Merge tag 'afs-fixes-20171201' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowe...
[linux/fpc-iii.git] / mm / rmap.c
blob47db27f8049e105b88f1ed60054b1576b8056dac
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
28 * anon_vma->rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
44 * ->tasklist_lock
45 * pte map lock
48 #include <linux/mm.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 #include <linux/memremap.h>
68 #include <asm/tlbflush.h>
70 #include <trace/events/tlb.h>
72 #include "internal.h"
74 static struct kmem_cache *anon_vma_cachep;
75 static struct kmem_cache *anon_vma_chain_cachep;
77 static inline struct anon_vma *anon_vma_alloc(void)
79 struct anon_vma *anon_vma;
81 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
82 if (anon_vma) {
83 atomic_set(&anon_vma->refcount, 1);
84 anon_vma->degree = 1; /* Reference for first vma */
85 anon_vma->parent = anon_vma;
87 * Initialise the anon_vma root to point to itself. If called
88 * from fork, the root will be reset to the parents anon_vma.
90 anon_vma->root = anon_vma;
93 return anon_vma;
96 static inline void anon_vma_free(struct anon_vma *anon_vma)
98 VM_BUG_ON(atomic_read(&anon_vma->refcount));
101 * Synchronize against page_lock_anon_vma_read() such that
102 * we can safely hold the lock without the anon_vma getting
103 * freed.
105 * Relies on the full mb implied by the atomic_dec_and_test() from
106 * put_anon_vma() against the acquire barrier implied by
107 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
109 * page_lock_anon_vma_read() VS put_anon_vma()
110 * down_read_trylock() atomic_dec_and_test()
111 * LOCK MB
112 * atomic_read() rwsem_is_locked()
114 * LOCK should suffice since the actual taking of the lock must
115 * happen _before_ what follows.
117 might_sleep();
118 if (rwsem_is_locked(&anon_vma->root->rwsem)) {
119 anon_vma_lock_write(anon_vma);
120 anon_vma_unlock_write(anon_vma);
123 kmem_cache_free(anon_vma_cachep, anon_vma);
126 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
128 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
131 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
133 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
136 static void anon_vma_chain_link(struct vm_area_struct *vma,
137 struct anon_vma_chain *avc,
138 struct anon_vma *anon_vma)
140 avc->vma = vma;
141 avc->anon_vma = anon_vma;
142 list_add(&avc->same_vma, &vma->anon_vma_chain);
143 anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
147 * __anon_vma_prepare - attach an anon_vma to a memory region
148 * @vma: the memory region in question
150 * This makes sure the memory mapping described by 'vma' has
151 * an 'anon_vma' attached to it, so that we can associate the
152 * anonymous pages mapped into it with that anon_vma.
154 * The common case will be that we already have one, which
155 * is handled inline by anon_vma_prepare(). But if
156 * not we either need to find an adjacent mapping that we
157 * can re-use the anon_vma from (very common when the only
158 * reason for splitting a vma has been mprotect()), or we
159 * allocate a new one.
161 * Anon-vma allocations are very subtle, because we may have
162 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
163 * and that may actually touch the spinlock even in the newly
164 * allocated vma (it depends on RCU to make sure that the
165 * anon_vma isn't actually destroyed).
167 * As a result, we need to do proper anon_vma locking even
168 * for the new allocation. At the same time, we do not want
169 * to do any locking for the common case of already having
170 * an anon_vma.
172 * This must be called with the mmap_sem held for reading.
174 int __anon_vma_prepare(struct vm_area_struct *vma)
176 struct mm_struct *mm = vma->vm_mm;
177 struct anon_vma *anon_vma, *allocated;
178 struct anon_vma_chain *avc;
180 might_sleep();
182 avc = anon_vma_chain_alloc(GFP_KERNEL);
183 if (!avc)
184 goto out_enomem;
186 anon_vma = find_mergeable_anon_vma(vma);
187 allocated = NULL;
188 if (!anon_vma) {
189 anon_vma = anon_vma_alloc();
190 if (unlikely(!anon_vma))
191 goto out_enomem_free_avc;
192 allocated = anon_vma;
195 anon_vma_lock_write(anon_vma);
196 /* page_table_lock to protect against threads */
197 spin_lock(&mm->page_table_lock);
198 if (likely(!vma->anon_vma)) {
199 vma->anon_vma = anon_vma;
200 anon_vma_chain_link(vma, avc, anon_vma);
201 /* vma reference or self-parent link for new root */
202 anon_vma->degree++;
203 allocated = NULL;
204 avc = NULL;
206 spin_unlock(&mm->page_table_lock);
207 anon_vma_unlock_write(anon_vma);
209 if (unlikely(allocated))
210 put_anon_vma(allocated);
211 if (unlikely(avc))
212 anon_vma_chain_free(avc);
214 return 0;
216 out_enomem_free_avc:
217 anon_vma_chain_free(avc);
218 out_enomem:
219 return -ENOMEM;
223 * This is a useful helper function for locking the anon_vma root as
224 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
225 * have the same vma.
227 * Such anon_vma's should have the same root, so you'd expect to see
228 * just a single mutex_lock for the whole traversal.
230 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
232 struct anon_vma *new_root = anon_vma->root;
233 if (new_root != root) {
234 if (WARN_ON_ONCE(root))
235 up_write(&root->rwsem);
236 root = new_root;
237 down_write(&root->rwsem);
239 return root;
242 static inline void unlock_anon_vma_root(struct anon_vma *root)
244 if (root)
245 up_write(&root->rwsem);
249 * Attach the anon_vmas from src to dst.
250 * Returns 0 on success, -ENOMEM on failure.
252 * If dst->anon_vma is NULL this function tries to find and reuse existing
253 * anon_vma which has no vmas and only one child anon_vma. This prevents
254 * degradation of anon_vma hierarchy to endless linear chain in case of
255 * constantly forking task. On the other hand, an anon_vma with more than one
256 * child isn't reused even if there was no alive vma, thus rmap walker has a
257 * good chance of avoiding scanning the whole hierarchy when it searches where
258 * page is mapped.
260 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
262 struct anon_vma_chain *avc, *pavc;
263 struct anon_vma *root = NULL;
265 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
266 struct anon_vma *anon_vma;
268 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
269 if (unlikely(!avc)) {
270 unlock_anon_vma_root(root);
271 root = NULL;
272 avc = anon_vma_chain_alloc(GFP_KERNEL);
273 if (!avc)
274 goto enomem_failure;
276 anon_vma = pavc->anon_vma;
277 root = lock_anon_vma_root(root, anon_vma);
278 anon_vma_chain_link(dst, avc, anon_vma);
281 * Reuse existing anon_vma if its degree lower than two,
282 * that means it has no vma and only one anon_vma child.
