2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/nospec.h>
30 #include <linux/backing-dev.h>
31 #include <trace/events/ext4.h>
33 #ifdef CONFIG_EXT4_DEBUG
34 ushort ext4_mballoc_debug __read_mostly
;
36 module_param_named(mballoc_debug
, ext4_mballoc_debug
, ushort
, 0644);
37 MODULE_PARM_DESC(mballoc_debug
, "Debugging level for ext4's mballoc");
42 * - test ext4_ext_search_left() and ext4_ext_search_right()
43 * - search for metadata in few groups
46 * - normalization should take into account whether file is still open
47 * - discard preallocations if no free space left (policy?)
48 * - don't normalize tails
50 * - reservation for superuser
53 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
54 * - track min/max extents in each group for better group selection
55 * - mb_mark_used() may allocate chunk right after splitting buddy
56 * - tree of groups sorted by number of free blocks
61 * The allocation request involve request for multiple number of blocks
62 * near to the goal(block) value specified.
64 * During initialization phase of the allocator we decide to use the
65 * group preallocation or inode preallocation depending on the size of
66 * the file. The size of the file could be the resulting file size we
67 * would have after allocation, or the current file size, which ever
68 * is larger. If the size is less than sbi->s_mb_stream_request we
69 * select to use the group preallocation. The default value of
70 * s_mb_stream_request is 16 blocks. This can also be tuned via
71 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
72 * terms of number of blocks.
74 * The main motivation for having small file use group preallocation is to
75 * ensure that we have small files closer together on the disk.
77 * First stage the allocator looks at the inode prealloc list,
78 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
79 * spaces for this particular inode. The inode prealloc space is
82 * pa_lstart -> the logical start block for this prealloc space
83 * pa_pstart -> the physical start block for this prealloc space
84 * pa_len -> length for this prealloc space (in clusters)
85 * pa_free -> free space available in this prealloc space (in clusters)
87 * The inode preallocation space is used looking at the _logical_ start
88 * block. If only the logical file block falls within the range of prealloc
89 * space we will consume the particular prealloc space. This makes sure that
90 * we have contiguous physical blocks representing the file blocks
92 * The important thing to be noted in case of inode prealloc space is that
93 * we don't modify the values associated to inode prealloc space except
96 * If we are not able to find blocks in the inode prealloc space and if we
97 * have the group allocation flag set then we look at the locality group
98 * prealloc space. These are per CPU prealloc list represented as
100 * ext4_sb_info.s_locality_groups[smp_processor_id()]
102 * The reason for having a per cpu locality group is to reduce the contention
103 * between CPUs. It is possible to get scheduled at this point.
105 * The locality group prealloc space is used looking at whether we have
106 * enough free space (pa_free) within the prealloc space.
108 * If we can't allocate blocks via inode prealloc or/and locality group
109 * prealloc then we look at the buddy cache. The buddy cache is represented
110 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
111 * mapped to the buddy and bitmap information regarding different
112 * groups. The buddy information is attached to buddy cache inode so that
113 * we can access them through the page cache. The information regarding
114 * each group is loaded via ext4_mb_load_buddy. The information involve
115 * block bitmap and buddy information. The information are stored in the
119 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
122 * one block each for bitmap and buddy information. So for each group we
123 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
124 * blocksize) blocks. So it can have information regarding groups_per_page
125 * which is blocks_per_page/2
127 * The buddy cache inode is not stored on disk. The inode is thrown
128 * away when the filesystem is unmounted.
130 * We look for count number of blocks in the buddy cache. If we were able
131 * to locate that many free blocks we return with additional information
132 * regarding rest of the contiguous physical block available
134 * Before allocating blocks via buddy cache we normalize the request
135 * blocks. This ensure we ask for more blocks that we needed. The extra
136 * blocks that we get after allocation is added to the respective prealloc
137 * list. In case of inode preallocation we follow a list of heuristics
138 * based on file size. This can be found in ext4_mb_normalize_request. If
139 * we are doing a group prealloc we try to normalize the request to
140 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
141 * dependent on the cluster size; for non-bigalloc file systems, it is
142 * 512 blocks. This can be tuned via
143 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
144 * terms of number of blocks. If we have mounted the file system with -O
145 * stripe=<value> option the group prealloc request is normalized to the
146 * the smallest multiple of the stripe value (sbi->s_stripe) which is
147 * greater than the default mb_group_prealloc.
149 * The regular allocator (using the buddy cache) supports a few tunables.
151 * /sys/fs/ext4/<partition>/mb_min_to_scan
152 * /sys/fs/ext4/<partition>/mb_max_to_scan
153 * /sys/fs/ext4/<partition>/mb_order2_req
155 * The regular allocator uses buddy scan only if the request len is power of
156 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
157 * value of s_mb_order2_reqs can be tuned via
158 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
159 * stripe size (sbi->s_stripe), we try to search for contiguous block in
160 * stripe size. This should result in better allocation on RAID setups. If
161 * not, we search in the specific group using bitmap for best extents. The
162 * tunable min_to_scan and max_to_scan control the behaviour here.
163 * min_to_scan indicate how long the mballoc __must__ look for a best
164 * extent and max_to_scan indicates how long the mballoc __can__ look for a
165 * best extent in the found extents. Searching for the blocks starts with
166 * the group specified as the goal value in allocation context via
167 * ac_g_ex. Each group is first checked based on the criteria whether it
168 * can be used for allocation. ext4_mb_good_group explains how the groups are
171 * Both the prealloc space are getting populated as above. So for the first
172 * request we will hit the buddy cache which will result in this prealloc
173 * space getting filled. The prealloc space is then later used for the
174 * subsequent request.
178 * mballoc operates on the following data:
180 * - in-core buddy (actually includes buddy and bitmap)
181 * - preallocation descriptors (PAs)
183 * there are two types of preallocations:
185 * assiged to specific inode and can be used for this inode only.
186 * it describes part of inode's space preallocated to specific
187 * physical blocks. any block from that preallocated can be used
188 * independent. the descriptor just tracks number of blocks left
189 * unused. so, before taking some block from descriptor, one must
190 * make sure corresponded logical block isn't allocated yet. this
191 * also means that freeing any block within descriptor's range
192 * must discard all preallocated blocks.
194 * assigned to specific locality group which does not translate to
195 * permanent set of inodes: inode can join and leave group. space
196 * from this type of preallocation can be used for any inode. thus
197 * it's consumed from the beginning to the end.
199 * relation between them can be expressed as:
200 * in-core buddy = on-disk bitmap + preallocation descriptors
202 * this mean blocks mballoc considers used are:
203 * - allocated blocks (persistent)
204 * - preallocated blocks (non-persistent)
206 * consistency in mballoc world means that at any time a block is either
207 * free or used in ALL structures. notice: "any time" should not be read
208 * literally -- time is discrete and delimited by locks.
210 * to keep it simple, we don't use block numbers, instead we count number of
211 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
213 * all operations can be expressed as:
214 * - init buddy: buddy = on-disk + PAs
215 * - new PA: buddy += N; PA = N
216 * - use inode PA: on-disk += N; PA -= N
217 * - discard inode PA buddy -= on-disk - PA; PA = 0
218 * - use locality group PA on-disk += N; PA -= N
219 * - discard locality group PA buddy -= PA; PA = 0
220 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
221 * is used in real operation because we can't know actual used
222 * bits from PA, only from on-disk bitmap
224 * if we follow this strict logic, then all operations above should be atomic.
225 * given some of them can block, we'd have to use something like semaphores
226 * killing performance on high-end SMP hardware. let's try to relax it using
227 * the following knowledge:
228 * 1) if buddy is referenced, it's already initialized
229 * 2) while block is used in buddy and the buddy is referenced,
230 * nobody can re-allocate that block
231 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
232 * bit set and PA claims same block, it's OK. IOW, one can set bit in
233 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
236 * so, now we're building a concurrency table:
239 * blocks for PA are allocated in the buddy, buddy must be referenced
240 * until PA is linked to allocation group to avoid concurrent buddy init
242 * we need to make sure that either on-disk bitmap or PA has uptodate data
243 * given (3) we care that PA-=N operation doesn't interfere with init
245 * the simplest way would be to have buddy initialized by the discard
246 * - use locality group PA
247 * again PA-=N must be serialized with init
248 * - discard locality group PA
249 * the simplest way would be to have buddy initialized by the discard
252 * i_data_sem serializes them
254 * discard process must wait until PA isn't used by another process
255 * - use locality group PA
256 * some mutex should serialize them
257 * - discard locality group PA
258 * discard process must wait until PA isn't used by another process
261 * i_data_sem or another mutex should serializes them
263 * discard process must wait until PA isn't used by another process
264 * - use locality group PA
265 * nothing wrong here -- they're different PAs covering different blocks
266 * - discard locality group PA
267 * discard process must wait until PA isn't used by another process
269 * now we're ready to make few consequences:
270 * - PA is referenced and while it is no discard is possible
271 * - PA is referenced until block isn't marked in on-disk bitmap
272 * - PA changes only after on-disk bitmap
273 * - discard must not compete with init. either init is done before
274 * any discard or they're serialized somehow
275 * - buddy init as sum of on-disk bitmap and PAs is done atomically
277 * a special case when we've used PA to emptiness. no need to modify buddy
278 * in this case, but we should care about concurrent init
283 * Logic in few words:
288 * mark bits in on-disk bitmap
291 * - use preallocation:
292 * find proper PA (per-inode or group)
294 * mark bits in on-disk bitmap
300 * mark bits in on-disk bitmap
303 * - discard preallocations in group:
305 * move them onto local list
306 * load on-disk bitmap
308 * remove PA from object (inode or locality group)
309 * mark free blocks in-core
311 * - discard inode's preallocations:
318 * - bitlock on a group (group)
319 * - object (inode/locality) (object)
330 * - release consumed pa:
335 * - generate in-core bitmap:
339 * - discard all for given object (inode, locality group):
344 * - discard all for given group:
351 static struct kmem_cache
*ext4_pspace_cachep
;
352 static struct kmem_cache
*ext4_ac_cachep
;
353 static struct kmem_cache
*ext4_free_data_cachep
;
355 /* We create slab caches for groupinfo data structures based on the
356 * superblock block size. There will be one per mounted filesystem for
357 * each unique s_blocksize_bits */
358 #define NR_GRPINFO_CACHES 8
359 static struct kmem_cache
*ext4_groupinfo_caches
[NR_GRPINFO_CACHES
];
361 static const char *ext4_groupinfo_slab_names
[NR_GRPINFO_CACHES
] = {
362 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
363 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
364 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
367 static void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
369 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
371 static void ext4_free_data_callback(struct super_block
*sb
,
372 struct ext4_journal_cb_entry
*jce
, int rc
);
374 static inline void *mb_correct_addr_and_bit(int *bit
, void *addr
)
376 #if BITS_PER_LONG == 64
377 *bit
+= ((unsigned long) addr
& 7UL) << 3;
378 addr
= (void *) ((unsigned long) addr
& ~7UL);
379 #elif BITS_PER_LONG == 32
380 *bit
+= ((unsigned long) addr
& 3UL) << 3;
381 addr
= (void *) ((unsigned long) addr
& ~3UL);
383 #error "how many bits you are?!"
388 static inline int mb_test_bit(int bit
, void *addr
)
391 * ext4_test_bit on architecture like powerpc
392 * needs unsigned long aligned address
394 addr
= mb_correct_addr_and_bit(&bit
, addr
);
395 return ext4_test_bit(bit
, addr
);
398 static inline void mb_set_bit(int bit
, void *addr
)
400 addr
= mb_correct_addr_and_bit(&bit
, addr
);
401 ext4_set_bit(bit
, addr
);
404 static inline void mb_clear_bit(int bit
, void *addr
)
406 addr
= mb_correct_addr_and_bit(&bit
, addr
);
407 ext4_clear_bit(bit
, addr
);
410 static inline int mb_test_and_clear_bit(int bit
, void *addr
)
412 addr
= mb_correct_addr_and_bit(&bit
, addr
);
413 return ext4_test_and_clear_bit(bit
, addr
);
416 static inline int mb_find_next_zero_bit(void *addr
, int max
, int start
)
418 int fix
= 0, ret
, tmpmax
;
419 addr
= mb_correct_addr_and_bit(&fix
, addr
);
423 ret
= ext4_find_next_zero_bit(addr
, tmpmax
, start
) - fix
;
429 static inline int mb_find_next_bit(void *addr
, int max
, int start
)
431 int fix
= 0, ret
, tmpmax
;
432 addr
= mb_correct_addr_and_bit(&fix
, addr
);
436 ret
= ext4_find_next_bit(addr
, tmpmax
, start
) - fix
;
442 static void *mb_find_buddy(struct ext4_buddy
*e4b
, int order
, int *max
)
446 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
449 if (order
> e4b
->bd_blkbits
+ 1) {
454 /* at order 0 we see each particular block */
456 *max
= 1 << (e4b
->bd_blkbits
+ 3);
457 return e4b
->bd_bitmap
;
460 bb
= e4b
->bd_buddy
+ EXT4_SB(e4b
->bd_sb
)->s_mb_offsets
[order
];
461 *max
= EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[order
];
467 static void mb_free_blocks_double(struct inode
*inode
, struct ext4_buddy
*e4b
,
468 int first
, int count
)
471 struct super_block
*sb
= e4b
->bd_sb
;
473 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
475 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
476 for (i
= 0; i
< count
; i
++) {
477 if (!mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
)) {
478 ext4_fsblk_t blocknr
;
480 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
481 blocknr
+= EXT4_C2B(EXT4_SB(sb
), first
+ i
);
482 ext4_grp_locked_error(sb
, e4b
->bd_group
,
483 inode
? inode
->i_ino
: 0,
485 "freeing block already freed "
489 mb_clear_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
493 static void mb_mark_used_double(struct ext4_buddy
*e4b
, int first
, int count
)
497 if (unlikely(e4b
->bd_info
->bb_bitmap
== NULL
))
499 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
500 for (i
= 0; i
< count
; i
++) {
501 BUG_ON(mb_test_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
));
502 mb_set_bit(first
+ i
, e4b
->bd_info
->bb_bitmap
);
506 static void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
508 if (memcmp(e4b
->bd_info
->bb_bitmap
, bitmap
, e4b
->bd_sb
->s_blocksize
)) {
509 unsigned char *b1
, *b2
;
511 b1
= (unsigned char *) e4b
->bd_info
->bb_bitmap
;
512 b2
= (unsigned char *) bitmap
;
513 for (i
= 0; i
< e4b
->bd_sb
->s_blocksize
; i
++) {
514 if (b1
[i
] != b2
[i
]) {
515 ext4_msg(e4b
->bd_sb
, KERN_ERR
,
516 "corruption in group %u "
517 "at byte %u(%u): %x in copy != %x "
519 e4b
->bd_group
, i
, i
* 8, b1
[i
], b2
[i
]);
527 static inline void mb_free_blocks_double(struct inode
*inode
,
528 struct ext4_buddy
*e4b
, int first
, int count
)
532 static inline void mb_mark_used_double(struct ext4_buddy
*e4b
,
533 int first
, int count
)
537 static inline void mb_cmp_bitmaps(struct ext4_buddy
*e4b
, void *bitmap
)
543 #ifdef AGGRESSIVE_CHECK
545 #define MB_CHECK_ASSERT(assert) \
549 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
550 function, file, line, # assert); \
555 static int __mb_check_buddy(struct ext4_buddy
*e4b
, char *file
,
556 const char *function
, int line
)
558 struct super_block
*sb
= e4b
->bd_sb
;
559 int order
= e4b
->bd_blkbits
+ 1;
566 struct ext4_group_info
*grp
;
569 struct list_head
*cur
;
574 static int mb_check_counter
;
575 if (mb_check_counter
++ % 100 != 0)
580 buddy
= mb_find_buddy(e4b
, order
, &max
);
581 MB_CHECK_ASSERT(buddy
);
582 buddy2
= mb_find_buddy(e4b
, order
- 1, &max2
);
583 MB_CHECK_ASSERT(buddy2
);
584 MB_CHECK_ASSERT(buddy
!= buddy2
);
585 MB_CHECK_ASSERT(max
* 2 == max2
);
588 for (i
= 0; i
< max
; i
++) {
590 if (mb_test_bit(i
, buddy
)) {
591 /* only single bit in buddy2 may be 1 */
592 if (!mb_test_bit(i
<< 1, buddy2
)) {
594 mb_test_bit((i
<<1)+1, buddy2
));
595 } else if (!mb_test_bit((i
<< 1) + 1, buddy2
)) {
597 mb_test_bit(i
<< 1, buddy2
));
602 /* both bits in buddy2 must be 1 */
603 MB_CHECK_ASSERT(mb_test_bit(i
<< 1, buddy2
));
604 MB_CHECK_ASSERT(mb_test_bit((i
<< 1) + 1, buddy2
));
606 for (j
= 0; j
< (1 << order
); j
++) {
607 k
= (i
* (1 << order
)) + j
;
609 !mb_test_bit(k
, e4b
->bd_bitmap
));
613 MB_CHECK_ASSERT(e4b
->bd_info
->bb_counters
[order
] == count
);
618 buddy
= mb_find_buddy(e4b
, 0, &max
);
619 for (i
= 0; i
< max
; i
++) {
620 if (!mb_test_bit(i
, buddy
)) {
621 MB_CHECK_ASSERT(i
>= e4b
->bd_info
->bb_first_free
);
629 /* check used bits only */
630 for (j
= 0; j
< e4b
->bd_blkbits
+ 1; j
++) {
631 buddy2
= mb_find_buddy(e4b
, j
, &max2
);
633 MB_CHECK_ASSERT(k
< max2
);
634 MB_CHECK_ASSERT(mb_test_bit(k
, buddy2
));
637 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b
->bd_info
));
638 MB_CHECK_ASSERT(e4b
->bd_info
->bb_fragments
== fragments
);
640 grp
= ext4_get_group_info(sb
, e4b
->bd_group
);
641 list_for_each(cur
, &grp
->bb_prealloc_list
) {
642 ext4_group_t groupnr
;
643 struct ext4_prealloc_space
*pa
;
644 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
645 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &groupnr
, &k
);
646 MB_CHECK_ASSERT(groupnr
== e4b
->bd_group
);
647 for (i
= 0; i
< pa
->pa_len
; i
++)
648 MB_CHECK_ASSERT(mb_test_bit(k
+ i
, buddy
));
652 #undef MB_CHECK_ASSERT
653 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
654 __FILE__, __func__, __LINE__)
656 #define mb_check_buddy(e4b)
660 * Divide blocks started from @first with length @len into
661 * smaller chunks with power of 2 blocks.
662 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
663 * then increase bb_counters[] for corresponded chunk size.
665 static void ext4_mb_mark_free_simple(struct super_block
*sb
,
666 void *buddy
, ext4_grpblk_t first
, ext4_grpblk_t len
,
667 struct ext4_group_info
*grp
)
669 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
675 BUG_ON(len
> EXT4_CLUSTERS_PER_GROUP(sb
));
677 border
= 2 << sb
->s_blocksize_bits
;
680 /* find how many blocks can be covered since this position */
681 max
= ffs(first
| border
) - 1;
683 /* find how many blocks of power 2 we need to mark */
690 /* mark multiblock chunks only */
691 grp
->bb_counters
[min
]++;
693 mb_clear_bit(first
>> min
,
694 buddy
+ sbi
->s_mb_offsets
[min
]);
702 * Cache the order of the largest free extent we have available in this block
706 mb_set_largest_free_order(struct super_block
*sb
, struct ext4_group_info
*grp
)
711 grp
->bb_largest_free_order
= -1; /* uninit */
713 bits
= sb
->s_blocksize_bits
+ 1;
714 for (i
= bits
; i
>= 0; i
--) {
715 if (grp
->bb_counters
[i
] > 0) {
716 grp
->bb_largest_free_order
= i
;
722 static noinline_for_stack
723 void ext4_mb_generate_buddy(struct super_block
*sb
,
724 void *buddy
, void *bitmap
, ext4_group_t group
)
726 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
727 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
728 ext4_grpblk_t max
= EXT4_CLUSTERS_PER_GROUP(sb
);
733 unsigned fragments
= 0;
734 unsigned long long period
= get_cycles();
736 /* initialize buddy from bitmap which is aggregation
737 * of on-disk bitmap and preallocations */
738 i
= mb_find_next_zero_bit(bitmap
, max
, 0);
739 grp
->bb_first_free
= i
;
743 i
= mb_find_next_bit(bitmap
, max
, i
);
747 ext4_mb_mark_free_simple(sb
, buddy
, first
, len
, grp
);
749 grp
->bb_counters
[0]++;
751 i
= mb_find_next_zero_bit(bitmap
, max
, i
);
753 grp
->bb_fragments
= fragments
;
755 if (free
!= grp
->bb_free
) {
756 ext4_grp_locked_error(sb
, group
, 0, 0,
757 "block bitmap and bg descriptor "
758 "inconsistent: %u vs %u free clusters",
761 * If we intend to continue, we consider group descriptor
762 * corrupt and update bb_free using bitmap value
765 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp
))
766 percpu_counter_sub(&sbi
->s_freeclusters_counter
,
768 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT
, &grp
->bb_state
);
770 mb_set_largest_free_order(sb
, grp
);
772 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
, &(grp
->bb_state
));
774 period
= get_cycles() - period
;
775 spin_lock(&EXT4_SB(sb
)->s_bal_lock
);
776 EXT4_SB(sb
)->s_mb_buddies_generated
++;
777 EXT4_SB(sb
)->s_mb_generation_time
+= period
;
778 spin_unlock(&EXT4_SB(sb
)->s_bal_lock
);
781 static void mb_regenerate_buddy(struct ext4_buddy
*e4b
)
787 while ((buddy
= mb_find_buddy(e4b
, order
++, &count
))) {
788 ext4_set_bits(buddy
, 0, count
);
790 e4b
->bd_info
->bb_fragments
= 0;
791 memset(e4b
->bd_info
->bb_counters
, 0,
792 sizeof(*e4b
->bd_info
->bb_counters
) *
793 (e4b
->bd_sb
->s_blocksize_bits
+ 2));
795 ext4_mb_generate_buddy(e4b
->bd_sb
, e4b
->bd_buddy
,
796 e4b
->bd_bitmap
, e4b
->bd_group
);
799 /* The buddy information is attached the buddy cache inode
800 * for convenience. The information regarding each group
801 * is loaded via ext4_mb_load_buddy. The information involve
802 * block bitmap and buddy information. The information are
803 * stored in the inode as
806 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
809 * one block each for bitmap and buddy information.
