2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/sched/signal.h>
33 #include <linux/export.h>
34 #include <linux/swap.h>
35 #include <linux/uio.h>
36 #include <linux/khugepaged.h>
37 #include <linux/hugetlb.h>
39 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
41 static struct vfsmount
*shm_mnt
;
45 * This virtual memory filesystem is heavily based on the ramfs. It
46 * extends ramfs by the ability to use swap and honor resource limits
47 * which makes it a completely usable filesystem.
50 #include <linux/xattr.h>
51 #include <linux/exportfs.h>
52 #include <linux/posix_acl.h>
53 #include <linux/posix_acl_xattr.h>
54 #include <linux/mman.h>
55 #include <linux/string.h>
56 #include <linux/slab.h>
57 #include <linux/backing-dev.h>
58 #include <linux/shmem_fs.h>
59 #include <linux/writeback.h>
60 #include <linux/blkdev.h>
61 #include <linux/pagevec.h>
62 #include <linux/percpu_counter.h>
63 #include <linux/falloc.h>
64 #include <linux/splice.h>
65 #include <linux/security.h>
66 #include <linux/swapops.h>
67 #include <linux/mempolicy.h>
68 #include <linux/namei.h>
69 #include <linux/ctype.h>
70 #include <linux/migrate.h>
71 #include <linux/highmem.h>
72 #include <linux/seq_file.h>
73 #include <linux/magic.h>
74 #include <linux/syscalls.h>
75 #include <linux/fcntl.h>
76 #include <uapi/linux/memfd.h>
77 #include <linux/userfaultfd_k.h>
78 #include <linux/rmap.h>
79 #include <linux/uuid.h>
81 #include <linux/uaccess.h>
82 #include <asm/pgtable.h>
86 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
89 /* Pretend that each entry is of this size in directory's i_size */
90 #define BOGO_DIRENT_SIZE 20
92 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93 #define SHORT_SYMLINK_LEN 128
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_mutex making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
100 struct shmem_falloc
{
101 wait_queue_head_t
*waitq
; /* faults into hole wait for punch to end */
102 pgoff_t start
; /* start of range currently being fallocated */
103 pgoff_t next
; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced
; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped
; /* how often writepage refused to swap out */
109 static unsigned long shmem_default_max_blocks(void)
111 return totalram_pages
/ 2;
114 static unsigned long shmem_default_max_inodes(void)
116 return min(totalram_pages
- totalhigh_pages
, totalram_pages
/ 2);
120 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
);
121 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
122 struct shmem_inode_info
*info
, pgoff_t index
);
123 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
124 struct page
**pagep
, enum sgp_type sgp
,
125 gfp_t gfp
, struct vm_area_struct
*vma
,
126 struct vm_fault
*vmf
, int *fault_type
);
128 int shmem_getpage(struct inode
*inode
, pgoff_t index
,
129 struct page
**pagep
, enum sgp_type sgp
)
131 return shmem_getpage_gfp(inode
, index
, pagep
, sgp
,
132 mapping_gfp_mask(inode
->i_mapping
), NULL
, NULL
, NULL
);
135 static inline struct shmem_sb_info
*SHMEM_SB(struct super_block
*sb
)
137 return sb
->s_fs_info
;
141 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
142 * for shared memory and for shared anonymous (/dev/zero) mappings
143 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
144 * consistent with the pre-accounting of private mappings ...
146 static inline int shmem_acct_size(unsigned long flags
, loff_t size
)
148 return (flags
& VM_NORESERVE
) ?
149 0 : security_vm_enough_memory_mm(current
->mm
, VM_ACCT(size
));
152 static inline void shmem_unacct_size(unsigned long flags
, loff_t size
)
154 if (!(flags
& VM_NORESERVE
))
155 vm_unacct_memory(VM_ACCT(size
));
158 static inline int shmem_reacct_size(unsigned long flags
,
159 loff_t oldsize
, loff_t newsize
)
161 if (!(flags
& VM_NORESERVE
)) {
162 if (VM_ACCT(newsize
) > VM_ACCT(oldsize
))
163 return security_vm_enough_memory_mm(current
->mm
,
164 VM_ACCT(newsize
) - VM_ACCT(oldsize
));
165 else if (VM_ACCT(newsize
) < VM_ACCT(oldsize
))
166 vm_unacct_memory(VM_ACCT(oldsize
) - VM_ACCT(newsize
));
172 * ... whereas tmpfs objects are accounted incrementally as
173 * pages are allocated, in order to allow large sparse files.
174 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
175 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
177 static inline int shmem_acct_block(unsigned long flags
, long pages
)
179 if (!(flags
& VM_NORESERVE
))
182 return security_vm_enough_memory_mm(current
->mm
,
183 pages
* VM_ACCT(PAGE_SIZE
));
186 static inline void shmem_unacct_blocks(unsigned long flags
, long pages
)
188 if (flags
& VM_NORESERVE
)
189 vm_unacct_memory(pages
* VM_ACCT(PAGE_SIZE
));
192 static inline bool shmem_inode_acct_block(struct inode
*inode
, long pages
)
194 struct shmem_inode_info
*info
= SHMEM_I(inode
);
195 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
197 if (shmem_acct_block(info
->flags
, pages
))
200 if (sbinfo
->max_blocks
) {
201 if (percpu_counter_compare(&sbinfo
->used_blocks
,
202 sbinfo
->max_blocks
- pages
) > 0)
204 percpu_counter_add(&sbinfo
->used_blocks
, pages
);
210 shmem_unacct_blocks(info
->flags
, pages
);
214 static inline void shmem_inode_unacct_blocks(struct inode
*inode
, long pages
)
216 struct shmem_inode_info
*info
= SHMEM_I(inode
);
217 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
219 if (sbinfo
->max_blocks
)
220 percpu_counter_sub(&sbinfo
->used_blocks
, pages
);
221 shmem_unacct_blocks(info
->flags
, pages
);
224 static const struct super_operations shmem_ops
;
225 static const struct address_space_operations shmem_aops
;
226 static const struct file_operations shmem_file_operations
;
227 static const struct inode_operations shmem_inode_operations
;
228 static const struct inode_operations shmem_dir_inode_operations
;
229 static const struct inode_operations shmem_special_inode_operations
;
230 static const struct vm_operations_struct shmem_vm_ops
;
231 static struct file_system_type shmem_fs_type
;
233 bool vma_is_shmem(struct vm_area_struct
*vma
)
235 return vma
->vm_ops
== &shmem_vm_ops
;
238 static LIST_HEAD(shmem_swaplist
);
239 static DEFINE_MUTEX(shmem_swaplist_mutex
);
241 static int shmem_reserve_inode(struct super_block
*sb
)
243 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
244 if (sbinfo
->max_inodes
) {
245 spin_lock(&sbinfo
->stat_lock
);
246 if (!sbinfo
->free_inodes
) {
247 spin_unlock(&sbinfo
->stat_lock
);
250 sbinfo
->free_inodes
--;
251 spin_unlock(&sbinfo
->stat_lock
);
256 static void shmem_free_inode(struct super_block
*sb
)
258 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
259 if (sbinfo
->max_inodes
) {
260 spin_lock(&sbinfo
->stat_lock
);
261 sbinfo
->free_inodes
++;
262 spin_unlock(&sbinfo
->stat_lock
);
267 * shmem_recalc_inode - recalculate the block usage of an inode
268 * @inode: inode to recalc
270 * We have to calculate the free blocks since the mm can drop
271 * undirtied hole pages behind our back.
273 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
274 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
276 * It has to be called with the spinlock held.
278 static void shmem_recalc_inode(struct inode
*inode
)
280 struct shmem_inode_info
*info
= SHMEM_I(inode
);
283 freed
= info
->alloced
- info
->swapped
- inode
->i_mapping
->nrpages
;
285 info
->alloced
-= freed
;
286 inode
->i_blocks
-= freed
* BLOCKS_PER_PAGE
;
287 shmem_inode_unacct_blocks(inode
, freed
);
291 bool shmem_charge(struct inode
*inode
, long pages
)
293 struct shmem_inode_info
*info
= SHMEM_I(inode
);
296 if (!shmem_inode_acct_block(inode
, pages
))
299 spin_lock_irqsave(&info
->lock
, flags
);
300 info
->alloced
+= pages
;
301 inode
->i_blocks
+= pages
* BLOCKS_PER_PAGE
;
302 shmem_recalc_inode(inode
);
303 spin_unlock_irqrestore(&info
->lock
, flags
);
304 inode
->i_mapping
->nrpages
+= pages
;
309 void shmem_uncharge(struct inode
*inode
, long pages
)
311 struct shmem_inode_info
*info
= SHMEM_I(inode
);
314 spin_lock_irqsave(&info
->lock
, flags
);
315 info
->alloced
-= pages
;
316 inode
->i_blocks
-= pages
* BLOCKS_PER_PAGE
;
317 shmem_recalc_inode(inode
);
318 spin_unlock_irqrestore(&info
->lock
, flags
);
320 shmem_inode_unacct_blocks(inode
, pages
);
324 * Replace item expected in radix tree by a new item, while holding tree lock.
326 static int shmem_radix_tree_replace(struct address_space
*mapping
,
327 pgoff_t index
, void *expected
, void *replacement
)
329 struct radix_tree_node
*node
;
333 VM_BUG_ON(!expected
);
334 VM_BUG_ON(!replacement
);
335 item
= __radix_tree_lookup(&mapping
->page_tree
, index
, &node
, &pslot
);
338 if (item
!= expected
)
340 __radix_tree_replace(&mapping
->page_tree
, node
, pslot
,
346 * Sometimes, before we decide whether to proceed or to fail, we must check
347 * that an entry was not already brought back from swap by a racing thread.
349 * Checking page is not enough: by the time a SwapCache page is locked, it
350 * might be reused, and again be SwapCache, using the same swap as before.
352 static bool shmem_confirm_swap(struct address_space
*mapping
,
353 pgoff_t index
, swp_entry_t swap
)
358 item
= radix_tree_lookup(&mapping
->page_tree
, index
);
360 return item
== swp_to_radix_entry(swap
);
364 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
367 * disables huge pages for the mount;
369 * enables huge pages for the mount;
370 * SHMEM_HUGE_WITHIN_SIZE:
371 * only allocate huge pages if the page will be fully within i_size,
372 * also respect fadvise()/madvise() hints;
374 * only allocate huge pages if requested with fadvise()/madvise();
377 #define SHMEM_HUGE_NEVER 0
378 #define SHMEM_HUGE_ALWAYS 1
379 #define SHMEM_HUGE_WITHIN_SIZE 2
380 #define SHMEM_HUGE_ADVISE 3
384 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
387 * disables huge on shm_mnt and all mounts, for emergency use;
389 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
392 #define SHMEM_HUGE_DENY (-1)
393 #define SHMEM_HUGE_FORCE (-2)
395 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
396 /* ifdef here to avoid bloating shmem.o when not necessary */
398 int shmem_huge __read_mostly
;
400 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
401 static int shmem_parse_huge(const char *str
)
403 if (!strcmp(str
, "never"))
404 return SHMEM_HUGE_NEVER
;
405 if (!strcmp(str
, "always"))
406 return SHMEM_HUGE_ALWAYS
;
407 if (!strcmp(str
, "within_size"))
408 return SHMEM_HUGE_WITHIN_SIZE
;
409 if (!strcmp(str
, "advise"))
410 return SHMEM_HUGE_ADVISE
;
411 if (!strcmp(str
, "deny"))
412 return SHMEM_HUGE_DENY
;
413 if (!strcmp(str
, "force"))
414 return SHMEM_HUGE_FORCE
;
418 static const char *shmem_format_huge(int huge
)
421 case SHMEM_HUGE_NEVER
:
423 case SHMEM_HUGE_ALWAYS
:
425 case SHMEM_HUGE_WITHIN_SIZE
:
426 return "within_size";
427 case SHMEM_HUGE_ADVISE
:
429 case SHMEM_HUGE_DENY
:
431 case SHMEM_HUGE_FORCE
:
440 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
441 struct shrink_control
*sc
, unsigned long nr_to_split
)
443 LIST_HEAD(list
), *pos
, *next
;
444 LIST_HEAD(to_remove
);
446 struct shmem_inode_info
*info
;
448 unsigned long batch
= sc
? sc
->nr_to_scan
: 128;
449 int removed
= 0, split
= 0;
451 if (list_empty(&sbinfo
->shrinklist
))
454 spin_lock(&sbinfo
->shrinklist_lock
);
455 list_for_each_safe(pos
, next
, &sbinfo
->shrinklist
) {
456 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
459 inode
= igrab(&info
->vfs_inode
);
461 /* inode is about to be evicted */
463 list_del_init(&info
->shrinklist
);
468 /* Check if there's anything to gain */
469 if (round_up(inode
->i_size
, PAGE_SIZE
) ==
470 round_up(inode
->i_size
, HPAGE_PMD_SIZE
)) {
471 list_move(&info
->shrinklist
, &to_remove
);
476 list_move(&info
->shrinklist
, &list
);
481 spin_unlock(&sbinfo
->shrinklist_lock
);
483 list_for_each_safe(pos
, next
, &to_remove
) {
484 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
485 inode
= &info
->vfs_inode
;
486 list_del_init(&info
->shrinklist
);
490 list_for_each_safe(pos
, next
, &list
) {
493 info
= list_entry(pos
, struct shmem_inode_info
, shrinklist
);
494 inode
= &info
->vfs_inode
;
496 if (nr_to_split
&& split
>= nr_to_split
) {
501 page
= find_lock_page(inode
->i_mapping
,
502 (inode
->i_size
& HPAGE_PMD_MASK
) >> PAGE_SHIFT
);
506 if (!PageTransHuge(page
)) {
512 ret
= split_huge_page(page
);
517 /* split failed: leave it on the list */
524 list_del_init(&info
->shrinklist
);
529 spin_lock(&sbinfo
->shrinklist_lock
);
530 list_splice_tail(&list
, &sbinfo
->shrinklist
);
531 sbinfo
->shrinklist_len
-= removed
;
532 spin_unlock(&sbinfo
->shrinklist_lock
);
537 static long shmem_unused_huge_scan(struct super_block
*sb
,
538 struct shrink_control
*sc
)
540 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
542 if (!READ_ONCE(sbinfo
->shrinklist_len
))
545 return shmem_unused_huge_shrink(sbinfo
, sc
, 0);
548 static long shmem_unused_huge_count(struct super_block
*sb
,
549 struct shrink_control
*sc
)
551 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
552 return READ_ONCE(sbinfo
->shrinklist_len
);
554 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
556 #define shmem_huge SHMEM_HUGE_DENY
558 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info
*sbinfo
,
559 struct shrink_control
*sc
, unsigned long nr_to_split
)
563 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
566 * Like add_to_page_cache_locked, but error if expected item has gone.
