clocksource/drivers/arm_arch_timer: Correct fault programming of CNTKCTL_EL1.EVNTI
[linux/fpc-iii.git] / kernel / time / ntp.c
blob4bdb59604526611366997e25fbb71e3fad1f6954
1 /*
2 * NTP state machine interfaces and logic.
4 * This code was mainly moved from kernel/timer.c and kernel/time.c
5 * Please see those files for relevant copyright info and historical
6 * changelogs.
7 */
8 #include <linux/capability.h>
9 #include <linux/clocksource.h>
10 #include <linux/workqueue.h>
11 #include <linux/hrtimer.h>
12 #include <linux/jiffies.h>
13 #include <linux/math64.h>
14 #include <linux/timex.h>
15 #include <linux/time.h>
16 #include <linux/mm.h>
17 #include <linux/module.h>
18 #include <linux/rtc.h>
19 #include <linux/math64.h>
21 #include "ntp_internal.h"
22 #include "timekeeping_internal.h"
26 * NTP timekeeping variables:
28 * Note: All of the NTP state is protected by the timekeeping locks.
32 /* USER_HZ period (usecs): */
33 unsigned long tick_usec = TICK_USEC;
35 /* SHIFTED_HZ period (nsecs): */
36 unsigned long tick_nsec;
38 static u64 tick_length;
39 static u64 tick_length_base;
41 #define SECS_PER_DAY 86400
42 #define MAX_TICKADJ 500LL /* usecs */
43 #define MAX_TICKADJ_SCALED \
44 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ)
45 #define MAX_TAI_OFFSET 100000
48 * phase-lock loop variables
52 * clock synchronization status
54 * (TIME_ERROR prevents overwriting the CMOS clock)
56 static int time_state = TIME_OK;
58 /* clock status bits: */
59 static int time_status = STA_UNSYNC;
61 /* time adjustment (nsecs): */
62 static s64 time_offset;
64 /* pll time constant: */
65 static long time_constant = 2;
67 /* maximum error (usecs): */
68 static long time_maxerror = NTP_PHASE_LIMIT;
70 /* estimated error (usecs): */
71 static long time_esterror = NTP_PHASE_LIMIT;
73 /* frequency offset (scaled nsecs/secs): */
74 static s64 time_freq;
76 /* time at last adjustment (secs): */
77 static time64_t time_reftime;
79 static long time_adjust;
81 /* constant (boot-param configurable) NTP tick adjustment (upscaled) */
82 static s64 ntp_tick_adj;
84 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */
85 static time64_t ntp_next_leap_sec = TIME64_MAX;
87 #ifdef CONFIG_NTP_PPS
90 * The following variables are used when a pulse-per-second (PPS) signal
91 * is available. They establish the engineering parameters of the clock
92 * discipline loop when controlled by the PPS signal.
94 #define PPS_VALID 10 /* PPS signal watchdog max (s) */
95 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */
96 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */
97 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */
98 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to
99 increase pps_shift or consecutive bad
100 intervals to decrease it */
101 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */
103 static int pps_valid; /* signal watchdog counter */
104 static long pps_tf[3]; /* phase median filter */
105 static long pps_jitter; /* current jitter (ns) */
106 static struct timespec64 pps_fbase; /* beginning of the last freq interval */
107 static int pps_shift; /* current interval duration (s) (shift) */
108 static int pps_intcnt; /* interval counter */
109 static s64 pps_freq; /* frequency offset (scaled ns/s) */
110 static long pps_stabil; /* current stability (scaled ns/s) */
113 * PPS signal quality monitors
115 static long pps_calcnt; /* calibration intervals */
116 static long pps_jitcnt; /* jitter limit exceeded */
117 static long pps_stbcnt; /* stability limit exceeded */
118 static long pps_errcnt; /* calibration errors */
121 /* PPS kernel consumer compensates the whole phase error immediately.
122 * Otherwise, reduce the offset by a fixed factor times the time constant.
124 static inline s64 ntp_offset_chunk(s64 offset)
126 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL)
127 return offset;
128 else
129 return shift_right(offset, SHIFT_PLL + time_constant);
132 static inline void pps_reset_freq_interval(void)
134 /* the PPS calibration interval may end
135 surprisingly early */
136 pps_shift = PPS_INTMIN;
137 pps_intcnt = 0;
141 * pps_clear - Clears the PPS state variables
143 static inline void pps_clear(void)
145 pps_reset_freq_interval();
146 pps_tf[0] = 0;
147 pps_tf[1] = 0;
148 pps_tf[2] = 0;
149 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0;
150 pps_freq = 0;
153 /* Decrease pps_valid to indicate that another second has passed since
154 * the last PPS signal. When it reaches 0, indicate that PPS signal is
155 * missing.
