just ignore it */
1102 generic_make_request(bio
);
1108 static void raid10_read_request(struct mddev
*mddev
, struct bio
*bio
,
1109 struct r10bio
*r10_bio
)
1111 struct r10conf
*conf
= mddev
->private;
1112 struct bio
*read_bio
;
1113 const int op
= bio_op(bio
);
1114 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1117 struct md_rdev
*rdev
;
1118 char b
[BDEVNAME_SIZE
];
1119 int slot
= r10_bio
->read_slot
;
1120 struct md_rdev
*err_rdev
= NULL
;
1121 gfp_t gfp
= GFP_NOIO
;
1123 if (r10_bio
->devs
[slot
].rdev
) {
1125 * This is an error retry, but we cannot
1126 * safely dereference the rdev in the r10_bio,
1127 * we must use the one in conf.
1128 * If it has already been disconnected (unlikely)
1129 * we lose the device name in error messages.
1133 * As we are blocking raid10, it is a little safer to
1136 gfp
= GFP_NOIO
| __GFP_HIGH
;
1139 disk
= r10_bio
->devs
[slot
].devnum
;
1140 err_rdev
= rcu_dereference(conf
->mirrors
[disk
].rdev
);
1142 bdevname(err_rdev
->bdev
, b
);
1145 /* This never gets dereferenced */
1146 err_rdev
= r10_bio
->devs
[slot
].rdev
;
1151 * Register the new request and wait if the reconstruction
1152 * thread has put up a bar for new requests.
1153 * Continue immediately if no resync is active currently.
1157 sectors
= r10_bio
->sectors
;
1158 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1159 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1160 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1162 * IO spans the reshape position. Need to wait for reshape to
1165 raid10_log(conf
->mddev
, "wait reshape");
1166 allow_barrier(conf
);
1167 wait_event(conf
->wait_barrier
,
1168 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1169 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1174 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
1177 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1179 (unsigned long long)r10_bio
->sector
);
1181 raid_end_bio_io(r10_bio
);
1185 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1187 bdevname(rdev
->bdev
, b
),
1188 (unsigned long long)r10_bio
->sector
);
1189 if (max_sectors
< bio_sectors(bio
)) {
1190 struct bio
*split
= bio_split(bio
, max_sectors
,
1191 gfp
, conf
->bio_split
);
1192 bio_chain(split
, bio
);
1193 allow_barrier(conf
);
1194 generic_make_request(bio
);
1197 r10_bio
->master_bio
= bio
;
1198 r10_bio
->sectors
= max_sectors
;
1200 slot
= r10_bio
->read_slot
;
1202 read_bio
= bio_clone_fast(bio
, gfp
, mddev
->bio_set
);
1204 r10_bio
->devs
[slot
].bio
= read_bio
;
1205 r10_bio
->devs
[slot
].rdev
= rdev
;
1207 read_bio
->bi_iter
.bi_sector
= r10_bio
->devs
[slot
].addr
+
1208 choose_data_offset(r10_bio
, rdev
);
1209 bio_set_dev(read_bio
, rdev
->bdev
);
1210 read_bio
->bi_end_io
= raid10_end_read_request
;
1211 bio_set_op_attrs(read_bio
, op
, do_sync
);
1212 if (test_bit(FailFast
, &rdev
->flags
) &&
1213 test_bit(R10BIO_FailFast
, &r10_bio
->state
))
1214 read_bio
->bi_opf
|= MD_FAILFAST
;
1215 read_bio
->bi_private
= r10_bio
;
1218 trace_block_bio_remap(read_bio
->bi_disk
->queue
,
1219 read_bio
, disk_devt(mddev
->gendisk
),
1221 generic_make_request(read_bio
);
1225 static void raid10_write_one_disk(struct mddev
*mddev
, struct r10bio
*r10_bio
,
1226 struct bio
*bio
, bool replacement
,
1229 const int op
= bio_op(bio
);
1230 const unsigned long do_sync
= (bio
->bi_opf
& REQ_SYNC
);
1231 const unsigned long do_fua
= (bio
->bi_opf
& REQ_FUA
);
1232 unsigned long flags
;
1233 struct blk_plug_cb
*cb
;
1234 struct raid10_plug_cb
*plug
= NULL
;
1235 struct r10conf
*conf
= mddev
->private;
1236 struct md_rdev
*rdev
;
1237 int devnum
= r10_bio
->devs
[n_copy
].devnum
;
1241 rdev
= conf
->mirrors
[devnum
].replacement
;
1243 /* Replacement just got moved to main 'rdev' */
1245 rdev
= conf
->mirrors
[devnum
].rdev
;
1248 rdev
= conf
->mirrors
[devnum
].rdev
;
1250 mbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
1252 r10_bio
->devs
[n_copy
].repl_bio
= mbio
;
1254 r10_bio
->devs
[n_copy
].bio
= mbio
;
1256 mbio
->bi_iter
.bi_sector
= (r10_bio
->devs
[n_copy
].addr
+
1257 choose_data_offset(r10_bio
, rdev
));
1258 bio_set_dev(mbio
, rdev
->bdev
);
1259 mbio
->bi_end_io
= raid10_end_write_request
;
1260 bio_set_op_attrs(mbio
, op
, do_sync
| do_fua
);
1261 if (!replacement
&& test_bit(FailFast
,
1262 &conf
->mirrors
[devnum
].rdev
->flags
)
1263 && enough(conf
, devnum
))
1264 mbio
->bi_opf
|= MD_FAILFAST
;
1265 mbio
->bi_private
= r10_bio
;
1267 if (conf
->mddev
->gendisk
)
1268 trace_block_bio_remap(mbio
->bi_disk
->queue
,
1269 mbio
, disk_devt(conf
->mddev
->gendisk
),
1271 /* flush_pending_writes() needs access to the rdev so...*/
1272 mbio
->bi_disk
= (void *)rdev
;
1274 atomic_inc(&r10_bio
->remaining
);
1276 cb
= blk_check_plugged(raid10_unplug
, mddev
, sizeof(*plug
));
1278 plug
= container_of(cb
, struct raid10_plug_cb
, cb
);
1282 bio_list_add(&plug
->pending
, mbio
);
1283 plug
->pending_cnt
++;
1285 spin_lock_irqsave(&conf
->device_lock
, flags
);
1286 bio_list_add(&conf
->pending_bio_list
, mbio
);
1287 conf
->pending_count
++;
1288 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1289 md_wakeup_thread(mddev
->thread
);
1293 static void raid10_write_request(struct mddev
*mddev
, struct bio
*bio
,
1294 struct r10bio
*r10_bio
)
1296 struct r10conf
*conf
= mddev
->private;
1298 struct md_rdev
*blocked_rdev
;
1303 * Register the new request and wait if the reconstruction
1304 * thread has put up a bar for new requests.
1305 * Continue immediately if no resync is active currently.
1309 sectors
= r10_bio
->sectors
;
1310 while (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1311 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
&&
1312 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
) {
1314 * IO spans the reshape position. Need to wait for reshape to
1317 raid10_log(conf
->mddev
, "wait reshape");
1318 allow_barrier(conf
);
1319 wait_event(conf
->wait_barrier
,
1320 conf
->reshape_progress
<= bio
->bi_iter
.bi_sector
||
1321 conf
->reshape_progress
>= bio
->bi_iter
.bi_sector
+
1326 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
1327 (mddev
->reshape_backwards
1328 ? (bio
->bi_iter
.bi_sector
< conf
->reshape_safe
&&
1329 bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_progress
)
1330 : (bio
->bi_iter
.bi_sector
+ sectors
> conf
->reshape_safe
&&
1331 bio
->bi_iter
.bi_sector
< conf
->reshape_progress
))) {
1332 /* Need to update reshape_position in metadata */
1333 mddev
->reshape_position
= conf
->reshape_progress
;
1334 set_mask_bits(&mddev
->sb_flags
, 0,
1335 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1336 md_wakeup_thread(mddev
->thread
);
1337 raid10_log(conf
->mddev
, "wait reshape metadata");
1338 wait_event(mddev
->sb_wait
,
1339 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
));
1341 conf
->reshape_safe
= mddev
->reshape_position
;
1344 if (conf
->pending_count
>= max_queued_requests
) {
1345 md_wakeup_thread(mddev
->thread
);
1346 raid10_log(mddev
, "wait queued");
1347 wait_event(conf
->wait_barrier
,
1348 conf
->pending_count
< max_queued_requests
);
1350 /* first select target devices under rcu_lock and
1351 * inc refcount on their rdev. Record them by setting
1353 * If there are known/acknowledged bad blocks on any device
1354 * on which we have seen a write error, we want to avoid
1355 * writing to those blocks. This potentially requires several
1356 * writes to write around the bad blocks. Each set of writes
1357 * gets its own r10_bio with a set of bios attached.
1360 r10_bio
->read_slot
= -1; /* make sure repl_bio gets freed */
1361 raid10_find_phys(conf
, r10_bio
);
1363 blocked_rdev
= NULL
;
1365 max_sectors
= r10_bio
->sectors
;
1367 for (i
= 0; i
< conf
->copies
; i
++) {
1368 int d
= r10_bio
->devs
[i
].devnum
;
1369 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
1370 struct md_rdev
*rrdev
= rcu_dereference(
1371 conf
->mirrors
[d
].replacement
);
1374 if (rdev
&& unlikely(test_bit(Blocked
, &rdev
->flags
))) {
1375 atomic_inc(&rdev
->nr_pending
);
1376 blocked_rdev
= rdev
;
1379 if (rrdev
&& unlikely(test_bit(Blocked
, &rrdev
->flags
))) {
1380 atomic_inc(&rrdev
->nr_pending
);
1381 blocked_rdev
= rrdev
;
1384 if (rdev
&& (test_bit(Faulty
, &rdev
->flags
)))
1386 if (rrdev
&& (test_bit(Faulty
, &rrdev
->flags
)))
1389 r10_bio
->devs
[i
].bio
= NULL
;
1390 r10_bio
->devs
[i
].repl_bio
= NULL
;
1392 if (!rdev
&& !rrdev
) {
1393 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
1396 if (rdev
&& test_bit(WriteErrorSeen
, &rdev
->flags
)) {
1398 sector_t dev_sector
= r10_bio
->devs
[i
].addr
;
1402 is_bad
= is_badblock(rdev
, dev_sector
, max_sectors
,
1403 &first_bad
, &bad_sectors
);
1405 /* Mustn't write here until the bad block
1408 atomic_inc(&rdev
->nr_pending
);
1409 set_bit(BlockedBadBlocks
, &rdev
->flags
);
1410 blocked_rdev
= rdev
;
1413 if (is_bad
&& first_bad
<= dev_sector
) {
1414 /* Cannot write here at all */
1415 bad_sectors
-= (dev_sector
- first_bad
);
1416 if (bad_sectors
< max_sectors
)
1417 /* Mustn't write more than bad_sectors
1418 * to other devices yet
1420 max_sectors
= bad_sectors
;
1421 /* We don't set R10BIO_Degraded as that
1422 * only applies if the disk is missing,
1423 * so it might be re-added, and we want to
1424 * know to recover this chunk.
1425 * In this case the device is here, and the
1426 * fact that this chunk is not in-sync is
1427 * recorded in the bad block log.
1432 int good_sectors
= first_bad
- dev_sector
;
1433 if (good_sectors
< max_sectors
)
1434 max_sectors
= good_sectors
;
1438 r10_bio
->devs
[i
].bio
= bio
;
1439 atomic_inc(&rdev
->nr_pending
);
1442 r10_bio
->devs
[i
].repl_bio
= bio
;
1443 atomic_inc(&rrdev
->nr_pending
);
1448 if (unlikely(blocked_rdev
)) {
1449 /* Have to wait for this device to get unblocked, then retry */
1453 for (j
= 0; j
< i
; j
++) {
1454 if (r10_bio
->devs
[j
].bio
) {
1455 d
= r10_bio
->devs
[j
].devnum
;
1456 rdev_dec_pending(conf
->mirrors
[d
].rdev
, mddev
);
1458 if (r10_bio
->devs
[j
].repl_bio
) {
1459 struct md_rdev
*rdev
;
1460 d
= r10_bio
->devs
[j
].devnum
;
1461 rdev
= conf
->mirrors
[d
].replacement
;
1463 /* Race with remove_disk */
1465 rdev
= conf
->mirrors
[d
].rdev
;
1467 rdev_dec_pending(rdev
, mddev
);
1470 allow_barrier(conf
);
1471 raid10_log(conf
->mddev
, "wait rdev %d blocked", blocked_rdev
->raid_disk
);
1472 md_wait_for_blocked_rdev(blocked_rdev
, mddev
);
1477 if (max_sectors
< r10_bio
->sectors
)
1478 r10_bio
->sectors
= max_sectors
;
1480 if (r10_bio
->sectors
< bio_sectors(bio
)) {
1481 struct bio
*split
= bio_split(bio
, r10_bio
->sectors
,
1482 GFP_NOIO
, conf
->bio_split
);
1483 bio_chain(split
, bio
);
1484 allow_barrier(conf
);
1485 generic_make_request(bio
);
1488 r10_bio
->master_bio
= bio
;
1491 atomic_set(&r10_bio
->remaining
, 1);
1492 bitmap_startwrite(mddev
->bitmap
, r10_bio
->sector
, r10_bio
->sectors
, 0);
1494 for (i
= 0; i
< conf
->copies
; i
++) {
1495 if (r10_bio
->devs
[i
].bio
)
1496 raid10_write_one_disk(mddev
, r10_bio
, bio
, false, i
);
1497 if (r10_bio
->devs
[i
].repl_bio
)
1498 raid10_write_one_disk(mddev
, r10_bio
, bio
, true, i
);
1500 one_write_done(r10_bio
);
1503 static void __make_request(struct mddev
*mddev
, struct bio
*bio
, int sectors
)
1505 struct r10conf
*conf
= mddev
->private;
1506 struct r10bio
*r10_bio
;
1508 r10_bio
= mempool_alloc(conf
->r10bio_pool
, GFP_NOIO
);
1510 r10_bio
->master_bio
= bio
;
1511 r10_bio
->sectors
= sectors
;
1513 r10_bio
->mddev
= mddev
;
1514 r10_bio
->sector
= bio
->bi_iter
.bi_sector
;
1516 memset(r10_bio
->devs
, 0, sizeof(r10_bio
->devs
[0]) * conf
->copies
);
1518 if (bio_data_dir(bio
) == READ
)
1519 raid10_read_request(mddev
, bio
, r10_bio
);
1521 raid10_write_request(mddev
, bio
, r10_bio
);
1524 static bool raid10_make_request(struct mddev
*mddev
, struct bio
*bio
)
1526 struct r10conf
*conf
= mddev
->private;
1527 sector_t chunk_mask
= (conf
->geo
.chunk_mask
& conf
->prev
.chunk_mask
);
1528 int chunk_sects
= chunk_mask
+ 1;
1529 int sectors
= bio_sectors(bio
);
1531 if (unlikely(bio
->bi_opf
& REQ_PREFLUSH
)) {
1532 md_flush_request(mddev
, bio
);
1536 if (!md_write_start(mddev
, bio
))
1540 * If this request crosses a chunk boundary, we need to split
1543 if (unlikely((bio
->bi_iter
.bi_sector
& chunk_mask
) +
1544 sectors
> chunk_sects
1545 && (conf
->geo
.near_copies
< conf
->geo
.raid_disks
1546 || conf
->prev
.near_copies
<
1547 conf
->prev
.raid_disks
)))
1548 sectors
= chunk_sects
-
1549 (bio
->bi_iter
.bi_sector
&
1551 __make_request(mddev
, bio
, sectors
);
1553 /* In case raid10d snuck in to freeze_array */
1554 wake_up(&conf
->wait_barrier
);
1558 static void raid10_status(struct seq_file
*seq
, struct mddev
*mddev
)
1560 struct r10conf
*conf
= mddev
->private;
1563 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
)
1564 seq_printf(seq
, " %dK chunks", mddev
->chunk_sectors
/ 2);
1565 if (conf
->geo
.near_copies
> 1)
1566 seq_printf(seq
, " %d near-copies", conf
->geo
.near_copies
);
1567 if (conf
->geo
.far_copies
> 1) {
1568 if (conf
->geo
.far_offset
)
1569 seq_printf(seq
, " %d offset-copies", conf
->geo
.far_copies
);
1571 seq_printf(seq
, " %d far-copies", conf
->geo
.far_copies
);
1572 if (conf
->geo
.far_set_size
!= conf
->geo
.raid_disks
)
1573 seq_printf(seq
, " %d devices per set", conf
->geo
.far_set_size
);
1575 seq_printf(seq
, " [%d/%d] [", conf
->geo
.raid_disks
,
1576 conf
->geo
.raid_disks
- mddev
->degraded
);
1578 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1579 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
1580 seq_printf(seq
, "%s", rdev
&& test_bit(In_sync
, &rdev
->flags
) ? "U" : "_");
1583 seq_printf(seq
, "]");
1586 /* check if there are enough drives for
1587 * every block to appear on atleast one.
