clocksource/drivers/arm_arch_timer: Correct fault programming of CNTKCTL_EL1.EVNTI
[linux/fpc-iii.git] / fs / libfs.c
blob835d25e335095985fd7a4409c26ae9b5198fb571
1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/mount.h>
11 #include <linux/vfs.h>
12 #include <linux/quotaops.h>
13 #include <linux/mutex.h>
14 #include <linux/namei.h>
15 #include <linux/exportfs.h>
16 #include <linux/writeback.h>
17 #include <linux/buffer_head.h> /* sync_mapping_buffers */
19 #include <asm/uaccess.h>
21 #include "internal.h"
23 int simple_getattr(struct vfsmount *mnt, struct dentry *dentry,
24 struct kstat *stat)
26 struct inode *inode = d_inode(dentry);
27 generic_fillattr(inode, stat);
28 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
29 return 0;
31 EXPORT_SYMBOL(simple_getattr);
33 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35 buf->f_type = dentry->d_sb->s_magic;
36 buf->f_bsize = PAGE_SIZE;
37 buf->f_namelen = NAME_MAX;
38 return 0;
40 EXPORT_SYMBOL(simple_statfs);
43 * Retaining negative dentries for an in-memory filesystem just wastes
44 * memory and lookup time: arrange for them to be deleted immediately.
46 int always_delete_dentry(const struct dentry *dentry)
48 return 1;
50 EXPORT_SYMBOL(always_delete_dentry);
52 const struct dentry_operations simple_dentry_operations = {
53 .d_delete = always_delete_dentry,
55 EXPORT_SYMBOL(simple_dentry_operations);
58 * Lookup the data. This is trivial - if the dentry didn't already
59 * exist, we know it is negative. Set d_op to delete negative dentries.
61 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
63 if (dentry->d_name.len > NAME_MAX)
64 return ERR_PTR(-ENAMETOOLONG);
65 if (!dentry->d_sb->s_d_op)
66 d_set_d_op(dentry, &simple_dentry_operations);
67 d_add(dentry, NULL);
68 return NULL;
70 EXPORT_SYMBOL(simple_lookup);
72 int dcache_dir_open(struct inode *inode, struct file *file)
74 file->private_data = d_alloc_cursor(file->f_path.dentry);
76 return file->private_data ? 0 : -ENOMEM;
78 EXPORT_SYMBOL(dcache_dir_open);
80 int dcache_dir_close(struct inode *inode, struct file *file)
82 dput(file->private_data);
83 return 0;
85 EXPORT_SYMBOL(dcache_dir_close);
87 /* parent is locked at least shared */
89 * Returns an element of siblings' list.
90 * We are looking for <count>th positive after <p>; if
91 * found, dentry is grabbed and passed to caller via *<res>.
92 * If no such element exists, the anchor of list is returned
93 * and *<res> is set to NULL.
95 static struct list_head *scan_positives(struct dentry *cursor,
96 struct list_head *p,
97 loff_t count,
98 struct dentry **res)
100 struct dentry *dentry = cursor->d_parent, *found = NULL;
102 spin_lock(&dentry->d_lock);
103 while ((p = p->next) != &dentry->d_subdirs) {
104 struct dentry *d = list_entry(p, struct dentry, d_child);
105 // we must at least skip cursors, to avoid livelocks
106 if (d->d_flags & DCACHE_DENTRY_CURSOR)
107 continue;
108 if (simple_positive(d) && !--count) {
109 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
110 if (simple_positive(d))
111 found = dget_dlock(d);
112 spin_unlock(&d->d_lock);
113 if (likely(found))
114 break;
115 count = 1;
117 if (need_resched()) {
118 list_move(&cursor->d_child, p);
119 p = &cursor->d_child;
120 spin_unlock(&dentry->d_lock);
121 cond_resched();
122 spin_lock(&dentry->d_lock);
125 spin_unlock(&dentry->d_lock);
126 dput(*res);
127 *res = found;
128 return p;
131 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
133 struct dentry *dentry = file->f_path.dentry;
134 switch (whence) {
135 case 1:
136 offset += file->f_pos;
137 case 0:
138 if (offset >= 0)
139 break;
140 default:
141 return -EINVAL;
143 if (offset != file->f_pos) {
144 struct dentry *cursor = file->private_data;
145 struct dentry *to = NULL;
146 struct list_head *p;
148 file->f_pos = offset;
149 inode_lock_shared(dentry->d_inode);
151 if (file->f_pos > 2) {
152 p = scan_positives(cursor, &dentry->d_subdirs,
153 file->f_pos - 2, &to);
154 spin_lock(&dentry->d_lock);
155 list_move(&cursor->d_child, p);
156 spin_unlock(&dentry->d_lock);
157 } else {
158 spin_lock(&dentry->d_lock);
159 list_del_init(&cursor->d_child);
160 spin_unlock(&dentry->d_lock);
163 dput(to);
165 inode_unlock_shared(dentry->d_inode);
167 return offset;
169 EXPORT_SYMBOL(dcache_dir_lseek);
171 /* Relationship between i_mode and the DT_xxx types */
172 static inline unsigned char dt_type(struct inode *inode)
174 return (inode->i_mode >> 12) & 15;
178 * Directory is locked and all positive dentries in it are safe, since
179 * for ramfs-type trees they can't go away without unlink() or rmdir(),
180 * both impossible due to the lock on directory.
