2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
27 * mapping->i_mmap_rwsem
29 * mm->page_table_lock or pte_lock
30 * zone_lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
35 * mapping->tree_lock (widely used)
36 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
37 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
38 * sb_lock (within inode_lock in fs/fs-writeback.c)
39 * mapping->tree_lock (widely used, in set_page_dirty,
40 * in arch-dependent flush_dcache_mmap_lock,
41 * within bdi.wb->list_lock in __sync_single_inode)
43 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/pagemap.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/slab.h>
55 #include <linux/init.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/rcupdate.h>
59 #include <linux/export.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/backing-dev.h>
65 #include <linux/page_idle.h>
66 #include <linux/memremap.h>
68 #include <asm/tlbflush.h>
70 #include <trace/events/tlb.h>
74 static struct kmem_cache
*anon_vma_cachep
;
75 static struct kmem_cache
*anon_vma_chain_cachep
;
77 static inline struct anon_vma
*anon_vma_alloc(void)
79 struct anon_vma
*anon_vma
;
81 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
83 atomic_set(&anon_vma
->refcount
, 1);
84 anon_vma
->degree
= 1; /* Reference for first vma */
85 anon_vma
->parent
= anon_vma
;
87 * Initialise the anon_vma root to point to itself. If called
88 * from fork, the root will be reset to the parents anon_vma.
90 anon_vma
->root
= anon_vma
;
96 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
98 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
101 * Synchronize against page_lock_anon_vma_read() such that
102 * we can safely hold the lock without the anon_vma getting
105 * Relies on the full mb implied by the atomic_dec_and_test() from
106 * put_anon_vma() against the acquire barrier implied by
107 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
109 * page_lock_anon_vma_read() VS put_anon_vma()
110 * down_read_trylock() atomic_dec_and_test()
112 * atomic_read() rwsem_is_locked()
114 * LOCK should suffice since the actual taking of the lock must
115 * happen _before_ what follows.
118 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
119 anon_vma_lock_write(anon_vma
);
120 anon_vma_unlock_write(anon_vma
);
123 kmem_cache_free(anon_vma_cachep
, anon_vma
);
126 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
128 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
131 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
133 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
136 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
137 struct anon_vma_chain
*avc
,
138 struct anon_vma
*anon_vma
)
141 avc
->anon_vma
= anon_vma
;
142 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
143 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
147 * __anon_vma_prepare - attach an anon_vma to a memory region
148 * @vma: the memory region in question
150 * This makes sure the memory mapping described by 'vma' has
151 * an 'anon_vma' attached to it, so that we can associate the
152 * anonymous pages mapped into it with that anon_vma.
154 * The common case will be that we already have one, which
155 * is handled inline by anon_vma_prepare(). But if
156 * not we either need to find an adjacent mapping that we
157 * can re-use the anon_vma from (very common when the only
158 * reason for splitting a vma has been mprotect()), or we
159 * allocate a new one.
161 * Anon-vma allocations are very subtle, because we may have
162 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
163 * and that may actually touch the spinlock even in the newly
164 * allocated vma (it depends on RCU to make sure that the
165 * anon_vma isn't actually destroyed).
167 * As a result, we need to do proper anon_vma locking even
168 * for the new allocation. At the same time, we do not want
169 * to do any locking for the common case of already having
172 * This must be called with the mmap_sem held for reading.
174 int __anon_vma_prepare(struct vm_area_struct
*vma
)
176 struct mm_struct
*mm
= vma
->vm_mm
;
177 struct anon_vma
*anon_vma
, *allocated
;
178 struct anon_vma_chain
*avc
;
182 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
186 anon_vma
= find_mergeable_anon_vma(vma
);
189 anon_vma
= anon_vma_alloc();
190 if (unlikely(!anon_vma
))
191 goto out_enomem_free_avc
;
192 allocated
= anon_vma
;
195 anon_vma_lock_write(anon_vma
);
196 /* page_table_lock to protect against threads */
197 spin_lock(&mm
->page_table_lock
);
198 if (likely(!vma
->anon_vma
)) {
199 vma
->anon_vma
= anon_vma
;
200 anon_vma_chain_link(vma
, avc
, anon_vma
);
201 /* vma reference or self-parent link for new root */
206 spin_unlock(&mm
->page_table_lock
);
207 anon_vma_unlock_write(anon_vma
);
209 if (unlikely(allocated
))
210 put_anon_vma(allocated
);
212 anon_vma_chain_free(avc
);
217 anon_vma_chain_free(avc
);
223 * This is a useful helper function for locking the anon_vma root as
224 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
227 * Such anon_vma's should have the same root, so you'd expect to see
228 * just a single mutex_lock for the whole traversal.
230 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
232 struct anon_vma
*new_root
= anon_vma
->root
;
233 if (new_root
!= root
) {
234 if (WARN_ON_ONCE(root
))
235 up_write(&root
->rwsem
);
237 down_write(&root
->rwsem
);
242 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
245 up_write(&root
->rwsem
);
249 * Attach the anon_vmas from src to dst.
250 * Returns 0 on success, -ENOMEM on failure.
252 * If dst->anon_vma is NULL this function tries to find and reuse existing
253 * anon_vma which has no vmas and only one child anon_vma. This prevents
254 * degradation of anon_vma hierarchy to endless linear chain in case of
255 * constantly forking task. On the other hand, an anon_vma with more than one
256 * child isn't reused even if there was no alive vma, thus rmap walker has a
257 * good chance of avoiding scanning the whole hierarchy when it searches where
260 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
262 struct anon_vma_chain
*avc
, *pavc
;
263 struct anon_vma
*root
= NULL
;
265 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
266 struct anon_vma
*anon_vma
;
268 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
269 if (unlikely(!avc
)) {
270 unlock_anon_vma_root(root
);
272 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
276 anon_vma
= pavc
->anon_vma
;
277 root
= lock_anon_vma_root(root
, anon_vma
);
278 anon_vma_chain_link(dst
, avc
, anon_vma
);
281 * Reuse existing anon_vma if its degree lower than two,
282 * that means it has no vma and only one anon_vma child.
284 * Do not chose parent anon_vma, otherwise first child
285 * will always reuse it. Root anon_vma is never reused:
286 * it has self-parent reference and at least one child.