810 * So for each group we take up 2 blocks. A page can
811 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
812 * So it can have information regarding groups_per_page which
813 * is blocks_per_page/2
815 * Locking note: This routine takes the block group lock of all groups
816 * for this page; do not hold this lock when calling this routine!
819 static int ext4_mb_init_cache(struct page
*page
, char *incore
, gfp_t gfp
)
821 ext4_group_t ngroups
;
827 ext4_group_t first_group
, group
;
829 struct super_block
*sb
;
830 struct buffer_head
*bhs
;
831 struct buffer_head
**bh
= NULL
;
835 struct ext4_group_info
*grinfo
;
837 mb_debug(1, "init page %lu\n", page
->index
);
839 inode
= page
->mapping
->host
;
841 ngroups
= ext4_get_groups_count(sb
);
842 blocksize
= i_blocksize(inode
);
843 blocks_per_page
= PAGE_SIZE
/ blocksize
;
845 groups_per_page
= blocks_per_page
>> 1;
846 if (groups_per_page
== 0)
849 /* allocate buffer_heads to read bitmaps */
850 if (groups_per_page
> 1) {
851 i
= sizeof(struct buffer_head
*) * groups_per_page
;
852 bh
= kzalloc(i
, gfp
);
860 first_group
= page
->index
* blocks_per_page
/ 2;
862 /* read all groups the page covers into the cache */
863 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
864 if (group
>= ngroups
)
867 grinfo
= ext4_get_group_info(sb
, group
);
869 * If page is uptodate then we came here after online resize
870 * which added some new uninitialized group info structs, so
871 * we must skip all initialized uptodate buddies on the page,
872 * which may be currently in use by an allocating task.
874 if (PageUptodate(page
) && !EXT4_MB_GRP_NEED_INIT(grinfo
)) {
878 bh
[i
] = ext4_read_block_bitmap_nowait(sb
, group
);
880 err
= PTR_ERR(bh
[i
]);
884 mb_debug(1, "read bitmap for group %u\n", group
);
887 /* wait for I/O completion */
888 for (i
= 0, group
= first_group
; i
< groups_per_page
; i
++, group
++) {
893 err2
= ext4_wait_block_bitmap(sb
, group
, bh
[i
]);
898 first_block
= page
->index
* blocks_per_page
;
899 for (i
= 0; i
< blocks_per_page
; i
++) {
900 group
= (first_block
+ i
) >> 1;
901 if (group
>= ngroups
)
904 if (!bh
[group
- first_group
])
905 /* skip initialized uptodate buddy */
908 if (!buffer_verified(bh
[group
- first_group
]))
909 /* Skip faulty bitmaps */
914 * data carry information regarding this
915 * particular group in the format specified
919 data
= page_address(page
) + (i
* blocksize
);
920 bitmap
= bh
[group
- first_group
]->b_data
;
923 * We place the buddy block and bitmap block
926 if ((first_block
+ i
) & 1) {
927 /* this is block of buddy */
928 BUG_ON(incore
== NULL
);
929 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
930 group
, page
->index
, i
* blocksize
);
931 trace_ext4_mb_buddy_bitmap_load(sb
, group
);
932 grinfo
= ext4_get_group_info(sb
, group
);
933 grinfo
->bb_fragments
= 0;
934 memset(grinfo
->bb_counters
, 0,
935 sizeof(*grinfo
->bb_counters
) *
936 (sb
->s_blocksize_bits
+2));
938 * incore got set to the group block bitmap below
940 ext4_lock_group(sb
, group
);
942 memset(data
, 0xff, blocksize
);
943 ext4_mb_generate_buddy(sb
, data
, incore
, group
);
944 ext4_unlock_group(sb
, group
);
947 /* this is block of bitmap */
948 BUG_ON(incore
!= NULL
);
949 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
950 group
, page
->index
, i
* blocksize
);
951 trace_ext4_mb_bitmap_load(sb
, group
);
953 /* see comments in ext4_mb_put_pa() */
954 ext4_lock_group(sb
, group
);
955 memcpy(data
, bitmap
, blocksize
);
957 /* mark all preallocated blks used in in-core bitmap */
958 ext4_mb_generate_from_pa(sb
, data
, group
);
959 ext4_mb_generate_from_freelist(sb
, data
, group
);
960 ext4_unlock_group(sb
, group
);
962 /* set incore so that the buddy information can be
963 * generated using this
968 SetPageUptodate(page
);
972 for (i
= 0; i
< groups_per_page
; i
++)
981 * Lock the buddy and bitmap pages. This make sure other parallel init_group
982 * on the same buddy page doesn't happen whild holding the buddy page lock.
983 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
984 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
986 static int ext4_mb_get_buddy_page_lock(struct super_block
*sb
,
987 ext4_group_t group
, struct ext4_buddy
*e4b
, gfp_t gfp
)
989 struct inode
*inode
= EXT4_SB(sb
)->s_buddy_cache
;
990 int block
, pnum
, poff
;
994 e4b
->bd_buddy_page
= NULL
;
995 e4b
->bd_bitmap_page
= NULL
;
997 blocks_per_page
= PAGE_SIZE
/ sb
->s_blocksize
;
999 * the buddy cache inode stores the block bitmap
1000 * and buddy information in consecutive blocks.
1001 * So for each group we need two blocks.
1004 pnum
= block
/ blocks_per_page
;
1005 poff
= block
% blocks_per_page
;
1006 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1009 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1010 e4b
->bd_bitmap_page
= page
;
1011 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1013 if (blocks_per_page
>= 2) {
1014 /* buddy and bitmap are on the same page */
1019 pnum
= block
/ blocks_per_page
;
1020 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1023 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1024 e4b
->bd_buddy_page
= page
;
1028 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy
*e4b
)
1030 if (e4b
->bd_bitmap_page
) {
1031 unlock_page(e4b
->bd_bitmap_page
);
1032 put_page(e4b
->bd_bitmap_page
);
1034 if (e4b
->bd_buddy_page
) {
1035 unlock_page(e4b
->bd_buddy_page
);
1036 put_page(e4b
->bd_buddy_page
);
1041 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1042 * block group lock of all groups for this page; do not hold the BG lock when
1043 * calling this routine!
1045 static noinline_for_stack
1046 int ext4_mb_init_group(struct super_block
*sb
, ext4_group_t group
, gfp_t gfp
)
1049 struct ext4_group_info
*this_grp
;
1050 struct ext4_buddy e4b
;
1055 mb_debug(1, "init group %u\n", group
);
1056 this_grp
= ext4_get_group_info(sb
, group
);
1058 * This ensures that we don't reinit the buddy cache
1059 * page which map to the group from which we are already
1060 * allocating. If we are looking at the buddy cache we would
1061 * have taken a reference using ext4_mb_load_buddy and that
1062 * would have pinned buddy page to page cache.
1063 * The call to ext4_mb_get_buddy_page_lock will mark the
1066 ret
= ext4_mb_get_buddy_page_lock(sb
, group
, &e4b
, gfp
);
1067 if (ret
|| !EXT4_MB_GRP_NEED_INIT(this_grp
)) {
1069 * somebody initialized the group
1070 * return without doing anything
1075 page
= e4b
.bd_bitmap_page
;
1076 ret
= ext4_mb_init_cache(page
, NULL
, gfp
);
1079 if (!PageUptodate(page
)) {
1084 if (e4b
.bd_buddy_page
== NULL
) {
1086 * If both the bitmap and buddy are in
1087 * the same page we don't need to force
1093 /* init buddy cache */
1094 page
= e4b
.bd_buddy_page
;
1095 ret
= ext4_mb_init_cache(page
, e4b
.bd_bitmap
, gfp
);
1098 if (!PageUptodate(page
)) {
1103 ext4_mb_put_buddy_page_lock(&e4b
);
1108 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1109 * block group lock of all groups for this page; do not hold the BG lock when
1110 * calling this routine!
1112 static noinline_for_stack
int
1113 ext4_mb_load_buddy_gfp(struct super_block
*sb
, ext4_group_t group
,
1114 struct ext4_buddy
*e4b
, gfp_t gfp
)
1116 int blocks_per_page
;
1122 struct ext4_group_info
*grp
;
1123 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1124 struct inode
*inode
= sbi
->s_buddy_cache
;
1127 mb_debug(1, "load group %u\n", group
);
1129 blocks_per_page
= PAGE_SIZE
/ sb
->s_blocksize
;
1130 grp
= ext4_get_group_info(sb
, group
);
1132 e4b
->bd_blkbits
= sb
->s_blocksize_bits
;
1135 e4b
->bd_group
= group
;
1136 e4b
->bd_buddy_page
= NULL
;
1137 e4b
->bd_bitmap_page
= NULL
;
1139 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
1141 * we need full data about the group
1142 * to make a good selection
1144 ret
= ext4_mb_init_group(sb
, group
, gfp
);
1150 * the buddy cache inode stores the block bitmap
1151 * and buddy information in consecutive blocks.
1152 * So for each group we need two blocks.
1155 pnum
= block
/ blocks_per_page
;
1156 poff
= block
% blocks_per_page
;
1158 /* we could use find_or_create_page(), but it locks page
1159 * what we'd like to avoid in fast path ... */
1160 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1161 if (page
== NULL
|| !PageUptodate(page
)) {
1164 * drop the page reference and try
1165 * to get the page with lock. If we
1166 * are not uptodate that implies
1167 * somebody just created the page but
1168 * is yet to initialize the same. So
1169 * wait for it to initialize.
1172 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1174 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1175 if (!PageUptodate(page
)) {
1176 ret
= ext4_mb_init_cache(page
, NULL
, gfp
);
1181 mb_cmp_bitmaps(e4b
, page_address(page
) +
1182 (poff
* sb
->s_blocksize
));
1191 if (!PageUptodate(page
)) {
1196 /* Pages marked accessed already */
1197 e4b
->bd_bitmap_page
= page
;
1198 e4b
->bd_bitmap
= page_address(page
) + (poff
* sb
->s_blocksize
);
1201 pnum
= block
/ blocks_per_page
;
1202 poff
= block
% blocks_per_page
;
1204 page
= find_get_page_flags(inode
->i_mapping
, pnum
, FGP_ACCESSED
);
1205 if (page
== NULL
|| !PageUptodate(page
)) {
1208 page
= find_or_create_page(inode
->i_mapping
, pnum
, gfp
);
1210 BUG_ON(page
->mapping
!= inode
->i_mapping
);
1211 if (!PageUptodate(page
)) {
1212 ret
= ext4_mb_init_cache(page
, e4b
->bd_bitmap
,
1226 if (!PageUptodate(page
)) {
1231 /* Pages marked accessed already */
1232 e4b
->bd_buddy_page
= page
;
1233 e4b
->bd_buddy
= page_address(page
) + (poff
* sb
->s_blocksize
);
1235 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
1236 BUG_ON(e4b
->bd_buddy_page
== NULL
);
1243 if (e4b
->bd_bitmap_page
)
1244 put_page(e4b
->bd_bitmap_page
);
1245 if (e4b
->bd_buddy_page
)
1246 put_page(e4b
->bd_buddy_page
);
1247 e4b
->bd_buddy
= NULL
;
1248 e4b
->bd_bitmap
= NULL
;
1252 static int ext4_mb_load_buddy(struct super_block
*sb
, ext4_group_t group
,
1253 struct ext4_buddy
*e4b
)
1255 return ext4_mb_load_buddy_gfp(sb
, group
, e4b
, GFP_NOFS
);
1258 static void ext4_mb_unload_buddy(struct ext4_buddy
*e4b
)
1260 if (e4b
->bd_bitmap_page
)
1261 put_page(e4b
->bd_bitmap_page
);
1262 if (e4b
->bd_buddy_page
)
1263 put_page(e4b
->bd_buddy_page
);
1267 static int mb_find_order_for_block(struct ext4_buddy
*e4b
, int block
)
1270 int bb_incr
= 1 << (e4b
->bd_blkbits
- 1);
1273 BUG_ON(e4b
->bd_bitmap
== e4b
->bd_buddy
);
1274 BUG_ON(block
>= (1 << (e4b
->bd_blkbits
+ 3)));
1277 while (order
<= e4b
->bd_blkbits
+ 1) {
1279 if (!mb_test_bit(block
, bb
)) {
1280 /* this block is part of buddy of order 'order' */
1290 static void mb_clear_bits(void *bm
, int cur
, int len
)
1296 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1297 /* fast path: clear whole word at once */
1298 addr
= bm
+ (cur
>> 3);
1303 mb_clear_bit(cur
, bm
);
1308 /* clear bits in given range
1309 * will return first found zero bit if any, -1 otherwise
1311 static int mb_test_and_clear_bits(void *bm
, int cur
, int len
)
1318 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1319 /* fast path: clear whole word at once */
1320 addr
= bm
+ (cur
>> 3);
1321 if (*addr
!= (__u32
)(-1) && zero_bit
== -1)
1322 zero_bit
= cur
+ mb_find_next_zero_bit(addr
, 32, 0);
1327 if (!mb_test_and_clear_bit(cur
, bm
) && zero_bit
== -1)
1335 void ext4_set_bits(void *bm
, int cur
, int len
)
1341 if ((cur
& 31) == 0 && (len
- cur
) >= 32) {
1342 /* fast path: set whole word at once */
1343 addr
= bm
+ (cur
>> 3);
1348 mb_set_bit(cur
, bm
);
1354 * _________________________________________________________________ */
1356 static inline int mb_buddy_adjust_border(int* bit
, void* bitmap
, int side
)
1358 if (mb_test_bit(*bit
+ side
, bitmap
)) {
1359 mb_clear_bit(*bit
, bitmap
);
1365 mb_set_bit(*bit
, bitmap
);
1370 static void mb_buddy_mark_free(struct ext4_buddy
*e4b
, int first
, int last
)
1374 void *buddy
= mb_find_buddy(e4b
, order
, &max
);
1379 /* Bits in range [first; last] are known to be set since
1380 * corresponding blocks were allocated. Bits in range
1381 * (first; last) will stay set because they form buddies on
1382 * upper layer. We just deal with borders if they don't
1383 * align with upper layer and then go up.
1384 * Releasing entire group is all about clearing
1385 * single bit of highest order buddy.
1389 * ---------------------------------
1391 * ---------------------------------
1392 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1393 * ---------------------------------
1395 * \_____________________/
1397 * Neither [1] nor [6] is aligned to above layer.
1398 * Left neighbour [0] is free, so mark it busy,
1399 * decrease bb_counters and extend range to
1401 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1402 * mark [6] free, increase bb_counters and shrink range to
1404 * Then shift range to [0; 2], go up and do the same.
1409 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&first
, buddy
, -1);
1411 e4b
->bd_info
->bb_counters
[order
] += mb_buddy_adjust_border(&last
, buddy
, 1);
1416 if (first
== last
|| !(buddy2
= mb_find_buddy(e4b
, order
, &max
))) {
1417 mb_clear_bits(buddy
, first
, last
- first
+ 1);
1418 e4b
->bd_info
->bb_counters
[order
- 1] += last
- first
+ 1;
1427 static void mb_free_blocks(struct inode
*inode
, struct ext4_buddy
*e4b
,
1428 int first
, int count
)
1430 int left_is_free
= 0;
1431 int right_is_free
= 0;
1433 int last
= first
+ count
- 1;
1434 struct super_block
*sb
= e4b
->bd_sb
;
1436 if (WARN_ON(count
== 0))
1438 BUG_ON(last
>= (sb
->s_blocksize
<< 3));
1439 assert_spin_locked(ext4_group_lock_ptr(sb
, e4b
->bd_group
));
1440 /* Don't bother if the block group is corrupt. */
1441 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
)))
1444 mb_check_buddy(e4b
);
1445 mb_free_blocks_double(inode
, e4b
, first
, count
);
1447 e4b
->bd_info
->bb_free
+= count
;
1448 if (first
< e4b
->bd_info
->bb_first_free
)
1449 e4b
->bd_info
->bb_first_free
= first
;
1451 /* access memory sequentially: check left neighbour,
1452 * clear range and then check right neighbour
1455 left_is_free
= !mb_test_bit(first
- 1, e4b
->bd_bitmap
);
1456 block
= mb_test_and_clear_bits(e4b
->bd_bitmap
, first
, count
);
1457 if (last
+ 1 < EXT4_SB(sb
)->s_mb_maxs
[0])
1458 right_is_free
= !mb_test_bit(last
+ 1, e4b
->bd_bitmap
);
1460 if (unlikely(block
!= -1)) {
1461 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
1462 ext4_fsblk_t blocknr
;
1464 blocknr
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
1465 blocknr
+= EXT4_C2B(EXT4_SB(sb
), block
);
1466 ext4_grp_locked_error(sb
, e4b
->bd_group
,
1467 inode
? inode
->i_ino
: 0,
1469 "freeing already freed block "
1470 "(bit %u); block bitmap corrupt.",
1472 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))
1473 percpu_counter_sub(&sbi
->s_freeclusters_counter
,
1474 e4b
->bd_info
->bb_free
);
1475 /* Mark the block group as corrupt. */
1476 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT
,
1477 &e4b
->bd_info
->bb_state
);
1478 mb_regenerate_buddy(e4b
);
1482 /* let's maintain fragments counter */
1483 if (left_is_free
&& right_is_free
)
1484 e4b
->bd_info
->bb_fragments
--;
1485 else if (!left_is_free
&& !right_is_free
)
1486 e4b
->bd_info
->bb_fragments
++;
1488 /* buddy[0] == bd_bitmap is a special case, so handle
1489 * it right away and let mb_buddy_mark_free stay free of
1490 * zero order checks.
1491 * Check if neighbours are to be coaleasced,
1492 * adjust bitmap bb_counters and borders appropriately.