183 int dcache_readdir(struct file *file, struct dir_context *ctx)
185 struct dentry *dentry = file->f_path.dentry;
186 struct dentry *cursor = file->private_data;
187 struct list_head *anchor = &dentry->d_subdirs;
188 struct dentry *next = NULL;
189 struct list_head *p;
191 if (!dir_emit_dots(file, ctx))
192 return 0;
194 if (ctx->pos == 2)
195 p = anchor;
196 else
197 p = &cursor->d_child;
199 while ((p = scan_positives(cursor, p, 1, &next)) != anchor) {
200 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
201 d_inode(next)->i_ino, dt_type(d_inode(next))))
202 break;
203 ctx->pos++;
205 spin_lock(&dentry->d_lock);
206 list_move_tail(&cursor->d_child, p);
207 spin_unlock(&dentry->d_lock);
208 dput(next);
210 return 0;
212 EXPORT_SYMBOL(dcache_readdir);
214 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
216 return -EISDIR;
218 EXPORT_SYMBOL(generic_read_dir);
220 const struct file_operations simple_dir_operations = {
221 .open = dcache_dir_open,
222 .release = dcache_dir_close,
223 .llseek = dcache_dir_lseek,
224 .read = generic_read_dir,
225 .iterate_shared = dcache_readdir,
226 .fsync = noop_fsync,
228 EXPORT_SYMBOL(simple_dir_operations);
230 const struct inode_operations simple_dir_inode_operations = {
231 .lookup = simple_lookup,
233 EXPORT_SYMBOL(simple_dir_inode_operations);
235 static const struct super_operations simple_super_operations = {
236 .statfs = simple_statfs,
240 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
241 * will never be mountable)
243 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
244 const struct super_operations *ops, const struct xattr_handler **xattr,
245 const struct dentry_operations *dops, unsigned long magic)
247 struct super_block *s;
248 struct dentry *dentry;
249 struct inode *root;
250 struct qstr d_name = QSTR_INIT(name, strlen(name));
252 s = sget_userns(fs_type, NULL, set_anon_super, MS_KERNMOUNT|MS_NOUSER,
253 &init_user_ns, NULL);
254 if (IS_ERR(s))
255 return ERR_CAST(s);
257 s->s_maxbytes = MAX_LFS_FILESIZE;
258 s->s_blocksize = PAGE_SIZE;
259 s->s_blocksize_bits = PAGE_SHIFT;
260 s->s_magic = magic;
261 s->s_op = ops ? ops : &simple_super_operations;
262 s->s_xattr = xattr;
263 s->s_time_gran = 1;
264 root = new_inode(s);
265 if (!root)
266 goto Enomem;
268 * since this is the first inode, make it number 1. New inodes created
269 * after this must take care not to collide with it (by passing
270 * max_reserved of 1 to iunique).
