2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
57 #define ZSPAGE_MAGIC 0x58
60 * This must be power of 2 and greater than of equal to sizeof(link_free).
61 * These two conditions ensure that any 'struct link_free' itself doesn't
62 * span more than 1 page which avoids complex case of mapping 2 pages simply
63 * to restore link_free pointer values.
68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
77 * Object location (<PFN>, <obj_idx>) is encoded as
78 * as single (unsigned long) handle value.
80 * Note that object index <obj_idx> starts from 0.
82 * This is made more complicated by various memory models and PAE.
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
99 * Memory for allocating for handle keeps object position by
100 * encoding <page, obj_idx> and the encoded value has a room
101 * in least bit(ie, look at obj_to_location).
102 * We use the bit to synchronize between object access by
103 * user and migration.
105 #define HANDLE_PIN_BIT 0
108 * Head in allocated object should have OBJ_ALLOCATED_TAG
109 * to identify the object was allocated or not.
110 * It's okay to add the status bit in the least bit because
111 * header keeps handle which is 4byte-aligned address so we
112 * have room for two bit at least.
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
119 #define FULLNESS_BITS 2
121 #define ISOLATED_BITS 3
122 #define MAGIC_VAL_BITS 8
124 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
126 #define ZS_MIN_ALLOC_SIZE \
127 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
128 /* each chunk includes extra space to keep handle */
129 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
132 * On systems with 4K page size, this gives 255 size classes! There is a
134 * - Large number of size classes is potentially wasteful as free page are
135 * spread across these classes
136 * - Small number of size classes causes large internal fragmentation
137 * - Probably its better to use specific size classes (empirically
138 * determined). NOTE: all those class sizes must be set as multiple of
139 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
141 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
144 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
145 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
146 ZS_SIZE_CLASS_DELTA) + 1)
148 enum fullness_group
{
166 struct zs_size_stat
{
167 unsigned long objs
[NR_ZS_STAT_TYPE
];
170 #ifdef CONFIG_ZSMALLOC_STAT
171 static struct dentry
*zs_stat_root
;
174 #ifdef CONFIG_COMPACTION
175 static struct vfsmount
*zsmalloc_mnt
;
179 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
181 * n = number of allocated objects
182 * N = total number of objects zspage can store
183 * f = fullness_threshold_frac
185 * Similarly, we assign zspage to:
186 * ZS_ALMOST_FULL when n > N / f
187 * ZS_EMPTY when n == 0
188 * ZS_FULL when n == N
190 * (see: fix_fullness_group())
192 static const int fullness_threshold_frac
= 4;
196 struct list_head fullness_list
[NR_ZS_FULLNESS
];
198 * Size of objects stored in this class. Must be multiple
203 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
204 int pages_per_zspage
;
207 struct zs_size_stat stats
;
210 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
211 static void SetPageHugeObject(struct page
*page
)
213 SetPageOwnerPriv1(page
);
216 static void ClearPageHugeObject(struct page
*page
)
218 ClearPageOwnerPriv1(page
);
221 static int PageHugeObject(struct page
*page
)
223 return PageOwnerPriv1(page
);
227 * Placed within free objects to form a singly linked list.
228 * For every zspage, zspage->freeobj gives head of this list.
230 * This must be power of 2 and less than or equal to ZS_ALIGN
236 * It's valid for non-allocated object
240 * Handle of allocated object.
242 unsigned long handle
;
249 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
250 struct kmem_cache
*handle_cachep
;
251 struct kmem_cache
*zspage_cachep
;
253 atomic_long_t pages_allocated
;
255 struct zs_pool_stats stats
;
257 /* Compact classes */
258 struct shrinker shrinker
;
260 * To signify that register_shrinker() was successful
261 * and unregister_shrinker() will not Oops.
263 bool shrinker_enabled
;
264 #ifdef CONFIG_ZSMALLOC_STAT
265 struct dentry
*stat_dentry
;
267 #ifdef CONFIG_COMPACTION
269 struct work_struct free_work
;
275 unsigned int fullness
:FULLNESS_BITS
;
276 unsigned int class:CLASS_BITS
+ 1;
277 unsigned int isolated
:ISOLATED_BITS
;
278 unsigned int magic
:MAGIC_VAL_BITS
;
281 unsigned int freeobj
;
282 struct page
*first_page
;
283 struct list_head list
; /* fullness list */
284 #ifdef CONFIG_COMPACTION
289 struct mapping_area
{
290 #ifdef CONFIG_PGTABLE_MAPPING
291 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
293 char *vm_buf
; /* copy buffer for objects that span pages */
295 char *vm_addr
; /* address of kmap_atomic()'ed pages */
296 enum zs_mapmode vm_mm
; /* mapping mode */
299 #ifdef CONFIG_COMPACTION
300 static int zs_register_migration(struct zs_pool
*pool
);
301 static void zs_unregister_migration(struct zs_pool
*pool
);
302 static void migrate_lock_init(struct zspage
*zspage
);
303 static void migrate_read_lock(struct zspage
*zspage
);
304 static void migrate_read_unlock(struct zspage
*zspage
);
305 static void kick_deferred_free(struct zs_pool
*pool
);
306 static void init_deferred_free(struct zs_pool
*pool
);
307 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
309 static int zsmalloc_mount(void) { return 0; }
310 static void zsmalloc_unmount(void) {}
311 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
312 static void zs_unregister_migration(struct zs_pool
*pool
) {}
313 static void migrate_lock_init(struct zspage
*zspage
) {}
314 static void migrate_read_lock(struct zspage
*zspage
) {}
315 static void migrate_read_unlock(struct zspage
*zspage
) {}
316 static void kick_deferred_free(struct zs_pool
*pool
) {}
317 static void init_deferred_free(struct zs_pool
*pool
) {}
318 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
321 static int create_cache(struct zs_pool
*pool
)
323 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
325 if (!pool
->handle_cachep
)
328 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
330 if (!pool
->zspage_cachep
) {
331 kmem_cache_destroy(pool
->handle_cachep
);
332 pool
->handle_cachep
= NULL
;
339 static void destroy_cache(struct zs_pool
*pool
)
341 kmem_cache_destroy(pool
->handle_cachep
);
342 kmem_cache_destroy(pool
->zspage_cachep
);
345 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
347 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
348 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
351 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
353 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
356 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
358 return kmem_cache_alloc(pool
->zspage_cachep
,
359 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
362 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
364 kmem_cache_free(pool
->zspage_cachep
, zspage
);
367 static void record_obj(unsigned long handle
, unsigned long obj
)
370 * lsb of @obj represents handle lock while other bits
371 * represent object value the handle is pointing so
372 * updating shouldn't do store tearing.