1495 first
+= !left_is_free
;
1496 e4b
->bd_info
->bb_counters
[0] += left_is_free
? -1 : 1;
1499 last
-= !right_is_free
;
1500 e4b
->bd_info
->bb_counters
[0] += right_is_free
? -1 : 1;
1504 mb_buddy_mark_free(e4b
, first
>> 1, last
>> 1);
1507 mb_set_largest_free_order(sb
, e4b
->bd_info
);
1508 mb_check_buddy(e4b
);
1511 static int mb_find_extent(struct ext4_buddy
*e4b
, int block
,
1512 int needed
, struct ext4_free_extent
*ex
)
1518 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1521 buddy
= mb_find_buddy(e4b
, 0, &max
);
1522 BUG_ON(buddy
== NULL
);
1523 BUG_ON(block
>= max
);
1524 if (mb_test_bit(block
, buddy
)) {
1531 /* find actual order */
1532 order
= mb_find_order_for_block(e4b
, block
);
1533 block
= block
>> order
;
1535 ex
->fe_len
= 1 << order
;
1536 ex
->fe_start
= block
<< order
;
1537 ex
->fe_group
= e4b
->bd_group
;
1539 /* calc difference from given start */
1540 next
= next
- ex
->fe_start
;
1542 ex
->fe_start
+= next
;
1544 while (needed
> ex
->fe_len
&&
1545 mb_find_buddy(e4b
, order
, &max
)) {
1547 if (block
+ 1 >= max
)
1550 next
= (block
+ 1) * (1 << order
);
1551 if (mb_test_bit(next
, e4b
->bd_bitmap
))
1554 order
= mb_find_order_for_block(e4b
, next
);
1556 block
= next
>> order
;
1557 ex
->fe_len
+= 1 << order
;
1560 BUG_ON(ex
->fe_start
+ ex
->fe_len
> (1 << (e4b
->bd_blkbits
+ 3)));
1564 static int mb_mark_used(struct ext4_buddy
*e4b
, struct ext4_free_extent
*ex
)
1570 int start
= ex
->fe_start
;
1571 int len
= ex
->fe_len
;
1576 BUG_ON(start
+ len
> (e4b
->bd_sb
->s_blocksize
<< 3));
1577 BUG_ON(e4b
->bd_group
!= ex
->fe_group
);
1578 assert_spin_locked(ext4_group_lock_ptr(e4b
->bd_sb
, e4b
->bd_group
));
1579 mb_check_buddy(e4b
);
1580 mb_mark_used_double(e4b
, start
, len
);
1582 e4b
->bd_info
->bb_free
-= len
;
1583 if (e4b
->bd_info
->bb_first_free
== start
)
1584 e4b
->bd_info
->bb_first_free
+= len
;
1586 /* let's maintain fragments counter */
1588 mlen
= !mb_test_bit(start
- 1, e4b
->bd_bitmap
);
1589 if (start
+ len
< EXT4_SB(e4b
->bd_sb
)->s_mb_maxs
[0])
1590 max
= !mb_test_bit(start
+ len
, e4b
->bd_bitmap
);
1592 e4b
->bd_info
->bb_fragments
++;
1593 else if (!mlen
&& !max
)
1594 e4b
->bd_info
->bb_fragments
--;
1596 /* let's maintain buddy itself */
1598 ord
= mb_find_order_for_block(e4b
, start
);
1600 if (((start
>> ord
) << ord
) == start
&& len
>= (1 << ord
)) {
1601 /* the whole chunk may be allocated at once! */
1603 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1604 BUG_ON((start
>> ord
) >= max
);
1605 mb_set_bit(start
>> ord
, buddy
);
1606 e4b
->bd_info
->bb_counters
[ord
]--;
1613 /* store for history */
1615 ret
= len
| (ord
<< 16);
1617 /* we have to split large buddy */
1619 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1620 mb_set_bit(start
>> ord
, buddy
);
1621 e4b
->bd_info
->bb_counters
[ord
]--;
1624 cur
= (start
>> ord
) & ~1U;
1625 buddy
= mb_find_buddy(e4b
, ord
, &max
);
1626 mb_clear_bit(cur
, buddy
);
1627 mb_clear_bit(cur
+ 1, buddy
);
1628 e4b
->bd_info
->bb_counters
[ord
]++;
1629 e4b
->bd_info
->bb_counters
[ord
]++;
1631 mb_set_largest_free_order(e4b
->bd_sb
, e4b
->bd_info
);
1633 ext4_set_bits(e4b
->bd_bitmap
, ex
->fe_start
, len0
);
1634 mb_check_buddy(e4b
);
1640 * Must be called under group lock!
1642 static void ext4_mb_use_best_found(struct ext4_allocation_context
*ac
,
1643 struct ext4_buddy
*e4b
)
1645 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1648 BUG_ON(ac
->ac_b_ex
.fe_group
!= e4b
->bd_group
);
1649 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
1651 ac
->ac_b_ex
.fe_len
= min(ac
->ac_b_ex
.fe_len
, ac
->ac_g_ex
.fe_len
);
1652 ac
->ac_b_ex
.fe_logical
= ac
->ac_g_ex
.fe_logical
;
1653 ret
= mb_mark_used(e4b
, &ac
->ac_b_ex
);
1655 /* preallocation can change ac_b_ex, thus we store actually
1656 * allocated blocks for history */
1657 ac
->ac_f_ex
= ac
->ac_b_ex
;
1659 ac
->ac_status
= AC_STATUS_FOUND
;
1660 ac
->ac_tail
= ret
& 0xffff;
1661 ac
->ac_buddy
= ret
>> 16;
1664 * take the page reference. We want the page to be pinned
1665 * so that we don't get a ext4_mb_init_cache_call for this
1666 * group until we update the bitmap. That would mean we
1667 * double allocate blocks. The reference is dropped
1668 * in ext4_mb_release_context
1670 ac
->ac_bitmap_page
= e4b
->bd_bitmap_page
;
1671 get_page(ac
->ac_bitmap_page
);
1672 ac
->ac_buddy_page
= e4b
->bd_buddy_page
;
1673 get_page(ac
->ac_buddy_page
);
1674 /* store last allocated for subsequent stream allocation */
1675 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
1676 spin_lock(&sbi
->s_md_lock
);
1677 sbi
->s_mb_last_group
= ac
->ac_f_ex
.fe_group
;
1678 sbi
->s_mb_last_start
= ac
->ac_f_ex
.fe_start
;
1679 spin_unlock(&sbi
->s_md_lock
);
1684 * regular allocator, for general purposes allocation
1687 static void ext4_mb_check_limits(struct ext4_allocation_context
*ac
,
1688 struct ext4_buddy
*e4b
,
1691 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1692 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1693 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1694 struct ext4_free_extent ex
;
1697 if (ac
->ac_status
== AC_STATUS_FOUND
)
1700 * We don't want to scan for a whole year
1702 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
&&
1703 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1704 ac
->ac_status
= AC_STATUS_BREAK
;
1709 * Haven't found good chunk so far, let's continue
1711 if (bex
->fe_len
< gex
->fe_len
)
1714 if ((finish_group
|| ac
->ac_found
> sbi
->s_mb_min_to_scan
)
1715 && bex
->fe_group
== e4b
->bd_group
) {
1716 /* recheck chunk's availability - we don't know
1717 * when it was found (within this lock-unlock
1719 max
= mb_find_extent(e4b
, bex
->fe_start
, gex
->fe_len
, &ex
);
1720 if (max
>= gex
->fe_len
) {
1721 ext4_mb_use_best_found(ac
, e4b
);
1728 * The routine checks whether found extent is good enough. If it is,
1729 * then the extent gets marked used and flag is set to the context
1730 * to stop scanning. Otherwise, the extent is compared with the
1731 * previous found extent and if new one is better, then it's stored
1732 * in the context. Later, the best found extent will be used, if
1733 * mballoc can't find good enough extent.
1735 * FIXME: real allocation policy is to be designed yet!
1737 static void ext4_mb_measure_extent(struct ext4_allocation_context
*ac
,
1738 struct ext4_free_extent
*ex
,
1739 struct ext4_buddy
*e4b
)
1741 struct ext4_free_extent
*bex
= &ac
->ac_b_ex
;
1742 struct ext4_free_extent
*gex
= &ac
->ac_g_ex
;
1744 BUG_ON(ex
->fe_len
<= 0);
1745 BUG_ON(ex
->fe_len
> EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1746 BUG_ON(ex
->fe_start
>= EXT4_CLUSTERS_PER_GROUP(ac
->ac_sb
));
1747 BUG_ON(ac
->ac_status
!= AC_STATUS_CONTINUE
);
1752 * The special case - take what you catch first
1754 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
1756 ext4_mb_use_best_found(ac
, e4b
);
1761 * Let's check whether the chuck is good enough
1763 if (ex
->fe_len
== gex
->fe_len
) {
1765 ext4_mb_use_best_found(ac
, e4b
);
1770 * If this is first found extent, just store it in the context
1772 if (bex
->fe_len
== 0) {
1778 * If new found extent is better, store it in the context
1780 if (bex
->fe_len
< gex
->fe_len
) {
1781 /* if the request isn't satisfied, any found extent
1782 * larger than previous best one is better */
1783 if (ex
->fe_len
> bex
->fe_len
)
1785 } else if (ex
->fe_len
> gex
->fe_len
) {
1786 /* if the request is satisfied, then we try to find
1787 * an extent that still satisfy the request, but is
1788 * smaller than previous one */
1789 if (ex
->fe_len
< bex
->fe_len
)
1793 ext4_mb_check_limits(ac
, e4b
, 0);
1796 static noinline_for_stack
1797 int ext4_mb_try_best_found(struct ext4_allocation_context
*ac
,
1798 struct ext4_buddy
*e4b
)
1800 struct ext4_free_extent ex
= ac
->ac_b_ex
;
1801 ext4_group_t group
= ex
.fe_group
;
1805 BUG_ON(ex
.fe_len
<= 0);
1806 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1810 ext4_lock_group(ac
->ac_sb
, group
);
1811 max
= mb_find_extent(e4b
, ex
.fe_start
, ex
.fe_len
, &ex
);
1815 ext4_mb_use_best_found(ac
, e4b
);
1818 ext4_unlock_group(ac
->ac_sb
, group
);
1819 ext4_mb_unload_buddy(e4b
);
1824 static noinline_for_stack
1825 int ext4_mb_find_by_goal(struct ext4_allocation_context
*ac
,
1826 struct ext4_buddy
*e4b
)
1828 ext4_group_t group
= ac
->ac_g_ex
.fe_group
;
1831 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
1832 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
1833 struct ext4_free_extent ex
;
1835 if (!(ac
->ac_flags
& EXT4_MB_HINT_TRY_GOAL
))
1837 if (grp
->bb_free
== 0)
1840 err
= ext4_mb_load_buddy(ac
->ac_sb
, group
, e4b
);
1844 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b
->bd_info
))) {
1845 ext4_mb_unload_buddy(e4b
);
1849 ext4_lock_group(ac
->ac_sb
, group
);
1850 max
= mb_find_extent(e4b
, ac
->ac_g_ex
.fe_start
,
1851 ac
->ac_g_ex
.fe_len
, &ex
);
1852 ex
.fe_logical
= 0xDEADFA11; /* debug value */
1854 if (max
>= ac
->ac_g_ex
.fe_len
&& ac
->ac_g_ex
.fe_len
== sbi
->s_stripe
) {
1857 start
= ext4_group_first_block_no(ac
->ac_sb
, e4b
->bd_group
) +
1859 /* use do_div to get remainder (would be 64-bit modulo) */
1860 if (do_div(start
, sbi
->s_stripe
) == 0) {
1863 ext4_mb_use_best_found(ac
, e4b
);
1865 } else if (max
>= ac
->ac_g_ex
.fe_len
) {
1866 BUG_ON(ex
.fe_len
<= 0);
1867 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1868 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1871 ext4_mb_use_best_found(ac
, e4b
);
1872 } else if (max
> 0 && (ac
->ac_flags
& EXT4_MB_HINT_MERGE
)) {
1873 /* Sometimes, caller may want to merge even small
1874 * number of blocks to an existing extent */
1875 BUG_ON(ex
.fe_len
<= 0);
1876 BUG_ON(ex
.fe_group
!= ac
->ac_g_ex
.fe_group
);
1877 BUG_ON(ex
.fe_start
!= ac
->ac_g_ex
.fe_start
);
1880 ext4_mb_use_best_found(ac
, e4b
);
1882 ext4_unlock_group(ac
->ac_sb
, group
);
1883 ext4_mb_unload_buddy(e4b
);
1889 * The routine scans buddy structures (not bitmap!) from given order
1890 * to max order and tries to find big enough chunk to satisfy the req
1892 static noinline_for_stack
1893 void ext4_mb_simple_scan_group(struct ext4_allocation_context
*ac
,
1894 struct ext4_buddy
*e4b
)
1896 struct super_block
*sb
= ac
->ac_sb
;
1897 struct ext4_group_info
*grp
= e4b
->bd_info
;
1903 BUG_ON(ac
->ac_2order
<= 0);
1904 for (i
= ac
->ac_2order
; i
<= sb
->s_blocksize_bits
+ 1; i
++) {
1905 if (grp
->bb_counters
[i
] == 0)
1908 buddy
= mb_find_buddy(e4b
, i
, &max
);
1909 BUG_ON(buddy
== NULL
);
1911 k
= mb_find_next_zero_bit(buddy
, max
, 0);
1916 ac
->ac_b_ex
.fe_len
= 1 << i
;
1917 ac
->ac_b_ex
.fe_start
= k
<< i
;
1918 ac
->ac_b_ex
.fe_group
= e4b
->bd_group
;
1920 ext4_mb_use_best_found(ac
, e4b
);
1922 BUG_ON(ac
->ac_b_ex
.fe_len
!= ac
->ac_g_ex
.fe_len
);
1924 if (EXT4_SB(sb
)->s_mb_stats
)
1925 atomic_inc(&EXT4_SB(sb
)->s_bal_2orders
);
1932 * The routine scans the group and measures all found extents.
1933 * In order to optimize scanning, caller must pass number of
1934 * free blocks in the group, so the routine can know upper limit.
1936 static noinline_for_stack
1937 void ext4_mb_complex_scan_group(struct ext4_allocation_context
*ac
,
1938 struct ext4_buddy
*e4b
)
1940 struct super_block
*sb
= ac
->ac_sb
;
1941 void *bitmap
= e4b
->bd_bitmap
;
1942 struct ext4_free_extent ex
;
1946 free
= e4b
->bd_info
->bb_free
;
1947 if (WARN_ON(free
<= 0))
1950 i
= e4b
->bd_info
->bb_first_free
;
1952 while (free
&& ac
->ac_status
== AC_STATUS_CONTINUE
) {
1953 i
= mb_find_next_zero_bit(bitmap
,
1954 EXT4_CLUSTERS_PER_GROUP(sb
), i
);
1955 if (i
>= EXT4_CLUSTERS_PER_GROUP(sb
)) {
1957 * IF we have corrupt bitmap, we won't find any
1958 * free blocks even though group info says we
1959 * we have free blocks
1961 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1962 "%d free clusters as per "
1963 "group info. But bitmap says 0",
1968 mb_find_extent(e4b
, i
, ac
->ac_g_ex
.fe_len
, &ex
);
1969 if (WARN_ON(ex
.fe_len
<= 0))
1971 if (free
< ex
.fe_len
) {
1972 ext4_grp_locked_error(sb
, e4b
->bd_group
, 0, 0,
1973 "%d free clusters as per "
1974 "group info. But got %d blocks",
1977 * The number of free blocks differs. This mostly
1978 * indicate that the bitmap is corrupt. So exit
1979 * without claiming the space.
1983 ex
.fe_logical
= 0xDEADC0DE; /* debug value */
1984 ext4_mb_measure_extent(ac
, &ex
, e4b
);
1990 ext4_mb_check_limits(ac
, e4b
, 1);
1994 * This is a special case for storages like raid5
1995 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1997 static noinline_for_stack
1998 void ext4_mb_scan_aligned(struct ext4_allocation_context
*ac
,
1999 struct ext4_buddy
*e4b
)
2001 struct super_block
*sb
= ac
->ac_sb
;
2002 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2003 void *bitmap
= e4b
->bd_bitmap
;
2004 struct ext4_free_extent ex
;
2005 ext4_fsblk_t first_group_block
;
2010 BUG_ON(sbi
->s_stripe
== 0);
2012 /* find first stripe-aligned block in group */
2013 first_group_block
= ext4_group_first_block_no(sb
, e4b
->bd_group
);
2015 a
= first_group_block
+ sbi
->s_stripe
- 1;
2016 do_div(a
, sbi
->s_stripe
);
2017 i
= (a
* sbi
->s_stripe
) - first_group_block
;
2019 while (i
< EXT4_CLUSTERS_PER_GROUP(sb
)) {
2020 if (!mb_test_bit(i
, bitmap
)) {
2021 max
= mb_find_extent(e4b
, i
, sbi
->s_stripe
, &ex
);
2022 if (max
>= sbi
->s_stripe
) {
2024 ex
.fe_logical
= 0xDEADF00D; /* debug value */
2026 ext4_mb_use_best_found(ac
, e4b
);
2035 * This is now called BEFORE we load the buddy bitmap.
2036 * Returns either 1 or 0 indicating that the group is either suitable
2037 * for the allocation or not. In addition it can also return negative
2038 * error code when something goes wrong.
2040 static int ext4_mb_good_group(struct ext4_allocation_context
*ac
,
2041 ext4_group_t group
, int cr
)
2043 unsigned free
, fragments
;
2044 int flex_size
= ext4_flex_bg_size(EXT4_SB(ac
->ac_sb
));
2045 struct ext4_group_info
*grp
= ext4_get_group_info(ac
->ac_sb
, group
);
2047 BUG_ON(cr
< 0 || cr
>= 4);
2049 free
= grp
->bb_free
;
2052 if (cr
<= 2 && free
< ac
->ac_g_ex
.fe_len
)
2055 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp
)))
2058 /* We only do this if the grp has never been initialized */
2059 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
2060 int ret
= ext4_mb_init_group(ac
->ac_sb
, group
, GFP_NOFS
);
2065 fragments
= grp
->bb_fragments
;
2071 BUG_ON(ac
->ac_2order
== 0);
2073 /* Avoid using the first bg of a flexgroup for data files */
2074 if ((ac
->ac_flags
& EXT4_MB_HINT_DATA
) &&
2075 (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) &&
2076 ((group
% flex_size
) == 0))
2079 if ((ac
->ac_2order
> ac
->ac_sb
->s_blocksize_bits
+1) ||
2080 (free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2083 if (grp
->bb_largest_free_order
< ac
->ac_2order
)
2088 if ((free
/ fragments
) >= ac
->ac_g_ex
.fe_len
)
2092 if (free
>= ac
->ac_g_ex
.fe_len
)
2104 static noinline_for_stack
int
2105 ext4_mb_regular_allocator(struct ext4_allocation_context
*ac
)
2107 ext4_group_t ngroups
, group
, i
;
2109 int err
= 0, first_err
= 0;
2110 struct ext4_sb_info
*sbi
;
2111 struct super_block
*sb
;
2112 struct ext4_buddy e4b
;
2116 ngroups
= ext4_get_groups_count(sb
);
2117 /* non-extent files are limited to low blocks/groups */
2118 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)))
2119 ngroups
= sbi
->s_blockfile_groups
;
2121 BUG_ON(ac
->ac_status
== AC_STATUS_FOUND
);
2123 /* first, try the goal */
2124 err
= ext4_mb_find_by_goal(ac
, &e4b
);
2125 if (err
|| ac
->ac_status
== AC_STATUS_FOUND
)
2128 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
2132 * ac->ac2_order is set only if the fe_len is a power of 2
2133 * if ac2_order is set we also set criteria to 0 so that we
2134 * try exact allocation using buddy.
2136 i
= fls(ac
->ac_g_ex
.fe_len
);
2139 * We search using buddy data only if the order of the request
2140 * is greater than equal to the sbi_s_mb_order2_reqs
2141 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2142 * We also support searching for power-of-two requests only for
2143 * requests upto maximum buddy size we have constructed.
2145 if (i
>= sbi
->s_mb_order2_reqs
&& i
<= sb
->s_blocksize_bits
+ 2) {
2147 * This should tell if fe_len is exactly power of 2
2149 if ((ac
->ac_g_ex
.fe_len
& (~(1 << (i
- 1)))) == 0)
2150 ac
->ac_2order
= array_index_nospec(i
- 1,
2151 sb
->s_blocksize_bits
+ 2);
2154 /* if stream allocation is enabled, use global goal */
2155 if (ac
->ac_flags
& EXT4_MB_STREAM_ALLOC
) {
2156 /* TBD: may be hot point */
2157 spin_lock(&sbi
->s_md_lock
);
2158 ac
->ac_g_ex
.fe_group
= sbi
->s_mb_last_group
;
2159 ac
->ac_g_ex
.fe_start
= sbi
->s_mb_last_start
;
2160 spin_unlock(&sbi
->s_md_lock
);
2163 /* Let's just scan groups to find more-less suitable blocks */
2164 cr
= ac
->ac_2order
? 0 : 1;
2166 * cr == 0 try to get exact allocation,
2167 * cr == 3 try to get anything
2170 for (; cr
< 4 && ac
->ac_status
== AC_STATUS_CONTINUE
; cr
++) {
2171 ac
->ac_criteria
= cr
;
2173 * searching for the right group start
2174 * from the goal value specified
2176 group
= ac
->ac_g_ex
.fe_group
;
2178 for (i
= 0; i
< ngroups
; group
++, i
++) {
2182 * Artificially restricted ngroups for non-extent
2183 * files makes group > ngroups possible on first loop.
2185 if (group
>= ngroups
)
2188 /* This now checks without needing the buddy page */
2189 ret
= ext4_mb_good_group(ac
, group
, cr
);
2196 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2200 ext4_lock_group(sb
, group
);
2203 * We need to check again after locking the
2206 ret
= ext4_mb_good_group(ac
, group
, cr
);
2208 ext4_unlock_group(sb
, group
);
2209 ext4_mb_unload_buddy(&e4b
);
2215 ac
->ac_groups_scanned
++;
2217 ext4_mb_simple_scan_group(ac
, &e4b
);
2218 else if (cr
== 1 && sbi
->s_stripe
&&
2219 !(ac
->ac_g_ex
.fe_len
% sbi
->s_stripe
))
2220 ext4_mb_scan_aligned(ac
, &e4b
);
2222 ext4_mb_complex_scan_group(ac
, &e4b
);
2224 ext4_unlock_group(sb
, group
);
2225 ext4_mb_unload_buddy(&e4b
);
2227 if (ac
->ac_status
!= AC_STATUS_CONTINUE
)
2232 if (ac
->ac_b_ex
.fe_len
> 0 && ac
->ac_status
!= AC_STATUS_FOUND
&&
2233 !(ac
->ac_flags
& EXT4_MB_HINT_FIRST
)) {
2235 * We've been searching too long. Let's try to allocate
2236 * the best chunk we've found so far
2239 ext4_mb_try_best_found(ac
, &e4b
);
2240 if (ac
->ac_status
!= AC_STATUS_FOUND
) {
2242 * Someone more lucky has already allocated it.