272 root->i_ino = 1;
273 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
274 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
275 dentry = __d_alloc(s, &d_name);
276 if (!dentry) {
277 iput(root);
278 goto Enomem;
280 d_instantiate(dentry, root);
281 s->s_root = dentry;
282 s->s_d_op = dops;
283 s->s_flags |= MS_ACTIVE;
284 return dget(s->s_root);
286 Enomem:
287 deactivate_locked_super(s);
288 return ERR_PTR(-ENOMEM);
290 EXPORT_SYMBOL(mount_pseudo_xattr);
292 int simple_open(struct inode *inode, struct file *file)
294 if (inode->i_private)
295 file->private_data = inode->i_private;
296 return 0;
298 EXPORT_SYMBOL(simple_open);
300 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
302 struct inode *inode = d_inode(old_dentry);
304 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
305 inc_nlink(inode);
306 ihold(inode);
307 dget(dentry);
308 d_instantiate(dentry, inode);
309 return 0;
311 EXPORT_SYMBOL(simple_link);
313 int simple_empty(struct dentry *dentry)
315 struct dentry *child;
316 int ret = 0;
318 spin_lock(&dentry->d_lock);
319 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
320 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
321 if (simple_positive(child)) {
322 spin_unlock(&child->d_lock);
323 goto out;
325 spin_unlock(&child->d_lock);
327 ret = 1;
328 out:
329 spin_unlock(&dentry->d_lock);
330 return ret;
332 EXPORT_SYMBOL(simple_empty);
334 int simple_unlink(struct inode *dir, struct dentry *dentry)
336 struct inode *inode = d_inode(dentry);
338 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
339 drop_nlink(inode);
340 dput(dentry);
341 return 0;
343 EXPORT_SYMBOL(simple_unlink);
345 int simple_rmdir(struct inode *dir, struct dentry *dentry)
347 if (!simple_empty(dentry))
348 return -ENOTEMPTY;
350 drop_nlink(d_inode(dentry));
351 simple_unlink(dir, dentry);
352 drop_nlink(dir);
353 return 0;
355 EXPORT_SYMBOL(simple_rmdir);
357 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
358 struct inode *new_dir, struct dentry *new_dentry,
359 unsigned int flags)
361 struct inode *inode = d_inode(old_dentry);
362 int they_are_dirs = d_is_dir(old_dentry);
364 if (flags & ~RENAME_NOREPLACE)
365 return -EINVAL;
367 if (!simple_empty(new_dentry))
368 return -ENOTEMPTY;
370 if (d_really_is_positive(new_dentry)) {
371 simple_unlink(new_dir, new_dentry);
372 if (they_are_dirs) {
373 drop_nlink(d_inode(new_dentry));
374 drop_nlink(old_dir);
376 } else if (they_are_dirs) {
377 drop_nlink(old_dir);
378 inc_nlink(new_dir);
381 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
382 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
384 return 0;
386 EXPORT_SYMBOL(simple_rename);
389 * simple_setattr - setattr for simple filesystem
390 * @dentry: dentry
391 * @iattr: iattr structure
393 * Returns 0 on success, -error on failure.
395 * simple_setattr is a simple ->setattr implementation without a proper
396 * implementation of size changes.
398 * It can either be used for in-memory filesystems or special files
399 * on simple regular filesystems. Anything that needs to change on-disk
400 * or wire state on size changes needs its own setattr method.
402 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
404 struct inode *inode = d_inode(dentry);
405 int error;
407 error = setattr_prepare(dentry, iattr);
408 if (error)
409 return error;
411 if (iattr->ia_valid & ATTR_SIZE)
412 truncate_setsize(inode, iattr->ia_size);
413 setattr_copy(inode, iattr);
414 mark_inode_dirty(inode);
415 return 0;
417 EXPORT_SYMBOL(simple_setattr);
419 int simple_readpage(struct file *file, struct page *page)
421 clear_highpage(page);
422 flush_dcache_page(page);
423 SetPageUptodate(page);
424 unlock_page(page);
425 return 0;
427 EXPORT_SYMBOL(simple_readpage);
429 int simple_write_begin(struct file *file, struct address_space *mapping,
430 loff_t pos, unsigned len, unsigned flags,
431 struct page **pagep, void **fsdata)
433 struct page *page;
434 pgoff_t index;
436 index = pos >> PAGE_SHIFT;
438 page = grab_cache_page_write_begin(mapping, index, flags);
439 if (!page)
440 return -ENOMEM;
442 *pagep = page;
444 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
445 unsigned from = pos & (PAGE_SIZE - 1);
447 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
449 return 0;
451 EXPORT_SYMBOL(simple_write_begin);
454 * simple_write_end - .write_end helper for non-block-device FSes
455 * @available: See .write_end of address_space_operations
456 * @file: "
457 * @mapping: "
458 * @pos: "
459 * @len: "
460 * @copied: "
461 * @page: "
462 * @fsdata: "
464 * simple_write_end does the minimum needed for updating a page after writing is
465 * done. It has the same API signature as the .write_end of
466 * address_space_operations vector. So it can just be set onto .write_end for
467 * FSes that don't need any other processing. i_mutex is assumed to be held.