284 * Do not chose parent anon_vma, otherwise first child
285 * will always reuse it. Root anon_vma is never reused:
286 * it has self-parent reference and at least one child.
288 if (!dst->anon_vma && anon_vma != src->anon_vma &&
289 anon_vma->degree < 2)
290 dst->anon_vma = anon_vma;
292 if (dst->anon_vma)
293 dst->anon_vma->degree++;
294 unlock_anon_vma_root(root);
295 return 0;
297 enomem_failure:
299 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
300 * decremented in unlink_anon_vmas().
301 * We can safely do this because callers of anon_vma_clone() don't care
302 * about dst->anon_vma if anon_vma_clone() failed.
304 dst->anon_vma = NULL;
305 unlink_anon_vmas(dst);
306 return -ENOMEM;
310 * Attach vma to its own anon_vma, as well as to the anon_vmas that
311 * the corresponding VMA in the parent process is attached to.
312 * Returns 0 on success, non-zero on failure.
314 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
316 struct anon_vma_chain *avc;
317 struct anon_vma *anon_vma;
318 int error;
320 /* Don't bother if the parent process has no anon_vma here. */
321 if (!pvma->anon_vma)
322 return 0;
324 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
325 vma->anon_vma = NULL;
328 * First, attach the new VMA to the parent VMA's anon_vmas,
329 * so rmap can find non-COWed pages in child processes.
331 error = anon_vma_clone(vma, pvma);
332 if (error)
333 return error;
335 /* An existing anon_vma has been reused, all done then. */
336 if (vma->anon_vma)
337 return 0;
339 /* Then add our own anon_vma. */
340 anon_vma = anon_vma_alloc();
341 if (!anon_vma)
342 goto out_error;
343 avc = anon_vma_chain_alloc(GFP_KERNEL);
344 if (!avc)
345 goto out_error_free_anon_vma;
348 * The root anon_vma's spinlock is the lock actually used when we
349 * lock any of the anon_vmas in this anon_vma tree.
351 anon_vma->root = pvma->anon_vma->root;
352 anon_vma->parent = pvma->anon_vma;
354 * With refcounts, an anon_vma can stay around longer than the
355 * process it belongs to. The root anon_vma needs to be pinned until
356 * this anon_vma is freed, because the lock lives in the root.
358 get_anon_vma(anon_vma->root);
359 /* Mark this anon_vma as the one where our new (COWed) pages go. */
360 vma->anon_vma = anon_vma;
361 anon_vma_lock_write(anon_vma);
362 anon_vma_chain_link(vma, avc, anon_vma);
363 anon_vma->parent->degree++;
364 anon_vma_unlock_write(anon_vma);
366 return 0;
368 out_error_free_anon_vma:
369 put_anon_vma(anon_vma);
370 out_error:
371 unlink_anon_vmas(vma);
372 return -ENOMEM;
375 void unlink_anon_vmas(struct vm_area_struct *vma)
377 struct anon_vma_chain *avc, *next;
378 struct anon_vma *root = NULL;
381 * Unlink each anon_vma chained to the VMA. This list is ordered
382 * from newest to oldest, ensuring the root anon_vma gets freed last.
384 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
385 struct anon_vma *anon_vma = avc->anon_vma;
387 root = lock_anon_vma_root(root, anon_vma);
388 anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
391 * Leave empty anon_vmas on the list - we'll need
392 * to free them outside the lock.
394 if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
395 anon_vma->parent->degree--;
396 continue;
399 list_del(&avc->same_vma);
400 anon_vma_chain_free(avc);
402 if (vma->anon_vma)
403 vma->anon_vma->degree--;
404 unlock_anon_vma_root(root);
407 * Iterate the list once more, it now only contains empty and unlinked
408 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
409 * needing to write-acquire the anon_vma->root->rwsem.
411 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
412 struct anon_vma *anon_vma = avc->anon_vma;
414 VM_WARN_ON(anon_vma->degree);
415 put_anon_vma(anon_vma);
417 list_del(&avc->same_vma);
418 anon_vma_chain_free(avc);
422 static void anon_vma_ctor(void *data)
424 struct anon_vma *anon_vma = data;
426 init_rwsem(&anon_vma->rwsem);
427 atomic_set(&anon_vma->refcount, 0);
428 anon_vma->rb_root = RB_ROOT_CACHED;
431 void __init anon_vma_init(void)
433 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
434 0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
435 anon_vma_ctor);
436 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
437 SLAB_PANIC|SLAB_ACCOUNT);
441 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
443 * Since there is no serialization what so ever against page_remove_rmap()
444 * the best this function can do is return a locked anon_vma that might
445 * have been relevant to this page.
447 * The page might have been remapped to a different anon_vma or the anon_vma
448 * returned may already be freed (and even reused).
450 * In case it was remapped to a different anon_vma, the new anon_vma will be a
451 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
452 * ensure that any anon_vma obtained from the page will still be valid for as
453 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
455 * All users of this function must be very careful when walking the anon_vma
456 * chain and verify that the page in question is indeed mapped in it
457 * [ something equivalent to page_mapped_in_vma() ].
459 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
460 * that the anon_vma pointer from page->mapping is valid if there is a
461 * mapcount, we can dereference the anon_vma after observing those.
463 struct anon_vma *page_get_anon_vma(struct page *page)
465 struct anon_vma *anon_vma = NULL;
466 unsigned long anon_mapping;
468 rcu_read_lock();
469 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
470 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
471 goto out;
472 if (!page_mapped(page))
473 goto out;
475 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
476 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
477 anon_vma = NULL;
478 goto out;
482 * If this page is still mapped, then its anon_vma cannot have been
483 * freed. But if it has been unmapped, we have no security against the
484 * anon_vma structure being freed and reused (for another anon_vma:
485 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
486 * above cannot corrupt).
488 if (!page_mapped(page)) {
489 rcu_read_unlock();
490 put_anon_vma(anon_vma);
491 return NULL;
493 out:
494 rcu_read_unlock();
496 return anon_vma;
500 * Similar to page_get_anon_vma() except it locks the anon_vma.