157 static inline void pps_dec_valid(void)
159 if (pps_valid > 0)
160 pps_valid--;
161 else {
162 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
163 STA_PPSWANDER | STA_PPSERROR);
164 pps_clear();
168 static inline void pps_set_freq(s64 freq)
170 pps_freq = freq;
173 static inline int is_error_status(int status)
175 return (status & (STA_UNSYNC|STA_CLOCKERR))
176 /* PPS signal lost when either PPS time or
177 * PPS frequency synchronization requested
179 || ((status & (STA_PPSFREQ|STA_PPSTIME))
180 && !(status & STA_PPSSIGNAL))
181 /* PPS jitter exceeded when
182 * PPS time synchronization requested */
183 || ((status & (STA_PPSTIME|STA_PPSJITTER))
184 == (STA_PPSTIME|STA_PPSJITTER))
185 /* PPS wander exceeded or calibration error when
186 * PPS frequency synchronization requested
188 || ((status & STA_PPSFREQ)
189 && (status & (STA_PPSWANDER|STA_PPSERROR)));
192 static inline void pps_fill_timex(struct timex *txc)
194 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) *
195 PPM_SCALE_INV, NTP_SCALE_SHIFT);
196 txc->jitter = pps_jitter;
197 if (!(time_status & STA_NANO))
198 txc->jitter /= NSEC_PER_USEC;
199 txc->shift = pps_shift;
200 txc->stabil = pps_stabil;
201 txc->jitcnt = pps_jitcnt;
202 txc->calcnt = pps_calcnt;
203 txc->errcnt = pps_errcnt;
204 txc->stbcnt = pps_stbcnt;
207 #else /* !CONFIG_NTP_PPS */
209 static inline s64 ntp_offset_chunk(s64 offset)
211 return shift_right(offset, SHIFT_PLL + time_constant);
214 static inline void pps_reset_freq_interval(void) {}
215 static inline void pps_clear(void) {}
216 static inline void pps_dec_valid(void) {}
217 static inline void pps_set_freq(s64 freq) {}
219 static inline int is_error_status(int status)
221 return status & (STA_UNSYNC|STA_CLOCKERR);
224 static inline void pps_fill_timex(struct timex *txc)
226 /* PPS is not implemented, so these are zero */
227 txc->ppsfreq = 0;
228 txc->jitter = 0;
229 txc->shift = 0;
230 txc->stabil = 0;
231 txc->jitcnt = 0;
232 txc->calcnt = 0;
233 txc->errcnt = 0;
234 txc->stbcnt = 0;
237 #endif /* CONFIG_NTP_PPS */
241 * ntp_synced - Returns 1 if the NTP status is not UNSYNC
244 static inline int ntp_synced(void)
246 return !(time_status & STA_UNSYNC);
251 * NTP methods:
255 * Update (tick_length, tick_length_base, tick_nsec), based
256 * on (tick_usec, ntp_tick_adj, time_freq):
258 static void ntp_update_frequency(void)
260 u64 second_length;
261 u64 new_base;
263 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
264 << NTP_SCALE_SHIFT;
266 second_length += ntp_tick_adj;
267 second_length += time_freq;
269 tick_nsec = div_u64(second_length, HZ) >> NTP_SCALE_SHIFT;
270 new_base = div_u64(second_length, NTP_INTERVAL_FREQ);
273 * Don't wait for the next second_overflow, apply
274 * the change to the tick length immediately:
276 tick_length += new_base - tick_length_base;
277 tick_length_base = new_base;
280 static inline s64 ntp_update_offset_fll(s64 offset64, long secs)
282 time_status &= ~STA_MODE;
284 if (secs < MINSEC)
285 return 0;
287 if (!(time_status & STA_FLL) && (secs <= MAXSEC))
288 return 0;
290 time_status |= STA_MODE;
292 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs);
295 static void ntp_update_offset(long offset)
297 s64 freq_adj;
298 s64 offset64;
299 long secs;
301 if (!(time_status & STA_PLL))
302 return;
304 if (!(time_status & STA_NANO)) {
305 /* Make sure the multiplication below won't overflow */
306 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC);
307 offset *= NSEC_PER_USEC;
311 * Scale the phase adjustment and
312 * clamp to the operating range.