2243 * The only thing we can do is just take first
2245 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2247 ac
->ac_b_ex
.fe_group
= 0;
2248 ac
->ac_b_ex
.fe_start
= 0;
2249 ac
->ac_b_ex
.fe_len
= 0;
2250 ac
->ac_status
= AC_STATUS_CONTINUE
;
2251 ac
->ac_flags
|= EXT4_MB_HINT_FIRST
;
2253 atomic_inc(&sbi
->s_mb_lost_chunks
);
2258 if (!err
&& ac
->ac_status
!= AC_STATUS_FOUND
&& first_err
)
2263 static void *ext4_mb_seq_groups_start(struct seq_file
*seq
, loff_t
*pos
)
2265 struct super_block
*sb
= seq
->private;
2268 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2271 return (void *) ((unsigned long) group
);
2274 static void *ext4_mb_seq_groups_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2276 struct super_block
*sb
= seq
->private;
2280 if (*pos
< 0 || *pos
>= ext4_get_groups_count(sb
))
2283 return (void *) ((unsigned long) group
);
2286 static int ext4_mb_seq_groups_show(struct seq_file
*seq
, void *v
)
2288 struct super_block
*sb
= seq
->private;
2289 ext4_group_t group
= (ext4_group_t
) ((unsigned long) v
);
2291 int err
, buddy_loaded
= 0;
2292 struct ext4_buddy e4b
;
2293 struct ext4_group_info
*grinfo
;
2295 struct ext4_group_info info
;
2296 ext4_grpblk_t counters
[EXT4_MAX_BLOCK_LOG_SIZE
+ 2];
2301 seq_puts(seq
, "#group: free frags first ["
2302 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2303 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2305 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(sg
.info
.bb_counters
[0]) +
2306 sizeof(struct ext4_group_info
);
2307 grinfo
= ext4_get_group_info(sb
, group
);
2308 /* Load the group info in memory only if not already loaded. */
2309 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo
))) {
2310 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
2312 seq_printf(seq
, "#%-5u: I/O error\n", group
);
2318 memcpy(&sg
, ext4_get_group_info(sb
, group
), i
);
2321 ext4_mb_unload_buddy(&e4b
);
2323 seq_printf(seq
, "#%-5u: %-5u %-5u %-5u [", group
, sg
.info
.bb_free
,
2324 sg
.info
.bb_fragments
, sg
.info
.bb_first_free
);
2325 for (i
= 0; i
<= 13; i
++)
2326 seq_printf(seq
, " %-5u", i
<= sb
->s_blocksize_bits
+ 1 ?
2327 sg
.info
.bb_counters
[i
] : 0);
2328 seq_printf(seq
, " ]\n");
2333 static void ext4_mb_seq_groups_stop(struct seq_file
*seq
, void *v
)
2337 static const struct seq_operations ext4_mb_seq_groups_ops
= {
2338 .start
= ext4_mb_seq_groups_start
,
2339 .next
= ext4_mb_seq_groups_next
,
2340 .stop
= ext4_mb_seq_groups_stop
,
2341 .show
= ext4_mb_seq_groups_show
,
2344 static int ext4_mb_seq_groups_open(struct inode
*inode
, struct file
*file
)
2346 struct super_block
*sb
= PDE_DATA(inode
);
2349 rc
= seq_open(file
, &ext4_mb_seq_groups_ops
);
2351 struct seq_file
*m
= file
->private_data
;
2358 const struct file_operations ext4_seq_mb_groups_fops
= {
2359 .open
= ext4_mb_seq_groups_open
,
2361 .llseek
= seq_lseek
,
2362 .release
= seq_release
,
2365 static struct kmem_cache
*get_groupinfo_cache(int blocksize_bits
)
2367 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2368 struct kmem_cache
*cachep
= ext4_groupinfo_caches
[cache_index
];
2375 * Allocate the top-level s_group_info array for the specified number
2378 int ext4_mb_alloc_groupinfo(struct super_block
*sb
, ext4_group_t ngroups
)
2380 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2382 struct ext4_group_info
***old_groupinfo
, ***new_groupinfo
;
2384 size
= (ngroups
+ EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2385 EXT4_DESC_PER_BLOCK_BITS(sb
);
2386 if (size
<= sbi
->s_group_info_size
)
2389 size
= roundup_pow_of_two(sizeof(*sbi
->s_group_info
) * size
);
2390 new_groupinfo
= ext4_kvzalloc(size
, GFP_KERNEL
);
2391 if (!new_groupinfo
) {
2392 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy meta group");
2396 old_groupinfo
= rcu_dereference(sbi
->s_group_info
);
2398 memcpy(new_groupinfo
, old_groupinfo
,
2399 sbi
->s_group_info_size
* sizeof(*sbi
->s_group_info
));
2401 rcu_assign_pointer(sbi
->s_group_info
, new_groupinfo
);
2402 sbi
->s_group_info_size
= size
/ sizeof(*sbi
->s_group_info
);
2404 ext4_kvfree_array_rcu(old_groupinfo
);
2405 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2406 sbi
->s_group_info_size
);
2410 /* Create and initialize ext4_group_info data for the given group. */
2411 int ext4_mb_add_groupinfo(struct super_block
*sb
, ext4_group_t group
,
2412 struct ext4_group_desc
*desc
)
2416 int idx
= group
>> EXT4_DESC_PER_BLOCK_BITS(sb
);
2417 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2418 struct ext4_group_info
**meta_group_info
;
2419 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2422 * First check if this group is the first of a reserved block.
2423 * If it's true, we have to allocate a new table of pointers
2424 * to ext4_group_info structures
2426 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2427 metalen
= sizeof(*meta_group_info
) <<
2428 EXT4_DESC_PER_BLOCK_BITS(sb
);
2429 meta_group_info
= kmalloc(metalen
, GFP_NOFS
);
2430 if (meta_group_info
== NULL
) {
2431 ext4_msg(sb
, KERN_ERR
, "can't allocate mem "
2432 "for a buddy group");
2433 goto exit_meta_group_info
;
2436 rcu_dereference(sbi
->s_group_info
)[idx
] = meta_group_info
;
2440 meta_group_info
= sbi_array_rcu_deref(sbi
, s_group_info
, idx
);
2441 i
= group
& (EXT4_DESC_PER_BLOCK(sb
) - 1);
2443 meta_group_info
[i
] = kmem_cache_zalloc(cachep
, GFP_NOFS
);
2444 if (meta_group_info
[i
] == NULL
) {
2445 ext4_msg(sb
, KERN_ERR
, "can't allocate buddy mem");
2446 goto exit_group_info
;
2448 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT
,
2449 &(meta_group_info
[i
]->bb_state
));
2452 * initialize bb_free to be able to skip
2453 * empty groups without initialization
2455 if (ext4_has_group_desc_csum(sb
) &&
2456 (desc
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))) {
2457 meta_group_info
[i
]->bb_free
=
2458 ext4_free_clusters_after_init(sb
, group
, desc
);
2460 meta_group_info
[i
]->bb_free
=
2461 ext4_free_group_clusters(sb
, desc
);
2464 INIT_LIST_HEAD(&meta_group_info
[i
]->bb_prealloc_list
);
2465 init_rwsem(&meta_group_info
[i
]->alloc_sem
);
2466 meta_group_info
[i
]->bb_free_root
= RB_ROOT
;
2467 meta_group_info
[i
]->bb_largest_free_order
= -1; /* uninit */
2471 struct buffer_head
*bh
;
2472 meta_group_info
[i
]->bb_bitmap
=
2473 kmalloc(sb
->s_blocksize
, GFP_NOFS
);
2474 BUG_ON(meta_group_info
[i
]->bb_bitmap
== NULL
);
2475 bh
= ext4_read_block_bitmap(sb
, group
);
2476 BUG_ON(IS_ERR_OR_NULL(bh
));
2477 memcpy(meta_group_info
[i
]->bb_bitmap
, bh
->b_data
,
2486 /* If a meta_group_info table has been allocated, release it now */
2487 if (group
% EXT4_DESC_PER_BLOCK(sb
) == 0) {
2488 struct ext4_group_info
***group_info
;
2491 group_info
= rcu_dereference(sbi
->s_group_info
);
2492 kfree(group_info
[idx
]);
2493 group_info
[idx
] = NULL
;
2496 exit_meta_group_info
:
2498 } /* ext4_mb_add_groupinfo */
2500 static int ext4_mb_init_backend(struct super_block
*sb
)
2502 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2504 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2506 struct ext4_group_desc
*desc
;
2507 struct ext4_group_info
***group_info
;
2508 struct kmem_cache
*cachep
;
2510 err
= ext4_mb_alloc_groupinfo(sb
, ngroups
);
2514 sbi
->s_buddy_cache
= new_inode(sb
);
2515 if (sbi
->s_buddy_cache
== NULL
) {
2516 ext4_msg(sb
, KERN_ERR
, "can't get new inode");
2519 /* To avoid potentially colliding with an valid on-disk inode number,
2520 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2521 * not in the inode hash, so it should never be found by iget(), but
2522 * this will avoid confusion if it ever shows up during debugging. */
2523 sbi
->s_buddy_cache
->i_ino
= EXT4_BAD_INO
;
2524 EXT4_I(sbi
->s_buddy_cache
)->i_disksize
= 0;
2525 for (i
= 0; i
< ngroups
; i
++) {
2526 desc
= ext4_get_group_desc(sb
, i
, NULL
);
2528 ext4_msg(sb
, KERN_ERR
, "can't read descriptor %u", i
);
2531 if (ext4_mb_add_groupinfo(sb
, i
, desc
) != 0)
2538 cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2540 kmem_cache_free(cachep
, ext4_get_group_info(sb
, i
));
2541 i
= sbi
->s_group_info_size
;
2543 group_info
= rcu_dereference(sbi
->s_group_info
);
2545 kfree(group_info
[i
]);
2547 iput(sbi
->s_buddy_cache
);
2550 kvfree(rcu_dereference(sbi
->s_group_info
));
2555 static void ext4_groupinfo_destroy_slabs(void)
2559 for (i
= 0; i
< NR_GRPINFO_CACHES
; i
++) {
2560 if (ext4_groupinfo_caches
[i
])
2561 kmem_cache_destroy(ext4_groupinfo_caches
[i
]);
2562 ext4_groupinfo_caches
[i
] = NULL
;
2566 static int ext4_groupinfo_create_slab(size_t size
)
2568 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex
);
2570 int blocksize_bits
= order_base_2(size
);
2571 int cache_index
= blocksize_bits
- EXT4_MIN_BLOCK_LOG_SIZE
;
2572 struct kmem_cache
*cachep
;
2574 if (cache_index
>= NR_GRPINFO_CACHES
)
2577 if (unlikely(cache_index
< 0))
2580 mutex_lock(&ext4_grpinfo_slab_create_mutex
);
2581 if (ext4_groupinfo_caches
[cache_index
]) {
2582 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2583 return 0; /* Already created */
2586 slab_size
= offsetof(struct ext4_group_info
,
2587 bb_counters
[blocksize_bits
+ 2]);
2589 cachep
= kmem_cache_create(ext4_groupinfo_slab_names
[cache_index
],
2590 slab_size
, 0, SLAB_RECLAIM_ACCOUNT
,
2593 ext4_groupinfo_caches
[cache_index
] = cachep
;
2595 mutex_unlock(&ext4_grpinfo_slab_create_mutex
);
2598 "EXT4-fs: no memory for groupinfo slab cache\n");
2605 int ext4_mb_init(struct super_block
*sb
)
2607 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2609 unsigned offset
, offset_incr
;
2613 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_offsets
);
2615 sbi
->s_mb_offsets
= kmalloc(i
, GFP_KERNEL
);
2616 if (sbi
->s_mb_offsets
== NULL
) {
2621 i
= (sb
->s_blocksize_bits
+ 2) * sizeof(*sbi
->s_mb_maxs
);
2622 sbi
->s_mb_maxs
= kmalloc(i
, GFP_KERNEL
);
2623 if (sbi
->s_mb_maxs
== NULL
) {
2628 ret
= ext4_groupinfo_create_slab(sb
->s_blocksize
);
2632 /* order 0 is regular bitmap */
2633 sbi
->s_mb_maxs
[0] = sb
->s_blocksize
<< 3;
2634 sbi
->s_mb_offsets
[0] = 0;
2638 offset_incr
= 1 << (sb
->s_blocksize_bits
- 1);
2639 max
= sb
->s_blocksize
<< 2;
2641 sbi
->s_mb_offsets
[i
] = offset
;
2642 sbi
->s_mb_maxs
[i
] = max
;
2643 offset
+= offset_incr
;
2644 offset_incr
= offset_incr
>> 1;
2647 } while (i
<= sb
->s_blocksize_bits
+ 1);
2649 spin_lock_init(&sbi
->s_md_lock
);
2650 spin_lock_init(&sbi
->s_bal_lock
);
2651 sbi
->s_mb_free_pending
= 0;
2653 sbi
->s_mb_max_to_scan
= MB_DEFAULT_MAX_TO_SCAN
;
2654 sbi
->s_mb_min_to_scan
= MB_DEFAULT_MIN_TO_SCAN
;
2655 sbi
->s_mb_stats
= MB_DEFAULT_STATS
;
2656 sbi
->s_mb_stream_request
= MB_DEFAULT_STREAM_THRESHOLD
;
2657 sbi
->s_mb_order2_reqs
= MB_DEFAULT_ORDER2_REQS
;
2659 * The default group preallocation is 512, which for 4k block
2660 * sizes translates to 2 megabytes. However for bigalloc file
2661 * systems, this is probably too big (i.e, if the cluster size
2662 * is 1 megabyte, then group preallocation size becomes half a
2663 * gigabyte!). As a default, we will keep a two megabyte
2664 * group pralloc size for cluster sizes up to 64k, and after
2665 * that, we will force a minimum group preallocation size of
2666 * 32 clusters. This translates to 8 megs when the cluster
2667 * size is 256k, and 32 megs when the cluster size is 1 meg,
2668 * which seems reasonable as a default.
2670 sbi
->s_mb_group_prealloc
= max(MB_DEFAULT_GROUP_PREALLOC
>>
2671 sbi
->s_cluster_bits
, 32);
2673 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2674 * to the lowest multiple of s_stripe which is bigger than
2675 * the s_mb_group_prealloc as determined above. We want
2676 * the preallocation size to be an exact multiple of the
2677 * RAID stripe size so that preallocations don't fragment
2680 if (sbi
->s_stripe
> 1) {
2681 sbi
->s_mb_group_prealloc
= roundup(
2682 sbi
->s_mb_group_prealloc
, sbi
->s_stripe
);
2685 sbi
->s_locality_groups
= alloc_percpu(struct ext4_locality_group
);
2686 if (sbi
->s_locality_groups
== NULL
) {
2690 for_each_possible_cpu(i
) {
2691 struct ext4_locality_group
*lg
;
2692 lg
= per_cpu_ptr(sbi
->s_locality_groups
, i
);
2693 mutex_init(&lg
->lg_mutex
);
2694 for (j
= 0; j
< PREALLOC_TB_SIZE
; j
++)
2695 INIT_LIST_HEAD(&lg
->lg_prealloc_list
[j
]);
2696 spin_lock_init(&lg
->lg_prealloc_lock
);
2699 /* init file for buddy data */
2700 ret
= ext4_mb_init_backend(sb
);
2702 goto out_free_locality_groups
;
2706 out_free_locality_groups
:
2707 free_percpu(sbi
->s_locality_groups
);
2708 sbi
->s_locality_groups
= NULL
;
2710 kfree(sbi
->s_mb_offsets
);
2711 sbi
->s_mb_offsets
= NULL
;
2712 kfree(sbi
->s_mb_maxs
);
2713 sbi
->s_mb_maxs
= NULL
;
2717 /* need to called with the ext4 group lock held */
2718 static void ext4_mb_cleanup_pa(struct ext4_group_info
*grp
)
2720 struct ext4_prealloc_space
*pa
;
2721 struct list_head
*cur
, *tmp
;
2724 list_for_each_safe(cur
, tmp
, &grp
->bb_prealloc_list
) {
2725 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
2726 list_del(&pa
->pa_group_list
);
2728 kmem_cache_free(ext4_pspace_cachep
, pa
);
2731 mb_debug(1, "mballoc: %u PAs left\n", count
);
2735 int ext4_mb_release(struct super_block
*sb
)
2737 ext4_group_t ngroups
= ext4_get_groups_count(sb
);
2739 int num_meta_group_infos
;
2740 struct ext4_group_info
*grinfo
, ***group_info
;
2741 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2742 struct kmem_cache
*cachep
= get_groupinfo_cache(sb
->s_blocksize_bits
);
2744 if (sbi
->s_group_info
) {
2745 for (i
= 0; i
< ngroups
; i
++) {
2746 grinfo
= ext4_get_group_info(sb
, i
);
2748 kfree(grinfo
->bb_bitmap
);
2750 ext4_lock_group(sb
, i
);
2751 ext4_mb_cleanup_pa(grinfo
);
2752 ext4_unlock_group(sb
, i
);
2753 kmem_cache_free(cachep
, grinfo
);
2755 num_meta_group_infos
= (ngroups
+
2756 EXT4_DESC_PER_BLOCK(sb
) - 1) >>
2757 EXT4_DESC_PER_BLOCK_BITS(sb
);
2759 group_info
= rcu_dereference(sbi
->s_group_info
);
2760 for (i
= 0; i
< num_meta_group_infos
; i
++)
2761 kfree(group_info
[i
]);
2765 kfree(sbi
->s_mb_offsets
);
2766 kfree(sbi
->s_mb_maxs
);
2767 iput(sbi
->s_buddy_cache
);
2768 if (sbi
->s_mb_stats
) {
2769 ext4_msg(sb
, KERN_INFO
,
2770 "mballoc: %u blocks %u reqs (%u success)",
2771 atomic_read(&sbi
->s_bal_allocated
),
2772 atomic_read(&sbi
->s_bal_reqs
),
2773 atomic_read(&sbi
->s_bal_success
));
2774 ext4_msg(sb
, KERN_INFO
,
2775 "mballoc: %u extents scanned, %u goal hits, "
2776 "%u 2^N hits, %u breaks, %u lost",
2777 atomic_read(&sbi
->s_bal_ex_scanned
),
2778 atomic_read(&sbi
->s_bal_goals
),
2779 atomic_read(&sbi
->s_bal_2orders
),
2780 atomic_read(&sbi
->s_bal_breaks
),
2781 atomic_read(&sbi
->s_mb_lost_chunks
));
2782 ext4_msg(sb
, KERN_INFO
,
2783 "mballoc: %lu generated and it took %Lu",
2784 sbi
->s_mb_buddies_generated
,
2785 sbi
->s_mb_generation_time
);
2786 ext4_msg(sb
, KERN_INFO
,
2787 "mballoc: %u preallocated, %u discarded",
2788 atomic_read(&sbi
->s_mb_preallocated
),
2789 atomic_read(&sbi
->s_mb_discarded
));
2792 free_percpu(sbi
->s_locality_groups
);
2797 static inline int ext4_issue_discard(struct super_block
*sb
,
2798 ext4_group_t block_group
, ext4_grpblk_t cluster
, int count
)
2800 ext4_fsblk_t discard_block
;
2802 discard_block
= (EXT4_C2B(EXT4_SB(sb
), cluster
) +
2803 ext4_group_first_block_no(sb
, block_group
));
2804 count
= EXT4_C2B(EXT4_SB(sb
), count
);
2805 trace_ext4_discard_blocks(sb
,
2806 (unsigned long long) discard_block
, count
);
2807 return sb_issue_discard(sb
, discard_block
, count
, GFP_NOFS
, 0);
2811 * This function is called by the jbd2 layer once the commit has finished,
2812 * so we know we can free the blocks that were released with that commit.
2814 static void ext4_free_data_callback(struct super_block
*sb
,
2815 struct ext4_journal_cb_entry
*jce
,
2818 struct ext4_free_data
*entry
= (struct ext4_free_data
*)jce
;
2819 struct ext4_buddy e4b
;
2820 struct ext4_group_info
*db
;
2821 int err
, count
= 0, count2
= 0;
2823 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2824 entry
->efd_count
, entry
->efd_group
, entry
);
2826 if (test_opt(sb
, DISCARD
)) {
2827 err
= ext4_issue_discard(sb
, entry
->efd_group
,
2828 entry
->efd_start_cluster
,
2830 if (err
&& err
!= -EOPNOTSUPP
)
2831 ext4_msg(sb
, KERN_WARNING
, "discard request in"
2832 " group:%d block:%d count:%d failed"
2833 " with %d", entry
->efd_group
,
2834 entry
->efd_start_cluster
,
2835 entry
->efd_count
, err
);
2838 err
= ext4_mb_load_buddy(sb
, entry
->efd_group
, &e4b
);
2839 /* we expect to find existing buddy because it's pinned */
2842 spin_lock(&EXT4_SB(sb
)->s_md_lock
);
2843 EXT4_SB(sb
)->s_mb_free_pending
-= entry
->efd_count
;
2844 spin_unlock(&EXT4_SB(sb
)->s_md_lock
);
2847 /* there are blocks to put in buddy to make them really free */
2848 count
+= entry
->efd_count
;
2850 ext4_lock_group(sb
, entry
->efd_group
);
2851 /* Take it out of per group rb tree */
2852 rb_erase(&entry
->efd_node
, &(db
->bb_free_root
));
2853 mb_free_blocks(NULL
, &e4b
, entry
->efd_start_cluster
, entry
->efd_count
);
2856 * Clear the trimmed flag for the group so that the next
2857 * ext4_trim_fs can trim it.