1588 * Don't consider the device numbered 'ignore'
1589 * as we might be about to remove it.
1591 static int _enough(struct r10conf
*conf
, int previous
, int ignore
)
1597 disks
= conf
->prev
.raid_disks
;
1598 ncopies
= conf
->prev
.near_copies
;
1600 disks
= conf
->geo
.raid_disks
;
1601 ncopies
= conf
->geo
.near_copies
;
1606 int n
= conf
->copies
;
1610 struct md_rdev
*rdev
;
1611 if (this != ignore
&&
1612 (rdev
= rcu_dereference(conf
->mirrors
[this].rdev
)) &&
1613 test_bit(In_sync
, &rdev
->flags
))
1615 this = (this+1) % disks
;
1619 first
= (first
+ ncopies
) % disks
;
1620 } while (first
!= 0);
1627 static int enough(struct r10conf
*conf
, int ignore
)
1629 /* when calling 'enough', both 'prev' and 'geo' must
1631 * This is ensured if ->reconfig_mutex or ->device_lock
1634 return _enough(conf
, 0, ignore
) &&
1635 _enough(conf
, 1, ignore
);
1638 static void raid10_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1640 char b
[BDEVNAME_SIZE
];
1641 struct r10conf
*conf
= mddev
->private;
1642 unsigned long flags
;
1645 * If it is not operational, then we have already marked it as dead
1646 * else if it is the last working disks, ignore the error, let the
1647 * next level up know.
1648 * else mark the drive as failed
1650 spin_lock_irqsave(&conf
->device_lock
, flags
);
1651 if (test_bit(In_sync
, &rdev
->flags
)
1652 && !enough(conf
, rdev
->raid_disk
)) {
1654 * Don't fail the drive, just return an IO error.
1656 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1659 if (test_and_clear_bit(In_sync
, &rdev
->flags
))
1662 * If recovery is running, make sure it aborts.
1664 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1665 set_bit(Blocked
, &rdev
->flags
);
1666 set_bit(Faulty
, &rdev
->flags
);
1667 set_mask_bits(&mddev
->sb_flags
, 0,
1668 BIT(MD_SB_CHANGE_DEVS
) | BIT(MD_SB_CHANGE_PENDING
));
1669 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1670 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1671 "md/raid10:%s: Operation continuing on %d devices.\n",
1672 mdname(mddev
), bdevname(rdev
->bdev
, b
),
1673 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
);
1676 static void print_conf(struct r10conf
*conf
)
1679 struct md_rdev
*rdev
;
1681 pr_debug("RAID10 conf printout:\n");
1683 pr_debug("(!conf)\n");
1686 pr_debug(" --- wd:%d rd:%d\n", conf
->geo
.raid_disks
- conf
->mddev
->degraded
,
1687 conf
->geo
.raid_disks
);
1689 /* This is only called with ->reconfix_mutex held, so
1690 * rcu protection of rdev is not needed */
1691 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1692 char b
[BDEVNAME_SIZE
];
1693 rdev
= conf
->mirrors
[i
].rdev
;
1695 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1696 i
, !test_bit(In_sync
, &rdev
->flags
),
1697 !test_bit(Faulty
, &rdev
->flags
),
1698 bdevname(rdev
->bdev
,b
));
1702 static void close_sync(struct r10conf
*conf
)
1705 allow_barrier(conf
);
1707 mempool_destroy(conf
->r10buf_pool
);
1708 conf
->r10buf_pool
= NULL
;
1711 static int raid10_spare_active(struct mddev
*mddev
)
1714 struct r10conf
*conf
= mddev
->private;
1715 struct raid10_info
*tmp
;
1717 unsigned long flags
;
1720 * Find all non-in_sync disks within the RAID10 configuration
1721 * and mark them in_sync
1723 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
1724 tmp
= conf
->mirrors
+ i
;
1725 if (tmp
->replacement
1726 && tmp
->replacement
->recovery_offset
== MaxSector
1727 && !test_bit(Faulty
, &tmp
->replacement
->flags
)
1728 && !test_and_set_bit(In_sync
, &tmp
->replacement
->flags
)) {
1729 /* Replacement has just become active */
1731 || !test_and_clear_bit(In_sync
, &tmp
->rdev
->flags
))
1734 /* Replaced device not technically faulty,
1735 * but we need to be sure it gets removed
1736 * and never re-added.
1738 set_bit(Faulty
, &tmp
->rdev
->flags
);
1739 sysfs_notify_dirent_safe(
1740 tmp
->rdev
->sysfs_state
);
1742 sysfs_notify_dirent_safe(tmp
->replacement
->sysfs_state
);
1743 } else if (tmp
->rdev
1744 && tmp
->rdev
->recovery_offset
== MaxSector
1745 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
1746 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
1748 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
1751 spin_lock_irqsave(&conf
->device_lock
, flags
);
1752 mddev
->degraded
-= count
;
1753 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1759 static int raid10_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1761 struct r10conf
*conf
= mddev
->private;
1765 int last
= conf
->geo
.raid_disks
- 1;
1767 if (mddev
->recovery_cp
< MaxSector
)
1768 /* only hot-add to in-sync arrays, as recovery is
1769 * very different from resync
1772 if (rdev
->saved_raid_disk
< 0 && !_enough(conf
, 1, -1))
1775 if (md_integrity_add_rdev(rdev
, mddev
))
1778 if (rdev
->raid_disk
>= 0)
1779 first
= last
= rdev
->raid_disk
;
1781 if (rdev
->saved_raid_disk
>= first
&&
1782 rdev
->saved_raid_disk
< conf
->geo
.raid_disks
&&
1783 conf
->mirrors
[rdev
->saved_raid_disk
].rdev
== NULL
)
1784 mirror
= rdev
->saved_raid_disk
;
1787 for ( ; mirror
<= last
; mirror
++) {
1788 struct raid10_info
*p
= &conf
->mirrors
[mirror
];
1789 if (p
->recovery_disabled
== mddev
->recovery_disabled
)
1792 if (!test_bit(WantReplacement
, &p
->rdev
->flags
) ||
1793 p
->replacement
!= NULL
)
1795 clear_bit(In_sync
, &rdev
->flags
);
1796 set_bit(Replacement
, &rdev
->flags
);
1797 rdev
->raid_disk
= mirror
;
1800 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1801 rdev
->data_offset
<< 9);
1803 rcu_assign_pointer(p
->replacement
, rdev
);
1808 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
1809 rdev
->data_offset
<< 9);
1811 p
->head_position
= 0;
1812 p
->recovery_disabled
= mddev
->recovery_disabled
- 1;
1813 rdev
->raid_disk
= mirror
;
1815 if (rdev
->saved_raid_disk
!= mirror
)
1817 rcu_assign_pointer(p
->rdev
, rdev
);
1820 if (mddev
->queue
&& blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
1821 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
, mddev
->queue
);
1827 static int raid10_remove_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
1829 struct r10conf
*conf
= mddev
->private;
1831 int number
= rdev
->raid_disk
;
1832 struct md_rdev
**rdevp
;
1833 struct raid10_info
*p
= conf
->mirrors
+ number
;
1836 if (rdev
== p
->rdev
)
1838 else if (rdev
== p
->replacement
)
1839 rdevp
= &p
->replacement
;
1843 if (test_bit(In_sync
, &rdev
->flags
) ||
1844 atomic_read(&rdev
->nr_pending
)) {
1848 /* Only remove non-faulty devices if recovery
1851 if (!test_bit(Faulty
, &rdev
->flags
) &&
1852 mddev
->recovery_disabled
!= p
->recovery_disabled
&&
1853 (!p
->replacement
|| p
->replacement
== rdev
) &&
1854 number
< conf
->geo
.raid_disks
&&
1860 if (!test_bit(RemoveSynchronized
, &rdev
->flags
)) {
1862 if (atomic_read(&rdev
->nr_pending
)) {
1863 /* lost the race, try later */
1869 if (p
->replacement
) {
1870 /* We must have just cleared 'rdev' */
1871 p
->rdev
= p
->replacement
;
1872 clear_bit(Replacement
, &p
->replacement
->flags
);
1873 smp_mb(); /* Make sure other CPUs may see both as identical
1874 * but will never see neither -- if they are careful.
1876 p
->replacement
= NULL
;
1879 clear_bit(WantReplacement
, &rdev
->flags
);
1880 err
= md_integrity_register(mddev
);
1888 static void __end_sync_read(struct r10bio
*r10_bio
, struct bio
*bio
, int d
)
1890 struct r10conf
*conf
= r10_bio
->mddev
->private;
1892 if (!bio
->bi_status
)
1893 set_bit(R10BIO_Uptodate
, &r10_bio
->state
);
1895 /* The write handler will notice the lack of
1896 * R10BIO_Uptodate and record any errors etc
1898 atomic_add(r10_bio
->sectors
,
1899 &conf
->mirrors
[d
].rdev
->corrected_errors
);
1901 /* for reconstruct, we always reschedule after a read.
1902 * for resync, only after all reads
1904 rdev_dec_pending(conf
->mirrors
[d
].rdev
, conf
->mddev
);
1905 if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
) ||
1906 atomic_dec_and_test(&r10_bio
->remaining
)) {
1907 /* we have read all the blocks,
1908 * do the comparison in process context in raid10d
1910 reschedule_retry(r10_bio
);
1914 static void end_sync_read(struct bio
*bio
)
1916 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1917 struct r10conf
*conf
= r10_bio
->mddev
->private;
1918 int d
= find_bio_disk(conf
, r10_bio
, bio
, NULL
, NULL
);
1920 __end_sync_read(r10_bio
, bio
, d
);
1923 static void end_reshape_read(struct bio
*bio
)
1925 /* reshape read bio isn't allocated from r10buf_pool */
1926 struct r10bio
*r10_bio
= bio
->bi_private
;
1928 __end_sync_read(r10_bio
, bio
, r10_bio
->read_slot
);
1931 static void end_sync_request(struct r10bio
*r10_bio
)
1933 struct mddev
*mddev
= r10_bio
->mddev
;
1935 while (atomic_dec_and_test(&r10_bio
->remaining
)) {
1936 if (r10_bio
->master_bio
== NULL
) {
1937 /* the primary of several recovery bios */
1938 sector_t s
= r10_bio
->sectors
;
1939 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1940 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1941 reschedule_retry(r10_bio
);
1944 md_done_sync(mddev
, s
, 1);
1947 struct r10bio
*r10_bio2
= (struct r10bio
*)r10_bio
->master_bio
;
1948 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
1949 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
1950 reschedule_retry(r10_bio
);
1958 static void end_sync_write(struct bio
*bio
)
1960 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
1961 struct mddev
*mddev
= r10_bio
->mddev
;
1962 struct r10conf
*conf
= mddev
->private;
1968 struct md_rdev
*rdev
= NULL
;
1970 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
1972 rdev
= conf
->mirrors
[d
].replacement
;
1974 rdev
= conf
->mirrors
[d
].rdev
;
1976 if (bio
->bi_status
) {
1978 md_error(mddev
, rdev
);
1980 set_bit(WriteErrorSeen
, &rdev
->flags
);
1981 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
1982 set_bit(MD_RECOVERY_NEEDED
,
1983 &rdev
->mddev
->recovery
);
1984 set_bit(R10BIO_WriteError
, &r10_bio
->state
);
1986 } else if (is_badblock(rdev
,
1987 r10_bio
->devs
[slot
].addr
,
1989 &first_bad
, &bad_sectors
))
1990 set_bit(R10BIO_MadeGood
, &r10_bio
->state
);
1992 rdev_dec_pending(rdev
, mddev
);
1994 end_sync_request(r10_bio
);
1998 * Note: sync and recover and handled very differently for raid10
1999 * This code is for resync.
2000 * For resync, we read through virtual addresses and read all blocks.
2001 * If there is any error, we schedule a write. The lowest numbered
2002 * drive is authoritative.
2003 * However requests come for physical address, so we need to map.
2004 * For every physical address there are raid_disks/copies virtual addresses,
2005 * which is always are least one, but is not necessarly an integer.
2006 * This means that a physical address can span multiple chunks, so we may
2007 * have to submit multiple io requests for a single sync request.