288 if (!dst
->anon_vma
&& anon_vma
!= src
->anon_vma
&&
289 anon_vma
->degree
< 2)
290 dst
->anon_vma
= anon_vma
;
293 dst
->anon_vma
->degree
++;
294 unlock_anon_vma_root(root
);
299 * dst->anon_vma is dropped here otherwise its degree can be incorrectly
300 * decremented in unlink_anon_vmas().
301 * We can safely do this because callers of anon_vma_clone() don't care
302 * about dst->anon_vma if anon_vma_clone() failed.
304 dst
->anon_vma
= NULL
;
305 unlink_anon_vmas(dst
);
310 * Attach vma to its own anon_vma, as well as to the anon_vmas that
311 * the corresponding VMA in the parent process is attached to.
312 * Returns 0 on success, non-zero on failure.
314 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
316 struct anon_vma_chain
*avc
;
317 struct anon_vma
*anon_vma
;
320 /* Don't bother if the parent process has no anon_vma here. */
324 /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
325 vma
->anon_vma
= NULL
;
328 * First, attach the new VMA to the parent VMA's anon_vmas,
329 * so rmap can find non-COWed pages in child processes.
331 error
= anon_vma_clone(vma
, pvma
);
335 /* An existing anon_vma has been reused, all done then. */
339 /* Then add our own anon_vma. */
340 anon_vma
= anon_vma_alloc();
343 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
345 goto out_error_free_anon_vma
;
348 * The root anon_vma's spinlock is the lock actually used when we
349 * lock any of the anon_vmas in this anon_vma tree.
351 anon_vma
->root
= pvma
->anon_vma
->root
;
352 anon_vma
->parent
= pvma
->anon_vma
;
354 * With refcounts, an anon_vma can stay around longer than the
355 * process it belongs to. The root anon_vma needs to be pinned until
356 * this anon_vma is freed, because the lock lives in the root.
358 get_anon_vma(anon_vma
->root
);
359 /* Mark this anon_vma as the one where our new (COWed) pages go. */
360 vma
->anon_vma
= anon_vma
;
361 anon_vma_lock_write(anon_vma
);
362 anon_vma_chain_link(vma
, avc
, anon_vma
);
363 anon_vma
->parent
->degree
++;
364 anon_vma_unlock_write(anon_vma
);
368 out_error_free_anon_vma
:
369 put_anon_vma(anon_vma
);
371 unlink_anon_vmas(vma
);
375 void unlink_anon_vmas(struct vm_area_struct
*vma
)
377 struct anon_vma_chain
*avc
, *next
;
378 struct anon_vma
*root
= NULL
;
381 * Unlink each anon_vma chained to the VMA. This list is ordered
382 * from newest to oldest, ensuring the root anon_vma gets freed last.
384 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
385 struct anon_vma
*anon_vma
= avc
->anon_vma
;
387 root
= lock_anon_vma_root(root
, anon_vma
);
388 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
391 * Leave empty anon_vmas on the list - we'll need
392 * to free them outside the lock.
394 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
.rb_root
)) {
395 anon_vma
->parent
->degree
--;
399 list_del(&avc
->same_vma
);
400 anon_vma_chain_free(avc
);
403 vma
->anon_vma
->degree
--;
404 unlock_anon_vma_root(root
);
407 * Iterate the list once more, it now only contains empty and unlinked
408 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
409 * needing to write-acquire the anon_vma->root->rwsem.
411 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
412 struct anon_vma
*anon_vma
= avc
->anon_vma
;
414 VM_WARN_ON(anon_vma
->degree
);
415 put_anon_vma(anon_vma
);
417 list_del(&avc
->same_vma
);
418 anon_vma_chain_free(avc
);
422 static void anon_vma_ctor(void *data
)
424 struct anon_vma
*anon_vma
= data
;
426 init_rwsem(&anon_vma
->rwsem
);
427 atomic_set(&anon_vma
->refcount
, 0);
428 anon_vma
->rb_root
= RB_ROOT_CACHED
;
431 void __init
anon_vma_init(void)
433 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
434 0, SLAB_TYPESAFE_BY_RCU
|SLAB_PANIC
|SLAB_ACCOUNT
,
436 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
,
437 SLAB_PANIC
|SLAB_ACCOUNT
);
441 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
443 * Since there is no serialization what so ever against page_remove_rmap()
444 * the best this function can do is return a locked anon_vma that might
445 * have been relevant to this page.
447 * The page might have been remapped to a different anon_vma or the anon_vma
448 * returned may already be freed (and even reused).
450 * In case it was remapped to a different anon_vma, the new anon_vma will be a
451 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
452 * ensure that any anon_vma obtained from the page will still be valid for as
453 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
455 * All users of this function must be very careful when walking the anon_vma
456 * chain and verify that the page in question is indeed mapped in it
457 * [ something equivalent to page_mapped_in_vma() ].
459 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
460 * that the anon_vma pointer from page->mapping is valid if there is a
461 * mapcount, we can dereference the anon_vma after observing those.
463 struct anon_vma
*page_get_anon_vma(struct page
*page
)
465 struct anon_vma
*anon_vma
= NULL
;
466 unsigned long anon_mapping
;
469 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
470 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
472 if (!page_mapped(page
))
475 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
476 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
482 * If this page is still mapped, then its anon_vma cannot have been
483 * freed. But if it has been unmapped, we have no security against the
484 * anon_vma structure being freed and reused (for another anon_vma:
485 * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
486 * above cannot corrupt).
488 if (!page_mapped(page
)) {
490 put_anon_vma(anon_vma
);
500 * Similar to page_get_anon_vma() except it locks the anon_vma.
502 * Its a little more complex as it tries to keep the fast path to a single
503 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
504 * reference like with page_get_anon_vma() and then block on the mutex.
506 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
508 struct anon_vma
*anon_vma
= NULL
;
509 struct anon_vma
*root_anon_vma
;
510 unsigned long anon_mapping
;
513 anon_mapping
= (unsigned long)READ_ONCE(page
->mapping
);
514 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
516 if (!page_mapped(page
))
519 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
520 root_anon_vma
= READ_ONCE(anon_vma
->root
);
521 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
523 * If the page is still mapped, then this anon_vma is still
524 * its anon_vma, and holding the mutex ensures that it will
525 * not go away, see anon_vma_free().