468 * Block based filesystems should use generic_write_end().
469 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
470 * is not called, so a filesystem that actually does store data in .write_inode
471 * should extend on what's done here with a call to mark_inode_dirty() in the
472 * case that i_size has changed.
474 int simple_write_end(struct file *file, struct address_space *mapping,
475 loff_t pos, unsigned len, unsigned copied,
476 struct page *page, void *fsdata)
478 struct inode *inode = page->mapping->host;
479 loff_t last_pos = pos + copied;
481 /* zero the stale part of the page if we did a short copy */
482 if (copied < len) {
483 unsigned from = pos & (PAGE_SIZE - 1);
485 zero_user(page, from + copied, len - copied);
488 if (!PageUptodate(page))
489 SetPageUptodate(page);
491 * No need to use i_size_read() here, the i_size
492 * cannot change under us because we hold the i_mutex.
494 if (last_pos > inode->i_size)
495 i_size_write(inode, last_pos);
497 set_page_dirty(page);
498 unlock_page(page);
499 put_page(page);
501 return copied;
503 EXPORT_SYMBOL(simple_write_end);
506 * the inodes created here are not hashed. If you use iunique to generate
507 * unique inode values later for this filesystem, then you must take care
508 * to pass it an appropriate max_reserved value to avoid collisions.
510 int simple_fill_super(struct super_block *s, unsigned long magic,
511 struct tree_descr *files)
513 struct inode *inode;
514 struct dentry *root;
515 struct dentry *dentry;
516 int i;
518 s->s_blocksize = PAGE_SIZE;
519 s->s_blocksize_bits = PAGE_SHIFT;
520 s->s_magic = magic;
521 s->s_op = &simple_super_operations;
522 s->s_time_gran = 1;
524 inode = new_inode(s);
525 if (!inode)
526 return -ENOMEM;
528 * because the root inode is 1, the files array must not contain an
529 * entry at index 1
531 inode->i_ino = 1;
532 inode->i_mode = S_IFDIR | 0755;
533 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
534 inode->i_op = &simple_dir_inode_operations;
535 inode->i_fop = &simple_dir_operations;
536 set_nlink(inode, 2);
537 root = d_make_root(inode);
538 if (!root)
539 return -ENOMEM;
540 for (i = 0; !files->name || files->name[0]; i++, files++) {
541 if (!files->name)
542 continue;
544 /* warn if it tries to conflict with the root inode */
545 if (unlikely(i == 1))
546 printk(KERN_WARNING "%s: %s passed in a files array"
547 "with an index of 1!\n", __func__,
548 s->s_type->name);
550 dentry = d_alloc_name(root, files->name);
551 if (!dentry)
552 goto out;
553 inode = new_inode(s);
554 if (!inode) {
555 dput(dentry);
556 goto out;
558 inode->i_mode = S_IFREG | files->mode;
559 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
560 inode->i_fop = files->ops;
561 inode->i_ino = i;
562 d_add(dentry, inode);
564 s->s_root = root;
565 return 0;
566 out:
567 d_genocide(root);
568 shrink_dcache_parent(root);
569 dput(root);
570 return -ENOMEM;
572 EXPORT_SYMBOL(simple_fill_super);
574 static DEFINE_SPINLOCK(pin_fs_lock);
576 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
578 struct vfsmount *mnt = NULL;
579 spin_lock(&pin_fs_lock);
580 if (unlikely(!*mount)) {
581 spin_unlock(&pin_fs_lock);
582 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, NULL);
583 if (IS_ERR(mnt))
584 return PTR_ERR(mnt);
585 spin_lock(&pin_fs_lock);
586 if (!*mount)
587 *mount = mnt;
589 mntget(*mount);
590 ++*count;
591 spin_unlock(&pin_fs_lock);
592 mntput(mnt);
593 return 0;
595 EXPORT_SYMBOL(simple_pin_fs);
597 void simple_release_fs(struct vfsmount **mount, int *count)
599 struct vfsmount *mnt;
600 spin_lock(&pin_fs_lock);
601 mnt = *mount;
602 if (!--*count)
603 *mount = NULL;
604 spin_unlock(&pin_fs_lock);
605 mntput(mnt);
607 EXPORT_SYMBOL(simple_release_fs);
610 * simple_read_from_buffer - copy data from the buffer to user space
611 * @to: the user space buffer to read to
612 * @count: the maximum number of bytes to read
613 * @ppos: the current position in the buffer
614 * @from: the buffer to read from
615 * @available: the size of the buffer
617 * The simple_read_from_buffer() function reads up to @count bytes from the
618 * buffer @from at offset @ppos into the user space address starting at @to.