2010 * We check if all blocks are in-sync and only write to blocks that
2013 static void sync_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2015 struct r10conf
*conf
= mddev
->private;
2017 struct bio
*tbio
, *fbio
;
2019 struct page
**tpages
, **fpages
;
2021 atomic_set(&r10_bio
->remaining
, 1);
2023 /* find the first device with a block */
2024 for (i
=0; i
<conf
->copies
; i
++)
2025 if (!r10_bio
->devs
[i
].bio
->bi_status
)
2028 if (i
== conf
->copies
)
2032 fbio
= r10_bio
->devs
[i
].bio
;
2033 fbio
->bi_iter
.bi_size
= r10_bio
->sectors
<< 9;
2034 fbio
->bi_iter
.bi_idx
= 0;
2035 fpages
= get_resync_pages(fbio
)->pages
;
2037 vcnt
= (r10_bio
->sectors
+ (PAGE_SIZE
>> 9) - 1) >> (PAGE_SHIFT
- 9);
2038 /* now find blocks with errors */
2039 for (i
=0 ; i
< conf
->copies
; i
++) {
2041 struct md_rdev
*rdev
;
2042 struct resync_pages
*rp
;
2044 tbio
= r10_bio
->devs
[i
].bio
;
2046 if (tbio
->bi_end_io
!= end_sync_read
)
2051 tpages
= get_resync_pages(tbio
)->pages
;
2052 d
= r10_bio
->devs
[i
].devnum
;
2053 rdev
= conf
->mirrors
[d
].rdev
;
2054 if (!r10_bio
->devs
[i
].bio
->bi_status
) {
2055 /* We know that the bi_io_vec layout is the same for
2056 * both 'first' and 'i', so we just compare them.
2057 * All vec entries are PAGE_SIZE;
2059 int sectors
= r10_bio
->sectors
;
2060 for (j
= 0; j
< vcnt
; j
++) {
2061 int len
= PAGE_SIZE
;
2062 if (sectors
< (len
/ 512))
2063 len
= sectors
* 512;
2064 if (memcmp(page_address(fpages
[j
]),
2065 page_address(tpages
[j
]),
2072 atomic64_add(r10_bio
->sectors
, &mddev
->resync_mismatches
);
2073 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
2074 /* Don't fix anything. */
2076 } else if (test_bit(FailFast
, &rdev
->flags
)) {
2077 /* Just give up on this device */
2078 md_error(rdev
->mddev
, rdev
);
2081 /* Ok, we need to write this bio, either to correct an
2082 * inconsistency or to correct an unreadable block.
2083 * First we need to fixup bv_offset, bv_len and
2084 * bi_vecs, as the read request might have corrupted these
2086 rp
= get_resync_pages(tbio
);
2089 md_bio_reset_resync_pages(tbio
, rp
, fbio
->bi_iter
.bi_size
);
2091 rp
->raid_bio
= r10_bio
;
2092 tbio
->bi_private
= rp
;
2093 tbio
->bi_iter
.bi_sector
= r10_bio
->devs
[i
].addr
;
2094 tbio
->bi_end_io
= end_sync_write
;
2095 bio_set_op_attrs(tbio
, REQ_OP_WRITE
, 0);
2097 bio_copy_data(tbio
, fbio
);
2099 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2100 atomic_inc(&r10_bio
->remaining
);
2101 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(tbio
));
2103 if (test_bit(FailFast
, &conf
->mirrors
[d
].rdev
->flags
))
2104 tbio
->bi_opf
|= MD_FAILFAST
;
2105 tbio
->bi_iter
.bi_sector
+= conf
->mirrors
[d
].rdev
->data_offset
;
2106 bio_set_dev(tbio
, conf
->mirrors
[d
].rdev
->bdev
);
2107 generic_make_request(tbio
);
2110 /* Now write out to any replacement devices
2113 for (i
= 0; i
< conf
->copies
; i
++) {
2116 tbio
= r10_bio
->devs
[i
].repl_bio
;
2117 if (!tbio
|| !tbio
->bi_end_io
)
2119 if (r10_bio
->devs
[i
].bio
->bi_end_io
!= end_sync_write
2120 && r10_bio
->devs
[i
].bio
!= fbio
)
2121 bio_copy_data(tbio
, fbio
);
2122 d
= r10_bio
->devs
[i
].devnum
;
2123 atomic_inc(&r10_bio
->remaining
);
2124 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2126 generic_make_request(tbio
);
2130 if (atomic_dec_and_test(&r10_bio
->remaining
)) {
2131 md_done_sync(mddev
, r10_bio
->sectors
, 1);
2137 * Now for the recovery code.
2138 * Recovery happens across physical sectors.
2139 * We recover all non-is_sync drives by finding the virtual address of
2140 * each, and then choose a working drive that also has that virt address.
2141 * There is a separate r10_bio for each non-in_sync drive.
2142 * Only the first two slots are in use. The first for reading,
2143 * The second for writing.
2146 static void fix_recovery_read_error(struct r10bio
*r10_bio
)
2148 /* We got a read error during recovery.
2149 * We repeat the read in smaller page-sized sections.
2150 * If a read succeeds, write it to the new device or record
2151 * a bad block if we cannot.
2152 * If a read fails, record a bad block on both old and
2155 struct mddev
*mddev
= r10_bio
->mddev
;
2156 struct r10conf
*conf
= mddev
->private;
2157 struct bio
*bio
= r10_bio
->devs
[0].bio
;
2159 int sectors
= r10_bio
->sectors
;
2161 int dr
= r10_bio
->devs
[0].devnum
;
2162 int dw
= r10_bio
->devs
[1].devnum
;
2163 struct page
**pages
= get_resync_pages(bio
)->pages
;
2167 struct md_rdev
*rdev
;
2171 if (s
> (PAGE_SIZE
>>9))
2174 rdev
= conf
->mirrors
[dr
].rdev
;
2175 addr
= r10_bio
->devs
[0].addr
+ sect
,
2176 ok
= sync_page_io(rdev
,
2180 REQ_OP_READ
, 0, false);
2182 rdev
= conf
->mirrors
[dw
].rdev
;
2183 addr
= r10_bio
->devs
[1].addr
+ sect
;
2184 ok
= sync_page_io(rdev
,
2188 REQ_OP_WRITE
, 0, false);
2190 set_bit(WriteErrorSeen
, &rdev
->flags
);
2191 if (!test_and_set_bit(WantReplacement
,
2193 set_bit(MD_RECOVERY_NEEDED
,
2194 &rdev
->mddev
->recovery
);
2198 /* We don't worry if we cannot set a bad block -
2199 * it really is bad so there is no loss in not
2202 rdev_set_badblocks(rdev
, addr
, s
, 0);
2204 if (rdev
!= conf
->mirrors
[dw
].rdev
) {
2205 /* need bad block on destination too */
2206 struct md_rdev
*rdev2
= conf
->mirrors
[dw
].rdev
;
2207 addr
= r10_bio
->devs
[1].addr
+ sect
;
2208 ok
= rdev_set_badblocks(rdev2
, addr
, s
, 0);
2210 /* just abort the recovery */
2211 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2214 conf
->mirrors
[dw
].recovery_disabled
2215 = mddev
->recovery_disabled
;
2216 set_bit(MD_RECOVERY_INTR
,
2229 static void recovery_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2231 struct r10conf
*conf
= mddev
->private;
2233 struct bio
*wbio
, *wbio2
;
2235 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
)) {
2236 fix_recovery_read_error(r10_bio
);
2237 end_sync_request(r10_bio
);
2242 * share the pages with the first bio
2243 * and submit the write request
2245 d
= r10_bio
->devs
[1].devnum
;
2246 wbio
= r10_bio
->devs
[1].bio
;
2247 wbio2
= r10_bio
->devs
[1].repl_bio
;
2248 /* Need to test wbio2->bi_end_io before we call
2249 * generic_make_request as if the former is NULL,
2250 * the latter is free to free wbio2.
2252 if (wbio2
&& !wbio2
->bi_end_io
)
2254 if (wbio
->bi_end_io
) {
2255 atomic_inc(&conf
->mirrors
[d
].rdev
->nr_pending
);
2256 md_sync_acct(conf
->mirrors
[d
].rdev
->bdev
, bio_sectors(wbio
));
2257 generic_make_request(wbio
);
2260 atomic_inc(&conf
->mirrors
[d
].replacement
->nr_pending
);
2261 md_sync_acct(conf
->mirrors
[d
].replacement
->bdev
,
2262 bio_sectors(wbio2
));
2263 generic_make_request(wbio2
);
2268 * Used by fix_read_error() to decay the per rdev read_errors.
2269 * We halve the read error count for every hour that has elapsed
2270 * since the last recorded read error.
2273 static void check_decay_read_errors(struct mddev
*mddev
, struct md_rdev
*rdev
)
2276 unsigned long hours_since_last
;
2277 unsigned int read_errors
= atomic_read(&rdev
->read_errors
);
2279 cur_time_mon
= ktime_get_seconds();
2281 if (rdev
->last_read_error
== 0) {
2282 /* first time we've seen a read error */
2283 rdev
->last_read_error
= cur_time_mon
;
2287 hours_since_last
= (long)(cur_time_mon
-
2288 rdev
->last_read_error
) / 3600;
2290 rdev
->last_read_error
= cur_time_mon
;
2293 * if hours_since_last is > the number of bits in read_errors
2294 * just set read errors to 0. We do this to avoid
2295 * overflowing the shift of read_errors by hours_since_last.
2297 if (hours_since_last
>= 8 * sizeof(read_errors
))
2298 atomic_set(&rdev
->read_errors
, 0);
2300 atomic_set(&rdev
->read_errors
, read_errors
>> hours_since_last
);
2303 static int r10_sync_page_io(struct md_rdev
*rdev
, sector_t sector
,
2304 int sectors
, struct page
*page
, int rw
)
2309 if (is_badblock(rdev
, sector
, sectors
, &first_bad
, &bad_sectors
)
2310 && (rw
== READ
|| test_bit(WriteErrorSeen
, &rdev
->flags
)))
2312 if (sync_page_io(rdev
, sector
, sectors
<< 9, page
, rw
, 0, false))
2316 set_bit(WriteErrorSeen
, &rdev
->flags
);
2317 if (!test_and_set_bit(WantReplacement
, &rdev
->flags
))
2318 set_bit(MD_RECOVERY_NEEDED
,
2319 &rdev
->mddev
->recovery
);
2321 /* need to record an error - either for the block or the device */
2322 if (!rdev_set_badblocks(rdev
, sector
, sectors
, 0))
2323 md_error(rdev
->mddev
, rdev
);
2328 * This is a kernel thread which:
2330 * 1. Retries failed read operations on working mirrors.
2331 * 2. Updates the raid superblock when problems encounter.
2332 * 3. Performs writes following reads for array synchronising.
2335 static void fix_read_error(struct r10conf
*conf
, struct mddev
*mddev
, struct r10bio
*r10_bio
)
2337 int sect
= 0; /* Offset from r10_bio->sector */
2338 int sectors
= r10_bio
->sectors
;
2339 struct md_rdev
*rdev
;
2340 int max_read_errors
= atomic_read(&mddev
->max_corr_read_errors
);
2341 int d
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2343 /* still own a reference to this rdev, so it cannot
2344 * have been cleared recently.
2346 rdev
= conf
->mirrors
[d
].rdev
;
2348 if (test_bit(Faulty
, &rdev
->flags
))
2349 /* drive has already been failed, just ignore any
2350 more fix_read_error() attempts */
2353 check_decay_read_errors(mddev
, rdev
);
2354 atomic_inc(&rdev
->read_errors
);
2355 if (atomic_read(&rdev
->read_errors
) > max_read_errors
) {
2356 char b
[BDEVNAME_SIZE
];
2357 bdevname(rdev
->bdev
, b
);
2359 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2361 atomic_read(&rdev
->read_errors
), max_read_errors
);
2362 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2364 md_error(mddev
, rdev
);
2365 r10_bio
->devs
[r10_bio
->read_slot
].bio
= IO_BLOCKED
;
2371 int sl
= r10_bio
->read_slot
;
2375 if (s
> (PAGE_SIZE
>>9))
2383 d
= r10_bio
->devs
[sl
].devnum
;
2384 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2386 test_bit(In_sync
, &rdev
->flags
) &&
2387 !test_bit(Faulty
, &rdev
->flags
) &&
2388 is_badblock(rdev
, r10_bio
->devs
[sl
].addr
+ sect
, s
,
2389 &first_bad
, &bad_sectors
) == 0) {
2390 atomic_inc(&rdev
->nr_pending
);
2392 success
= sync_page_io(rdev
,
2393 r10_bio
->devs
[sl
].addr
+
2397 REQ_OP_READ
, 0, false);
2398 rdev_dec_pending(rdev
, mddev
);
2404 if (sl
== conf
->copies
)
2406 } while (!success
&& sl
!= r10_bio
->read_slot
);
2410 /* Cannot read from anywhere, just mark the block
2411 * as bad on the first device to discourage future
2414 int dn
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
2415 rdev
= conf
->mirrors
[dn
].rdev
;
2417 if (!rdev_set_badblocks(
2419 r10_bio
->devs
[r10_bio
->read_slot
].addr
2422 md_error(mddev
, rdev
);
2423 r10_bio
->devs
[r10_bio
->read_slot
].bio
2430 /* write it back and re-read */
2432 while (sl
!= r10_bio
->read_slot
) {
2433 char b
[BDEVNAME_SIZE
];
2438 d
= r10_bio
->devs
[sl
].devnum
;
2439 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2441 test_bit(Faulty
, &rdev
->flags
) ||
2442 !test_bit(In_sync
, &rdev
->flags
))
2445 atomic_inc(&rdev
->nr_pending
);
2447 if (r10_sync_page_io(rdev
,
2448 r10_bio
->devs
[sl
].addr
+
2450 s
, conf
->tmppage
, WRITE
)
2452 /* Well, this device is dead */
2453 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2455 (unsigned long long)(
2457 choose_data_offset(r10_bio
,
2459 bdevname(rdev
->bdev
, b
));
2460 pr_notice("md/raid10:%s: %s: failing drive\n",
2462 bdevname(rdev
->bdev
, b
));
2464 rdev_dec_pending(rdev
, mddev
);
2468 while (sl
!= r10_bio
->read_slot
) {
2469 char b
[BDEVNAME_SIZE
];
2474 d
= r10_bio
->devs
[sl
].devnum
;
2475 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
2477 test_bit(Faulty
, &rdev
->flags
) ||
2478 !test_bit(In_sync
, &rdev
->flags
))
2481 atomic_inc(&rdev
->nr_pending
);
2483 switch (r10_sync_page_io(rdev
,
2484 r10_bio
->devs
[sl
].addr
+
2489 /* Well, this device is dead */
2490 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2492 (unsigned long long)(
2494 choose_data_offset(r10_bio
, rdev
)),
2495 bdevname(rdev
->bdev
, b
));
2496 pr_notice("md/raid10:%s: %s: failing drive\n",
2498 bdevname(rdev
->bdev
, b
));
2501 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2503 (unsigned long long)(
2505 choose_data_offset(r10_bio
, rdev
)),
2506 bdevname(rdev
->bdev
, b
));
2507 atomic_add(s
, &rdev
->corrected_errors
);
2510 rdev_dec_pending(rdev
, mddev
);
2520 static int narrow_write_error(struct r10bio
*r10_bio
, int i
)
2522 struct bio
*bio
= r10_bio
->master_bio
;
2523 struct mddev
*mddev
= r10_bio
->mddev
;
2524 struct r10conf
*conf
= mddev
->private;
2525 struct md_rdev
*rdev
= conf
->mirrors
[r10_bio
->devs
[i
].devnum
].rdev
;
2526 /* bio has the data to be written to slot 'i' where
2527 * we just recently had a write error.