527 if (!page_mapped(page
)) {
528 up_read(&root_anon_vma
->rwsem
);
534 /* trylock failed, we got to sleep */
535 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
540 if (!page_mapped(page
)) {
542 put_anon_vma(anon_vma
);
546 /* we pinned the anon_vma, its safe to sleep */
548 anon_vma_lock_read(anon_vma
);
550 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
552 * Oops, we held the last refcount, release the lock
553 * and bail -- can't simply use put_anon_vma() because
554 * we'll deadlock on the anon_vma_lock_write() recursion.
556 anon_vma_unlock_read(anon_vma
);
557 __put_anon_vma(anon_vma
);
568 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
570 anon_vma_unlock_read(anon_vma
);
573 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
575 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
576 * important if a PTE was dirty when it was unmapped that it's flushed
577 * before any IO is initiated on the page to prevent lost writes. Similarly,
578 * it must be flushed before freeing to prevent data leakage.
580 void try_to_unmap_flush(void)
582 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
584 if (!tlb_ubc
->flush_required
)
587 arch_tlbbatch_flush(&tlb_ubc
->arch
);
588 tlb_ubc
->flush_required
= false;
589 tlb_ubc
->writable
= false;
592 /* Flush iff there are potentially writable TLB entries that can race with IO */
593 void try_to_unmap_flush_dirty(void)
595 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
597 if (tlb_ubc
->writable
)
598 try_to_unmap_flush();
601 static void set_tlb_ubc_flush_pending(struct mm_struct
*mm
, bool writable
)
603 struct tlbflush_unmap_batch
*tlb_ubc
= ¤t
->tlb_ubc
;
605 arch_tlbbatch_add_mm(&tlb_ubc
->arch
, mm
);
606 tlb_ubc
->flush_required
= true;
609 * Ensure compiler does not re-order the setting of tlb_flush_batched
610 * before the PTE is cleared.
613 mm
->tlb_flush_batched
= true;
616 * If the PTE was dirty then it's best to assume it's writable. The
617 * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
618 * before the page is queued for IO.
621 tlb_ubc
->writable
= true;
625 * Returns true if the TLB flush should be deferred to the end of a batch of
626 * unmap operations to reduce IPIs.
628 static bool should_defer_flush(struct mm_struct
*mm
, enum ttu_flags flags
)
630 bool should_defer
= false;
632 if (!(flags
& TTU_BATCH_FLUSH
))
635 /* If remote CPUs need to be flushed then defer batch the flush */
636 if (cpumask_any_but(mm_cpumask(mm
), get_cpu()) < nr_cpu_ids
)
644 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
645 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
646 * operation such as mprotect or munmap to race between reclaim unmapping
647 * the page and flushing the page. If this race occurs, it potentially allows
648 * access to data via a stale TLB entry. Tracking all mm's that have TLB
649 * batching in flight would be expensive during reclaim so instead track
650 * whether TLB batching occurred in the past and if so then do a flush here
651 * if required. This will cost one additional flush per reclaim cycle paid
652 * by the first operation at risk such as mprotect and mumap.
654 * This must be called under the PTL so that an access to tlb_flush_batched
655 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
658 void flush_tlb_batched_pending(struct mm_struct
*mm
)
660 if (mm
->tlb_flush_batched
) {
664 * Do not allow the compiler to re-order the clearing of
665 * tlb_flush_batched before the tlb is flushed.
668 mm
->tlb_flush_batched
= false;
672 static void set_tlb_ubc_flush_pending(struct mm_struct
*mm
, bool writable
)
676 static bool should_defer_flush(struct mm_struct
*mm
, enum ttu_flags flags
)
680 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
683 * At what user virtual address is page expected in vma?
684 * Caller should check the page is actually part of the vma.
686 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
688 unsigned long address
;
689 if (PageAnon(page
)) {
690 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
692 * Note: swapoff's unuse_vma() is more efficient with this
693 * check, and needs it to match anon_vma when KSM is active.
695 if (!vma
->anon_vma
|| !page__anon_vma
||
696 vma
->anon_vma
->root
!= page__anon_vma
->root
)
698 } else if (page
->mapping
) {
699 if (!vma
->vm_file
|| vma
->vm_file
->f_mapping
!= page
->mapping
)
703 address
= __vma_address(page
, vma
);
704 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
709 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
717 pgd
= pgd_offset(mm
, address
);
718 if (!pgd_present(*pgd
))
721 p4d
= p4d_offset(pgd
, address
);
722 if (!p4d_present(*p4d
))
725 pud
= pud_offset(p4d
, address
);
726 if (!pud_present(*pud
))
729 pmd
= pmd_offset(pud
, address
);
731 * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
732 * without holding anon_vma lock for write. So when looking for a
733 * genuine pmde (in which to find pte), test present and !THP together.
737 if (!pmd_present(pmde
) || pmd_trans_huge(pmde
))
743 struct page_referenced_arg
{
746 unsigned long vm_flags
;
747 struct mem_cgroup
*memcg
;
750 * arg: page_referenced_arg will be passed
752 static bool page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
753 unsigned long address
, void *arg
)
755 struct page_referenced_arg
*pra
= arg
;
756 struct page_vma_mapped_walk pvmw
= {
763 while (page_vma_mapped_walk(&pvmw
)) {
764 address
= pvmw
.address
;
766 if (vma
->vm_flags
& VM_LOCKED
) {
767 page_vma_mapped_walk_done(&pvmw
);
768 pra
->vm_flags
|= VM_LOCKED
;
769 return false; /* To break the loop */
773 if (ptep_clear_flush_young_notify(vma
, address
,
776 * Don't treat a reference through
777 * a sequentially read mapping as such.
778 * If the page has been used in another mapping,
779 * we will catch it; if this other mapping is
780 * already gone, the unmap path will have set
781 * PG_referenced or activated the page.
783 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
786 } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
)) {
787 if (pmdp_clear_flush_young_notify(vma
, address
,
791 /* unexpected pmd-mapped page? */
799 clear_page_idle(page
);
800 if (test_and_clear_page_young(page
))
805 pra
->vm_flags
|= vma
->vm_flags
;
809 return false; /* To break the loop */
814 static bool invalid_page_referenced_vma(struct vm_area_struct
*vma
, void *arg
)
816 struct page_referenced_arg
*pra
= arg
;
817 struct mem_cgroup
*memcg
= pra
->memcg
;
819 if (!mm_match_cgroup(vma
->vm_mm
, memcg
))
826 * page_referenced - test if the page was referenced
827 * @page: the page to test
828 * @is_locked: caller holds lock on the page
829 * @memcg: target memory cgroup
830 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
832 * Quick test_and_clear_referenced for all mappings to a page,
833 * returns the number of ptes which referenced the page.