2858 * If the volume is mounted with -o discard, online discard
2859 * is supported and the free blocks will be trimmed online.
2861 if (!test_opt(sb
, DISCARD
))
2862 EXT4_MB_GRP_CLEAR_TRIMMED(db
);
2864 if (!db
->bb_free_root
.rb_node
) {
2865 /* No more items in the per group rb tree
2866 * balance refcounts from ext4_mb_free_metadata()
2868 put_page(e4b
.bd_buddy_page
);
2869 put_page(e4b
.bd_bitmap_page
);
2871 ext4_unlock_group(sb
, entry
->efd_group
);
2872 kmem_cache_free(ext4_free_data_cachep
, entry
);
2873 ext4_mb_unload_buddy(&e4b
);
2875 mb_debug(1, "freed %u blocks in %u structures\n", count
, count2
);
2878 int __init
ext4_init_mballoc(void)
2880 ext4_pspace_cachep
= KMEM_CACHE(ext4_prealloc_space
,
2881 SLAB_RECLAIM_ACCOUNT
);
2882 if (ext4_pspace_cachep
== NULL
)
2885 ext4_ac_cachep
= KMEM_CACHE(ext4_allocation_context
,
2886 SLAB_RECLAIM_ACCOUNT
);
2887 if (ext4_ac_cachep
== NULL
) {
2888 kmem_cache_destroy(ext4_pspace_cachep
);
2892 ext4_free_data_cachep
= KMEM_CACHE(ext4_free_data
,
2893 SLAB_RECLAIM_ACCOUNT
);
2894 if (ext4_free_data_cachep
== NULL
) {
2895 kmem_cache_destroy(ext4_pspace_cachep
);
2896 kmem_cache_destroy(ext4_ac_cachep
);
2902 void ext4_exit_mballoc(void)
2905 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2906 * before destroying the slab cache.
2909 kmem_cache_destroy(ext4_pspace_cachep
);
2910 kmem_cache_destroy(ext4_ac_cachep
);
2911 kmem_cache_destroy(ext4_free_data_cachep
);
2912 ext4_groupinfo_destroy_slabs();
2917 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2918 * Returns 0 if success or error code
2920 static noinline_for_stack
int
2921 ext4_mb_mark_diskspace_used(struct ext4_allocation_context
*ac
,
2922 handle_t
*handle
, unsigned int reserv_clstrs
)
2924 struct buffer_head
*bitmap_bh
= NULL
;
2925 struct ext4_group_desc
*gdp
;
2926 struct buffer_head
*gdp_bh
;
2927 struct ext4_sb_info
*sbi
;
2928 struct super_block
*sb
;
2932 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
2933 BUG_ON(ac
->ac_b_ex
.fe_len
<= 0);
2938 bitmap_bh
= ext4_read_block_bitmap(sb
, ac
->ac_b_ex
.fe_group
);
2939 if (IS_ERR(bitmap_bh
)) {
2940 err
= PTR_ERR(bitmap_bh
);
2945 BUFFER_TRACE(bitmap_bh
, "getting write access");
2946 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
2951 gdp
= ext4_get_group_desc(sb
, ac
->ac_b_ex
.fe_group
, &gdp_bh
);
2955 ext4_debug("using block group %u(%d)\n", ac
->ac_b_ex
.fe_group
,
2956 ext4_free_group_clusters(sb
, gdp
));
2958 BUFFER_TRACE(gdp_bh
, "get_write_access");
2959 err
= ext4_journal_get_write_access(handle
, gdp_bh
);
2963 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
2965 len
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
2966 if (!ext4_data_block_valid(sbi
, block
, len
)) {
2967 ext4_error(sb
, "Allocating blocks %llu-%llu which overlap "
2968 "fs metadata", block
, block
+len
);
2969 /* File system mounted not to panic on error
2970 * Fix the bitmap and return EFSCORRUPTED
2971 * We leak some of the blocks here.
2973 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2974 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2975 ac
->ac_b_ex
.fe_len
);
2976 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
2977 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
2979 err
= -EFSCORRUPTED
;
2983 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
2984 #ifdef AGGRESSIVE_CHECK
2987 for (i
= 0; i
< ac
->ac_b_ex
.fe_len
; i
++) {
2988 BUG_ON(mb_test_bit(ac
->ac_b_ex
.fe_start
+ i
,
2989 bitmap_bh
->b_data
));
2993 ext4_set_bits(bitmap_bh
->b_data
, ac
->ac_b_ex
.fe_start
,
2994 ac
->ac_b_ex
.fe_len
);
2995 if (ext4_has_group_desc_csum(sb
) &&
2996 (gdp
->bg_flags
& cpu_to_le16(EXT4_BG_BLOCK_UNINIT
))) {
2997 gdp
->bg_flags
&= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT
);
2998 ext4_free_group_clusters_set(sb
, gdp
,
2999 ext4_free_clusters_after_init(sb
,
3000 ac
->ac_b_ex
.fe_group
, gdp
));
3002 len
= ext4_free_group_clusters(sb
, gdp
) - ac
->ac_b_ex
.fe_len
;
3003 ext4_free_group_clusters_set(sb
, gdp
, len
);
3004 ext4_block_bitmap_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
, bitmap_bh
);
3005 ext4_group_desc_csum_set(sb
, ac
->ac_b_ex
.fe_group
, gdp
);
3007 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3008 percpu_counter_sub(&sbi
->s_freeclusters_counter
, ac
->ac_b_ex
.fe_len
);
3010 * Now reduce the dirty block count also. Should not go negative
3012 if (!(ac
->ac_flags
& EXT4_MB_DELALLOC_RESERVED
))
3013 /* release all the reserved blocks if non delalloc */
3014 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
3017 if (sbi
->s_log_groups_per_flex
) {
3018 ext4_group_t flex_group
= ext4_flex_group(sbi
,
3019 ac
->ac_b_ex
.fe_group
);
3020 atomic64_sub(ac
->ac_b_ex
.fe_len
,
3021 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
3022 flex_group
)->free_clusters
);
3025 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
3028 err
= ext4_handle_dirty_metadata(handle
, NULL
, gdp_bh
);
3036 * here we normalize request for locality group
3037 * Group request are normalized to s_mb_group_prealloc, which goes to
3038 * s_strip if we set the same via mount option.
3039 * s_mb_group_prealloc can be configured via
3040 * /sys/fs/ext4/<partition>/mb_group_prealloc
3042 * XXX: should we try to preallocate more than the group has now?
3044 static void ext4_mb_normalize_group_request(struct ext4_allocation_context
*ac
)
3046 struct super_block
*sb
= ac
->ac_sb
;
3047 struct ext4_locality_group
*lg
= ac
->ac_lg
;
3050 ac
->ac_g_ex
.fe_len
= EXT4_SB(sb
)->s_mb_group_prealloc
;
3051 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3052 current
->pid
, ac
->ac_g_ex
.fe_len
);
3056 * Normalization means making request better in terms of
3057 * size and alignment
3059 static noinline_for_stack
void
3060 ext4_mb_normalize_request(struct ext4_allocation_context
*ac
,
3061 struct ext4_allocation_request
*ar
)
3063 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3066 loff_t size
, start_off
;
3067 loff_t orig_size __maybe_unused
;
3069 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3070 struct ext4_prealloc_space
*pa
;
3072 /* do normalize only data requests, metadata requests
3073 do not need preallocation */
3074 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3077 /* sometime caller may want exact blocks */
3078 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
3081 /* caller may indicate that preallocation isn't
3082 * required (it's a tail, for example) */
3083 if (ac
->ac_flags
& EXT4_MB_HINT_NOPREALLOC
)
3086 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
) {
3087 ext4_mb_normalize_group_request(ac
);
3091 bsbits
= ac
->ac_sb
->s_blocksize_bits
;
3093 /* first, let's learn actual file size
3094 * given current request is allocated */
3095 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
3096 size
= size
<< bsbits
;
3097 if (size
< i_size_read(ac
->ac_inode
))
3098 size
= i_size_read(ac
->ac_inode
);
3101 /* max size of free chunks */
3104 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3105 (req <= (size) || max <= (chunk_size))
3107 /* first, try to predict filesize */
3108 /* XXX: should this table be tunable? */
3110 if (size
<= 16 * 1024) {
3112 } else if (size
<= 32 * 1024) {
3114 } else if (size
<= 64 * 1024) {
3116 } else if (size
<= 128 * 1024) {
3118 } else if (size
<= 256 * 1024) {
3120 } else if (size
<= 512 * 1024) {
3122 } else if (size
<= 1024 * 1024) {
3124 } else if (NRL_CHECK_SIZE(size
, 4 * 1024 * 1024, max
, 2 * 1024)) {
3125 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3126 (21 - bsbits
)) << 21;
3127 size
= 2 * 1024 * 1024;
3128 } else if (NRL_CHECK_SIZE(size
, 8 * 1024 * 1024, max
, 4 * 1024)) {
3129 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3130 (22 - bsbits
)) << 22;
3131 size
= 4 * 1024 * 1024;
3132 } else if (NRL_CHECK_SIZE(ac
->ac_o_ex
.fe_len
,
3133 (8<<20)>>bsbits
, max
, 8 * 1024)) {
3134 start_off
= ((loff_t
)ac
->ac_o_ex
.fe_logical
>>
3135 (23 - bsbits
)) << 23;
3136 size
= 8 * 1024 * 1024;
3138 start_off
= (loff_t
) ac
->ac_o_ex
.fe_logical
<< bsbits
;
3139 size
= (loff_t
) EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3140 ac
->ac_o_ex
.fe_len
) << bsbits
;
3142 size
= size
>> bsbits
;
3143 start
= start_off
>> bsbits
;
3145 /* don't cover already allocated blocks in selected range */
3146 if (ar
->pleft
&& start
<= ar
->lleft
) {
3147 size
-= ar
->lleft
+ 1 - start
;
3148 start
= ar
->lleft
+ 1;
3150 if (ar
->pright
&& start
+ size
- 1 >= ar
->lright
)
3151 size
-= start
+ size
- ar
->lright
;
3154 * Trim allocation request for filesystems with artificially small
3157 if (size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
))
3158 size
= EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
);
3162 /* check we don't cross already preallocated blocks */
3164 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3169 spin_lock(&pa
->pa_lock
);
3170 if (pa
->pa_deleted
) {
3171 spin_unlock(&pa
->pa_lock
);
3175 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3178 /* PA must not overlap original request */
3179 BUG_ON(!(ac
->ac_o_ex
.fe_logical
>= pa_end
||
3180 ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
));
3182 /* skip PAs this normalized request doesn't overlap with */
3183 if (pa
->pa_lstart
>= end
|| pa_end
<= start
) {
3184 spin_unlock(&pa
->pa_lock
);
3187 BUG_ON(pa
->pa_lstart
<= start
&& pa_end
>= end
);
3189 /* adjust start or end to be adjacent to this pa */
3190 if (pa_end
<= ac
->ac_o_ex
.fe_logical
) {
3191 BUG_ON(pa_end
< start
);
3193 } else if (pa
->pa_lstart
> ac
->ac_o_ex
.fe_logical
) {
3194 BUG_ON(pa
->pa_lstart
> end
);
3195 end
= pa
->pa_lstart
;
3197 spin_unlock(&pa
->pa_lock
);
3202 /* XXX: extra loop to check we really don't overlap preallocations */
3204 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3207 spin_lock(&pa
->pa_lock
);
3208 if (pa
->pa_deleted
== 0) {
3209 pa_end
= pa
->pa_lstart
+ EXT4_C2B(EXT4_SB(ac
->ac_sb
),
3211 BUG_ON(!(start
>= pa_end
|| end
<= pa
->pa_lstart
));
3213 spin_unlock(&pa
->pa_lock
);
3217 if (start
+ size
<= ac
->ac_o_ex
.fe_logical
&&
3218 start
> ac
->ac_o_ex
.fe_logical
) {
3219 ext4_msg(ac
->ac_sb
, KERN_ERR
,
3220 "start %lu, size %lu, fe_logical %lu",
3221 (unsigned long) start
, (unsigned long) size
,
3222 (unsigned long) ac
->ac_o_ex
.fe_logical
);
3225 BUG_ON(size
<= 0 || size
> EXT4_BLOCKS_PER_GROUP(ac
->ac_sb
));
3227 /* now prepare goal request */
3229 /* XXX: is it better to align blocks WRT to logical
3230 * placement or satisfy big request as is */
3231 ac
->ac_g_ex
.fe_logical
= start
;
3232 ac
->ac_g_ex
.fe_len
= EXT4_NUM_B2C(sbi
, size
);
3234 /* define goal start in order to merge */
3235 if (ar
->pright
&& (ar
->lright
== (start
+ size
))) {
3236 /* merge to the right */
3237 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pright
- size
,
3238 &ac
->ac_f_ex
.fe_group
,
3239 &ac
->ac_f_ex
.fe_start
);
3240 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3242 if (ar
->pleft
&& (ar
->lleft
+ 1 == start
)) {
3243 /* merge to the left */
3244 ext4_get_group_no_and_offset(ac
->ac_sb
, ar
->pleft
+ 1,
3245 &ac
->ac_f_ex
.fe_group
,
3246 &ac
->ac_f_ex
.fe_start
);
3247 ac
->ac_flags
|= EXT4_MB_HINT_TRY_GOAL
;
3250 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size
,
3251 (unsigned) orig_size
, (unsigned) start
);
3254 static void ext4_mb_collect_stats(struct ext4_allocation_context
*ac
)
3256 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3258 if (sbi
->s_mb_stats
&& ac
->ac_g_ex
.fe_len
> 1) {
3259 atomic_inc(&sbi
->s_bal_reqs
);
3260 atomic_add(ac
->ac_b_ex
.fe_len
, &sbi
->s_bal_allocated
);
3261 if (ac
->ac_b_ex
.fe_len
>= ac
->ac_o_ex
.fe_len
)
3262 atomic_inc(&sbi
->s_bal_success
);
3263 atomic_add(ac
->ac_found
, &sbi
->s_bal_ex_scanned
);
3264 if (ac
->ac_g_ex
.fe_start
== ac
->ac_b_ex
.fe_start
&&
3265 ac
->ac_g_ex
.fe_group
== ac
->ac_b_ex
.fe_group
)
3266 atomic_inc(&sbi
->s_bal_goals
);
3267 if (ac
->ac_found
> sbi
->s_mb_max_to_scan
)
3268 atomic_inc(&sbi
->s_bal_breaks
);
3271 if (ac
->ac_op
== EXT4_MB_HISTORY_ALLOC
)
3272 trace_ext4_mballoc_alloc(ac
);
3274 trace_ext4_mballoc_prealloc(ac
);
3278 * Called on failure; free up any blocks from the inode PA for this
3279 * context. We don't need this for MB_GROUP_PA because we only change
3280 * pa_free in ext4_mb_release_context(), but on failure, we've already
3281 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3283 static void ext4_discard_allocated_blocks(struct ext4_allocation_context
*ac
)
3285 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
3286 struct ext4_buddy e4b
;
3290 if (ac
->ac_f_ex
.fe_len
== 0)
3292 err
= ext4_mb_load_buddy(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
, &e4b
);
3295 * This should never happen since we pin the
3296 * pages in the ext4_allocation_context so
3297 * ext4_mb_load_buddy() should never fail.
3299 WARN(1, "mb_load_buddy failed (%d)", err
);
3302 ext4_lock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3303 mb_free_blocks(ac
->ac_inode
, &e4b
, ac
->ac_f_ex
.fe_start
,
3304 ac
->ac_f_ex
.fe_len
);
3305 ext4_unlock_group(ac
->ac_sb
, ac
->ac_f_ex
.fe_group
);
3306 ext4_mb_unload_buddy(&e4b
);
3309 if (pa
->pa_type
== MB_INODE_PA
)
3310 pa
->pa_free
+= ac
->ac_b_ex
.fe_len
;
3314 * use blocks preallocated to inode
3316 static void ext4_mb_use_inode_pa(struct ext4_allocation_context
*ac
,
3317 struct ext4_prealloc_space
*pa
)
3319 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3324 /* found preallocated blocks, use them */
3325 start
= pa
->pa_pstart
+ (ac
->ac_o_ex
.fe_logical
- pa
->pa_lstart
);
3326 end
= min(pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
),
3327 start
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
));
3328 len
= EXT4_NUM_B2C(sbi
, end
- start
);
3329 ext4_get_group_no_and_offset(ac
->ac_sb
, start
, &ac
->ac_b_ex
.fe_group
,
3330 &ac
->ac_b_ex
.fe_start
);
3331 ac
->ac_b_ex
.fe_len
= len
;
3332 ac
->ac_status
= AC_STATUS_FOUND
;
3335 BUG_ON(start
< pa
->pa_pstart
);
3336 BUG_ON(end
> pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
));
3337 BUG_ON(pa
->pa_free
< len
);
3340 mb_debug(1, "use %llu/%u from inode pa %p\n", start
, len
, pa
);
3344 * use blocks preallocated to locality group
3346 static void ext4_mb_use_group_pa(struct ext4_allocation_context
*ac
,
3347 struct ext4_prealloc_space
*pa
)
3349 unsigned int len
= ac
->ac_o_ex
.fe_len
;
3351 ext4_get_group_no_and_offset(ac
->ac_sb
, pa
->pa_pstart
,
3352 &ac
->ac_b_ex
.fe_group
,
3353 &ac
->ac_b_ex
.fe_start
);
3354 ac
->ac_b_ex
.fe_len
= len
;
3355 ac
->ac_status
= AC_STATUS_FOUND
;
3358 /* we don't correct pa_pstart or pa_plen here to avoid
3359 * possible race when the group is being loaded concurrently
3360 * instead we correct pa later, after blocks are marked
3361 * in on-disk bitmap -- see ext4_mb_release_context()
3362 * Other CPUs are prevented from allocating from this pa by lg_mutex
3364 mb_debug(1, "use %u/%u from group pa %p\n", pa
->pa_lstart
-len
, len
, pa
);
3368 * Return the prealloc space that have minimal distance
3369 * from the goal block. @cpa is the prealloc
3370 * space that is having currently known minimal distance
3371 * from the goal block.
3373 static struct ext4_prealloc_space
*
3374 ext4_mb_check_group_pa(ext4_fsblk_t goal_block
,
3375 struct ext4_prealloc_space
*pa
,
3376 struct ext4_prealloc_space
*cpa
)
3378 ext4_fsblk_t cur_distance
, new_distance
;
3381 atomic_inc(&pa
->pa_count
);
3384 cur_distance
= abs(goal_block
- cpa
->pa_pstart
);
3385 new_distance
= abs(goal_block
- pa
->pa_pstart
);
3387 if (cur_distance
<= new_distance
)
3390 /* drop the previous reference */
3391 atomic_dec(&cpa
->pa_count
);
3392 atomic_inc(&pa
->pa_count
);
3397 * search goal blocks in preallocated space
3399 static noinline_for_stack
int
3400 ext4_mb_use_preallocated(struct ext4_allocation_context
*ac
)
3402 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
3404 struct ext4_inode_info
*ei
= EXT4_I(ac
->ac_inode
);
3405 struct ext4_locality_group
*lg
;
3406 struct ext4_prealloc_space
*pa
, *cpa
= NULL
;
3407 ext4_fsblk_t goal_block
;
3409 /* only data can be preallocated */
3410 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
3413 /* first, try per-file preallocation */
3415 list_for_each_entry_rcu(pa
, &ei
->i_prealloc_list
, pa_inode_list
) {
3417 /* all fields in this condition don't change,
3418 * so we can skip locking for them */
3419 if (ac
->ac_o_ex
.fe_logical
< pa
->pa_lstart
||
3420 ac
->ac_o_ex
.fe_logical
>= (pa
->pa_lstart
+
3421 EXT4_C2B(sbi
, pa
->pa_len
)))
3424 /* non-extent files can't have physical blocks past 2^32 */
3425 if (!(ext4_test_inode_flag(ac
->ac_inode
, EXT4_INODE_EXTENTS
)) &&
3426 (pa
->pa_pstart
+ EXT4_C2B(sbi
, pa
->pa_len
) >
3427 EXT4_MAX_BLOCK_FILE_PHYS
))
3430 /* found preallocated blocks, use them */
3431 spin_lock(&pa
->pa_lock
);
3432 if (pa
->pa_deleted
== 0 && pa
->pa_free
) {
3433 atomic_inc(&pa
->pa_count
);
3434 ext4_mb_use_inode_pa(ac
, pa
);
3435 spin_unlock(&pa
->pa_lock
);
3436 ac
->ac_criteria
= 10;
3440 spin_unlock(&pa
->pa_lock
);
3444 /* can we use group allocation? */
3445 if (!(ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
))
3448 /* inode may have no locality group for some reason */
3452 order
= fls(ac
->ac_o_ex
.fe_len
) - 1;
3453 if (order
> PREALLOC_TB_SIZE
- 1)
3454 /* The max size of hash table is PREALLOC_TB_SIZE */
3455 order
= PREALLOC_TB_SIZE
- 1;
3457 goal_block
= ext4_grp_offs_to_block(ac
->ac_sb
, &ac
->ac_g_ex
);
3459 * search for the prealloc space that is having
3460 * minimal distance from the goal block.