374 WRITE_ONCE(*(unsigned long *)handle
, obj
);
381 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
382 const struct zpool_ops
*zpool_ops
,
386 * Ignore global gfp flags: zs_malloc() may be invoked from
387 * different contexts and its caller must provide a valid
390 return zs_create_pool(name
);
393 static void zs_zpool_destroy(void *pool
)
395 zs_destroy_pool(pool
);
398 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
399 unsigned long *handle
)
401 *handle
= zs_malloc(pool
, size
, gfp
);
402 return *handle
? 0 : -1;
404 static void zs_zpool_free(void *pool
, unsigned long handle
)
406 zs_free(pool
, handle
);
409 static int zs_zpool_shrink(void *pool
, unsigned int pages
,
410 unsigned int *reclaimed
)
415 static void *zs_zpool_map(void *pool
, unsigned long handle
,
416 enum zpool_mapmode mm
)
418 enum zs_mapmode zs_mm
;
427 case ZPOOL_MM_RW
: /* fallthru */
433 return zs_map_object(pool
, handle
, zs_mm
);
435 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
437 zs_unmap_object(pool
, handle
);
440 static u64
zs_zpool_total_size(void *pool
)
442 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
445 static struct zpool_driver zs_zpool_driver
= {
447 .owner
= THIS_MODULE
,
448 .create
= zs_zpool_create
,
449 .destroy
= zs_zpool_destroy
,
450 .malloc
= zs_zpool_malloc
,
451 .free
= zs_zpool_free
,
452 .shrink
= zs_zpool_shrink
,
454 .unmap
= zs_zpool_unmap
,
455 .total_size
= zs_zpool_total_size
,
458 MODULE_ALIAS("zpool-zsmalloc");
459 #endif /* CONFIG_ZPOOL */
461 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
462 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
464 static bool is_zspage_isolated(struct zspage
*zspage
)
466 return zspage
->isolated
;
469 static __maybe_unused
int is_first_page(struct page
*page
)
471 return PagePrivate(page
);
474 /* Protected by class->lock */
475 static inline int get_zspage_inuse(struct zspage
*zspage
)
477 return zspage
->inuse
;
480 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
485 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
487 zspage
->inuse
+= val
;
490 static inline struct page
*get_first_page(struct zspage
*zspage
)
492 struct page
*first_page
= zspage
->first_page
;
494 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
498 static inline int get_first_obj_offset(struct page
*page
)
503 static inline void set_first_obj_offset(struct page
*page
, int offset
)
505 page
->units
= offset
;
508 static inline unsigned int get_freeobj(struct zspage
*zspage
)
510 return zspage
->freeobj
;
513 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
515 zspage
->freeobj
= obj
;
518 static void get_zspage_mapping(struct zspage
*zspage
,
519 unsigned int *class_idx
,
520 enum fullness_group
*fullness
)
522 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
524 *fullness
= zspage
->fullness
;
525 *class_idx
= zspage
->class;
528 static void set_zspage_mapping(struct zspage
*zspage
,
529 unsigned int class_idx
,
530 enum fullness_group fullness
)
532 zspage
->class = class_idx
;
533 zspage
->fullness
= fullness
;
537 * zsmalloc divides the pool into various size classes where each
538 * class maintains a list of zspages where each zspage is divided
539 * into equal sized chunks. Each allocation falls into one of these
540 * classes depending on its size. This function returns index of the
541 * size class which has chunk size big enough to hold the give size.
543 static int get_size_class_index(int size
)
547 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
548 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
549 ZS_SIZE_CLASS_DELTA
);
551 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
554 /* type can be of enum type zs_stat_type or fullness_group */
555 static inline void zs_stat_inc(struct size_class
*class,
556 int type
, unsigned long cnt
)
558 class->stats
.objs
[type
] += cnt
;
561 /* type can be of enum type zs_stat_type or fullness_group */
562 static inline void zs_stat_dec(struct size_class
*class,
563 int type
, unsigned long cnt
)
565 class->stats
.objs
[type
] -= cnt
;
568 /* type can be of enum type zs_stat_type or fullness_group */
569 static inline unsigned long zs_stat_get(struct size_class
*class,
572 return class->stats
.objs
[type
];
575 #ifdef CONFIG_ZSMALLOC_STAT
577 static void __init
zs_stat_init(void)
579 if (!debugfs_initialized()) {
580 pr_warn("debugfs not available, stat dir not created\n");
584 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
586 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
589 static void __exit
zs_stat_exit(void)
591 debugfs_remove_recursive(zs_stat_root
);
594 static unsigned long zs_can_compact(struct size_class
*class);
596 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
599 struct zs_pool
*pool
= s
->private;
600 struct size_class
*class;
602 unsigned long class_almost_full
, class_almost_empty
;
603 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
604 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
605 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
606 unsigned long total_freeable
= 0;
608 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
609 "class", "size", "almost_full", "almost_empty",
610 "obj_allocated", "obj_used", "pages_used",
611 "pages_per_zspage", "freeable");
613 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
614 class = pool
->size_class
[i
];
616 if (class->index
!= i
)
619 spin_lock(&class->lock
);
620 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
621 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
622 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
623 obj_used
= zs_stat_get(class, OBJ_USED
);
624 freeable
= zs_can_compact(class);
625 spin_unlock(&class->lock
);
627 objs_per_zspage
= class->objs_per_zspage
;
628 pages_used
= obj_allocated
/ objs_per_zspage
*
629 class->pages_per_zspage
;
631 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
632 " %10lu %10lu %16d %8lu\n",
633 i
, class->size
, class_almost_full
, class_almost_empty
,
634 obj_allocated
, obj_used
, pages_used
,
635 class->pages_per_zspage
, freeable
);
637 total_class_almost_full
+= class_almost_full
;
638 total_class_almost_empty
+= class_almost_empty
;
639 total_objs
+= obj_allocated
;
640 total_used_objs
+= obj_used
;
641 total_pages
+= pages_used
;
642 total_freeable
+= freeable
;
646 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
647 "Total", "", total_class_almost_full
,
648 total_class_almost_empty
, total_objs
,
649 total_used_objs
, total_pages
, "", total_freeable
);
654 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
656 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
659 static const struct file_operations zs_stat_size_ops
= {
660 .open
= zs_stats_size_open
,
663 .release
= single_release
,
666 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
668 struct dentry
*entry
;
671 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
675 entry
= debugfs_create_dir(name
, zs_stat_root
);
677 pr_warn("debugfs dir <%s> creation failed\n", name
);
680 pool
->stat_dentry
= entry
;
682 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
683 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
685 pr_warn("%s: debugfs file entry <%s> creation failed\n",
687 debugfs_remove_recursive(pool
->stat_dentry
);
688 pool
->stat_dentry
= NULL
;
692 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
694 debugfs_remove_recursive(pool
->stat_dentry
);
697 #else /* CONFIG_ZSMALLOC_STAT */
698 static void __init
zs_stat_init(void)
702 static void __exit
zs_stat_exit(void)
706 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
710 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
717 * For each size class, zspages are divided into different groups
718 * depending on how "full" they are. This was done so that we could
719 * easily find empty or nearly empty zspages when we try to shrink
720 * the pool (not yet implemented). This function returns fullness
721 * status of the given page.