568 static int shmem_add_to_page_cache(struct page
*page
,
569 struct address_space
*mapping
,
570 pgoff_t index
, void *expected
)
572 int error
, nr
= hpage_nr_pages(page
);
574 VM_BUG_ON_PAGE(PageTail(page
), page
);
575 VM_BUG_ON_PAGE(index
!= round_down(index
, nr
), page
);
576 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
577 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
578 VM_BUG_ON(expected
&& PageTransHuge(page
));
580 page_ref_add(page
, nr
);
581 page
->mapping
= mapping
;
584 spin_lock_irq(&mapping
->tree_lock
);
585 if (PageTransHuge(page
)) {
586 void __rcu
**results
;
591 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
,
592 &results
, &idx
, index
, 1) &&
593 idx
< index
+ HPAGE_PMD_NR
) {
598 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
599 error
= radix_tree_insert(&mapping
->page_tree
,
600 index
+ i
, page
+ i
);
603 count_vm_event(THP_FILE_ALLOC
);
605 } else if (!expected
) {
606 error
= radix_tree_insert(&mapping
->page_tree
, index
, page
);
608 error
= shmem_radix_tree_replace(mapping
, index
, expected
,
613 mapping
->nrpages
+= nr
;
614 if (PageTransHuge(page
))
615 __inc_node_page_state(page
, NR_SHMEM_THPS
);
616 __mod_node_page_state(page_pgdat(page
), NR_FILE_PAGES
, nr
);
617 __mod_node_page_state(page_pgdat(page
), NR_SHMEM
, nr
);
618 spin_unlock_irq(&mapping
->tree_lock
);
620 page
->mapping
= NULL
;
621 spin_unlock_irq(&mapping
->tree_lock
);
622 page_ref_sub(page
, nr
);
628 * Like delete_from_page_cache, but substitutes swap for page.
630 static void shmem_delete_from_page_cache(struct page
*page
, void *radswap
)
632 struct address_space
*mapping
= page
->mapping
;
635 VM_BUG_ON_PAGE(PageCompound(page
), page
);
637 spin_lock_irq(&mapping
->tree_lock
);
638 error
= shmem_radix_tree_replace(mapping
, page
->index
, page
, radswap
);
639 page
->mapping
= NULL
;
641 __dec_node_page_state(page
, NR_FILE_PAGES
);
642 __dec_node_page_state(page
, NR_SHMEM
);
643 spin_unlock_irq(&mapping
->tree_lock
);
649 * Remove swap entry from radix tree, free the swap and its page cache.
651 static int shmem_free_swap(struct address_space
*mapping
,
652 pgoff_t index
, void *radswap
)
656 spin_lock_irq(&mapping
->tree_lock
);
657 old
= radix_tree_delete_item(&mapping
->page_tree
, index
, radswap
);
658 spin_unlock_irq(&mapping
->tree_lock
);
661 free_swap_and_cache(radix_to_swp_entry(radswap
));
666 * Determine (in bytes) how many of the shmem object's pages mapped by the
667 * given offsets are swapped out.
669 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
670 * as long as the inode doesn't go away and racy results are not a problem.
672 unsigned long shmem_partial_swap_usage(struct address_space
*mapping
,
673 pgoff_t start
, pgoff_t end
)
675 struct radix_tree_iter iter
;
678 unsigned long swapped
= 0;
682 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
683 if (iter
.index
>= end
)
686 page
= radix_tree_deref_slot(slot
);
688 if (radix_tree_deref_retry(page
)) {
689 slot
= radix_tree_iter_retry(&iter
);
693 if (radix_tree_exceptional_entry(page
))
696 if (need_resched()) {
697 slot
= radix_tree_iter_resume(slot
, &iter
);
704 return swapped
<< PAGE_SHIFT
;
708 * Determine (in bytes) how many of the shmem object's pages mapped by the
709 * given vma is swapped out.
711 * This is safe to call without i_mutex or mapping->tree_lock thanks to RCU,
712 * as long as the inode doesn't go away and racy results are not a problem.
714 unsigned long shmem_swap_usage(struct vm_area_struct
*vma
)
716 struct inode
*inode
= file_inode(vma
->vm_file
);
717 struct shmem_inode_info
*info
= SHMEM_I(inode
);
718 struct address_space
*mapping
= inode
->i_mapping
;
719 unsigned long swapped
;
721 /* Be careful as we don't hold info->lock */
722 swapped
= READ_ONCE(info
->swapped
);
725 * The easier cases are when the shmem object has nothing in swap, or
726 * the vma maps it whole. Then we can simply use the stats that we
732 if (!vma
->vm_pgoff
&& vma
->vm_end
- vma
->vm_start
>= inode
->i_size
)
733 return swapped
<< PAGE_SHIFT
;
735 /* Here comes the more involved part */
736 return shmem_partial_swap_usage(mapping
,
737 linear_page_index(vma
, vma
->vm_start
),
738 linear_page_index(vma
, vma
->vm_end
));
742 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
744 void shmem_unlock_mapping(struct address_space
*mapping
)
747 pgoff_t indices
[PAGEVEC_SIZE
];
752 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
754 while (!mapping_unevictable(mapping
)) {
756 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
757 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
759 pvec
.nr
= find_get_entries(mapping
, index
,
760 PAGEVEC_SIZE
, pvec
.pages
, indices
);
763 index
= indices
[pvec
.nr
- 1] + 1;
764 pagevec_remove_exceptionals(&pvec
);
765 check_move_unevictable_pages(pvec
.pages
, pvec
.nr
);
766 pagevec_release(&pvec
);
772 * Remove range of pages and swap entries from radix tree, and free them.
773 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
775 static void shmem_undo_range(struct inode
*inode
, loff_t lstart
, loff_t lend
,
778 struct address_space
*mapping
= inode
->i_mapping
;
779 struct shmem_inode_info
*info
= SHMEM_I(inode
);
780 pgoff_t start
= (lstart
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
781 pgoff_t end
= (lend
+ 1) >> PAGE_SHIFT
;
782 unsigned int partial_start
= lstart
& (PAGE_SIZE
- 1);
783 unsigned int partial_end
= (lend
+ 1) & (PAGE_SIZE
- 1);
785 pgoff_t indices
[PAGEVEC_SIZE
];
786 long nr_swaps_freed
= 0;
791 end
= -1; /* unsigned, so actually very big */
795 while (index
< end
) {
796 pvec
.nr
= find_get_entries(mapping
, index
,
797 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
798 pvec
.pages
, indices
);
801 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
802 struct page
*page
= pvec
.pages
[i
];
808 if (radix_tree_exceptional_entry(page
)) {
811 nr_swaps_freed
+= !shmem_free_swap(mapping
,
816 VM_BUG_ON_PAGE(page_to_pgoff(page
) != index
, page
);
818 if (!trylock_page(page
))
821 if (PageTransTail(page
)) {
822 /* Middle of THP: zero out the page */
823 clear_highpage(page
);
826 } else if (PageTransHuge(page
)) {
827 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
829 * Range ends in the middle of THP:
832 clear_highpage(page
);
836 index
+= HPAGE_PMD_NR
- 1;
837 i
+= HPAGE_PMD_NR
- 1;
840 if (!unfalloc
|| !PageUptodate(page
)) {
841 VM_BUG_ON_PAGE(PageTail(page
), page
);
842 if (page_mapping(page
) == mapping
) {
843 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
844 truncate_inode_page(mapping
, page
);
849 pagevec_remove_exceptionals(&pvec
);
850 pagevec_release(&pvec
);
856 struct page
*page
= NULL
;
857 shmem_getpage(inode
, start
- 1, &page
, SGP_READ
);
859 unsigned int top
= PAGE_SIZE
;
864 zero_user_segment(page
, partial_start
, top
);
865 set_page_dirty(page
);
871 struct page
*page
= NULL
;
872 shmem_getpage(inode
, end
, &page
, SGP_READ
);
874 zero_user_segment(page
, 0, partial_end
);
875 set_page_dirty(page
);
884 while (index
< end
) {
887 pvec
.nr
= find_get_entries(mapping
, index
,
888 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
),
889 pvec
.pages
, indices
);
891 /* If all gone or hole-punch or unfalloc, we're done */
892 if (index
== start
|| end
!= -1)
894 /* But if truncating, restart to make sure all gone */
898 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
899 struct page
*page
= pvec
.pages
[i
];
905 if (radix_tree_exceptional_entry(page
)) {
908 if (shmem_free_swap(mapping
, index
, page
)) {
909 /* Swap was replaced by page: retry */
919 if (PageTransTail(page
)) {
920 /* Middle of THP: zero out the page */
921 clear_highpage(page
);
924 * Partial thp truncate due 'start' in middle
925 * of THP: don't need to look on these pages
926 * again on !pvec.nr restart.
928 if (index
!= round_down(end
, HPAGE_PMD_NR
))
931 } else if (PageTransHuge(page
)) {
932 if (index
== round_down(end
, HPAGE_PMD_NR
)) {
934 * Range ends in the middle of THP:
937 clear_highpage(page
);
941 index
+= HPAGE_PMD_NR
- 1;
942 i
+= HPAGE_PMD_NR
- 1;
945 if (!unfalloc
|| !PageUptodate(page
)) {
946 VM_BUG_ON_PAGE(PageTail(page
), page
);
947 if (page_mapping(page
) == mapping
) {
948 VM_BUG_ON_PAGE(PageWriteback(page
), page
);
949 truncate_inode_page(mapping
, page
);
951 /* Page was replaced by swap: retry */
959 pagevec_remove_exceptionals(&pvec
);
960 pagevec_release(&pvec
);
964 spin_lock_irq(&info
->lock
);
965 info
->swapped
-= nr_swaps_freed
;
966 shmem_recalc_inode(inode
);
967 spin_unlock_irq(&info
->lock
);
970 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
972 shmem_undo_range(inode
, lstart
, lend
, false);
973 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
975 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
977 static int shmem_getattr(const struct path
*path
, struct kstat
*stat
,
978 u32 request_mask
, unsigned int query_flags
)
980 struct inode
*inode
= path
->dentry
->d_inode
;
981 struct shmem_inode_info
*info
= SHMEM_I(inode
);
983 if (info
->alloced
- info
->swapped
!= inode
->i_mapping
->nrpages
) {
984 spin_lock_irq(&info
->lock
);
985 shmem_recalc_inode(inode
);
986 spin_unlock_irq(&info
->lock
);
988 generic_fillattr(inode
, stat
);
992 static int shmem_setattr(struct dentry
*dentry
, struct iattr
*attr
)
994 struct inode
*inode
= d_inode(dentry
);
995 struct shmem_inode_info
*info
= SHMEM_I(inode
);
996 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
999 error
= setattr_prepare(dentry
, attr
);
1003 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
1004 loff_t oldsize
= inode
->i_size
;
1005 loff_t newsize
= attr
->ia_size
;
1007 /* protected by i_mutex */
1008 if ((newsize
< oldsize
&& (info
->seals
& F_SEAL_SHRINK
)) ||
1009 (newsize
> oldsize
&& (info
->seals
& F_SEAL_GROW
)))
1012 if (newsize
!= oldsize
) {
1013 error
= shmem_reacct_size(SHMEM_I(inode
)->flags
,
1017 i_size_write(inode
, newsize
);
1018 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
1020 if (newsize
<= oldsize
) {
1021 loff_t holebegin
= round_up(newsize
, PAGE_SIZE
);
1022 if (oldsize
> holebegin
)
1023 unmap_mapping_range(inode
->i_mapping
,
1026 shmem_truncate_range(inode
,
1027 newsize
, (loff_t
)-1);
1028 /* unmap again to remove racily COWed private pages */
1029 if (oldsize
> holebegin
)
1030 unmap_mapping_range(inode
->i_mapping
,
1034 * Part of the huge page can be beyond i_size: subject
1035 * to shrink under memory pressure.
1037 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
)) {
1038 spin_lock(&sbinfo
->shrinklist_lock
);
1040 * _careful to defend against unlocked access to
1041 * ->shrink_list in shmem_unused_huge_shrink()
1043 if (list_empty_careful(&info
->shrinklist
)) {
1044 list_add_tail(&info
->shrinklist
,
1045 &sbinfo
->shrinklist
);
1046 sbinfo
->shrinklist_len
++;
1048 spin_unlock(&sbinfo
->shrinklist_lock
);
1053 setattr_copy(inode
, attr
);
1054 if (attr
->ia_valid
& ATTR_MODE
)
1055 error
= posix_acl_chmod(inode
, inode
->i_mode
);
1059 static void shmem_evict_inode(struct inode
*inode
)
1061 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1062 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
1064 if (inode
->i_mapping
->a_ops
== &shmem_aops
) {
1065 shmem_unacct_size(info
->flags
, inode
->i_size
);
1067 shmem_truncate_range(inode
, 0, (loff_t
)-1);
1068 if (!list_empty(&info
->shrinklist
)) {
1069 spin_lock(&sbinfo
->shrinklist_lock
);
1070 if (!list_empty(&info
->shrinklist
)) {
1071 list_del_init(&info
->shrinklist
);
1072 sbinfo
->shrinklist_len
--;
1074 spin_unlock(&sbinfo
->shrinklist_lock
);
1076 if (!list_empty(&info
->swaplist
)) {
1077 mutex_lock(&shmem_swaplist_mutex
);
1078 list_del_init(&info
->swaplist
);
1079 mutex_unlock(&shmem_swaplist_mutex
);
1083 simple_xattrs_free(&info
->xattrs
);
1084 WARN_ON(inode
->i_blocks
);
1085 shmem_free_inode(inode
->i_sb
);
1089 static unsigned long find_swap_entry(struct radix_tree_root
*root
, void *item
)
1091 struct radix_tree_iter iter
;
1093 unsigned long found
= -1;
1094 unsigned int checked
= 0;
1097 radix_tree_for_each_slot(slot
, root
, &iter
, 0) {
1098 if (*slot
== item
) {
1103 if ((checked
% 4096) != 0)
1105 slot
= radix_tree_iter_resume(slot
, &iter
);
1114 * If swap found in inode, free it and move page from swapcache to filecache.
1116 static int shmem_unuse_inode(struct shmem_inode_info
*info
,
1117 swp_entry_t swap
, struct page
**pagep
)
1119 struct address_space
*mapping
= info
->vfs_inode
.i_mapping
;
1125 radswap
= swp_to_radix_entry(swap
);
1126 index
= find_swap_entry(&mapping
->page_tree
, radswap
);
1128 return -EAGAIN
; /* tell shmem_unuse we found nothing */
1131 * Move _head_ to start search for next from here.
1132 * But be careful: shmem_evict_inode checks list_empty without taking
1133 * mutex, and there's an instant in list_move_tail when info->swaplist
1134 * would appear empty, if it were the only one on shmem_swaplist.
1136 if (shmem_swaplist
.next
!= &info
->swaplist
)
1137 list_move_tail(&shmem_swaplist
, &info
->swaplist
);
1139 gfp
= mapping_gfp_mask(mapping
);
1140 if (shmem_should_replace_page(*pagep
, gfp
)) {
1141 mutex_unlock(&shmem_swaplist_mutex
);
1142 error
= shmem_replace_page(pagep
, gfp
, info
, index
);
1143 mutex_lock(&shmem_swaplist_mutex
);
1145 * We needed to drop mutex to make that restrictive page
1146 * allocation, but the inode might have been freed while we
1147 * dropped it: although a racing shmem_evict_inode() cannot
1148 * complete without emptying the radix_tree, our page lock
1149 * on this swapcache page is not enough to prevent that -
1150 * free_swap_and_cache() of our swap entry will only
1151 * trylock_page(), removing swap from radix_tree whatever.
1153 * We must not proceed to shmem_add_to_page_cache() if the
1154 * inode has been freed, but of course we cannot rely on
1155 * inode or mapping or info to check that. However, we can
1156 * safely check if our swap entry is still in use (and here
1157 * it can't have got reused for another page): if it's still
1158 * in use, then the inode cannot have been freed yet, and we
1159 * can safely proceed (if it's no longer in use, that tells
1160 * nothing about the inode, but we don't need to unuse swap).