314 offset = clamp(offset, -MAXPHASE, MAXPHASE);
317 * Select how the frequency is to be controlled
318 * and in which mode (PLL or FLL).
320 secs = (long)(__ktime_get_real_seconds() - time_reftime);
321 if (unlikely(time_status & STA_FREQHOLD))
322 secs = 0;
324 time_reftime = __ktime_get_real_seconds();
326 offset64 = offset;
327 freq_adj = ntp_update_offset_fll(offset64, secs);
330 * Clamp update interval to reduce PLL gain with low
331 * sampling rate (e.g. intermittent network connection)
332 * to avoid instability.
334 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + time_constant)))
335 secs = 1 << (SHIFT_PLL + 1 + time_constant);
337 freq_adj += (offset64 * secs) <<
338 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + time_constant));
340 freq_adj = min(freq_adj + time_freq, MAXFREQ_SCALED);
342 time_freq = max(freq_adj, -MAXFREQ_SCALED);
344 time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ);
348 * ntp_clear - Clears the NTP state variables
350 void ntp_clear(void)
352 time_adjust = 0; /* stop active adjtime() */
353 time_status |= STA_UNSYNC;
354 time_maxerror = NTP_PHASE_LIMIT;
355 time_esterror = NTP_PHASE_LIMIT;
357 ntp_update_frequency();
359 tick_length = tick_length_base;
360 time_offset = 0;
362 ntp_next_leap_sec = TIME64_MAX;
363 /* Clear PPS state variables */
364 pps_clear();
368 u64 ntp_tick_length(void)
370 return tick_length;
374 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t
376 * Provides the time of the next leapsecond against CLOCK_REALTIME in
377 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending.
379 ktime_t ntp_get_next_leap(void)
381 ktime_t ret;
383 if ((time_state == TIME_INS) && (time_status & STA_INS))
384 return ktime_set(ntp_next_leap_sec, 0);
385 ret.tv64 = KTIME_MAX;
386 return ret;
390 * this routine handles the overflow of the microsecond field
392 * The tricky bits of code to handle the accurate clock support
393 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
394 * They were originally developed for SUN and DEC kernels.
395 * All the kudos should go to Dave for this stuff.
397 * Also handles leap second processing, and returns leap offset
399 int second_overflow(time64_t secs)
401 s64 delta;
402 int leap = 0;
403 s32 rem;
406 * Leap second processing. If in leap-insert state at the end of the
407 * day, the system clock is set back one second; if in leap-delete
408 * state, the system clock is set ahead one second.
410 switch (time_state) {
411 case TIME_OK:
412 if (time_status & STA_INS) {
413 time_state = TIME_INS;
414 div_s64_rem(secs, SECS_PER_DAY, &rem);
415 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
416 } else if (time_status & STA_DEL) {
417 time_state = TIME_DEL;
418 div_s64_rem(secs + 1, SECS_PER_DAY, &rem);
419 ntp_next_leap_sec = secs + SECS_PER_DAY - rem;
421 break;
422 case TIME_INS:
423 if (!(time_status & STA_INS)) {
424 ntp_next_leap_sec = TIME64_MAX;
425 time_state = TIME_OK;
426 } else if (secs == ntp_next_leap_sec) {
427 leap = -1;
428 time_state = TIME_OOP;
429 printk(KERN_NOTICE
430 "Clock: inserting leap second 23:59:60 UTC\n");
432 break;
433 case TIME_DEL:
434 if (!(time_status & STA_DEL)) {
435 ntp_next_leap_sec = TIME64_MAX;
436 time_state = TIME_OK;
437 } else if (secs == ntp_next_leap_sec) {
438 leap = 1;
439 ntp_next_leap_sec = TIME64_MAX;
440 time_state = TIME_WAIT;
441 printk(KERN_NOTICE
442 "Clock: deleting leap second 23:59:59 UTC\n");
444 break;
445 case TIME_OOP:
446 ntp_next_leap_sec = TIME64_MAX;
447 time_state = TIME_WAIT;
448 break;
449 case TIME_WAIT:
450 if (!(time_status & (STA_INS | STA_DEL)))
451 time_state = TIME_OK;
452 break;
456 /* Bump the maxerror field */
457 time_maxerror += MAXFREQ / NSEC_PER_USEC;
458 if (time_maxerror > NTP_PHASE_LIMIT) {
459 time_maxerror = NTP_PHASE_LIMIT;
460 time_status |= STA_UNSYNC;
463 /* Compute the phase adjustment for the next second */
464 tick_length = tick_length_base;
466 delta = ntp_offset_chunk(time_offset);
467 time_offset -= delta;
468 tick_length += delta;
470 /* Check PPS signal */
471 pps_dec_valid();
473 if (!time_adjust)
474 goto out;
476 if (time_adjust > MAX_TICKADJ) {
477 time_adjust -= MAX_TICKADJ;
478 tick_length += MAX_TICKADJ_SCALED;
479 goto out;
482 if (time_adjust < -MAX_TICKADJ) {
483 time_adjust += MAX_TICKADJ;
484 tick_length -= MAX_TICKADJ_SCALED;
485 goto out;
488 tick_length += (s64)(time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ)
489 << NTP_SCALE_SHIFT;
490 time_adjust = 0;
492 out:
493 return leap;
496 #ifdef CONFIG_GENERIC_CMOS_UPDATE
497 int __weak update_persistent_clock(struct timespec now)
499 return -ENODEV;
502 int __weak update_persistent_clock64(struct timespec64 now64)
504 struct timespec now;
506 now = timespec64_to_timespec(now64);
507 return update_persistent_clock(now);
509 #endif
511 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC)
512 static void sync_cmos_clock(struct work_struct *work);
514 static DECLARE_DELAYED_WORK(sync_cmos_work, sync_cmos_clock);
516 static void sync_cmos_clock(struct work_struct *work)
518 struct timespec64 now;
519 struct timespec64 next;
520 int fail = 1;
523 * If we have an externally synchronized Linux clock, then update
524 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
525 * called as close as possible to 500 ms before the new second starts.
526 * This code is run on a timer. If the clock is set, that timer
527 * may not expire at the correct time. Thus, we adjust...
528 * We want the clock to be within a couple of ticks from the target.
530 if (!ntp_synced()) {
532 * Not synced, exit, do not restart a timer (if one is
533 * running, let it run out).
535 return;
538 getnstimeofday64(&now);
539 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec * 5) {
540 struct timespec64 adjust = now;
542 fail = -ENODEV;
543 if (persistent_clock_is_local)
544 adjust.tv_sec -= (sys_tz.tz_minuteswest * 60);
545 #ifdef CONFIG_GENERIC_CMOS_UPDATE
546 fail = update_persistent_clock64(adjust);
547 #endif
549 #ifdef CONFIG_RTC_SYSTOHC
550 if (fail == -ENODEV)
551 fail = rtc_set_ntp_time(adjust);
552 #endif
555 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec - (TICK_NSEC / 2);
556 if (next.tv_nsec <= 0)
557 next.tv_nsec += NSEC_PER_SEC;
559 if (!fail || fail == -ENODEV)
560 next.tv_sec = 659;
561 else
562 next.tv_sec = 0;
564 if (next.tv_nsec >= NSEC_PER_SEC) {
565 next.tv_sec++;
566 next.tv_nsec -= NSEC_PER_SEC;
568 queue_delayed_work(system_power_efficient_wq,
569 &sync_cmos_work, timespec64_to_jiffies(&next));
572 void ntp_notify_cmos_timer(void)
574 queue_delayed_work(system_power_efficient_wq, &sync_cmos_work, 0);
577 #else
578 void ntp_notify_cmos_timer(void) { }
579 #endif
583 * Propagate a new txc->status value into the NTP state:
585 static inline void process_adj_status(struct timex *txc, struct timespec64 *ts)
587 if ((time_status & STA_PLL) && !(txc->status & STA_PLL)) {
588 time_state = TIME_OK;
589 time_status = STA_UNSYNC;
590 ntp_next_leap_sec = TIME64_MAX;
591 /* restart PPS frequency calibration */
592 pps_reset_freq_interval();
596 * If we turn on PLL adjustments then reset the
597 * reference time to current time.
