1 #ifndef __NET_SCHED_RED_H
2 #define __NET_SCHED_RED_H
4 #include <linux/types.h>
6 #include <net/pkt_sched.h>
7 #include <net/inet_ecn.h>
8 #include <net/dsfield.h>
9 #include <linux/reciprocal_div.h>
11 /* Random Early Detection (RED) algorithm.
12 =======================================
14 Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
15 for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
17 This file codes a "divisionless" version of RED algorithm
18 as written down in Fig.17 of the paper.
23 When a new packet arrives we calculate the average queue length:
25 avg = (1-W)*avg + W*current_queue_len,
27 W is the filter time constant (chosen as 2^(-Wlog)), it controls
28 the inertia of the algorithm. To allow larger bursts, W should be
31 if (avg > th_max) -> packet marked (dropped).
32 if (avg < th_min) -> packet passes.
33 if (th_min < avg < th_max) we calculate probability:
35 Pb = max_P * (avg - th_min)/(th_max-th_min)
37 and mark (drop) packet with this probability.
38 Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
39 max_P should be small (not 1), usually 0.01..0.02 is good value.
41 max_P is chosen as a number, so that max_P/(th_max-th_min)
42 is a negative power of two in order arithmetics to contain
46 Parameters, settable by user:
47 -----------------------------
49 qth_min - bytes (should be < qth_max/2)
50 qth_max - bytes (should be at least 2*qth_min and less limit)
51 Wlog - bits (<32) log(1/W).
54 Plog is related to max_P by formula:
56 max_P = (qth_max-qth_min)/2^Plog;
58 F.e. if qth_max=128K and qth_min=32K, then Plog=22
59 corresponds to max_P=0.02
64 Lookup table for log((1-W)^(t/t_ave).
72 If you want to allow bursts of L packets of size S,
75 L + 1 - th_min/S < (1-(1-W)^L)/W
77 th_min/S = 32 th_min/S = 4
93 * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
94 * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
97 * if (avg > target and max_p <= 0.5)
98 * increase max_p : max_p += alpha;
99 * else if (avg < target and max_p >= 0.01)
100 * decrease max_p : max_p *= beta;
102 * target :[qth_min + 0.4*(qth_min - qth_max),
103 * qth_min + 0.6*(qth_min - qth_max)].
104 * alpha : min(0.01, max_p / 4)
106 * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
107 * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
109 #define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
111 #define MAX_P_MIN (1 * RED_ONE_PERCENT)
112 #define MAX_P_MAX (50 * RED_ONE_PERCENT)
113 #define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
115 #define RED_STAB_SIZE 256
116 #define RED_STAB_MASK (RED_STAB_SIZE - 1)
119 u32 prob_drop
; /* Early probability drops */
120 u32 prob_mark
; /* Early probability marks */
121 u32 forced_drop
; /* Forced drops, qavg > max_thresh */
122 u32 forced_mark
; /* Forced marks, qavg > max_thresh */
123 u32 pdrop
; /* Drops due to queue limits */
124 u32 other
; /* Drops due to drop() calls */
129 u32 qth_min
; /* Min avg length threshold: Wlog scaled */
130 u32 qth_max
; /* Max avg length threshold: Wlog scaled */
132 u32 max_P
; /* probability, [0 .. 1.0] 32 scaled */
133 /* reciprocal_value(max_P / qth_delta) */
134 struct reciprocal_value max_P_reciprocal
;
135 u32 qth_delta
; /* max_th - min_th */
136 u32 target_min
; /* min_th + 0.4*(max_th - min_th) */
137 u32 target_max
; /* min_th + 0.6*(max_th - min_th) */
139 u8 Wlog
; /* log(W) */
140 u8 Plog
; /* random number bits */
141 u8 Stab
[RED_STAB_SIZE
];
146 int qcount
; /* Number of packets since last random
148 u32 qR
; /* Cached random number */
150 unsigned long qavg
; /* Average queue length: Wlog scaled */
151 ktime_t qidlestart
; /* Start of current idle period */
154 static inline u32
red_maxp(u8 Plog
)
156 return Plog
< 32 ? (~0U >> Plog
) : ~0U;
159 static inline void red_set_vars(struct red_vars
*v
)
161 /* Reset average queue length, the value is strictly bound
162 * to the parameters below, reseting hurts a bit but leaving
163 * it might result in an unreasonable qavg for a while. --TGR
170 static inline bool red_check_params(u32 qth_min
, u32 qth_max
, u8 Wlog
)
172 if (fls(qth_min
) + Wlog
> 32)
174 if (fls(qth_max
) + Wlog
> 32)
176 if (qth_max
< qth_min
)
181 static inline void red_set_parms(struct red_parms
*p
,
182 u32 qth_min
, u32 qth_max
, u8 Wlog
, u8 Plog
,
183 u8 Scell_log
, u8
*stab
, u32 max_P
)
185 int delta
= qth_max
- qth_min
;
188 p
->qth_min
= qth_min
<< Wlog
;
189 p
->qth_max
= qth_max
<< Wlog
;
194 p
->qth_delta
= delta
;
196 max_P
= red_maxp(Plog
);
197 max_P
*= delta
; /* max_P = (qth_max - qth_min)/2^Plog */
200 max_p_delta
= max_P
/ delta
;
201 max_p_delta
= max(max_p_delta
, 1U);
202 p
->max_P_reciprocal
= reciprocal_value(max_p_delta
);
204 /* RED Adaptative target :
205 * [min_th + 0.4*(min_th - max_th),
206 * min_th + 0.6*(min_th - max_th)].
