4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/property.h>
35 #include <linux/export.h>
36 #include <linux/sched/rt.h>
37 #include <uapi/linux/sched/types.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/ioport.h>
41 #include <linux/acpi.h>
42 #include <linux/highmem.h>
43 #include <linux/idr.h>
44 #include <linux/platform_data/x86/apple.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/spi.h>
49 static DEFINE_IDR(spi_master_idr
);
51 static void spidev_release(struct device
*dev
)
53 struct spi_device
*spi
= to_spi_device(dev
);
55 /* spi controllers may cleanup for released devices */
56 if (spi
->controller
->cleanup
)
57 spi
->controller
->cleanup(spi
);
59 spi_controller_put(spi
->controller
);
64 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
66 const struct spi_device
*spi
= to_spi_device(dev
);
69 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
73 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
75 static DEVICE_ATTR_RO(modalias
);
77 #define SPI_STATISTICS_ATTRS(field, file) \
78 static ssize_t spi_controller_##field##_show(struct device *dev, \
79 struct device_attribute *attr, \
82 struct spi_controller *ctlr = container_of(dev, \
83 struct spi_controller, dev); \
84 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
86 static struct device_attribute dev_attr_spi_controller_##field = { \
87 .attr = { .name = file, .mode = 0444 }, \
88 .show = spi_controller_##field##_show, \
90 static ssize_t spi_device_##field##_show(struct device *dev, \
91 struct device_attribute *attr, \
94 struct spi_device *spi = to_spi_device(dev); \
95 return spi_statistics_##field##_show(&spi->statistics, buf); \
97 static struct device_attribute dev_attr_spi_device_##field = { \
98 .attr = { .name = file, .mode = 0444 }, \
99 .show = spi_device_##field##_show, \
102 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
103 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
106 unsigned long flags; \
108 spin_lock_irqsave(&stat->lock, flags); \
109 len = sprintf(buf, format_string, stat->field); \
110 spin_unlock_irqrestore(&stat->lock, flags); \
113 SPI_STATISTICS_ATTRS(name, file)
115 #define SPI_STATISTICS_SHOW(field, format_string) \
116 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
117 field, format_string)
119 SPI_STATISTICS_SHOW(messages
, "%lu");
120 SPI_STATISTICS_SHOW(transfers
, "%lu");
121 SPI_STATISTICS_SHOW(errors
, "%lu");
122 SPI_STATISTICS_SHOW(timedout
, "%lu");
124 SPI_STATISTICS_SHOW(spi_sync
, "%lu");
125 SPI_STATISTICS_SHOW(spi_sync_immediate
, "%lu");
126 SPI_STATISTICS_SHOW(spi_async
, "%lu");
128 SPI_STATISTICS_SHOW(bytes
, "%llu");
129 SPI_STATISTICS_SHOW(bytes_rx
, "%llu");
130 SPI_STATISTICS_SHOW(bytes_tx
, "%llu");
132 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
133 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
134 "transfer_bytes_histo_" number, \
135 transfer_bytes_histo[index], "%lu")
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
147 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
148 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
149 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
150 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
151 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
152 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
154 SPI_STATISTICS_SHOW(transfers_split_maxsize
, "%lu");
156 static struct attribute
*spi_dev_attrs
[] = {
157 &dev_attr_modalias
.attr
,
161 static const struct attribute_group spi_dev_group
= {
162 .attrs
= spi_dev_attrs
,
165 static struct attribute
*spi_device_statistics_attrs
[] = {
166 &dev_attr_spi_device_messages
.attr
,
167 &dev_attr_spi_device_transfers
.attr
,
168 &dev_attr_spi_device_errors
.attr
,
169 &dev_attr_spi_device_timedout
.attr
,
170 &dev_attr_spi_device_spi_sync
.attr
,
171 &dev_attr_spi_device_spi_sync_immediate
.attr
,
172 &dev_attr_spi_device_spi_async
.attr
,
173 &dev_attr_spi_device_bytes
.attr
,
174 &dev_attr_spi_device_bytes_rx
.attr
,
175 &dev_attr_spi_device_bytes_tx
.attr
,
176 &dev_attr_spi_device_transfer_bytes_histo0
.attr
,
177 &dev_attr_spi_device_transfer_bytes_histo1
.attr
,
178 &dev_attr_spi_device_transfer_bytes_histo2
.attr
,
179 &dev_attr_spi_device_transfer_bytes_histo3
.attr
,
180 &dev_attr_spi_device_transfer_bytes_histo4
.attr
,
181 &dev_attr_spi_device_transfer_bytes_histo5
.attr
,
182 &dev_attr_spi_device_transfer_bytes_histo6
.attr
,
183 &dev_attr_spi_device_transfer_bytes_histo7
.attr
,
184 &dev_attr_spi_device_transfer_bytes_histo8
.attr
,
185 &dev_attr_spi_device_transfer_bytes_histo9
.attr
,
186 &dev_attr_spi_device_transfer_bytes_histo10
.attr
,
187 &dev_attr_spi_device_transfer_bytes_histo11
.attr
,
188 &dev_attr_spi_device_transfer_bytes_histo12
.attr
,
189 &dev_attr_spi_device_transfer_bytes_histo13
.attr
,
190 &dev_attr_spi_device_transfer_bytes_histo14
.attr
,
191 &dev_attr_spi_device_transfer_bytes_histo15
.attr
,
192 &dev_attr_spi_device_transfer_bytes_histo16
.attr
,
193 &dev_attr_spi_device_transfers_split_maxsize
.attr
,
197 static const struct attribute_group spi_device_statistics_group
= {
198 .name
= "statistics",
199 .attrs
= spi_device_statistics_attrs
,
202 static const struct attribute_group
*spi_dev_groups
[] = {
204 &spi_device_statistics_group
,
208 static struct attribute
*spi_controller_statistics_attrs
[] = {
209 &dev_attr_spi_controller_messages
.attr
,
210 &dev_attr_spi_controller_transfers
.attr
,
211 &dev_attr_spi_controller_errors
.attr
,
212 &dev_attr_spi_controller_timedout
.attr
,
213 &dev_attr_spi_controller_spi_sync
.attr
,
214 &dev_attr_spi_controller_spi_sync_immediate
.attr
,
215 &dev_attr_spi_controller_spi_async
.attr
,
216 &dev_attr_spi_controller_bytes
.attr
,
217 &dev_attr_spi_controller_bytes_rx
.attr
,
218 &dev_attr_spi_controller_bytes_tx
.attr
,
219 &dev_attr_spi_controller_transfer_bytes_histo0
.attr
,
220 &dev_attr_spi_controller_transfer_bytes_histo1
.attr
,
221 &dev_attr_spi_controller_transfer_bytes_histo2
.attr
,
222 &dev_attr_spi_controller_transfer_bytes_histo3
.attr
,
223 &dev_attr_spi_controller_transfer_bytes_histo4
.attr
,
224 &dev_attr_spi_controller_transfer_bytes_histo5
.attr
,
225 &dev_attr_spi_controller_transfer_bytes_histo6
.attr
,
226 &dev_attr_spi_controller_transfer_bytes_histo7
.attr
,
227 &dev_attr_spi_controller_transfer_bytes_histo8
.attr
,
228 &dev_attr_spi_controller_transfer_bytes_histo9
.attr
,
229 &dev_attr_spi_controller_transfer_bytes_histo10
.attr
,
230 &dev_attr_spi_controller_transfer_bytes_histo11
.attr
,
231 &dev_attr_spi_controller_transfer_bytes_histo12
.attr
,
232 &dev_attr_spi_controller_transfer_bytes_histo13
.attr
,
233 &dev_attr_spi_controller_transfer_bytes_histo14
.attr
,
234 &dev_attr_spi_controller_transfer_bytes_histo15
.attr
,
235 &dev_attr_spi_controller_transfer_bytes_histo16
.attr
,
236 &dev_attr_spi_controller_transfers_split_maxsize
.attr
,
240 static const struct attribute_group spi_controller_statistics_group
= {
241 .name
= "statistics",
242 .attrs
= spi_controller_statistics_attrs
,
245 static const struct attribute_group
*spi_master_groups
[] = {
246 &spi_controller_statistics_group
,
250 void spi_statistics_add_transfer_stats(struct spi_statistics
*stats
,
251 struct spi_transfer
*xfer
,
252 struct spi_controller
*ctlr
)
255 int l2len
= min(fls(xfer
->len
), SPI_STATISTICS_HISTO_SIZE
) - 1;
260 spin_lock_irqsave(&stats
->lock
, flags
);
263 stats
->transfer_bytes_histo
[l2len
]++;
265 stats
->bytes
+= xfer
->len
;
266 if ((xfer
->tx_buf
) &&
267 (xfer
->tx_buf
!= ctlr
->dummy_tx
))
268 stats
->bytes_tx
+= xfer
->len
;
269 if ((xfer
->rx_buf
) &&
270 (xfer
->rx_buf
!= ctlr
->dummy_rx
))
271 stats
->bytes_rx
+= xfer
->len
;
273 spin_unlock_irqrestore(&stats
->lock
, flags
);
275 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats
);
277 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
278 * and the sysfs version makes coldplug work too.
281 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
282 const struct spi_device
*sdev
)
284 while (id
->name
[0]) {
285 if (!strcmp(sdev
->modalias
, id
->name
))
292 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
294 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
296 return spi_match_id(sdrv
->id_table
, sdev
);
298 EXPORT_SYMBOL_GPL(spi_get_device_id
);
300 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
302 const struct spi_device
*spi
= to_spi_device(dev
);
303 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
305 /* Attempt an OF style match */
306 if (of_driver_match_device(dev
, drv
))
310 if (acpi_driver_match_device(dev
, drv
))
314 return !!spi_match_id(sdrv
->id_table
, spi
);
316 return strcmp(spi
->modalias
, drv
->name
) == 0;
319 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
321 const struct spi_device
*spi
= to_spi_device(dev
);
324 rc
= acpi_device_uevent_modalias(dev
, env
);
328 return add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
331 struct bus_type spi_bus_type
= {
333 .dev_groups
= spi_dev_groups
,
334 .match
= spi_match_device
,
335 .uevent
= spi_uevent
,
337 EXPORT_SYMBOL_GPL(spi_bus_type
);
340 static int spi_drv_probe(struct device
*dev
)
342 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
343 struct spi_device
*spi
= to_spi_device(dev
);
346 ret
= of_clk_set_defaults(dev
->of_node
, false);
351 spi
->irq
= of_irq_get(dev
->of_node
, 0);
352 if (spi
->irq
== -EPROBE_DEFER
)
353 return -EPROBE_DEFER
;
358 ret
= dev_pm_domain_attach(dev
, true);
359 if (ret
!= -EPROBE_DEFER
) {
360 ret
= sdrv
->probe(spi
);
362 dev_pm_domain_detach(dev
, true);
368 static int spi_drv_remove(struct device
*dev
)
370 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
373 ret
= sdrv
->remove(to_spi_device(dev
));
374 dev_pm_domain_detach(dev
, true);
379 static void spi_drv_shutdown(struct device
*dev
)
381 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
383 sdrv
->shutdown(to_spi_device(dev
));
387 * __spi_register_driver - register a SPI driver
388 * @owner: owner module of the driver to register
389 * @sdrv: the driver to register
392 * Return: zero on success, else a negative error code.
394 int __spi_register_driver(struct module
*owner
, struct spi_driver
*sdrv
)
396 sdrv
->driver
.owner
= owner
;
397 sdrv
->driver
.bus
= &spi_bus_type
;
399 sdrv
->driver
.probe
= spi_drv_probe
;
401 sdrv
->driver
.remove
= spi_drv_remove
;
403 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
404 return driver_register(&sdrv
->driver
);
406 EXPORT_SYMBOL_GPL(__spi_register_driver
);
408 /*-------------------------------------------------------------------------*/
410 /* SPI devices should normally not be created by SPI device drivers; that
411 * would make them board-specific. Similarly with SPI controller drivers.
412 * Device registration normally goes into like arch/.../mach.../board-YYY.c
413 * with other readonly (flashable) information about mainboard devices.