723 static enum fullness_group
get_fullness_group(struct size_class
*class,
724 struct zspage
*zspage
)
726 int inuse
, objs_per_zspage
;
727 enum fullness_group fg
;
729 inuse
= get_zspage_inuse(zspage
);
730 objs_per_zspage
= class->objs_per_zspage
;
734 else if (inuse
== objs_per_zspage
)
736 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
737 fg
= ZS_ALMOST_EMPTY
;
745 * Each size class maintains various freelists and zspages are assigned
746 * to one of these freelists based on the number of live objects they
747 * have. This functions inserts the given zspage into the freelist
748 * identified by <class, fullness_group>.
750 static void insert_zspage(struct size_class
*class,
751 struct zspage
*zspage
,
752 enum fullness_group fullness
)
756 zs_stat_inc(class, fullness
, 1);
757 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
758 struct zspage
, list
);
760 * We want to see more ZS_FULL pages and less almost empty/full.
761 * Put pages with higher ->inuse first.
764 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
765 list_add(&zspage
->list
, &head
->list
);
769 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
773 * This function removes the given zspage from the freelist identified
774 * by <class, fullness_group>.
776 static void remove_zspage(struct size_class
*class,
777 struct zspage
*zspage
,
778 enum fullness_group fullness
)
780 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
781 VM_BUG_ON(is_zspage_isolated(zspage
));
783 list_del_init(&zspage
->list
);
784 zs_stat_dec(class, fullness
, 1);
788 * Each size class maintains zspages in different fullness groups depending
789 * on the number of live objects they contain. When allocating or freeing
790 * objects, the fullness status of the page can change, say, from ALMOST_FULL
791 * to ALMOST_EMPTY when freeing an object. This function checks if such
792 * a status change has occurred for the given page and accordingly moves the
793 * page from the freelist of the old fullness group to that of the new
796 static enum fullness_group
fix_fullness_group(struct size_class
*class,
797 struct zspage
*zspage
)
800 enum fullness_group currfg
, newfg
;
802 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
803 newfg
= get_fullness_group(class, zspage
);
807 if (!is_zspage_isolated(zspage
)) {
808 remove_zspage(class, zspage
, currfg
);
809 insert_zspage(class, zspage
, newfg
);
812 set_zspage_mapping(zspage
, class_idx
, newfg
);
819 * We have to decide on how many pages to link together
820 * to form a zspage for each size class. This is important
821 * to reduce wastage due to unusable space left at end of
822 * each zspage which is given as:
823 * wastage = Zp % class_size
824 * usage = Zp - wastage
825 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
827 * For example, for size class of 3/8 * PAGE_SIZE, we should
828 * link together 3 PAGE_SIZE sized pages to form a zspage
829 * since then we can perfectly fit in 8 such objects.
831 static int get_pages_per_zspage(int class_size
)
833 int i
, max_usedpc
= 0;
834 /* zspage order which gives maximum used size per KB */
835 int max_usedpc_order
= 1;
837 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
841 zspage_size
= i
* PAGE_SIZE
;
842 waste
= zspage_size
% class_size
;
843 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
845 if (usedpc
> max_usedpc
) {
847 max_usedpc_order
= i
;
851 return max_usedpc_order
;
854 static struct zspage
*get_zspage(struct page
*page
)
856 struct zspage
*zspage
= (struct zspage
*)page
->private;
858 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
862 static struct page
*get_next_page(struct page
*page
)
864 if (unlikely(PageHugeObject(page
)))
867 return page
->freelist
;
871 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
872 * @page: page object resides in zspage
873 * @obj_idx: object index
875 static void obj_to_location(unsigned long obj
, struct page
**page
,
876 unsigned int *obj_idx
)
878 obj
>>= OBJ_TAG_BITS
;
879 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
880 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
884 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
885 * @page: page object resides in zspage
886 * @obj_idx: object index
888 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
892 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
893 obj
|= obj_idx
& OBJ_INDEX_MASK
;
894 obj
<<= OBJ_TAG_BITS
;
899 static unsigned long handle_to_obj(unsigned long handle
)
901 return *(unsigned long *)handle
;
904 static unsigned long obj_to_head(struct page
*page
, void *obj
)
906 if (unlikely(PageHugeObject(page
))) {
907 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
910 return *(unsigned long *)obj
;
913 static inline int testpin_tag(unsigned long handle
)
915 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
918 static inline int trypin_tag(unsigned long handle
)
920 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
923 static void pin_tag(unsigned long handle
)
925 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
928 static void unpin_tag(unsigned long handle
)
930 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
933 static void reset_page(struct page
*page
)
935 __ClearPageMovable(page
);
936 ClearPagePrivate(page
);
937 set_page_private(page
, 0);
938 page_mapcount_reset(page
);
939 ClearPageHugeObject(page
);
940 page
->freelist
= NULL
;
944 * To prevent zspage destroy during migration, zspage freeing should
945 * hold locks of all pages in the zspage.
947 void lock_zspage(struct zspage
*zspage
)
949 struct page
*page
= get_first_page(zspage
);
953 } while ((page
= get_next_page(page
)) != NULL
);
956 int trylock_zspage(struct zspage
*zspage
)
958 struct page
*cursor
, *fail
;
960 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
961 get_next_page(cursor
)) {
962 if (!trylock_page(cursor
)) {
970 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
971 get_next_page(cursor
))
977 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
978 struct zspage
*zspage
)
980 struct page
*page
, *next
;
981 enum fullness_group fg
;
982 unsigned int class_idx
;
984 get_zspage_mapping(zspage
, &class_idx
, &fg
);
986 assert_spin_locked(&class->lock
);
988 VM_BUG_ON(get_zspage_inuse(zspage
));
989 VM_BUG_ON(fg
!= ZS_EMPTY
);
991 next
= page
= get_first_page(zspage
);
993 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
994 next
= get_next_page(page
);
997 dec_zone_page_state(page
, NR_ZSPAGES
);
1000 } while (page
!= NULL
);
1002 cache_free_zspage(pool
, zspage
);
1004 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1005 atomic_long_sub(class->pages_per_zspage
,
1006 &pool
->pages_allocated
);
1009 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
1010 struct zspage
*zspage
)
1012 VM_BUG_ON(get_zspage_inuse(zspage
));
1013 VM_BUG_ON(list_empty(&zspage
->list
));
1015 if (!trylock_zspage(zspage
)) {
1016 kick_deferred_free(pool
);
1020 remove_zspage(class, zspage
, ZS_EMPTY
);
1021 __free_zspage(pool
, class, zspage
);
1024 /* Initialize a newly allocated zspage */
1025 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1027 unsigned int freeobj
= 1;
1028 unsigned long off
= 0;
1029 struct page
*page
= get_first_page(zspage
);
1032 struct page
*next_page
;
1033 struct link_free
*link
;
1036 set_first_obj_offset(page
, off
);
1038 vaddr
= kmap_atomic(page
);
1039 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1041 while ((off
+= class->size
) < PAGE_SIZE
) {
1042 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1043 link
+= class->size
/ sizeof(*link
);
1047 * We now come to the last (full or partial) object on this
1048 * page, which must point to the first object on the next
1051 next_page
= get_next_page(page
);
1053 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1056 * Reset OBJ_TAG_BITS bit to last link to tell
1057 * whether it's allocated object or not.