1162 if (!page_swapcount(*pagep
))
1167 * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1168 * but also to hold up shmem_evict_inode(): so inode cannot be freed
1169 * beneath us (pagelock doesn't help until the page is in pagecache).
1172 error
= shmem_add_to_page_cache(*pagep
, mapping
, index
,
1174 if (error
!= -ENOMEM
) {
1176 * Truncation and eviction use free_swap_and_cache(), which
1177 * only does trylock page: if we raced, best clean up here.
1179 delete_from_swap_cache(*pagep
);
1180 set_page_dirty(*pagep
);
1182 spin_lock_irq(&info
->lock
);
1184 spin_unlock_irq(&info
->lock
);
1192 * Search through swapped inodes to find and replace swap by page.
1194 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
1196 struct list_head
*this, *next
;
1197 struct shmem_inode_info
*info
;
1198 struct mem_cgroup
*memcg
;
1202 * There's a faint possibility that swap page was replaced before
1203 * caller locked it: caller will come back later with the right page.
1205 if (unlikely(!PageSwapCache(page
) || page_private(page
) != swap
.val
))
1209 * Charge page using GFP_KERNEL while we can wait, before taking
1210 * the shmem_swaplist_mutex which might hold up shmem_writepage().
1211 * Charged back to the user (not to caller) when swap account is used.
1213 error
= mem_cgroup_try_charge(page
, current
->mm
, GFP_KERNEL
, &memcg
,
1217 /* No radix_tree_preload: swap entry keeps a place for page in tree */
1220 mutex_lock(&shmem_swaplist_mutex
);
1221 list_for_each_safe(this, next
, &shmem_swaplist
) {
1222 info
= list_entry(this, struct shmem_inode_info
, swaplist
);
1224 error
= shmem_unuse_inode(info
, swap
, &page
);
1226 list_del_init(&info
->swaplist
);
1228 if (error
!= -EAGAIN
)
1230 /* found nothing in this: move on to search the next */
1232 mutex_unlock(&shmem_swaplist_mutex
);
1235 if (error
!= -ENOMEM
)
1237 mem_cgroup_cancel_charge(page
, memcg
, false);
1239 mem_cgroup_commit_charge(page
, memcg
, true, false);
1247 * Move the page from the page cache to the swap cache.
1249 static int shmem_writepage(struct page
*page
, struct writeback_control
*wbc
)
1251 struct shmem_inode_info
*info
;
1252 struct address_space
*mapping
;
1253 struct inode
*inode
;
1257 VM_BUG_ON_PAGE(PageCompound(page
), page
);
1258 BUG_ON(!PageLocked(page
));
1259 mapping
= page
->mapping
;
1260 index
= page
->index
;
1261 inode
= mapping
->host
;
1262 info
= SHMEM_I(inode
);
1263 if (info
->flags
& VM_LOCKED
)
1265 if (!total_swap_pages
)
1269 * Our capabilities prevent regular writeback or sync from ever calling
1270 * shmem_writepage; but a stacking filesystem might use ->writepage of
1271 * its underlying filesystem, in which case tmpfs should write out to
1272 * swap only in response to memory pressure, and not for the writeback
1275 if (!wbc
->for_reclaim
) {
1276 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1281 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1282 * value into swapfile.c, the only way we can correctly account for a
1283 * fallocated page arriving here is now to initialize it and write it.
1285 * That's okay for a page already fallocated earlier, but if we have
1286 * not yet completed the fallocation, then (a) we want to keep track
1287 * of this page in case we have to undo it, and (b) it may not be a
1288 * good idea to continue anyway, once we're pushing into swap. So
1289 * reactivate the page, and let shmem_fallocate() quit when too many.
1291 if (!PageUptodate(page
)) {
1292 if (inode
->i_private
) {
1293 struct shmem_falloc
*shmem_falloc
;
1294 spin_lock(&inode
->i_lock
);
1295 shmem_falloc
= inode
->i_private
;
1297 !shmem_falloc
->waitq
&&
1298 index
>= shmem_falloc
->start
&&
1299 index
< shmem_falloc
->next
)
1300 shmem_falloc
->nr_unswapped
++;
1302 shmem_falloc
= NULL
;
1303 spin_unlock(&inode
->i_lock
);
1307 clear_highpage(page
);
1308 flush_dcache_page(page
);
1309 SetPageUptodate(page
);
1312 swap
= get_swap_page(page
);
1316 if (mem_cgroup_try_charge_swap(page
, swap
))
1320 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1321 * if it's not already there. Do it now before the page is
1322 * moved to swap cache, when its pagelock no longer protects
1323 * the inode from eviction. But don't unlock the mutex until
1324 * we've incremented swapped, because shmem_unuse_inode() will
1325 * prune a !swapped inode from the swaplist under this mutex.
1327 mutex_lock(&shmem_swaplist_mutex
);
1328 if (list_empty(&info
->swaplist
))
1329 list_add_tail(&info
->swaplist
, &shmem_swaplist
);
1331 if (add_to_swap_cache(page
, swap
, GFP_ATOMIC
) == 0) {
1332 spin_lock_irq(&info
->lock
);
1333 shmem_recalc_inode(inode
);
1335 spin_unlock_irq(&info
->lock
);
1337 swap_shmem_alloc(swap
);
1338 shmem_delete_from_page_cache(page
, swp_to_radix_entry(swap
));
1340 mutex_unlock(&shmem_swaplist_mutex
);
1341 BUG_ON(page_mapped(page
));
1342 swap_writepage(page
, wbc
);
1346 mutex_unlock(&shmem_swaplist_mutex
);
1348 put_swap_page(page
, swap
);
1350 set_page_dirty(page
);
1351 if (wbc
->for_reclaim
)
1352 return AOP_WRITEPAGE_ACTIVATE
; /* Return with page locked */
1357 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1358 static void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1362 if (!mpol
|| mpol
->mode
== MPOL_DEFAULT
)
1363 return; /* show nothing */
1365 mpol_to_str(buffer
, sizeof(buffer
), mpol
);
1367 seq_printf(seq
, ",mpol=%s", buffer
);
1370 static struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1372 struct mempolicy
*mpol
= NULL
;
1374 spin_lock(&sbinfo
->stat_lock
); /* prevent replace/use races */
1375 mpol
= sbinfo
->mpol
;
1377 spin_unlock(&sbinfo
->stat_lock
);
1381 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1382 static inline void shmem_show_mpol(struct seq_file
*seq
, struct mempolicy
*mpol
)
1385 static inline struct mempolicy
*shmem_get_sbmpol(struct shmem_sb_info
*sbinfo
)
1389 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1391 #define vm_policy vm_private_data
1394 static void shmem_pseudo_vma_init(struct vm_area_struct
*vma
,
1395 struct shmem_inode_info
*info
, pgoff_t index
)
1397 /* Create a pseudo vma that just contains the policy */
1399 /* Bias interleave by inode number to distribute better across nodes */
1400 vma
->vm_pgoff
= index
+ info
->vfs_inode
.i_ino
;
1402 vma
->vm_policy
= mpol_shared_policy_lookup(&info
->policy
, index
);
1405 static void shmem_pseudo_vma_destroy(struct vm_area_struct
*vma
)
1407 /* Drop reference taken by mpol_shared_policy_lookup() */
1408 mpol_cond_put(vma
->vm_policy
);
1411 static struct page
*shmem_swapin(swp_entry_t swap
, gfp_t gfp
,
1412 struct shmem_inode_info
*info
, pgoff_t index
)
1414 struct vm_area_struct pvma
;
1417 shmem_pseudo_vma_init(&pvma
, info
, index
);
1418 page
= swapin_readahead(swap
, gfp
, &pvma
, 0);
1419 shmem_pseudo_vma_destroy(&pvma
);
1424 static struct page
*shmem_alloc_hugepage(gfp_t gfp
,
1425 struct shmem_inode_info
*info
, pgoff_t index
)
1427 struct vm_area_struct pvma
;
1428 struct inode
*inode
= &info
->vfs_inode
;
1429 struct address_space
*mapping
= inode
->i_mapping
;
1430 pgoff_t idx
, hindex
;
1431 void __rcu
**results
;
1434 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1437 hindex
= round_down(index
, HPAGE_PMD_NR
);
1439 if (radix_tree_gang_lookup_slot(&mapping
->page_tree
, &results
, &idx
,
1440 hindex
, 1) && idx
< hindex
+ HPAGE_PMD_NR
) {
1446 shmem_pseudo_vma_init(&pvma
, info
, hindex
);
1447 page
= alloc_pages_vma(gfp
| __GFP_COMP
| __GFP_NORETRY
| __GFP_NOWARN
,
1448 HPAGE_PMD_ORDER
, &pvma
, 0, numa_node_id(), true);
1449 shmem_pseudo_vma_destroy(&pvma
);
1451 prep_transhuge_page(page
);
1455 static struct page
*shmem_alloc_page(gfp_t gfp
,
1456 struct shmem_inode_info
*info
, pgoff_t index
)
1458 struct vm_area_struct pvma
;
1461 shmem_pseudo_vma_init(&pvma
, info
, index
);
1462 page
= alloc_page_vma(gfp
, &pvma
, 0);
1463 shmem_pseudo_vma_destroy(&pvma
);
1468 static struct page
*shmem_alloc_and_acct_page(gfp_t gfp
,
1469 struct inode
*inode
,
1470 pgoff_t index
, bool huge
)
1472 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1477 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
1479 nr
= huge
? HPAGE_PMD_NR
: 1;
1481 if (!shmem_inode_acct_block(inode
, nr
))
1485 page
= shmem_alloc_hugepage(gfp
, info
, index
);
1487 page
= shmem_alloc_page(gfp
, info
, index
);
1489 __SetPageLocked(page
);
1490 __SetPageSwapBacked(page
);
1495 shmem_inode_unacct_blocks(inode
, nr
);
1497 return ERR_PTR(err
);
1501 * When a page is moved from swapcache to shmem filecache (either by the
1502 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1503 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1504 * ignorance of the mapping it belongs to. If that mapping has special
1505 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1506 * we may need to copy to a suitable page before moving to filecache.
1508 * In a future release, this may well be extended to respect cpuset and
1509 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1510 * but for now it is a simple matter of zone.
1512 static bool shmem_should_replace_page(struct page
*page
, gfp_t gfp
)
1514 return page_zonenum(page
) > gfp_zone(gfp
);
1517 static int shmem_replace_page(struct page
**pagep
, gfp_t gfp
,
1518 struct shmem_inode_info
*info
, pgoff_t index
)
1520 struct page
*oldpage
, *newpage
;
1521 struct address_space
*swap_mapping
;
1526 swap_index
= page_private(oldpage
);
1527 swap_mapping
= page_mapping(oldpage
);
1530 * We have arrived here because our zones are constrained, so don't
1531 * limit chance of success by further cpuset and node constraints.
1533 gfp
&= ~GFP_CONSTRAINT_MASK
;
1534 newpage
= shmem_alloc_page(gfp
, info
, index
);
1539 copy_highpage(newpage
, oldpage
);
1540 flush_dcache_page(newpage
);
1542 __SetPageLocked(newpage
);
1543 __SetPageSwapBacked(newpage
);
1544 SetPageUptodate(newpage
);
1545 set_page_private(newpage
, swap_index
);
1546 SetPageSwapCache(newpage
);
1549 * Our caller will very soon move newpage out of swapcache, but it's
1550 * a nice clean interface for us to replace oldpage by newpage there.
1552 spin_lock_irq(&swap_mapping
->tree_lock
);
1553 error
= shmem_radix_tree_replace(swap_mapping
, swap_index
, oldpage
,
1556 __inc_node_page_state(newpage
, NR_FILE_PAGES
);
1557 __dec_node_page_state(oldpage
, NR_FILE_PAGES
);
1559 spin_unlock_irq(&swap_mapping
->tree_lock
);
1561 if (unlikely(error
)) {
1563 * Is this possible? I think not, now that our callers check
1564 * both PageSwapCache and page_private after getting page lock;
1565 * but be defensive. Reverse old to newpage for clear and free.
1569 mem_cgroup_migrate(oldpage
, newpage
);
1570 lru_cache_add_anon(newpage
);
1574 ClearPageSwapCache(oldpage
);
1575 set_page_private(oldpage
, 0);
1577 unlock_page(oldpage
);
1584 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1586 * If we allocate a new one we do not mark it dirty. That's up to the
1587 * vm. If we swap it in we mark it dirty since we also free the swap
1588 * entry since a page cannot live in both the swap and page cache.
1590 * fault_mm and fault_type are only supplied by shmem_fault:
1591 * otherwise they are NULL.
1593 static int shmem_getpage_gfp(struct inode
*inode
, pgoff_t index
,
1594 struct page
**pagep
, enum sgp_type sgp
, gfp_t gfp
,
1595 struct vm_area_struct
*vma
, struct vm_fault
*vmf
, int *fault_type
)
1597 struct address_space
*mapping
= inode
->i_mapping
;
1598 struct shmem_inode_info
*info
= SHMEM_I(inode
);
1599 struct shmem_sb_info
*sbinfo
;
1600 struct mm_struct
*charge_mm
;
1601 struct mem_cgroup
*memcg
;
1604 enum sgp_type sgp_huge
= sgp
;
1605 pgoff_t hindex
= index
;
1610 if (index
> (MAX_LFS_FILESIZE
>> PAGE_SHIFT
))
1612 if (sgp
== SGP_NOHUGE
|| sgp
== SGP_HUGE
)
1616 page
= find_lock_entry(mapping
, index
);
1617 if (radix_tree_exceptional_entry(page
)) {
1618 swap
= radix_to_swp_entry(page
);
1622 if (sgp
<= SGP_CACHE
&&
1623 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1628 if (page
&& sgp
== SGP_WRITE
)
1629 mark_page_accessed(page
);
1631 /* fallocated page? */
1632 if (page
&& !PageUptodate(page
)) {
1633 if (sgp
!= SGP_READ
)
1639 if (page
|| (sgp
== SGP_READ
&& !swap
.val
)) {
1645 * Fast cache lookup did not find it:
1646 * bring it back from swap or allocate.
1648 sbinfo
= SHMEM_SB(inode
->i_sb
);
1649 charge_mm
= vma
? vma
->vm_mm
: current
->mm
;
1652 /* Look it up and read it in.. */
1653 page
= lookup_swap_cache(swap
, NULL
, 0);
1655 /* Or update major stats only when swapin succeeds?? */
1657 *fault_type
|= VM_FAULT_MAJOR
;
1658 count_vm_event(PGMAJFAULT
);
1659 count_memcg_event_mm(charge_mm
, PGMAJFAULT
);
1661 /* Here we actually start the io */
1662 page
= shmem_swapin(swap
, gfp
, info
, index
);
1669 /* We have to do this with page locked to prevent races */
1671 if (!PageSwapCache(page
) || page_private(page
) != swap
.val
||
1672 !shmem_confirm_swap(mapping
, index
, swap
)) {
1673 error
= -EEXIST
; /* try again */
1676 if (!PageUptodate(page
)) {
1680 wait_on_page_writeback(page
);
1682 if (shmem_should_replace_page(page
, gfp
)) {
1683 error
= shmem_replace_page(&page
, gfp
, info
, index
);
1688 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1691 error
= shmem_add_to_page_cache(page
, mapping
, index
,
1692 swp_to_radix_entry(swap
));
1694 * We already confirmed swap under page lock, and make
1695 * no memory allocation here, so usually no possibility
1696 * of error; but free_swap_and_cache() only trylocks a
1697 * page, so it is just possible that the entry has been
1698 * truncated or holepunched since swap was confirmed.