417 struct list_head list
;
418 struct spi_board_info board_info
;
421 static LIST_HEAD(board_list
);
422 static LIST_HEAD(spi_controller_list
);
425 * Used to protect add/del opertion for board_info list and
426 * spi_controller list, and their matching process
427 * also used to protect object of type struct idr
429 static DEFINE_MUTEX(board_lock
);
432 * spi_alloc_device - Allocate a new SPI device
433 * @ctlr: Controller to which device is connected
436 * Allows a driver to allocate and initialize a spi_device without
437 * registering it immediately. This allows a driver to directly
438 * fill the spi_device with device parameters before calling
439 * spi_add_device() on it.
441 * Caller is responsible to call spi_add_device() on the returned
442 * spi_device structure to add it to the SPI controller. If the caller
443 * needs to discard the spi_device without adding it, then it should
444 * call spi_dev_put() on it.
446 * Return: a pointer to the new device, or NULL.
448 struct spi_device
*spi_alloc_device(struct spi_controller
*ctlr
)
450 struct spi_device
*spi
;
452 if (!spi_controller_get(ctlr
))
455 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
457 spi_controller_put(ctlr
);
461 spi
->master
= spi
->controller
= ctlr
;
462 spi
->dev
.parent
= &ctlr
->dev
;
463 spi
->dev
.bus
= &spi_bus_type
;
464 spi
->dev
.release
= spidev_release
;
465 spi
->cs_gpio
= -ENOENT
;
467 spin_lock_init(&spi
->statistics
.lock
);
469 device_initialize(&spi
->dev
);
472 EXPORT_SYMBOL_GPL(spi_alloc_device
);
474 static void spi_dev_set_name(struct spi_device
*spi
)
476 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
479 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
483 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->controller
->dev
),
487 static int spi_dev_check(struct device
*dev
, void *data
)
489 struct spi_device
*spi
= to_spi_device(dev
);
490 struct spi_device
*new_spi
= data
;
492 if (spi
->controller
== new_spi
->controller
&&
493 spi
->chip_select
== new_spi
->chip_select
)
499 * spi_add_device - Add spi_device allocated with spi_alloc_device
500 * @spi: spi_device to register
502 * Companion function to spi_alloc_device. Devices allocated with
503 * spi_alloc_device can be added onto the spi bus with this function.
505 * Return: 0 on success; negative errno on failure
507 int spi_add_device(struct spi_device
*spi
)
509 static DEFINE_MUTEX(spi_add_lock
);
510 struct spi_controller
*ctlr
= spi
->controller
;
511 struct device
*dev
= ctlr
->dev
.parent
;
514 /* Chipselects are numbered 0..max; validate. */
515 if (spi
->chip_select
>= ctlr
->num_chipselect
) {
516 dev_err(dev
, "cs%d >= max %d\n", spi
->chip_select
,
517 ctlr
->num_chipselect
);
521 /* Set the bus ID string */
522 spi_dev_set_name(spi
);
524 /* We need to make sure there's no other device with this
525 * chipselect **BEFORE** we call setup(), else we'll trash
526 * its configuration. Lock against concurrent add() calls.
528 mutex_lock(&spi_add_lock
);
530 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
532 dev_err(dev
, "chipselect %d already in use\n",
538 spi
->cs_gpio
= ctlr
->cs_gpios
[spi
->chip_select
];
540 /* Drivers may modify this initial i/o setup, but will
541 * normally rely on the device being setup. Devices
542 * using SPI_CS_HIGH can't coexist well otherwise...
544 status
= spi_setup(spi
);
546 dev_err(dev
, "can't setup %s, status %d\n",
547 dev_name(&spi
->dev
), status
);
551 /* Device may be bound to an active driver when this returns */
552 status
= device_add(&spi
->dev
);
554 dev_err(dev
, "can't add %s, status %d\n",
555 dev_name(&spi
->dev
), status
);
557 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
560 mutex_unlock(&spi_add_lock
);
563 EXPORT_SYMBOL_GPL(spi_add_device
);
566 * spi_new_device - instantiate one new SPI device
567 * @ctlr: Controller to which device is connected
568 * @chip: Describes the SPI device
571 * On typical mainboards, this is purely internal; and it's not needed
572 * after board init creates the hard-wired devices. Some development
573 * platforms may not be able to use spi_register_board_info though, and
574 * this is exported so that for example a USB or parport based adapter
575 * driver could add devices (which it would learn about out-of-band).
577 * Return: the new device, or NULL.
579 struct spi_device
*spi_new_device(struct spi_controller
*ctlr
,
580 struct spi_board_info
*chip
)
582 struct spi_device
*proxy
;
585 /* NOTE: caller did any chip->bus_num checks necessary.
587 * Also, unless we change the return value convention to use
588 * error-or-pointer (not NULL-or-pointer), troubleshootability
589 * suggests syslogged diagnostics are best here (ugh).
592 proxy
= spi_alloc_device(ctlr
);
596 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
598 proxy
->chip_select
= chip
->chip_select
;
599 proxy
->max_speed_hz
= chip
->max_speed_hz
;
600 proxy
->mode
= chip
->mode
;
601 proxy
->irq
= chip
->irq
;
602 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
603 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
604 proxy
->controller_data
= chip
->controller_data
;
605 proxy
->controller_state
= NULL
;
607 if (chip
->properties
) {
608 status
= device_add_properties(&proxy
->dev
, chip
->properties
);
611 "failed to add properties to '%s': %d\n",
612 chip
->modalias
, status
);
617 status
= spi_add_device(proxy
);
619 goto err_remove_props
;
624 if (chip
->properties
)
625 device_remove_properties(&proxy
->dev
);
630 EXPORT_SYMBOL_GPL(spi_new_device
);
633 * spi_unregister_device - unregister a single SPI device
634 * @spi: spi_device to unregister
636 * Start making the passed SPI device vanish. Normally this would be handled
637 * by spi_unregister_controller().
639 void spi_unregister_device(struct spi_device
*spi
)
644 if (spi
->dev
.of_node
) {
645 of_node_clear_flag(spi
->dev
.of_node
, OF_POPULATED
);
646 of_node_put(spi
->dev
.of_node
);
648 if (ACPI_COMPANION(&spi
->dev
))
649 acpi_device_clear_enumerated(ACPI_COMPANION(&spi
->dev
));
650 device_unregister(&spi
->dev
);
652 EXPORT_SYMBOL_GPL(spi_unregister_device
);
654 static void spi_match_controller_to_boardinfo(struct spi_controller
*ctlr
,
655 struct spi_board_info
*bi
)
657 struct spi_device
*dev
;
659 if (ctlr
->bus_num
!= bi
->bus_num
)
662 dev
= spi_new_device(ctlr
, bi
);
664 dev_err(ctlr
->dev
.parent
, "can't create new device for %s\n",
669 * spi_register_board_info - register SPI devices for a given board
670 * @info: array of chip descriptors
671 * @n: how many descriptors are provided
674 * Board-specific early init code calls this (probably during arch_initcall)
675 * with segments of the SPI device table. Any device nodes are created later,
676 * after the relevant parent SPI controller (bus_num) is defined. We keep
677 * this table of devices forever, so that reloading a controller driver will
678 * not make Linux forget about these hard-wired devices.
680 * Other code can also call this, e.g. a particular add-on board might provide
681 * SPI devices through its expansion connector, so code initializing that board
682 * would naturally declare its SPI devices.
684 * The board info passed can safely be __initdata ... but be careful of
685 * any embedded pointers (platform_data, etc), they're copied as-is.
686 * Device properties are deep-copied though.
688 * Return: zero on success, else a negative error code.
690 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
692 struct boardinfo
*bi
;
698 bi
= kcalloc(n
, sizeof(*bi
), GFP_KERNEL
);
702 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
703 struct spi_controller
*ctlr
;
705 memcpy(&bi
->board_info
, info
, sizeof(*info
));
706 if (info
->properties
) {
707 bi
->board_info
.properties
=
708 property_entries_dup(info
->properties
);
709 if (IS_ERR(bi
->board_info
.properties
))
710 return PTR_ERR(bi
->board_info
.properties
);
713 mutex_lock(&board_lock
);
714 list_add_tail(&bi
->list
, &board_list
);
715 list_for_each_entry(ctlr
, &spi_controller_list
, list
)
716 spi_match_controller_to_boardinfo(ctlr
,
718 mutex_unlock(&board_lock
);
724 /*-------------------------------------------------------------------------*/
726 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
728 if (spi
->mode
& SPI_CS_HIGH
)
731 if (gpio_is_valid(spi
->cs_gpio
)) {
732 gpio_set_value(spi
->cs_gpio
, !enable
);
733 /* Some SPI masters need both GPIO CS & slave_select */
734 if ((spi
->controller
->flags
& SPI_MASTER_GPIO_SS
) &&
735 spi
->controller
->set_cs
)
736 spi
->controller
->set_cs(spi
, !enable
);
737 } else if (spi
->controller
->set_cs
) {
738 spi
->controller
->set_cs(spi
, !enable
);
742 #ifdef CONFIG_HAS_DMA
743 static int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
744 struct sg_table
*sgt
, void *buf
, size_t len
,
745 enum dma_data_direction dir
)
747 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
748 unsigned int max_seg_size
= dma_get_max_seg_size(dev
);
749 #ifdef CONFIG_HIGHMEM
750 const bool kmap_buf
= ((unsigned long)buf
>= PKMAP_BASE
&&
751 (unsigned long)buf
< (PKMAP_BASE
+
752 (LAST_PKMAP
* PAGE_SIZE
)));
754 const bool kmap_buf
= false;
758 struct page
*vm_page
;
759 struct scatterlist
*sg
;
764 if (vmalloced_buf
|| kmap_buf
) {
765 desc_len
= min_t(int, max_seg_size
, PAGE_SIZE
);
766 sgs
= DIV_ROUND_UP(len
+ offset_in_page(buf
), desc_len
);
767 } else if (virt_addr_valid(buf
)) {
768 desc_len
= min_t(int, max_seg_size
, ctlr
->max_dma_len
);
769 sgs
= DIV_ROUND_UP(len
, desc_len
);
774 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
779 for (i
= 0; i
< sgs
; i
++) {
781 if (vmalloced_buf
|| kmap_buf
) {
783 * Next scatterlist entry size is the minimum between
784 * the desc_len and the remaining buffer length that
787 min
= min_t(size_t, desc_len
,
789 PAGE_SIZE
- offset_in_page(buf
)));
791 vm_page
= vmalloc_to_page(buf
);
793 vm_page
= kmap_to_page(buf
);
798 sg_set_page(sg
, vm_page
,
799 min
, offset_in_page(buf
));
801 min
= min_t(size_t, len
, desc_len
);
803 sg_set_buf(sg
, sg_buf
, min
);
811 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
824 static void spi_unmap_buf(struct spi_controller
*ctlr
, struct device
*dev
,
825 struct sg_table
*sgt
, enum dma_data_direction dir
)
827 if (sgt
->orig_nents
) {
828 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
833 static int __spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
835 struct device
*tx_dev
, *rx_dev
;
836 struct spi_transfer
*xfer
;
843 tx_dev
= ctlr
->dma_tx
->device
->dev
;
845 tx_dev
= ctlr
->dev
.parent
;
848 rx_dev
= ctlr
->dma_rx
->device
->dev
;
850 rx_dev
= ctlr
->dev
.parent
;
852 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
853 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
856 if (xfer
->tx_buf
!= NULL
) {
857 ret
= spi_map_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
858 (void *)xfer
->tx_buf
, xfer
->len
,
864 if (xfer
->rx_buf
!= NULL
) {
865 ret
= spi_map_buf(ctlr
, rx_dev
, &xfer
->rx_sg
,
866 xfer
->rx_buf
, xfer
->len
,
869 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
,
876 ctlr
->cur_msg_mapped
= true;
881 static int __spi_unmap_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
883 struct spi_transfer
*xfer
;
884 struct device
*tx_dev
, *rx_dev
;
886 if (!ctlr
->cur_msg_mapped
|| !ctlr
->can_dma
)
890 tx_dev
= ctlr
->dma_tx
->device
->dev
;
892 tx_dev
= ctlr
->dev
.parent
;
895 rx_dev
= ctlr
->dma_rx
->device
->dev
;
897 rx_dev
= ctlr
->dev
.parent
;
899 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
900 if (!ctlr
->can_dma(ctlr
, msg
->spi
, xfer
))
903 spi_unmap_buf(ctlr
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
904 spi_unmap_buf(ctlr
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
909 #else /* !CONFIG_HAS_DMA */
910 static inline int spi_map_buf(struct spi_controller
*ctlr
, struct device
*dev
,
911 struct sg_table
*sgt
, void *buf
, size_t len
,
912 enum dma_data_direction dir
)
917 static inline void spi_unmap_buf(struct spi_controller
*ctlr
,
918 struct device
*dev
, struct sg_table
*sgt
,
919 enum dma_data_direction dir
)
923 static inline int __spi_map_msg(struct spi_controller
*ctlr
,
924 struct spi_message
*msg
)
929 static inline int __spi_unmap_msg(struct spi_controller
*ctlr
,
930 struct spi_message
*msg
)
934 #endif /* !CONFIG_HAS_DMA */
936 static inline int spi_unmap_msg(struct spi_controller
*ctlr
,
937 struct spi_message
*msg
)
939 struct spi_transfer
*xfer
;
941 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
943 * Restore the original value of tx_buf or rx_buf if they are
946 if (xfer
->tx_buf
== ctlr
->dummy_tx
)
948 if (xfer
->rx_buf
== ctlr
->dummy_rx
)
952 return __spi_unmap_msg(ctlr
, msg
);
955 static int spi_map_msg(struct spi_controller
*ctlr
, struct spi_message
*msg
)
957 struct spi_transfer
*xfer
;
959 unsigned int max_tx
, max_rx
;
961 if (ctlr
->flags
& (SPI_CONTROLLER_MUST_RX
| SPI_CONTROLLER_MUST_TX
)) {
965 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
966 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_TX
) &&
968 max_tx
= max(xfer
->len
, max_tx
);
969 if ((ctlr
->flags
& SPI_CONTROLLER_MUST_RX
) &&
971 max_rx
= max(xfer
->len
, max_rx
);
975 tmp
= krealloc(ctlr
->dummy_tx
, max_tx
,
976 GFP_KERNEL
| GFP_DMA
);
979 ctlr
->dummy_tx
= tmp
;
980 memset(tmp
, 0, max_tx
);
984 tmp
= krealloc(ctlr
->dummy_rx
, max_rx
,
985 GFP_KERNEL
| GFP_DMA
);
988 ctlr
->dummy_rx
= tmp
;
991 if (max_tx
|| max_rx
) {
992 list_for_each_entry(xfer
, &msg
->transfers
,
995 xfer
->tx_buf
= ctlr
->dummy_tx
;
997 xfer
->rx_buf
= ctlr
->dummy_rx
;
1002 return __spi_map_msg(ctlr
, msg
);
1006 * spi_transfer_one_message - Default implementation of transfer_one_message()
1008 * This is a standard implementation of transfer_one_message() for
1009 * drivers which implement a transfer_one() operation. It provides
1010 * standard handling of delays and chip select management.