835 int page_referenced(struct page
*page
,
837 struct mem_cgroup
*memcg
,
838 unsigned long *vm_flags
)
841 struct page_referenced_arg pra
= {
842 .mapcount
= total_mapcount(page
),
845 struct rmap_walk_control rwc
= {
846 .rmap_one
= page_referenced_one
,
848 .anon_lock
= page_lock_anon_vma_read
,
852 if (!page_mapped(page
))
855 if (!page_rmapping(page
))
858 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
859 we_locked
= trylock_page(page
);
865 * If we are reclaiming on behalf of a cgroup, skip
866 * counting on behalf of references from different
870 rwc
.invalid_vma
= invalid_page_referenced_vma
;
873 rmap_walk(page
, &rwc
);
874 *vm_flags
= pra
.vm_flags
;
879 return pra
.referenced
;
882 static bool page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
883 unsigned long address
, void *arg
)
885 struct page_vma_mapped_walk pvmw
= {
891 unsigned long start
= address
, end
;
895 * We have to assume the worse case ie pmd for invalidation. Note that
896 * the page can not be free from this function.
898 end
= min(vma
->vm_end
, start
+ (PAGE_SIZE
<< compound_order(page
)));
899 mmu_notifier_invalidate_range_start(vma
->vm_mm
, start
, end
);
901 while (page_vma_mapped_walk(&pvmw
)) {
902 unsigned long cstart
;
905 cstart
= address
= pvmw
.address
;
908 pte_t
*pte
= pvmw
.pte
;
910 if (!pte_dirty(*pte
) && !pte_write(*pte
))
913 flush_cache_page(vma
, address
, pte_pfn(*pte
));
914 entry
= ptep_clear_flush(vma
, address
, pte
);
915 entry
= pte_wrprotect(entry
);
916 entry
= pte_mkclean(entry
);
917 set_pte_at(vma
->vm_mm
, address
, pte
, entry
);
920 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
921 pmd_t
*pmd
= pvmw
.pmd
;
924 if (!pmd_dirty(*pmd
) && !pmd_write(*pmd
))
927 flush_cache_page(vma
, address
, page_to_pfn(page
));
928 entry
= pmdp_huge_clear_flush(vma
, address
, pmd
);
929 entry
= pmd_wrprotect(entry
);
930 entry
= pmd_mkclean(entry
);
931 set_pmd_at(vma
->vm_mm
, address
, pmd
, entry
);
935 /* unexpected pmd-mapped page? */
941 * No need to call mmu_notifier_invalidate_range() as we are
942 * downgrading page table protection not changing it to point
945 * See Documentation/vm/mmu_notifier.txt
951 mmu_notifier_invalidate_range_end(vma
->vm_mm
, start
, end
);
956 static bool invalid_mkclean_vma(struct vm_area_struct
*vma
, void *arg
)
958 if (vma
->vm_flags
& VM_SHARED
)
964 int page_mkclean(struct page
*page
)
967 struct address_space
*mapping
;
968 struct rmap_walk_control rwc
= {
969 .arg
= (void *)&cleaned
,
970 .rmap_one
= page_mkclean_one
,
971 .invalid_vma
= invalid_mkclean_vma
,
974 BUG_ON(!PageLocked(page
));
976 if (!page_mapped(page
))
979 mapping
= page_mapping(page
);
983 rmap_walk(page
, &rwc
);
987 EXPORT_SYMBOL_GPL(page_mkclean
);
990 * page_move_anon_rmap - move a page to our anon_vma
991 * @page: the page to move to our anon_vma
992 * @vma: the vma the page belongs to
994 * When a page belongs exclusively to one process after a COW event,
995 * that page can be moved into the anon_vma that belongs to just that
996 * process, so the rmap code will not search the parent or sibling
999 void page_move_anon_rmap(struct page
*page
, struct vm_area_struct
*vma
)
1001 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1003 page
= compound_head(page
);
1005 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1006 VM_BUG_ON_VMA(!anon_vma
, vma
);
1008 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1010 * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1011 * simultaneously, so a concurrent reader (eg page_referenced()'s
1012 * PageAnon()) will not see one without the other.
1014 WRITE_ONCE(page
->mapping
, (struct address_space
*) anon_vma
);
1018 * __page_set_anon_rmap - set up new anonymous rmap
1019 * @page: Page to add to rmap
1020 * @vma: VM area to add page to.
1021 * @address: User virtual address of the mapping
1022 * @exclusive: the page is exclusively owned by the current process
1024 static void __page_set_anon_rmap(struct page
*page
,
1025 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1027 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1035 * If the page isn't exclusively mapped into this vma,
1036 * we must use the _oldest_ possible anon_vma for the
1040 anon_vma
= anon_vma
->root
;
1042 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1043 page
->mapping
= (struct address_space
*) anon_vma
;
1044 page
->index
= linear_page_index(vma
, address
);
1048 * __page_check_anon_rmap - sanity check anonymous rmap addition
1049 * @page: the page to add the mapping to
1050 * @vma: the vm area in which the mapping is added
1051 * @address: the user virtual address mapped
1053 static void __page_check_anon_rmap(struct page
*page
,
1054 struct vm_area_struct
*vma
, unsigned long address
)
1056 #ifdef CONFIG_DEBUG_VM
1058 * The page's anon-rmap details (mapping and index) are guaranteed to
1059 * be set up correctly at this point.
1061 * We have exclusion against page_add_anon_rmap because the caller
1062 * always holds the page locked, except if called from page_dup_rmap,
1063 * in which case the page is already known to be setup.
1065 * We have exclusion against page_add_new_anon_rmap because those pages
1066 * are initially only visible via the pagetables, and the pte is locked
1067 * over the call to page_add_new_anon_rmap.
1069 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1070 BUG_ON(page_to_pgoff(page
) != linear_page_index(vma
, address
));
1075 * page_add_anon_rmap - add pte mapping to an anonymous page
1076 * @page: the page to add the mapping to
1077 * @vma: the vm area in which the mapping is added
1078 * @address: the user virtual address mapped
1079 * @compound: charge the page as compound or small page
1081 * The caller needs to hold the pte lock, and the page must be locked in
1082 * the anon_vma case: to serialize mapping,index checking after setting,
1083 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1084 * (but PageKsm is never downgraded to PageAnon).