1059 link
->next
= -1 << OBJ_TAG_BITS
;
1061 kunmap_atomic(vaddr
);
1066 set_freeobj(zspage
, 0);
1069 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1070 struct page
*pages
[])
1074 struct page
*prev_page
= NULL
;
1075 int nr_pages
= class->pages_per_zspage
;
1078 * Allocate individual pages and link them together as:
1079 * 1. all pages are linked together using page->freelist
1080 * 2. each sub-page point to zspage using page->private
1082 * we set PG_private to identify the first page (i.e. no other sub-page
1083 * has this flag set).
1085 for (i
= 0; i
< nr_pages
; i
++) {
1087 set_page_private(page
, (unsigned long)zspage
);
1088 page
->freelist
= NULL
;
1090 zspage
->first_page
= page
;
1091 SetPagePrivate(page
);
1092 if (unlikely(class->objs_per_zspage
== 1 &&
1093 class->pages_per_zspage
== 1))
1094 SetPageHugeObject(page
);
1096 prev_page
->freelist
= page
;
1103 * Allocate a zspage for the given size class
1105 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1106 struct size_class
*class,
1110 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1111 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1116 memset(zspage
, 0, sizeof(struct zspage
));
1117 zspage
->magic
= ZSPAGE_MAGIC
;
1118 migrate_lock_init(zspage
);
1120 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1123 page
= alloc_page(gfp
);
1126 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1127 __free_page(pages
[i
]);
1129 cache_free_zspage(pool
, zspage
);
1133 inc_zone_page_state(page
, NR_ZSPAGES
);
1137 create_page_chain(class, zspage
, pages
);
1138 init_zspage(class, zspage
);
1143 static struct zspage
*find_get_zspage(struct size_class
*class)
1146 struct zspage
*zspage
;
1148 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1149 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1150 struct zspage
, list
);
1158 #ifdef CONFIG_PGTABLE_MAPPING
1159 static inline int __zs_cpu_up(struct mapping_area
*area
)
1162 * Make sure we don't leak memory if a cpu UP notification
1163 * and zs_init() race and both call zs_cpu_up() on the same cpu
1167 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1173 static inline void __zs_cpu_down(struct mapping_area
*area
)
1176 free_vm_area(area
->vm
);
1180 static inline void *__zs_map_object(struct mapping_area
*area
,
1181 struct page
*pages
[2], int off
, int size
)
1183 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1184 area
->vm_addr
= area
->vm
->addr
;
1185 return area
->vm_addr
+ off
;
1188 static inline void __zs_unmap_object(struct mapping_area
*area
,
1189 struct page
*pages
[2], int off
, int size
)
1191 unsigned long addr
= (unsigned long)area
->vm_addr
;
1193 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1196 #else /* CONFIG_PGTABLE_MAPPING */
1198 static inline int __zs_cpu_up(struct mapping_area
*area
)
1201 * Make sure we don't leak memory if a cpu UP notification
1202 * and zs_init() race and both call zs_cpu_up() on the same cpu
1206 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1212 static inline void __zs_cpu_down(struct mapping_area
*area
)
1214 kfree(area
->vm_buf
);
1215 area
->vm_buf
= NULL
;
1218 static void *__zs_map_object(struct mapping_area
*area
,
1219 struct page
*pages
[2], int off
, int size
)
1223 char *buf
= area
->vm_buf
;
1225 /* disable page faults to match kmap_atomic() return conditions */
1226 pagefault_disable();
1228 /* no read fastpath */
1229 if (area
->vm_mm
== ZS_MM_WO
)
1232 sizes
[0] = PAGE_SIZE
- off
;
1233 sizes
[1] = size
- sizes
[0];
1235 /* copy object to per-cpu buffer */
1236 addr
= kmap_atomic(pages
[0]);
1237 memcpy(buf
, addr
+ off
, sizes
[0]);
1238 kunmap_atomic(addr
);
1239 addr
= kmap_atomic(pages
[1]);
1240 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1241 kunmap_atomic(addr
);
1243 return area
->vm_buf
;
1246 static void __zs_unmap_object(struct mapping_area
*area
,
1247 struct page
*pages
[2], int off
, int size
)
1253 /* no write fastpath */
1254 if (area
->vm_mm
== ZS_MM_RO
)
1258 buf
= buf
+ ZS_HANDLE_SIZE
;
1259 size
-= ZS_HANDLE_SIZE
;
1260 off
+= ZS_HANDLE_SIZE
;
1262 sizes
[0] = PAGE_SIZE
- off
;
1263 sizes
[1] = size
- sizes
[0];
1265 /* copy per-cpu buffer to object */
1266 addr
= kmap_atomic(pages
[0]);
1267 memcpy(addr
+ off
, buf
, sizes
[0]);
1268 kunmap_atomic(addr
);
1269 addr
= kmap_atomic(pages
[1]);
1270 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1271 kunmap_atomic(addr
);
1274 /* enable page faults to match kunmap_atomic() return conditions */
1278 #endif /* CONFIG_PGTABLE_MAPPING */
1280 static int zs_cpu_prepare(unsigned int cpu
)
1282 struct mapping_area
*area
;
1284 area
= &per_cpu(zs_map_area
, cpu
);
1285 return __zs_cpu_up(area
);
1288 static int zs_cpu_dead(unsigned int cpu
)
1290 struct mapping_area
*area
;
1292 area
= &per_cpu(zs_map_area
, cpu
);
1293 __zs_cpu_down(area
);
1297 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1298 int objs_per_zspage
)
1300 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1301 prev
->objs_per_zspage
== objs_per_zspage
)
1307 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1309 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1312 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1314 return atomic_long_read(&pool
->pages_allocated
);
1316 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1319 * zs_map_object - get address of allocated object from handle.
1320 * @pool: pool from which the object was allocated
1321 * @handle: handle returned from zs_malloc
1323 * Before using an object allocated from zs_malloc, it must be mapped using
1324 * this function. When done with the object, it must be unmapped using
1327 * Only one object can be mapped per cpu at a time. There is no protection
1328 * against nested mappings.
1330 * This function returns with preemption and page faults disabled.