1012 static int spi_transfer_one_message(struct spi_controller
*ctlr
,
1013 struct spi_message
*msg
)
1015 struct spi_transfer
*xfer
;
1016 bool keep_cs
= false;
1018 unsigned long long ms
= 1;
1019 struct spi_statistics
*statm
= &ctlr
->statistics
;
1020 struct spi_statistics
*stats
= &msg
->spi
->statistics
;
1022 spi_set_cs(msg
->spi
, true);
1024 SPI_STATISTICS_INCREMENT_FIELD(statm
, messages
);
1025 SPI_STATISTICS_INCREMENT_FIELD(stats
, messages
);
1027 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
1028 trace_spi_transfer_start(msg
, xfer
);
1030 spi_statistics_add_transfer_stats(statm
, xfer
, ctlr
);
1031 spi_statistics_add_transfer_stats(stats
, xfer
, ctlr
);
1033 if (xfer
->tx_buf
|| xfer
->rx_buf
) {
1034 reinit_completion(&ctlr
->xfer_completion
);
1036 ret
= ctlr
->transfer_one(ctlr
, msg
->spi
, xfer
);
1038 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1040 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1042 dev_err(&msg
->spi
->dev
,
1043 "SPI transfer failed: %d\n", ret
);
1049 ms
= 8LL * 1000LL * xfer
->len
;
1050 do_div(ms
, xfer
->speed_hz
);
1051 ms
+= ms
+ 200; /* some tolerance */
1056 ms
= wait_for_completion_timeout(&ctlr
->xfer_completion
,
1057 msecs_to_jiffies(ms
));
1061 SPI_STATISTICS_INCREMENT_FIELD(statm
,
1063 SPI_STATISTICS_INCREMENT_FIELD(stats
,
1065 dev_err(&msg
->spi
->dev
,
1066 "SPI transfer timed out\n");
1067 msg
->status
= -ETIMEDOUT
;
1071 dev_err(&msg
->spi
->dev
,
1072 "Bufferless transfer has length %u\n",
1076 trace_spi_transfer_stop(msg
, xfer
);
1078 if (msg
->status
!= -EINPROGRESS
)
1081 if (xfer
->delay_usecs
) {
1082 u16 us
= xfer
->delay_usecs
;
1087 usleep_range(us
, us
+ DIV_ROUND_UP(us
, 10));
1090 if (xfer
->cs_change
) {
1091 if (list_is_last(&xfer
->transfer_list
,
1095 spi_set_cs(msg
->spi
, false);
1097 spi_set_cs(msg
->spi
, true);
1101 msg
->actual_length
+= xfer
->len
;
1105 if (ret
!= 0 || !keep_cs
)
1106 spi_set_cs(msg
->spi
, false);
1108 if (msg
->status
== -EINPROGRESS
)
1111 if (msg
->status
&& ctlr
->handle_err
)
1112 ctlr
->handle_err(ctlr
, msg
);
1114 spi_res_release(ctlr
, msg
);
1116 spi_finalize_current_message(ctlr
);
1122 * spi_finalize_current_transfer - report completion of a transfer
1123 * @ctlr: the controller reporting completion
1125 * Called by SPI drivers using the core transfer_one_message()
1126 * implementation to notify it that the current interrupt driven
1127 * transfer has finished and the next one may be scheduled.
1129 void spi_finalize_current_transfer(struct spi_controller
*ctlr
)
1131 complete(&ctlr
->xfer_completion
);
1133 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
1136 * __spi_pump_messages - function which processes spi message queue
1137 * @ctlr: controller to process queue for
1138 * @in_kthread: true if we are in the context of the message pump thread
1140 * This function checks if there is any spi message in the queue that
1141 * needs processing and if so call out to the driver to initialize hardware
1142 * and transfer each message.
1144 * Note that it is called both from the kthread itself and also from
1145 * inside spi_sync(); the queue extraction handling at the top of the
1146 * function should deal with this safely.
1148 static void __spi_pump_messages(struct spi_controller
*ctlr
, bool in_kthread
)
1150 unsigned long flags
;
1151 bool was_busy
= false;
1155 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1157 /* Make sure we are not already running a message */
1158 if (ctlr
->cur_msg
) {
1159 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1163 /* If another context is idling the device then defer */
1165 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1166 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1170 /* Check if the queue is idle */
1171 if (list_empty(&ctlr
->queue
) || !ctlr
->running
) {
1173 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1177 /* Only do teardown in the thread */
1179 kthread_queue_work(&ctlr
->kworker
,
1180 &ctlr
->pump_messages
);
1181 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1186 ctlr
->idling
= true;
1187 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1189 kfree(ctlr
->dummy_rx
);
1190 ctlr
->dummy_rx
= NULL
;
1191 kfree(ctlr
->dummy_tx
);
1192 ctlr
->dummy_tx
= NULL
;
1193 if (ctlr
->unprepare_transfer_hardware
&&
1194 ctlr
->unprepare_transfer_hardware(ctlr
))
1196 "failed to unprepare transfer hardware\n");
1197 if (ctlr
->auto_runtime_pm
) {
1198 pm_runtime_mark_last_busy(ctlr
->dev
.parent
);
1199 pm_runtime_put_autosuspend(ctlr
->dev
.parent
);
1201 trace_spi_controller_idle(ctlr
);
1203 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1204 ctlr
->idling
= false;
1205 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1209 /* Extract head of queue */
1211 list_first_entry(&ctlr
->queue
, struct spi_message
, queue
);
1213 list_del_init(&ctlr
->cur_msg
->queue
);
1218 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1220 mutex_lock(&ctlr
->io_mutex
);
1222 if (!was_busy
&& ctlr
->auto_runtime_pm
) {
1223 ret
= pm_runtime_get_sync(ctlr
->dev
.parent
);
1225 pm_runtime_put_noidle(ctlr
->dev
.parent
);
1226 dev_err(&ctlr
->dev
, "Failed to power device: %d\n",
1228 mutex_unlock(&ctlr
->io_mutex
);
1234 trace_spi_controller_busy(ctlr
);
1236 if (!was_busy
&& ctlr
->prepare_transfer_hardware
) {
1237 ret
= ctlr
->prepare_transfer_hardware(ctlr
);
1240 "failed to prepare transfer hardware\n");
1242 if (ctlr
->auto_runtime_pm
)
1243 pm_runtime_put(ctlr
->dev
.parent
);
1244 mutex_unlock(&ctlr
->io_mutex
);
1249 trace_spi_message_start(ctlr
->cur_msg
);
1251 if (ctlr
->prepare_message
) {
1252 ret
= ctlr
->prepare_message(ctlr
, ctlr
->cur_msg
);
1254 dev_err(&ctlr
->dev
, "failed to prepare message: %d\n",
1256 ctlr
->cur_msg
->status
= ret
;
1257 spi_finalize_current_message(ctlr
);
1260 ctlr
->cur_msg_prepared
= true;
1263 ret
= spi_map_msg(ctlr
, ctlr
->cur_msg
);
1265 ctlr
->cur_msg
->status
= ret
;
1266 spi_finalize_current_message(ctlr
);
1270 ret
= ctlr
->transfer_one_message(ctlr
, ctlr
->cur_msg
);
1273 "failed to transfer one message from queue\n");
1278 mutex_unlock(&ctlr
->io_mutex
);
1280 /* Prod the scheduler in case transfer_one() was busy waiting */
1286 * spi_pump_messages - kthread work function which processes spi message queue
1287 * @work: pointer to kthread work struct contained in the controller struct
1289 static void spi_pump_messages(struct kthread_work
*work
)
1291 struct spi_controller
*ctlr
=
1292 container_of(work
, struct spi_controller
, pump_messages
);
1294 __spi_pump_messages(ctlr
, true);
1297 static int spi_init_queue(struct spi_controller
*ctlr
)
1299 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
1301 ctlr
->running
= false;
1304 kthread_init_worker(&ctlr
->kworker
);
1305 ctlr
->kworker_task
= kthread_run(kthread_worker_fn
, &ctlr
->kworker
,
1306 "%s", dev_name(&ctlr
->dev
));
1307 if (IS_ERR(ctlr
->kworker_task
)) {
1308 dev_err(&ctlr
->dev
, "failed to create message pump task\n");
1309 return PTR_ERR(ctlr
->kworker_task
);
1311 kthread_init_work(&ctlr
->pump_messages
, spi_pump_messages
);
1314 * Controller config will indicate if this controller should run the
1315 * message pump with high (realtime) priority to reduce the transfer
1316 * latency on the bus by minimising the delay between a transfer
1317 * request and the scheduling of the message pump thread. Without this
1318 * setting the message pump thread will remain at default priority.
1321 dev_info(&ctlr
->dev
,
1322 "will run message pump with realtime priority\n");
1323 sched_setscheduler(ctlr
->kworker_task
, SCHED_FIFO
, ¶m
);
1330 * spi_get_next_queued_message() - called by driver to check for queued
1332 * @ctlr: the controller to check for queued messages
1334 * If there are more messages in the queue, the next message is returned from
1337 * Return: the next message in the queue, else NULL if the queue is empty.
1339 struct spi_message
*spi_get_next_queued_message(struct spi_controller
*ctlr
)
1341 struct spi_message
*next
;
1342 unsigned long flags
;
1344 /* get a pointer to the next message, if any */
1345 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1346 next
= list_first_entry_or_null(&ctlr
->queue
, struct spi_message
,
1348 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1352 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1355 * spi_finalize_current_message() - the current message is complete
1356 * @ctlr: the controller to return the message to
1358 * Called by the driver to notify the core that the message in the front of the
1359 * queue is complete and can be removed from the queue.