2528 * We repeatedly clone the bio and trim down to one block,
2529 * then try the write. Where the write fails we record
2531 * It is conceivable that the bio doesn't exactly align with
2532 * blocks. We must handle this.
2534 * We currently own a reference to the rdev.
2540 int sect_to_write
= r10_bio
->sectors
;
2543 if (rdev
->badblocks
.shift
< 0)
2546 block_sectors
= roundup(1 << rdev
->badblocks
.shift
,
2547 bdev_logical_block_size(rdev
->bdev
) >> 9);
2548 sector
= r10_bio
->sector
;
2549 sectors
= ((r10_bio
->sector
+ block_sectors
)
2550 & ~(sector_t
)(block_sectors
- 1))
2553 while (sect_to_write
) {
2556 if (sectors
> sect_to_write
)
2557 sectors
= sect_to_write
;
2558 /* Write at 'sector' for 'sectors' */
2559 wbio
= bio_clone_fast(bio
, GFP_NOIO
, mddev
->bio_set
);
2560 bio_trim(wbio
, sector
- bio
->bi_iter
.bi_sector
, sectors
);
2561 wsector
= r10_bio
->devs
[i
].addr
+ (sector
- r10_bio
->sector
);
2562 wbio
->bi_iter
.bi_sector
= wsector
+
2563 choose_data_offset(r10_bio
, rdev
);
2564 bio_set_dev(wbio
, rdev
->bdev
);
2565 bio_set_op_attrs(wbio
, REQ_OP_WRITE
, 0);
2567 if (submit_bio_wait(wbio
) < 0)
2569 ok
= rdev_set_badblocks(rdev
, wsector
,
2574 sect_to_write
-= sectors
;
2576 sectors
= block_sectors
;
2581 static void handle_read_error(struct mddev
*mddev
, struct r10bio
*r10_bio
)
2583 int slot
= r10_bio
->read_slot
;
2585 struct r10conf
*conf
= mddev
->private;
2586 struct md_rdev
*rdev
= r10_bio
->devs
[slot
].rdev
;
2587 sector_t bio_last_sector
;
2589 /* we got a read error. Maybe the drive is bad. Maybe just
2590 * the block and we can fix it.
2591 * We freeze all other IO, and try reading the block from
2592 * other devices. When we find one, we re-write
2593 * and check it that fixes the read error.
2594 * This is all done synchronously while the array is
2597 bio
= r10_bio
->devs
[slot
].bio
;
2598 bio_last_sector
= r10_bio
->devs
[slot
].addr
+ rdev
->data_offset
+ r10_bio
->sectors
;
2600 r10_bio
->devs
[slot
].bio
= NULL
;
2603 r10_bio
->devs
[slot
].bio
= IO_BLOCKED
;
2604 else if (!test_bit(FailFast
, &rdev
->flags
)) {
2605 freeze_array(conf
, 1);
2606 fix_read_error(conf
, mddev
, r10_bio
);
2607 unfreeze_array(conf
);
2609 md_error(mddev
, rdev
);
2611 rdev_dec_pending(rdev
, mddev
);
2612 allow_barrier(conf
);
2614 raid10_read_request(mddev
, r10_bio
->master_bio
, r10_bio
);
2617 static void handle_write_completed(struct r10conf
*conf
, struct r10bio
*r10_bio
)
2619 /* Some sort of write request has finished and it
2620 * succeeded in writing where we thought there was a
2621 * bad block. So forget the bad block.
2622 * Or possibly if failed and we need to record
2626 struct md_rdev
*rdev
;
2628 if (test_bit(R10BIO_IsSync
, &r10_bio
->state
) ||
2629 test_bit(R10BIO_IsRecover
, &r10_bio
->state
)) {
2630 for (m
= 0; m
< conf
->copies
; m
++) {
2631 int dev
= r10_bio
->devs
[m
].devnum
;
2632 rdev
= conf
->mirrors
[dev
].rdev
;
2633 if (r10_bio
->devs
[m
].bio
== NULL
||
2634 r10_bio
->devs
[m
].bio
->bi_end_io
== NULL
)
2636 if (!r10_bio
->devs
[m
].bio
->bi_status
) {
2637 rdev_clear_badblocks(
2639 r10_bio
->devs
[m
].addr
,
2640 r10_bio
->sectors
, 0);
2642 if (!rdev_set_badblocks(
2644 r10_bio
->devs
[m
].addr
,
2645 r10_bio
->sectors
, 0))
2646 md_error(conf
->mddev
, rdev
);
2648 rdev
= conf
->mirrors
[dev
].replacement
;
2649 if (r10_bio
->devs
[m
].repl_bio
== NULL
||
2650 r10_bio
->devs
[m
].repl_bio
->bi_end_io
== NULL
)
2653 if (!r10_bio
->devs
[m
].repl_bio
->bi_status
) {
2654 rdev_clear_badblocks(
2656 r10_bio
->devs
[m
].addr
,
2657 r10_bio
->sectors
, 0);
2659 if (!rdev_set_badblocks(
2661 r10_bio
->devs
[m
].addr
,
2662 r10_bio
->sectors
, 0))
2663 md_error(conf
->mddev
, rdev
);
2669 for (m
= 0; m
< conf
->copies
; m
++) {
2670 int dev
= r10_bio
->devs
[m
].devnum
;
2671 struct bio
*bio
= r10_bio
->devs
[m
].bio
;
2672 rdev
= conf
->mirrors
[dev
].rdev
;
2673 if (bio
== IO_MADE_GOOD
) {
2674 rdev_clear_badblocks(
2676 r10_bio
->devs
[m
].addr
,
2677 r10_bio
->sectors
, 0);
2678 rdev_dec_pending(rdev
, conf
->mddev
);
2679 } else if (bio
!= NULL
&& bio
->bi_status
) {
2681 if (!narrow_write_error(r10_bio
, m
)) {
2682 md_error(conf
->mddev
, rdev
);
2683 set_bit(R10BIO_Degraded
,
2686 rdev_dec_pending(rdev
, conf
->mddev
);
2688 bio
= r10_bio
->devs
[m
].repl_bio
;
2689 rdev
= conf
->mirrors
[dev
].replacement
;
2690 if (rdev
&& bio
== IO_MADE_GOOD
) {
2691 rdev_clear_badblocks(
2693 r10_bio
->devs
[m
].addr
,
2694 r10_bio
->sectors
, 0);
2695 rdev_dec_pending(rdev
, conf
->mddev
);
2699 spin_lock_irq(&conf
->device_lock
);
2700 list_add(&r10_bio
->retry_list
, &conf
->bio_end_io_list
);
2702 spin_unlock_irq(&conf
->device_lock
);
2704 * In case freeze_array() is waiting for condition
2705 * nr_pending == nr_queued + extra to be true.
2707 wake_up(&conf
->wait_barrier
);
2708 md_wakeup_thread(conf
->mddev
->thread
);
2710 if (test_bit(R10BIO_WriteError
,
2712 close_write(r10_bio
);
2713 raid_end_bio_io(r10_bio
);
2718 static void raid10d(struct md_thread
*thread
)
2720 struct mddev
*mddev
= thread
->mddev
;
2721 struct r10bio
*r10_bio
;
2722 unsigned long flags
;
2723 struct r10conf
*conf
= mddev
->private;
2724 struct list_head
*head
= &conf
->retry_list
;
2725 struct blk_plug plug
;
2727 md_check_recovery(mddev
);
2729 if (!list_empty_careful(&conf
->bio_end_io_list
) &&
2730 !test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2732 spin_lock_irqsave(&conf
->device_lock
, flags
);
2733 if (!test_bit(MD_SB_CHANGE_PENDING
, &mddev
->sb_flags
)) {
2734 while (!list_empty(&conf
->bio_end_io_list
)) {
2735 list_move(conf
->bio_end_io_list
.prev
, &tmp
);
2739 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2740 while (!list_empty(&tmp
)) {
2741 r10_bio
= list_first_entry(&tmp
, struct r10bio
,
2743 list_del(&r10_bio
->retry_list
);
2744 if (mddev
->degraded
)
2745 set_bit(R10BIO_Degraded
, &r10_bio
->state
);
2747 if (test_bit(R10BIO_WriteError
,
2749 close_write(r10_bio
);
2750 raid_end_bio_io(r10_bio
);
2754 blk_start_plug(&plug
);
2757 flush_pending_writes(conf
);
2759 spin_lock_irqsave(&conf
->device_lock
, flags
);
2760 if (list_empty(head
)) {
2761 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2764 r10_bio
= list_entry(head
->prev
, struct r10bio
, retry_list
);
2765 list_del(head
->prev
);
2767 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
2769 mddev
= r10_bio
->mddev
;
2770 conf
= mddev
->private;
2771 if (test_bit(R10BIO_MadeGood
, &r10_bio
->state
) ||
2772 test_bit(R10BIO_WriteError
, &r10_bio
->state
))
2773 handle_write_completed(conf
, r10_bio
);
2774 else if (test_bit(R10BIO_IsReshape
, &r10_bio
->state
))
2775 reshape_request_write(mddev
, r10_bio
);
2776 else if (test_bit(R10BIO_IsSync
, &r10_bio
->state
))
2777 sync_request_write(mddev
, r10_bio
);
2778 else if (test_bit(R10BIO_IsRecover
, &r10_bio
->state
))
2779 recovery_request_write(mddev
, r10_bio
);
2780 else if (test_bit(R10BIO_ReadError
, &r10_bio
->state
))
2781 handle_read_error(mddev
, r10_bio
);
2786 if (mddev
->sb_flags
& ~(1<<MD_SB_CHANGE_PENDING
))
2787 md_check_recovery(mddev
);
2789 blk_finish_plug(&plug
);
2792 static int init_resync(struct r10conf
*conf
)
2797 buffs
= RESYNC_WINDOW
/ RESYNC_BLOCK_SIZE
;
2798 BUG_ON(conf
->r10buf_pool
);
2799 conf
->have_replacement
= 0;
2800 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++)
2801 if (conf
->mirrors
[i
].replacement
)
2802 conf
->have_replacement
= 1;
2803 conf
->r10buf_pool
= mempool_create(buffs
, r10buf_pool_alloc
, r10buf_pool_free
, conf
);
2804 if (!conf
->r10buf_pool
)
2806 conf
->next_resync
= 0;
2810 static struct r10bio
*raid10_alloc_init_r10buf(struct r10conf
*conf
)
2812 struct r10bio
*r10bio
= mempool_alloc(conf
->r10buf_pool
, GFP_NOIO
);
2813 struct rsync_pages
*rp
;
2818 if (test_bit(MD_RECOVERY_SYNC
, &conf
->mddev
->recovery
) ||
2819 test_bit(MD_RECOVERY_RESHAPE
, &conf
->mddev
->recovery
))
2820 nalloc
= conf
->copies
; /* resync */
2822 nalloc
= 2; /* recovery */
2824 for (i
= 0; i
< nalloc
; i
++) {
2825 bio
= r10bio
->devs
[i
].bio
;
2826 rp
= bio
->bi_private
;
2828 bio
->bi_private
= rp
;
2829 bio
= r10bio
->devs
[i
].repl_bio
;
2831 rp
= bio
->bi_private
;
2833 bio
->bi_private
= rp
;
2840 * perform a "sync" on one "block"
2842 * We need to make sure that no normal I/O request - particularly write
2843 * requests - conflict with active sync requests.
2845 * This is achieved by tracking pending requests and a 'barrier' concept
2846 * that can be installed to exclude normal IO requests.
2848 * Resync and recovery are handled very differently.
2849 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2851 * For resync, we iterate over virtual addresses, read all copies,
2852 * and update if there are differences. If only one copy is live,
2854 * For recovery, we iterate over physical addresses, read a good
2855 * value for each non-in_sync drive, and over-write.
2857 * So, for recovery we may have several outstanding complex requests for a
2858 * given address, one for each out-of-sync device. We model this by allocating
2859 * a number of r10_bio structures, one for each out-of-sync device.
2860 * As we setup these structures, we collect all bio's together into a list
2861 * which we then process collectively to add pages, and then process again
2862 * to pass to generic_make_request.
2864 * The r10_bio structures are linked using a borrowed master_bio pointer.
2865 * This link is counted in ->remaining. When the r10_bio that points to NULL
2866 * has its remaining count decremented to 0, the whole complex operation
2871 static sector_t
raid10_sync_request(struct mddev
*mddev
, sector_t sector_nr
,
2874 struct r10conf
*conf
= mddev
->private;
2875 struct r10bio
*r10_bio
;
2876 struct bio
*biolist
= NULL
, *bio
;
2877 sector_t max_sector
, nr_sectors
;
2880 sector_t sync_blocks
;
2881 sector_t sectors_skipped
= 0;
2882 int chunks_skipped
= 0;
2883 sector_t chunk_mask
= conf
->geo
.chunk_mask
;
2886 if (!conf
->r10buf_pool
)
2887 if (init_resync(conf
))
2891 * Allow skipping a full rebuild for incremental assembly
2892 * of a clean array, like RAID1 does.
2894 if (mddev
->bitmap
== NULL
&&
2895 mddev
->recovery_cp
== MaxSector
&&
2896 mddev
->reshape_position
== MaxSector
&&
2897 !test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) &&
2898 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
2899 !test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
2900 conf
->fullsync
== 0) {
2902 return mddev
->dev_sectors
- sector_nr
;
2906 max_sector
= mddev
->dev_sectors
;
2907 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ||
2908 test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2909 max_sector
= mddev
->resync_max_sectors
;
2910 if (sector_nr
>= max_sector
) {
2911 /* If we aborted, we need to abort the
2912 * sync on the 'current' bitmap chucks (there can
2913 * be several when recovering multiple devices).