3462 for (i
= order
; i
< PREALLOC_TB_SIZE
; i
++) {
3464 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[i
],
3466 spin_lock(&pa
->pa_lock
);
3467 if (pa
->pa_deleted
== 0 &&
3468 pa
->pa_free
>= ac
->ac_o_ex
.fe_len
) {
3470 cpa
= ext4_mb_check_group_pa(goal_block
,
3473 spin_unlock(&pa
->pa_lock
);
3478 ext4_mb_use_group_pa(ac
, cpa
);
3479 ac
->ac_criteria
= 20;
3486 * the function goes through all block freed in the group
3487 * but not yet committed and marks them used in in-core bitmap.
3488 * buddy must be generated from this bitmap
3489 * Need to be called with the ext4 group lock held
3491 static void ext4_mb_generate_from_freelist(struct super_block
*sb
, void *bitmap
,
3495 struct ext4_group_info
*grp
;
3496 struct ext4_free_data
*entry
;
3498 grp
= ext4_get_group_info(sb
, group
);
3499 n
= rb_first(&(grp
->bb_free_root
));
3502 entry
= rb_entry(n
, struct ext4_free_data
, efd_node
);
3503 ext4_set_bits(bitmap
, entry
->efd_start_cluster
, entry
->efd_count
);
3510 * the function goes through all preallocation in this group and marks them
3511 * used in in-core bitmap. buddy must be generated from this bitmap
3512 * Need to be called with ext4 group lock held
3514 static noinline_for_stack
3515 void ext4_mb_generate_from_pa(struct super_block
*sb
, void *bitmap
,
3518 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3519 struct ext4_prealloc_space
*pa
;
3520 struct list_head
*cur
;
3521 ext4_group_t groupnr
;
3522 ext4_grpblk_t start
;
3523 int preallocated
= 0;
3526 /* all form of preallocation discards first load group,
3527 * so the only competing code is preallocation use.
3528 * we don't need any locking here
3529 * notice we do NOT ignore preallocations with pa_deleted
3530 * otherwise we could leave used blocks available for
3531 * allocation in buddy when concurrent ext4_mb_put_pa()
3532 * is dropping preallocation
3534 list_for_each(cur
, &grp
->bb_prealloc_list
) {
3535 pa
= list_entry(cur
, struct ext4_prealloc_space
, pa_group_list
);
3536 spin_lock(&pa
->pa_lock
);
3537 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
3540 spin_unlock(&pa
->pa_lock
);
3541 if (unlikely(len
== 0))
3543 BUG_ON(groupnr
!= group
);
3544 ext4_set_bits(bitmap
, start
, len
);
3545 preallocated
+= len
;
3547 mb_debug(1, "prellocated %u for group %u\n", preallocated
, group
);
3550 static void ext4_mb_pa_callback(struct rcu_head
*head
)
3552 struct ext4_prealloc_space
*pa
;
3553 pa
= container_of(head
, struct ext4_prealloc_space
, u
.pa_rcu
);
3555 BUG_ON(atomic_read(&pa
->pa_count
));
3556 BUG_ON(pa
->pa_deleted
== 0);
3557 kmem_cache_free(ext4_pspace_cachep
, pa
);
3561 * drops a reference to preallocated space descriptor
3562 * if this was the last reference and the space is consumed
3564 static void ext4_mb_put_pa(struct ext4_allocation_context
*ac
,
3565 struct super_block
*sb
, struct ext4_prealloc_space
*pa
)
3568 ext4_fsblk_t grp_blk
;
3570 /* in this short window concurrent discard can set pa_deleted */
3571 spin_lock(&pa
->pa_lock
);
3572 if (!atomic_dec_and_test(&pa
->pa_count
) || pa
->pa_free
!= 0) {
3573 spin_unlock(&pa
->pa_lock
);
3577 if (pa
->pa_deleted
== 1) {
3578 spin_unlock(&pa
->pa_lock
);
3583 spin_unlock(&pa
->pa_lock
);
3585 grp_blk
= pa
->pa_pstart
;
3587 * If doing group-based preallocation, pa_pstart may be in the
3588 * next group when pa is used up
3590 if (pa
->pa_type
== MB_GROUP_PA
)
3593 grp
= ext4_get_group_number(sb
, grp_blk
);
3598 * P1 (buddy init) P2 (regular allocation)
3599 * find block B in PA
3600 * copy on-disk bitmap to buddy
3601 * mark B in on-disk bitmap
3602 * drop PA from group
3603 * mark all PAs in buddy
3605 * thus, P1 initializes buddy with B available. to prevent this
3606 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3609 ext4_lock_group(sb
, grp
);
3610 list_del(&pa
->pa_group_list
);
3611 ext4_unlock_group(sb
, grp
);
3613 spin_lock(pa
->pa_obj_lock
);
3614 list_del_rcu(&pa
->pa_inode_list
);
3615 spin_unlock(pa
->pa_obj_lock
);
3617 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3621 * creates new preallocated space for given inode
3623 static noinline_for_stack
int
3624 ext4_mb_new_inode_pa(struct ext4_allocation_context
*ac
)
3626 struct super_block
*sb
= ac
->ac_sb
;
3627 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3628 struct ext4_prealloc_space
*pa
;
3629 struct ext4_group_info
*grp
;
3630 struct ext4_inode_info
*ei
;
3632 /* preallocate only when found space is larger then requested */
3633 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3634 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3635 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3637 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3641 if (ac
->ac_b_ex
.fe_len
< ac
->ac_g_ex
.fe_len
) {
3647 /* we can't allocate as much as normalizer wants.
3648 * so, found space must get proper lstart
3649 * to cover original request */
3650 BUG_ON(ac
->ac_g_ex
.fe_logical
> ac
->ac_o_ex
.fe_logical
);
3651 BUG_ON(ac
->ac_g_ex
.fe_len
< ac
->ac_o_ex
.fe_len
);
3653 /* we're limited by original request in that
3654 * logical block must be covered any way
3655 * winl is window we can move our chunk within */
3656 winl
= ac
->ac_o_ex
.fe_logical
- ac
->ac_g_ex
.fe_logical
;
3658 /* also, we should cover whole original request */
3659 wins
= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
- ac
->ac_o_ex
.fe_len
);
3661 /* the smallest one defines real window */
3662 win
= min(winl
, wins
);
3664 offs
= ac
->ac_o_ex
.fe_logical
%
3665 EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
3666 if (offs
&& offs
< win
)
3669 ac
->ac_b_ex
.fe_logical
= ac
->ac_o_ex
.fe_logical
-
3670 EXT4_NUM_B2C(sbi
, win
);
3671 BUG_ON(ac
->ac_o_ex
.fe_logical
< ac
->ac_b_ex
.fe_logical
);
3672 BUG_ON(ac
->ac_o_ex
.fe_len
> ac
->ac_b_ex
.fe_len
);
3675 /* preallocation can change ac_b_ex, thus we store actually
3676 * allocated blocks for history */
3677 ac
->ac_f_ex
= ac
->ac_b_ex
;
3679 pa
->pa_lstart
= ac
->ac_b_ex
.fe_logical
;
3680 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3681 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3682 pa
->pa_free
= pa
->pa_len
;
3683 atomic_set(&pa
->pa_count
, 1);
3684 spin_lock_init(&pa
->pa_lock
);
3685 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3686 INIT_LIST_HEAD(&pa
->pa_group_list
);
3688 pa
->pa_type
= MB_INODE_PA
;
3690 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa
,
3691 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3692 trace_ext4_mb_new_inode_pa(ac
, pa
);
3694 ext4_mb_use_inode_pa(ac
, pa
);
3695 atomic_add(pa
->pa_free
, &sbi
->s_mb_preallocated
);
3697 ei
= EXT4_I(ac
->ac_inode
);
3698 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3700 pa
->pa_obj_lock
= &ei
->i_prealloc_lock
;
3701 pa
->pa_inode
= ac
->ac_inode
;
3703 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3704 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3705 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3707 spin_lock(pa
->pa_obj_lock
);
3708 list_add_rcu(&pa
->pa_inode_list
, &ei
->i_prealloc_list
);
3709 spin_unlock(pa
->pa_obj_lock
);
3715 * creates new preallocated space for locality group inodes belongs to
3717 static noinline_for_stack
int
3718 ext4_mb_new_group_pa(struct ext4_allocation_context
*ac
)
3720 struct super_block
*sb
= ac
->ac_sb
;
3721 struct ext4_locality_group
*lg
;
3722 struct ext4_prealloc_space
*pa
;
3723 struct ext4_group_info
*grp
;
3725 /* preallocate only when found space is larger then requested */
3726 BUG_ON(ac
->ac_o_ex
.fe_len
>= ac
->ac_b_ex
.fe_len
);
3727 BUG_ON(ac
->ac_status
!= AC_STATUS_FOUND
);
3728 BUG_ON(!S_ISREG(ac
->ac_inode
->i_mode
));
3730 BUG_ON(ext4_pspace_cachep
== NULL
);
3731 pa
= kmem_cache_alloc(ext4_pspace_cachep
, GFP_NOFS
);
3735 /* preallocation can change ac_b_ex, thus we store actually
3736 * allocated blocks for history */
3737 ac
->ac_f_ex
= ac
->ac_b_ex
;
3739 pa
->pa_pstart
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
3740 pa
->pa_lstart
= pa
->pa_pstart
;
3741 pa
->pa_len
= ac
->ac_b_ex
.fe_len
;
3742 pa
->pa_free
= pa
->pa_len
;
3743 atomic_set(&pa
->pa_count
, 1);
3744 spin_lock_init(&pa
->pa_lock
);
3745 INIT_LIST_HEAD(&pa
->pa_inode_list
);
3746 INIT_LIST_HEAD(&pa
->pa_group_list
);
3748 pa
->pa_type
= MB_GROUP_PA
;
3750 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa
,
3751 pa
->pa_pstart
, pa
->pa_len
, pa
->pa_lstart
);
3752 trace_ext4_mb_new_group_pa(ac
, pa
);
3754 ext4_mb_use_group_pa(ac
, pa
);
3755 atomic_add(pa
->pa_free
, &EXT4_SB(sb
)->s_mb_preallocated
);
3757 grp
= ext4_get_group_info(sb
, ac
->ac_b_ex
.fe_group
);
3761 pa
->pa_obj_lock
= &lg
->lg_prealloc_lock
;
3762 pa
->pa_inode
= NULL
;
3764 ext4_lock_group(sb
, ac
->ac_b_ex
.fe_group
);
3765 list_add(&pa
->pa_group_list
, &grp
->bb_prealloc_list
);
3766 ext4_unlock_group(sb
, ac
->ac_b_ex
.fe_group
);
3769 * We will later add the new pa to the right bucket
3770 * after updating the pa_free in ext4_mb_release_context
3775 static int ext4_mb_new_preallocation(struct ext4_allocation_context
*ac
)
3779 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
3780 err
= ext4_mb_new_group_pa(ac
);
3782 err
= ext4_mb_new_inode_pa(ac
);
3787 * finds all unused blocks in on-disk bitmap, frees them in
3788 * in-core bitmap and buddy.
3789 * @pa must be unlinked from inode and group lists, so that
3790 * nobody else can find/use it.
3791 * the caller MUST hold group/inode locks.
3792 * TODO: optimize the case when there are no in-core structures yet
3794 static noinline_for_stack
int
3795 ext4_mb_release_inode_pa(struct ext4_buddy
*e4b
, struct buffer_head
*bitmap_bh
,
3796 struct ext4_prealloc_space
*pa
)
3798 struct super_block
*sb
= e4b
->bd_sb
;
3799 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3804 unsigned long long grp_blk_start
;
3808 BUG_ON(pa
->pa_deleted
== 0);
3809 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3810 grp_blk_start
= pa
->pa_pstart
- EXT4_C2B(sbi
, bit
);
3811 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3812 end
= bit
+ pa
->pa_len
;
3815 bit
= mb_find_next_zero_bit(bitmap_bh
->b_data
, end
, bit
);
3818 next
= mb_find_next_bit(bitmap_bh
->b_data
, end
, bit
);
3819 mb_debug(1, " free preallocated %u/%u in group %u\n",
3820 (unsigned) ext4_group_first_block_no(sb
, group
) + bit
,
3821 (unsigned) next
- bit
, (unsigned) group
);
3824 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, next
- bit
);
3825 trace_ext4_mb_release_inode_pa(pa
, (grp_blk_start
+
3826 EXT4_C2B(sbi
, bit
)),
3828 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, next
- bit
);
3831 if (free
!= pa
->pa_free
) {
3832 ext4_msg(e4b
->bd_sb
, KERN_CRIT
,
3833 "pa %p: logic %lu, phys. %lu, len %lu",
3834 pa
, (unsigned long) pa
->pa_lstart
,
3835 (unsigned long) pa
->pa_pstart
,
3836 (unsigned long) pa
->pa_len
);
3837 ext4_grp_locked_error(sb
, group
, 0, 0, "free %u, pa_free %u",
3840 * pa is already deleted so we use the value obtained
3841 * from the bitmap and continue.
3844 atomic_add(free
, &sbi
->s_mb_discarded
);
3849 static noinline_for_stack
int
3850 ext4_mb_release_group_pa(struct ext4_buddy
*e4b
,
3851 struct ext4_prealloc_space
*pa
)
3853 struct super_block
*sb
= e4b
->bd_sb
;
3857 trace_ext4_mb_release_group_pa(sb
, pa
);
3858 BUG_ON(pa
->pa_deleted
== 0);
3859 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
, &group
, &bit
);
3860 BUG_ON(group
!= e4b
->bd_group
&& pa
->pa_len
!= 0);
3861 mb_free_blocks(pa
->pa_inode
, e4b
, bit
, pa
->pa_len
);
3862 atomic_add(pa
->pa_len
, &EXT4_SB(sb
)->s_mb_discarded
);
3863 trace_ext4_mballoc_discard(sb
, NULL
, group
, bit
, pa
->pa_len
);
3869 * releases all preallocations in given group
3871 * first, we need to decide discard policy:
3872 * - when do we discard
3874 * - how many do we discard
3875 * 1) how many requested
3877 static noinline_for_stack
int
3878 ext4_mb_discard_group_preallocations(struct super_block
*sb
,
3879 ext4_group_t group
, int needed
)
3881 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, group
);
3882 struct buffer_head
*bitmap_bh
= NULL
;
3883 struct ext4_prealloc_space
*pa
, *tmp
;
3884 struct list_head list
;
3885 struct ext4_buddy e4b
;
3890 mb_debug(1, "discard preallocation for group %u\n", group
);
3892 if (list_empty(&grp
->bb_prealloc_list
))
3895 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
3896 if (IS_ERR(bitmap_bh
)) {
3897 err
= PTR_ERR(bitmap_bh
);
3898 ext4_error(sb
, "Error %d reading block bitmap for %u",
3903 err
= ext4_mb_load_buddy(sb
, group
, &e4b
);
3905 ext4_warning(sb
, "Error %d loading buddy information for %u",
3912 needed
= EXT4_CLUSTERS_PER_GROUP(sb
) + 1;
3914 INIT_LIST_HEAD(&list
);
3916 ext4_lock_group(sb
, group
);
3917 list_for_each_entry_safe(pa
, tmp
,
3918 &grp
->bb_prealloc_list
, pa_group_list
) {
3919 spin_lock(&pa
->pa_lock
);
3920 if (atomic_read(&pa
->pa_count
)) {
3921 spin_unlock(&pa
->pa_lock
);
3925 if (pa
->pa_deleted
) {
3926 spin_unlock(&pa
->pa_lock
);
3930 /* seems this one can be freed ... */
3933 /* we can trust pa_free ... */
3934 free
+= pa
->pa_free
;
3936 spin_unlock(&pa
->pa_lock
);
3938 list_del(&pa
->pa_group_list
);
3939 list_add(&pa
->u
.pa_tmp_list
, &list
);
3942 /* if we still need more blocks and some PAs were used, try again */
3943 if (free
< needed
&& busy
) {
3945 ext4_unlock_group(sb
, group
);
3950 /* found anything to free? */
3951 if (list_empty(&list
)) {
3956 /* now free all selected PAs */
3957 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
3959 /* remove from object (inode or locality group) */
3960 spin_lock(pa
->pa_obj_lock
);
3961 list_del_rcu(&pa
->pa_inode_list
);
3962 spin_unlock(pa
->pa_obj_lock
);
3964 if (pa
->pa_type
== MB_GROUP_PA
)
3965 ext4_mb_release_group_pa(&e4b
, pa
);
3967 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
3969 list_del(&pa
->u
.pa_tmp_list
);
3970 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
3974 ext4_unlock_group(sb
, group
);
3975 ext4_mb_unload_buddy(&e4b
);
3981 * releases all non-used preallocated blocks for given inode
3983 * It's important to discard preallocations under i_data_sem
3984 * We don't want another block to be served from the prealloc
3985 * space when we are discarding the inode prealloc space.