1361 void spi_finalize_current_message(struct spi_controller
*ctlr
)
1363 struct spi_message
*mesg
;
1364 unsigned long flags
;
1367 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1368 mesg
= ctlr
->cur_msg
;
1369 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1371 spi_unmap_msg(ctlr
, mesg
);
1373 if (ctlr
->cur_msg_prepared
&& ctlr
->unprepare_message
) {
1374 ret
= ctlr
->unprepare_message(ctlr
, mesg
);
1376 dev_err(&ctlr
->dev
, "failed to unprepare message: %d\n",
1381 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1382 ctlr
->cur_msg
= NULL
;
1383 ctlr
->cur_msg_prepared
= false;
1384 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1385 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1387 trace_spi_message_done(mesg
);
1391 mesg
->complete(mesg
->context
);
1393 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1395 static int spi_start_queue(struct spi_controller
*ctlr
)
1397 unsigned long flags
;
1399 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1401 if (ctlr
->running
|| ctlr
->busy
) {
1402 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1406 ctlr
->running
= true;
1407 ctlr
->cur_msg
= NULL
;
1408 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1410 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1415 static int spi_stop_queue(struct spi_controller
*ctlr
)
1417 unsigned long flags
;
1418 unsigned limit
= 500;
1421 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1424 * This is a bit lame, but is optimized for the common execution path.
1425 * A wait_queue on the ctlr->busy could be used, but then the common
1426 * execution path (pump_messages) would be required to call wake_up or
1427 * friends on every SPI message. Do this instead.
1429 while ((!list_empty(&ctlr
->queue
) || ctlr
->busy
) && limit
--) {
1430 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1431 usleep_range(10000, 11000);
1432 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1435 if (!list_empty(&ctlr
->queue
) || ctlr
->busy
)
1438 ctlr
->running
= false;
1440 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1443 dev_warn(&ctlr
->dev
, "could not stop message queue\n");
1449 static int spi_destroy_queue(struct spi_controller
*ctlr
)
1453 ret
= spi_stop_queue(ctlr
);
1456 * kthread_flush_worker will block until all work is done.
1457 * If the reason that stop_queue timed out is that the work will never
1458 * finish, then it does no good to call flush/stop thread, so
1462 dev_err(&ctlr
->dev
, "problem destroying queue\n");
1466 kthread_flush_worker(&ctlr
->kworker
);
1467 kthread_stop(ctlr
->kworker_task
);
1472 static int __spi_queued_transfer(struct spi_device
*spi
,
1473 struct spi_message
*msg
,
1476 struct spi_controller
*ctlr
= spi
->controller
;
1477 unsigned long flags
;
1479 spin_lock_irqsave(&ctlr
->queue_lock
, flags
);
1481 if (!ctlr
->running
) {
1482 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1485 msg
->actual_length
= 0;
1486 msg
->status
= -EINPROGRESS
;
1488 list_add_tail(&msg
->queue
, &ctlr
->queue
);
1489 if (!ctlr
->busy
&& need_pump
)
1490 kthread_queue_work(&ctlr
->kworker
, &ctlr
->pump_messages
);
1492 spin_unlock_irqrestore(&ctlr
->queue_lock
, flags
);
1497 * spi_queued_transfer - transfer function for queued transfers
1498 * @spi: spi device which is requesting transfer
1499 * @msg: spi message which is to handled is queued to driver queue
1501 * Return: zero on success, else a negative error code.
1503 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1505 return __spi_queued_transfer(spi
, msg
, true);
1508 static int spi_controller_initialize_queue(struct spi_controller
*ctlr
)
1512 ctlr
->transfer
= spi_queued_transfer
;
1513 if (!ctlr
->transfer_one_message
)
1514 ctlr
->transfer_one_message
= spi_transfer_one_message
;
1516 /* Initialize and start queue */
1517 ret
= spi_init_queue(ctlr
);
1519 dev_err(&ctlr
->dev
, "problem initializing queue\n");
1520 goto err_init_queue
;
1522 ctlr
->queued
= true;
1523 ret
= spi_start_queue(ctlr
);
1525 dev_err(&ctlr
->dev
, "problem starting queue\n");
1526 goto err_start_queue
;
1532 spi_destroy_queue(ctlr
);
1537 /*-------------------------------------------------------------------------*/
1539 #if defined(CONFIG_OF)
1540 static int of_spi_parse_dt(struct spi_controller
*ctlr
, struct spi_device
*spi
,
1541 struct device_node
*nc
)
1546 /* Mode (clock phase/polarity/etc.) */
1547 if (of_property_read_bool(nc
, "spi-cpha"))
1548 spi
->mode
|= SPI_CPHA
;
1549 if (of_property_read_bool(nc
, "spi-cpol"))
1550 spi
->mode
|= SPI_CPOL
;
1551 if (of_property_read_bool(nc
, "spi-cs-high"))
1552 spi
->mode
|= SPI_CS_HIGH
;
1553 if (of_property_read_bool(nc
, "spi-3wire"))
1554 spi
->mode
|= SPI_3WIRE
;
1555 if (of_property_read_bool(nc
, "spi-lsb-first"))
1556 spi
->mode
|= SPI_LSB_FIRST
;
1558 /* Device DUAL/QUAD mode */
1559 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1564 spi
->mode
|= SPI_TX_DUAL
;
1567 spi
->mode
|= SPI_TX_QUAD
;
1570 dev_warn(&ctlr
->dev
,
1571 "spi-tx-bus-width %d not supported\n",
1577 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1582 spi
->mode
|= SPI_RX_DUAL
;
1585 spi
->mode
|= SPI_RX_QUAD
;
1588 dev_warn(&ctlr
->dev
,
1589 "spi-rx-bus-width %d not supported\n",
1595 if (spi_controller_is_slave(ctlr
)) {
1596 if (strcmp(nc
->name
, "slave")) {
1597 dev_err(&ctlr
->dev
, "%pOF is not called 'slave'\n",
1604 /* Device address */
1605 rc
= of_property_read_u32(nc
, "reg", &value
);
1607 dev_err(&ctlr
->dev
, "%pOF has no valid 'reg' property (%d)\n",
1611 spi
->chip_select
= value
;
1614 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1617 "%pOF has no valid 'spi-max-frequency' property (%d)\n", nc
, rc
);
1620 spi
->max_speed_hz
= value
;
1625 static struct spi_device
*
1626 of_register_spi_device(struct spi_controller
*ctlr
, struct device_node
*nc
)
1628 struct spi_device
*spi
;
1631 /* Alloc an spi_device */
1632 spi
= spi_alloc_device(ctlr
);
1634 dev_err(&ctlr
->dev
, "spi_device alloc error for %pOF\n", nc
);
1639 /* Select device driver */
1640 rc
= of_modalias_node(nc
, spi
->modalias
,
1641 sizeof(spi
->modalias
));
1643 dev_err(&ctlr
->dev
, "cannot find modalias for %pOF\n", nc
);
1647 rc
= of_spi_parse_dt(ctlr
, spi
, nc
);
1651 /* Store a pointer to the node in the device structure */
1653 spi
->dev
.of_node
= nc
;
1655 /* Register the new device */
1656 rc
= spi_add_device(spi
);
1658 dev_err(&ctlr
->dev
, "spi_device register error %pOF\n", nc
);
1659 goto err_of_node_put
;
1672 * of_register_spi_devices() - Register child devices onto the SPI bus
1673 * @ctlr: Pointer to spi_controller device
1675 * Registers an spi_device for each child node of controller node which
1676 * represents a valid SPI slave.
1678 static void of_register_spi_devices(struct spi_controller
*ctlr
)
1680 struct spi_device
*spi
;
1681 struct device_node
*nc
;
1683 if (!ctlr
->dev
.of_node
)
1686 for_each_available_child_of_node(ctlr
->dev
.of_node
, nc
) {
1687 if (of_node_test_and_set_flag(nc
, OF_POPULATED
))
1689 spi
= of_register_spi_device(ctlr
, nc
);
1691 dev_warn(&ctlr
->dev
,
1692 "Failed to create SPI device for %pOF\n", nc
);
1693 of_node_clear_flag(nc
, OF_POPULATED
);
1698 static void of_register_spi_devices(struct spi_controller
*ctlr
) { }
1702 static void acpi_spi_parse_apple_properties(struct spi_device
*spi
)
1704 struct acpi_device
*dev
= ACPI_COMPANION(&spi
->dev
);
1705 const union acpi_object
*obj
;
1707 if (!x86_apple_machine
)
1710 if (!acpi_dev_get_property(dev
, "spiSclkPeriod", ACPI_TYPE_BUFFER
, &obj
)
1711 && obj
->buffer
.length
>= 4)
1712 spi
->max_speed_hz
= NSEC_PER_SEC
/ *(u32
*)obj
->buffer
.pointer
;
1714 if (!acpi_dev_get_property(dev
, "spiWordSize", ACPI_TYPE_BUFFER
, &obj
)
1715 && obj
->buffer
.length
== 8)
1716 spi
->bits_per_word
= *(u64
*)obj
->buffer
.pointer
;
1718 if (!acpi_dev_get_property(dev
, "spiBitOrder", ACPI_TYPE_BUFFER
, &obj
)
1719 && obj
->buffer
.length
== 8 && !*(u64
*)obj
->buffer
.pointer
)
1720 spi
->mode
|= SPI_LSB_FIRST
;
1722 if (!acpi_dev_get_property(dev
, "spiSPO", ACPI_TYPE_BUFFER
, &obj
)
1723 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
1724 spi
->mode
|= SPI_CPOL
;
1726 if (!acpi_dev_get_property(dev
, "spiSPH", ACPI_TYPE_BUFFER
, &obj
)
1727 && obj
->buffer
.length
== 8 && *(u64
*)obj
->buffer
.pointer
)
1728 spi
->mode
|= SPI_CPHA
;
1731 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1733 struct spi_device
*spi
= data
;
1734 struct spi_controller
*ctlr
= spi
->controller
;
1736 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1737 struct acpi_resource_spi_serialbus
*sb
;
1739 sb
= &ares
->data
.spi_serial_bus
;
1740 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1742 * ACPI DeviceSelection numbering is handled by the
1743 * host controller driver in Windows and can vary
1744 * from driver to driver. In Linux we always expect
1745 * 0 .. max - 1 so we need to ask the driver to
1746 * translate between the two schemes.