620 * On success, the number of bytes read is returned and the offset @ppos is
621 * advanced by this number, or negative value is returned on error.
623 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
624 const void *from, size_t available)
626 loff_t pos = *ppos;
627 size_t ret;
629 if (pos < 0)
630 return -EINVAL;
631 if (pos >= available || !count)
632 return 0;
633 if (count > available - pos)
634 count = available - pos;
635 ret = copy_to_user(to, from + pos, count);
636 if (ret == count)
637 return -EFAULT;
638 count -= ret;
639 *ppos = pos + count;
640 return count;
642 EXPORT_SYMBOL(simple_read_from_buffer);
645 * simple_write_to_buffer - copy data from user space to the buffer
646 * @to: the buffer to write to
647 * @available: the size of the buffer
648 * @ppos: the current position in the buffer
649 * @from: the user space buffer to read from
650 * @count: the maximum number of bytes to read
652 * The simple_write_to_buffer() function reads up to @count bytes from the user
653 * space address starting at @from into the buffer @to at offset @ppos.
655 * On success, the number of bytes written is returned and the offset @ppos is
656 * advanced by this number, or negative value is returned on error.
658 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
659 const void __user *from, size_t count)
661 loff_t pos = *ppos;
662 size_t res;
664 if (pos < 0)
665 return -EINVAL;
666 if (pos >= available || !count)
667 return 0;
668 if (count > available - pos)
669 count = available - pos;
670 res = copy_from_user(to + pos, from, count);
671 if (res == count)
672 return -EFAULT;
673 count -= res;
674 *ppos = pos + count;
675 return count;
677 EXPORT_SYMBOL(simple_write_to_buffer);
680 * memory_read_from_buffer - copy data from the buffer
681 * @to: the kernel space buffer to read to
682 * @count: the maximum number of bytes to read
683 * @ppos: the current position in the buffer
684 * @from: the buffer to read from
685 * @available: the size of the buffer
687 * The memory_read_from_buffer() function reads up to @count bytes from the
688 * buffer @from at offset @ppos into the kernel space address starting at @to.
690 * On success, the number of bytes read is returned and the offset @ppos is
691 * advanced by this number, or negative value is returned on error.
693 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
694 const void *from, size_t available)
696 loff_t pos = *ppos;
698 if (pos < 0)
699 return -EINVAL;
700 if (pos >= available)
701 return 0;
702 if (count > available - pos)
703 count = available - pos;
704 memcpy(to, from + pos, count);
705 *ppos = pos + count;
707 return count;
709 EXPORT_SYMBOL(memory_read_from_buffer);
712 * Transaction based IO.
713 * The file expects a single write which triggers the transaction, and then
714 * possibly a read which collects the result - which is stored in a
715 * file-local buffer.
718 void simple_transaction_set(struct file *file, size_t n)
720 struct simple_transaction_argresp *ar = file->private_data;
722 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
725 * The barrier ensures that ar->size will really remain zero until
726 * ar->data is ready for reading.