2914 * as we may have started syncing it but not finished.
2915 * We can find the current address in
2916 * mddev->curr_resync, but for recovery,
2917 * we need to convert that to several
2918 * virtual addresses.
2920 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
2926 if (mddev
->curr_resync
< max_sector
) { /* aborted */
2927 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
2928 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
2930 else for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2932 raid10_find_virt(conf
, mddev
->curr_resync
, i
);
2933 bitmap_end_sync(mddev
->bitmap
, sect
,
2937 /* completed sync */
2938 if ((!mddev
->bitmap
|| conf
->fullsync
)
2939 && conf
->have_replacement
2940 && test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
2941 /* Completed a full sync so the replacements
2942 * are now fully recovered.
2945 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
2946 struct md_rdev
*rdev
=
2947 rcu_dereference(conf
->mirrors
[i
].replacement
);
2949 rdev
->recovery_offset
= MaxSector
;
2955 bitmap_close_sync(mddev
->bitmap
);
2958 return sectors_skipped
;
2961 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
2962 return reshape_request(mddev
, sector_nr
, skipped
);
2964 if (chunks_skipped
>= conf
->geo
.raid_disks
) {
2965 /* if there has been nothing to do on any drive,
2966 * then there is nothing to do at all..
2969 return (max_sector
- sector_nr
) + sectors_skipped
;
2972 if (max_sector
> mddev
->resync_max
)
2973 max_sector
= mddev
->resync_max
; /* Don't do IO beyond here */
2975 /* make sure whole request will fit in a chunk - if chunks
2978 if (conf
->geo
.near_copies
< conf
->geo
.raid_disks
&&
2979 max_sector
> (sector_nr
| chunk_mask
))
2980 max_sector
= (sector_nr
| chunk_mask
) + 1;
2983 * If there is non-resync activity waiting for a turn, then let it
2984 * though before starting on this new sync request.
2986 if (conf
->nr_waiting
)
2987 schedule_timeout_uninterruptible(1);
2989 /* Again, very different code for resync and recovery.
2990 * Both must result in an r10bio with a list of bios that
2991 * have bi_end_io, bi_sector, bi_disk set,
2992 * and bi_private set to the r10bio.
2993 * For recovery, we may actually create several r10bios
2994 * with 2 bios in each, that correspond to the bios in the main one.
2995 * In this case, the subordinate r10bios link back through a
2996 * borrowed master_bio pointer, and the counter in the master
2997 * includes a ref from each subordinate.
2999 /* First, we decide what to do and set ->bi_end_io
3000 * To end_sync_read if we want to read, and
3001 * end_sync_write if we will want to write.
3004 max_sync
= RESYNC_PAGES
<< (PAGE_SHIFT
-9);
3005 if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
3006 /* recovery... the complicated one */
3010 for (i
= 0 ; i
< conf
->geo
.raid_disks
; i
++) {
3016 struct raid10_info
*mirror
= &conf
->mirrors
[i
];
3017 struct md_rdev
*mrdev
, *mreplace
;
3020 mrdev
= rcu_dereference(mirror
->rdev
);
3021 mreplace
= rcu_dereference(mirror
->replacement
);
3023 if ((mrdev
== NULL
||
3024 test_bit(Faulty
, &mrdev
->flags
) ||
3025 test_bit(In_sync
, &mrdev
->flags
)) &&
3026 (mreplace
== NULL
||
3027 test_bit(Faulty
, &mreplace
->flags
))) {
3033 /* want to reconstruct this device */
3035 sect
= raid10_find_virt(conf
, sector_nr
, i
);
3036 if (sect
>= mddev
->resync_max_sectors
) {
3037 /* last stripe is not complete - don't
3038 * try to recover this sector.
3043 if (mreplace
&& test_bit(Faulty
, &mreplace
->flags
))
3045 /* Unless we are doing a full sync, or a replacement
3046 * we only need to recover the block if it is set in
3049 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3051 if (sync_blocks
< max_sync
)
3052 max_sync
= sync_blocks
;
3056 /* yep, skip the sync_blocks here, but don't assume
3057 * that there will never be anything to do here
3059 chunks_skipped
= -1;
3063 atomic_inc(&mrdev
->nr_pending
);
3065 atomic_inc(&mreplace
->nr_pending
);
3068 r10_bio
= raid10_alloc_init_r10buf(conf
);
3070 raise_barrier(conf
, rb2
!= NULL
);
3071 atomic_set(&r10_bio
->remaining
, 0);
3073 r10_bio
->master_bio
= (struct bio
*)rb2
;
3075 atomic_inc(&rb2
->remaining
);
3076 r10_bio
->mddev
= mddev
;
3077 set_bit(R10BIO_IsRecover
, &r10_bio
->state
);
3078 r10_bio
->sector
= sect
;
3080 raid10_find_phys(conf
, r10_bio
);
3082 /* Need to check if the array will still be
3086 for (j
= 0; j
< conf
->geo
.raid_disks
; j
++) {
3087 struct md_rdev
*rdev
= rcu_dereference(
3088 conf
->mirrors
[j
].rdev
);
3089 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3095 must_sync
= bitmap_start_sync(mddev
->bitmap
, sect
,
3096 &sync_blocks
, still_degraded
);
3099 for (j
=0; j
<conf
->copies
;j
++) {
3101 int d
= r10_bio
->devs
[j
].devnum
;
3102 sector_t from_addr
, to_addr
;
3103 struct md_rdev
*rdev
=
3104 rcu_dereference(conf
->mirrors
[d
].rdev
);
3105 sector_t sector
, first_bad
;
3108 !test_bit(In_sync
, &rdev
->flags
))
3110 /* This is where we read from */
3112 sector
= r10_bio
->devs
[j
].addr
;
3114 if (is_badblock(rdev
, sector
, max_sync
,
3115 &first_bad
, &bad_sectors
)) {
3116 if (first_bad
> sector
)
3117 max_sync
= first_bad
- sector
;
3119 bad_sectors
-= (sector
3121 if (max_sync
> bad_sectors
)
3122 max_sync
= bad_sectors
;
3126 bio
= r10_bio
->devs
[0].bio
;
3127 bio
->bi_next
= biolist
;
3129 bio
->bi_end_io
= end_sync_read
;
3130 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3131 if (test_bit(FailFast
, &rdev
->flags
))
3132 bio
->bi_opf
|= MD_FAILFAST
;
3133 from_addr
= r10_bio
->devs
[j
].addr
;
3134 bio
->bi_iter
.bi_sector
= from_addr
+
3136 bio_set_dev(bio
, rdev
->bdev
);
3137 atomic_inc(&rdev
->nr_pending
);
3138 /* and we write to 'i' (if not in_sync) */
3140 for (k
=0; k
<conf
->copies
; k
++)
3141 if (r10_bio
->devs
[k
].devnum
== i
)
3143 BUG_ON(k
== conf
->copies
);
3144 to_addr
= r10_bio
->devs
[k
].addr
;
3145 r10_bio
->devs
[0].devnum
= d
;
3146 r10_bio
->devs
[0].addr
= from_addr
;
3147 r10_bio
->devs
[1].devnum
= i
;
3148 r10_bio
->devs
[1].addr
= to_addr
;
3150 if (!test_bit(In_sync
, &mrdev
->flags
)) {
3151 bio
= r10_bio
->devs
[1].bio
;
3152 bio
->bi_next
= biolist
;
3154 bio
->bi_end_io
= end_sync_write
;
3155 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3156 bio
->bi_iter
.bi_sector
= to_addr
3157 + mrdev
->data_offset
;
3158 bio_set_dev(bio
, mrdev
->bdev
);
3159 atomic_inc(&r10_bio
->remaining
);
3161 r10_bio
->devs
[1].bio
->bi_end_io
= NULL
;
3163 /* and maybe write to replacement */
3164 bio
= r10_bio
->devs
[1].repl_bio
;
3166 bio
->bi_end_io
= NULL
;
3167 /* Note: if mreplace != NULL, then bio
3168 * cannot be NULL as r10buf_pool_alloc will
3169 * have allocated it.
3170 * So the second test here is pointless.
3171 * But it keeps semantic-checkers happy, and
3172 * this comment keeps human reviewers
3175 if (mreplace
== NULL
|| bio
== NULL
||
3176 test_bit(Faulty
, &mreplace
->flags
))
3178 bio
->bi_next
= biolist
;
3180 bio
->bi_end_io
= end_sync_write
;
3181 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3182 bio
->bi_iter
.bi_sector
= to_addr
+
3183 mreplace
->data_offset
;
3184 bio_set_dev(bio
, mreplace
->bdev
);
3185 atomic_inc(&r10_bio
->remaining
);
3189 if (j
== conf
->copies
) {
3190 /* Cannot recover, so abort the recovery or
3191 * record a bad block */
3193 /* problem is that there are bad blocks
3194 * on other device(s)
3197 for (k
= 0; k
< conf
->copies
; k
++)
3198 if (r10_bio
->devs
[k
].devnum
== i
)
3200 if (!test_bit(In_sync
,
3202 && !rdev_set_badblocks(
3204 r10_bio
->devs
[k
].addr
,
3208 !rdev_set_badblocks(
3210 r10_bio
->devs
[k
].addr
,
3215 if (!test_and_set_bit(MD_RECOVERY_INTR
,
3217 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3219 mirror
->recovery_disabled
3220 = mddev
->recovery_disabled
;
3224 atomic_dec(&rb2
->remaining
);
3226 rdev_dec_pending(mrdev
, mddev
);
3228 rdev_dec_pending(mreplace
, mddev
);
3231 rdev_dec_pending(mrdev
, mddev
);
3233 rdev_dec_pending(mreplace
, mddev
);
3234 if (r10_bio
->devs
[0].bio
->bi_opf
& MD_FAILFAST
) {
3235 /* Only want this if there is elsewhere to
3236 * read from. 'j' is currently the first
3240 for (; j
< conf
->copies
; j
++) {
3241 int d
= r10_bio
->devs
[j
].devnum
;
3242 if (conf
->mirrors
[d
].rdev
&&
3244 &conf
->mirrors
[d
].rdev
->flags
))
3248 r10_bio
->devs
[0].bio
->bi_opf
3252 if (biolist
== NULL
) {
3254 struct r10bio
*rb2
= r10_bio
;
3255 r10_bio
= (struct r10bio
*) rb2
->master_bio
;
3256 rb2
->master_bio
= NULL
;
3262 /* resync. Schedule a read for every block at this virt offset */
3265 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
, 0);
3267 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
,
3268 &sync_blocks
, mddev
->degraded
) &&
3269 !conf
->fullsync
&& !test_bit(MD_RECOVERY_REQUESTED
,
3270 &mddev
->recovery
)) {
3271 /* We can skip this block */
3273 return sync_blocks
+ sectors_skipped
;
3275 if (sync_blocks
< max_sync
)
3276 max_sync
= sync_blocks
;
3277 r10_bio
= raid10_alloc_init_r10buf(conf
);
3280 r10_bio
->mddev
= mddev
;
3281 atomic_set(&r10_bio
->remaining
, 0);
3282 raise_barrier(conf
, 0);
3283 conf
->next_resync
= sector_nr
;
3285 r10_bio
->master_bio
= NULL
;
3286 r10_bio
->sector
= sector_nr
;
3287 set_bit(R10BIO_IsSync
, &r10_bio
->state
);
3288 raid10_find_phys(conf
, r10_bio
);
3289 r10_bio
->sectors
= (sector_nr
| chunk_mask
) - sector_nr
+ 1;
3291 for (i
= 0; i
< conf
->copies
; i
++) {
3292 int d
= r10_bio
->devs
[i
].devnum
;
3293 sector_t first_bad
, sector
;
3295 struct md_rdev
*rdev
;
3297 if (r10_bio
->devs
[i
].repl_bio
)
3298 r10_bio
->devs
[i
].repl_bio
->bi_end_io
= NULL
;
3300 bio
= r10_bio
->devs
[i
].bio
;
3301 bio
->bi_status
= BLK_STS_IOERR
;
3303 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
3304 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3308 sector
= r10_bio
->devs
[i
].addr
;
3309 if (is_badblock(rdev
, sector
, max_sync
,
3310 &first_bad
, &bad_sectors
)) {
3311 if (first_bad
> sector
)
3312 max_sync
= first_bad
- sector
;
3314 bad_sectors
-= (sector
- first_bad
);
3315 if (max_sync
> bad_sectors
)
3316 max_sync
= bad_sectors
;
3321 atomic_inc(&rdev
->nr_pending
);
3322 atomic_inc(&r10_bio
->remaining
);
3323 bio
->bi_next
= biolist
;
3325 bio
->bi_end_io
= end_sync_read
;
3326 bio_set_op_attrs(bio
, REQ_OP_READ
, 0);
3327 if (test_bit(FailFast
, &rdev
->flags
))
3328 bio
->bi_opf
|= MD_FAILFAST
;
3329 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3330 bio_set_dev(bio
, rdev
->bdev
);
3333 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
3334 if (rdev
== NULL
|| test_bit(Faulty
, &rdev
->flags
)) {
3338 atomic_inc(&rdev
->nr_pending
);
3340 /* Need to set up for writing to the replacement */
3341 bio
= r10_bio
->devs
[i
].repl_bio
;
3342 bio
->bi_status
= BLK_STS_IOERR
;
3344 sector
= r10_bio
->devs
[i
].addr
;
3345 bio
->bi_next
= biolist
;
3347 bio
->bi_end_io
= end_sync_write
;
3348 bio_set_op_attrs(bio
, REQ_OP_WRITE
, 0);
3349 if (test_bit(FailFast
, &rdev
->flags
))
3350 bio
->bi_opf
|= MD_FAILFAST
;
3351 bio
->bi_iter
.bi_sector
= sector
+ rdev
->data_offset
;
3352 bio_set_dev(bio
, rdev
->bdev
);
3358 for (i
=0; i
<conf
->copies
; i
++) {
3359 int d
= r10_bio
->devs
[i
].devnum
;
3360 if (r10_bio
->devs
[i
].bio
->bi_end_io
)
3361 rdev_dec_pending(conf
->mirrors
[d
].rdev
,
3363 if (r10_bio
->devs
[i
].repl_bio
&&
3364 r10_bio
->devs
[i
].repl_bio
->bi_end_io
)
3366 conf
->mirrors
[d
].replacement
,
3376 if (sector_nr
+ max_sync
< max_sector
)
3377 max_sector
= sector_nr
+ max_sync
;
3380 int len
= PAGE_SIZE
;
3381 if (sector_nr
+ (len
>>9) > max_sector
)
3382 len
= (max_sector
- sector_nr
) << 9;
3385 for (bio
= biolist
; bio
; bio
=bio
->bi_next
) {
3386 struct resync_pages
*rp
= get_resync_pages(bio
);
3387 page
= resync_fetch_page(rp
, page_idx
);
3389 * won't fail because the vec table is big enough
3390 * to hold all these pages
3392 bio_add_page(bio
, page
, len
, 0);
3394 nr_sectors
+= len
>>9;
3395 sector_nr
+= len
>>9;
3396 } while (++page_idx
< RESYNC_PAGES
);
3397 r10_bio
->sectors
= nr_sectors
;
3401 biolist
= biolist
->bi_next
;
3403 bio
->bi_next
= NULL
;
3404 r10_bio
= get_resync_r10bio(bio
);
3405 r10_bio
->sectors
= nr_sectors
;
3407 if (bio
->bi_end_io
== end_sync_read
) {
3408 md_sync_acct_bio(bio
, nr_sectors
);
3410 generic_make_request(bio
);
3414 if (sectors_skipped
)
3415 /* pretend they weren't skipped, it makes
3416 * no important difference in this case
3418 md_done_sync(mddev
, sectors_skipped
, 1);
3420 return sectors_skipped
+ nr_sectors
;
3422 /* There is nowhere to write, so all non-sync
3423 * drives must be failed or in resync, all drives
3424 * have a bad block, so try the next chunk...