1748 if (ctlr
->fw_translate_cs
) {
1749 int cs
= ctlr
->fw_translate_cs(ctlr
,
1750 sb
->device_selection
);
1753 spi
->chip_select
= cs
;
1755 spi
->chip_select
= sb
->device_selection
;
1758 spi
->max_speed_hz
= sb
->connection_speed
;
1760 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1761 spi
->mode
|= SPI_CPHA
;
1762 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1763 spi
->mode
|= SPI_CPOL
;
1764 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1765 spi
->mode
|= SPI_CS_HIGH
;
1767 } else if (spi
->irq
< 0) {
1770 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1774 /* Always tell the ACPI core to skip this resource */
1778 static acpi_status
acpi_register_spi_device(struct spi_controller
*ctlr
,
1779 struct acpi_device
*adev
)
1781 struct list_head resource_list
;
1782 struct spi_device
*spi
;
1785 if (acpi_bus_get_status(adev
) || !adev
->status
.present
||
1786 acpi_device_enumerated(adev
))
1789 spi
= spi_alloc_device(ctlr
);
1791 dev_err(&ctlr
->dev
, "failed to allocate SPI device for %s\n",
1792 dev_name(&adev
->dev
));
1793 return AE_NO_MEMORY
;
1796 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1799 INIT_LIST_HEAD(&resource_list
);
1800 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1801 acpi_spi_add_resource
, spi
);
1802 acpi_dev_free_resource_list(&resource_list
);
1804 acpi_spi_parse_apple_properties(spi
);
1806 if (ret
< 0 || !spi
->max_speed_hz
) {
1811 acpi_set_modalias(adev
, acpi_device_hid(adev
), spi
->modalias
,
1812 sizeof(spi
->modalias
));
1815 spi
->irq
= acpi_dev_gpio_irq_get(adev
, 0);
1817 acpi_device_set_enumerated(adev
);
1819 adev
->power
.flags
.ignore_parent
= true;
1820 if (spi_add_device(spi
)) {
1821 adev
->power
.flags
.ignore_parent
= false;
1822 dev_err(&ctlr
->dev
, "failed to add SPI device %s from ACPI\n",
1823 dev_name(&adev
->dev
));
1830 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1831 void *data
, void **return_value
)
1833 struct spi_controller
*ctlr
= data
;
1834 struct acpi_device
*adev
;
1836 if (acpi_bus_get_device(handle
, &adev
))
1839 return acpi_register_spi_device(ctlr
, adev
);
1842 static void acpi_register_spi_devices(struct spi_controller
*ctlr
)
1847 handle
= ACPI_HANDLE(ctlr
->dev
.parent
);
1851 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1852 acpi_spi_add_device
, NULL
, ctlr
, NULL
);
1853 if (ACPI_FAILURE(status
))
1854 dev_warn(&ctlr
->dev
, "failed to enumerate SPI slaves\n");
1857 static inline void acpi_register_spi_devices(struct spi_controller
*ctlr
) {}
1858 #endif /* CONFIG_ACPI */
1860 static void spi_controller_release(struct device
*dev
)
1862 struct spi_controller
*ctlr
;
1864 ctlr
= container_of(dev
, struct spi_controller
, dev
);
1868 static struct class spi_master_class
= {
1869 .name
= "spi_master",
1870 .owner
= THIS_MODULE
,
1871 .dev_release
= spi_controller_release
,
1872 .dev_groups
= spi_master_groups
,
1875 #ifdef CONFIG_SPI_SLAVE
1877 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
1879 * @spi: device used for the current transfer
1881 int spi_slave_abort(struct spi_device
*spi
)
1883 struct spi_controller
*ctlr
= spi
->controller
;
1885 if (spi_controller_is_slave(ctlr
) && ctlr
->slave_abort
)
1886 return ctlr
->slave_abort(ctlr
);
1890 EXPORT_SYMBOL_GPL(spi_slave_abort
);
1892 static int match_true(struct device
*dev
, void *data
)
1897 static ssize_t
spi_slave_show(struct device
*dev
,
1898 struct device_attribute
*attr
, char *buf
)
1900 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
1902 struct device
*child
;
1904 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
1905 return sprintf(buf
, "%s\n",
1906 child
? to_spi_device(child
)->modalias
: NULL
);
1909 static ssize_t
spi_slave_store(struct device
*dev
,
1910 struct device_attribute
*attr
, const char *buf
,
1913 struct spi_controller
*ctlr
= container_of(dev
, struct spi_controller
,
1915 struct spi_device
*spi
;
1916 struct device
*child
;
1920 rc
= sscanf(buf
, "%31s", name
);
1921 if (rc
!= 1 || !name
[0])
1924 child
= device_find_child(&ctlr
->dev
, NULL
, match_true
);
1926 /* Remove registered slave */
1927 device_unregister(child
);
1931 if (strcmp(name
, "(null)")) {
1932 /* Register new slave */
1933 spi
= spi_alloc_device(ctlr
);
1937 strlcpy(spi
->modalias
, name
, sizeof(spi
->modalias
));
1939 rc
= spi_add_device(spi
);
1949 static DEVICE_ATTR(slave
, 0644, spi_slave_show
, spi_slave_store
);
1951 static struct attribute
*spi_slave_attrs
[] = {
1952 &dev_attr_slave
.attr
,
1956 static const struct attribute_group spi_slave_group
= {
1957 .attrs
= spi_slave_attrs
,
1960 static const struct attribute_group
*spi_slave_groups
[] = {
1961 &spi_controller_statistics_group
,
1966 static struct class spi_slave_class
= {
1967 .name
= "spi_slave",
1968 .owner
= THIS_MODULE
,
1969 .dev_release
= spi_controller_release
,
1970 .dev_groups
= spi_slave_groups
,
1973 extern struct class spi_slave_class
; /* dummy */
1977 * __spi_alloc_controller - allocate an SPI master or slave controller
1978 * @dev: the controller, possibly using the platform_bus
1979 * @size: how much zeroed driver-private data to allocate; the pointer to this
1980 * memory is in the driver_data field of the returned device,
1981 * accessible with spi_controller_get_devdata().
1982 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
1983 * slave (true) controller
1984 * Context: can sleep
1986 * This call is used only by SPI controller drivers, which are the
1987 * only ones directly touching chip registers. It's how they allocate
1988 * an spi_controller structure, prior to calling spi_register_controller().
1990 * This must be called from context that can sleep.
1992 * The caller is responsible for assigning the bus number and initializing the
1993 * controller's methods before calling spi_register_controller(); and (after
1994 * errors adding the device) calling spi_controller_put() to prevent a memory
1997 * Return: the SPI controller structure on success, else NULL.
1999 struct spi_controller
*__spi_alloc_controller(struct device
*dev
,
2000 unsigned int size
, bool slave
)
2002 struct spi_controller
*ctlr
;
2007 ctlr
= kzalloc(size
+ sizeof(*ctlr
), GFP_KERNEL
);
2011 device_initialize(&ctlr
->dev
);
2013 ctlr
->num_chipselect
= 1;
2014 ctlr
->slave
= slave
;
2015 if (IS_ENABLED(CONFIG_SPI_SLAVE
) && slave
)
2016 ctlr
->dev
.class = &spi_slave_class
;
2018 ctlr
->dev
.class = &spi_master_class
;
2019 ctlr
->dev
.parent
= dev
;
2020 pm_suspend_ignore_children(&ctlr
->dev
, true);
2021 spi_controller_set_devdata(ctlr
, &ctlr
[1]);
2025 EXPORT_SYMBOL_GPL(__spi_alloc_controller
);
2028 static int of_spi_register_master(struct spi_controller
*ctlr
)
2031 struct device_node
*np
= ctlr
->dev
.of_node
;
2036 nb
= of_gpio_named_count(np
, "cs-gpios");
2037 ctlr
->num_chipselect
= max_t(int, nb
, ctlr
->num_chipselect
);
2039 /* Return error only for an incorrectly formed cs-gpios property */
2040 if (nb
== 0 || nb
== -ENOENT
)
2045 cs
= devm_kzalloc(&ctlr
->dev
, sizeof(int) * ctlr
->num_chipselect
,
2047 ctlr
->cs_gpios
= cs
;
2049 if (!ctlr
->cs_gpios
)
2052 for (i
= 0; i
< ctlr
->num_chipselect
; i
++)
2055 for (i
= 0; i
< nb
; i
++)
2056 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
2061 static int of_spi_register_master(struct spi_controller
*ctlr
)
2068 * spi_register_controller - register SPI master or slave controller
2069 * @ctlr: initialized master, originally from spi_alloc_master() or
2071 * Context: can sleep
2073 * SPI controllers connect to their drivers using some non-SPI bus,
2074 * such as the platform bus. The final stage of probe() in that code
2075 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2077 * SPI controllers use board specific (often SOC specific) bus numbers,
2078 * and board-specific addressing for SPI devices combines those numbers
2079 * with chip select numbers. Since SPI does not directly support dynamic
2080 * device identification, boards need configuration tables telling which
2081 * chip is at which address.
2083 * This must be called from context that can sleep. It returns zero on
2084 * success, else a negative error code (dropping the controller's refcount).
2085 * After a successful return, the caller is responsible for calling
2086 * spi_unregister_controller().
2088 * Return: zero on success, else a negative error code.
2090 int spi_register_controller(struct spi_controller
*ctlr
)
2092 struct device
*dev
= ctlr
->dev
.parent
;
2093 struct boardinfo
*bi
;
2094 int status
= -ENODEV
;
2095 int id
, first_dynamic
;
2100 if (!spi_controller_is_slave(ctlr
)) {
2101 status
= of_spi_register_master(ctlr
);
2106 /* even if it's just one always-selected device, there must
2107 * be at least one chipselect
2109 if (ctlr
->num_chipselect
== 0)
2111 if (ctlr
->bus_num
>= 0) {
2112 /* devices with a fixed bus num must check-in with the num */
2113 mutex_lock(&board_lock
);
2114 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2115 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2116 mutex_unlock(&board_lock
);
2117 if (WARN(id
< 0, "couldn't get idr"))
2118 return id
== -ENOSPC
? -EBUSY
: id
;
2120 } else if (ctlr
->dev
.of_node
) {
2121 /* allocate dynamic bus number using Linux idr */
2122 id
= of_alias_get_id(ctlr
->dev
.of_node
, "spi");
2125 mutex_lock(&board_lock
);
2126 id
= idr_alloc(&spi_master_idr
, ctlr
, ctlr
->bus_num
,
2127 ctlr
->bus_num
+ 1, GFP_KERNEL
);
2128 mutex_unlock(&board_lock
);
2129 if (WARN(id
< 0, "couldn't get idr"))
2130 return id
== -ENOSPC
? -EBUSY
: id
;
2133 if (ctlr
->bus_num
< 0) {
2134 first_dynamic
= of_alias_get_highest_id("spi");
2135 if (first_dynamic
< 0)
2140 mutex_lock(&board_lock
);
2141 id
= idr_alloc(&spi_master_idr
, ctlr
, first_dynamic
,
2143 mutex_unlock(&board_lock
);
2144 if (WARN(id
< 0, "couldn't get idr"))
2148 INIT_LIST_HEAD(&ctlr
->queue
);
2149 spin_lock_init(&ctlr
->queue_lock
);
2150 spin_lock_init(&ctlr
->bus_lock_spinlock
);
2151 mutex_init(&ctlr
->bus_lock_mutex
);
2152 mutex_init(&ctlr
->io_mutex
);
2153 ctlr
->bus_lock_flag
= 0;
2154 init_completion(&ctlr
->xfer_completion
);
2155 if (!ctlr
->max_dma_len
)
2156 ctlr
->max_dma_len
= INT_MAX
;
2158 /* register the device, then userspace will see it.
2159 * registration fails if the bus ID is in use.
2161 dev_set_name(&ctlr
->dev
, "spi%u", ctlr
->bus_num
);
2162 status
= device_add(&ctlr
->dev
);
2165 mutex_lock(&board_lock
);
2166 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2167 mutex_unlock(&board_lock
);
2170 dev_dbg(dev
, "registered %s %s\n",
2171 spi_controller_is_slave(ctlr
) ? "slave" : "master",
2172 dev_name(&ctlr
->dev
));
2174 /* If we're using a queued driver, start the queue */
2176 dev_info(dev
, "controller is unqueued, this is deprecated\n");
2178 status
= spi_controller_initialize_queue(ctlr
);
2180 device_del(&ctlr
->dev
);
2182 mutex_lock(&board_lock
);
2183 idr_remove(&spi_master_idr
, ctlr
->bus_num
);
2184 mutex_unlock(&board_lock
);
2188 /* add statistics */
2189 spin_lock_init(&ctlr
->statistics
.lock
);
2191 mutex_lock(&board_lock
);
2192 list_add_tail(&ctlr
->list
, &spi_controller_list
);
2193 list_for_each_entry(bi
, &board_list
, list
)
2194 spi_match_controller_to_boardinfo(ctlr
, &bi
->board_info
);
2195 mutex_unlock(&board_lock
);
2197 /* Register devices from the device tree and ACPI */
2198 of_register_spi_devices(ctlr
);
2199 acpi_register_spi_devices(ctlr
);
2203 EXPORT_SYMBOL_GPL(spi_register_controller
);
2205 static void devm_spi_unregister(struct device
*dev
, void *res
)
2207 spi_unregister_controller(*(struct spi_controller
**)res
);
2211 * devm_spi_register_controller - register managed SPI master or slave
2213 * @dev: device managing SPI controller
2214 * @ctlr: initialized controller, originally from spi_alloc_master() or
2216 * Context: can sleep
2218 * Register a SPI device as with spi_register_controller() which will
2219 * automatically be unregister
2221 * Return: zero on success, else a negative error code.
2223 int devm_spi_register_controller(struct device
*dev
,
2224 struct spi_controller
*ctlr
)
2226 struct spi_controller
**ptr
;
2229 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
2233 ret
= spi_register_controller(ctlr
);
2236 devres_add(dev
, ptr
);
2243 EXPORT_SYMBOL_GPL(devm_spi_register_controller
);
2245 static int __unregister(struct device
*dev
, void *null
)
2247 spi_unregister_device(to_spi_device(dev
));
2252 * spi_unregister_controller - unregister SPI master or slave controller
2253 * @ctlr: the controller being unregistered
2254 * Context: can sleep
2256 * This call is used only by SPI controller drivers, which are the
2257 * only ones directly touching chip registers.