728 smp_mb();
729 ar->size = n;
731 EXPORT_SYMBOL(simple_transaction_set);
733 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
735 struct simple_transaction_argresp *ar;
736 static DEFINE_SPINLOCK(simple_transaction_lock);
738 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
739 return ERR_PTR(-EFBIG);
741 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
742 if (!ar)
743 return ERR_PTR(-ENOMEM);
745 spin_lock(&simple_transaction_lock);
747 /* only one write allowed per open */
748 if (file->private_data) {
749 spin_unlock(&simple_transaction_lock);
750 free_page((unsigned long)ar);
751 return ERR_PTR(-EBUSY);
754 file->private_data = ar;
756 spin_unlock(&simple_transaction_lock);
758 if (copy_from_user(ar->data, buf, size))
759 return ERR_PTR(-EFAULT);
761 return ar->data;
763 EXPORT_SYMBOL(simple_transaction_get);
765 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
767 struct simple_transaction_argresp *ar = file->private_data;
769 if (!ar)
770 return 0;
771 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
773 EXPORT_SYMBOL(simple_transaction_read);
775 int simple_transaction_release(struct inode *inode, struct file *file)
777 free_page((unsigned long)file->private_data);
778 return 0;
780 EXPORT_SYMBOL(simple_transaction_release);
782 /* Simple attribute files */
784 struct simple_attr {
785 int (*get)(void *, u64 *);
786 int (*set)(void *, u64);
787 char get_buf[24]; /* enough to store a u64 and "\n\0" */
788 char set_buf[24];
789 void *data;
790 const char *fmt; /* format for read operation */
791 struct mutex mutex; /* protects access to these buffers */
794 /* simple_attr_open is called by an actual attribute open file operation
795 * to set the attribute specific access operations. */
796 int simple_attr_open(struct inode *inode, struct file *file,
797 int (*get)(void *, u64 *), int (*set)(void *, u64),
798 const char *fmt)
800 struct simple_attr *attr;
802 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
803 if (!attr)
804 return -ENOMEM;
806 attr->get = get;
807 attr->set = set;
808 attr->data = inode->i_private;
809 attr->fmt = fmt;
810 mutex_init(&attr->mutex);
812 file->private_data = attr;
814 return nonseekable_open(inode, file);
816 EXPORT_SYMBOL_GPL(simple_attr_open);
818 int simple_attr_release(struct inode *inode, struct file *file)
820 kfree(file->private_data);
821 return 0;
823 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
825 /* read from the buffer that is filled with the get function */
826 ssize_t simple_attr_read(struct file *file, char __user *buf,
827 size_t len, loff_t *ppos)
829 struct simple_attr *attr;
830 size_t size;
831 ssize_t ret;
833 attr = file->private_data;
835 if (!attr->get)
836 return -EACCES;
838 ret = mutex_lock_interruptible(&attr->mutex);
839 if (ret)
840 return ret;
842 if (*ppos && attr->get_buf[0]) {
843 /* continued read */
844 size = strlen(attr->get_buf);
845 } else {
846 /* first read */
847 u64 val;
848 ret = attr->get(attr->data, &val);
849 if (ret)
850 goto out;
852 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
853 attr->fmt, (unsigned long long)val);
856 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
857 out:
858 mutex_unlock(&attr->mutex);
859 return ret;
861 EXPORT_SYMBOL_GPL(simple_attr_read);
863 /* interpret the buffer as a number to call the set function with */
864 ssize_t simple_attr_write(struct file *file, const char __user *buf,
865 size_t len, loff_t *ppos)
867 struct simple_attr *attr;
868 unsigned long long val;
869 size_t size;
870 ssize_t ret;
872 attr = file->private_data;
873 if (!attr->set)
874 return -EACCES;
876 ret = mutex_lock_interruptible(&attr->mutex);
877 if (ret)
878 return ret;
880 ret = -EFAULT;
881 size = min(sizeof(attr->set_buf) - 1, len);
882 if (copy_from_user(attr->set_buf, buf, size))
883 goto out;
885 attr->set_buf[size] = '\0';
886 ret = kstrtoull(attr->set_buf, 0, &val);
887 if (ret)
888 goto out;
889 ret = attr->set(attr->data, val);
890 if (ret == 0)
891 ret = len; /* on success, claim we got the whole input */
892 out:
893 mutex_unlock(&attr->mutex);
894 return ret;
896 EXPORT_SYMBOL_GPL(simple_attr_write);
899 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
900 * @sb: filesystem to do the file handle conversion on
901 * @fid: file handle to convert
902 * @fh_len: length of the file handle in bytes
903 * @fh_type: type of file handle
904 * @get_inode: filesystem callback to retrieve inode
906 * This function decodes @fid as long as it has one of the well-known
907 * Linux filehandle types and calls @get_inode on it to retrieve the
908 * inode for the object specified in the file handle.