502 * Its a little more complex as it tries to keep the fast path to a single
503 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
504 * reference like with page_get_anon_vma() and then block on the mutex.
506 struct anon_vma *page_lock_anon_vma_read(struct page *page)
508 struct anon_vma *anon_vma = NULL;
509 struct anon_vma *root_anon_vma;
510 unsigned long anon_mapping;
512 rcu_read_lock();
513 anon_mapping = (unsigned long)READ_ONCE(page->mapping);
514 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
515 goto out;
516 if (!page_mapped(page))
517 goto out;
519 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
520 root_anon_vma = READ_ONCE(anon_vma->root);
521 if (down_read_trylock(&root_anon_vma->rwsem)) {
523 * If the page is still mapped, then this anon_vma is still
524 * its anon_vma, and holding the mutex ensures that it will
525 * not go away, see anon_vma_free().
527 if (!page_mapped(page)) {
528 up_read(&root_anon_vma->rwsem);
529 anon_vma = NULL;
531 goto out;
534 /* trylock failed, we got to sleep */
535 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
536 anon_vma = NULL;
537 goto out;
540 if (!page_mapped(page)) {
541 rcu_read_unlock();
542 put_anon_vma(anon_vma);
543 return NULL;
546 /* we pinned the anon_vma, its safe to sleep */
547 rcu_read_unlock();
548 anon_vma_lock_read(anon_vma);
550 if (atomic_dec_and_test(&anon_vma->refcount)) {
552 * Oops, we held the last refcount, release the lock
553 * and bail -- can't simply use put_anon_vma() because
554 * we'll deadlock on the anon_vma_lock_write() recursion.
556 anon_vma_unlock_read(anon_vma);
557 __put_anon_vma(anon_vma);
558 anon_vma = NULL;
561 return anon_vma;
563 out:
564 rcu_read_unlock();
565 return anon_vma;
568 void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
570 anon_vma_unlock_read(anon_vma);
573 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
575 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
576 * important if a PTE was dirty when it was unmapped that it's flushed
577 * before any IO is initiated on the page to prevent lost writes. Similarly,
578 * it must be flushed before freeing to prevent data leakage.
580 void try_to_unmap_flush(void)
582 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
584 if (!tlb_ubc->flush_required)
585 return;
587 arch_tlbbatch_flush(&tlb_ubc->arch);
588 tlb_ubc->flush_required = false;
589 tlb_ubc->writable = false;
592 /* Flush iff there are potentially writable TLB entries that can race with IO */
593 void try_to_unmap_flush_dirty(void)
595 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
597 if (tlb_ubc->writable)
598 try_to_unmap_flush();
601 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
603 struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
605 arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
606 tlb_ubc->flush_required = true;
609 * Ensure compiler does not re-order the setting of tlb_flush_batched
610 * before the PTE is cleared.
612 barrier();
613 mm->tlb_flush_batched = true;
616 * If the PTE was dirty then it's best to assume it's writable. The
617 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
618 * before the page is queued for IO.
620 if (writable)
621 tlb_ubc->writable = true;
625 * Returns true if the TLB flush should be deferred to the end of a batch of
626 * unmap operations to reduce IPIs.
628 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
630 bool should_defer = false;
632 if (!(flags & TTU_BATCH_FLUSH))
633 return false;
635 /* If remote CPUs need to be flushed then defer batch the flush */
636 if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
637 should_defer = true;
638 put_cpu();
640 return should_defer;
644 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
645 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
646 * operation such as mprotect or munmap to race between reclaim unmapping
647 * the page and flushing the page. If this race occurs, it potentially allows
648 * access to data via a stale TLB entry. Tracking all mm's that have TLB
649 * batching in flight would be expensive during reclaim so instead track
650 * whether TLB batching occurred in the past and if so then do a flush here
651 * if required. This will cost one additional flush per reclaim cycle paid
652 * by the first operation at risk such as mprotect and mumap.
654 * This must be called under the PTL so that an access to tlb_flush_batched
655 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
656 * via the PTL.
658 void flush_tlb_batched_pending(struct mm_struct *mm)
660 if (mm->tlb_flush_batched) {
661 flush_tlb_mm(mm);
664 * Do not allow the compiler to re-order the clearing of
665 * tlb_flush_batched before the tlb is flushed.
667 barrier();
668 mm->tlb_flush_batched = false;
671 #else
672 static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
676 static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
678 return false;
680 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
683 * At what user virtual address is page expected in vma?
684 * Caller should check the page is actually part of the vma.
686 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
688 unsigned long address;
689 if (PageAnon(page)) {
690 struct anon_vma *page__anon_vma = page_anon_vma(page);
692 * Note: swapoff's unuse_vma() is more efficient with this
693 * check, and needs it to match anon_vma when KSM is active.
695 if (!vma->anon_vma || !page__anon_vma ||
696 vma->anon_vma->root != page__anon_vma->root)
697 return -EFAULT;
698 } else if (page->mapping) {
699 if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
700 return -EFAULT;
701 } else
702 return -EFAULT;
703 address = __vma_address(page, vma);
704 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
705 return -EFAULT;
706 return address;
709 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
711 pgd_t *pgd;
712 p4d_t *p4d;
713 pud_t *pud;
714 pmd_t *pmd = NULL;
715 pmd_t pmde;
717 pgd = pgd_offset(mm, address);
718 if (!pgd_present(*pgd))
719 goto out;
721 p4d = p4d_offset(pgd, address);
722 if (!p4d_present(*p4d))
723 goto out;
725 pud = pud_offset(p4d, address);
726 if (!pud_present(*pud))
727 goto out;
729 pmd = pmd_offset(pud, address);
731 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
732 * without holding anon_vma lock for write. So when looking for a
733 * genuine pmde (in which to find pte), test present and !THP together.
735 pmde = *pmd;
736 barrier();
737 if (!pmd_present(pmde) || pmd_trans_huge(pmde))
738 pmd = NULL;
739 out:
740 return pmd;
743 struct page_referenced_arg {
744 int mapcount;
745 int referenced;
746 unsigned long vm_flags;
747 struct mem_cgroup *memcg;
750 * arg: page_referenced_arg will be passed
752 static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
753 unsigned long address, void *arg)
755 struct page_referenced_arg *pra = arg;
756 struct page_vma_mapped_walk pvmw = {
757 .page = page,
758 .vma = vma,
759 .address = address,
761 int referenced = 0;
763 while (page_vma_mapped_walk(&pvmw)) {
764 address = pvmw.address;
766 if (vma->vm_flags & VM_LOCKED) {
767 page_vma_mapped_walk_done(&pvmw);
768 pra->vm_flags |= VM_LOCKED;
769 return false; /* To break the loop */
772 if (pvmw.pte) {
773 if (ptep_clear_flush_young_notify(vma, address,
774 pvmw.pte)) {
776 * Don't treat a reference through
777 * a sequentially read mapping as such.