2259 * This must be called from context that can sleep.
2261 void spi_unregister_controller(struct spi_controller
*ctlr
)
2263 struct spi_controller
*found
;
2264 int id
= ctlr
->bus_num
;
2267 /* First make sure that this controller was ever added */
2268 mutex_lock(&board_lock
);
2269 found
= idr_find(&spi_master_idr
, id
);
2270 mutex_unlock(&board_lock
);
2272 if (spi_destroy_queue(ctlr
))
2273 dev_err(&ctlr
->dev
, "queue remove failed\n");
2275 mutex_lock(&board_lock
);
2276 list_del(&ctlr
->list
);
2277 mutex_unlock(&board_lock
);
2279 dummy
= device_for_each_child(&ctlr
->dev
, NULL
, __unregister
);
2280 device_unregister(&ctlr
->dev
);
2282 mutex_lock(&board_lock
);
2284 idr_remove(&spi_master_idr
, id
);
2285 mutex_unlock(&board_lock
);
2287 EXPORT_SYMBOL_GPL(spi_unregister_controller
);
2289 int spi_controller_suspend(struct spi_controller
*ctlr
)
2293 /* Basically no-ops for non-queued controllers */
2297 ret
= spi_stop_queue(ctlr
);
2299 dev_err(&ctlr
->dev
, "queue stop failed\n");
2303 EXPORT_SYMBOL_GPL(spi_controller_suspend
);
2305 int spi_controller_resume(struct spi_controller
*ctlr
)
2312 ret
= spi_start_queue(ctlr
);
2314 dev_err(&ctlr
->dev
, "queue restart failed\n");
2318 EXPORT_SYMBOL_GPL(spi_controller_resume
);
2320 static int __spi_controller_match(struct device
*dev
, const void *data
)
2322 struct spi_controller
*ctlr
;
2323 const u16
*bus_num
= data
;
2325 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2326 return ctlr
->bus_num
== *bus_num
;
2330 * spi_busnum_to_master - look up master associated with bus_num
2331 * @bus_num: the master's bus number
2332 * Context: can sleep
2334 * This call may be used with devices that are registered after
2335 * arch init time. It returns a refcounted pointer to the relevant
2336 * spi_controller (which the caller must release), or NULL if there is
2337 * no such master registered.
2339 * Return: the SPI master structure on success, else NULL.
2341 struct spi_controller
*spi_busnum_to_master(u16 bus_num
)
2344 struct spi_controller
*ctlr
= NULL
;
2346 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
2347 __spi_controller_match
);
2349 ctlr
= container_of(dev
, struct spi_controller
, dev
);
2350 /* reference got in class_find_device */
2353 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
2355 /*-------------------------------------------------------------------------*/
2357 /* Core methods for SPI resource management */
2360 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2361 * during the processing of a spi_message while using
2363 * @spi: the spi device for which we allocate memory
2364 * @release: the release code to execute for this resource
2365 * @size: size to alloc and return
2366 * @gfp: GFP allocation flags
2368 * Return: the pointer to the allocated data
2370 * This may get enhanced in the future to allocate from a memory pool
2371 * of the @spi_device or @spi_controller to avoid repeated allocations.
2373 void *spi_res_alloc(struct spi_device
*spi
,
2374 spi_res_release_t release
,
2375 size_t size
, gfp_t gfp
)
2377 struct spi_res
*sres
;
2379 sres
= kzalloc(sizeof(*sres
) + size
, gfp
);
2383 INIT_LIST_HEAD(&sres
->entry
);
2384 sres
->release
= release
;
2388 EXPORT_SYMBOL_GPL(spi_res_alloc
);
2391 * spi_res_free - free an spi resource
2392 * @res: pointer to the custom data of a resource
2395 void spi_res_free(void *res
)
2397 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2402 WARN_ON(!list_empty(&sres
->entry
));
2405 EXPORT_SYMBOL_GPL(spi_res_free
);
2408 * spi_res_add - add a spi_res to the spi_message
2409 * @message: the spi message
2410 * @res: the spi_resource
2412 void spi_res_add(struct spi_message
*message
, void *res
)
2414 struct spi_res
*sres
= container_of(res
, struct spi_res
, data
);
2416 WARN_ON(!list_empty(&sres
->entry
));
2417 list_add_tail(&sres
->entry
, &message
->resources
);
2419 EXPORT_SYMBOL_GPL(spi_res_add
);
2422 * spi_res_release - release all spi resources for this message
2423 * @ctlr: the @spi_controller
2424 * @message: the @spi_message
2426 void spi_res_release(struct spi_controller
*ctlr
, struct spi_message
*message
)
2428 struct spi_res
*res
;
2430 while (!list_empty(&message
->resources
)) {
2431 res
= list_last_entry(&message
->resources
,
2432 struct spi_res
, entry
);
2435 res
->release(ctlr
, message
, res
->data
);
2437 list_del(&res
->entry
);
2442 EXPORT_SYMBOL_GPL(spi_res_release
);
2444 /*-------------------------------------------------------------------------*/
2446 /* Core methods for spi_message alterations */
2448 static void __spi_replace_transfers_release(struct spi_controller
*ctlr
,
2449 struct spi_message
*msg
,
2452 struct spi_replaced_transfers
*rxfer
= res
;
2455 /* call extra callback if requested */
2457 rxfer
->release(ctlr
, msg
, res
);
2459 /* insert replaced transfers back into the message */
2460 list_splice(&rxfer
->replaced_transfers
, rxfer
->replaced_after
);
2462 /* remove the formerly inserted entries */
2463 for (i
= 0; i
< rxfer
->inserted
; i
++)
2464 list_del(&rxfer
->inserted_transfers
[i
].transfer_list
);
2468 * spi_replace_transfers - replace transfers with several transfers
2469 * and register change with spi_message.resources
2470 * @msg: the spi_message we work upon
2471 * @xfer_first: the first spi_transfer we want to replace
2472 * @remove: number of transfers to remove
2473 * @insert: the number of transfers we want to insert instead
2474 * @release: extra release code necessary in some circumstances
2475 * @extradatasize: extra data to allocate (with alignment guarantees
2476 * of struct @spi_transfer)
2479 * Returns: pointer to @spi_replaced_transfers,
2480 * PTR_ERR(...) in case of errors.
2482 struct spi_replaced_transfers
*spi_replace_transfers(
2483 struct spi_message
*msg
,
2484 struct spi_transfer
*xfer_first
,
2487 spi_replaced_release_t release
,
2488 size_t extradatasize
,
2491 struct spi_replaced_transfers
*rxfer
;
2492 struct spi_transfer
*xfer
;
2495 /* allocate the structure using spi_res */
2496 rxfer
= spi_res_alloc(msg
->spi
, __spi_replace_transfers_release
,
2497 insert
* sizeof(struct spi_transfer
)
2498 + sizeof(struct spi_replaced_transfers
)
2502 return ERR_PTR(-ENOMEM
);
2504 /* the release code to invoke before running the generic release */
2505 rxfer
->release
= release
;
2507 /* assign extradata */
2510 &rxfer
->inserted_transfers
[insert
];
2512 /* init the replaced_transfers list */
2513 INIT_LIST_HEAD(&rxfer
->replaced_transfers
);
2515 /* assign the list_entry after which we should reinsert
2516 * the @replaced_transfers - it may be spi_message.messages!
2518 rxfer
->replaced_after
= xfer_first
->transfer_list
.prev
;
2520 /* remove the requested number of transfers */
2521 for (i
= 0; i
< remove
; i
++) {
2522 /* if the entry after replaced_after it is msg->transfers
2523 * then we have been requested to remove more transfers
2524 * than are in the list
2526 if (rxfer
->replaced_after
->next
== &msg
->transfers
) {
2527 dev_err(&msg
->spi
->dev
,
2528 "requested to remove more spi_transfers than are available\n");
2529 /* insert replaced transfers back into the message */
2530 list_splice(&rxfer
->replaced_transfers
,
2531 rxfer
->replaced_after
);
2533 /* free the spi_replace_transfer structure */
2534 spi_res_free(rxfer
);
2536 /* and return with an error */
2537 return ERR_PTR(-EINVAL
);
2540 /* remove the entry after replaced_after from list of
2541 * transfers and add it to list of replaced_transfers
2543 list_move_tail(rxfer
->replaced_after
->next
,
2544 &rxfer
->replaced_transfers
);
2547 /* create copy of the given xfer with identical settings
2548 * based on the first transfer to get removed
2550 for (i
= 0; i
< insert
; i
++) {
2551 /* we need to run in reverse order */
2552 xfer
= &rxfer
->inserted_transfers
[insert
- 1 - i
];
2554 /* copy all spi_transfer data */
2555 memcpy(xfer
, xfer_first
, sizeof(*xfer
));
2558 list_add(&xfer
->transfer_list
, rxfer
->replaced_after
);
2560 /* clear cs_change and delay_usecs for all but the last */
2562 xfer
->cs_change
= false;
2563 xfer
->delay_usecs
= 0;
2567 /* set up inserted */
2568 rxfer
->inserted
= insert
;
2570 /* and register it with spi_res/spi_message */
2571 spi_res_add(msg
, rxfer
);
2575 EXPORT_SYMBOL_GPL(spi_replace_transfers
);
2577 static int __spi_split_transfer_maxsize(struct spi_controller
*ctlr
,
2578 struct spi_message
*msg
,
2579 struct spi_transfer
**xferp
,
2583 struct spi_transfer
*xfer
= *xferp
, *xfers
;
2584 struct spi_replaced_transfers
*srt
;
2588 /* warn once about this fact that we are splitting a transfer */
2589 dev_warn_once(&msg
->spi
->dev
,
2590 "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2591 xfer
->len
, maxsize
);
2593 /* calculate how many we have to replace */
2594 count
= DIV_ROUND_UP(xfer
->len
, maxsize
);
2596 /* create replacement */
2597 srt
= spi_replace_transfers(msg
, xfer
, 1, count
, NULL
, 0, gfp
);
2599 return PTR_ERR(srt
);
2600 xfers
= srt
->inserted_transfers
;
2602 /* now handle each of those newly inserted spi_transfers
2603 * note that the replacements spi_transfers all are preset
2604 * to the same values as *xferp, so tx_buf, rx_buf and len
2605 * are all identical (as well as most others)
2606 * so we just have to fix up len and the pointers.
2608 * this also includes support for the depreciated
2609 * spi_message.is_dma_mapped interface
2612 /* the first transfer just needs the length modified, so we
2613 * run it outside the loop
2615 xfers
[0].len
= min_t(size_t, maxsize
, xfer
[0].len
);
2617 /* all the others need rx_buf/tx_buf also set */
2618 for (i
= 1, offset
= maxsize
; i
< count
; offset
+= maxsize
, i
++) {
2619 /* update rx_buf, tx_buf and dma */
2620 if (xfers
[i
].rx_buf
)
2621 xfers
[i
].rx_buf
+= offset
;
2622 if (xfers
[i
].rx_dma
)
2623 xfers
[i
].rx_dma
+= offset
;
2624 if (xfers
[i
].tx_buf
)
2625 xfers
[i
].tx_buf
+= offset
;
2626 if (xfers
[i
].tx_dma
)
2627 xfers
[i
].tx_dma
+= offset
;
2630 xfers
[i
].len
= min(maxsize
, xfers
[i
].len
- offset
);
2633 /* we set up xferp to the last entry we have inserted,
2634 * so that we skip those already split transfers
2636 *xferp
= &xfers
[count
- 1];
2638 /* increment statistics counters */
2639 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
2640 transfers_split_maxsize
);
2641 SPI_STATISTICS_INCREMENT_FIELD(&msg
->spi
->statistics
,
2642 transfers_split_maxsize
);
2648 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2649 * when an individual transfer exceeds a
2651 * @ctlr: the @spi_controller for this transfer
2652 * @msg: the @spi_message to transform
2653 * @maxsize: the maximum when to apply this
2654 * @gfp: GFP allocation flags
2656 * Return: status of transformation
2658 int spi_split_transfers_maxsize(struct spi_controller
*ctlr
,
2659 struct spi_message
*msg
,
2663 struct spi_transfer
*xfer
;
2666 /* iterate over the transfer_list,
2667 * but note that xfer is advanced to the last transfer inserted
2668 * to avoid checking sizes again unnecessarily (also xfer does
2669 * potentiall belong to a different list by the time the
2670 * replacement has happened
2672 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
2673 if (xfer
->len
> maxsize
) {
2674 ret
= __spi_split_transfer_maxsize(ctlr
, msg
, &xfer
,
2683 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize
);
2685 /*-------------------------------------------------------------------------*/
2687 /* Core methods for SPI controller protocol drivers. Some of the
2688 * other core methods are currently defined as inline functions.