599 if (!(time_status & STA_PLL) && (txc->status & STA_PLL))
600 time_reftime = __ktime_get_real_seconds();
602 /* only set allowed bits */
603 time_status &= STA_RONLY;
604 time_status |= txc->status & ~STA_RONLY;
608 static inline void process_adjtimex_modes(struct timex *txc,
609 struct timespec64 *ts,
610 s32 *time_tai)
612 if (txc->modes & ADJ_STATUS)
613 process_adj_status(txc, ts);
615 if (txc->modes & ADJ_NANO)
616 time_status |= STA_NANO;
618 if (txc->modes & ADJ_MICRO)
619 time_status &= ~STA_NANO;
621 if (txc->modes & ADJ_FREQUENCY) {
622 time_freq = txc->freq * PPM_SCALE;
623 time_freq = min(time_freq, MAXFREQ_SCALED);
624 time_freq = max(time_freq, -MAXFREQ_SCALED);
625 /* update pps_freq */
626 pps_set_freq(time_freq);
629 if (txc->modes & ADJ_MAXERROR)
630 time_maxerror = txc->maxerror;
632 if (txc->modes & ADJ_ESTERROR)
633 time_esterror = txc->esterror;
635 if (txc->modes & ADJ_TIMECONST) {
636 time_constant = txc->constant;
637 if (!(time_status & STA_NANO))
638 time_constant += 4;
639 time_constant = min(time_constant, (long)MAXTC);
640 time_constant = max(time_constant, 0l);
643 if (txc->modes & ADJ_TAI &&
644 txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET)
645 *time_tai = txc->constant;
647 if (txc->modes & ADJ_OFFSET)
648 ntp_update_offset(txc->offset);
650 if (txc->modes & ADJ_TICK)
651 tick_usec = txc->tick;
653 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
654 ntp_update_frequency();
660 * ntp_validate_timex - Ensures the timex is ok for use in do_adjtimex
662 int ntp_validate_timex(struct timex *txc)
664 if (txc->modes & ADJ_ADJTIME) {
665 /* singleshot must not be used with any other mode bits */
666 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
667 return -EINVAL;
668 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
669 !capable(CAP_SYS_TIME))
670 return -EPERM;
671 } else {
672 /* In order to modify anything, you gotta be super-user! */
673 if (txc->modes && !capable(CAP_SYS_TIME))
674 return -EPERM;
676 * if the quartz is off by more than 10% then
677 * something is VERY wrong!
679 if (txc->modes & ADJ_TICK &&
680 (txc->tick < 900000/USER_HZ ||
681 txc->tick > 1100000/USER_HZ))
682 return -EINVAL;
685 if (txc->modes & ADJ_SETOFFSET) {
686 /* In order to inject time, you gotta be super-user! */
687 if (!capable(CAP_SYS_TIME))
688 return -EPERM;
690 if (txc->modes & ADJ_NANO) {
691 struct timespec ts;
693 ts.tv_sec = txc->time.tv_sec;
694 ts.tv_nsec = txc->time.tv_usec;
695 if (!timespec_inject_offset_valid(&ts))
696 return -EINVAL;
698 } else {
699 if (!timeval_inject_offset_valid(&txc->time))
700 return -EINVAL;
705 * Check for potential multiplication overflows that can
706 * only happen on 64-bit systems:
708 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
709 if (LLONG_MIN / PPM_SCALE > txc->freq)
710 return -EINVAL;
711 if (LLONG_MAX / PPM_SCALE < txc->freq)
712 return -EINVAL;
715 return 0;
720 * adjtimex mainly allows reading (and writing, if superuser) of
721 * kernel time-keeping variables. used by xntpd.