778 * If the page has been used in another mapping,
779 * we will catch it; if this other mapping is
780 * already gone, the unmap path will have set
781 * PG_referenced or activated the page.
783 if (likely(!(vma->vm_flags & VM_SEQ_READ)))
784 referenced++;
786 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
787 if (pmdp_clear_flush_young_notify(vma, address,
788 pvmw.pmd))
789 referenced++;
790 } else {
791 /* unexpected pmd-mapped page? */
792 WARN_ON_ONCE(1);
795 pra->mapcount--;
798 if (referenced)
799 clear_page_idle(page);
800 if (test_and_clear_page_young(page))
801 referenced++;
803 if (referenced) {
804 pra->referenced++;
805 pra->vm_flags |= vma->vm_flags;
808 if (!pra->mapcount)
809 return false; /* To break the loop */
811 return true;
814 static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
816 struct page_referenced_arg *pra = arg;
817 struct mem_cgroup *memcg = pra->memcg;
819 if (!mm_match_cgroup(vma->vm_mm, memcg))
820 return true;
822 return false;
826 * page_referenced - test if the page was referenced
827 * @page: the page to test
828 * @is_locked: caller holds lock on the page
829 * @memcg: target memory cgroup
830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
832 * Quick test_and_clear_referenced for all mappings to a page,
833 * returns the number of ptes which referenced the page.
835 int page_referenced(struct page *page,
836 int is_locked,
837 struct mem_cgroup *memcg,
838 unsigned long *vm_flags)
840 int we_locked = 0;
841 struct page_referenced_arg pra = {
842 .mapcount = total_mapcount(page),
843 .memcg = memcg,
845 struct rmap_walk_control rwc = {
846 .rmap_one = page_referenced_one,
847 .arg = (void *)&pra,
848 .anon_lock = page_lock_anon_vma_read,
851 *vm_flags = 0;
852 if (!page_mapped(page))
853 return 0;
855 if (!page_rmapping(page))
856 return 0;
858 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
859 we_locked = trylock_page(page);
860 if (!we_locked)
861 return 1;
865 * If we are reclaiming on behalf of a cgroup, skip
866 * counting on behalf of references from different
867 * cgroups
869 if (memcg) {
870 rwc.invalid_vma = invalid_page_referenced_vma;
873 rmap_walk(page, &rwc);
874 *vm_flags = pra.vm_flags;
876 if (we_locked)
877 unlock_page(page);
879 return pra.referenced;
882 static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
883 unsigned long address, void *arg)
885 struct page_vma_mapped_walk pvmw = {
886 .page = page,
887 .vma = vma,
888 .address = address,
889 .flags = PVMW_SYNC,
891 unsigned long start = address, end;
892 int *cleaned = arg;
895 * We have to assume the worse case ie pmd for invalidation. Note that
896 * the page can not be free from this function.
898 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
899 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
901 while (page_vma_mapped_walk(&pvmw)) {
902 unsigned long cstart;
903 int ret = 0;
905 cstart = address = pvmw.address;
906 if (pvmw.pte) {
907 pte_t entry;
908 pte_t *pte = pvmw.pte;
910 if (!pte_dirty(*pte) && !pte_write(*pte))
911 continue;
913 flush_cache_page(vma, address, pte_pfn(*pte));
914 entry = ptep_clear_flush(vma, address, pte);
915 entry = pte_wrprotect(entry);
916 entry = pte_mkclean(entry);
917 set_pte_at(vma->vm_mm, address, pte, entry);
918 ret = 1;
919 } else {
920 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
921 pmd_t *pmd = pvmw.pmd;
922 pmd_t entry;
924 if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
925 continue;
927 flush_cache_page(vma, address, page_to_pfn(page));
928 entry = pmdp_huge_clear_flush(vma, address, pmd);
929 entry = pmd_wrprotect(entry);
930 entry = pmd_mkclean(entry);
931 set_pmd_at(vma->vm_mm, address, pmd, entry);
932 cstart &= PMD_MASK;
933 ret = 1;
934 #else
935 /* unexpected pmd-mapped page? */
936 WARN_ON_ONCE(1);
937 #endif
941 * No need to call mmu_notifier_invalidate_range() as we are
942 * downgrading page table protection not changing it to point
943 * to a new page.
945 * See Documentation/vm/mmu_notifier.txt
947 if (ret)
948 (*cleaned)++;
951 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
953 return true;
956 static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
958 if (vma->vm_flags & VM_SHARED)
959 return false;
961 return true;
964 int page_mkclean(struct page *page)
966 int cleaned = 0;
967 struct address_space *mapping;
968 struct rmap_walk_control rwc = {
969 .arg = (void *)&cleaned,
970 .rmap_one = page_mkclean_one,
971 .invalid_vma = invalid_mkclean_vma,
974 BUG_ON(!PageLocked(page));
976 if (!page_mapped(page))
977 return 0;
979 mapping = page_mapping(page);
980 if (!mapping)
981 return 0;
983 rmap_walk(page, &rwc);
985 return cleaned;
987 EXPORT_SYMBOL_GPL(page_mkclean);
990 * page_move_anon_rmap - move a page to our anon_vma
991 * @page: the page to move to our anon_vma
992 * @vma: the vma the page belongs to
994 * When a page belongs exclusively to one process after a COW event,
995 * that page can be moved into the anon_vma that belongs to just that
996 * process, so the rmap code will not search the parent or sibling
997 * processes.
999 void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1001 struct anon_vma *anon_vma = vma->anon_vma;
1003 page = compound_head(page);
1005 VM_BUG_ON_PAGE(!PageLocked(page), page);
1006 VM_BUG_ON_VMA(!anon_vma, vma);
1008 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1010 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1011 * simultaneously, so a concurrent reader (eg page_referenced()'s
1012 * PageAnon()) will not see one without the other.
1014 WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1018 * __page_set_anon_rmap - set up new anonymous rmap
1019 * @page: Page to add to rmap
1020 * @vma: VM area to add page to.