1699 * shmem_undo_range() will have done some of the
1700 * unaccounting, now delete_from_swap_cache() will do
1702 * Reset swap.val? No, leave it so "failed" goes back to
1703 * "repeat": reading a hole and writing should succeed.
1706 mem_cgroup_cancel_charge(page
, memcg
, false);
1707 delete_from_swap_cache(page
);
1713 mem_cgroup_commit_charge(page
, memcg
, true, false);
1715 spin_lock_irq(&info
->lock
);
1717 shmem_recalc_inode(inode
);
1718 spin_unlock_irq(&info
->lock
);
1720 if (sgp
== SGP_WRITE
)
1721 mark_page_accessed(page
);
1723 delete_from_swap_cache(page
);
1724 set_page_dirty(page
);
1728 if (vma
&& userfaultfd_missing(vma
)) {
1729 *fault_type
= handle_userfault(vmf
, VM_UFFD_MISSING
);
1733 /* shmem_symlink() */
1734 if (mapping
->a_ops
!= &shmem_aops
)
1736 if (shmem_huge
== SHMEM_HUGE_DENY
|| sgp_huge
== SGP_NOHUGE
)
1738 if (shmem_huge
== SHMEM_HUGE_FORCE
)
1740 switch (sbinfo
->huge
) {
1743 case SHMEM_HUGE_NEVER
:
1745 case SHMEM_HUGE_WITHIN_SIZE
:
1746 off
= round_up(index
, HPAGE_PMD_NR
);
1747 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
1748 if (i_size
>= HPAGE_PMD_SIZE
&&
1749 i_size
>> PAGE_SHIFT
>= off
)
1752 case SHMEM_HUGE_ADVISE
:
1753 if (sgp_huge
== SGP_HUGE
)
1755 /* TODO: implement fadvise() hints */
1760 page
= shmem_alloc_and_acct_page(gfp
, inode
, index
, true);
1762 alloc_nohuge
: page
= shmem_alloc_and_acct_page(gfp
, inode
,
1767 error
= PTR_ERR(page
);
1769 if (error
!= -ENOSPC
)
1772 * Try to reclaim some spece by splitting a huge page
1773 * beyond i_size on the filesystem.
1777 ret
= shmem_unused_huge_shrink(sbinfo
, NULL
, 1);
1778 if (ret
== SHRINK_STOP
)
1786 if (PageTransHuge(page
))
1787 hindex
= round_down(index
, HPAGE_PMD_NR
);
1791 if (sgp
== SGP_WRITE
)
1792 __SetPageReferenced(page
);
1794 error
= mem_cgroup_try_charge(page
, charge_mm
, gfp
, &memcg
,
1795 PageTransHuge(page
));
1798 error
= radix_tree_maybe_preload_order(gfp
& GFP_RECLAIM_MASK
,
1799 compound_order(page
));
1801 error
= shmem_add_to_page_cache(page
, mapping
, hindex
,
1803 radix_tree_preload_end();
1806 mem_cgroup_cancel_charge(page
, memcg
,
1807 PageTransHuge(page
));
1810 mem_cgroup_commit_charge(page
, memcg
, false,
1811 PageTransHuge(page
));
1812 lru_cache_add_anon(page
);
1814 spin_lock_irq(&info
->lock
);
1815 info
->alloced
+= 1 << compound_order(page
);
1816 inode
->i_blocks
+= BLOCKS_PER_PAGE
<< compound_order(page
);
1817 shmem_recalc_inode(inode
);
1818 spin_unlock_irq(&info
->lock
);
1821 if (PageTransHuge(page
) &&
1822 DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
) <
1823 hindex
+ HPAGE_PMD_NR
- 1) {
1825 * Part of the huge page is beyond i_size: subject
1826 * to shrink under memory pressure.
1828 spin_lock(&sbinfo
->shrinklist_lock
);
1830 * _careful to defend against unlocked access to
1831 * ->shrink_list in shmem_unused_huge_shrink()
1833 if (list_empty_careful(&info
->shrinklist
)) {
1834 list_add_tail(&info
->shrinklist
,
1835 &sbinfo
->shrinklist
);
1836 sbinfo
->shrinklist_len
++;
1838 spin_unlock(&sbinfo
->shrinklist_lock
);
1842 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1844 if (sgp
== SGP_FALLOC
)
1848 * Let SGP_WRITE caller clear ends if write does not fill page;
1849 * but SGP_FALLOC on a page fallocated earlier must initialize
1850 * it now, lest undo on failure cancel our earlier guarantee.
1852 if (sgp
!= SGP_WRITE
&& !PageUptodate(page
)) {
1853 struct page
*head
= compound_head(page
);
1856 for (i
= 0; i
< (1 << compound_order(head
)); i
++) {
1857 clear_highpage(head
+ i
);
1858 flush_dcache_page(head
+ i
);
1860 SetPageUptodate(head
);
1864 /* Perhaps the file has been truncated since we checked */
1865 if (sgp
<= SGP_CACHE
&&
1866 ((loff_t
)index
<< PAGE_SHIFT
) >= i_size_read(inode
)) {
1868 ClearPageDirty(page
);
1869 delete_from_page_cache(page
);
1870 spin_lock_irq(&info
->lock
);
1871 shmem_recalc_inode(inode
);
1872 spin_unlock_irq(&info
->lock
);
1877 *pagep
= page
+ index
- hindex
;
1884 shmem_inode_unacct_blocks(inode
, 1 << compound_order(page
));
1886 if (PageTransHuge(page
)) {
1892 if (swap
.val
&& !shmem_confirm_swap(mapping
, index
, swap
))
1899 if (error
== -ENOSPC
&& !once
++) {
1900 spin_lock_irq(&info
->lock
);
1901 shmem_recalc_inode(inode
);
1902 spin_unlock_irq(&info
->lock
);
1905 if (error
== -EEXIST
) /* from above or from radix_tree_insert */
1911 * This is like autoremove_wake_function, but it removes the wait queue
1912 * entry unconditionally - even if something else had already woken the
1915 static int synchronous_wake_function(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1917 int ret
= default_wake_function(wait
, mode
, sync
, key
);
1918 list_del_init(&wait
->entry
);
1922 static int shmem_fault(struct vm_fault
*vmf
)
1924 struct vm_area_struct
*vma
= vmf
->vma
;
1925 struct inode
*inode
= file_inode(vma
->vm_file
);
1926 gfp_t gfp
= mapping_gfp_mask(inode
->i_mapping
);
1929 int ret
= VM_FAULT_LOCKED
;
1932 * Trinity finds that probing a hole which tmpfs is punching can
1933 * prevent the hole-punch from ever completing: which in turn
1934 * locks writers out with its hold on i_mutex. So refrain from
1935 * faulting pages into the hole while it's being punched. Although
1936 * shmem_undo_range() does remove the additions, it may be unable to
1937 * keep up, as each new page needs its own unmap_mapping_range() call,
1938 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1940 * It does not matter if we sometimes reach this check just before the
1941 * hole-punch begins, so that one fault then races with the punch:
1942 * we just need to make racing faults a rare case.
1944 * The implementation below would be much simpler if we just used a
1945 * standard mutex or completion: but we cannot take i_mutex in fault,
1946 * and bloating every shmem inode for this unlikely case would be sad.
1948 if (unlikely(inode
->i_private
)) {
1949 struct shmem_falloc
*shmem_falloc
;
1951 spin_lock(&inode
->i_lock
);
1952 shmem_falloc
= inode
->i_private
;
1954 shmem_falloc
->waitq
&&
1955 vmf
->pgoff
>= shmem_falloc
->start
&&
1956 vmf
->pgoff
< shmem_falloc
->next
) {
1957 wait_queue_head_t
*shmem_falloc_waitq
;
1958 DEFINE_WAIT_FUNC(shmem_fault_wait
, synchronous_wake_function
);
1960 ret
= VM_FAULT_NOPAGE
;
1961 if ((vmf
->flags
& FAULT_FLAG_ALLOW_RETRY
) &&
1962 !(vmf
->flags
& FAULT_FLAG_RETRY_NOWAIT
)) {
1963 /* It's polite to up mmap_sem if we can */
1964 up_read(&vma
->vm_mm
->mmap_sem
);
1965 ret
= VM_FAULT_RETRY
;
1968 shmem_falloc_waitq
= shmem_falloc
->waitq
;
1969 prepare_to_wait(shmem_falloc_waitq
, &shmem_fault_wait
,
1970 TASK_UNINTERRUPTIBLE
);
1971 spin_unlock(&inode
->i_lock
);
1975 * shmem_falloc_waitq points into the shmem_fallocate()
1976 * stack of the hole-punching task: shmem_falloc_waitq
1977 * is usually invalid by the time we reach here, but
1978 * finish_wait() does not dereference it in that case;
1979 * though i_lock needed lest racing with wake_up_all().
1981 spin_lock(&inode
->i_lock
);
1982 finish_wait(shmem_falloc_waitq
, &shmem_fault_wait
);
1983 spin_unlock(&inode
->i_lock
);
1986 spin_unlock(&inode
->i_lock
);
1991 if ((vma
->vm_flags
& VM_NOHUGEPAGE
) ||
1992 test_bit(MMF_DISABLE_THP
, &vma
->vm_mm
->flags
))
1994 else if (vma
->vm_flags
& VM_HUGEPAGE
)
1997 error
= shmem_getpage_gfp(inode
, vmf
->pgoff
, &vmf
->page
, sgp
,
1998 gfp
, vma
, vmf
, &ret
);
2000 return ((error
== -ENOMEM
) ? VM_FAULT_OOM
: VM_FAULT_SIGBUS
);
2004 unsigned long shmem_get_unmapped_area(struct file
*file
,
2005 unsigned long uaddr
, unsigned long len
,
2006 unsigned long pgoff
, unsigned long flags
)
2008 unsigned long (*get_area
)(struct file
*,
2009 unsigned long, unsigned long, unsigned long, unsigned long);
2011 unsigned long offset
;
2012 unsigned long inflated_len
;
2013 unsigned long inflated_addr
;
2014 unsigned long inflated_offset
;
2016 if (len
> TASK_SIZE
)
2019 get_area
= current
->mm
->get_unmapped_area
;
2020 addr
= get_area(file
, uaddr
, len
, pgoff
, flags
);
2022 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
2024 if (IS_ERR_VALUE(addr
))
2026 if (addr
& ~PAGE_MASK
)
2028 if (addr
> TASK_SIZE
- len
)
2031 if (shmem_huge
== SHMEM_HUGE_DENY
)
2033 if (len
< HPAGE_PMD_SIZE
)
2035 if (flags
& MAP_FIXED
)
2038 * Our priority is to support MAP_SHARED mapped hugely;
2039 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2040 * But if caller specified an address hint, respect that as before.
2045 if (shmem_huge
!= SHMEM_HUGE_FORCE
) {
2046 struct super_block
*sb
;
2049 VM_BUG_ON(file
->f_op
!= &shmem_file_operations
);
2050 sb
= file_inode(file
)->i_sb
;
2053 * Called directly from mm/mmap.c, or drivers/char/mem.c
2054 * for "/dev/zero", to create a shared anonymous object.
2056 if (IS_ERR(shm_mnt
))
2058 sb
= shm_mnt
->mnt_sb
;
2060 if (SHMEM_SB(sb
)->huge
== SHMEM_HUGE_NEVER
)
2064 offset
= (pgoff
<< PAGE_SHIFT
) & (HPAGE_PMD_SIZE
-1);
2065 if (offset
&& offset
+ len
< 2 * HPAGE_PMD_SIZE
)
2067 if ((addr
& (HPAGE_PMD_SIZE
-1)) == offset
)
2070 inflated_len
= len
+ HPAGE_PMD_SIZE
- PAGE_SIZE
;
2071 if (inflated_len
> TASK_SIZE
)
2073 if (inflated_len
< len
)
2076 inflated_addr
= get_area(NULL
, 0, inflated_len
, 0, flags
);
2077 if (IS_ERR_VALUE(inflated_addr
))
2079 if (inflated_addr
& ~PAGE_MASK
)
2082 inflated_offset
= inflated_addr
& (HPAGE_PMD_SIZE
-1);
2083 inflated_addr
+= offset
- inflated_offset
;
2084 if (inflated_offset
> offset
)
2085 inflated_addr
+= HPAGE_PMD_SIZE
;
2087 if (inflated_addr
> TASK_SIZE
- len
)
2089 return inflated_addr
;
2093 static int shmem_set_policy(struct vm_area_struct
*vma
, struct mempolicy
*mpol
)
2095 struct inode
*inode
= file_inode(vma
->vm_file
);
2096 return mpol_set_shared_policy(&SHMEM_I(inode
)->policy
, vma
, mpol
);
2099 static struct mempolicy
*shmem_get_policy(struct vm_area_struct
*vma
,
2102 struct inode
*inode
= file_inode(vma
->vm_file
);
2105 index
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
2106 return mpol_shared_policy_lookup(&SHMEM_I(inode
)->policy
, index
);
2110 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
2112 struct inode
*inode
= file_inode(file
);
2113 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2114 int retval
= -ENOMEM
;
2116 spin_lock_irq(&info
->lock
);
2117 if (lock
&& !(info
->flags
& VM_LOCKED
)) {
2118 if (!user_shm_lock(inode
->i_size
, user
))
2120 info
->flags
|= VM_LOCKED
;
2121 mapping_set_unevictable(file
->f_mapping
);
2123 if (!lock
&& (info
->flags
& VM_LOCKED
) && user
) {
2124 user_shm_unlock(inode
->i_size
, user
);
2125 info
->flags
&= ~VM_LOCKED
;
2126 mapping_clear_unevictable(file
->f_mapping
);
2131 spin_unlock_irq(&info
->lock
);
2135 static int shmem_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2137 file_accessed(file
);
2138 vma
->vm_ops
= &shmem_vm_ops
;
2139 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
2140 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
2141 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
2142 khugepaged_enter(vma
, vma
->vm_flags
);
2147 static struct inode
*shmem_get_inode(struct super_block
*sb
, const struct inode
*dir
,
2148 umode_t mode
, dev_t dev
, unsigned long flags
)
2150 struct inode
*inode
;
2151 struct shmem_inode_info
*info
;
2152 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
2154 if (shmem_reserve_inode(sb
))
2157 inode
= new_inode(sb
);
2159 inode
->i_ino
= get_next_ino();
2160 inode_init_owner(inode
, dir
, mode
);
2161 inode
->i_blocks
= 0;
2162 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
2163 inode
->i_generation
= get_seconds();
2164 info
= SHMEM_I(inode
);
2165 memset(info
, 0, (char *)inode
- (char *)info
);
2166 spin_lock_init(&info
->lock
);
2167 info
->seals
= F_SEAL_SEAL
;
2168 info
->flags
= flags
& VM_NORESERVE
;
2169 INIT_LIST_HEAD(&info
->shrinklist
);
2170 INIT_LIST_HEAD(&info
->swaplist
);
2171 simple_xattrs_init(&info
->xattrs
);
2172 cache_no_acl(inode
);
2174 switch (mode
& S_IFMT
) {
2176 inode
->i_op
= &shmem_special_inode_operations
;
2177 init_special_inode(inode
, mode
, dev
);
2180 inode
->i_mapping
->a_ops
= &shmem_aops
;
2181 inode
->i_op
= &shmem_inode_operations
;
2182 inode
->i_fop
= &shmem_file_operations
;
2183 mpol_shared_policy_init(&info
->policy
,
2184 shmem_get_sbmpol(sbinfo
));
2188 /* Some things misbehave if size == 0 on a directory */
2189 inode
->i_size
= 2 * BOGO_DIRENT_SIZE
;
2190 inode
->i_op
= &shmem_dir_inode_operations
;
2191 inode
->i_fop
= &simple_dir_operations
;
2195 * Must not load anything in the rbtree,
2196 * mpol_free_shared_policy will not be called.