1086 void page_add_anon_rmap(struct page
*page
,
1087 struct vm_area_struct
*vma
, unsigned long address
, bool compound
)
1089 do_page_add_anon_rmap(page
, vma
, address
, compound
? RMAP_COMPOUND
: 0);
1093 * Special version of the above for do_swap_page, which often runs
1094 * into pages that are exclusively owned by the current process.
1095 * Everybody else should continue to use page_add_anon_rmap above.
1097 void do_page_add_anon_rmap(struct page
*page
,
1098 struct vm_area_struct
*vma
, unsigned long address
, int flags
)
1100 bool compound
= flags
& RMAP_COMPOUND
;
1105 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1106 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
1107 mapcount
= compound_mapcount_ptr(page
);
1108 first
= atomic_inc_and_test(mapcount
);
1110 first
= atomic_inc_and_test(&page
->_mapcount
);
1114 int nr
= compound
? hpage_nr_pages(page
) : 1;
1116 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1117 * these counters are not modified in interrupt context, and
1118 * pte lock(a spinlock) is held, which implies preemption
1122 __inc_node_page_state(page
, NR_ANON_THPS
);
1123 __mod_node_page_state(page_pgdat(page
), NR_ANON_MAPPED
, nr
);
1125 if (unlikely(PageKsm(page
)))
1128 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1130 /* address might be in next vma when migration races vma_adjust */
1132 __page_set_anon_rmap(page
, vma
, address
,
1133 flags
& RMAP_EXCLUSIVE
);
1135 __page_check_anon_rmap(page
, vma
, address
);
1139 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1140 * @page: the page to add the mapping to
1141 * @vma: the vm area in which the mapping is added
1142 * @address: the user virtual address mapped
1143 * @compound: charge the page as compound or small page
1145 * Same as page_add_anon_rmap but must only be called on *new* pages.
1146 * This means the inc-and-test can be bypassed.
1147 * Page does not have to be locked.
1149 void page_add_new_anon_rmap(struct page
*page
,
1150 struct vm_area_struct
*vma
, unsigned long address
, bool compound
)
1152 int nr
= compound
? hpage_nr_pages(page
) : 1;
1154 VM_BUG_ON_VMA(address
< vma
->vm_start
|| address
>= vma
->vm_end
, vma
);
1155 __SetPageSwapBacked(page
);
1157 VM_BUG_ON_PAGE(!PageTransHuge(page
), page
);
1158 /* increment count (starts at -1) */
1159 atomic_set(compound_mapcount_ptr(page
), 0);
1160 __inc_node_page_state(page
, NR_ANON_THPS
);
1162 /* Anon THP always mapped first with PMD */
1163 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
1164 /* increment count (starts at -1) */
1165 atomic_set(&page
->_mapcount
, 0);
1167 __mod_node_page_state(page_pgdat(page
), NR_ANON_MAPPED
, nr
);
1168 __page_set_anon_rmap(page
, vma
, address
, 1);
1172 * page_add_file_rmap - add pte mapping to a file page
1173 * @page: the page to add the mapping to
1175 * The caller needs to hold the pte lock.
1177 void page_add_file_rmap(struct page
*page
, bool compound
)
1181 VM_BUG_ON_PAGE(compound
&& !PageTransHuge(page
), page
);
1182 lock_page_memcg(page
);
1183 if (compound
&& PageTransHuge(page
)) {
1184 for (i
= 0, nr
= 0; i
< HPAGE_PMD_NR
; i
++) {
1185 if (atomic_inc_and_test(&page
[i
]._mapcount
))
1188 if (!atomic_inc_and_test(compound_mapcount_ptr(page
)))
1190 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
1191 __inc_node_page_state(page
, NR_SHMEM_PMDMAPPED
);
1193 if (PageTransCompound(page
) && page_mapping(page
)) {
1194 VM_WARN_ON_ONCE(!PageLocked(page
));
1196 SetPageDoubleMap(compound_head(page
));
1197 if (PageMlocked(page
))
1198 clear_page_mlock(compound_head(page
));
1200 if (!atomic_inc_and_test(&page
->_mapcount
))
1203 __mod_lruvec_page_state(page
, NR_FILE_MAPPED
, nr
);
1205 unlock_page_memcg(page
);
1208 static void page_remove_file_rmap(struct page
*page
, bool compound
)
1212 VM_BUG_ON_PAGE(compound
&& !PageHead(page
), page
);
1213 lock_page_memcg(page
);
1215 /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1216 if (unlikely(PageHuge(page
))) {
1217 /* hugetlb pages are always mapped with pmds */
1218 atomic_dec(compound_mapcount_ptr(page
));
1222 /* page still mapped by someone else? */
1223 if (compound
&& PageTransHuge(page
)) {
1224 for (i
= 0, nr
= 0; i
< HPAGE_PMD_NR
; i
++) {
1225 if (atomic_add_negative(-1, &page
[i
]._mapcount
))
1228 if (!atomic_add_negative(-1, compound_mapcount_ptr(page
)))
1230 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
1231 __dec_node_page_state(page
, NR_SHMEM_PMDMAPPED
);
1233 if (!atomic_add_negative(-1, &page
->_mapcount
))
1238 * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1239 * these counters are not modified in interrupt context, and
1240 * pte lock(a spinlock) is held, which implies preemption disabled.
1242 __mod_lruvec_page_state(page
, NR_FILE_MAPPED
, -nr
);
1244 if (unlikely(PageMlocked(page
)))
1245 clear_page_mlock(page
);
1247 unlock_page_memcg(page
);
1250 static void page_remove_anon_compound_rmap(struct page
*page
)
1254 if (!atomic_add_negative(-1, compound_mapcount_ptr(page
)))
1257 /* Hugepages are not counted in NR_ANON_PAGES for now. */
1258 if (unlikely(PageHuge(page
)))
1261 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
))
1264 __dec_node_page_state(page
, NR_ANON_THPS
);
1266 if (TestClearPageDoubleMap(page
)) {
1268 * Subpages can be mapped with PTEs too. Check how many of
1269 * themi are still mapped.