1021 * @address: User virtual address of the mapping
1022 * @exclusive: the page is exclusively owned by the current process
1024 static void __page_set_anon_rmap(struct page *page,
1025 struct vm_area_struct *vma, unsigned long address, int exclusive)
1027 struct anon_vma *anon_vma = vma->anon_vma;
1029 BUG_ON(!anon_vma);
1031 if (PageAnon(page))
1032 return;
1035 * If the page isn't exclusively mapped into this vma,
1036 * we must use the _oldest_ possible anon_vma for the
1037 * page mapping!
1039 if (!exclusive)
1040 anon_vma = anon_vma->root;
1042 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1043 page->mapping = (struct address_space *) anon_vma;
1044 page->index = linear_page_index(vma, address);
1048 * __page_check_anon_rmap - sanity check anonymous rmap addition
1049 * @page: the page to add the mapping to
1050 * @vma: the vm area in which the mapping is added
1051 * @address: the user virtual address mapped
1053 static void __page_check_anon_rmap(struct page *page,
1054 struct vm_area_struct *vma, unsigned long address)
1056 #ifdef CONFIG_DEBUG_VM
1058 * The page's anon-rmap details (mapping and index) are guaranteed to
1059 * be set up correctly at this point.
1061 * We have exclusion against page_add_anon_rmap because the caller
1062 * always holds the page locked, except if called from page_dup_rmap,
1063 * in which case the page is already known to be setup.
1065 * We have exclusion against page_add_new_anon_rmap because those pages
1066 * are initially only visible via the pagetables, and the pte is locked
1067 * over the call to page_add_new_anon_rmap.
1069 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1070 BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1071 #endif
1075 * page_add_anon_rmap - add pte mapping to an anonymous page
1076 * @page: the page to add the mapping to
1077 * @vma: the vm area in which the mapping is added
1078 * @address: the user virtual address mapped
1079 * @compound: charge the page as compound or small page
1081 * The caller needs to hold the pte lock, and the page must be locked in
1082 * the anon_vma case: to serialize mapping,index checking after setting,
1083 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1084 * (but PageKsm is never downgraded to PageAnon).
1086 void page_add_anon_rmap(struct page *page,
1087 struct vm_area_struct *vma, unsigned long address, bool compound)
1089 do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1093 * Special version of the above for do_swap_page, which often runs
1094 * into pages that are exclusively owned by the current process.
1095 * Everybody else should continue to use page_add_anon_rmap above.
1097 void do_page_add_anon_rmap(struct page *page,
1098 struct vm_area_struct *vma, unsigned long address, int flags)
1100 bool compound = flags & RMAP_COMPOUND;
1101 bool first;
1103 if (compound) {
1104 atomic_t *mapcount;
1105 VM_BUG_ON_PAGE(!PageLocked(page), page);
1106 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1107 mapcount = compound_mapcount_ptr(page);
1108 first = atomic_inc_and_test(mapcount);
1109 } else {
1110 first = atomic_inc_and_test(&page->_mapcount);
1113 if (first) {
1114 int nr = compound ? hpage_nr_pages(page) : 1;
1116 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1117 * these counters are not modified in interrupt context, and
1118 * pte lock(a spinlock) is held, which implies preemption
1119 * disabled.
1121 if (compound)
1122 __inc_node_page_state(page, NR_ANON_THPS);
1123 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1125 if (unlikely(PageKsm(page)))
1126 return;
1128 VM_BUG_ON_PAGE(!PageLocked(page), page);
1130 /* address might be in next vma when migration races vma_adjust */
1131 if (first)
1132 __page_set_anon_rmap(page, vma, address,
1133 flags & RMAP_EXCLUSIVE);
1134 else
1135 __page_check_anon_rmap(page, vma, address);
1139 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1140 * @page: the page to add the mapping to
1141 * @vma: the vm area in which the mapping is added
1142 * @address: the user virtual address mapped
1143 * @compound: charge the page as compound or small page
1145 * Same as page_add_anon_rmap but must only be called on *new* pages.
1146 * This means the inc-and-test can be bypassed.
1147 * Page does not have to be locked.
1149 void page_add_new_anon_rmap(struct page *page,
1150 struct vm_area_struct *vma, unsigned long address, bool compound)
1152 int nr = compound ? hpage_nr_pages(page) : 1;
1154 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1155 __SetPageSwapBacked(page);
1156 if (compound) {
1157 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1158 /* increment count (starts at -1) */
1159 atomic_set(compound_mapcount_ptr(page), 0);
1160 __inc_node_page_state(page, NR_ANON_THPS);
1161 } else {
1162 /* Anon THP always mapped first with PMD */
1163 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1164 /* increment count (starts at -1) */
1165 atomic_set(&page->_mapcount, 0);
1167 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1168 __page_set_anon_rmap(page, vma, address, 1);
1172 * page_add_file_rmap - add pte mapping to a file page
1173 * @page: the page to add the mapping to
1175 * The caller needs to hold the pte lock.
1177 void page_add_file_rmap(struct page *page, bool compound)
1179 int i, nr = 1;
1181 VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1182 lock_page_memcg(page);
1183 if (compound && PageTransHuge(page)) {
1184 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1185 if (atomic_inc_and_test(&page[i]._mapcount))
1186 nr++;
1188 if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1189 goto out;
1190 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1191 __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1192 } else {
1193 if (PageTransCompound(page) && page_mapping(page)) {
1194 VM_WARN_ON_ONCE(!PageLocked(page));
1196 SetPageDoubleMap(compound_head(page));
1197 if (PageMlocked(page))
1198 clear_page_mlock(compound_head(page));
1200 if (!atomic_inc_and_test(&page->_mapcount))
1201 goto out;
1203 __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1204 out:
1205 unlock_page_memcg(page);
1208 static void page_remove_file_rmap(struct page *page, bool compound)
1210 int i, nr = 1;
1212 VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1213 lock_page_memcg(page);
1215 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1216 if (unlikely(PageHuge(page))) {
1217 /* hugetlb pages are always mapped with pmds */
1218 atomic_dec(compound_mapcount_ptr(page));
1219 goto out;
1222 /* page still mapped by someone else? */
1223 if (compound && PageTransHuge(page)) {
1224 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1225 if (atomic_add_negative(-1, &page[i]._mapcount))
1226 nr++;
1228 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1229 goto out;
1230 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1231 __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1232 } else {
1233 if (!atomic_add_negative(-1, &page->_mapcount))
1234 goto out;
1238 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1239 * these counters are not modified in interrupt context, and
1240 * pte lock(a spinlock) is held, which implies preemption disabled.