3426 if (sector_nr
+ max_sync
< max_sector
)
3427 max_sector
= sector_nr
+ max_sync
;
3429 sectors_skipped
+= (max_sector
- sector_nr
);
3431 sector_nr
= max_sector
;
3436 raid10_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
3439 struct r10conf
*conf
= mddev
->private;
3442 raid_disks
= min(conf
->geo
.raid_disks
,
3443 conf
->prev
.raid_disks
);
3445 sectors
= conf
->dev_sectors
;
3447 size
= sectors
>> conf
->geo
.chunk_shift
;
3448 sector_div(size
, conf
->geo
.far_copies
);
3449 size
= size
* raid_disks
;
3450 sector_div(size
, conf
->geo
.near_copies
);
3452 return size
<< conf
->geo
.chunk_shift
;
3455 static void calc_sectors(struct r10conf
*conf
, sector_t size
)
3457 /* Calculate the number of sectors-per-device that will
3458 * actually be used, and set conf->dev_sectors and
3462 size
= size
>> conf
->geo
.chunk_shift
;
3463 sector_div(size
, conf
->geo
.far_copies
);
3464 size
= size
* conf
->geo
.raid_disks
;
3465 sector_div(size
, conf
->geo
.near_copies
);
3466 /* 'size' is now the number of chunks in the array */
3467 /* calculate "used chunks per device" */
3468 size
= size
* conf
->copies
;
3470 /* We need to round up when dividing by raid_disks to
3471 * get the stride size.
3473 size
= DIV_ROUND_UP_SECTOR_T(size
, conf
->geo
.raid_disks
);
3475 conf
->dev_sectors
= size
<< conf
->geo
.chunk_shift
;
3477 if (conf
->geo
.far_offset
)
3478 conf
->geo
.stride
= 1 << conf
->geo
.chunk_shift
;
3480 sector_div(size
, conf
->geo
.far_copies
);
3481 conf
->geo
.stride
= size
<< conf
->geo
.chunk_shift
;
3485 enum geo_type
{geo_new
, geo_old
, geo_start
};
3486 static int setup_geo(struct geom
*geo
, struct mddev
*mddev
, enum geo_type
new)
3489 int layout
, chunk
, disks
;
3492 layout
= mddev
->layout
;
3493 chunk
= mddev
->chunk_sectors
;
3494 disks
= mddev
->raid_disks
- mddev
->delta_disks
;
3497 layout
= mddev
->new_layout
;
3498 chunk
= mddev
->new_chunk_sectors
;
3499 disks
= mddev
->raid_disks
;
3501 default: /* avoid 'may be unused' warnings */
3502 case geo_start
: /* new when starting reshape - raid_disks not
3504 layout
= mddev
->new_layout
;
3505 chunk
= mddev
->new_chunk_sectors
;
3506 disks
= mddev
->raid_disks
+ mddev
->delta_disks
;
3511 if (chunk
< (PAGE_SIZE
>> 9) ||
3512 !is_power_of_2(chunk
))
3515 fc
= (layout
>> 8) & 255;
3516 fo
= layout
& (1<<16);
3517 geo
->raid_disks
= disks
;
3518 geo
->near_copies
= nc
;
3519 geo
->far_copies
= fc
;
3520 geo
->far_offset
= fo
;
3521 switch (layout
>> 17) {
3522 case 0: /* original layout. simple but not always optimal */
3523 geo
->far_set_size
= disks
;
3525 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3526 * actually using this, but leave code here just in case.*/
3527 geo
->far_set_size
= disks
/fc
;
3528 WARN(geo
->far_set_size
< fc
,
3529 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3531 case 2: /* "improved" layout fixed to match documentation */
3532 geo
->far_set_size
= fc
* nc
;
3534 default: /* Not a valid layout */
3537 geo
->chunk_mask
= chunk
- 1;
3538 geo
->chunk_shift
= ffz(~chunk
);
3542 static struct r10conf
*setup_conf(struct mddev
*mddev
)
3544 struct r10conf
*conf
= NULL
;
3549 copies
= setup_geo(&geo
, mddev
, geo_new
);
3552 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3553 mdname(mddev
), PAGE_SIZE
);
3557 if (copies
< 2 || copies
> mddev
->raid_disks
) {
3558 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3559 mdname(mddev
), mddev
->new_layout
);
3564 conf
= kzalloc(sizeof(struct r10conf
), GFP_KERNEL
);
3568 /* FIXME calc properly */
3569 conf
->mirrors
= kzalloc(sizeof(struct raid10_info
)*(mddev
->raid_disks
+
3570 max(0,-mddev
->delta_disks
)),
3575 conf
->tmppage
= alloc_page(GFP_KERNEL
);
3580 conf
->copies
= copies
;
3581 conf
->r10bio_pool
= mempool_create(NR_RAID10_BIOS
, r10bio_pool_alloc
,
3582 r10bio_pool_free
, conf
);
3583 if (!conf
->r10bio_pool
)
3586 conf
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0, 0);
3587 if (!conf
->bio_split
)
3590 calc_sectors(conf
, mddev
->dev_sectors
);
3591 if (mddev
->reshape_position
== MaxSector
) {
3592 conf
->prev
= conf
->geo
;
3593 conf
->reshape_progress
= MaxSector
;
3595 if (setup_geo(&conf
->prev
, mddev
, geo_old
) != conf
->copies
) {
3599 conf
->reshape_progress
= mddev
->reshape_position
;
3600 if (conf
->prev
.far_offset
)
3601 conf
->prev
.stride
= 1 << conf
->prev
.chunk_shift
;
3603 /* far_copies must be 1 */
3604 conf
->prev
.stride
= conf
->dev_sectors
;
3606 conf
->reshape_safe
= conf
->reshape_progress
;
3607 spin_lock_init(&conf
->device_lock
);
3608 INIT_LIST_HEAD(&conf
->retry_list
);
3609 INIT_LIST_HEAD(&conf
->bio_end_io_list
);
3611 spin_lock_init(&conf
->resync_lock
);
3612 init_waitqueue_head(&conf
->wait_barrier
);
3613 atomic_set(&conf
->nr_pending
, 0);
3615 conf
->thread
= md_register_thread(raid10d
, mddev
, "raid10");
3619 conf
->mddev
= mddev
;
3624 mempool_destroy(conf
->r10bio_pool
);
3625 kfree(conf
->mirrors
);
3626 safe_put_page(conf
->tmppage
);
3627 if (conf
->bio_split
)
3628 bioset_free(conf
->bio_split
);
3631 return ERR_PTR(err
);
3634 static int raid10_run(struct mddev
*mddev
)
3636 struct r10conf
*conf
;
3637 int i
, disk_idx
, chunk_size
;
3638 struct raid10_info
*disk
;
3639 struct md_rdev
*rdev
;
3641 sector_t min_offset_diff
= 0;
3643 bool discard_supported
= false;
3645 if (mddev_init_writes_pending(mddev
) < 0)
3648 if (mddev
->private == NULL
) {
3649 conf
= setup_conf(mddev
);
3651 return PTR_ERR(conf
);
3652 mddev
->private = conf
;
3654 conf
= mddev
->private;
3658 mddev
->thread
= conf
->thread
;
3659 conf
->thread
= NULL
;
3661 chunk_size
= mddev
->chunk_sectors
<< 9;
3663 blk_queue_max_discard_sectors(mddev
->queue
,
3664 mddev
->chunk_sectors
);
3665 blk_queue_max_write_same_sectors(mddev
->queue
, 0);
3666 blk_queue_max_write_zeroes_sectors(mddev
->queue
, 0);
3667 blk_queue_io_min(mddev
->queue
, chunk_size
);
3668 if (conf
->geo
.raid_disks
% conf
->geo
.near_copies
)
3669 blk_queue_io_opt(mddev
->queue
, chunk_size
* conf
->geo
.raid_disks
);
3671 blk_queue_io_opt(mddev
->queue
, chunk_size
*
3672 (conf
->geo
.raid_disks
/ conf
->geo
.near_copies
));
3675 rdev_for_each(rdev
, mddev
) {
3678 disk_idx
= rdev
->raid_disk
;
3681 if (disk_idx
>= conf
->geo
.raid_disks
&&
3682 disk_idx
>= conf
->prev
.raid_disks
)
3684 disk
= conf
->mirrors
+ disk_idx
;
3686 if (test_bit(Replacement
, &rdev
->flags
)) {
3687 if (disk
->replacement
)
3689 disk
->replacement
= rdev
;
3695 diff
= (rdev
->new_data_offset
- rdev
->data_offset
);
3696 if (!mddev
->reshape_backwards
)
3700 if (first
|| diff
< min_offset_diff
)
3701 min_offset_diff
= diff
;
3704 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
3705 rdev
->data_offset
<< 9);
3707 disk
->head_position
= 0;
3709 if (blk_queue_discard(bdev_get_queue(rdev
->bdev
)))
3710 discard_supported
= true;
3715 if (discard_supported
)
3716 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD
,
3719 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD
,
3722 /* need to check that every block has at least one working mirror */
3723 if (!enough(conf
, -1)) {
3724 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3729 if (conf
->reshape_progress
!= MaxSector
) {
3730 /* must ensure that shape change is supported */
3731 if (conf
->geo
.far_copies
!= 1 &&
3732 conf
->geo
.far_offset
== 0)
3734 if (conf
->prev
.far_copies
!= 1 &&
3735 conf
->prev
.far_offset
== 0)
3739 mddev
->degraded
= 0;
3741 i
< conf
->geo
.raid_disks
3742 || i
< conf
->prev
.raid_disks
;
3745 disk
= conf
->mirrors
+ i
;
3747 if (!disk
->rdev
&& disk
->replacement
) {
3748 /* The replacement is all we have - use it */
3749 disk
->rdev
= disk
->replacement
;
3750 disk
->replacement
= NULL
;
3751 clear_bit(Replacement
, &disk
->rdev
->flags
);
3755 !test_bit(In_sync
, &disk
->rdev
->flags
)) {
3756 disk
->head_position
= 0;
3759 disk
->rdev
->saved_raid_disk
< 0)
3763 if (disk
->replacement
&&
3764 !test_bit(In_sync
, &disk
->replacement
->flags
) &&
3765 disk
->replacement
->saved_raid_disk
< 0) {
3769 disk
->recovery_disabled
= mddev
->recovery_disabled
- 1;
3772 if (mddev
->recovery_cp
!= MaxSector
)
3773 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3775 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3776 mdname(mddev
), conf
->geo
.raid_disks
- mddev
->degraded
,
3777 conf
->geo
.raid_disks
);
3779 * Ok, everything is just fine now
3781 mddev
->dev_sectors
= conf
->dev_sectors
;
3782 size
= raid10_size(mddev
, 0, 0);
3783 md_set_array_sectors(mddev
, size
);
3784 mddev
->resync_max_sectors
= size
;
3785 set_bit(MD_FAILFAST_SUPPORTED
, &mddev
->flags
);
3788 int stripe
= conf
->geo
.raid_disks
*
3789 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
3791 /* Calculate max read-ahead size.
3792 * We need to readahead at least twice a whole stripe....
3795 stripe
/= conf
->geo
.near_copies
;
3796 if (mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
3797 mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
3800 if (md_integrity_register(mddev
))
3803 if (conf
->reshape_progress
!= MaxSector
) {
3804 unsigned long before_length
, after_length
;
3806 before_length
= ((1 << conf
->prev
.chunk_shift
) *
3807 conf
->prev
.far_copies
);
3808 after_length
= ((1 << conf
->geo
.chunk_shift
) *
3809 conf
->geo
.far_copies
);
3811 if (max(before_length
, after_length
) > min_offset_diff
) {
3812 /* This cannot work */
3813 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3816 conf
->offset_diff
= min_offset_diff
;
3818 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
3819 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
3820 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
3821 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
3822 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
3829 md_unregister_thread(&mddev
->thread
);
3830 mempool_destroy(conf
->r10bio_pool
);
3831 safe_put_page(conf
->tmppage
);
3832 kfree(conf
->mirrors
);
3834 mddev
->private = NULL
;
3839 static void raid10_free(struct mddev
*mddev
, void *priv
)
3841 struct r10conf
*conf
= priv
;
3843 mempool_destroy(conf
->r10bio_pool
);
3844 safe_put_page(conf
->tmppage
);
3845 kfree(conf
->mirrors
);
3846 kfree(conf
->mirrors_old
);
3847 kfree(conf
->mirrors_new
);
3848 if (conf
->bio_split
)
3849 bioset_free(conf
->bio_split
);
3853 static void raid10_quiesce(struct mddev
*mddev
, int quiesce
)
3855 struct r10conf
*conf
= mddev
->private;
3858 raise_barrier(conf
, 0);
3860 lower_barrier(conf
);
3863 static int raid10_resize(struct mddev
*mddev
, sector_t sectors
)
3865 /* Resize of 'far' arrays is not supported.
3866 * For 'near' and 'offset' arrays we can set the
3867 * number of sectors used to be an appropriate multiple
3868 * of the chunk size.
3869 * For 'offset', this is far_copies*chunksize.
3870 * For 'near' the multiplier is the LCM of
3871 * near_copies and raid_disks.
3872 * So if far_copies > 1 && !far_offset, fail.
3873 * Else find LCM(raid_disks, near_copy)*far_copies and
3874 * multiply by chunk_size. Then round to this number.