2198 mpol_shared_policy_init(&info
->policy
, NULL
);
2202 shmem_free_inode(sb
);
2206 bool shmem_mapping(struct address_space
*mapping
)
2208 return mapping
->a_ops
== &shmem_aops
;
2211 static int shmem_mfill_atomic_pte(struct mm_struct
*dst_mm
,
2213 struct vm_area_struct
*dst_vma
,
2214 unsigned long dst_addr
,
2215 unsigned long src_addr
,
2217 struct page
**pagep
)
2219 struct inode
*inode
= file_inode(dst_vma
->vm_file
);
2220 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2221 struct address_space
*mapping
= inode
->i_mapping
;
2222 gfp_t gfp
= mapping_gfp_mask(mapping
);
2223 pgoff_t pgoff
= linear_page_index(dst_vma
, dst_addr
);
2224 struct mem_cgroup
*memcg
;
2228 pte_t _dst_pte
, *dst_pte
;
2232 if (!shmem_inode_acct_block(inode
, 1))
2236 page
= shmem_alloc_page(gfp
, info
, pgoff
);
2238 goto out_unacct_blocks
;
2240 if (!zeropage
) { /* mcopy_atomic */
2241 page_kaddr
= kmap_atomic(page
);
2242 ret
= copy_from_user(page_kaddr
,
2243 (const void __user
*)src_addr
,
2245 kunmap_atomic(page_kaddr
);
2247 /* fallback to copy_from_user outside mmap_sem */
2248 if (unlikely(ret
)) {
2250 shmem_inode_unacct_blocks(inode
, 1);
2251 /* don't free the page */
2254 } else { /* mfill_zeropage_atomic */
2255 clear_highpage(page
);
2262 VM_BUG_ON(PageLocked(page
) || PageSwapBacked(page
));
2263 __SetPageLocked(page
);
2264 __SetPageSwapBacked(page
);
2265 __SetPageUptodate(page
);
2267 ret
= mem_cgroup_try_charge(page
, dst_mm
, gfp
, &memcg
, false);
2271 ret
= radix_tree_maybe_preload(gfp
& GFP_RECLAIM_MASK
);
2273 ret
= shmem_add_to_page_cache(page
, mapping
, pgoff
, NULL
);
2274 radix_tree_preload_end();
2277 goto out_release_uncharge
;
2279 mem_cgroup_commit_charge(page
, memcg
, false, false);
2281 _dst_pte
= mk_pte(page
, dst_vma
->vm_page_prot
);
2282 if (dst_vma
->vm_flags
& VM_WRITE
)
2283 _dst_pte
= pte_mkwrite(pte_mkdirty(_dst_pte
));
2286 dst_pte
= pte_offset_map_lock(dst_mm
, dst_pmd
, dst_addr
, &ptl
);
2287 if (!pte_none(*dst_pte
))
2288 goto out_release_uncharge_unlock
;
2290 lru_cache_add_anon(page
);
2292 spin_lock(&info
->lock
);
2294 inode
->i_blocks
+= BLOCKS_PER_PAGE
;
2295 shmem_recalc_inode(inode
);
2296 spin_unlock(&info
->lock
);
2298 inc_mm_counter(dst_mm
, mm_counter_file(page
));
2299 page_add_file_rmap(page
, false);
2300 set_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
2302 /* No need to invalidate - it was non-present before */
2303 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
2305 pte_unmap_unlock(dst_pte
, ptl
);
2309 out_release_uncharge_unlock
:
2310 pte_unmap_unlock(dst_pte
, ptl
);
2311 out_release_uncharge
:
2312 mem_cgroup_cancel_charge(page
, memcg
, false);
2317 shmem_inode_unacct_blocks(inode
, 1);
2321 int shmem_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
2323 struct vm_area_struct
*dst_vma
,
2324 unsigned long dst_addr
,
2325 unsigned long src_addr
,
2326 struct page
**pagep
)
2328 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2329 dst_addr
, src_addr
, false, pagep
);
2332 int shmem_mfill_zeropage_pte(struct mm_struct
*dst_mm
,
2334 struct vm_area_struct
*dst_vma
,
2335 unsigned long dst_addr
)
2337 struct page
*page
= NULL
;
2339 return shmem_mfill_atomic_pte(dst_mm
, dst_pmd
, dst_vma
,
2340 dst_addr
, 0, true, &page
);
2344 static const struct inode_operations shmem_symlink_inode_operations
;
2345 static const struct inode_operations shmem_short_symlink_operations
;
2347 #ifdef CONFIG_TMPFS_XATTR
2348 static int shmem_initxattrs(struct inode
*, const struct xattr
*, void *);
2350 #define shmem_initxattrs NULL
2354 shmem_write_begin(struct file
*file
, struct address_space
*mapping
,
2355 loff_t pos
, unsigned len
, unsigned flags
,
2356 struct page
**pagep
, void **fsdata
)
2358 struct inode
*inode
= mapping
->host
;
2359 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2360 pgoff_t index
= pos
>> PAGE_SHIFT
;
2362 /* i_mutex is held by caller */
2363 if (unlikely(info
->seals
& (F_SEAL_WRITE
| F_SEAL_GROW
))) {
2364 if (info
->seals
& F_SEAL_WRITE
)
2366 if ((info
->seals
& F_SEAL_GROW
) && pos
+ len
> inode
->i_size
)
2370 return shmem_getpage(inode
, index
, pagep
, SGP_WRITE
);
2374 shmem_write_end(struct file
*file
, struct address_space
*mapping
,
2375 loff_t pos
, unsigned len
, unsigned copied
,
2376 struct page
*page
, void *fsdata
)
2378 struct inode
*inode
= mapping
->host
;
2380 if (pos
+ copied
> inode
->i_size
)
2381 i_size_write(inode
, pos
+ copied
);
2383 if (!PageUptodate(page
)) {
2384 struct page
*head
= compound_head(page
);
2385 if (PageTransCompound(page
)) {
2388 for (i
= 0; i
< HPAGE_PMD_NR
; i
++) {
2389 if (head
+ i
== page
)
2391 clear_highpage(head
+ i
);
2392 flush_dcache_page(head
+ i
);
2395 if (copied
< PAGE_SIZE
) {
2396 unsigned from
= pos
& (PAGE_SIZE
- 1);
2397 zero_user_segments(page
, 0, from
,
2398 from
+ copied
, PAGE_SIZE
);
2400 SetPageUptodate(head
);
2402 set_page_dirty(page
);
2409 static ssize_t
shmem_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
2411 struct file
*file
= iocb
->ki_filp
;
2412 struct inode
*inode
= file_inode(file
);
2413 struct address_space
*mapping
= inode
->i_mapping
;
2415 unsigned long offset
;
2416 enum sgp_type sgp
= SGP_READ
;
2419 loff_t
*ppos
= &iocb
->ki_pos
;
2422 * Might this read be for a stacking filesystem? Then when reading
2423 * holes of a sparse file, we actually need to allocate those pages,
2424 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2426 if (!iter_is_iovec(to
))
2429 index
= *ppos
>> PAGE_SHIFT
;
2430 offset
= *ppos
& ~PAGE_MASK
;
2433 struct page
*page
= NULL
;
2435 unsigned long nr
, ret
;
2436 loff_t i_size
= i_size_read(inode
);
2438 end_index
= i_size
>> PAGE_SHIFT
;
2439 if (index
> end_index
)
2441 if (index
== end_index
) {
2442 nr
= i_size
& ~PAGE_MASK
;
2447 error
= shmem_getpage(inode
, index
, &page
, sgp
);
2449 if (error
== -EINVAL
)
2454 if (sgp
== SGP_CACHE
)
2455 set_page_dirty(page
);
2460 * We must evaluate after, since reads (unlike writes)
2461 * are called without i_mutex protection against truncate
2464 i_size
= i_size_read(inode
);
2465 end_index
= i_size
>> PAGE_SHIFT
;
2466 if (index
== end_index
) {
2467 nr
= i_size
& ~PAGE_MASK
;
2478 * If users can be writing to this page using arbitrary
2479 * virtual addresses, take care about potential aliasing
2480 * before reading the page on the kernel side.
2482 if (mapping_writably_mapped(mapping
))
2483 flush_dcache_page(page
);
2485 * Mark the page accessed if we read the beginning.
2488 mark_page_accessed(page
);
2490 page
= ZERO_PAGE(0);
2495 * Ok, we have the page, and it's up-to-date, so
2496 * now we can copy it to user space...
2498 ret
= copy_page_to_iter(page
, offset
, nr
, to
);
2501 index
+= offset
>> PAGE_SHIFT
;
2502 offset
&= ~PAGE_MASK
;
2505 if (!iov_iter_count(to
))
2514 *ppos
= ((loff_t
) index
<< PAGE_SHIFT
) + offset
;
2515 file_accessed(file
);
2516 return retval
? retval
: error
;
2520 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2522 static pgoff_t
shmem_seek_hole_data(struct address_space
*mapping
,
2523 pgoff_t index
, pgoff_t end
, int whence
)
2526 struct pagevec pvec
;
2527 pgoff_t indices
[PAGEVEC_SIZE
];
2531 pagevec_init(&pvec
);
2532 pvec
.nr
= 1; /* start small: we may be there already */
2534 pvec
.nr
= find_get_entries(mapping
, index
,
2535 pvec
.nr
, pvec
.pages
, indices
);
2537 if (whence
== SEEK_DATA
)
2541 for (i
= 0; i
< pvec
.nr
; i
++, index
++) {
2542 if (index
< indices
[i
]) {
2543 if (whence
== SEEK_HOLE
) {
2549 page
= pvec
.pages
[i
];
2550 if (page
&& !radix_tree_exceptional_entry(page
)) {
2551 if (!PageUptodate(page
))
2555 (page
&& whence
== SEEK_DATA
) ||
2556 (!page
&& whence
== SEEK_HOLE
)) {
2561 pagevec_remove_exceptionals(&pvec
);
2562 pagevec_release(&pvec
);
2563 pvec
.nr
= PAGEVEC_SIZE
;
2569 static loff_t
shmem_file_llseek(struct file
*file
, loff_t offset
, int whence
)
2571 struct address_space
*mapping
= file
->f_mapping
;
2572 struct inode
*inode
= mapping
->host
;
2576 if (whence
!= SEEK_DATA
&& whence
!= SEEK_HOLE
)
2577 return generic_file_llseek_size(file
, offset
, whence
,
2578 MAX_LFS_FILESIZE
, i_size_read(inode
));
2580 /* We're holding i_mutex so we can access i_size directly */
2584 else if (offset
>= inode
->i_size
)
2587 start
= offset
>> PAGE_SHIFT
;
2588 end
= (inode
->i_size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2589 new_offset
= shmem_seek_hole_data(mapping
, start
, end
, whence
);
2590 new_offset
<<= PAGE_SHIFT
;
2591 if (new_offset
> offset
) {
2592 if (new_offset
< inode
->i_size
)
2593 offset
= new_offset
;
2594 else if (whence
== SEEK_DATA
)
2597 offset
= inode
->i_size
;
2602 offset
= vfs_setpos(file
, offset
, MAX_LFS_FILESIZE
);
2603 inode_unlock(inode
);
2608 * We need a tag: a new tag would expand every radix_tree_node by 8 bytes,
2609 * so reuse a tag which we firmly believe is never set or cleared on shmem.
2611 #define SHMEM_TAG_PINNED PAGECACHE_TAG_TOWRITE
2612 #define LAST_SCAN 4 /* about 150ms max */
2614 static void shmem_tag_pins(struct address_space
*mapping
)
2616 struct radix_tree_iter iter
;
2625 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
2626 page
= radix_tree_deref_slot(slot
);
2627 if (!page
|| radix_tree_exception(page
)) {
2628 if (radix_tree_deref_retry(page
)) {
2629 slot
= radix_tree_iter_retry(&iter
);
2632 } else if (page_count(page
) - page_mapcount(page
) > 1) {
2633 spin_lock_irq(&mapping
->tree_lock
);
2634 radix_tree_tag_set(&mapping
->page_tree
, iter
.index
,
2636 spin_unlock_irq(&mapping
->tree_lock
);
2639 if (need_resched()) {
2640 slot
= radix_tree_iter_resume(slot
, &iter
);
2648 * Setting SEAL_WRITE requires us to verify there's no pending writer. However,
2649 * via get_user_pages(), drivers might have some pending I/O without any active
2650 * user-space mappings (eg., direct-IO, AIO). Therefore, we look at all pages
2651 * and see whether it has an elevated ref-count. If so, we tag them and wait for
2652 * them to be dropped.
2653 * The caller must guarantee that no new user will acquire writable references
2654 * to those pages to avoid races.
2656 static int shmem_wait_for_pins(struct address_space
*mapping
)
2658 struct radix_tree_iter iter
;
2664 shmem_tag_pins(mapping
);
2667 for (scan
= 0; scan
<= LAST_SCAN
; scan
++) {
2668 if (!radix_tree_tagged(&mapping
->page_tree
, SHMEM_TAG_PINNED
))
2672 lru_add_drain_all();
2673 else if (schedule_timeout_killable((HZ
<< scan
) / 200))
2678 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
,
2679 start
, SHMEM_TAG_PINNED
) {
2681 page
= radix_tree_deref_slot(slot
);
2682 if (radix_tree_exception(page
)) {
2683 if (radix_tree_deref_retry(page
)) {
2684 slot
= radix_tree_iter_retry(&iter
);
2692 page_count(page
) - page_mapcount(page
) != 1) {
2693 if (scan
< LAST_SCAN
)
2694 goto continue_resched
;
2697 * On the last scan, we clean up all those tags
2698 * we inserted; but make a note that we still
2699 * found pages pinned.
2704 spin_lock_irq(&mapping
->tree_lock
);
2705 radix_tree_tag_clear(&mapping
->page_tree
,
2706 iter
.index
, SHMEM_TAG_PINNED
);
2707 spin_unlock_irq(&mapping
->tree_lock
);
2709 if (need_resched()) {
2710 slot
= radix_tree_iter_resume(slot
, &iter
);
2720 #define F_ALL_SEALS (F_SEAL_SEAL | \
2725 int shmem_add_seals(struct file
*file
, unsigned int seals
)
2727 struct inode
*inode
= file_inode(file
);
2728 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2733 * Sealing allows multiple parties to share a shmem-file but restrict
2734 * access to a specific subset of file operations. Seals can only be
2735 * added, but never removed. This way, mutually untrusted parties can
2736 * share common memory regions with a well-defined policy. A malicious
2737 * peer can thus never perform unwanted operations on a shared object.