1271 for (i
= 0, nr
= 0; i
< HPAGE_PMD_NR
; i
++) {
1272 if (atomic_add_negative(-1, &page
[i
]._mapcount
))
1279 if (unlikely(PageMlocked(page
)))
1280 clear_page_mlock(page
);
1283 __mod_node_page_state(page_pgdat(page
), NR_ANON_MAPPED
, -nr
);
1284 deferred_split_huge_page(page
);
1289 * page_remove_rmap - take down pte mapping from a page
1290 * @page: page to remove mapping from
1291 * @compound: uncharge the page as compound or small page
1293 * The caller needs to hold the pte lock.
1295 void page_remove_rmap(struct page
*page
, bool compound
)
1297 if (!PageAnon(page
))
1298 return page_remove_file_rmap(page
, compound
);
1301 return page_remove_anon_compound_rmap(page
);
1303 /* page still mapped by someone else? */
1304 if (!atomic_add_negative(-1, &page
->_mapcount
))
1308 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1309 * these counters are not modified in interrupt context, and
1310 * pte lock(a spinlock) is held, which implies preemption disabled.
1312 __dec_node_page_state(page
, NR_ANON_MAPPED
);
1314 if (unlikely(PageMlocked(page
)))
1315 clear_page_mlock(page
);
1317 if (PageTransCompound(page
))
1318 deferred_split_huge_page(compound_head(page
));
1321 * It would be tidy to reset the PageAnon mapping here,
1322 * but that might overwrite a racing page_add_anon_rmap
1323 * which increments mapcount after us but sets mapping
1324 * before us: so leave the reset to free_unref_page,
1325 * and remember that it's only reliable while mapped.
1326 * Leaving it set also helps swapoff to reinstate ptes
1327 * faster for those pages still in swapcache.
1332 * @arg: enum ttu_flags will be passed to this argument
1334 static bool try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1335 unsigned long address
, void *arg
)
1337 struct mm_struct
*mm
= vma
->vm_mm
;
1338 struct page_vma_mapped_walk pvmw
= {
1344 struct page
*subpage
;
1346 unsigned long start
= address
, end
;
1347 enum ttu_flags flags
= (enum ttu_flags
)arg
;
1349 /* munlock has nothing to gain from examining un-locked vmas */
1350 if ((flags
& TTU_MUNLOCK
) && !(vma
->vm_flags
& VM_LOCKED
))
1353 if (IS_ENABLED(CONFIG_MIGRATION
) && (flags
& TTU_MIGRATION
) &&
1354 is_zone_device_page(page
) && !is_device_private_page(page
))
1357 if (flags
& TTU_SPLIT_HUGE_PMD
) {
1358 split_huge_pmd_address(vma
, address
,
1359 flags
& TTU_SPLIT_FREEZE
, page
);
1363 * We have to assume the worse case ie pmd for invalidation. Note that
1364 * the page can not be free in this function as call of try_to_unmap()
1365 * must hold a reference on the page.
1367 end
= min(vma
->vm_end
, start
+ (PAGE_SIZE
<< compound_order(page
)));
1368 mmu_notifier_invalidate_range_start(vma
->vm_mm
, start
, end
);
1370 while (page_vma_mapped_walk(&pvmw
)) {
1371 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1372 /* PMD-mapped THP migration entry */
1373 if (!pvmw
.pte
&& (flags
& TTU_MIGRATION
)) {
1374 VM_BUG_ON_PAGE(PageHuge(page
) || !PageTransCompound(page
), page
);
1376 if (!PageAnon(page
))
1379 set_pmd_migration_entry(&pvmw
, page
);
1385 * If the page is mlock()d, we cannot swap it out.
1386 * If it's recently referenced (perhaps page_referenced
1387 * skipped over this mm) then we should reactivate it.
1389 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1390 if (vma
->vm_flags
& VM_LOCKED
) {
1391 /* PTE-mapped THP are never mlocked */
1392 if (!PageTransCompound(page
)) {
1394 * Holding pte lock, we do *not* need
1397 mlock_vma_page(page
);
1400 page_vma_mapped_walk_done(&pvmw
);
1403 if (flags
& TTU_MUNLOCK
)
1407 /* Unexpected PMD-mapped THP? */
1408 VM_BUG_ON_PAGE(!pvmw
.pte
, page
);
1410 subpage
= page
- page_to_pfn(page
) + pte_pfn(*pvmw
.pte
);
1411 address
= pvmw
.address
;
1414 if (IS_ENABLED(CONFIG_MIGRATION
) &&
1415 (flags
& TTU_MIGRATION
) &&
1416 is_zone_device_page(page
)) {
1420 pteval
= ptep_get_and_clear(mm
, pvmw
.address
, pvmw
.pte
);
1423 * Store the pfn of the page in a special migration
1424 * pte. do_swap_page() will wait until the migration
1425 * pte is removed and then restart fault handling.
1427 entry
= make_migration_entry(page
, 0);
1428 swp_pte
= swp_entry_to_pte(entry
);
1429 if (pte_soft_dirty(pteval
))
1430 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1431 set_pte_at(mm
, pvmw
.address
, pvmw
.pte
, swp_pte
);
1433 * No need to invalidate here it will synchronize on
1434 * against the special swap migration pte.
1439 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1440 if (ptep_clear_flush_young_notify(vma
, address
,
1443 page_vma_mapped_walk_done(&pvmw
);
1448 /* Nuke the page table entry. */
1449 flush_cache_page(vma
, address
, pte_pfn(*pvmw
.pte
));
1450 if (should_defer_flush(mm
, flags
)) {
1452 * We clear the PTE but do not flush so potentially
1453 * a remote CPU could still be writing to the page.
1454 * If the entry was previously clean then the
1455 * architecture must guarantee that a clear->dirty
1456 * transition on a cached TLB entry is written through
1457 * and traps if the PTE is unmapped.
1459 pteval
= ptep_get_and_clear(mm
, address
, pvmw
.pte
);
1461 set_tlb_ubc_flush_pending(mm
, pte_dirty(pteval
));
1463 pteval
= ptep_clear_flush(vma
, address
, pvmw
.pte
);
1466 /* Move the dirty bit to the page. Now the pte is gone. */
1467 if (pte_dirty(pteval
))
1468 set_page_dirty(page
);
1470 /* Update high watermark before we lower rss */
1471 update_hiwater_rss(mm
);
1473 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1474 pteval
= swp_entry_to_pte(make_hwpoison_entry(subpage
));
1475 if (PageHuge(page
)) {
1476 int nr
= 1 << compound_order(page
);
1477 hugetlb_count_sub(nr
, mm
);
1478 set_huge_swap_pte_at(mm
, address
,
1480 vma_mmu_pagesize(vma
));
1482 dec_mm_counter(mm
, mm_counter(page
));
1483 set_pte_at(mm
, address
, pvmw
.pte
, pteval
);
1486 } else if (pte_unused(pteval
)) {
1488 * The guest indicated that the page content is of no
1489 * interest anymore. Simply discard the pte, vmscan
1490 * will take care of the rest.