1332 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1335 struct zspage
*zspage
;
1337 unsigned long obj
, off
;
1338 unsigned int obj_idx
;
1340 unsigned int class_idx
;
1341 enum fullness_group fg
;
1342 struct size_class
*class;
1343 struct mapping_area
*area
;
1344 struct page
*pages
[2];
1348 * Because we use per-cpu mapping areas shared among the
1349 * pools/users, we can't allow mapping in interrupt context
1350 * because it can corrupt another users mappings.
1352 BUG_ON(in_interrupt());
1354 /* From now on, migration cannot move the object */
1357 obj
= handle_to_obj(handle
);
1358 obj_to_location(obj
, &page
, &obj_idx
);
1359 zspage
= get_zspage(page
);
1361 /* migration cannot move any subpage in this zspage */
1362 migrate_read_lock(zspage
);
1364 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1365 class = pool
->size_class
[class_idx
];
1366 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1368 area
= &get_cpu_var(zs_map_area
);
1370 if (off
+ class->size
<= PAGE_SIZE
) {
1371 /* this object is contained entirely within a page */
1372 area
->vm_addr
= kmap_atomic(page
);
1373 ret
= area
->vm_addr
+ off
;
1377 /* this object spans two pages */
1379 pages
[1] = get_next_page(page
);
1382 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1384 if (likely(!PageHugeObject(page
)))
1385 ret
+= ZS_HANDLE_SIZE
;
1389 EXPORT_SYMBOL_GPL(zs_map_object
);
1391 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1393 struct zspage
*zspage
;
1395 unsigned long obj
, off
;
1396 unsigned int obj_idx
;
1398 unsigned int class_idx
;
1399 enum fullness_group fg
;
1400 struct size_class
*class;
1401 struct mapping_area
*area
;
1403 obj
= handle_to_obj(handle
);
1404 obj_to_location(obj
, &page
, &obj_idx
);
1405 zspage
= get_zspage(page
);
1406 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1407 class = pool
->size_class
[class_idx
];
1408 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1410 area
= this_cpu_ptr(&zs_map_area
);
1411 if (off
+ class->size
<= PAGE_SIZE
)
1412 kunmap_atomic(area
->vm_addr
);
1414 struct page
*pages
[2];
1417 pages
[1] = get_next_page(page
);
1420 __zs_unmap_object(area
, pages
, off
, class->size
);
1422 put_cpu_var(zs_map_area
);
1424 migrate_read_unlock(zspage
);
1427 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1429 static unsigned long obj_malloc(struct size_class
*class,
1430 struct zspage
*zspage
, unsigned long handle
)
1432 int i
, nr_page
, offset
;
1434 struct link_free
*link
;
1436 struct page
*m_page
;
1437 unsigned long m_offset
;
1440 handle
|= OBJ_ALLOCATED_TAG
;
1441 obj
= get_freeobj(zspage
);
1443 offset
= obj
* class->size
;
1444 nr_page
= offset
>> PAGE_SHIFT
;
1445 m_offset
= offset
& ~PAGE_MASK
;
1446 m_page
= get_first_page(zspage
);
1448 for (i
= 0; i
< nr_page
; i
++)
1449 m_page
= get_next_page(m_page
);
1451 vaddr
= kmap_atomic(m_page
);
1452 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1453 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1454 if (likely(!PageHugeObject(m_page
)))
1455 /* record handle in the header of allocated chunk */
1456 link
->handle
= handle
;
1458 /* record handle to page->index */
1459 zspage
->first_page
->index
= handle
;
1461 kunmap_atomic(vaddr
);
1462 mod_zspage_inuse(zspage
, 1);
1463 zs_stat_inc(class, OBJ_USED
, 1);
1465 obj
= location_to_obj(m_page
, obj
);
1472 * zs_malloc - Allocate block of given size from pool.
1473 * @pool: pool to allocate from
1474 * @size: size of block to allocate
1475 * @gfp: gfp flags when allocating object
1477 * On success, handle to the allocated object is returned,
1479 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1481 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1483 unsigned long handle
, obj
;
1484 struct size_class
*class;
1485 enum fullness_group newfg
;
1486 struct zspage
*zspage
;
1488 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1491 handle
= cache_alloc_handle(pool
, gfp
);
1495 /* extra space in chunk to keep the handle */
1496 size
+= ZS_HANDLE_SIZE
;
1497 class = pool
->size_class
[get_size_class_index(size
)];
1499 spin_lock(&class->lock
);
1500 zspage
= find_get_zspage(class);
1501 if (likely(zspage
)) {
1502 obj
= obj_malloc(class, zspage
, handle
);
1503 /* Now move the zspage to another fullness group, if required */
1504 fix_fullness_group(class, zspage
);
1505 record_obj(handle
, obj
);
1506 spin_unlock(&class->lock
);
1511 spin_unlock(&class->lock
);
1513 zspage
= alloc_zspage(pool
, class, gfp
);
1515 cache_free_handle(pool
, handle
);
1519 spin_lock(&class->lock
);
1520 obj
= obj_malloc(class, zspage
, handle
);
1521 newfg
= get_fullness_group(class, zspage
);
1522 insert_zspage(class, zspage
, newfg
);
1523 set_zspage_mapping(zspage
, class->index
, newfg
);
1524 record_obj(handle
, obj
);
1525 atomic_long_add(class->pages_per_zspage
,
1526 &pool
->pages_allocated
);
1527 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1529 /* We completely set up zspage so mark them as movable */
1530 SetZsPageMovable(pool
, zspage
);
1531 spin_unlock(&class->lock
);
1535 EXPORT_SYMBOL_GPL(zs_malloc
);
1537 static void obj_free(struct size_class
*class, unsigned long obj
)
1539 struct link_free
*link
;
1540 struct zspage
*zspage
;
1541 struct page
*f_page
;
1542 unsigned long f_offset
;
1543 unsigned int f_objidx
;
1546 obj
&= ~OBJ_ALLOCATED_TAG
;
1547 obj_to_location(obj
, &f_page
, &f_objidx
);
1548 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1549 zspage
= get_zspage(f_page
);
1551 vaddr
= kmap_atomic(f_page
);
1553 /* Insert this object in containing zspage's freelist */
1554 link
= (struct link_free
*)(vaddr
+ f_offset
);
1555 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1556 kunmap_atomic(vaddr
);
1557 set_freeobj(zspage
, f_objidx
);
1558 mod_zspage_inuse(zspage
, -1);
1559 zs_stat_dec(class, OBJ_USED
, 1);
1562 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1564 struct zspage
*zspage
;
1565 struct page
*f_page
;
1567 unsigned int f_objidx
;
1569 struct size_class
*class;
1570 enum fullness_group fullness
;
1573 if (unlikely(!handle
))
1577 obj
= handle_to_obj(handle
);
1578 obj_to_location(obj
, &f_page
, &f_objidx
);
1579 zspage
= get_zspage(f_page
);
1581 migrate_read_lock(zspage
);
1583 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1584 class = pool
->size_class
[class_idx
];
1586 spin_lock(&class->lock
);
1587 obj_free(class, obj
);
1588 fullness
= fix_fullness_group(class, zspage
);
1589 if (fullness
!= ZS_EMPTY
) {
1590 migrate_read_unlock(zspage
);
1594 isolated
= is_zspage_isolated(zspage
);
1595 migrate_read_unlock(zspage
);