2691 static int __spi_validate_bits_per_word(struct spi_controller
*ctlr
,
2694 if (ctlr
->bits_per_word_mask
) {
2695 /* Only 32 bits fit in the mask */
2696 if (bits_per_word
> 32)
2698 if (!(ctlr
->bits_per_word_mask
& SPI_BPW_MASK(bits_per_word
)))
2706 * spi_setup - setup SPI mode and clock rate
2707 * @spi: the device whose settings are being modified
2708 * Context: can sleep, and no requests are queued to the device
2710 * SPI protocol drivers may need to update the transfer mode if the
2711 * device doesn't work with its default. They may likewise need
2712 * to update clock rates or word sizes from initial values. This function
2713 * changes those settings, and must be called from a context that can sleep.
2714 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2715 * effect the next time the device is selected and data is transferred to
2716 * or from it. When this function returns, the spi device is deselected.
2718 * Note that this call will fail if the protocol driver specifies an option
2719 * that the underlying controller or its driver does not support. For
2720 * example, not all hardware supports wire transfers using nine bit words,
2721 * LSB-first wire encoding, or active-high chipselects.
2723 * Return: zero on success, else a negative error code.
2725 int spi_setup(struct spi_device
*spi
)
2727 unsigned bad_bits
, ugly_bits
;
2730 /* check mode to prevent that DUAL and QUAD set at the same time
2732 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
2733 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
2735 "setup: can not select dual and quad at the same time\n");
2738 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2740 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
2741 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
2743 /* help drivers fail *cleanly* when they need options
2744 * that aren't supported with their current controller
2746 bad_bits
= spi
->mode
& ~spi
->controller
->mode_bits
;
2747 ugly_bits
= bad_bits
&
2748 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
);
2751 "setup: ignoring unsupported mode bits %x\n",
2753 spi
->mode
&= ~ugly_bits
;
2754 bad_bits
&= ~ugly_bits
;
2757 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
2762 if (!spi
->bits_per_word
)
2763 spi
->bits_per_word
= 8;
2765 status
= __spi_validate_bits_per_word(spi
->controller
,
2766 spi
->bits_per_word
);
2770 if (!spi
->max_speed_hz
)
2771 spi
->max_speed_hz
= spi
->controller
->max_speed_hz
;
2773 if (spi
->controller
->setup
)
2774 status
= spi
->controller
->setup(spi
);
2776 spi_set_cs(spi
, false);
2778 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2779 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
2780 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
2781 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
2782 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
2783 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
2784 spi
->bits_per_word
, spi
->max_speed_hz
,
2789 EXPORT_SYMBOL_GPL(spi_setup
);
2791 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
2793 struct spi_controller
*ctlr
= spi
->controller
;
2794 struct spi_transfer
*xfer
;
2797 if (list_empty(&message
->transfers
))
2800 /* Half-duplex links include original MicroWire, and ones with
2801 * only one data pin like SPI_3WIRE (switches direction) or where
2802 * either MOSI or MISO is missing. They can also be caused by
2803 * software limitations.
2805 if ((ctlr
->flags
& SPI_CONTROLLER_HALF_DUPLEX
) ||
2806 (spi
->mode
& SPI_3WIRE
)) {
2807 unsigned flags
= ctlr
->flags
;
2809 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2810 if (xfer
->rx_buf
&& xfer
->tx_buf
)
2812 if ((flags
& SPI_CONTROLLER_NO_TX
) && xfer
->tx_buf
)
2814 if ((flags
& SPI_CONTROLLER_NO_RX
) && xfer
->rx_buf
)
2820 * Set transfer bits_per_word and max speed as spi device default if
2821 * it is not set for this transfer.
2822 * Set transfer tx_nbits and rx_nbits as single transfer default
2823 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2825 message
->frame_length
= 0;
2826 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
2827 message
->frame_length
+= xfer
->len
;
2828 if (!xfer
->bits_per_word
)
2829 xfer
->bits_per_word
= spi
->bits_per_word
;
2831 if (!xfer
->speed_hz
)
2832 xfer
->speed_hz
= spi
->max_speed_hz
;
2833 if (!xfer
->speed_hz
)
2834 xfer
->speed_hz
= ctlr
->max_speed_hz
;
2836 if (ctlr
->max_speed_hz
&& xfer
->speed_hz
> ctlr
->max_speed_hz
)
2837 xfer
->speed_hz
= ctlr
->max_speed_hz
;
2839 if (__spi_validate_bits_per_word(ctlr
, xfer
->bits_per_word
))
2843 * SPI transfer length should be multiple of SPI word size
2844 * where SPI word size should be power-of-two multiple
2846 if (xfer
->bits_per_word
<= 8)
2848 else if (xfer
->bits_per_word
<= 16)
2853 /* No partial transfers accepted */
2854 if (xfer
->len
% w_size
)
2857 if (xfer
->speed_hz
&& ctlr
->min_speed_hz
&&
2858 xfer
->speed_hz
< ctlr
->min_speed_hz
)
2861 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
2862 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
2863 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
2864 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
2865 /* check transfer tx/rx_nbits:
2866 * 1. check the value matches one of single, dual and quad
2867 * 2. check tx/rx_nbits match the mode in spi_device
2870 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
2871 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
2872 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
2874 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
2875 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
2877 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
2878 !(spi
->mode
& SPI_TX_QUAD
))
2881 /* check transfer rx_nbits */
2883 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
2884 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
2885 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
2887 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
2888 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
2890 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
2891 !(spi
->mode
& SPI_RX_QUAD
))
2896 message
->status
= -EINPROGRESS
;
2901 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2903 struct spi_controller
*ctlr
= spi
->controller
;
2907 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_async
);
2908 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_async
);
2910 trace_spi_message_submit(message
);
2912 return ctlr
->transfer(spi
, message
);
2916 * spi_async - asynchronous SPI transfer
2917 * @spi: device with which data will be exchanged
2918 * @message: describes the data transfers, including completion callback
2919 * Context: any (irqs may be blocked, etc)
2921 * This call may be used in_irq and other contexts which can't sleep,
2922 * as well as from task contexts which can sleep.
2924 * The completion callback is invoked in a context which can't sleep.
2925 * Before that invocation, the value of message->status is undefined.
2926 * When the callback is issued, message->status holds either zero (to
2927 * indicate complete success) or a negative error code. After that
2928 * callback returns, the driver which issued the transfer request may
2929 * deallocate the associated memory; it's no longer in use by any SPI
2930 * core or controller driver code.
2932 * Note that although all messages to a spi_device are handled in
2933 * FIFO order, messages may go to different devices in other orders.
2934 * Some device might be higher priority, or have various "hard" access
2935 * time requirements, for example.
2937 * On detection of any fault during the transfer, processing of
2938 * the entire message is aborted, and the device is deselected.
2939 * Until returning from the associated message completion callback,
2940 * no other spi_message queued to that device will be processed.
2941 * (This rule applies equally to all the synchronous transfer calls,
2942 * which are wrappers around this core asynchronous primitive.)
2944 * Return: zero on success, else a negative error code.
2946 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
2948 struct spi_controller
*ctlr
= spi
->controller
;
2950 unsigned long flags
;
2952 ret
= __spi_validate(spi
, message
);
2956 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
2958 if (ctlr
->bus_lock_flag
)
2961 ret
= __spi_async(spi
, message
);
2963 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
2967 EXPORT_SYMBOL_GPL(spi_async
);
2970 * spi_async_locked - version of spi_async with exclusive bus usage
2971 * @spi: device with which data will be exchanged
2972 * @message: describes the data transfers, including completion callback
2973 * Context: any (irqs may be blocked, etc)
2975 * This call may be used in_irq and other contexts which can't sleep,
2976 * as well as from task contexts which can sleep.
2978 * The completion callback is invoked in a context which can't sleep.
2979 * Before that invocation, the value of message->status is undefined.
2980 * When the callback is issued, message->status holds either zero (to
2981 * indicate complete success) or a negative error code. After that
2982 * callback returns, the driver which issued the transfer request may
2983 * deallocate the associated memory; it's no longer in use by any SPI
2984 * core or controller driver code.
2986 * Note that although all messages to a spi_device are handled in
2987 * FIFO order, messages may go to different devices in other orders.
2988 * Some device might be higher priority, or have various "hard" access
2989 * time requirements, for example.
2991 * On detection of any fault during the transfer, processing of
2992 * the entire message is aborted, and the device is deselected.
2993 * Until returning from the associated message completion callback,
2994 * no other spi_message queued to that device will be processed.
2995 * (This rule applies equally to all the synchronous transfer calls,
2996 * which are wrappers around this core asynchronous primitive.)
2998 * Return: zero on success, else a negative error code.
3000 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
3002 struct spi_controller
*ctlr
= spi
->controller
;
3004 unsigned long flags
;
3006 ret
= __spi_validate(spi
, message
);
3010 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3012 ret
= __spi_async(spi
, message
);
3014 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3019 EXPORT_SYMBOL_GPL(spi_async_locked
);
3022 int spi_flash_read(struct spi_device
*spi
,
3023 struct spi_flash_read_message
*msg
)
3026 struct spi_controller
*master
= spi
->controller
;
3027 struct device
*rx_dev
= NULL
;
3030 if ((msg
->opcode_nbits
== SPI_NBITS_DUAL
||
3031 msg
->addr_nbits
== SPI_NBITS_DUAL
) &&
3032 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
3034 if ((msg
->opcode_nbits
== SPI_NBITS_QUAD
||
3035 msg
->addr_nbits
== SPI_NBITS_QUAD
) &&
3036 !(spi
->mode
& SPI_TX_QUAD
))
3038 if (msg
->data_nbits
== SPI_NBITS_DUAL
&&
3039 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
3041 if (msg
->data_nbits
== SPI_NBITS_QUAD
&&
3042 !(spi
->mode
& SPI_RX_QUAD
))
3045 if (master
->auto_runtime_pm
) {
3046 ret
= pm_runtime_get_sync(master
->dev
.parent
);
3048 dev_err(&master
->dev
, "Failed to power device: %d\n",
3054 mutex_lock(&master
->bus_lock_mutex
);
3055 mutex_lock(&master
->io_mutex
);
3056 if (master
->dma_rx
&& master
->spi_flash_can_dma(spi
, msg
)) {
3057 rx_dev
= master
->dma_rx
->device
->dev
;
3058 ret
= spi_map_buf(master
, rx_dev
, &msg
->rx_sg
,
3062 msg
->cur_msg_mapped
= true;
3064 ret
= master
->spi_flash_read(spi
, msg
);
3065 if (msg
->cur_msg_mapped
)
3066 spi_unmap_buf(master
, rx_dev
, &msg
->rx_sg
,
3068 mutex_unlock(&master
->io_mutex
);
3069 mutex_unlock(&master
->bus_lock_mutex
);
3071 if (master
->auto_runtime_pm
)
3072 pm_runtime_put(master
->dev
.parent
);
3076 EXPORT_SYMBOL_GPL(spi_flash_read
);
3078 /*-------------------------------------------------------------------------*/
3080 /* Utility methods for SPI protocol drivers, layered on
3081 * top of the core. Some other utility methods are defined as
3085 static void spi_complete(void *arg
)
3090 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3092 DECLARE_COMPLETION_ONSTACK(done
);
3094 struct spi_controller
*ctlr
= spi
->controller
;
3095 unsigned long flags
;
3097 status
= __spi_validate(spi
, message
);
3101 message
->complete
= spi_complete
;
3102 message
->context
= &done
;
3105 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
, spi_sync
);
3106 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
, spi_sync
);
3108 /* If we're not using the legacy transfer method then we will
3109 * try to transfer in the calling context so special case.