723 int __do_adjtimex(struct timex *txc, struct timespec64 *ts, s32 *time_tai)
725 int result;
727 if (txc->modes & ADJ_ADJTIME) {
728 long save_adjust = time_adjust;
730 if (!(txc->modes & ADJ_OFFSET_READONLY)) {
731 /* adjtime() is independent from ntp_adjtime() */
732 time_adjust = txc->offset;
733 ntp_update_frequency();
735 txc->offset = save_adjust;
736 } else {
738 /* If there are input parameters, then process them: */
739 if (txc->modes)
740 process_adjtimex_modes(txc, ts, time_tai);
742 txc->offset = shift_right(time_offset * NTP_INTERVAL_FREQ,
743 NTP_SCALE_SHIFT);
744 if (!(time_status & STA_NANO))
745 txc->offset /= NSEC_PER_USEC;
748 result = time_state; /* mostly `TIME_OK' */
749 /* check for errors */
750 if (is_error_status(time_status))
751 result = TIME_ERROR;
753 txc->freq = shift_right((time_freq >> PPM_SCALE_INV_SHIFT) *
754 PPM_SCALE_INV, NTP_SCALE_SHIFT);
755 txc->maxerror = time_maxerror;
756 txc->esterror = time_esterror;
757 txc->status = time_status;
758 txc->constant = time_constant;
759 txc->precision = 1;
760 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE;
761 txc->tick = tick_usec;
762 txc->tai = *time_tai;
764 /* fill PPS status fields */
765 pps_fill_timex(txc);
767 txc->time.tv_sec = (time_t)ts->tv_sec;
768 txc->time.tv_usec = ts->tv_nsec;
769 if (!(time_status & STA_NANO))
770 txc->time.tv_usec /= NSEC_PER_USEC;
772 /* Handle leapsec adjustments */
773 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) {
774 if ((time_state == TIME_INS) && (time_status & STA_INS)) {
775 result = TIME_OOP;
776 txc->tai++;
777 txc->time.tv_sec--;
779 if ((time_state == TIME_DEL) && (time_status & STA_DEL)) {
780 result = TIME_WAIT;
781 txc->tai--;
782 txc->time.tv_sec++;
784 if ((time_state == TIME_OOP) &&
785 (ts->tv_sec == ntp_next_leap_sec)) {
786 result = TIME_WAIT;
790 return result;
793 #ifdef CONFIG_NTP_PPS
795 /* actually struct pps_normtime is good old struct timespec, but it is
796 * semantically different (and it is the reason why it was invented):
797 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ]
798 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) */
799 struct pps_normtime {
800 s64 sec; /* seconds */
801 long nsec; /* nanoseconds */
804 /* normalize the timestamp so that nsec is in the
805 ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval */
806 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts)
808 struct pps_normtime norm = {
809 .sec = ts.tv_sec,
810 .nsec = ts.tv_nsec
813 if (norm.nsec > (NSEC_PER_SEC >> 1)) {
814 norm.nsec -= NSEC_PER_SEC;
815 norm.sec++;
818 return norm;
821 /* get current phase correction and jitter */
822 static inline long pps_phase_filter_get(long *jitter)
824 *jitter = pps_tf[0] - pps_tf[1];
825 if (*jitter < 0)
826 *jitter = -*jitter;
828 /* TODO: test various filters */
829 return pps_tf[0];
832 /* add the sample to the phase filter */
833 static inline void pps_phase_filter_add(long err)
835 pps_tf[2] = pps_tf[1];
836 pps_tf[1] = pps_tf[0];
837 pps_tf[0] = err;
840 /* decrease frequency calibration interval length.
841 * It is halved after four consecutive unstable intervals.
843 static inline void pps_dec_freq_interval(void)
845 if (--pps_intcnt <= -PPS_INTCOUNT) {
846 pps_intcnt = -PPS_INTCOUNT;
847 if (pps_shift > PPS_INTMIN) {
848 pps_shift--;
849 pps_intcnt = 0;
854 /* increase frequency calibration interval length.
855 * It is doubled after four consecutive stable intervals.
857 static inline void pps_inc_freq_interval(void)
859 if (++pps_intcnt >= PPS_INTCOUNT) {
860 pps_intcnt = PPS_INTCOUNT;
861 if (pps_shift < PPS_INTMAX) {
862 pps_shift++;
863 pps_intcnt = 0;
868 /* update clock frequency based on MONOTONIC_RAW clock PPS signal
869 * timestamps
871 * At the end of the calibration interval the difference between the
872 * first and last MONOTONIC_RAW clock timestamps divided by the length
873 * of the interval becomes the frequency update. If the interval was
874 * too long, the data are discarded.
875 * Returns the difference between old and new frequency values.
877 static long hardpps_update_freq(struct pps_normtime freq_norm)
879 long delta, delta_mod;
880 s64 ftemp;
882 /* check if the frequency interval was too long */
883 if (freq_norm.sec > (2 << pps_shift)) {
884 time_status |= STA_PPSERROR;
885 pps_errcnt++;
886 pps_dec_freq_interval();
887 printk_deferred(KERN_ERR
888 "hardpps: PPSERROR: interval too long - %lld s\n",
889 freq_norm.sec);
890 return 0;
893 /* here the raw frequency offset and wander (stability) is
894 * calculated. If the wander is less than the wander threshold
895 * the interval is increased; otherwise it is decreased.