209 p
->target_min
= qth_min
+ 2*delta
;
210 p
->target_max
= qth_min
+ 3*delta
;
212 p
->Scell_log
= Scell_log
;
213 p
->Scell_max
= (255 << Scell_log
);
216 memcpy(p
->Stab
, stab
, sizeof(p
->Stab
));
219 static inline int red_is_idling(const struct red_vars
*v
)
221 return v
->qidlestart
.tv64
!= 0;
224 static inline void red_start_of_idle_period(struct red_vars
*v
)
226 v
->qidlestart
= ktime_get();
229 static inline void red_end_of_idle_period(struct red_vars
*v
)
231 v
->qidlestart
.tv64
= 0;
234 static inline void red_restart(struct red_vars
*v
)
236 red_end_of_idle_period(v
);
241 static inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms
*p
,
242 const struct red_vars
*v
)
244 s64 delta
= ktime_us_delta(ktime_get(), v
->qidlestart
);
245 long us_idle
= min_t(s64
, delta
, p
->Scell_max
);
249 * The problem: ideally, average length queue recalcultion should
250 * be done over constant clock intervals. This is too expensive, so
251 * that the calculation is driven by outgoing packets.
252 * When the queue is idle we have to model this clock by hand.
254 * SF+VJ proposed to "generate":
256 * m = idletime / (average_pkt_size / bandwidth)
258 * dummy packets as a burst after idle time, i.e.
262 * This is an apparently overcomplicated solution (f.e. we have to
263 * precompute a table to make this calculation in reasonable time)
264 * I believe that a simpler model may be used here,
265 * but it is field for experiments.
268 shift
= p
->Stab
[(us_idle
>> p
->Scell_log
) & RED_STAB_MASK
];
271 return v
->qavg
>> shift
;
273 /* Approximate initial part of exponent with linear function:
275 * (1-W)^m ~= 1-mW + ...
277 * Seems, it is the best solution to
278 * problem of too coarse exponent tabulation.
280 us_idle
= (v
->qavg
* (u64
)us_idle
) >> p
->Scell_log
;
282 if (us_idle
< (v
->qavg
>> 1))
283 return v
->qavg
- us_idle
;
289 static inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms
*p
,
290 const struct red_vars
*v
,
291 unsigned int backlog
)
294 * NOTE: v->qavg is fixed point number with point at Wlog.
295 * The formula below is equvalent to floating point
298 * qavg = qavg*(1-W) + backlog*W;
302 return v
->qavg
+ (backlog
- (v
->qavg
>> p
->Wlog
));
305 static inline unsigned long red_calc_qavg(const struct red_parms
*p
,
306 const struct red_vars
*v
,
307 unsigned int backlog
)
309 if (!red_is_idling(v
))
310 return red_calc_qavg_no_idle_time(p
, v
, backlog
);
312 return red_calc_qavg_from_idle_time(p
, v
);
316 static inline u32
red_random(const struct red_parms
*p
)
318 return reciprocal_divide(prandom_u32(), p
->max_P_reciprocal
);
321 static inline int red_mark_probability(const struct red_parms
*p
,
322 const struct red_vars
*v
,
325 /* The formula used below causes questions.
327 OK. qR is random number in the interval
328 (0..1/max_P)*(qth_max-qth_min)
329 i.e. 0..(2^Plog). If we used floating point
330 arithmetics, it would be: (2^Plog)*rnd_num,
331 where rnd_num is less 1.
333 Taking into account, that qavg have fixed
334 point at Wlog, two lines
335 below have the following floating point equivalent:
337 max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
339 Any questions? --ANK (980924)
341 return !(((qavg
- p
->qth_min
) >> p
->Wlog
) * v
->qcount
< v
->qR
);
345 RED_BELOW_MIN_THRESH
,
350 static inline int red_cmp_thresh(const struct red_parms
*p
, unsigned long qavg
)
352 if (qavg
< p
->qth_min
)
353 return RED_BELOW_MIN_THRESH
;
354 else if (qavg
>= p
->qth_max
)
355 return RED_ABOVE_MAX_TRESH
;
357 return RED_BETWEEN_TRESH
;
366 static inline int red_action(const struct red_parms
*p
,
370 switch (red_cmp_thresh(p
, qavg
)) {
371 case RED_BELOW_MIN_THRESH
:
373 return RED_DONT_MARK
;
375 case RED_BETWEEN_TRESH
:
377 if (red_mark_probability(p
, v
, qavg
)) {
379 v
->qR
= red_random(p
);
380 return RED_PROB_MARK
;
383 v
->qR
= red_random(p
);
385 return RED_DONT_MARK
;
387 case RED_ABOVE_MAX_TRESH
:
389 return RED_HARD_MARK
;
393 return RED_DONT_MARK
;
396 static inline void red_adaptative_algo(struct red_parms
*p
, struct red_vars
*v
)
402 if (red_is_idling(v
))
403 qavg
= red_calc_qavg_from_idle_time(p
, v
);
405 /* v->qavg is fixed point number with point at Wlog */
408 if (qavg
> p
->target_max
&& p
->max_P
<= MAX_P_MAX
)
409 p
->max_P
+= MAX_P_ALPHA(p
->max_P
); /* maxp = maxp + alpha */
410 else if (qavg
< p
->target_min
&& p
->max_P
>= MAX_P_MIN
)
411 p
->max_P
= (p
->max_P
/10)*9; /* maxp = maxp * Beta */
413 max_p_delta
= DIV_ROUND_CLOSEST(p
->max_P
, p
->qth_delta
);
414 max_p_delta
= max(max_p_delta
, 1U);
415 p
->max_P_reciprocal
= reciprocal_value(max_p_delta
);