3875 * This is mostly done by raid10_size()
3877 struct r10conf
*conf
= mddev
->private;
3878 sector_t oldsize
, size
;
3880 if (mddev
->reshape_position
!= MaxSector
)
3883 if (conf
->geo
.far_copies
> 1 && !conf
->geo
.far_offset
)
3886 oldsize
= raid10_size(mddev
, 0, 0);
3887 size
= raid10_size(mddev
, sectors
, 0);
3888 if (mddev
->external_size
&&
3889 mddev
->array_sectors
> size
)
3891 if (mddev
->bitmap
) {
3892 int ret
= bitmap_resize(mddev
->bitmap
, size
, 0, 0);
3896 md_set_array_sectors(mddev
, size
);
3897 if (sectors
> mddev
->dev_sectors
&&
3898 mddev
->recovery_cp
> oldsize
) {
3899 mddev
->recovery_cp
= oldsize
;
3900 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3902 calc_sectors(conf
, sectors
);
3903 mddev
->dev_sectors
= conf
->dev_sectors
;
3904 mddev
->resync_max_sectors
= size
;
3908 static void *raid10_takeover_raid0(struct mddev
*mddev
, sector_t size
, int devs
)
3910 struct md_rdev
*rdev
;
3911 struct r10conf
*conf
;
3913 if (mddev
->degraded
> 0) {
3914 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3916 return ERR_PTR(-EINVAL
);
3918 sector_div(size
, devs
);
3920 /* Set new parameters */
3921 mddev
->new_level
= 10;
3922 /* new layout: far_copies = 1, near_copies = 2 */
3923 mddev
->new_layout
= (1<<8) + 2;
3924 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3925 mddev
->delta_disks
= mddev
->raid_disks
;
3926 mddev
->raid_disks
*= 2;
3927 /* make sure it will be not marked as dirty */
3928 mddev
->recovery_cp
= MaxSector
;
3929 mddev
->dev_sectors
= size
;
3931 conf
= setup_conf(mddev
);
3932 if (!IS_ERR(conf
)) {
3933 rdev_for_each(rdev
, mddev
)
3934 if (rdev
->raid_disk
>= 0) {
3935 rdev
->new_raid_disk
= rdev
->raid_disk
* 2;
3936 rdev
->sectors
= size
;
3944 static void *raid10_takeover(struct mddev
*mddev
)
3946 struct r0conf
*raid0_conf
;
3948 /* raid10 can take over:
3949 * raid0 - providing it has only two drives
3951 if (mddev
->level
== 0) {
3952 /* for raid0 takeover only one zone is supported */
3953 raid0_conf
= mddev
->private;
3954 if (raid0_conf
->nr_strip_zones
> 1) {
3955 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
3957 return ERR_PTR(-EINVAL
);
3959 return raid10_takeover_raid0(mddev
,
3960 raid0_conf
->strip_zone
->zone_end
,
3961 raid0_conf
->strip_zone
->nb_dev
);
3963 return ERR_PTR(-EINVAL
);
3966 static int raid10_check_reshape(struct mddev
*mddev
)
3968 /* Called when there is a request to change
3969 * - layout (to ->new_layout)
3970 * - chunk size (to ->new_chunk_sectors)
3971 * - raid_disks (by delta_disks)
3972 * or when trying to restart a reshape that was ongoing.
3974 * We need to validate the request and possibly allocate
3975 * space if that might be an issue later.
3977 * Currently we reject any reshape of a 'far' mode array,
3978 * allow chunk size to change if new is generally acceptable,
3979 * allow raid_disks to increase, and allow
3980 * a switch between 'near' mode and 'offset' mode.
3982 struct r10conf
*conf
= mddev
->private;
3985 if (conf
->geo
.far_copies
!= 1 && !conf
->geo
.far_offset
)
3988 if (setup_geo(&geo
, mddev
, geo_start
) != conf
->copies
)
3989 /* mustn't change number of copies */
3991 if (geo
.far_copies
> 1 && !geo
.far_offset
)
3992 /* Cannot switch to 'far' mode */
3995 if (mddev
->array_sectors
& geo
.chunk_mask
)
3996 /* not factor of array size */
3999 if (!enough(conf
, -1))
4002 kfree(conf
->mirrors_new
);
4003 conf
->mirrors_new
= NULL
;
4004 if (mddev
->delta_disks
> 0) {
4005 /* allocate new 'mirrors' list */
4006 conf
->mirrors_new
= kzalloc(
4007 sizeof(struct raid10_info
)
4008 *(mddev
->raid_disks
+
4009 mddev
->delta_disks
),
4011 if (!conf
->mirrors_new
)
4018 * Need to check if array has failed when deciding whether to:
4020 * - remove non-faulty devices
4023 * This determination is simple when no reshape is happening.
4024 * However if there is a reshape, we need to carefully check
4025 * both the before and after sections.
4026 * This is because some failed devices may only affect one
4027 * of the two sections, and some non-in_sync devices may
4028 * be insync in the section most affected by failed devices.
4030 static int calc_degraded(struct r10conf
*conf
)
4032 int degraded
, degraded2
;
4037 /* 'prev' section first */
4038 for (i
= 0; i
< conf
->prev
.raid_disks
; i
++) {
4039 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4040 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4042 else if (!test_bit(In_sync
, &rdev
->flags
))
4043 /* When we can reduce the number of devices in
4044 * an array, this might not contribute to
4045 * 'degraded'. It does now.
4050 if (conf
->geo
.raid_disks
== conf
->prev
.raid_disks
)
4054 for (i
= 0; i
< conf
->geo
.raid_disks
; i
++) {
4055 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[i
].rdev
);
4056 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
4058 else if (!test_bit(In_sync
, &rdev
->flags
)) {
4059 /* If reshape is increasing the number of devices,
4060 * this section has already been recovered, so
4061 * it doesn't contribute to degraded.
4064 if (conf
->geo
.raid_disks
<= conf
->prev
.raid_disks
)
4069 if (degraded2
> degraded
)
4074 static int raid10_start_reshape(struct mddev
*mddev
)
4076 /* A 'reshape' has been requested. This commits
4077 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4078 * This also checks if there are enough spares and adds them
4080 * We currently require enough spares to make the final
4081 * array non-degraded. We also require that the difference
4082 * between old and new data_offset - on each device - is
4083 * enough that we never risk over-writing.
4086 unsigned long before_length
, after_length
;
4087 sector_t min_offset_diff
= 0;
4090 struct r10conf
*conf
= mddev
->private;
4091 struct md_rdev
*rdev
;
4095 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4098 if (setup_geo(&new, mddev
, geo_start
) != conf
->copies
)
4101 before_length
= ((1 << conf
->prev
.chunk_shift
) *
4102 conf
->prev
.far_copies
);
4103 after_length
= ((1 << conf
->geo
.chunk_shift
) *
4104 conf
->geo
.far_copies
);
4106 rdev_for_each(rdev
, mddev
) {
4107 if (!test_bit(In_sync
, &rdev
->flags
)
4108 && !test_bit(Faulty
, &rdev
->flags
))
4110 if (rdev
->raid_disk
>= 0) {
4111 long long diff
= (rdev
->new_data_offset
4112 - rdev
->data_offset
);
4113 if (!mddev
->reshape_backwards
)
4117 if (first
|| diff
< min_offset_diff
)
4118 min_offset_diff
= diff
;
4123 if (max(before_length
, after_length
) > min_offset_diff
)
4126 if (spares
< mddev
->delta_disks
)
4129 conf
->offset_diff
= min_offset_diff
;
4130 spin_lock_irq(&conf
->device_lock
);
4131 if (conf
->mirrors_new
) {
4132 memcpy(conf
->mirrors_new
, conf
->mirrors
,
4133 sizeof(struct raid10_info
)*conf
->prev
.raid_disks
);
4135 kfree(conf
->mirrors_old
);
4136 conf
->mirrors_old
= conf
->mirrors
;
4137 conf
->mirrors
= conf
->mirrors_new
;
4138 conf
->mirrors_new
= NULL
;
4140 setup_geo(&conf
->geo
, mddev
, geo_start
);
4142 if (mddev
->reshape_backwards
) {
4143 sector_t size
= raid10_size(mddev
, 0, 0);
4144 if (size
< mddev
->array_sectors
) {
4145 spin_unlock_irq(&conf
->device_lock
);
4146 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4150 mddev
->resync_max_sectors
= size
;
4151 conf
->reshape_progress
= size
;
4153 conf
->reshape_progress
= 0;
4154 conf
->reshape_safe
= conf
->reshape_progress
;
4155 spin_unlock_irq(&conf
->device_lock
);
4157 if (mddev
->delta_disks
&& mddev
->bitmap
) {
4158 ret
= bitmap_resize(mddev
->bitmap
,
4159 raid10_size(mddev
, 0,
4160 conf
->geo
.raid_disks
),
4165 if (mddev
->delta_disks
> 0) {
4166 rdev_for_each(rdev
, mddev
)
4167 if (rdev
->raid_disk
< 0 &&
4168 !test_bit(Faulty
, &rdev
->flags
)) {
4169 if (raid10_add_disk(mddev
, rdev
) == 0) {
4170 if (rdev
->raid_disk
>=
4171 conf
->prev
.raid_disks
)
4172 set_bit(In_sync
, &rdev
->flags
);
4174 rdev
->recovery_offset
= 0;
4176 if (sysfs_link_rdev(mddev
, rdev
))
4177 /* Failure here is OK */;
4179 } else if (rdev
->raid_disk
>= conf
->prev
.raid_disks
4180 && !test_bit(Faulty
, &rdev
->flags
)) {
4181 /* This is a spare that was manually added */
4182 set_bit(In_sync
, &rdev
->flags
);
4185 /* When a reshape changes the number of devices,
4186 * ->degraded is measured against the larger of the
4187 * pre and post numbers.
4189 spin_lock_irq(&conf
->device_lock
);
4190 mddev
->degraded
= calc_degraded(conf
);
4191 spin_unlock_irq(&conf
->device_lock
);
4192 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4193 mddev
->reshape_position
= conf
->reshape_progress
;
4194 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4196 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4197 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4198 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
4199 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4200 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4202 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4204 if (!mddev
->sync_thread
) {
4208 conf
->reshape_checkpoint
= jiffies
;
4209 md_wakeup_thread(mddev
->sync_thread
);
4210 md_new_event(mddev
);
4214 mddev
->recovery
= 0;
4215 spin_lock_irq(&conf
->device_lock
);
4216 conf
->geo
= conf
->prev
;
4217 mddev
->raid_disks
= conf
->geo
.raid_disks
;
4218 rdev_for_each(rdev
, mddev
)
4219 rdev
->new_data_offset
= rdev
->data_offset
;
4221 conf
->reshape_progress
= MaxSector
;
4222 conf
->reshape_safe
= MaxSector
;
4223 mddev
->reshape_position
= MaxSector
;
4224 spin_unlock_irq(&conf
->device_lock
);
4228 /* Calculate the last device-address that could contain
4229 * any block from the chunk that includes the array-address 's'
4230 * and report the next address.
4231 * i.e. the address returned will be chunk-aligned and after
4232 * any data that is in the chunk containing 's'.
4234 static sector_t
last_dev_address(sector_t s
, struct geom
*geo
)
4236 s
= (s
| geo
->chunk_mask
) + 1;
4237 s
>>= geo
->chunk_shift
;
4238 s
*= geo
->near_copies
;
4239 s
= DIV_ROUND_UP_SECTOR_T(s
, geo
->raid_disks
);
4240 s
*= geo
->far_copies
;
4241 s
<<= geo
->chunk_shift
;
4245 /* Calculate the first device-address that could contain
4246 * any block from the chunk that includes the array-address 's'.
4247 * This too will be the start of a chunk
4249 static sector_t
first_dev_address(sector_t s
, struct geom
*geo
)
4251 s
>>= geo
->chunk_shift
;
4252 s
*= geo
->near_copies
;
4253 sector_div(s
, geo
->raid_disks
);
4254 s
*= geo
->far_copies
;
4255 s
<<= geo
->chunk_shift
;
4259 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
,
4262 /* We simply copy at most one chunk (smallest of old and new)
4263 * at a time, possibly less if that exceeds RESYNC_PAGES,
4264 * or we hit a bad block or something.
4265 * This might mean we pause for normal IO in the middle of
4266 * a chunk, but that is not a problem as mddev->reshape_position
4267 * can record any location.
4269 * If we will want to write to a location that isn't
4270 * yet recorded as 'safe' (i.e. in metadata on disk) then
4271 * we need to flush all reshape requests and update the metadata.
4273 * When reshaping forwards (e.g. to more devices), we interpret
4274 * 'safe' as the earliest block which might not have been copied
4275 * down yet. We divide this by previous stripe size and multiply
4276 * by previous stripe length to get lowest device offset that we
4277 * cannot write to yet.
4278 * We interpret 'sector_nr' as an address that we want to write to.
4279 * From this we use last_device_address() to find where we might
4280 * write to, and first_device_address on the 'safe' position.
4281 * If this 'next' write position is after the 'safe' position,
4282 * we must update the metadata to increase the 'safe' position.
4284 * When reshaping backwards, we round in the opposite direction
4285 * and perform the reverse test: next write position must not be
4286 * less than current safe position.
4288 * In all this the minimum difference in data offsets
4289 * (conf->offset_diff - always positive) allows a bit of slack,
4290 * so next can be after 'safe', but not by more than offset_diff
4292 * We need to prepare all the bios here before we start any IO
4293 * to ensure the size we choose is acceptable to all devices.
4294 * The means one for each copy for write-out and an extra one for
4296 * We store the read-in bio in ->master_bio and the others in
4297 * ->devs[x].bio and ->devs[x].repl_bio.
4299 struct r10conf
*conf
= mddev
->private;
4300 struct r10bio
*r10_bio
;
4301 sector_t next
, safe
, last
;
4305 struct md_rdev
*rdev
;
4308 struct bio
*bio
, *read_bio
;
4309 int sectors_done
= 0;
4310 struct page
**pages
;
4312 if (sector_nr
== 0) {
4313 /* If restarting in the middle, skip the initial sectors */
4314 if (mddev
->reshape_backwards
&&
4315 conf
->reshape_progress
< raid10_size(mddev
, 0, 0)) {
4316 sector_nr
= (raid10_size(mddev
, 0, 0)
4317 - conf
->reshape_progress
);
4318 } else if (!mddev
->reshape_backwards
&&
4319 conf
->reshape_progress
> 0)
4320 sector_nr
= conf
->reshape_progress
;
4322 mddev
->curr_resync_completed
= sector_nr
;
4323 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4329 /* We don't use sector_nr to track where we are up to
4330 * as that doesn't work well for ->reshape_backwards.