1596 /* If zspage is isolated, zs_page_putback will free the zspage */
1597 if (likely(!isolated
))
1598 free_zspage(pool
, class, zspage
);
1601 spin_unlock(&class->lock
);
1603 cache_free_handle(pool
, handle
);
1605 EXPORT_SYMBOL_GPL(zs_free
);
1607 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1610 struct page
*s_page
, *d_page
;
1611 unsigned int s_objidx
, d_objidx
;
1612 unsigned long s_off
, d_off
;
1613 void *s_addr
, *d_addr
;
1614 int s_size
, d_size
, size
;
1617 s_size
= d_size
= class->size
;
1619 obj_to_location(src
, &s_page
, &s_objidx
);
1620 obj_to_location(dst
, &d_page
, &d_objidx
);
1622 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1623 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1625 if (s_off
+ class->size
> PAGE_SIZE
)
1626 s_size
= PAGE_SIZE
- s_off
;
1628 if (d_off
+ class->size
> PAGE_SIZE
)
1629 d_size
= PAGE_SIZE
- d_off
;
1631 s_addr
= kmap_atomic(s_page
);
1632 d_addr
= kmap_atomic(d_page
);
1635 size
= min(s_size
, d_size
);
1636 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1639 if (written
== class->size
)
1647 if (s_off
>= PAGE_SIZE
) {
1648 kunmap_atomic(d_addr
);
1649 kunmap_atomic(s_addr
);
1650 s_page
= get_next_page(s_page
);
1651 s_addr
= kmap_atomic(s_page
);
1652 d_addr
= kmap_atomic(d_page
);
1653 s_size
= class->size
- written
;
1657 if (d_off
>= PAGE_SIZE
) {
1658 kunmap_atomic(d_addr
);
1659 d_page
= get_next_page(d_page
);
1660 d_addr
= kmap_atomic(d_page
);
1661 d_size
= class->size
- written
;
1666 kunmap_atomic(d_addr
);
1667 kunmap_atomic(s_addr
);
1671 * Find alloced object in zspage from index object and
1674 static unsigned long find_alloced_obj(struct size_class
*class,
1675 struct page
*page
, int *obj_idx
)
1679 int index
= *obj_idx
;
1680 unsigned long handle
= 0;
1681 void *addr
= kmap_atomic(page
);
1683 offset
= get_first_obj_offset(page
);
1684 offset
+= class->size
* index
;
1686 while (offset
< PAGE_SIZE
) {
1687 head
= obj_to_head(page
, addr
+ offset
);
1688 if (head
& OBJ_ALLOCATED_TAG
) {
1689 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1690 if (trypin_tag(handle
))
1695 offset
+= class->size
;
1699 kunmap_atomic(addr
);
1706 struct zs_compact_control
{
1707 /* Source spage for migration which could be a subpage of zspage */
1708 struct page
*s_page
;
1709 /* Destination page for migration which should be a first page
1711 struct page
*d_page
;
1712 /* Starting object index within @s_page which used for live object
1713 * in the subpage. */
1717 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1718 struct zs_compact_control
*cc
)
1720 unsigned long used_obj
, free_obj
;
1721 unsigned long handle
;
1722 struct page
*s_page
= cc
->s_page
;
1723 struct page
*d_page
= cc
->d_page
;
1724 int obj_idx
= cc
->obj_idx
;
1728 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1730 s_page
= get_next_page(s_page
);
1737 /* Stop if there is no more space */
1738 if (zspage_full(class, get_zspage(d_page
))) {
1744 used_obj
= handle_to_obj(handle
);
1745 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1746 zs_object_copy(class, free_obj
, used_obj
);
1749 * record_obj updates handle's value to free_obj and it will
1750 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1751 * breaks synchronization using pin_tag(e,g, zs_free) so
1752 * let's keep the lock bit.
1754 free_obj
|= BIT(HANDLE_PIN_BIT
);
1755 record_obj(handle
, free_obj
);
1757 obj_free(class, used_obj
);
1760 /* Remember last position in this iteration */
1761 cc
->s_page
= s_page
;
1762 cc
->obj_idx
= obj_idx
;
1767 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1770 struct zspage
*zspage
;
1771 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1774 fg
[0] = ZS_ALMOST_FULL
;
1775 fg
[1] = ZS_ALMOST_EMPTY
;
1778 for (i
= 0; i
< 2; i
++) {
1779 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1780 struct zspage
, list
);
1782 VM_BUG_ON(is_zspage_isolated(zspage
));
1783 remove_zspage(class, zspage
, fg
[i
]);
1792 * putback_zspage - add @zspage into right class's fullness list
1793 * @class: destination class
1794 * @zspage: target page
1796 * Return @zspage's fullness_group
1798 static enum fullness_group
putback_zspage(struct size_class
*class,
1799 struct zspage
*zspage
)
1801 enum fullness_group fullness
;
1803 VM_BUG_ON(is_zspage_isolated(zspage
));
1805 fullness
= get_fullness_group(class, zspage
);
1806 insert_zspage(class, zspage
, fullness
);
1807 set_zspage_mapping(zspage
, class->index
, fullness
);
1812 #ifdef CONFIG_COMPACTION
1813 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1814 int flags
, const char *dev_name
, void *data
)
1816 static const struct dentry_operations ops
= {
1817 .d_dname
= simple_dname
,
1820 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1823 static struct file_system_type zsmalloc_fs
= {
1826 .kill_sb
= kill_anon_super
,
1829 static int zsmalloc_mount(void)
1833 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1834 if (IS_ERR(zsmalloc_mnt
))
1835 ret
= PTR_ERR(zsmalloc_mnt
);
1840 static void zsmalloc_unmount(void)
1842 kern_unmount(zsmalloc_mnt
);
1845 static void migrate_lock_init(struct zspage
*zspage
)
1847 rwlock_init(&zspage
->lock
);
1850 static void migrate_read_lock(struct zspage
*zspage
)
1852 read_lock(&zspage
->lock
);
1855 static void migrate_read_unlock(struct zspage
*zspage
)
1857 read_unlock(&zspage
->lock
);
1860 static void migrate_write_lock(struct zspage
*zspage
)
1862 write_lock(&zspage
->lock
);
1865 static void migrate_write_unlock(struct zspage
*zspage
)
1867 write_unlock(&zspage
->lock
);
1870 /* Number of isolated subpage for *page migration* in this zspage */
1871 static void inc_zspage_isolation(struct zspage
*zspage
)
1876 static void dec_zspage_isolation(struct zspage
*zspage
)
1881 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1882 struct page
*newpage
, struct page
*oldpage
)
1885 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1888 page
= get_first_page(zspage
);
1890 if (page
== oldpage
)
1891 pages
[idx
] = newpage
;
1895 } while ((page
= get_next_page(page
)) != NULL
);
1897 create_page_chain(class, zspage
, pages
);
1898 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1899 if (unlikely(PageHugeObject(oldpage
)))
1900 newpage
->index
= oldpage
->index
;
1901 __SetPageMovable(newpage
, page_mapping(oldpage
));
1904 bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1906 struct zs_pool
*pool
;
1907 struct size_class
*class;
1909 enum fullness_group fullness
;
1910 struct zspage
*zspage
;
1911 struct address_space
*mapping
;
1914 * Page is locked so zspage couldn't be destroyed. For detail, look at
1915 * lock_zspage in free_zspage.