897 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT,
898 freq_norm.sec);
899 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT);
900 pps_freq = ftemp;
901 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) {
902 printk_deferred(KERN_WARNING
903 "hardpps: PPSWANDER: change=%ld\n", delta);
904 time_status |= STA_PPSWANDER;
905 pps_stbcnt++;
906 pps_dec_freq_interval();
907 } else { /* good sample */
908 pps_inc_freq_interval();
911 /* the stability metric is calculated as the average of recent
912 * frequency changes, but is used only for performance
913 * monitoring
915 delta_mod = delta;
916 if (delta_mod < 0)
917 delta_mod = -delta_mod;
918 pps_stabil += (div_s64(((s64)delta_mod) <<
919 (NTP_SCALE_SHIFT - SHIFT_USEC),
920 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN;
922 /* if enabled, the system clock frequency is updated */
923 if ((time_status & STA_PPSFREQ) != 0 &&
924 (time_status & STA_FREQHOLD) == 0) {
925 time_freq = pps_freq;
926 ntp_update_frequency();
929 return delta;
932 /* correct REALTIME clock phase error against PPS signal */
933 static void hardpps_update_phase(long error)
935 long correction = -error;
936 long jitter;
938 /* add the sample to the median filter */
939 pps_phase_filter_add(correction);
940 correction = pps_phase_filter_get(&jitter);
942 /* Nominal jitter is due to PPS signal noise. If it exceeds the
943 * threshold, the sample is discarded; otherwise, if so enabled,
944 * the time offset is updated.
946 if (jitter > (pps_jitter << PPS_POPCORN)) {
947 printk_deferred(KERN_WARNING
948 "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n",
949 jitter, (pps_jitter << PPS_POPCORN));
950 time_status |= STA_PPSJITTER;
951 pps_jitcnt++;
952 } else if (time_status & STA_PPSTIME) {
953 /* correct the time using the phase offset */
954 time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT,
955 NTP_INTERVAL_FREQ);
956 /* cancel running adjtime() */
957 time_adjust = 0;
959 /* update jitter */
960 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN;
964 * __hardpps() - discipline CPU clock oscillator to external PPS signal
966 * This routine is called at each PPS signal arrival in order to
967 * discipline the CPU clock oscillator to the PPS signal. It takes two
968 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former
969 * is used to correct clock phase error and the latter is used to
970 * correct the frequency.
972 * This code is based on David Mills's reference nanokernel
973 * implementation. It was mostly rewritten but keeps the same idea.
975 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
977 struct pps_normtime pts_norm, freq_norm;
979 pts_norm = pps_normalize_ts(*phase_ts);
981 /* clear the error bits, they will be set again if needed */
982 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
984 /* indicate signal presence */
985 time_status |= STA_PPSSIGNAL;
986 pps_valid = PPS_VALID;
988 /* when called for the first time,
989 * just start the frequency interval */
990 if (unlikely(pps_fbase.tv_sec == 0)) {
991 pps_fbase = *raw_ts;
992 return;
995 /* ok, now we have a base for frequency calculation */
996 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase));
998 /* check that the signal is in the range
999 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it */
1000 if ((freq_norm.sec == 0) ||
1001 (freq_norm.nsec > MAXFREQ * freq_norm.sec) ||
1002 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) {
1003 time_status |= STA_PPSJITTER;
1004 /* restart the frequency calibration interval */
1005 pps_fbase = *raw_ts;
1006 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n");
1007 return;
1010 /* signal is ok */
1012 /* check if the current frequency interval is finished */
1013 if (freq_norm.sec >= (1 << pps_shift)) {
1014 pps_calcnt++;
1015 /* restart the frequency calibration interval */
1016 pps_fbase = *raw_ts;
1017 hardpps_update_freq(freq_norm);
1020 hardpps_update_phase(pts_norm.nsec);
1023 #endif /* CONFIG_NTP_PPS */
1025 static int __init ntp_tick_adj_setup(char *str)
1027 int rc = kstrtol(str, 0, (long *)&ntp_tick_adj);
1029 if (rc)
1030 return rc;
1031 ntp_tick_adj <<= NTP_SCALE_SHIFT;
1033 return 1;
1036 __setup("ntp_tick_adj=", ntp_tick_adj_setup);
1038 void __init ntp_init(void)
1040 ntp_clear();