910 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
911 int fh_len, int fh_type, struct inode *(*get_inode)
912 (struct super_block *sb, u64 ino, u32 gen))
914 struct inode *inode = NULL;
916 if (fh_len < 2)
917 return NULL;
919 switch (fh_type) {
920 case FILEID_INO32_GEN:
921 case FILEID_INO32_GEN_PARENT:
922 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
923 break;
926 return d_obtain_alias(inode);
928 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
931 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
932 * @sb: filesystem to do the file handle conversion on
933 * @fid: file handle to convert
934 * @fh_len: length of the file handle in bytes
935 * @fh_type: type of file handle
936 * @get_inode: filesystem callback to retrieve inode
938 * This function decodes @fid as long as it has one of the well-known
939 * Linux filehandle types and calls @get_inode on it to retrieve the
940 * inode for the _parent_ object specified in the file handle if it
941 * is specified in the file handle, or NULL otherwise.
943 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
944 int fh_len, int fh_type, struct inode *(*get_inode)
945 (struct super_block *sb, u64 ino, u32 gen))
947 struct inode *inode = NULL;
949 if (fh_len <= 2)
950 return NULL;
952 switch (fh_type) {
953 case FILEID_INO32_GEN_PARENT:
954 inode = get_inode(sb, fid->i32.parent_ino,
955 (fh_len > 3 ? fid->i32.parent_gen : 0));
956 break;
959 return d_obtain_alias(inode);
961 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
964 * __generic_file_fsync - generic fsync implementation for simple filesystems
966 * @file: file to synchronize
967 * @start: start offset in bytes
968 * @end: end offset in bytes (inclusive)
969 * @datasync: only synchronize essential metadata if true
971 * This is a generic implementation of the fsync method for simple
972 * filesystems which track all non-inode metadata in the buffers list
973 * hanging off the address_space structure.
975 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
976 int datasync)
978 struct inode *inode = file->f_mapping->host;
979 int err;
980 int ret;
982 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
983 if (err)
984 return err;
986 inode_lock(inode);
987 ret = sync_mapping_buffers(inode->i_mapping);
988 if (!(inode->i_state & I_DIRTY_ALL))
989 goto out;
990 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
991 goto out;
993 err = sync_inode_metadata(inode, 1);
994 if (ret == 0)
995 ret = err;
997 out:
998 inode_unlock(inode);
999 return ret;
1001 EXPORT_SYMBOL(__generic_file_fsync);
1004 * generic_file_fsync - generic fsync implementation for simple filesystems
1005 * with flush
1006 * @file: file to synchronize
1007 * @start: start offset in bytes
1008 * @end: end offset in bytes (inclusive)
1009 * @datasync: only synchronize essential metadata if true
1013 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1014 int datasync)
1016 struct inode *inode = file->f_mapping->host;
1017 int err;
1019 err = __generic_file_fsync(file, start, end, datasync);
1020 if (err)
1021 return err;
1022 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1024 EXPORT_SYMBOL(generic_file_fsync);
1027 * generic_check_addressable - Check addressability of file system
1028 * @blocksize_bits: log of file system block size
1029 * @num_blocks: number of blocks in file system
1031 * Determine whether a file system with @num_blocks blocks (and a
1032 * block size of 2**@blocksize_bits) is addressable by the sector_t
1033 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1035 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1037 u64 last_fs_block = num_blocks - 1;
1038 u64 last_fs_page =
1039 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1041 if (unlikely(num_blocks == 0))
1042 return 0;
1044 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1045 return -EINVAL;
1047 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1048 (last_fs_page > (pgoff_t)(~0ULL))) {
1049 return -EFBIG;
1051 return 0;
1053 EXPORT_SYMBOL(generic_check_addressable);
1056 * No-op implementation of ->fsync for in-memory filesystems.