3987 * FIXME!! Make sure it is valid at all the call sites
3989 void ext4_discard_preallocations(struct inode
*inode
)
3991 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3992 struct super_block
*sb
= inode
->i_sb
;
3993 struct buffer_head
*bitmap_bh
= NULL
;
3994 struct ext4_prealloc_space
*pa
, *tmp
;
3995 ext4_group_t group
= 0;
3996 struct list_head list
;
3997 struct ext4_buddy e4b
;
4000 if (!S_ISREG(inode
->i_mode
)) {
4001 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4005 mb_debug(1, "discard preallocation for inode %lu\n", inode
->i_ino
);
4006 trace_ext4_discard_preallocations(inode
);
4008 INIT_LIST_HEAD(&list
);
4011 /* first, collect all pa's in the inode */
4012 spin_lock(&ei
->i_prealloc_lock
);
4013 while (!list_empty(&ei
->i_prealloc_list
)) {
4014 pa
= list_entry(ei
->i_prealloc_list
.next
,
4015 struct ext4_prealloc_space
, pa_inode_list
);
4016 BUG_ON(pa
->pa_obj_lock
!= &ei
->i_prealloc_lock
);
4017 spin_lock(&pa
->pa_lock
);
4018 if (atomic_read(&pa
->pa_count
)) {
4019 /* this shouldn't happen often - nobody should
4020 * use preallocation while we're discarding it */
4021 spin_unlock(&pa
->pa_lock
);
4022 spin_unlock(&ei
->i_prealloc_lock
);
4023 ext4_msg(sb
, KERN_ERR
,
4024 "uh-oh! used pa while discarding");
4026 schedule_timeout_uninterruptible(HZ
);
4030 if (pa
->pa_deleted
== 0) {
4032 spin_unlock(&pa
->pa_lock
);
4033 list_del_rcu(&pa
->pa_inode_list
);
4034 list_add(&pa
->u
.pa_tmp_list
, &list
);
4038 /* someone is deleting pa right now */
4039 spin_unlock(&pa
->pa_lock
);
4040 spin_unlock(&ei
->i_prealloc_lock
);
4042 /* we have to wait here because pa_deleted
4043 * doesn't mean pa is already unlinked from
4044 * the list. as we might be called from
4045 * ->clear_inode() the inode will get freed
4046 * and concurrent thread which is unlinking
4047 * pa from inode's list may access already
4048 * freed memory, bad-bad-bad */
4050 /* XXX: if this happens too often, we can
4051 * add a flag to force wait only in case
4052 * of ->clear_inode(), but not in case of
4053 * regular truncate */
4054 schedule_timeout_uninterruptible(HZ
);
4057 spin_unlock(&ei
->i_prealloc_lock
);
4059 list_for_each_entry_safe(pa
, tmp
, &list
, u
.pa_tmp_list
) {
4060 BUG_ON(pa
->pa_type
!= MB_INODE_PA
);
4061 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4063 err
= ext4_mb_load_buddy_gfp(sb
, group
, &e4b
,
4064 GFP_NOFS
|__GFP_NOFAIL
);
4066 ext4_error(sb
, "Error %d loading buddy information for %u",
4071 bitmap_bh
= ext4_read_block_bitmap(sb
, group
);
4072 if (IS_ERR(bitmap_bh
)) {
4073 err
= PTR_ERR(bitmap_bh
);
4074 ext4_error(sb
, "Error %d reading block bitmap for %u",
4076 ext4_mb_unload_buddy(&e4b
);
4080 ext4_lock_group(sb
, group
);
4081 list_del(&pa
->pa_group_list
);
4082 ext4_mb_release_inode_pa(&e4b
, bitmap_bh
, pa
);
4083 ext4_unlock_group(sb
, group
);
4085 ext4_mb_unload_buddy(&e4b
);
4088 list_del(&pa
->u
.pa_tmp_list
);
4089 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4093 #ifdef CONFIG_EXT4_DEBUG
4094 static void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4096 struct super_block
*sb
= ac
->ac_sb
;
4097 ext4_group_t ngroups
, i
;
4099 if (!ext4_mballoc_debug
||
4100 (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
))
4103 ext4_msg(ac
->ac_sb
, KERN_ERR
, "Can't allocate:"
4104 " Allocation context details:");
4105 ext4_msg(ac
->ac_sb
, KERN_ERR
, "status %d flags %d",
4106 ac
->ac_status
, ac
->ac_flags
);
4107 ext4_msg(ac
->ac_sb
, KERN_ERR
, "orig %lu/%lu/%lu@%lu, "
4108 "goal %lu/%lu/%lu@%lu, "
4109 "best %lu/%lu/%lu@%lu cr %d",
4110 (unsigned long)ac
->ac_o_ex
.fe_group
,
4111 (unsigned long)ac
->ac_o_ex
.fe_start
,
4112 (unsigned long)ac
->ac_o_ex
.fe_len
,
4113 (unsigned long)ac
->ac_o_ex
.fe_logical
,
4114 (unsigned long)ac
->ac_g_ex
.fe_group
,
4115 (unsigned long)ac
->ac_g_ex
.fe_start
,
4116 (unsigned long)ac
->ac_g_ex
.fe_len
,
4117 (unsigned long)ac
->ac_g_ex
.fe_logical
,
4118 (unsigned long)ac
->ac_b_ex
.fe_group
,
4119 (unsigned long)ac
->ac_b_ex
.fe_start
,
4120 (unsigned long)ac
->ac_b_ex
.fe_len
,
4121 (unsigned long)ac
->ac_b_ex
.fe_logical
,
4122 (int)ac
->ac_criteria
);
4123 ext4_msg(ac
->ac_sb
, KERN_ERR
, "%d found", ac
->ac_found
);
4124 ext4_msg(ac
->ac_sb
, KERN_ERR
, "groups: ");
4125 ngroups
= ext4_get_groups_count(sb
);
4126 for (i
= 0; i
< ngroups
; i
++) {
4127 struct ext4_group_info
*grp
= ext4_get_group_info(sb
, i
);
4128 struct ext4_prealloc_space
*pa
;
4129 ext4_grpblk_t start
;
4130 struct list_head
*cur
;
4131 ext4_lock_group(sb
, i
);
4132 list_for_each(cur
, &grp
->bb_prealloc_list
) {
4133 pa
= list_entry(cur
, struct ext4_prealloc_space
,
4135 spin_lock(&pa
->pa_lock
);
4136 ext4_get_group_no_and_offset(sb
, pa
->pa_pstart
,
4138 spin_unlock(&pa
->pa_lock
);
4139 printk(KERN_ERR
"PA:%u:%d:%u \n", i
,
4142 ext4_unlock_group(sb
, i
);
4144 if (grp
->bb_free
== 0)
4146 printk(KERN_ERR
"%u: %d/%d \n",
4147 i
, grp
->bb_free
, grp
->bb_fragments
);
4149 printk(KERN_ERR
"\n");
4152 static inline void ext4_mb_show_ac(struct ext4_allocation_context
*ac
)
4159 * We use locality group preallocation for small size file. The size of the
4160 * file is determined by the current size or the resulting size after
4161 * allocation which ever is larger
4163 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4165 static void ext4_mb_group_or_file(struct ext4_allocation_context
*ac
)
4167 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4168 int bsbits
= ac
->ac_sb
->s_blocksize_bits
;
4171 if (!(ac
->ac_flags
& EXT4_MB_HINT_DATA
))
4174 if (unlikely(ac
->ac_flags
& EXT4_MB_HINT_GOAL_ONLY
))
4177 size
= ac
->ac_o_ex
.fe_logical
+ EXT4_C2B(sbi
, ac
->ac_o_ex
.fe_len
);
4178 isize
= (i_size_read(ac
->ac_inode
) + ac
->ac_sb
->s_blocksize
- 1)
4181 if ((size
== isize
) &&
4182 !ext4_fs_is_busy(sbi
) &&
4183 (atomic_read(&ac
->ac_inode
->i_writecount
) == 0)) {
4184 ac
->ac_flags
|= EXT4_MB_HINT_NOPREALLOC
;
4188 if (sbi
->s_mb_group_prealloc
<= 0) {
4189 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4193 /* don't use group allocation for large files */
4194 size
= max(size
, isize
);
4195 if (size
> sbi
->s_mb_stream_request
) {
4196 ac
->ac_flags
|= EXT4_MB_STREAM_ALLOC
;
4200 BUG_ON(ac
->ac_lg
!= NULL
);
4202 * locality group prealloc space are per cpu. The reason for having
4203 * per cpu locality group is to reduce the contention between block
4204 * request from multiple CPUs.
4206 ac
->ac_lg
= raw_cpu_ptr(sbi
->s_locality_groups
);
4208 /* we're going to use group allocation */
4209 ac
->ac_flags
|= EXT4_MB_HINT_GROUP_ALLOC
;
4211 /* serialize all allocations in the group */
4212 mutex_lock(&ac
->ac_lg
->lg_mutex
);
4215 static noinline_for_stack
int
4216 ext4_mb_initialize_context(struct ext4_allocation_context
*ac
,
4217 struct ext4_allocation_request
*ar
)
4219 struct super_block
*sb
= ar
->inode
->i_sb
;
4220 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4221 struct ext4_super_block
*es
= sbi
->s_es
;
4225 ext4_grpblk_t block
;
4227 /* we can't allocate > group size */
4230 /* just a dirty hack to filter too big requests */
4231 if (len
>= EXT4_CLUSTERS_PER_GROUP(sb
))
4232 len
= EXT4_CLUSTERS_PER_GROUP(sb
);
4234 /* start searching from the goal */
4236 if (goal
< le32_to_cpu(es
->s_first_data_block
) ||
4237 goal
>= ext4_blocks_count(es
))
4238 goal
= le32_to_cpu(es
->s_first_data_block
);
4239 ext4_get_group_no_and_offset(sb
, goal
, &group
, &block
);
4241 /* set up allocation goals */
4242 ac
->ac_b_ex
.fe_logical
= EXT4_LBLK_CMASK(sbi
, ar
->logical
);
4243 ac
->ac_status
= AC_STATUS_CONTINUE
;
4245 ac
->ac_inode
= ar
->inode
;
4246 ac
->ac_o_ex
.fe_logical
= ac
->ac_b_ex
.fe_logical
;
4247 ac
->ac_o_ex
.fe_group
= group
;
4248 ac
->ac_o_ex
.fe_start
= block
;
4249 ac
->ac_o_ex
.fe_len
= len
;
4250 ac
->ac_g_ex
= ac
->ac_o_ex
;
4251 ac
->ac_flags
= ar
->flags
;
4253 /* we have to define context: we'll we work with a file or
4254 * locality group. this is a policy, actually */
4255 ext4_mb_group_or_file(ac
);
4257 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4258 "left: %u/%u, right %u/%u to %swritable\n",
4259 (unsigned) ar
->len
, (unsigned) ar
->logical
,
4260 (unsigned) ar
->goal
, ac
->ac_flags
, ac
->ac_2order
,
4261 (unsigned) ar
->lleft
, (unsigned) ar
->pleft
,
4262 (unsigned) ar
->lright
, (unsigned) ar
->pright
,
4263 atomic_read(&ar
->inode
->i_writecount
) ? "" : "non-");
4268 static noinline_for_stack
void
4269 ext4_mb_discard_lg_preallocations(struct super_block
*sb
,
4270 struct ext4_locality_group
*lg
,
4271 int order
, int total_entries
)
4273 ext4_group_t group
= 0;
4274 struct ext4_buddy e4b
;
4275 struct list_head discard_list
;
4276 struct ext4_prealloc_space
*pa
, *tmp
;
4278 mb_debug(1, "discard locality group preallocation\n");
4280 INIT_LIST_HEAD(&discard_list
);
4282 spin_lock(&lg
->lg_prealloc_lock
);
4283 list_for_each_entry_rcu(pa
, &lg
->lg_prealloc_list
[order
],
4285 spin_lock(&pa
->pa_lock
);
4286 if (atomic_read(&pa
->pa_count
)) {
4288 * This is the pa that we just used
4289 * for block allocation. So don't
4292 spin_unlock(&pa
->pa_lock
);
4295 if (pa
->pa_deleted
) {
4296 spin_unlock(&pa
->pa_lock
);
4299 /* only lg prealloc space */
4300 BUG_ON(pa
->pa_type
!= MB_GROUP_PA
);
4302 /* seems this one can be freed ... */
4304 spin_unlock(&pa
->pa_lock
);
4306 list_del_rcu(&pa
->pa_inode_list
);
4307 list_add(&pa
->u
.pa_tmp_list
, &discard_list
);
4310 if (total_entries
<= 5) {
4312 * we want to keep only 5 entries
4313 * allowing it to grow to 8. This
4314 * mak sure we don't call discard
4315 * soon for this list.
4320 spin_unlock(&lg
->lg_prealloc_lock
);
4322 list_for_each_entry_safe(pa
, tmp
, &discard_list
, u
.pa_tmp_list
) {
4325 group
= ext4_get_group_number(sb
, pa
->pa_pstart
);
4326 err
= ext4_mb_load_buddy_gfp(sb
, group
, &e4b
,
4327 GFP_NOFS
|__GFP_NOFAIL
);
4329 ext4_error(sb
, "Error %d loading buddy information for %u",
4333 ext4_lock_group(sb
, group
);
4334 list_del(&pa
->pa_group_list
);
4335 ext4_mb_release_group_pa(&e4b
, pa
);
4336 ext4_unlock_group(sb
, group
);
4338 ext4_mb_unload_buddy(&e4b
);
4339 list_del(&pa
->u
.pa_tmp_list
);
4340 call_rcu(&(pa
)->u
.pa_rcu
, ext4_mb_pa_callback
);
4345 * We have incremented pa_count. So it cannot be freed at this
4346 * point. Also we hold lg_mutex. So no parallel allocation is
4347 * possible from this lg. That means pa_free cannot be updated.
4349 * A parallel ext4_mb_discard_group_preallocations is possible.
4350 * which can cause the lg_prealloc_list to be updated.
4353 static void ext4_mb_add_n_trim(struct ext4_allocation_context
*ac
)
4355 int order
, added
= 0, lg_prealloc_count
= 1;
4356 struct super_block
*sb
= ac
->ac_sb
;
4357 struct ext4_locality_group
*lg
= ac
->ac_lg
;
4358 struct ext4_prealloc_space
*tmp_pa
, *pa
= ac
->ac_pa
;
4360 order
= fls(pa
->pa_free
) - 1;
4361 if (order
> PREALLOC_TB_SIZE
- 1)
4362 /* The max size of hash table is PREALLOC_TB_SIZE */
4363 order
= PREALLOC_TB_SIZE
- 1;
4364 /* Add the prealloc space to lg */
4365 spin_lock(&lg
->lg_prealloc_lock
);
4366 list_for_each_entry_rcu(tmp_pa
, &lg
->lg_prealloc_list
[order
],
4368 spin_lock(&tmp_pa
->pa_lock
);
4369 if (tmp_pa
->pa_deleted
) {
4370 spin_unlock(&tmp_pa
->pa_lock
);
4373 if (!added
&& pa
->pa_free
< tmp_pa
->pa_free
) {
4374 /* Add to the tail of the previous entry */
4375 list_add_tail_rcu(&pa
->pa_inode_list
,
4376 &tmp_pa
->pa_inode_list
);
4379 * we want to count the total
4380 * number of entries in the list
4383 spin_unlock(&tmp_pa
->pa_lock
);
4384 lg_prealloc_count
++;
4387 list_add_tail_rcu(&pa
->pa_inode_list
,
4388 &lg
->lg_prealloc_list
[order
]);
4389 spin_unlock(&lg
->lg_prealloc_lock
);
4391 /* Now trim the list to be not more than 8 elements */
4392 if (lg_prealloc_count
> 8) {
4393 ext4_mb_discard_lg_preallocations(sb
, lg
,
4394 order
, lg_prealloc_count
);
4401 * release all resource we used in allocation
4403 static int ext4_mb_release_context(struct ext4_allocation_context
*ac
)
4405 struct ext4_sb_info
*sbi
= EXT4_SB(ac
->ac_sb
);
4406 struct ext4_prealloc_space
*pa
= ac
->ac_pa
;
4408 if (pa
->pa_type
== MB_GROUP_PA
) {
4409 /* see comment in ext4_mb_use_group_pa() */
4410 spin_lock(&pa
->pa_lock
);
4411 pa
->pa_pstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4412 pa
->pa_lstart
+= EXT4_C2B(sbi
, ac
->ac_b_ex
.fe_len
);
4413 pa
->pa_free
-= ac
->ac_b_ex
.fe_len
;
4414 pa
->pa_len
-= ac
->ac_b_ex
.fe_len
;
4415 spin_unlock(&pa
->pa_lock
);
4420 * We want to add the pa to the right bucket.
4421 * Remove it from the list and while adding
4422 * make sure the list to which we are adding
4425 if ((pa
->pa_type
== MB_GROUP_PA
) && likely(pa
->pa_free
)) {
4426 spin_lock(pa
->pa_obj_lock
);
4427 list_del_rcu(&pa
->pa_inode_list
);
4428 spin_unlock(pa
->pa_obj_lock
);
4429 ext4_mb_add_n_trim(ac
);
4431 ext4_mb_put_pa(ac
, ac
->ac_sb
, pa
);
4433 if (ac
->ac_bitmap_page
)
4434 put_page(ac
->ac_bitmap_page
);
4435 if (ac
->ac_buddy_page
)
4436 put_page(ac
->ac_buddy_page
);
4437 if (ac
->ac_flags
& EXT4_MB_HINT_GROUP_ALLOC
)
4438 mutex_unlock(&ac
->ac_lg
->lg_mutex
);
4439 ext4_mb_collect_stats(ac
);
4443 static int ext4_mb_discard_preallocations(struct super_block
*sb
, int needed
)
4445 ext4_group_t i
, ngroups
= ext4_get_groups_count(sb
);
4449 trace_ext4_mb_discard_preallocations(sb
, needed
);
4450 for (i
= 0; i
< ngroups
&& needed
> 0; i
++) {
4451 ret
= ext4_mb_discard_group_preallocations(sb
, i
, needed
);
4460 * Main entry point into mballoc to allocate blocks
4461 * it tries to use preallocation first, then falls back
4462 * to usual allocation
4464 ext4_fsblk_t
ext4_mb_new_blocks(handle_t
*handle
,
4465 struct ext4_allocation_request
*ar
, int *errp
)
4468 struct ext4_allocation_context
*ac
= NULL
;
4469 struct ext4_sb_info
*sbi
;
4470 struct super_block
*sb
;
4471 ext4_fsblk_t block
= 0;
4472 unsigned int inquota
= 0;
4473 unsigned int reserv_clstrs
= 0;
4476 sb
= ar
->inode
->i_sb
;
4479 trace_ext4_request_blocks(ar
);
4481 /* Allow to use superuser reservation for quota file */
4482 if (IS_NOQUOTA(ar
->inode
))
4483 ar
->flags
|= EXT4_MB_USE_ROOT_BLOCKS
;
4485 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0) {
4486 /* Without delayed allocation we need to verify
4487 * there is enough free blocks to do block allocation
4488 * and verify allocation doesn't exceed the quota limits.
4491 ext4_claim_free_clusters(sbi
, ar
->len
, ar
->flags
)) {
4493 /* let others to free the space */
4495 ar
->len
= ar
->len
>> 1;
4501 reserv_clstrs
= ar
->len
;
4502 if (ar
->flags
& EXT4_MB_USE_ROOT_BLOCKS
) {
4503 dquot_alloc_block_nofail(ar
->inode
,
4504 EXT4_C2B(sbi
, ar
->len
));
4507 dquot_alloc_block(ar
->inode
,
4508 EXT4_C2B(sbi
, ar
->len
))) {
4510 ar
->flags
|= EXT4_MB_HINT_NOPREALLOC
;
4521 ac
= kmem_cache_zalloc(ext4_ac_cachep
, GFP_NOFS
);
4528 *errp
= ext4_mb_initialize_context(ac
, ar
);
4534 ac
->ac_op
= EXT4_MB_HISTORY_PREALLOC
;
4535 if (!ext4_mb_use_preallocated(ac
)) {
4536 ac
->ac_op
= EXT4_MB_HISTORY_ALLOC
;
4537 ext4_mb_normalize_request(ac
, ar
);
4539 /* allocate space in core */
4540 *errp
= ext4_mb_regular_allocator(ac
);
4542 goto discard_and_exit
;
4544 /* as we've just preallocated more space than
4545 * user requested originally, we store allocated
4546 * space in a special descriptor */
4547 if (ac
->ac_status
== AC_STATUS_FOUND
&&
4548 ac
->ac_o_ex
.fe_len
< ac
->ac_b_ex
.fe_len
)
4549 *errp
= ext4_mb_new_preallocation(ac
);
4552 ext4_discard_allocated_blocks(ac
);
4556 if (likely(ac
->ac_status
== AC_STATUS_FOUND
)) {
4557 *errp
= ext4_mb_mark_diskspace_used(ac
, handle
, reserv_clstrs
);
4559 ext4_discard_allocated_blocks(ac
);
4562 block
= ext4_grp_offs_to_block(sb
, &ac
->ac_b_ex
);
4563 ar
->len
= ac
->ac_b_ex
.fe_len
;
4566 freed
= ext4_mb_discard_preallocations(sb
, ac
->ac_o_ex
.fe_len
);
4574 ac
->ac_b_ex
.fe_len
= 0;
4576 ext4_mb_show_ac(ac
);
4578 ext4_mb_release_context(ac
);
4581 kmem_cache_free(ext4_ac_cachep
, ac
);
4582 if (inquota
&& ar
->len
< inquota
)
4583 dquot_free_block(ar
->inode
, EXT4_C2B(sbi
, inquota
- ar
->len
));
4585 if ((ar
->flags
& EXT4_MB_DELALLOC_RESERVED
) == 0)
4586 /* release all the reserved blocks if non delalloc */
4587 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
,
4591 trace_ext4_allocate_blocks(ar
, (unsigned long long)block
);
4597 * We can merge two free data extents only if the physical blocks
4598 * are contiguous, AND the extents were freed by the same transaction,
4599 * AND the blocks are associated with the same group.