2739 * Seals are only supported on special shmem-files and always affect
2740 * the whole underlying inode. Once a seal is set, it may prevent some
2741 * kinds of access to the file. Currently, the following seals are
2743 * SEAL_SEAL: Prevent further seals from being set on this file
2744 * SEAL_SHRINK: Prevent the file from shrinking
2745 * SEAL_GROW: Prevent the file from growing
2746 * SEAL_WRITE: Prevent write access to the file
2748 * As we don't require any trust relationship between two parties, we
2749 * must prevent seals from being removed. Therefore, sealing a file
2750 * only adds a given set of seals to the file, it never touches
2751 * existing seals. Furthermore, the "setting seals"-operation can be
2752 * sealed itself, which basically prevents any further seal from being
2755 * Semantics of sealing are only defined on volatile files. Only
2756 * anonymous shmem files support sealing. More importantly, seals are
2757 * never written to disk. Therefore, there's no plan to support it on
2761 if (file
->f_op
!= &shmem_file_operations
)
2763 if (!(file
->f_mode
& FMODE_WRITE
))
2765 if (seals
& ~(unsigned int)F_ALL_SEALS
)
2770 if (info
->seals
& F_SEAL_SEAL
) {
2775 if ((seals
& F_SEAL_WRITE
) && !(info
->seals
& F_SEAL_WRITE
)) {
2776 error
= mapping_deny_writable(file
->f_mapping
);
2780 error
= shmem_wait_for_pins(file
->f_mapping
);
2782 mapping_allow_writable(file
->f_mapping
);
2787 info
->seals
|= seals
;
2791 inode_unlock(inode
);
2794 EXPORT_SYMBOL_GPL(shmem_add_seals
);
2796 int shmem_get_seals(struct file
*file
)
2798 if (file
->f_op
!= &shmem_file_operations
)
2801 return SHMEM_I(file_inode(file
))->seals
;
2803 EXPORT_SYMBOL_GPL(shmem_get_seals
);
2805 long shmem_fcntl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2811 /* disallow upper 32bit */
2815 error
= shmem_add_seals(file
, arg
);
2818 error
= shmem_get_seals(file
);
2828 static long shmem_fallocate(struct file
*file
, int mode
, loff_t offset
,
2831 struct inode
*inode
= file_inode(file
);
2832 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
2833 struct shmem_inode_info
*info
= SHMEM_I(inode
);
2834 struct shmem_falloc shmem_falloc
;
2835 pgoff_t start
, index
, end
;
2838 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
2843 if (mode
& FALLOC_FL_PUNCH_HOLE
) {
2844 struct address_space
*mapping
= file
->f_mapping
;
2845 loff_t unmap_start
= round_up(offset
, PAGE_SIZE
);
2846 loff_t unmap_end
= round_down(offset
+ len
, PAGE_SIZE
) - 1;
2847 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq
);
2849 /* protected by i_mutex */
2850 if (info
->seals
& F_SEAL_WRITE
) {
2855 shmem_falloc
.waitq
= &shmem_falloc_waitq
;
2856 shmem_falloc
.start
= unmap_start
>> PAGE_SHIFT
;
2857 shmem_falloc
.next
= (unmap_end
+ 1) >> PAGE_SHIFT
;
2858 spin_lock(&inode
->i_lock
);
2859 inode
->i_private
= &shmem_falloc
;
2860 spin_unlock(&inode
->i_lock
);
2862 if ((u64
)unmap_end
> (u64
)unmap_start
)
2863 unmap_mapping_range(mapping
, unmap_start
,
2864 1 + unmap_end
- unmap_start
, 0);
2865 shmem_truncate_range(inode
, offset
, offset
+ len
- 1);
2866 /* No need to unmap again: hole-punching leaves COWed pages */
2868 spin_lock(&inode
->i_lock
);
2869 inode
->i_private
= NULL
;
2870 wake_up_all(&shmem_falloc_waitq
);
2871 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq
.head
));
2872 spin_unlock(&inode
->i_lock
);
2877 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2878 error
= inode_newsize_ok(inode
, offset
+ len
);
2882 if ((info
->seals
& F_SEAL_GROW
) && offset
+ len
> inode
->i_size
) {
2887 start
= offset
>> PAGE_SHIFT
;
2888 end
= (offset
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2889 /* Try to avoid a swapstorm if len is impossible to satisfy */
2890 if (sbinfo
->max_blocks
&& end
- start
> sbinfo
->max_blocks
) {
2895 shmem_falloc
.waitq
= NULL
;
2896 shmem_falloc
.start
= start
;
2897 shmem_falloc
.next
= start
;
2898 shmem_falloc
.nr_falloced
= 0;
2899 shmem_falloc
.nr_unswapped
= 0;
2900 spin_lock(&inode
->i_lock
);
2901 inode
->i_private
= &shmem_falloc
;
2902 spin_unlock(&inode
->i_lock
);
2904 for (index
= start
; index
< end
; index
++) {
2908 * Good, the fallocate(2) manpage permits EINTR: we may have
2909 * been interrupted because we are using up too much memory.
2911 if (signal_pending(current
))
2913 else if (shmem_falloc
.nr_unswapped
> shmem_falloc
.nr_falloced
)
2916 error
= shmem_getpage(inode
, index
, &page
, SGP_FALLOC
);
2918 /* Remove the !PageUptodate pages we added */
2919 if (index
> start
) {
2920 shmem_undo_range(inode
,
2921 (loff_t
)start
<< PAGE_SHIFT
,
2922 ((loff_t
)index
<< PAGE_SHIFT
) - 1, true);
2928 * Inform shmem_writepage() how far we have reached.
2929 * No need for lock or barrier: we have the page lock.
2931 shmem_falloc
.next
++;
2932 if (!PageUptodate(page
))
2933 shmem_falloc
.nr_falloced
++;
2936 * If !PageUptodate, leave it that way so that freeable pages
2937 * can be recognized if we need to rollback on error later.
2938 * But set_page_dirty so that memory pressure will swap rather
2939 * than free the pages we are allocating (and SGP_CACHE pages
2940 * might still be clean: we now need to mark those dirty too).
2942 set_page_dirty(page
);
2948 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
2949 i_size_write(inode
, offset
+ len
);
2950 inode
->i_ctime
= current_time(inode
);
2952 spin_lock(&inode
->i_lock
);
2953 inode
->i_private
= NULL
;
2954 spin_unlock(&inode
->i_lock
);
2956 inode_unlock(inode
);
2960 static int shmem_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
2962 struct shmem_sb_info
*sbinfo
= SHMEM_SB(dentry
->d_sb
);
2964 buf
->f_type
= TMPFS_MAGIC
;
2965 buf
->f_bsize
= PAGE_SIZE
;
2966 buf
->f_namelen
= NAME_MAX
;
2967 if (sbinfo
->max_blocks
) {
2968 buf
->f_blocks
= sbinfo
->max_blocks
;
2970 buf
->f_bfree
= sbinfo
->max_blocks
-
2971 percpu_counter_sum(&sbinfo
->used_blocks
);
2973 if (sbinfo
->max_inodes
) {
2974 buf
->f_files
= sbinfo
->max_inodes
;
2975 buf
->f_ffree
= sbinfo
->free_inodes
;
2977 /* else leave those fields 0 like simple_statfs */
2982 * File creation. Allocate an inode, and we're done..
2985 shmem_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t dev
)
2987 struct inode
*inode
;
2988 int error
= -ENOSPC
;
2990 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, dev
, VM_NORESERVE
);
2992 error
= simple_acl_create(dir
, inode
);
2995 error
= security_inode_init_security(inode
, dir
,
2997 shmem_initxattrs
, NULL
);
2998 if (error
&& error
!= -EOPNOTSUPP
)
3002 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3003 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3004 d_instantiate(dentry
, inode
);
3005 dget(dentry
); /* Extra count - pin the dentry in core */
3014 shmem_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
3016 struct inode
*inode
;
3017 int error
= -ENOSPC
;
3019 inode
= shmem_get_inode(dir
->i_sb
, dir
, mode
, 0, VM_NORESERVE
);
3021 error
= security_inode_init_security(inode
, dir
,
3023 shmem_initxattrs
, NULL
);
3024 if (error
&& error
!= -EOPNOTSUPP
)
3026 error
= simple_acl_create(dir
, inode
);
3029 d_tmpfile(dentry
, inode
);
3037 static int shmem_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
3041 if ((error
= shmem_mknod(dir
, dentry
, mode
| S_IFDIR
, 0)))
3047 static int shmem_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
,
3050 return shmem_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
3056 static int shmem_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
3058 struct inode
*inode
= d_inode(old_dentry
);
3062 * No ordinary (disk based) filesystem counts links as inodes;
3063 * but each new link needs a new dentry, pinning lowmem, and
3064 * tmpfs dentries cannot be pruned until they are unlinked.
3066 ret
= shmem_reserve_inode(inode
->i_sb
);
3070 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3071 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3073 ihold(inode
); /* New dentry reference */
3074 dget(dentry
); /* Extra pinning count for the created dentry */
3075 d_instantiate(dentry
, inode
);
3080 static int shmem_unlink(struct inode
*dir
, struct dentry
*dentry
)
3082 struct inode
*inode
= d_inode(dentry
);
3084 if (inode
->i_nlink
> 1 && !S_ISDIR(inode
->i_mode
))
3085 shmem_free_inode(inode
->i_sb
);
3087 dir
->i_size
-= BOGO_DIRENT_SIZE
;
3088 inode
->i_ctime
= dir
->i_ctime
= dir
->i_mtime
= current_time(inode
);
3090 dput(dentry
); /* Undo the count from "create" - this does all the work */
3094 static int shmem_rmdir(struct inode
*dir
, struct dentry
*dentry
)
3096 if (!simple_empty(dentry
))
3099 drop_nlink(d_inode(dentry
));
3101 return shmem_unlink(dir
, dentry
);
3104 static int shmem_exchange(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
)
3106 bool old_is_dir
= d_is_dir(old_dentry
);
3107 bool new_is_dir
= d_is_dir(new_dentry
);
3109 if (old_dir
!= new_dir
&& old_is_dir
!= new_is_dir
) {
3111 drop_nlink(old_dir
);
3114 drop_nlink(new_dir
);
3118 old_dir
->i_ctime
= old_dir
->i_mtime
=
3119 new_dir
->i_ctime
= new_dir
->i_mtime
=
3120 d_inode(old_dentry
)->i_ctime
=
3121 d_inode(new_dentry
)->i_ctime
= current_time(old_dir
);
3126 static int shmem_whiteout(struct inode
*old_dir
, struct dentry
*old_dentry
)
3128 struct dentry
*whiteout
;
3131 whiteout
= d_alloc(old_dentry
->d_parent
, &old_dentry
->d_name
);
3135 error
= shmem_mknod(old_dir
, whiteout
,
3136 S_IFCHR
| WHITEOUT_MODE
, WHITEOUT_DEV
);
3142 * Cheat and hash the whiteout while the old dentry is still in
3143 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3145 * d_lookup() will consistently find one of them at this point,
3146 * not sure which one, but that isn't even important.
3153 * The VFS layer already does all the dentry stuff for rename,
3154 * we just have to decrement the usage count for the target if
3155 * it exists so that the VFS layer correctly free's it when it
3158 static int shmem_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
, struct inode
*new_dir
, struct dentry
*new_dentry
, unsigned int flags
)
3160 struct inode
*inode
= d_inode(old_dentry
);
3161 int they_are_dirs
= S_ISDIR(inode
->i_mode
);
3163 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
3166 if (flags
& RENAME_EXCHANGE
)
3167 return shmem_exchange(old_dir
, old_dentry
, new_dir
, new_dentry
);
3169 if (!simple_empty(new_dentry
))
3172 if (flags
& RENAME_WHITEOUT
) {
3175 error
= shmem_whiteout(old_dir
, old_dentry
);
3180 if (d_really_is_positive(new_dentry
)) {
3181 (void) shmem_unlink(new_dir
, new_dentry
);
3182 if (they_are_dirs
) {
3183 drop_nlink(d_inode(new_dentry
));
3184 drop_nlink(old_dir
);
3186 } else if (they_are_dirs
) {
3187 drop_nlink(old_dir
);
3191 old_dir
->i_size
-= BOGO_DIRENT_SIZE
;
3192 new_dir
->i_size
+= BOGO_DIRENT_SIZE
;
3193 old_dir
->i_ctime
= old_dir
->i_mtime
=
3194 new_dir
->i_ctime
= new_dir
->i_mtime
=
3195 inode
->i_ctime
= current_time(old_dir
);
3199 static int shmem_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
3203 struct inode
*inode
;
3206 len
= strlen(symname
) + 1;
3207 if (len
> PAGE_SIZE
)
3208 return -ENAMETOOLONG
;
3210 inode
= shmem_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0, VM_NORESERVE
);
3214 error
= security_inode_init_security(inode
, dir
, &dentry
->d_name
,
3215 shmem_initxattrs
, NULL
);
3217 if (error
!= -EOPNOTSUPP
) {
3224 inode
->i_size
= len
-1;
3225 if (len
<= SHORT_SYMLINK_LEN
) {
3226 inode
->i_link
= kmemdup(symname
, len
, GFP_KERNEL
);
3227 if (!inode
->i_link
) {
3231 inode
->i_op
= &shmem_short_symlink_operations
;
3233 inode_nohighmem(inode
);
3234 error
= shmem_getpage(inode
, 0, &page
, SGP_WRITE
);
3239 inode
->i_mapping
->a_ops
= &shmem_aops
;
3240 inode
->i_op
= &shmem_symlink_inode_operations
;
3241 memcpy(page_address(page
), symname
, len
);
3242 SetPageUptodate(page
);
3243 set_page_dirty(page
);
3247 dir
->i_size
+= BOGO_DIRENT_SIZE
;
3248 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
3249 d_instantiate(dentry
, inode
);
3254 static void shmem_put_link(void *arg
)
3256 mark_page_accessed(arg
);
3260 static const char *shmem_get_link(struct dentry
*dentry
,
3261 struct inode
*inode
,
3262 struct delayed_call
*done
)
3264 struct page
*page
= NULL
;
3267 page
= find_get_page(inode
->i_mapping
, 0);
3269 return ERR_PTR(-ECHILD
);
3270 if (!PageUptodate(page
)) {
3272 return ERR_PTR(-ECHILD
);
3275 error
= shmem_getpage(inode
, 0, &page
, SGP_READ
);
3277 return ERR_PTR(error
);
3280 set_delayed_call(done
, shmem_put_link
, page
);
3281 return page_address(page
);
3284 #ifdef CONFIG_TMPFS_XATTR
3286 * Superblocks without xattr inode operations may get some security.* xattr
3287 * support from the LSM "for free". As soon as we have any other xattrs
3288 * like ACLs, we also need to implement the security.* handlers at
3289 * filesystem level, though.
3293 * Callback for security_inode_init_security() for acquiring xattrs.