1242 __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1244 if (unlikely(PageMlocked(page)))
1245 clear_page_mlock(page);
1246 out:
1247 unlock_page_memcg(page);
1250 static void page_remove_anon_compound_rmap(struct page *page)
1252 int i, nr;
1254 if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1255 return;
1257 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1258 if (unlikely(PageHuge(page)))
1259 return;
1261 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1262 return;
1264 __dec_node_page_state(page, NR_ANON_THPS);
1266 if (TestClearPageDoubleMap(page)) {
1268 * Subpages can be mapped with PTEs too. Check how many of
1269 * themi are still mapped.
1271 for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1272 if (atomic_add_negative(-1, &page[i]._mapcount))
1273 nr++;
1275 } else {
1276 nr = HPAGE_PMD_NR;
1279 if (unlikely(PageMlocked(page)))
1280 clear_page_mlock(page);
1282 if (nr) {
1283 __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1284 deferred_split_huge_page(page);
1289 * page_remove_rmap - take down pte mapping from a page
1290 * @page: page to remove mapping from
1291 * @compound: uncharge the page as compound or small page
1293 * The caller needs to hold the pte lock.
1295 void page_remove_rmap(struct page *page, bool compound)
1297 if (!PageAnon(page))
1298 return page_remove_file_rmap(page, compound);
1300 if (compound)
1301 return page_remove_anon_compound_rmap(page);
1303 /* page still mapped by someone else? */
1304 if (!atomic_add_negative(-1, &page->_mapcount))
1305 return;
1308 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1309 * these counters are not modified in interrupt context, and
1310 * pte lock(a spinlock) is held, which implies preemption disabled.
1312 __dec_node_page_state(page, NR_ANON_MAPPED);
1314 if (unlikely(PageMlocked(page)))
1315 clear_page_mlock(page);
1317 if (PageTransCompound(page))
1318 deferred_split_huge_page(compound_head(page));
1321 * It would be tidy to reset the PageAnon mapping here,
1322 * but that might overwrite a racing page_add_anon_rmap
1323 * which increments mapcount after us but sets mapping
1324 * before us: so leave the reset to free_unref_page,
1325 * and remember that it's only reliable while mapped.
1326 * Leaving it set also helps swapoff to reinstate ptes
1327 * faster for those pages still in swapcache.
1332 * @arg: enum ttu_flags will be passed to this argument
1334 static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1335 unsigned long address, void *arg)
1337 struct mm_struct *mm = vma->vm_mm;
1338 struct page_vma_mapped_walk pvmw = {
1339 .page = page,
1340 .vma = vma,
1341 .address = address,
1343 pte_t pteval;
1344 struct page *subpage;
1345 bool ret = true;
1346 unsigned long start = address, end;
1347 enum ttu_flags flags = (enum ttu_flags)arg;
1349 /* munlock has nothing to gain from examining un-locked vmas */
1350 if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1351 return true;
1353 if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1354 is_zone_device_page(page) && !is_device_private_page(page))
1355 return true;
1357 if (flags & TTU_SPLIT_HUGE_PMD) {
1358 split_huge_pmd_address(vma, address,
1359 flags & TTU_SPLIT_FREEZE, page);
1363 * We have to assume the worse case ie pmd for invalidation. Note that
1364 * the page can not be free in this function as call of try_to_unmap()
1365 * must hold a reference on the page.
1367 end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1368 mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1370 while (page_vma_mapped_walk(&pvmw)) {
1371 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1372 /* PMD-mapped THP migration entry */
1373 if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1374 VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1376 if (!PageAnon(page))
1377 continue;
1379 set_pmd_migration_entry(&pvmw, page);
1380 continue;
1382 #endif
1385 * If the page is mlock()d, we cannot swap it out.
1386 * If it's recently referenced (perhaps page_referenced
1387 * skipped over this mm) then we should reactivate it.
1389 if (!(flags & TTU_IGNORE_MLOCK)) {
1390 if (vma->vm_flags & VM_LOCKED) {
1391 /* PTE-mapped THP are never mlocked */
1392 if (!PageTransCompound(page)) {
1394 * Holding pte lock, we do *not* need
1395 * mmap_sem here
1397 mlock_vma_page(page);
1399 ret = false;
1400 page_vma_mapped_walk_done(&pvmw);
1401 break;
1403 if (flags & TTU_MUNLOCK)
1404 continue;
1407 /* Unexpected PMD-mapped THP? */
1408 VM_BUG_ON_PAGE(!pvmw.pte, page);
1410 subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1411 address = pvmw.address;
1414 if (IS_ENABLED(CONFIG_MIGRATION) &&
1415 (flags & TTU_MIGRATION) &&
1416 is_zone_device_page(page)) {
1417 swp_entry_t entry;
1418 pte_t swp_pte;
1420 pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1423 * Store the pfn of the page in a special migration
1424 * pte. do_swap_page() will wait until the migration
1425 * pte is removed and then restart fault handling.
1427 entry = make_migration_entry(page, 0);
1428 swp_pte = swp_entry_to_pte(entry);
1429 if (pte_soft_dirty(pteval))
1430 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1431 set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1433 * No need to invalidate here it will synchronize on
1434 * against the special swap migration pte.
1436 goto discard;
1439 if (!(flags & TTU_IGNORE_ACCESS)) {
1440 if (ptep_clear_flush_young_notify(vma, address,
1441 pvmw.pte)) {
1442 ret = false;
1443 page_vma_mapped_walk_done(&pvmw);
1444 break;
1448 /* Nuke the page table entry. */
1449 flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1450 if (should_defer_flush(mm, flags)) {
1452 * We clear the PTE but do not flush so potentially
1453 * a remote CPU could still be writing to the page.
1454 * If the entry was previously clean then the
1455 * architecture must guarantee that a clear->dirty
1456 * transition on a cached TLB entry is written through
1457 * and traps if the PTE is unmapped.