4331 * So just use ->reshape_progress.
4333 if (mddev
->reshape_backwards
) {
4334 /* 'next' is the earliest device address that we might
4335 * write to for this chunk in the new layout
4337 next
= first_dev_address(conf
->reshape_progress
- 1,
4340 /* 'safe' is the last device address that we might read from
4341 * in the old layout after a restart
4343 safe
= last_dev_address(conf
->reshape_safe
- 1,
4346 if (next
+ conf
->offset_diff
< safe
)
4349 last
= conf
->reshape_progress
- 1;
4350 sector_nr
= last
& ~(sector_t
)(conf
->geo
.chunk_mask
4351 & conf
->prev
.chunk_mask
);
4352 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 < last
)
4353 sector_nr
= last
+ 1 - RESYNC_BLOCK_SIZE
/512;
4355 /* 'next' is after the last device address that we
4356 * might write to for this chunk in the new layout
4358 next
= last_dev_address(conf
->reshape_progress
, &conf
->geo
);
4360 /* 'safe' is the earliest device address that we might
4361 * read from in the old layout after a restart
4363 safe
= first_dev_address(conf
->reshape_safe
, &conf
->prev
);
4365 /* Need to update metadata if 'next' might be beyond 'safe'
4366 * as that would possibly corrupt data
4368 if (next
> safe
+ conf
->offset_diff
)
4371 sector_nr
= conf
->reshape_progress
;
4372 last
= sector_nr
| (conf
->geo
.chunk_mask
4373 & conf
->prev
.chunk_mask
);
4375 if (sector_nr
+ RESYNC_BLOCK_SIZE
/512 <= last
)
4376 last
= sector_nr
+ RESYNC_BLOCK_SIZE
/512 - 1;
4380 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
4381 /* Need to update reshape_position in metadata */
4383 mddev
->reshape_position
= conf
->reshape_progress
;
4384 if (mddev
->reshape_backwards
)
4385 mddev
->curr_resync_completed
= raid10_size(mddev
, 0, 0)
4386 - conf
->reshape_progress
;
4388 mddev
->curr_resync_completed
= conf
->reshape_progress
;
4389 conf
->reshape_checkpoint
= jiffies
;
4390 set_bit(MD_SB_CHANGE_DEVS
, &mddev
->sb_flags
);
4391 md_wakeup_thread(mddev
->thread
);
4392 wait_event(mddev
->sb_wait
, mddev
->sb_flags
== 0 ||
4393 test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
));
4394 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
4395 allow_barrier(conf
);
4396 return sectors_done
;
4398 conf
->reshape_safe
= mddev
->reshape_position
;
4399 allow_barrier(conf
);
4402 raise_barrier(conf
, 0);
4404 /* Now schedule reads for blocks from sector_nr to last */
4405 r10_bio
= raid10_alloc_init_r10buf(conf
);
4407 raise_barrier(conf
, 1);
4408 atomic_set(&r10_bio
->remaining
, 0);
4409 r10_bio
->mddev
= mddev
;
4410 r10_bio
->sector
= sector_nr
;
4411 set_bit(R10BIO_IsReshape
, &r10_bio
->state
);
4412 r10_bio
->sectors
= last
- sector_nr
+ 1;
4413 rdev
= read_balance(conf
, r10_bio
, &max_sectors
);
4414 BUG_ON(!test_bit(R10BIO_Previous
, &r10_bio
->state
));
4417 /* Cannot read from here, so need to record bad blocks
4418 * on all the target devices.
4421 mempool_free(r10_bio
, conf
->r10buf_pool
);
4422 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4423 return sectors_done
;
4426 read_bio
= bio_alloc_mddev(GFP_KERNEL
, RESYNC_PAGES
, mddev
);
4428 bio_set_dev(read_bio
, rdev
->bdev
);
4429 read_bio
->bi_iter
.bi_sector
= (r10_bio
->devs
[r10_bio
->read_slot
].addr
4430 + rdev
->data_offset
);
4431 read_bio
->bi_private
= r10_bio
;
4432 read_bio
->bi_end_io
= end_reshape_read
;
4433 bio_set_op_attrs(read_bio
, REQ_OP_READ
, 0);
4434 read_bio
->bi_flags
&= (~0UL << BIO_RESET_BITS
);
4435 read_bio
->bi_status
= 0;
4436 read_bio
->bi_vcnt
= 0;
4437 read_bio
->bi_iter
.bi_size
= 0;
4438 r10_bio
->master_bio
= read_bio
;
4439 r10_bio
->read_slot
= r10_bio
->devs
[r10_bio
->read_slot
].devnum
;
4441 /* Now find the locations in the new layout */
4442 __raid10_find_phys(&conf
->geo
, r10_bio
);
4445 read_bio
->bi_next
= NULL
;
4448 for (s
= 0; s
< conf
->copies
*2; s
++) {
4450 int d
= r10_bio
->devs
[s
/2].devnum
;
4451 struct md_rdev
*rdev2
;
4453 rdev2
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4454 b
= r10_bio
->devs
[s
/2].repl_bio
;
4456 rdev2
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4457 b
= r10_bio
->devs
[s
/2].bio
;
4459 if (!rdev2
|| test_bit(Faulty
, &rdev2
->flags
))
4462 bio_set_dev(b
, rdev2
->bdev
);
4463 b
->bi_iter
.bi_sector
= r10_bio
->devs
[s
/2].addr
+
4464 rdev2
->new_data_offset
;
4465 b
->bi_end_io
= end_reshape_write
;
4466 bio_set_op_attrs(b
, REQ_OP_WRITE
, 0);
4471 /* Now add as many pages as possible to all of these bios. */
4474 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4475 for (s
= 0 ; s
< max_sectors
; s
+= PAGE_SIZE
>> 9) {
4476 struct page
*page
= pages
[s
/ (PAGE_SIZE
>> 9)];
4477 int len
= (max_sectors
- s
) << 9;
4478 if (len
> PAGE_SIZE
)
4480 for (bio
= blist
; bio
; bio
= bio
->bi_next
) {
4482 * won't fail because the vec table is big enough
4483 * to hold all these pages
4485 bio_add_page(bio
, page
, len
, 0);
4487 sector_nr
+= len
>> 9;
4488 nr_sectors
+= len
>> 9;
4491 r10_bio
->sectors
= nr_sectors
;
4493 /* Now submit the read */
4494 md_sync_acct_bio(read_bio
, r10_bio
->sectors
);
4495 atomic_inc(&r10_bio
->remaining
);
4496 read_bio
->bi_next
= NULL
;
4497 generic_make_request(read_bio
);
4498 sector_nr
+= nr_sectors
;
4499 sectors_done
+= nr_sectors
;
4500 if (sector_nr
<= last
)
4503 lower_barrier(conf
);
4505 /* Now that we have done the whole section we can
4506 * update reshape_progress
4508 if (mddev
->reshape_backwards
)
4509 conf
->reshape_progress
-= sectors_done
;
4511 conf
->reshape_progress
+= sectors_done
;
4513 return sectors_done
;
4516 static void end_reshape_request(struct r10bio
*r10_bio
);
4517 static int handle_reshape_read_error(struct mddev
*mddev
,
4518 struct r10bio
*r10_bio
);
4519 static void reshape_request_write(struct mddev
*mddev
, struct r10bio
*r10_bio
)
4521 /* Reshape read completed. Hopefully we have a block
4523 * If we got a read error then we do sync 1-page reads from
4524 * elsewhere until we find the data - or give up.
4526 struct r10conf
*conf
= mddev
->private;
4529 if (!test_bit(R10BIO_Uptodate
, &r10_bio
->state
))
4530 if (handle_reshape_read_error(mddev
, r10_bio
) < 0) {
4531 /* Reshape has been aborted */
4532 md_done_sync(mddev
, r10_bio
->sectors
, 0);
4536 /* We definitely have the data in the pages, schedule the
4539 atomic_set(&r10_bio
->remaining
, 1);
4540 for (s
= 0; s
< conf
->copies
*2; s
++) {
4542 int d
= r10_bio
->devs
[s
/2].devnum
;
4543 struct md_rdev
*rdev
;
4546 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4547 b
= r10_bio
->devs
[s
/2].repl_bio
;
4549 rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4550 b
= r10_bio
->devs
[s
/2].bio
;
4552 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
)) {
4556 atomic_inc(&rdev
->nr_pending
);
4558 md_sync_acct_bio(b
, r10_bio
->sectors
);
4559 atomic_inc(&r10_bio
->remaining
);
4561 generic_make_request(b
);
4563 end_reshape_request(r10_bio
);
4566 static void end_reshape(struct r10conf
*conf
)
4568 if (test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
))
4571 spin_lock_irq(&conf
->device_lock
);
4572 conf
->prev
= conf
->geo
;
4573 md_finish_reshape(conf
->mddev
);
4575 conf
->reshape_progress
= MaxSector
;
4576 conf
->reshape_safe
= MaxSector
;
4577 spin_unlock_irq(&conf
->device_lock
);
4579 /* read-ahead size must cover two whole stripes, which is
4580 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4582 if (conf
->mddev
->queue
) {
4583 int stripe
= conf
->geo
.raid_disks
*
4584 ((conf
->mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4585 stripe
/= conf
->geo
.near_copies
;
4586 if (conf
->mddev
->queue
->backing_dev_info
->ra_pages
< 2 * stripe
)
4587 conf
->mddev
->queue
->backing_dev_info
->ra_pages
= 2 * stripe
;
4592 static int handle_reshape_read_error(struct mddev
*mddev
,
4593 struct r10bio
*r10_bio
)
4595 /* Use sync reads to get the blocks from somewhere else */
4596 int sectors
= r10_bio
->sectors
;
4597 struct r10conf
*conf
= mddev
->private;
4598 struct r10bio
*r10b
;
4601 struct page
**pages
;
4603 r10b
= kmalloc(sizeof(*r10b
) +
4604 sizeof(struct r10dev
) * conf
->copies
, GFP_NOIO
);
4606 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4610 /* reshape IOs share pages from .devs[0].bio */
4611 pages
= get_resync_pages(r10_bio
->devs
[0].bio
)->pages
;
4613 r10b
->sector
= r10_bio
->sector
;
4614 __raid10_find_phys(&conf
->prev
, r10b
);
4619 int first_slot
= slot
;
4621 if (s
> (PAGE_SIZE
>> 9))
4626 int d
= r10b
->devs
[slot
].devnum
;
4627 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4630 test_bit(Faulty
, &rdev
->flags
) ||
4631 !test_bit(In_sync
, &rdev
->flags
))
4634 addr
= r10b
->devs
[slot
].addr
+ idx
* PAGE_SIZE
;
4635 atomic_inc(&rdev
->nr_pending
);
4637 success
= sync_page_io(rdev
,
4641 REQ_OP_READ
, 0, false);
4642 rdev_dec_pending(rdev
, mddev
);
4648 if (slot
>= conf
->copies
)
4650 if (slot
== first_slot
)
4655 /* couldn't read this block, must give up */
4656 set_bit(MD_RECOVERY_INTR
,
4668 static void end_reshape_write(struct bio
*bio
)
4670 struct r10bio
*r10_bio
= get_resync_r10bio(bio
);
4671 struct mddev
*mddev
= r10_bio
->mddev
;
4672 struct r10conf
*conf
= mddev
->private;
4676 struct md_rdev
*rdev
= NULL
;
4678 d
= find_bio_disk(conf
, r10_bio
, bio
, &slot
, &repl
);
4680 rdev
= conf
->mirrors
[d
].replacement
;
4683 rdev
= conf
->mirrors
[d
].rdev
;
4686 if (bio
->bi_status
) {
4687 /* FIXME should record badblock */
4688 md_error(mddev
, rdev
);
4691 rdev_dec_pending(rdev
, mddev
);
4692 end_reshape_request(r10_bio
);
4695 static void end_reshape_request(struct r10bio
*r10_bio
)
4697 if (!atomic_dec_and_test(&r10_bio
->remaining
))
4699 md_done_sync(r10_bio
->mddev
, r10_bio
->sectors
, 1);
4700 bio_put(r10_bio
->master_bio
);
4704 static void raid10_finish_reshape(struct mddev
*mddev
)
4706 struct r10conf
*conf
= mddev
->private;
4708 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
4711 if (mddev
->delta_disks
> 0) {
4712 if (mddev
->recovery_cp
> mddev
->resync_max_sectors
) {
4713 mddev
->recovery_cp
= mddev
->resync_max_sectors
;
4714 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4716 mddev
->resync_max_sectors
= mddev
->array_sectors
;
4720 for (d
= conf
->geo
.raid_disks
;
4721 d
< conf
->geo
.raid_disks
- mddev
->delta_disks
;
4723 struct md_rdev
*rdev
= rcu_dereference(conf
->mirrors
[d
].rdev
);
4725 clear_bit(In_sync
, &rdev
->flags
);
4726 rdev
= rcu_dereference(conf
->mirrors
[d
].replacement
);
4728 clear_bit(In_sync
, &rdev
->flags
);
4732 mddev
->layout
= mddev
->new_layout
;
4733 mddev
->chunk_sectors
= 1 << conf
->geo
.chunk_shift
;
4734 mddev
->reshape_position
= MaxSector
;
4735 mddev
->delta_disks
= 0;
4736 mddev
->reshape_backwards
= 0;
4739 static struct md_personality raid10_personality
=
4743 .owner
= THIS_MODULE
,
4744 .make_request
= raid10_make_request
,
4746 .free
= raid10_free
,
4747 .status
= raid10_status
,
4748 .error_handler
= raid10_error
,
4749 .hot_add_disk
= raid10_add_disk
,
4750 .hot_remove_disk
= raid10_remove_disk
,
4751 .spare_active
= raid10_spare_active
,
4752 .sync_request
= raid10_sync_request
,
4753 .quiesce
= raid10_quiesce
,
4754 .size
= raid10_size
,
4755 .resize
= raid10_resize
,
4756 .takeover
= raid10_takeover
,
4757 .check_reshape
= raid10_check_reshape
,
4758 .start_reshape
= raid10_start_reshape
,
4759 .finish_reshape
= raid10_finish_reshape
,
4760 .congested
= raid10_congested
,
4763 static int __init
raid_init(void)
4765 return register_md_personality(&raid10_personality
);
4768 static void raid_exit(void)
4770 unregister_md_personality(&raid10_personality
);
4773 module_init(raid_init
);
4774 module_exit(raid_exit
);
4775 MODULE_LICENSE("GPL");
4776 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4777 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4778 MODULE_ALIAS("md-raid10");
4779 MODULE_ALIAS("md-level-10");
4781 module_param(max_queued_requests
, int, S_IRUGO
|S_IWUSR
);