3295 static int shmem_initxattrs(struct inode
*inode
,
3296 const struct xattr
*xattr_array
,
3299 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3300 const struct xattr
*xattr
;
3301 struct simple_xattr
*new_xattr
;
3304 for (xattr
= xattr_array
; xattr
->name
!= NULL
; xattr
++) {
3305 new_xattr
= simple_xattr_alloc(xattr
->value
, xattr
->value_len
);
3309 len
= strlen(xattr
->name
) + 1;
3310 new_xattr
->name
= kmalloc(XATTR_SECURITY_PREFIX_LEN
+ len
,
3312 if (!new_xattr
->name
) {
3317 memcpy(new_xattr
->name
, XATTR_SECURITY_PREFIX
,
3318 XATTR_SECURITY_PREFIX_LEN
);
3319 memcpy(new_xattr
->name
+ XATTR_SECURITY_PREFIX_LEN
,
3322 simple_xattr_list_add(&info
->xattrs
, new_xattr
);
3328 static int shmem_xattr_handler_get(const struct xattr_handler
*handler
,
3329 struct dentry
*unused
, struct inode
*inode
,
3330 const char *name
, void *buffer
, size_t size
)
3332 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3334 name
= xattr_full_name(handler
, name
);
3335 return simple_xattr_get(&info
->xattrs
, name
, buffer
, size
);
3338 static int shmem_xattr_handler_set(const struct xattr_handler
*handler
,
3339 struct dentry
*unused
, struct inode
*inode
,
3340 const char *name
, const void *value
,
3341 size_t size
, int flags
)
3343 struct shmem_inode_info
*info
= SHMEM_I(inode
);
3345 name
= xattr_full_name(handler
, name
);
3346 return simple_xattr_set(&info
->xattrs
, name
, value
, size
, flags
);
3349 static const struct xattr_handler shmem_security_xattr_handler
= {
3350 .prefix
= XATTR_SECURITY_PREFIX
,
3351 .get
= shmem_xattr_handler_get
,
3352 .set
= shmem_xattr_handler_set
,
3355 static const struct xattr_handler shmem_trusted_xattr_handler
= {
3356 .prefix
= XATTR_TRUSTED_PREFIX
,
3357 .get
= shmem_xattr_handler_get
,
3358 .set
= shmem_xattr_handler_set
,
3361 static const struct xattr_handler
*shmem_xattr_handlers
[] = {
3362 #ifdef CONFIG_TMPFS_POSIX_ACL
3363 &posix_acl_access_xattr_handler
,
3364 &posix_acl_default_xattr_handler
,
3366 &shmem_security_xattr_handler
,
3367 &shmem_trusted_xattr_handler
,
3371 static ssize_t
shmem_listxattr(struct dentry
*dentry
, char *buffer
, size_t size
)
3373 struct shmem_inode_info
*info
= SHMEM_I(d_inode(dentry
));
3374 return simple_xattr_list(d_inode(dentry
), &info
->xattrs
, buffer
, size
);
3376 #endif /* CONFIG_TMPFS_XATTR */
3378 static const struct inode_operations shmem_short_symlink_operations
= {
3379 .get_link
= simple_get_link
,
3380 #ifdef CONFIG_TMPFS_XATTR
3381 .listxattr
= shmem_listxattr
,
3385 static const struct inode_operations shmem_symlink_inode_operations
= {
3386 .get_link
= shmem_get_link
,
3387 #ifdef CONFIG_TMPFS_XATTR
3388 .listxattr
= shmem_listxattr
,
3392 static struct dentry
*shmem_get_parent(struct dentry
*child
)
3394 return ERR_PTR(-ESTALE
);
3397 static int shmem_match(struct inode
*ino
, void *vfh
)
3401 inum
= (inum
<< 32) | fh
[1];
3402 return ino
->i_ino
== inum
&& fh
[0] == ino
->i_generation
;
3405 static struct dentry
*shmem_fh_to_dentry(struct super_block
*sb
,
3406 struct fid
*fid
, int fh_len
, int fh_type
)
3408 struct inode
*inode
;
3409 struct dentry
*dentry
= NULL
;
3416 inum
= (inum
<< 32) | fid
->raw
[1];
3418 inode
= ilookup5(sb
, (unsigned long)(inum
+ fid
->raw
[0]),
3419 shmem_match
, fid
->raw
);
3421 dentry
= d_find_alias(inode
);
3428 static int shmem_encode_fh(struct inode
*inode
, __u32
*fh
, int *len
,
3429 struct inode
*parent
)
3433 return FILEID_INVALID
;
3436 if (inode_unhashed(inode
)) {
3437 /* Unfortunately insert_inode_hash is not idempotent,
3438 * so as we hash inodes here rather than at creation
3439 * time, we need a lock to ensure we only try
3442 static DEFINE_SPINLOCK(lock
);
3444 if (inode_unhashed(inode
))
3445 __insert_inode_hash(inode
,
3446 inode
->i_ino
+ inode
->i_generation
);
3450 fh
[0] = inode
->i_generation
;
3451 fh
[1] = inode
->i_ino
;
3452 fh
[2] = ((__u64
)inode
->i_ino
) >> 32;
3458 static const struct export_operations shmem_export_ops
= {
3459 .get_parent
= shmem_get_parent
,
3460 .encode_fh
= shmem_encode_fh
,
3461 .fh_to_dentry
= shmem_fh_to_dentry
,
3464 static int shmem_parse_options(char *options
, struct shmem_sb_info
*sbinfo
,
3467 char *this_char
, *value
, *rest
;
3468 struct mempolicy
*mpol
= NULL
;
3472 while (options
!= NULL
) {
3473 this_char
= options
;
3476 * NUL-terminate this option: unfortunately,
3477 * mount options form a comma-separated list,
3478 * but mpol's nodelist may also contain commas.
3480 options
= strchr(options
, ',');
3481 if (options
== NULL
)
3484 if (!isdigit(*options
)) {
3491 if ((value
= strchr(this_char
,'=')) != NULL
) {
3494 pr_err("tmpfs: No value for mount option '%s'\n",
3499 if (!strcmp(this_char
,"size")) {
3500 unsigned long long size
;
3501 size
= memparse(value
,&rest
);
3503 size
<<= PAGE_SHIFT
;
3504 size
*= totalram_pages
;
3510 sbinfo
->max_blocks
=
3511 DIV_ROUND_UP(size
, PAGE_SIZE
);
3512 } else if (!strcmp(this_char
,"nr_blocks")) {
3513 sbinfo
->max_blocks
= memparse(value
, &rest
);
3516 } else if (!strcmp(this_char
,"nr_inodes")) {
3517 sbinfo
->max_inodes
= memparse(value
, &rest
);
3520 } else if (!strcmp(this_char
,"mode")) {
3523 sbinfo
->mode
= simple_strtoul(value
, &rest
, 8) & 07777;
3526 } else if (!strcmp(this_char
,"uid")) {
3529 uid
= simple_strtoul(value
, &rest
, 0);
3532 sbinfo
->uid
= make_kuid(current_user_ns(), uid
);
3533 if (!uid_valid(sbinfo
->uid
))
3535 } else if (!strcmp(this_char
,"gid")) {
3538 gid
= simple_strtoul(value
, &rest
, 0);
3541 sbinfo
->gid
= make_kgid(current_user_ns(), gid
);
3542 if (!gid_valid(sbinfo
->gid
))
3544 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3545 } else if (!strcmp(this_char
, "huge")) {
3547 huge
= shmem_parse_huge(value
);
3550 if (!has_transparent_hugepage() &&
3551 huge
!= SHMEM_HUGE_NEVER
)
3553 sbinfo
->huge
= huge
;
3556 } else if (!strcmp(this_char
,"mpol")) {
3559 if (mpol_parse_str(value
, &mpol
))
3563 pr_err("tmpfs: Bad mount option %s\n", this_char
);
3567 sbinfo
->mpol
= mpol
;
3571 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3579 static int shmem_remount_fs(struct super_block
*sb
, int *flags
, char *data
)
3581 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3582 struct shmem_sb_info config
= *sbinfo
;
3583 unsigned long inodes
;
3584 int error
= -EINVAL
;
3587 if (shmem_parse_options(data
, &config
, true))
3590 spin_lock(&sbinfo
->stat_lock
);
3591 inodes
= sbinfo
->max_inodes
- sbinfo
->free_inodes
;
3592 if (percpu_counter_compare(&sbinfo
->used_blocks
, config
.max_blocks
) > 0)
3594 if (config
.max_inodes
< inodes
)
3597 * Those tests disallow limited->unlimited while any are in use;
3598 * but we must separately disallow unlimited->limited, because
3599 * in that case we have no record of how much is already in use.
3601 if (config
.max_blocks
&& !sbinfo
->max_blocks
)
3603 if (config
.max_inodes
&& !sbinfo
->max_inodes
)
3607 sbinfo
->huge
= config
.huge
;
3608 sbinfo
->max_blocks
= config
.max_blocks
;
3609 sbinfo
->max_inodes
= config
.max_inodes
;
3610 sbinfo
->free_inodes
= config
.max_inodes
- inodes
;
3613 * Preserve previous mempolicy unless mpol remount option was specified.
3616 mpol_put(sbinfo
->mpol
);
3617 sbinfo
->mpol
= config
.mpol
; /* transfers initial ref */
3620 spin_unlock(&sbinfo
->stat_lock
);
3624 static int shmem_show_options(struct seq_file
*seq
, struct dentry
*root
)
3626 struct shmem_sb_info
*sbinfo
= SHMEM_SB(root
->d_sb
);
3628 if (sbinfo
->max_blocks
!= shmem_default_max_blocks())
3629 seq_printf(seq
, ",size=%luk",
3630 sbinfo
->max_blocks
<< (PAGE_SHIFT
- 10));
3631 if (sbinfo
->max_inodes
!= shmem_default_max_inodes())
3632 seq_printf(seq
, ",nr_inodes=%lu", sbinfo
->max_inodes
);
3633 if (sbinfo
->mode
!= (S_IRWXUGO
| S_ISVTX
))
3634 seq_printf(seq
, ",mode=%03ho", sbinfo
->mode
);
3635 if (!uid_eq(sbinfo
->uid
, GLOBAL_ROOT_UID
))
3636 seq_printf(seq
, ",uid=%u",
3637 from_kuid_munged(&init_user_ns
, sbinfo
->uid
));
3638 if (!gid_eq(sbinfo
->gid
, GLOBAL_ROOT_GID
))
3639 seq_printf(seq
, ",gid=%u",
3640 from_kgid_munged(&init_user_ns
, sbinfo
->gid
));
3641 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3642 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3644 seq_printf(seq
, ",huge=%s", shmem_format_huge(sbinfo
->huge
));
3646 shmem_show_mpol(seq
, sbinfo
->mpol
);
3650 #define MFD_NAME_PREFIX "memfd:"
3651 #define MFD_NAME_PREFIX_LEN (sizeof(MFD_NAME_PREFIX) - 1)
3652 #define MFD_NAME_MAX_LEN (NAME_MAX - MFD_NAME_PREFIX_LEN)
3654 #define MFD_ALL_FLAGS (MFD_CLOEXEC | MFD_ALLOW_SEALING | MFD_HUGETLB)
3656 SYSCALL_DEFINE2(memfd_create
,
3657 const char __user
*, uname
,
3658 unsigned int, flags
)
3660 struct shmem_inode_info
*info
;
3666 if (!(flags
& MFD_HUGETLB
)) {
3667 if (flags
& ~(unsigned int)MFD_ALL_FLAGS
)
3670 /* Sealing not supported in hugetlbfs (MFD_HUGETLB) */
3671 if (flags
& MFD_ALLOW_SEALING
)
3673 /* Allow huge page size encoding in flags. */
3674 if (flags
& ~(unsigned int)(MFD_ALL_FLAGS
|
3675 (MFD_HUGE_MASK
<< MFD_HUGE_SHIFT
)))
3679 /* length includes terminating zero */
3680 len
= strnlen_user(uname
, MFD_NAME_MAX_LEN
+ 1);
3683 if (len
> MFD_NAME_MAX_LEN
+ 1)
3686 name
= kmalloc(len
+ MFD_NAME_PREFIX_LEN
, GFP_KERNEL
);
3690 strcpy(name
, MFD_NAME_PREFIX
);
3691 if (copy_from_user(&name
[MFD_NAME_PREFIX_LEN
], uname
, len
)) {
3696 /* terminating-zero may have changed after strnlen_user() returned */
3697 if (name
[len
+ MFD_NAME_PREFIX_LEN
- 1]) {
3702 fd
= get_unused_fd_flags((flags
& MFD_CLOEXEC
) ? O_CLOEXEC
: 0);
3708 if (flags
& MFD_HUGETLB
) {
3709 struct user_struct
*user
= NULL
;
3711 file
= hugetlb_file_setup(name
, 0, VM_NORESERVE
, &user
,
3712 HUGETLB_ANONHUGE_INODE
,
3713 (flags
>> MFD_HUGE_SHIFT
) &
3716 file
= shmem_file_setup(name
, 0, VM_NORESERVE
);
3718 error
= PTR_ERR(file
);
3721 file
->f_mode
|= FMODE_LSEEK
| FMODE_PREAD
| FMODE_PWRITE
;
3722 file
->f_flags
|= O_RDWR
| O_LARGEFILE
;
3724 if (flags
& MFD_ALLOW_SEALING
) {
3726 * flags check at beginning of function ensures
3727 * this is not a hugetlbfs (MFD_HUGETLB) file.
3729 info
= SHMEM_I(file_inode(file
));
3730 info
->seals
&= ~F_SEAL_SEAL
;
3733 fd_install(fd
, file
);
3744 #endif /* CONFIG_TMPFS */
3746 static void shmem_put_super(struct super_block
*sb
)
3748 struct shmem_sb_info
*sbinfo
= SHMEM_SB(sb
);
3750 percpu_counter_destroy(&sbinfo
->used_blocks
);
3751 mpol_put(sbinfo
->mpol
);
3753 sb
->s_fs_info
= NULL
;
3756 int shmem_fill_super(struct super_block
*sb
, void *data
, int silent
)
3758 struct inode
*inode
;
3759 struct shmem_sb_info
*sbinfo
;
3762 /* Round up to L1_CACHE_BYTES to resist false sharing */
3763 sbinfo
= kzalloc(max((int)sizeof(struct shmem_sb_info
),
3764 L1_CACHE_BYTES
), GFP_KERNEL
);
3768 sbinfo
->mode
= S_IRWXUGO
| S_ISVTX
;
3769 sbinfo
->uid
= current_fsuid();
3770 sbinfo
->gid
= current_fsgid();
3771 sb
->s_fs_info
= sbinfo
;
3775 * Per default we only allow half of the physical ram per
3776 * tmpfs instance, limiting inodes to one per page of lowmem;
3777 * but the internal instance is left unlimited.