1492 dec_mm_counter(mm
, mm_counter(page
));
1493 /* We have to invalidate as we cleared the pte */
1494 mmu_notifier_invalidate_range(mm
, address
,
1495 address
+ PAGE_SIZE
);
1496 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1497 (flags
& (TTU_MIGRATION
|TTU_SPLIT_FREEZE
))) {
1501 * Store the pfn of the page in a special migration
1502 * pte. do_swap_page() will wait until the migration
1503 * pte is removed and then restart fault handling.
1505 entry
= make_migration_entry(subpage
,
1507 swp_pte
= swp_entry_to_pte(entry
);
1508 if (pte_soft_dirty(pteval
))
1509 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1510 set_pte_at(mm
, address
, pvmw
.pte
, swp_pte
);
1512 * No need to invalidate here it will synchronize on
1513 * against the special swap migration pte.
1515 } else if (PageAnon(page
)) {
1516 swp_entry_t entry
= { .val
= page_private(subpage
) };
1519 * Store the swap location in the pte.
1520 * See handle_pte_fault() ...
1522 if (unlikely(PageSwapBacked(page
) != PageSwapCache(page
))) {
1525 /* We have to invalidate as we cleared the pte */
1526 mmu_notifier_invalidate_range(mm
, address
,
1527 address
+ PAGE_SIZE
);
1528 page_vma_mapped_walk_done(&pvmw
);
1532 /* MADV_FREE page check */
1533 if (!PageSwapBacked(page
)) {
1534 if (!PageDirty(page
)) {
1535 /* Invalidate as we cleared the pte */
1536 mmu_notifier_invalidate_range(mm
,
1537 address
, address
+ PAGE_SIZE
);
1538 dec_mm_counter(mm
, MM_ANONPAGES
);
1543 * If the page was redirtied, it cannot be
1544 * discarded. Remap the page to page table.
1546 set_pte_at(mm
, address
, pvmw
.pte
, pteval
);
1547 SetPageSwapBacked(page
);
1549 page_vma_mapped_walk_done(&pvmw
);
1553 if (swap_duplicate(entry
) < 0) {
1554 set_pte_at(mm
, address
, pvmw
.pte
, pteval
);
1556 page_vma_mapped_walk_done(&pvmw
);
1559 if (list_empty(&mm
->mmlist
)) {
1560 spin_lock(&mmlist_lock
);
1561 if (list_empty(&mm
->mmlist
))
1562 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1563 spin_unlock(&mmlist_lock
);
1565 dec_mm_counter(mm
, MM_ANONPAGES
);
1566 inc_mm_counter(mm
, MM_SWAPENTS
);
1567 swp_pte
= swp_entry_to_pte(entry
);
1568 if (pte_soft_dirty(pteval
))
1569 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1570 set_pte_at(mm
, address
, pvmw
.pte
, swp_pte
);
1571 /* Invalidate as we cleared the pte */
1572 mmu_notifier_invalidate_range(mm
, address
,
1573 address
+ PAGE_SIZE
);
1576 * We should not need to notify here as we reach this
1577 * case only from freeze_page() itself only call from
1578 * split_huge_page_to_list() so everything below must
1580 * - page is not anonymous
1583 * So as it is a locked file back page thus it can not
1584 * be remove from the page cache and replace by a new
1585 * page before mmu_notifier_invalidate_range_end so no
1586 * concurrent thread might update its page table to
1587 * point at new page while a device still is using this
1590 * See Documentation/vm/mmu_notifier.txt
1592 dec_mm_counter(mm
, mm_counter_file(page
));
1596 * No need to call mmu_notifier_invalidate_range() it has be
1597 * done above for all cases requiring it to happen under page
1598 * table lock before mmu_notifier_invalidate_range_end()
1600 * See Documentation/vm/mmu_notifier.txt
1602 page_remove_rmap(subpage
, PageHuge(page
));
1606 mmu_notifier_invalidate_range_end(vma
->vm_mm
, start
, end
);
1611 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1613 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1618 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1619 VM_STACK_INCOMPLETE_SETUP
)
1625 static bool invalid_migration_vma(struct vm_area_struct
*vma
, void *arg
)
1627 return is_vma_temporary_stack(vma
);
1630 static int page_mapcount_is_zero(struct page
*page
)
1632 return !total_mapcount(page
);
1636 * try_to_unmap - try to remove all page table mappings to a page
1637 * @page: the page to get unmapped
1638 * @flags: action and flags
1640 * Tries to remove all the page table entries which are mapping this
1641 * page, used in the pageout path. Caller must hold the page lock.
1643 * If unmap is successful, return true. Otherwise, false.
1645 bool try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1647 struct rmap_walk_control rwc
= {
1648 .rmap_one
= try_to_unmap_one
,
1649 .arg
= (void *)flags
,
1650 .done
= page_mapcount_is_zero
,
1651 .anon_lock
= page_lock_anon_vma_read
,
1655 * During exec, a temporary VMA is setup and later moved.
1656 * The VMA is moved under the anon_vma lock but not the
1657 * page tables leading to a race where migration cannot
1658 * find the migration ptes. Rather than increasing the
1659 * locking requirements of exec(), migration skips
1660 * temporary VMAs until after exec() completes.