1459 pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1461 set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1462 } else {
1463 pteval = ptep_clear_flush(vma, address, pvmw.pte);
1466 /* Move the dirty bit to the page. Now the pte is gone. */
1467 if (pte_dirty(pteval))
1468 set_page_dirty(page);
1470 /* Update high watermark before we lower rss */
1471 update_hiwater_rss(mm);
1473 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1474 pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1475 if (PageHuge(page)) {
1476 int nr = 1 << compound_order(page);
1477 hugetlb_count_sub(nr, mm);
1478 set_huge_swap_pte_at(mm, address,
1479 pvmw.pte, pteval,
1480 vma_mmu_pagesize(vma));
1481 } else {
1482 dec_mm_counter(mm, mm_counter(page));
1483 set_pte_at(mm, address, pvmw.pte, pteval);
1486 } else if (pte_unused(pteval)) {
1488 * The guest indicated that the page content is of no
1489 * interest anymore. Simply discard the pte, vmscan
1490 * will take care of the rest.
1492 dec_mm_counter(mm, mm_counter(page));
1493 /* We have to invalidate as we cleared the pte */
1494 mmu_notifier_invalidate_range(mm, address,
1495 address + PAGE_SIZE);
1496 } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1497 (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1498 swp_entry_t entry;
1499 pte_t swp_pte;
1501 * Store the pfn of the page in a special migration
1502 * pte. do_swap_page() will wait until the migration
1503 * pte is removed and then restart fault handling.
1505 entry = make_migration_entry(subpage,
1506 pte_write(pteval));
1507 swp_pte = swp_entry_to_pte(entry);
1508 if (pte_soft_dirty(pteval))
1509 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1510 set_pte_at(mm, address, pvmw.pte, swp_pte);
1512 * No need to invalidate here it will synchronize on
1513 * against the special swap migration pte.
1515 } else if (PageAnon(page)) {
1516 swp_entry_t entry = { .val = page_private(subpage) };
1517 pte_t swp_pte;
1519 * Store the swap location in the pte.
1520 * See handle_pte_fault() ...
1522 if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1523 WARN_ON_ONCE(1);
1524 ret = false;
1525 /* We have to invalidate as we cleared the pte */
1526 mmu_notifier_invalidate_range(mm, address,
1527 address + PAGE_SIZE);
1528 page_vma_mapped_walk_done(&pvmw);
1529 break;
1532 /* MADV_FREE page check */
1533 if (!PageSwapBacked(page)) {
1534 if (!PageDirty(page)) {
1535 /* Invalidate as we cleared the pte */
1536 mmu_notifier_invalidate_range(mm,
1537 address, address + PAGE_SIZE);
1538 dec_mm_counter(mm, MM_ANONPAGES);
1539 goto discard;
1543 * If the page was redirtied, it cannot be
1544 * discarded. Remap the page to page table.
1546 set_pte_at(mm, address, pvmw.pte, pteval);
1547 SetPageSwapBacked(page);
1548 ret = false;
1549 page_vma_mapped_walk_done(&pvmw);
1550 break;
1553 if (swap_duplicate(entry) < 0) {
1554 set_pte_at(mm, address, pvmw.pte, pteval);
1555 ret = false;
1556 page_vma_mapped_walk_done(&pvmw);
1557 break;
1559 if (list_empty(&mm->mmlist)) {
1560 spin_lock(&mmlist_lock);
1561 if (list_empty(&mm->mmlist))
1562 list_add(&mm->mmlist, &init_mm.mmlist);
1563 spin_unlock(&mmlist_lock);
1565 dec_mm_counter(mm, MM_ANONPAGES);
1566 inc_mm_counter(mm, MM_SWAPENTS);
1567 swp_pte = swp_entry_to_pte(entry);
1568 if (pte_soft_dirty(pteval))
1569 swp_pte = pte_swp_mksoft_dirty(swp_pte);
1570 set_pte_at(mm, address, pvmw.pte, swp_pte);
1571 /* Invalidate as we cleared the pte */
1572 mmu_notifier_invalidate_range(mm, address,
1573 address + PAGE_SIZE);
1574 } else {
1576 * We should not need to notify here as we reach this
1577 * case only from freeze_page() itself only call from
1578 * split_huge_page_to_list() so everything below must
1579 * be true:
1580 * - page is not anonymous
1581 * - page is locked
1583 * So as it is a locked file back page thus it can not
1584 * be remove from the page cache and replace by a new
1585 * page before mmu_notifier_invalidate_range_end so no
1586 * concurrent thread might update its page table to
1587 * point at new page while a device still is using this
1588 * page.
1590 * See Documentation/vm/mmu_notifier.txt
1592 dec_mm_counter(mm, mm_counter_file(page));
1594 discard:
1596 * No need to call mmu_notifier_invalidate_range() it has be
1597 * done above for all cases requiring it to happen under page
1598 * table lock before mmu_notifier_invalidate_range_end()
1600 * See Documentation/vm/mmu_notifier.txt
1602 page_remove_rmap(subpage, PageHuge(page));
1603 put_page(page);
1606 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1608 return ret;
1611 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1613 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1615 if (!maybe_stack)
1616 return false;
1618 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1619 VM_STACK_INCOMPLETE_SETUP)
1620 return true;
1622 return false;
1625 static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1627 return is_vma_temporary_stack(vma);
1630 static int page_mapcount_is_zero(struct page *page)
1632 return !total_mapcount(page);
1636 * try_to_unmap - try to remove all page table mappings to a page
1637 * @page: the page to get unmapped
1638 * @flags: action and flags
1640 * Tries to remove all the page table entries which are mapping this
1641 * page, used in the pageout path. Caller must hold the page lock.
1643 * If unmap is successful, return true. Otherwise, false.
1645 bool try_to_unmap(struct page *page, enum ttu_flags flags)
1647 struct rmap_walk_control rwc = {
1648 .rmap_one = try_to_unmap_one,
1649 .arg = (void *)flags,
1650 .done = page_mapcount_is_zero,
1651 .anon_lock = page_lock_anon_vma_read,
1655 * During exec, a temporary VMA is setup and later moved.
1656 * The VMA is moved under the anon_vma lock but not the
1657 * page tables leading to a race where migration cannot
1658 * find the migration ptes. Rather than increasing the
1659 * locking requirements of exec(), migration skips
1660 * temporary VMAs until after exec() completes.