3779 if (!(sb
->s_flags
& SB_KERNMOUNT
)) {
3780 sbinfo
->max_blocks
= shmem_default_max_blocks();
3781 sbinfo
->max_inodes
= shmem_default_max_inodes();
3782 if (shmem_parse_options(data
, sbinfo
, false)) {
3787 sb
->s_flags
|= SB_NOUSER
;
3789 sb
->s_export_op
= &shmem_export_ops
;
3790 sb
->s_flags
|= SB_NOSEC
;
3792 sb
->s_flags
|= SB_NOUSER
;
3795 spin_lock_init(&sbinfo
->stat_lock
);
3796 if (percpu_counter_init(&sbinfo
->used_blocks
, 0, GFP_KERNEL
))
3798 sbinfo
->free_inodes
= sbinfo
->max_inodes
;
3799 spin_lock_init(&sbinfo
->shrinklist_lock
);
3800 INIT_LIST_HEAD(&sbinfo
->shrinklist
);
3802 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
3803 sb
->s_blocksize
= PAGE_SIZE
;
3804 sb
->s_blocksize_bits
= PAGE_SHIFT
;
3805 sb
->s_magic
= TMPFS_MAGIC
;
3806 sb
->s_op
= &shmem_ops
;
3807 sb
->s_time_gran
= 1;
3808 #ifdef CONFIG_TMPFS_XATTR
3809 sb
->s_xattr
= shmem_xattr_handlers
;
3811 #ifdef CONFIG_TMPFS_POSIX_ACL
3812 sb
->s_flags
|= SB_POSIXACL
;
3814 uuid_gen(&sb
->s_uuid
);
3816 inode
= shmem_get_inode(sb
, NULL
, S_IFDIR
| sbinfo
->mode
, 0, VM_NORESERVE
);
3819 inode
->i_uid
= sbinfo
->uid
;
3820 inode
->i_gid
= sbinfo
->gid
;
3821 sb
->s_root
= d_make_root(inode
);
3827 shmem_put_super(sb
);
3831 static struct kmem_cache
*shmem_inode_cachep
;
3833 static struct inode
*shmem_alloc_inode(struct super_block
*sb
)
3835 struct shmem_inode_info
*info
;
3836 info
= kmem_cache_alloc(shmem_inode_cachep
, GFP_KERNEL
);
3839 return &info
->vfs_inode
;
3842 static void shmem_destroy_callback(struct rcu_head
*head
)
3844 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
3845 if (S_ISLNK(inode
->i_mode
))
3846 kfree(inode
->i_link
);
3847 kmem_cache_free(shmem_inode_cachep
, SHMEM_I(inode
));
3850 static void shmem_destroy_inode(struct inode
*inode
)
3852 if (S_ISREG(inode
->i_mode
))
3853 mpol_free_shared_policy(&SHMEM_I(inode
)->policy
);
3854 call_rcu(&inode
->i_rcu
, shmem_destroy_callback
);
3857 static void shmem_init_inode(void *foo
)
3859 struct shmem_inode_info
*info
= foo
;
3860 inode_init_once(&info
->vfs_inode
);
3863 static void shmem_init_inodecache(void)
3865 shmem_inode_cachep
= kmem_cache_create("shmem_inode_cache",
3866 sizeof(struct shmem_inode_info
),
3867 0, SLAB_PANIC
|SLAB_ACCOUNT
, shmem_init_inode
);
3870 static void shmem_destroy_inodecache(void)
3872 kmem_cache_destroy(shmem_inode_cachep
);
3875 static const struct address_space_operations shmem_aops
= {
3876 .writepage
= shmem_writepage
,
3877 .set_page_dirty
= __set_page_dirty_no_writeback
,
3879 .write_begin
= shmem_write_begin
,
3880 .write_end
= shmem_write_end
,
3882 #ifdef CONFIG_MIGRATION
3883 .migratepage
= migrate_page
,
3885 .error_remove_page
= generic_error_remove_page
,
3888 static const struct file_operations shmem_file_operations
= {
3890 .get_unmapped_area
= shmem_get_unmapped_area
,
3892 .llseek
= shmem_file_llseek
,
3893 .read_iter
= shmem_file_read_iter
,
3894 .write_iter
= generic_file_write_iter
,
3895 .fsync
= noop_fsync
,
3896 .splice_read
= generic_file_splice_read
,
3897 .splice_write
= iter_file_splice_write
,
3898 .fallocate
= shmem_fallocate
,
3902 static const struct inode_operations shmem_inode_operations
= {
3903 .getattr
= shmem_getattr
,
3904 .setattr
= shmem_setattr
,
3905 #ifdef CONFIG_TMPFS_XATTR
3906 .listxattr
= shmem_listxattr
,
3907 .set_acl
= simple_set_acl
,
3911 static const struct inode_operations shmem_dir_inode_operations
= {
3913 .create
= shmem_create
,
3914 .lookup
= simple_lookup
,
3916 .unlink
= shmem_unlink
,
3917 .symlink
= shmem_symlink
,
3918 .mkdir
= shmem_mkdir
,
3919 .rmdir
= shmem_rmdir
,
3920 .mknod
= shmem_mknod
,
3921 .rename
= shmem_rename2
,
3922 .tmpfile
= shmem_tmpfile
,
3924 #ifdef CONFIG_TMPFS_XATTR
3925 .listxattr
= shmem_listxattr
,
3927 #ifdef CONFIG_TMPFS_POSIX_ACL
3928 .setattr
= shmem_setattr
,
3929 .set_acl
= simple_set_acl
,
3933 static const struct inode_operations shmem_special_inode_operations
= {
3934 #ifdef CONFIG_TMPFS_XATTR
3935 .listxattr
= shmem_listxattr
,
3937 #ifdef CONFIG_TMPFS_POSIX_ACL
3938 .setattr
= shmem_setattr
,
3939 .set_acl
= simple_set_acl
,
3943 static const struct super_operations shmem_ops
= {
3944 .alloc_inode
= shmem_alloc_inode
,
3945 .destroy_inode
= shmem_destroy_inode
,
3947 .statfs
= shmem_statfs
,
3948 .remount_fs
= shmem_remount_fs
,
3949 .show_options
= shmem_show_options
,
3951 .evict_inode
= shmem_evict_inode
,
3952 .drop_inode
= generic_delete_inode
,
3953 .put_super
= shmem_put_super
,
3954 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3955 .nr_cached_objects
= shmem_unused_huge_count
,
3956 .free_cached_objects
= shmem_unused_huge_scan
,
3960 static const struct vm_operations_struct shmem_vm_ops
= {
3961 .fault
= shmem_fault
,
3962 .map_pages
= filemap_map_pages
,
3964 .set_policy
= shmem_set_policy
,
3965 .get_policy
= shmem_get_policy
,
3969 static struct dentry
*shmem_mount(struct file_system_type
*fs_type
,
3970 int flags
, const char *dev_name
, void *data
)
3972 return mount_nodev(fs_type
, flags
, data
, shmem_fill_super
);
3975 static struct file_system_type shmem_fs_type
= {
3976 .owner
= THIS_MODULE
,
3978 .mount
= shmem_mount
,
3979 .kill_sb
= kill_litter_super
,
3980 .fs_flags
= FS_USERNS_MOUNT
,
3983 int __init
shmem_init(void)
3987 /* If rootfs called this, don't re-init */
3988 if (shmem_inode_cachep
)
3991 shmem_init_inodecache();
3993 error
= register_filesystem(&shmem_fs_type
);
3995 pr_err("Could not register tmpfs\n");
3999 shm_mnt
= kern_mount(&shmem_fs_type
);
4000 if (IS_ERR(shm_mnt
)) {
4001 error
= PTR_ERR(shm_mnt
);
4002 pr_err("Could not kern_mount tmpfs\n");
4006 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4007 if (has_transparent_hugepage() && shmem_huge
> SHMEM_HUGE_DENY
)
4008 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
4010 shmem_huge
= 0; /* just in case it was patched */
4015 unregister_filesystem(&shmem_fs_type
);
4017 shmem_destroy_inodecache();
4018 shm_mnt
= ERR_PTR(error
);
4022 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
4023 static ssize_t
shmem_enabled_show(struct kobject
*kobj
,
4024 struct kobj_attribute
*attr
, char *buf
)
4028 SHMEM_HUGE_WITHIN_SIZE
,
4036 for (i
= 0, count
= 0; i
< ARRAY_SIZE(values
); i
++) {
4037 const char *fmt
= shmem_huge
== values
[i
] ? "[%s] " : "%s ";
4039 count
+= sprintf(buf
+ count
, fmt
,
4040 shmem_format_huge(values
[i
]));
4042 buf
[count
- 1] = '\n';
4046 static ssize_t
shmem_enabled_store(struct kobject
*kobj
,
4047 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
4052 if (count
+ 1 > sizeof(tmp
))
4054 memcpy(tmp
, buf
, count
);
4056 if (count
&& tmp
[count
- 1] == '\n')
4057 tmp
[count
- 1] = '\0';
4059 huge
= shmem_parse_huge(tmp
);
4060 if (huge
== -EINVAL
)
4062 if (!has_transparent_hugepage() &&
4063 huge
!= SHMEM_HUGE_NEVER
&& huge
!= SHMEM_HUGE_DENY
)
4067 if (shmem_huge
> SHMEM_HUGE_DENY
)
4068 SHMEM_SB(shm_mnt
->mnt_sb
)->huge
= shmem_huge
;
4072 struct kobj_attribute shmem_enabled_attr
=
4073 __ATTR(shmem_enabled
, 0644, shmem_enabled_show
, shmem_enabled_store
);
4074 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
4076 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
4077 bool shmem_huge_enabled(struct vm_area_struct
*vma
)
4079 struct inode
*inode
= file_inode(vma
->vm_file
);
4080 struct shmem_sb_info
*sbinfo
= SHMEM_SB(inode
->i_sb
);
4084 if (shmem_huge
== SHMEM_HUGE_FORCE
)
4086 if (shmem_huge
== SHMEM_HUGE_DENY
)
4088 switch (sbinfo
->huge
) {
4089 case SHMEM_HUGE_NEVER
:
4091 case SHMEM_HUGE_ALWAYS
:
4093 case SHMEM_HUGE_WITHIN_SIZE
:
4094 off
= round_up(vma
->vm_pgoff
, HPAGE_PMD_NR
);
4095 i_size
= round_up(i_size_read(inode
), PAGE_SIZE
);
4096 if (i_size
>= HPAGE_PMD_SIZE
&&
4097 i_size
>> PAGE_SHIFT
>= off
)
4100 case SHMEM_HUGE_ADVISE
:
4101 /* TODO: implement fadvise() hints */
4102 return (vma
->vm_flags
& VM_HUGEPAGE
);
4108 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
4110 #else /* !CONFIG_SHMEM */
4113 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4115 * This is intended for small system where the benefits of the full
4116 * shmem code (swap-backed and resource-limited) are outweighed by
4117 * their complexity. On systems without swap this code should be
4118 * effectively equivalent, but much lighter weight.
4121 static struct file_system_type shmem_fs_type
= {
4123 .mount
= ramfs_mount
,
4124 .kill_sb
= kill_litter_super
,
4125 .fs_flags
= FS_USERNS_MOUNT
,
4128 int __init
shmem_init(void)
4130 BUG_ON(register_filesystem(&shmem_fs_type
) != 0);
4132 shm_mnt
= kern_mount(&shmem_fs_type
);
4133 BUG_ON(IS_ERR(shm_mnt
));
4138 int shmem_unuse(swp_entry_t swap
, struct page
*page
)
4143 int shmem_lock(struct file
*file
, int lock
, struct user_struct
*user
)
4148 void shmem_unlock_mapping(struct address_space
*mapping
)
4153 unsigned long shmem_get_unmapped_area(struct file
*file
,
4154 unsigned long addr
, unsigned long len
,
4155 unsigned long pgoff
, unsigned long flags
)
4157 return current
->mm
->get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
4161 void shmem_truncate_range(struct inode
*inode
, loff_t lstart
, loff_t lend
)
4163 truncate_inode_pages_range(inode
->i_mapping
, lstart
, lend
);
4165 EXPORT_SYMBOL_GPL(shmem_truncate_range
);
4167 #define shmem_vm_ops generic_file_vm_ops
4168 #define shmem_file_operations ramfs_file_operations
4169 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4170 #define shmem_acct_size(flags, size) 0
4171 #define shmem_unacct_size(flags, size) do {} while (0)
4173 #endif /* CONFIG_SHMEM */
4177 static const struct dentry_operations anon_ops
= {
4178 .d_dname
= simple_dname
4181 static struct file
*__shmem_file_setup(struct vfsmount
*mnt
, const char *name
, loff_t size
,
4182 unsigned long flags
, unsigned int i_flags
)
4185 struct inode
*inode
;
4187 struct super_block
*sb
;
4191 return ERR_CAST(mnt
);
4193 if (size
< 0 || size
> MAX_LFS_FILESIZE
)
4194 return ERR_PTR(-EINVAL
);
4196 if (shmem_acct_size(flags
, size
))
4197 return ERR_PTR(-ENOMEM
);
4199 res
= ERR_PTR(-ENOMEM
);
4201 this.len
= strlen(name
);
4202 this.hash
= 0; /* will go */
4204 path
.mnt
= mntget(mnt
);
4205 path
.dentry
= d_alloc_pseudo(sb
, &this);
4208 d_set_d_op(path
.dentry
, &anon_ops
);
4210 res
= ERR_PTR(-ENOSPC
);
4211 inode
= shmem_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0, flags
);
4215 inode
->i_flags
|= i_flags
;
4216 d_instantiate(path
.dentry
, inode
);
4217 inode
->i_size
= size
;
4218 clear_nlink(inode
); /* It is unlinked */
4219 res
= ERR_PTR(ramfs_nommu_expand_for_mapping(inode
, size
));
4223 res
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
4224 &shmem_file_operations
);
4231 shmem_unacct_size(flags
, size
);
4238 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4239 * kernel internal. There will be NO LSM permission checks against the
4240 * underlying inode. So users of this interface must do LSM checks at a
4241 * higher layer. The users are the big_key and shm implementations. LSM
4242 * checks are provided at the key or shm level rather than the inode.
4243 * @name: name for dentry (to be seen in /proc/<pid>/maps
4244 * @size: size to be set for the file
4245 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4247 struct file
*shmem_kernel_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4249 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, S_PRIVATE
);
4253 * shmem_file_setup - get an unlinked file living in tmpfs
4254 * @name: name for dentry (to be seen in /proc/<pid>/maps
4255 * @size: size to be set for the file
4256 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4258 struct file
*shmem_file_setup(const char *name
, loff_t size
, unsigned long flags
)
4260 return __shmem_file_setup(shm_mnt
, name
, size
, flags
, 0);
4262 EXPORT_SYMBOL_GPL(shmem_file_setup
);
4265 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4266 * @mnt: the tmpfs mount where the file will be created
4267 * @name: name for dentry (to be seen in /proc/<pid>/maps
4268 * @size: size to be set for the file
4269 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4271 struct file
*shmem_file_setup_with_mnt(struct vfsmount
*mnt
, const char *name
,
4272 loff_t size
, unsigned long flags
)
4274 return __shmem_file_setup(mnt
, name
, size
, flags
, 0);
4276 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt
);
4279 * shmem_zero_setup - setup a shared anonymous mapping
4280 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4282 int shmem_zero_setup(struct vm_area_struct
*vma
)
4285 loff_t size
= vma
->vm_end
- vma
->vm_start
;
4288 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4289 * between XFS directory reading and selinux: since this file is only
4290 * accessible to the user through its mapping, use S_PRIVATE flag to
4291 * bypass file security, in the same way as shmem_kernel_file_setup().
4293 file
= shmem_kernel_file_setup("dev/zero", size
, vma
->vm_flags
);
4295 return PTR_ERR(file
);
4299 vma
->vm_file
= file
;
4300 vma
->vm_ops
= &shmem_vm_ops
;
4302 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
) &&
4303 ((vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
) <
4304 (vma
->vm_end
& HPAGE_PMD_MASK
)) {
4305 khugepaged_enter(vma
, vma
->vm_flags
);
4312 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4313 * @mapping: the page's address_space
4314 * @index: the page index
4315 * @gfp: the page allocator flags to use if allocating
4317 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4318 * with any new page allocations done using the specified allocation flags.
4319 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4320 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4321 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4323 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4324 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4326 struct page
*shmem_read_mapping_page_gfp(struct address_space
*mapping
,
4327 pgoff_t index
, gfp_t gfp
)
4330 struct inode
*inode
= mapping
->host
;
4334 BUG_ON(mapping
->a_ops
!= &shmem_aops
);
4335 error
= shmem_getpage_gfp(inode
, index
, &page
, SGP_CACHE
,
4336 gfp
, NULL
, NULL
, NULL
);
4338 page
= ERR_PTR(error
);
4344 * The tiny !SHMEM case uses ramfs without swap
4346 return read_cache_page_gfp(mapping
, index
, gfp
);
4349 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp
);