1662 if ((flags
& (TTU_MIGRATION
|TTU_SPLIT_FREEZE
))
1663 && !PageKsm(page
) && PageAnon(page
))
1664 rwc
.invalid_vma
= invalid_migration_vma
;
1666 if (flags
& TTU_RMAP_LOCKED
)
1667 rmap_walk_locked(page
, &rwc
);
1669 rmap_walk(page
, &rwc
);
1671 return !page_mapcount(page
) ? true : false;
1674 static int page_not_mapped(struct page
*page
)
1676 return !page_mapped(page
);
1680 * try_to_munlock - try to munlock a page
1681 * @page: the page to be munlocked
1683 * Called from munlock code. Checks all of the VMAs mapping the page
1684 * to make sure nobody else has this page mlocked. The page will be
1685 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1688 void try_to_munlock(struct page
*page
)
1690 struct rmap_walk_control rwc
= {
1691 .rmap_one
= try_to_unmap_one
,
1692 .arg
= (void *)TTU_MUNLOCK
,
1693 .done
= page_not_mapped
,
1694 .anon_lock
= page_lock_anon_vma_read
,
1698 VM_BUG_ON_PAGE(!PageLocked(page
) || PageLRU(page
), page
);
1699 VM_BUG_ON_PAGE(PageCompound(page
) && PageDoubleMap(page
), page
);
1701 rmap_walk(page
, &rwc
);
1704 void __put_anon_vma(struct anon_vma
*anon_vma
)
1706 struct anon_vma
*root
= anon_vma
->root
;
1708 anon_vma_free(anon_vma
);
1709 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1710 anon_vma_free(root
);
1713 static struct anon_vma
*rmap_walk_anon_lock(struct page
*page
,
1714 struct rmap_walk_control
*rwc
)
1716 struct anon_vma
*anon_vma
;
1719 return rwc
->anon_lock(page
);
1722 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1723 * because that depends on page_mapped(); but not all its usages
1724 * are holding mmap_sem. Users without mmap_sem are required to
1725 * take a reference count to prevent the anon_vma disappearing
1727 anon_vma
= page_anon_vma(page
);
1731 anon_vma_lock_read(anon_vma
);
1736 * rmap_walk_anon - do something to anonymous page using the object-based
1738 * @page: the page to be handled
1739 * @rwc: control variable according to each walk type
1741 * Find all the mappings of a page using the mapping pointer and the vma chains
1742 * contained in the anon_vma struct it points to.
1744 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1745 * where the page was found will be held for write. So, we won't recheck
1746 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1749 static void rmap_walk_anon(struct page
*page
, struct rmap_walk_control
*rwc
,
1752 struct anon_vma
*anon_vma
;
1753 pgoff_t pgoff_start
, pgoff_end
;
1754 struct anon_vma_chain
*avc
;
1757 anon_vma
= page_anon_vma(page
);
1758 /* anon_vma disappear under us? */
1759 VM_BUG_ON_PAGE(!anon_vma
, page
);
1761 anon_vma
= rmap_walk_anon_lock(page
, rwc
);
1766 pgoff_start
= page_to_pgoff(page
);
1767 pgoff_end
= pgoff_start
+ hpage_nr_pages(page
) - 1;
1768 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
,
1769 pgoff_start
, pgoff_end
) {
1770 struct vm_area_struct
*vma
= avc
->vma
;
1771 unsigned long address
= vma_address(page
, vma
);
1775 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1778 if (!rwc
->rmap_one(page
, vma
, address
, rwc
->arg
))
1780 if (rwc
->done
&& rwc
->done(page
))
1785 anon_vma_unlock_read(anon_vma
);
1789 * rmap_walk_file - do something to file page using the object-based rmap method
1790 * @page: the page to be handled
1791 * @rwc: control variable according to each walk type
1793 * Find all the mappings of a page using the mapping pointer and the vma chains
1794 * contained in the address_space struct it points to.
1796 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1797 * where the page was found will be held for write. So, we won't recheck
1798 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1801 static void rmap_walk_file(struct page
*page
, struct rmap_walk_control
*rwc
,
1804 struct address_space
*mapping
= page_mapping(page
);
1805 pgoff_t pgoff_start
, pgoff_end
;
1806 struct vm_area_struct
*vma
;
1809 * The page lock not only makes sure that page->mapping cannot
1810 * suddenly be NULLified by truncation, it makes sure that the
1811 * structure at mapping cannot be freed and reused yet,
1812 * so we can safely take mapping->i_mmap_rwsem.
1814 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1819 pgoff_start
= page_to_pgoff(page
);
1820 pgoff_end
= pgoff_start
+ hpage_nr_pages(page
) - 1;
1822 i_mmap_lock_read(mapping
);
1823 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
,
1824 pgoff_start
, pgoff_end
) {
1825 unsigned long address
= vma_address(page
, vma
);
1829 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
1832 if (!rwc
->rmap_one(page
, vma
, address
, rwc
->arg
))
1834 if (rwc
->done
&& rwc
->done(page
))
1840 i_mmap_unlock_read(mapping
);
1843 void rmap_walk(struct page
*page
, struct rmap_walk_control
*rwc
)
1845 if (unlikely(PageKsm(page
)))
1846 rmap_walk_ksm(page
, rwc
);
1847 else if (PageAnon(page
))
1848 rmap_walk_anon(page
, rwc
, false);
1850 rmap_walk_file(page
, rwc
, false);
1853 /* Like rmap_walk, but caller holds relevant rmap lock */
1854 void rmap_walk_locked(struct page
*page
, struct rmap_walk_control
*rwc
)
1856 /* no ksm support for now */
1857 VM_BUG_ON_PAGE(PageKsm(page
), page
);
1859 rmap_walk_anon(page
, rwc
, true);
1861 rmap_walk_file(page
, rwc
, true);
1864 #ifdef CONFIG_HUGETLB_PAGE
1866 * The following three functions are for anonymous (private mapped) hugepages.
1867 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1868 * and no lru code, because we handle hugepages differently from common pages.
1870 static void __hugepage_set_anon_rmap(struct page
*page
,
1871 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1873 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1880 anon_vma
= anon_vma
->root
;
1882 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1883 page
->mapping
= (struct address_space
*) anon_vma
;
1884 page
->index
= linear_page_index(vma
, address
);
1887 void hugepage_add_anon_rmap(struct page
*page
,
1888 struct vm_area_struct
*vma
, unsigned long address
)
1890 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1893 BUG_ON(!PageLocked(page
));
1895 /* address might be in next vma when migration races vma_adjust */
1896 first
= atomic_inc_and_test(compound_mapcount_ptr(page
));
1898 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1901 void hugepage_add_new_anon_rmap(struct page
*page
,
1902 struct vm_area_struct
*vma
, unsigned long address
)
1904 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1905 atomic_set(compound_mapcount_ptr(page
), 0);
1906 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1908 #endif /* CONFIG_HUGETLB_PAGE */