1662 if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1663 && !PageKsm(page) && PageAnon(page))
1664 rwc.invalid_vma = invalid_migration_vma;
1666 if (flags & TTU_RMAP_LOCKED)
1667 rmap_walk_locked(page, &rwc);
1668 else
1669 rmap_walk(page, &rwc);
1671 return !page_mapcount(page) ? true : false;
1674 static int page_not_mapped(struct page *page)
1676 return !page_mapped(page);
1680 * try_to_munlock - try to munlock a page
1681 * @page: the page to be munlocked
1683 * Called from munlock code. Checks all of the VMAs mapping the page
1684 * to make sure nobody else has this page mlocked. The page will be
1685 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1688 void try_to_munlock(struct page *page)
1690 struct rmap_walk_control rwc = {
1691 .rmap_one = try_to_unmap_one,
1692 .arg = (void *)TTU_MUNLOCK,
1693 .done = page_not_mapped,
1694 .anon_lock = page_lock_anon_vma_read,
1698 VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1699 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1701 rmap_walk(page, &rwc);
1704 void __put_anon_vma(struct anon_vma *anon_vma)
1706 struct anon_vma *root = anon_vma->root;
1708 anon_vma_free(anon_vma);
1709 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1710 anon_vma_free(root);
1713 static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1714 struct rmap_walk_control *rwc)
1716 struct anon_vma *anon_vma;
1718 if (rwc->anon_lock)
1719 return rwc->anon_lock(page);
1722 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1723 * because that depends on page_mapped(); but not all its usages
1724 * are holding mmap_sem. Users without mmap_sem are required to
1725 * take a reference count to prevent the anon_vma disappearing
1727 anon_vma = page_anon_vma(page);
1728 if (!anon_vma)
1729 return NULL;
1731 anon_vma_lock_read(anon_vma);
1732 return anon_vma;
1736 * rmap_walk_anon - do something to anonymous page using the object-based
1737 * rmap method
1738 * @page: the page to be handled
1739 * @rwc: control variable according to each walk type
1741 * Find all the mappings of a page using the mapping pointer and the vma chains
1742 * contained in the anon_vma struct it points to.
1744 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1745 * where the page was found will be held for write. So, we won't recheck
1746 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1747 * LOCKED.
1749 static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1750 bool locked)
1752 struct anon_vma *anon_vma;
1753 pgoff_t pgoff_start, pgoff_end;
1754 struct anon_vma_chain *avc;
1756 if (locked) {
1757 anon_vma = page_anon_vma(page);
1758 /* anon_vma disappear under us? */
1759 VM_BUG_ON_PAGE(!anon_vma, page);
1760 } else {
1761 anon_vma = rmap_walk_anon_lock(page, rwc);
1763 if (!anon_vma)
1764 return;
1766 pgoff_start = page_to_pgoff(page);
1767 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1768 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1769 pgoff_start, pgoff_end) {
1770 struct vm_area_struct *vma = avc->vma;
1771 unsigned long address = vma_address(page, vma);
1773 cond_resched();
1775 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1776 continue;
1778 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1779 break;
1780 if (rwc->done && rwc->done(page))
1781 break;
1784 if (!locked)
1785 anon_vma_unlock_read(anon_vma);
1789 * rmap_walk_file - do something to file page using the object-based rmap method
1790 * @page: the page to be handled
1791 * @rwc: control variable according to each walk type
1793 * Find all the mappings of a page using the mapping pointer and the vma chains
1794 * contained in the address_space struct it points to.
1796 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1797 * where the page was found will be held for write. So, we won't recheck
1798 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1799 * LOCKED.
1801 static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1802 bool locked)
1804 struct address_space *mapping = page_mapping(page);
1805 pgoff_t pgoff_start, pgoff_end;
1806 struct vm_area_struct *vma;
1809 * The page lock not only makes sure that page->mapping cannot
1810 * suddenly be NULLified by truncation, it makes sure that the
1811 * structure at mapping cannot be freed and reused yet,
1812 * so we can safely take mapping->i_mmap_rwsem.
1814 VM_BUG_ON_PAGE(!PageLocked(page), page);
1816 if (!mapping)
1817 return;
1819 pgoff_start = page_to_pgoff(page);
1820 pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1821 if (!locked)
1822 i_mmap_lock_read(mapping);
1823 vma_interval_tree_foreach(vma, &mapping->i_mmap,
1824 pgoff_start, pgoff_end) {
1825 unsigned long address = vma_address(page, vma);
1827 cond_resched();
1829 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1830 continue;
1832 if (!rwc->rmap_one(page, vma, address, rwc->arg))
1833 goto done;
1834 if (rwc->done && rwc->done(page))
1835 goto done;
1838 done:
1839 if (!locked)
1840 i_mmap_unlock_read(mapping);
1843 void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1845 if (unlikely(PageKsm(page)))
1846 rmap_walk_ksm(page, rwc);
1847 else if (PageAnon(page))
1848 rmap_walk_anon(page, rwc, false);
1849 else
1850 rmap_walk_file(page, rwc, false);
1853 /* Like rmap_walk, but caller holds relevant rmap lock */
1854 void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1856 /* no ksm support for now */
1857 VM_BUG_ON_PAGE(PageKsm(page), page);
1858 if (PageAnon(page))
1859 rmap_walk_anon(page, rwc, true);
1860 else
1861 rmap_walk_file(page, rwc, true);
1864 #ifdef CONFIG_HUGETLB_PAGE
1866 * The following three functions are for anonymous (private mapped) hugepages.
1867 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1868 * and no lru code, because we handle hugepages differently from common pages.
1870 static void __hugepage_set_anon_rmap(struct page *page,
1871 struct vm_area_struct *vma, unsigned long address, int exclusive)
1873 struct anon_vma *anon_vma = vma->anon_vma;
1875 BUG_ON(!anon_vma);
1877 if (PageAnon(page))
1878 return;
1879 if (!exclusive)
1880 anon_vma = anon_vma->root;
1882 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1883 page->mapping = (struct address_space *) anon_vma;
1884 page->index = linear_page_index(vma, address);
1887 void hugepage_add_anon_rmap(struct page *page,
1888 struct vm_area_struct *vma, unsigned long address)
1890 struct anon_vma *anon_vma = vma->anon_vma;
1891 int first;
1893 BUG_ON(!PageLocked(page));
1894 BUG_ON(!anon_vma);
1895 /* address might be in next vma when migration races vma_adjust */
1896 first = atomic_inc_and_test(compound_mapcount_ptr(page));
1897 if (first)
1898 __hugepage_set_anon_rmap(page, vma, address, 0);
1901 void hugepage_add_new_anon_rmap(struct page *page,
1902 struct vm_area_struct *vma, unsigned long address)
1904 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1905 atomic_set(compound_mapcount_ptr(page), 0);
1906 __hugepage_set_anon_rmap(page, vma, address, 1);
1908 #endif /* CONFIG_HUGETLB_PAGE */