4601 static int can_merge(struct ext4_free_data
*entry1
,
4602 struct ext4_free_data
*entry2
)
4604 if ((entry1
->efd_tid
== entry2
->efd_tid
) &&
4605 (entry1
->efd_group
== entry2
->efd_group
) &&
4606 ((entry1
->efd_start_cluster
+ entry1
->efd_count
) == entry2
->efd_start_cluster
))
4611 static noinline_for_stack
int
4612 ext4_mb_free_metadata(handle_t
*handle
, struct ext4_buddy
*e4b
,
4613 struct ext4_free_data
*new_entry
)
4615 ext4_group_t group
= e4b
->bd_group
;
4616 ext4_grpblk_t cluster
;
4617 ext4_grpblk_t clusters
= new_entry
->efd_count
;
4618 struct ext4_free_data
*entry
;
4619 struct ext4_group_info
*db
= e4b
->bd_info
;
4620 struct super_block
*sb
= e4b
->bd_sb
;
4621 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4622 struct rb_node
**n
= &db
->bb_free_root
.rb_node
, *node
;
4623 struct rb_node
*parent
= NULL
, *new_node
;
4625 BUG_ON(!ext4_handle_valid(handle
));
4626 BUG_ON(e4b
->bd_bitmap_page
== NULL
);
4627 BUG_ON(e4b
->bd_buddy_page
== NULL
);
4629 new_node
= &new_entry
->efd_node
;
4630 cluster
= new_entry
->efd_start_cluster
;
4633 /* first free block exent. We need to
4634 protect buddy cache from being freed,
4635 * otherwise we'll refresh it from
4636 * on-disk bitmap and lose not-yet-available
4638 get_page(e4b
->bd_buddy_page
);
4639 get_page(e4b
->bd_bitmap_page
);
4643 entry
= rb_entry(parent
, struct ext4_free_data
, efd_node
);
4644 if (cluster
< entry
->efd_start_cluster
)
4646 else if (cluster
>= (entry
->efd_start_cluster
+ entry
->efd_count
))
4647 n
= &(*n
)->rb_right
;
4649 ext4_grp_locked_error(sb
, group
, 0,
4650 ext4_group_first_block_no(sb
, group
) +
4651 EXT4_C2B(sbi
, cluster
),
4652 "Block already on to-be-freed list");
4657 rb_link_node(new_node
, parent
, n
);
4658 rb_insert_color(new_node
, &db
->bb_free_root
);
4660 /* Now try to see the extent can be merged to left and right */
4661 node
= rb_prev(new_node
);
4663 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4664 if (can_merge(entry
, new_entry
) &&
4665 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4666 new_entry
->efd_start_cluster
= entry
->efd_start_cluster
;
4667 new_entry
->efd_count
+= entry
->efd_count
;
4668 rb_erase(node
, &(db
->bb_free_root
));
4669 kmem_cache_free(ext4_free_data_cachep
, entry
);
4673 node
= rb_next(new_node
);
4675 entry
= rb_entry(node
, struct ext4_free_data
, efd_node
);
4676 if (can_merge(new_entry
, entry
) &&
4677 ext4_journal_callback_try_del(handle
, &entry
->efd_jce
)) {
4678 new_entry
->efd_count
+= entry
->efd_count
;
4679 rb_erase(node
, &(db
->bb_free_root
));
4680 kmem_cache_free(ext4_free_data_cachep
, entry
);
4683 /* Add the extent to transaction's private list */
4684 new_entry
->efd_jce
.jce_func
= ext4_free_data_callback
;
4685 spin_lock(&sbi
->s_md_lock
);
4686 _ext4_journal_callback_add(handle
, &new_entry
->efd_jce
);
4687 sbi
->s_mb_free_pending
+= clusters
;
4688 spin_unlock(&sbi
->s_md_lock
);
4693 * ext4_free_blocks() -- Free given blocks and update quota
4694 * @handle: handle for this transaction
4696 * @block: start physical block to free
4697 * @count: number of blocks to count
4698 * @flags: flags used by ext4_free_blocks
4700 void ext4_free_blocks(handle_t
*handle
, struct inode
*inode
,
4701 struct buffer_head
*bh
, ext4_fsblk_t block
,
4702 unsigned long count
, int flags
)
4704 struct buffer_head
*bitmap_bh
= NULL
;
4705 struct super_block
*sb
= inode
->i_sb
;
4706 struct ext4_group_desc
*gdp
;
4707 unsigned int overflow
;
4709 struct buffer_head
*gd_bh
;
4710 ext4_group_t block_group
;
4711 struct ext4_sb_info
*sbi
;
4712 struct ext4_buddy e4b
;
4713 unsigned int count_clusters
;
4720 BUG_ON(block
!= bh
->b_blocknr
);
4722 block
= bh
->b_blocknr
;
4726 if (!(flags
& EXT4_FREE_BLOCKS_VALIDATED
) &&
4727 !ext4_data_block_valid(sbi
, block
, count
)) {
4728 ext4_error(sb
, "Freeing blocks not in datazone - "
4729 "block = %llu, count = %lu", block
, count
);
4733 ext4_debug("freeing block %llu\n", block
);
4734 trace_ext4_free_blocks(inode
, block
, count
, flags
);
4736 if (bh
&& (flags
& EXT4_FREE_BLOCKS_FORGET
)) {
4739 ext4_forget(handle
, flags
& EXT4_FREE_BLOCKS_METADATA
,
4744 * If the extent to be freed does not begin on a cluster
4745 * boundary, we need to deal with partial clusters at the
4746 * beginning and end of the extent. Normally we will free
4747 * blocks at the beginning or the end unless we are explicitly
4748 * requested to avoid doing so.
4750 overflow
= EXT4_PBLK_COFF(sbi
, block
);
4752 if (flags
& EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER
) {
4753 overflow
= sbi
->s_cluster_ratio
- overflow
;
4755 if (count
> overflow
)
4764 overflow
= EXT4_LBLK_COFF(sbi
, count
);
4766 if (flags
& EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER
) {
4767 if (count
> overflow
)
4772 count
+= sbi
->s_cluster_ratio
- overflow
;
4775 if (!bh
&& (flags
& EXT4_FREE_BLOCKS_FORGET
)) {
4777 int is_metadata
= flags
& EXT4_FREE_BLOCKS_METADATA
;
4779 for (i
= 0; i
< count
; i
++) {
4782 bh
= sb_find_get_block(inode
->i_sb
, block
+ i
);
4783 ext4_forget(handle
, is_metadata
, inode
, bh
, block
+ i
);
4789 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4791 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4792 ext4_get_group_info(sb
, block_group
))))
4796 * Check to see if we are freeing blocks across a group
4799 if (EXT4_C2B(sbi
, bit
) + count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4800 overflow
= EXT4_C2B(sbi
, bit
) + count
-
4801 EXT4_BLOCKS_PER_GROUP(sb
);
4804 count_clusters
= EXT4_NUM_B2C(sbi
, count
);
4805 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4806 if (IS_ERR(bitmap_bh
)) {
4807 err
= PTR_ERR(bitmap_bh
);
4811 gdp
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4817 if (in_range(ext4_block_bitmap(sb
, gdp
), block
, count
) ||
4818 in_range(ext4_inode_bitmap(sb
, gdp
), block
, count
) ||
4819 in_range(block
, ext4_inode_table(sb
, gdp
),
4820 EXT4_SB(sb
)->s_itb_per_group
) ||
4821 in_range(block
+ count
- 1, ext4_inode_table(sb
, gdp
),
4822 EXT4_SB(sb
)->s_itb_per_group
)) {
4824 ext4_error(sb
, "Freeing blocks in system zone - "
4825 "Block = %llu, count = %lu", block
, count
);
4826 /* err = 0. ext4_std_error should be a no op */
4830 BUFFER_TRACE(bitmap_bh
, "getting write access");
4831 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
4836 * We are about to modify some metadata. Call the journal APIs
4837 * to unshare ->b_data if a currently-committing transaction is
4840 BUFFER_TRACE(gd_bh
, "get_write_access");
4841 err
= ext4_journal_get_write_access(handle
, gd_bh
);
4844 #ifdef AGGRESSIVE_CHECK
4847 for (i
= 0; i
< count_clusters
; i
++)
4848 BUG_ON(!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
));
4851 trace_ext4_mballoc_free(sb
, inode
, block_group
, bit
, count_clusters
);
4853 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4854 err
= ext4_mb_load_buddy_gfp(sb
, block_group
, &e4b
,
4855 GFP_NOFS
|__GFP_NOFAIL
);
4860 * We need to make sure we don't reuse the freed block until after the
4861 * transaction is committed. We make an exception if the inode is to be
4862 * written in writeback mode since writeback mode has weak data
4863 * consistency guarantees.
4865 if (ext4_handle_valid(handle
) &&
4866 ((flags
& EXT4_FREE_BLOCKS_METADATA
) ||
4867 !ext4_should_writeback_data(inode
))) {
4868 struct ext4_free_data
*new_entry
;
4870 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4873 new_entry
= kmem_cache_alloc(ext4_free_data_cachep
,
4874 GFP_NOFS
|__GFP_NOFAIL
);
4875 new_entry
->efd_start_cluster
= bit
;
4876 new_entry
->efd_group
= block_group
;
4877 new_entry
->efd_count
= count_clusters
;
4878 new_entry
->efd_tid
= handle
->h_transaction
->t_tid
;
4880 ext4_lock_group(sb
, block_group
);
4881 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4882 ext4_mb_free_metadata(handle
, &e4b
, new_entry
);
4884 /* need to update group_info->bb_free and bitmap
4885 * with group lock held. generate_buddy look at
4886 * them with group lock_held
4888 if (test_opt(sb
, DISCARD
)) {
4889 err
= ext4_issue_discard(sb
, block_group
, bit
, count
);
4890 if (err
&& err
!= -EOPNOTSUPP
)
4891 ext4_msg(sb
, KERN_WARNING
, "discard request in"
4892 " group:%d block:%d count:%lu failed"
4893 " with %d", block_group
, bit
, count
,
4896 EXT4_MB_GRP_CLEAR_TRIMMED(e4b
.bd_info
);
4898 ext4_lock_group(sb
, block_group
);
4899 mb_clear_bits(bitmap_bh
->b_data
, bit
, count_clusters
);
4900 mb_free_blocks(inode
, &e4b
, bit
, count_clusters
);
4903 ret
= ext4_free_group_clusters(sb
, gdp
) + count_clusters
;
4904 ext4_free_group_clusters_set(sb
, gdp
, ret
);
4905 ext4_block_bitmap_csum_set(sb
, block_group
, gdp
, bitmap_bh
);
4906 ext4_group_desc_csum_set(sb
, block_group
, gdp
);
4907 ext4_unlock_group(sb
, block_group
);
4909 if (sbi
->s_log_groups_per_flex
) {
4910 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
4911 atomic64_add(count_clusters
,
4912 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
4913 flex_group
)->free_clusters
);
4916 if (!(flags
& EXT4_FREE_BLOCKS_NO_QUOT_UPDATE
))
4917 dquot_free_block(inode
, EXT4_C2B(sbi
, count_clusters
));
4918 percpu_counter_add(&sbi
->s_freeclusters_counter
, count_clusters
);
4920 ext4_mb_unload_buddy(&e4b
);
4922 /* We dirtied the bitmap block */
4923 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
4924 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
4926 /* And the group descriptor block */
4927 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
4928 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
4932 if (overflow
&& !err
) {
4940 ext4_std_error(sb
, err
);
4945 * ext4_group_add_blocks() -- Add given blocks to an existing group
4946 * @handle: handle to this transaction
4948 * @block: start physical block to add to the block group
4949 * @count: number of blocks to free
4951 * This marks the blocks as free in the bitmap and buddy.
4953 int ext4_group_add_blocks(handle_t
*handle
, struct super_block
*sb
,
4954 ext4_fsblk_t block
, unsigned long count
)
4956 struct buffer_head
*bitmap_bh
= NULL
;
4957 struct buffer_head
*gd_bh
;
4958 ext4_group_t block_group
;
4961 struct ext4_group_desc
*desc
;
4962 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
4963 struct ext4_buddy e4b
;
4964 int err
= 0, ret
, blk_free_count
;
4965 ext4_grpblk_t blocks_freed
;
4967 ext4_debug("Adding block(s) %llu-%llu\n", block
, block
+ count
- 1);
4972 ext4_get_group_no_and_offset(sb
, block
, &block_group
, &bit
);
4974 * Check to see if we are freeing blocks across a group
4977 if (bit
+ count
> EXT4_BLOCKS_PER_GROUP(sb
)) {
4978 ext4_warning(sb
, "too much blocks added to group %u",
4984 bitmap_bh
= ext4_read_block_bitmap(sb
, block_group
);
4985 if (IS_ERR(bitmap_bh
)) {
4986 err
= PTR_ERR(bitmap_bh
);
4991 desc
= ext4_get_group_desc(sb
, block_group
, &gd_bh
);
4997 if (in_range(ext4_block_bitmap(sb
, desc
), block
, count
) ||
4998 in_range(ext4_inode_bitmap(sb
, desc
), block
, count
) ||
4999 in_range(block
, ext4_inode_table(sb
, desc
), sbi
->s_itb_per_group
) ||
5000 in_range(block
+ count
- 1, ext4_inode_table(sb
, desc
),
5001 sbi
->s_itb_per_group
)) {
5002 ext4_error(sb
, "Adding blocks in system zones - "
5003 "Block = %llu, count = %lu",
5009 BUFFER_TRACE(bitmap_bh
, "getting write access");
5010 err
= ext4_journal_get_write_access(handle
, bitmap_bh
);
5015 * We are about to modify some metadata. Call the journal APIs
5016 * to unshare ->b_data if a currently-committing transaction is
5019 BUFFER_TRACE(gd_bh
, "get_write_access");
5020 err
= ext4_journal_get_write_access(handle
, gd_bh
);
5024 for (i
= 0, blocks_freed
= 0; i
< count
; i
++) {
5025 BUFFER_TRACE(bitmap_bh
, "clear bit");
5026 if (!mb_test_bit(bit
+ i
, bitmap_bh
->b_data
)) {
5027 ext4_error(sb
, "bit already cleared for block %llu",
5028 (ext4_fsblk_t
)(block
+ i
));
5029 BUFFER_TRACE(bitmap_bh
, "bit already cleared");
5035 err
= ext4_mb_load_buddy(sb
, block_group
, &e4b
);
5040 * need to update group_info->bb_free and bitmap
5041 * with group lock held. generate_buddy look at
5042 * them with group lock_held
5044 ext4_lock_group(sb
, block_group
);
5045 mb_clear_bits(bitmap_bh
->b_data
, bit
, count
);
5046 mb_free_blocks(NULL
, &e4b
, bit
, count
);
5047 blk_free_count
= blocks_freed
+ ext4_free_group_clusters(sb
, desc
);
5048 ext4_free_group_clusters_set(sb
, desc
, blk_free_count
);
5049 ext4_block_bitmap_csum_set(sb
, block_group
, desc
, bitmap_bh
);
5050 ext4_group_desc_csum_set(sb
, block_group
, desc
);
5051 ext4_unlock_group(sb
, block_group
);
5052 percpu_counter_add(&sbi
->s_freeclusters_counter
,
5053 EXT4_NUM_B2C(sbi
, blocks_freed
));
5055 if (sbi
->s_log_groups_per_flex
) {
5056 ext4_group_t flex_group
= ext4_flex_group(sbi
, block_group
);
5057 atomic64_add(EXT4_NUM_B2C(sbi
, blocks_freed
),
5058 &sbi_array_rcu_deref(sbi
, s_flex_groups
,
5059 flex_group
)->free_clusters
);
5062 ext4_mb_unload_buddy(&e4b
);
5064 /* We dirtied the bitmap block */
5065 BUFFER_TRACE(bitmap_bh
, "dirtied bitmap block");
5066 err
= ext4_handle_dirty_metadata(handle
, NULL
, bitmap_bh
);
5068 /* And the group descriptor block */
5069 BUFFER_TRACE(gd_bh
, "dirtied group descriptor block");
5070 ret
= ext4_handle_dirty_metadata(handle
, NULL
, gd_bh
);
5076 ext4_std_error(sb
, err
);
5081 * ext4_trim_extent -- function to TRIM one single free extent in the group
5082 * @sb: super block for the file system
5083 * @start: starting block of the free extent in the alloc. group
5084 * @count: number of blocks to TRIM
5085 * @group: alloc. group we are working with
5086 * @e4b: ext4 buddy for the group
5088 * Trim "count" blocks starting at "start" in the "group". To assure that no
5089 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5090 * be called with under the group lock.
5092 static int ext4_trim_extent(struct super_block
*sb
, int start
, int count
,
5093 ext4_group_t group
, struct ext4_buddy
*e4b
)
5097 struct ext4_free_extent ex
;
5100 trace_ext4_trim_extent(sb
, group
, start
, count
);
5102 assert_spin_locked(ext4_group_lock_ptr(sb
, group
));
5104 ex
.fe_start
= start
;
5105 ex
.fe_group
= group
;
5109 * Mark blocks used, so no one can reuse them while
5112 mb_mark_used(e4b
, &ex
);
5113 ext4_unlock_group(sb
, group
);
5114 ret
= ext4_issue_discard(sb
, group
, start
, count
);
5115 ext4_lock_group(sb
, group
);
5116 mb_free_blocks(NULL
, e4b
, start
, ex
.fe_len
);
5121 * ext4_trim_all_free -- function to trim all free space in alloc. group
5122 * @sb: super block for file system
5123 * @group: group to be trimmed
5124 * @start: first group block to examine
5125 * @max: last group block to examine
5126 * @minblocks: minimum extent block count
5128 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5129 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5133 * ext4_trim_all_free walks through group's block bitmap searching for free
5134 * extents. When the free extent is found, mark it as used in group buddy
5135 * bitmap. Then issue a TRIM command on this extent and free the extent in
5136 * the group buddy bitmap. This is done until whole group is scanned.
5138 static ext4_grpblk_t
5139 ext4_trim_all_free(struct super_block
*sb
, ext4_group_t group
,
5140 ext4_grpblk_t start
, ext4_grpblk_t max
,
5141 ext4_grpblk_t minblocks
)
5144 ext4_grpblk_t next
, count
= 0, free_count
= 0;
5145 struct ext4_buddy e4b
;
5148 trace_ext4_trim_all_free(sb
, group
, start
, max
);
5150 ret
= ext4_mb_load_buddy(sb
, group
, &e4b
);
5152 ext4_warning(sb
, "Error %d loading buddy information for %u",
5156 bitmap
= e4b
.bd_bitmap
;
5158 ext4_lock_group(sb
, group
);
5159 if (EXT4_MB_GRP_WAS_TRIMMED(e4b
.bd_info
) &&
5160 minblocks
>= atomic_read(&EXT4_SB(sb
)->s_last_trim_minblks
))
5163 start
= (e4b
.bd_info
->bb_first_free
> start
) ?
5164 e4b
.bd_info
->bb_first_free
: start
;
5166 while (start
<= max
) {
5167 start
= mb_find_next_zero_bit(bitmap
, max
+ 1, start
);
5170 next
= mb_find_next_bit(bitmap
, max
+ 1, start
);
5172 if ((next
- start
) >= minblocks
) {
5173 ret
= ext4_trim_extent(sb
, start
,
5174 next
- start
, group
, &e4b
);
5175 if (ret
&& ret
!= -EOPNOTSUPP
)
5178 count
+= next
- start
;
5180 free_count
+= next
- start
;
5183 if (fatal_signal_pending(current
)) {
5184 count
= -ERESTARTSYS
;
5188 if (need_resched()) {
5189 ext4_unlock_group(sb
, group
);
5191 ext4_lock_group(sb
, group
);
5194 if ((e4b
.bd_info
->bb_free
- free_count
) < minblocks
)
5200 EXT4_MB_GRP_SET_TRIMMED(e4b
.bd_info
);
5203 ext4_unlock_group(sb
, group
);
5204 ext4_mb_unload_buddy(&e4b
);
5206 ext4_debug("trimmed %d blocks in the group %d\n",
5213 * ext4_trim_fs() -- trim ioctl handle function
5214 * @sb: superblock for filesystem
5215 * @range: fstrim_range structure
5217 * start: First Byte to trim
5218 * len: number of Bytes to trim from start
5219 * minlen: minimum extent length in Bytes
5220 * ext4_trim_fs goes through all allocation groups containing Bytes from
5221 * start to start+len. For each such a group ext4_trim_all_free function
5222 * is invoked to trim all free space.
5224 int ext4_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
5226 struct ext4_group_info
*grp
;
5227 ext4_group_t group
, first_group
, last_group
;
5228 ext4_grpblk_t cnt
= 0, first_cluster
, last_cluster
;
5229 uint64_t start
, end
, minlen
, trimmed
= 0;
5230 ext4_fsblk_t first_data_blk
=
5231 le32_to_cpu(EXT4_SB(sb
)->s_es
->s_first_data_block
);
5232 ext4_fsblk_t max_blks
= ext4_blocks_count(EXT4_SB(sb
)->s_es
);
5235 start
= range
->start
>> sb
->s_blocksize_bits
;
5236 end
= start
+ (range
->len
>> sb
->s_blocksize_bits
) - 1;
5237 minlen
= EXT4_NUM_B2C(EXT4_SB(sb
),
5238 range
->minlen
>> sb
->s_blocksize_bits
);
5240 if (minlen
> EXT4_CLUSTERS_PER_GROUP(sb
) ||
5241 start
>= max_blks
||
5242 range
->len
< sb
->s_blocksize
)
5244 if (end
>= max_blks
)
5246 if (end
<= first_data_blk
)
5248 if (start
< first_data_blk
)
5249 start
= first_data_blk
;
5251 /* Determine first and last group to examine based on start and end */
5252 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) start
,
5253 &first_group
, &first_cluster
);
5254 ext4_get_group_no_and_offset(sb
, (ext4_fsblk_t
) end
,
5255 &last_group
, &last_cluster
);
5257 /* end now represents the last cluster to discard in this group */
5258 end
= EXT4_CLUSTERS_PER_GROUP(sb
) - 1;
5260 for (group
= first_group
; group
<= last_group
; group
++) {
5261 grp
= ext4_get_group_info(sb
, group
);
5262 /* We only do this if the grp has never been initialized */
5263 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp
))) {
5264 ret
= ext4_mb_init_group(sb
, group
, GFP_NOFS
);
5270 * For all the groups except the last one, last cluster will
5271 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5272 * change it for the last group, note that last_cluster is
5273 * already computed earlier by ext4_get_group_no_and_offset()
5275 if (group
== last_group
)
5278 if (grp
->bb_free
>= minlen
) {
5279 cnt
= ext4_trim_all_free(sb
, group
, first_cluster
,
5289 * For every group except the first one, we are sure
5290 * that the first cluster to discard will be cluster #0.
5296 atomic_set(&EXT4_SB(sb
)->s_last_trim_minblks
, minlen
);
5299 range
->len
= EXT4_C2B(EXT4_SB(sb
), trimmed
) << sb
->s_blocksize_bits
;