3110 * This code would be less tricky if we could remove the
3111 * support for driver implemented message queues.
3113 if (ctlr
->transfer
== spi_queued_transfer
) {
3114 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3116 trace_spi_message_submit(message
);
3118 status
= __spi_queued_transfer(spi
, message
, false);
3120 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3122 status
= spi_async_locked(spi
, message
);
3126 /* Push out the messages in the calling context if we
3129 if (ctlr
->transfer
== spi_queued_transfer
) {
3130 SPI_STATISTICS_INCREMENT_FIELD(&ctlr
->statistics
,
3131 spi_sync_immediate
);
3132 SPI_STATISTICS_INCREMENT_FIELD(&spi
->statistics
,
3133 spi_sync_immediate
);
3134 __spi_pump_messages(ctlr
, false);
3137 wait_for_completion(&done
);
3138 status
= message
->status
;
3140 message
->context
= NULL
;
3145 * spi_sync - blocking/synchronous SPI data transfers
3146 * @spi: device with which data will be exchanged
3147 * @message: describes the data transfers
3148 * Context: can sleep
3150 * This call may only be used from a context that may sleep. The sleep
3151 * is non-interruptible, and has no timeout. Low-overhead controller
3152 * drivers may DMA directly into and out of the message buffers.
3154 * Note that the SPI device's chip select is active during the message,
3155 * and then is normally disabled between messages. Drivers for some
3156 * frequently-used devices may want to minimize costs of selecting a chip,
3157 * by leaving it selected in anticipation that the next message will go
3158 * to the same chip. (That may increase power usage.)
3160 * Also, the caller is guaranteeing that the memory associated with the
3161 * message will not be freed before this call returns.
3163 * Return: zero on success, else a negative error code.
3165 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
3169 mutex_lock(&spi
->controller
->bus_lock_mutex
);
3170 ret
= __spi_sync(spi
, message
);
3171 mutex_unlock(&spi
->controller
->bus_lock_mutex
);
3175 EXPORT_SYMBOL_GPL(spi_sync
);
3178 * spi_sync_locked - version of spi_sync with exclusive bus usage
3179 * @spi: device with which data will be exchanged
3180 * @message: describes the data transfers
3181 * Context: can sleep
3183 * This call may only be used from a context that may sleep. The sleep
3184 * is non-interruptible, and has no timeout. Low-overhead controller
3185 * drivers may DMA directly into and out of the message buffers.
3187 * This call should be used by drivers that require exclusive access to the
3188 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3189 * be released by a spi_bus_unlock call when the exclusive access is over.
3191 * Return: zero on success, else a negative error code.
3193 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
3195 return __spi_sync(spi
, message
);
3197 EXPORT_SYMBOL_GPL(spi_sync_locked
);
3200 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3201 * @ctlr: SPI bus master that should be locked for exclusive bus access
3202 * Context: can sleep
3204 * This call may only be used from a context that may sleep. The sleep
3205 * is non-interruptible, and has no timeout.
3207 * This call should be used by drivers that require exclusive access to the
3208 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3209 * exclusive access is over. Data transfer must be done by spi_sync_locked
3210 * and spi_async_locked calls when the SPI bus lock is held.
3212 * Return: always zero.
3214 int spi_bus_lock(struct spi_controller
*ctlr
)
3216 unsigned long flags
;
3218 mutex_lock(&ctlr
->bus_lock_mutex
);
3220 spin_lock_irqsave(&ctlr
->bus_lock_spinlock
, flags
);
3221 ctlr
->bus_lock_flag
= 1;
3222 spin_unlock_irqrestore(&ctlr
->bus_lock_spinlock
, flags
);
3224 /* mutex remains locked until spi_bus_unlock is called */
3228 EXPORT_SYMBOL_GPL(spi_bus_lock
);
3231 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3232 * @ctlr: SPI bus master that was locked for exclusive bus access
3233 * Context: can sleep
3235 * This call may only be used from a context that may sleep. The sleep
3236 * is non-interruptible, and has no timeout.
3238 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3241 * Return: always zero.
3243 int spi_bus_unlock(struct spi_controller
*ctlr
)
3245 ctlr
->bus_lock_flag
= 0;
3247 mutex_unlock(&ctlr
->bus_lock_mutex
);
3251 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
3253 /* portable code must never pass more than 32 bytes */
3254 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3259 * spi_write_then_read - SPI synchronous write followed by read
3260 * @spi: device with which data will be exchanged
3261 * @txbuf: data to be written (need not be dma-safe)
3262 * @n_tx: size of txbuf, in bytes
3263 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3264 * @n_rx: size of rxbuf, in bytes
3265 * Context: can sleep
3267 * This performs a half duplex MicroWire style transaction with the
3268 * device, sending txbuf and then reading rxbuf. The return value
3269 * is zero for success, else a negative errno status code.
3270 * This call may only be used from a context that may sleep.
3272 * Parameters to this routine are always copied using a small buffer;
3273 * portable code should never use this for more than 32 bytes.
3274 * Performance-sensitive or bulk transfer code should instead use
3275 * spi_{async,sync}() calls with dma-safe buffers.
3277 * Return: zero on success, else a negative error code.
3279 int spi_write_then_read(struct spi_device
*spi
,
3280 const void *txbuf
, unsigned n_tx
,
3281 void *rxbuf
, unsigned n_rx
)
3283 static DEFINE_MUTEX(lock
);
3286 struct spi_message message
;
3287 struct spi_transfer x
[2];
3290 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3291 * copying here, (as a pure convenience thing), but we can
3292 * keep heap costs out of the hot path unless someone else is
3293 * using the pre-allocated buffer or the transfer is too large.
3295 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
3296 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
3297 GFP_KERNEL
| GFP_DMA
);
3304 spi_message_init(&message
);
3305 memset(x
, 0, sizeof(x
));
3308 spi_message_add_tail(&x
[0], &message
);
3312 spi_message_add_tail(&x
[1], &message
);
3315 memcpy(local_buf
, txbuf
, n_tx
);
3316 x
[0].tx_buf
= local_buf
;
3317 x
[1].rx_buf
= local_buf
+ n_tx
;
3320 status
= spi_sync(spi
, &message
);
3322 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
3324 if (x
[0].tx_buf
== buf
)
3325 mutex_unlock(&lock
);
3331 EXPORT_SYMBOL_GPL(spi_write_then_read
);
3333 /*-------------------------------------------------------------------------*/
3335 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3336 static int __spi_of_device_match(struct device
*dev
, void *data
)
3338 return dev
->of_node
== data
;
3341 /* must call put_device() when done with returned spi_device device */
3342 static struct spi_device
*of_find_spi_device_by_node(struct device_node
*node
)
3344 struct device
*dev
= bus_find_device(&spi_bus_type
, NULL
, node
,
3345 __spi_of_device_match
);
3346 return dev
? to_spi_device(dev
) : NULL
;
3349 static int __spi_of_controller_match(struct device
*dev
, const void *data
)
3351 return dev
->of_node
== data
;
3354 /* the spi controllers are not using spi_bus, so we find it with another way */
3355 static struct spi_controller
*of_find_spi_controller_by_node(struct device_node
*node
)
3359 dev
= class_find_device(&spi_master_class
, NULL
, node
,
3360 __spi_of_controller_match
);
3361 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
3362 dev
= class_find_device(&spi_slave_class
, NULL
, node
,
3363 __spi_of_controller_match
);
3367 /* reference got in class_find_device */
3368 return container_of(dev
, struct spi_controller
, dev
);
3371 static int of_spi_notify(struct notifier_block
*nb
, unsigned long action
,
3374 struct of_reconfig_data
*rd
= arg
;
3375 struct spi_controller
*ctlr
;
3376 struct spi_device
*spi
;
3378 switch (of_reconfig_get_state_change(action
, arg
)) {
3379 case OF_RECONFIG_CHANGE_ADD
:
3380 ctlr
= of_find_spi_controller_by_node(rd
->dn
->parent
);
3382 return NOTIFY_OK
; /* not for us */
3384 if (of_node_test_and_set_flag(rd
->dn
, OF_POPULATED
)) {
3385 put_device(&ctlr
->dev
);
3389 spi
= of_register_spi_device(ctlr
, rd
->dn
);
3390 put_device(&ctlr
->dev
);
3393 pr_err("%s: failed to create for '%pOF'\n",
3395 of_node_clear_flag(rd
->dn
, OF_POPULATED
);
3396 return notifier_from_errno(PTR_ERR(spi
));
3400 case OF_RECONFIG_CHANGE_REMOVE
:
3401 /* already depopulated? */
3402 if (!of_node_check_flag(rd
->dn
, OF_POPULATED
))
3405 /* find our device by node */
3406 spi
= of_find_spi_device_by_node(rd
->dn
);
3408 return NOTIFY_OK
; /* no? not meant for us */
3410 /* unregister takes one ref away */
3411 spi_unregister_device(spi
);
3413 /* and put the reference of the find */
3414 put_device(&spi
->dev
);
3421 static struct notifier_block spi_of_notifier
= {
3422 .notifier_call
= of_spi_notify
,
3424 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3425 extern struct notifier_block spi_of_notifier
;
3426 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3428 #if IS_ENABLED(CONFIG_ACPI)
3429 static int spi_acpi_controller_match(struct device
*dev
, const void *data
)
3431 return ACPI_COMPANION(dev
->parent
) == data
;
3434 static int spi_acpi_device_match(struct device
*dev
, void *data
)
3436 return ACPI_COMPANION(dev
) == data
;
3439 static struct spi_controller
*acpi_spi_find_controller_by_adev(struct acpi_device
*adev
)
3443 dev
= class_find_device(&spi_master_class
, NULL
, adev
,
3444 spi_acpi_controller_match
);
3445 if (!dev
&& IS_ENABLED(CONFIG_SPI_SLAVE
))
3446 dev
= class_find_device(&spi_slave_class
, NULL
, adev
,
3447 spi_acpi_controller_match
);
3451 return container_of(dev
, struct spi_controller
, dev
);
3454 static struct spi_device
*acpi_spi_find_device_by_adev(struct acpi_device
*adev
)
3458 dev
= bus_find_device(&spi_bus_type
, NULL
, adev
, spi_acpi_device_match
);
3460 return dev
? to_spi_device(dev
) : NULL
;
3463 static int acpi_spi_notify(struct notifier_block
*nb
, unsigned long value
,
3466 struct acpi_device
*adev
= arg
;
3467 struct spi_controller
*ctlr
;
3468 struct spi_device
*spi
;
3471 case ACPI_RECONFIG_DEVICE_ADD
:
3472 ctlr
= acpi_spi_find_controller_by_adev(adev
->parent
);
3476 acpi_register_spi_device(ctlr
, adev
);
3477 put_device(&ctlr
->dev
);
3479 case ACPI_RECONFIG_DEVICE_REMOVE
:
3480 if (!acpi_device_enumerated(adev
))
3483 spi
= acpi_spi_find_device_by_adev(adev
);
3487 spi_unregister_device(spi
);
3488 put_device(&spi
->dev
);
3495 static struct notifier_block spi_acpi_notifier
= {
3496 .notifier_call
= acpi_spi_notify
,
3499 extern struct notifier_block spi_acpi_notifier
;
3502 static int __init
spi_init(void)
3506 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
3512 status
= bus_register(&spi_bus_type
);
3516 status
= class_register(&spi_master_class
);
3520 if (IS_ENABLED(CONFIG_SPI_SLAVE
)) {
3521 status
= class_register(&spi_slave_class
);
3526 if (IS_ENABLED(CONFIG_OF_DYNAMIC
))
3527 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier
));
3528 if (IS_ENABLED(CONFIG_ACPI
))
3529 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier
));
3534 class_unregister(&spi_master_class
);
3536 bus_unregister(&spi_bus_type
);
3544 /* board_info is normally registered in arch_initcall(),
3545 * but even essential drivers wait till later
3547 * REVISIT only boardinfo really needs static linking. the rest (device and
3548 * driver registration) _could_ be dynamically linked (modular) ... costs
3549 * include needing to have boardinfo data structures be much more public.
3551 postcore_initcall(spi_init
);