1917 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1918 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1920 zspage
= get_zspage(page
);
1923 * Without class lock, fullness could be stale while class_idx is okay
1924 * because class_idx is constant unless page is freed so we should get
1925 * fullness again under class lock.
1927 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1928 mapping
= page_mapping(page
);
1929 pool
= mapping
->private_data
;
1930 class = pool
->size_class
[class_idx
];
1932 spin_lock(&class->lock
);
1933 if (get_zspage_inuse(zspage
) == 0) {
1934 spin_unlock(&class->lock
);
1938 /* zspage is isolated for object migration */
1939 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1940 spin_unlock(&class->lock
);
1945 * If this is first time isolation for the zspage, isolate zspage from
1946 * size_class to prevent further object allocation from the zspage.
1948 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1949 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1950 remove_zspage(class, zspage
, fullness
);
1953 inc_zspage_isolation(zspage
);
1954 spin_unlock(&class->lock
);
1959 int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1960 struct page
*page
, enum migrate_mode mode
)
1962 struct zs_pool
*pool
;
1963 struct size_class
*class;
1965 enum fullness_group fullness
;
1966 struct zspage
*zspage
;
1968 void *s_addr
, *d_addr
, *addr
;
1970 unsigned long handle
, head
;
1971 unsigned long old_obj
, new_obj
;
1972 unsigned int obj_idx
;
1976 * We cannot support the _NO_COPY case here, because copy needs to
1977 * happen under the zs lock, which does not work with
1978 * MIGRATE_SYNC_NO_COPY workflow.
1980 if (mode
== MIGRATE_SYNC_NO_COPY
)
1983 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1984 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
1986 zspage
= get_zspage(page
);
1988 /* Concurrent compactor cannot migrate any subpage in zspage */
1989 migrate_write_lock(zspage
);
1990 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1991 pool
= mapping
->private_data
;
1992 class = pool
->size_class
[class_idx
];
1993 offset
= get_first_obj_offset(page
);
1995 spin_lock(&class->lock
);
1996 if (!get_zspage_inuse(zspage
)) {
1998 * Set "offset" to end of the page so that every loops
1999 * skips unnecessary object scanning.
2005 s_addr
= kmap_atomic(page
);
2006 while (pos
< PAGE_SIZE
) {
2007 head
= obj_to_head(page
, s_addr
+ pos
);
2008 if (head
& OBJ_ALLOCATED_TAG
) {
2009 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2010 if (!trypin_tag(handle
))
2017 * Here, any user cannot access all objects in the zspage so let's move.
2019 d_addr
= kmap_atomic(newpage
);
2020 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2021 kunmap_atomic(d_addr
);
2023 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2024 addr
+= class->size
) {
2025 head
= obj_to_head(page
, addr
);
2026 if (head
& OBJ_ALLOCATED_TAG
) {
2027 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2028 if (!testpin_tag(handle
))
2031 old_obj
= handle_to_obj(handle
);
2032 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2033 new_obj
= (unsigned long)location_to_obj(newpage
,
2035 new_obj
|= BIT(HANDLE_PIN_BIT
);
2036 record_obj(handle
, new_obj
);
2040 replace_sub_page(class, zspage
, newpage
, page
);
2043 dec_zspage_isolation(zspage
);
2046 * Page migration is done so let's putback isolated zspage to
2047 * the list if @page is final isolated subpage in the zspage.
2049 if (!is_zspage_isolated(zspage
))
2050 putback_zspage(class, zspage
);
2056 ret
= MIGRATEPAGE_SUCCESS
;
2058 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2059 addr
+= class->size
) {
2060 head
= obj_to_head(page
, addr
);
2061 if (head
& OBJ_ALLOCATED_TAG
) {
2062 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2063 if (!testpin_tag(handle
))
2068 kunmap_atomic(s_addr
);
2069 spin_unlock(&class->lock
);
2070 migrate_write_unlock(zspage
);
2075 void zs_page_putback(struct page
*page
)
2077 struct zs_pool
*pool
;
2078 struct size_class
*class;
2080 enum fullness_group fg
;
2081 struct address_space
*mapping
;
2082 struct zspage
*zspage
;
2084 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2085 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2087 zspage
= get_zspage(page
);
2088 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2089 mapping
= page_mapping(page
);
2090 pool
= mapping
->private_data
;
2091 class = pool
->size_class
[class_idx
];
2093 spin_lock(&class->lock
);
2094 dec_zspage_isolation(zspage
);
2095 if (!is_zspage_isolated(zspage
)) {
2096 fg
= putback_zspage(class, zspage
);
2098 * Due to page_lock, we cannot free zspage immediately
2102 schedule_work(&pool
->free_work
);
2104 spin_unlock(&class->lock
);
2107 const struct address_space_operations zsmalloc_aops
= {
2108 .isolate_page
= zs_page_isolate
,
2109 .migratepage
= zs_page_migrate
,
2110 .putback_page
= zs_page_putback
,
2113 static int zs_register_migration(struct zs_pool
*pool
)
2115 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2116 if (IS_ERR(pool
->inode
)) {
2121 pool
->inode
->i_mapping
->private_data
= pool
;
2122 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2126 static void zs_unregister_migration(struct zs_pool
*pool
)
2128 flush_work(&pool
->free_work
);
2133 * Caller should hold page_lock of all pages in the zspage
2134 * In here, we cannot use zspage meta data.