1058 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1060 return 0;
1062 EXPORT_SYMBOL(noop_fsync);
1064 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
1065 void kfree_link(void *p)
1067 kfree(p);
1069 EXPORT_SYMBOL(kfree_link);
1072 * nop .set_page_dirty method so that people can use .page_mkwrite on
1073 * anon inodes.
1075 static int anon_set_page_dirty(struct page *page)
1077 return 0;
1081 * A single inode exists for all anon_inode files. Contrary to pipes,
1082 * anon_inode inodes have no associated per-instance data, so we need
1083 * only allocate one of them.
1085 struct inode *alloc_anon_inode(struct super_block *s)
1087 static const struct address_space_operations anon_aops = {
1088 .set_page_dirty = anon_set_page_dirty,
1090 struct inode *inode = new_inode_pseudo(s);
1092 if (!inode)
1093 return ERR_PTR(-ENOMEM);
1095 inode->i_ino = get_next_ino();
1096 inode->i_mapping->a_ops = &anon_aops;
1099 * Mark the inode dirty from the very beginning,
1100 * that way it will never be moved to the dirty
1101 * list because mark_inode_dirty() will think
1102 * that it already _is_ on the dirty list.
1104 inode->i_state = I_DIRTY;
1105 inode->i_mode = S_IRUSR | S_IWUSR;
1106 inode->i_uid = current_fsuid();
1107 inode->i_gid = current_fsgid();
1108 inode->i_flags |= S_PRIVATE;
1109 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1110 return inode;
1112 EXPORT_SYMBOL(alloc_anon_inode);
1115 * simple_nosetlease - generic helper for prohibiting leases
1116 * @filp: file pointer
1117 * @arg: type of lease to obtain
1118 * @flp: new lease supplied for insertion
1119 * @priv: private data for lm_setup operation
1121 * Generic helper for filesystems that do not wish to allow leases to be set.
1122 * All arguments are ignored and it just returns -EINVAL.
1125 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1126 void **priv)
1128 return -EINVAL;
1130 EXPORT_SYMBOL(simple_nosetlease);
1132 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1133 struct delayed_call *done)
1135 return inode->i_link;
1137 EXPORT_SYMBOL(simple_get_link);
1139 const struct inode_operations simple_symlink_inode_operations = {
1140 .get_link = simple_get_link,
1141 .readlink = generic_readlink
1143 EXPORT_SYMBOL(simple_symlink_inode_operations);
1146 * Operations for a permanently empty directory.
1148 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1150 return ERR_PTR(-ENOENT);
1153 static int empty_dir_getattr(struct vfsmount *mnt, struct dentry *dentry,
1154 struct kstat *stat)
1156 struct inode *inode = d_inode(dentry);
1157 generic_fillattr(inode, stat);
1158 return 0;
1161 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1163 return -EPERM;
1166 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1168 return -EOPNOTSUPP;
1171 static const struct inode_operations empty_dir_inode_operations = {
1172 .lookup = empty_dir_lookup,
1173 .permission = generic_permission,
1174 .setattr = empty_dir_setattr,
1175 .getattr = empty_dir_getattr,
1176 .listxattr = empty_dir_listxattr,
1179 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1181 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1182 return generic_file_llseek_size(file, offset, whence, 2, 2);
1185 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1187 dir_emit_dots(file, ctx);
1188 return 0;
1191 static const struct file_operations empty_dir_operations = {
1192 .llseek = empty_dir_llseek,
1193 .read = generic_read_dir,
1194 .iterate_shared = empty_dir_readdir,
1195 .fsync = noop_fsync,
1199 void make_empty_dir_inode(struct inode *inode)
1201 set_nlink(inode, 2);
1202 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1203 inode->i_uid = GLOBAL_ROOT_UID;
1204 inode->i_gid = GLOBAL_ROOT_GID;
1205 inode->i_rdev = 0;
1206 inode->i_size = 0;
1207 inode->i_blkbits = PAGE_SHIFT;
1208 inode->i_blocks = 0;
1210 inode->i_op = &empty_dir_inode_operations;
1211 inode->i_opflags &= ~IOP_XATTR;
1212 inode->i_fop = &empty_dir_operations;
1215 bool is_empty_dir_inode(struct inode *inode)
1217 return (inode->i_fop == &empty_dir_operations) &&
1218 (inode->i_op == &empty_dir_inode_operations);