2136 static void async_free_zspage(struct work_struct
*work
)
2139 struct size_class
*class;
2140 unsigned int class_idx
;
2141 enum fullness_group fullness
;
2142 struct zspage
*zspage
, *tmp
;
2143 LIST_HEAD(free_pages
);
2144 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2147 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2148 class = pool
->size_class
[i
];
2149 if (class->index
!= i
)
2152 spin_lock(&class->lock
);
2153 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2154 spin_unlock(&class->lock
);
2158 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2159 list_del(&zspage
->list
);
2160 lock_zspage(zspage
);
2162 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2163 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2164 class = pool
->size_class
[class_idx
];
2165 spin_lock(&class->lock
);
2166 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2167 spin_unlock(&class->lock
);
2171 static void kick_deferred_free(struct zs_pool
*pool
)
2173 schedule_work(&pool
->free_work
);
2176 static void init_deferred_free(struct zs_pool
*pool
)
2178 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2181 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2183 struct page
*page
= get_first_page(zspage
);
2186 WARN_ON(!trylock_page(page
));
2187 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2189 } while ((page
= get_next_page(page
)) != NULL
);
2195 * Based on the number of unused allocated objects calculate
2196 * and return the number of pages that we can free.
2198 static unsigned long zs_can_compact(struct size_class
*class)
2200 unsigned long obj_wasted
;
2201 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2202 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2204 if (obj_allocated
<= obj_used
)
2207 obj_wasted
= obj_allocated
- obj_used
;
2208 obj_wasted
/= class->objs_per_zspage
;
2210 return obj_wasted
* class->pages_per_zspage
;
2213 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2215 struct zs_compact_control cc
;
2216 struct zspage
*src_zspage
;
2217 struct zspage
*dst_zspage
= NULL
;
2219 spin_lock(&class->lock
);
2220 while ((src_zspage
= isolate_zspage(class, true))) {
2222 if (!zs_can_compact(class))
2226 cc
.s_page
= get_first_page(src_zspage
);
2228 while ((dst_zspage
= isolate_zspage(class, false))) {
2229 cc
.d_page
= get_first_page(dst_zspage
);
2231 * If there is no more space in dst_page, resched
2232 * and see if anyone had allocated another zspage.
2234 if (!migrate_zspage(pool
, class, &cc
))
2237 putback_zspage(class, dst_zspage
);
2240 /* Stop if we couldn't find slot */
2241 if (dst_zspage
== NULL
)
2244 putback_zspage(class, dst_zspage
);
2245 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2246 free_zspage(pool
, class, src_zspage
);
2247 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2249 spin_unlock(&class->lock
);
2251 spin_lock(&class->lock
);
2255 putback_zspage(class, src_zspage
);
2257 spin_unlock(&class->lock
);
2260 unsigned long zs_compact(struct zs_pool
*pool
)
2263 struct size_class
*class;
2265 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2266 class = pool
->size_class
[i
];
2269 if (class->index
!= i
)
2271 __zs_compact(pool
, class);
2274 return pool
->stats
.pages_compacted
;
2276 EXPORT_SYMBOL_GPL(zs_compact
);
2278 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2280 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2282 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2284 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2285 struct shrink_control
*sc
)
2287 unsigned long pages_freed
;
2288 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2291 pages_freed
= pool
->stats
.pages_compacted
;
2293 * Compact classes and calculate compaction delta.
2294 * Can run concurrently with a manually triggered
2295 * (by user) compaction.
2297 pages_freed
= zs_compact(pool
) - pages_freed
;
2299 return pages_freed
? pages_freed
: SHRINK_STOP
;
2302 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2303 struct shrink_control
*sc
)
2306 struct size_class
*class;
2307 unsigned long pages_to_free
= 0;
2308 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2311 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2312 class = pool
->size_class
[i
];
2315 if (class->index
!= i
)
2318 pages_to_free
+= zs_can_compact(class);
2321 return pages_to_free
;
2324 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2326 if (pool
->shrinker_enabled
) {
2327 unregister_shrinker(&pool
->shrinker
);
2328 pool
->shrinker_enabled
= false;
2332 static int zs_register_shrinker(struct zs_pool
*pool
)
2334 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2335 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2336 pool
->shrinker
.batch
= 0;
2337 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2339 return register_shrinker(&pool
->shrinker
);
2343 * zs_create_pool - Creates an allocation pool to work from.
2344 * @name: pool name to be created
2346 * This function must be called before anything when using
2347 * the zsmalloc allocator.
2349 * On success, a pointer to the newly created pool is returned,
2352 struct zs_pool
*zs_create_pool(const char *name
)
2355 struct zs_pool
*pool
;
2356 struct size_class
*prev_class
= NULL
;
2358 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2362 init_deferred_free(pool
);
2364 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2368 if (create_cache(pool
))
2372 * Iterate reversely, because, size of size_class that we want to use
2373 * for merging should be larger or equal to current size.
2375 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2377 int pages_per_zspage
;
2378 int objs_per_zspage
;
2379 struct size_class
*class;
2382 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2383 if (size
> ZS_MAX_ALLOC_SIZE
)
2384 size
= ZS_MAX_ALLOC_SIZE
;
2385 pages_per_zspage
= get_pages_per_zspage(size
);
2386 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2389 * size_class is used for normal zsmalloc operation such
2390 * as alloc/free for that size. Although it is natural that we
2391 * have one size_class for each size, there is a chance that we
2392 * can get more memory utilization if we use one size_class for
2393 * many different sizes whose size_class have same
2394 * characteristics. So, we makes size_class point to
2395 * previous size_class if possible.
2398 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2399 pool
->size_class
[i
] = prev_class
;
2404 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2410 class->pages_per_zspage
= pages_per_zspage
;
2411 class->objs_per_zspage
= objs_per_zspage
;
2412 spin_lock_init(&class->lock
);
2413 pool
->size_class
[i
] = class;
2414 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2416 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2421 /* debug only, don't abort if it fails */
2422 zs_pool_stat_create(pool
, name
);
2424 if (zs_register_migration(pool
))
2428 * Not critical, we still can use the pool
2429 * and user can trigger compaction manually.
2431 if (zs_register_shrinker(pool
) == 0)
2432 pool
->shrinker_enabled
= true;
2436 zs_destroy_pool(pool
);
2439 EXPORT_SYMBOL_GPL(zs_create_pool
);
2441 void zs_destroy_pool(struct zs_pool
*pool
)
2445 zs_unregister_shrinker(pool
);
2446 zs_unregister_migration(pool
);
2447 zs_pool_stat_destroy(pool
);
2449 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2451 struct size_class
*class = pool
->size_class
[i
];
2456 if (class->index
!= i
)
2459 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2460 if (!list_empty(&class->fullness_list
[fg
])) {
2461 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2468 destroy_cache(pool
);
2472 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2474 static int __init
zs_init(void)
2478 ret
= zsmalloc_mount();
2482 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2483 zs_cpu_prepare
, zs_cpu_dead
);
2488 zpool_register_driver(&zs_zpool_driver
);
2501 static void __exit
zs_exit(void)
2504 zpool_unregister_driver(&zs_zpool_driver
);
2507 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2512 module_init(zs_init
);
2513 module_exit(zs_exit
);
2515 MODULE_LICENSE("Dual BSD/GPL");
2516 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");