2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
94 #include <linux/capability.h>
95 #include <linux/errno.h>
96 #include <linux/errqueue.h>
97 #include <linux/types.h>
98 #include <linux/socket.h>
100 #include <linux/kernel.h>
101 #include <linux/module.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <linux/sched.h>
105 #include <linux/timer.h>
106 #include <linux/string.h>
107 #include <linux/sockios.h>
108 #include <linux/net.h>
109 #include <linux/mm.h>
110 #include <linux/slab.h>
111 #include <linux/interrupt.h>
112 #include <linux/poll.h>
113 #include <linux/tcp.h>
114 #include <linux/init.h>
115 #include <linux/highmem.h>
116 #include <linux/user_namespace.h>
117 #include <linux/static_key.h>
118 #include <linux/memcontrol.h>
119 #include <linux/prefetch.h>
121 #include <asm/uaccess.h>
123 #include <linux/netdevice.h>
124 #include <net/protocol.h>
125 #include <linux/skbuff.h>
126 #include <net/net_namespace.h>
127 #include <net/request_sock.h>
128 #include <net/sock.h>
129 #include <linux/net_tstamp.h>
130 #include <net/xfrm.h>
131 #include <linux/ipsec.h>
132 #include <net/cls_cgroup.h>
133 #include <net/netprio_cgroup.h>
135 #include <linux/filter.h>
137 #include <trace/events/sock.h>
143 #include <net/busy_poll.h>
145 static DEFINE_MUTEX(proto_list_mutex
);
146 static LIST_HEAD(proto_list
);
149 * sk_ns_capable - General socket capability test
150 * @sk: Socket to use a capability on or through
151 * @user_ns: The user namespace of the capability to use
152 * @cap: The capability to use
154 * Test to see if the opener of the socket had when the socket was
155 * created and the current process has the capability @cap in the user
156 * namespace @user_ns.
158 bool sk_ns_capable(const struct sock
*sk
,
159 struct user_namespace
*user_ns
, int cap
)
161 return file_ns_capable(sk
->sk_socket
->file
, user_ns
, cap
) &&
162 ns_capable(user_ns
, cap
);
164 EXPORT_SYMBOL(sk_ns_capable
);
167 * sk_capable - Socket global capability test
168 * @sk: Socket to use a capability on or through
169 * @cap: The global capbility to use
171 * Test to see if the opener of the socket had when the socket was
172 * created and the current process has the capability @cap in all user
175 bool sk_capable(const struct sock
*sk
, int cap
)
177 return sk_ns_capable(sk
, &init_user_ns
, cap
);
179 EXPORT_SYMBOL(sk_capable
);
182 * sk_net_capable - Network namespace socket capability test
183 * @sk: Socket to use a capability on or through
184 * @cap: The capability to use
186 * Test to see if the opener of the socket had when the socke was created
187 * and the current process has the capability @cap over the network namespace
188 * the socket is a member of.
190 bool sk_net_capable(const struct sock
*sk
, int cap
)
192 return sk_ns_capable(sk
, sock_net(sk
)->user_ns
, cap
);
194 EXPORT_SYMBOL(sk_net_capable
);
197 #ifdef CONFIG_MEMCG_KMEM
198 int mem_cgroup_sockets_init(struct mem_cgroup
*memcg
, struct cgroup_subsys
*ss
)
203 mutex_lock(&proto_list_mutex
);
204 list_for_each_entry(proto
, &proto_list
, node
) {
205 if (proto
->init_cgroup
) {
206 ret
= proto
->init_cgroup(memcg
, ss
);
212 mutex_unlock(&proto_list_mutex
);
215 list_for_each_entry_continue_reverse(proto
, &proto_list
, node
)
216 if (proto
->destroy_cgroup
)
217 proto
->destroy_cgroup(memcg
);
218 mutex_unlock(&proto_list_mutex
);
222 void mem_cgroup_sockets_destroy(struct mem_cgroup
*memcg
)
226 mutex_lock(&proto_list_mutex
);
227 list_for_each_entry_reverse(proto
, &proto_list
, node
)
228 if (proto
->destroy_cgroup
)
229 proto
->destroy_cgroup(memcg
);
230 mutex_unlock(&proto_list_mutex
);
235 * Each address family might have different locking rules, so we have
236 * one slock key per address family:
238 static struct lock_class_key af_family_keys
[AF_MAX
];
239 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
241 #if defined(CONFIG_MEMCG_KMEM)
242 struct static_key memcg_socket_limit_enabled
;
243 EXPORT_SYMBOL(memcg_socket_limit_enabled
);
247 * Make lock validator output more readable. (we pre-construct these
248 * strings build-time, so that runtime initialization of socket
251 static const char *const af_family_key_strings
[AF_MAX
+1] = {
252 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
253 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
254 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
255 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
256 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
257 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
258 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
259 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
260 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
261 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
262 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
263 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
264 "sk_lock-AF_IEEE802154", "sk_lock-AF_CAIF" , "sk_lock-AF_ALG" ,
265 "sk_lock-AF_NFC" , "sk_lock-AF_VSOCK" , "sk_lock-AF_MAX"
267 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
268 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
269 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
270 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
271 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
272 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
273 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
274 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
275 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
276 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
277 "slock-27" , "slock-28" , "slock-AF_CAN" ,
278 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
279 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
280 "slock-AF_IEEE802154", "slock-AF_CAIF" , "slock-AF_ALG" ,
281 "slock-AF_NFC" , "slock-AF_VSOCK" ,"slock-AF_MAX"
283 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
284 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
285 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
286 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
287 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
288 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
289 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
290 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
291 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
292 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
293 "clock-27" , "clock-28" , "clock-AF_CAN" ,
294 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
295 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
296 "clock-AF_IEEE802154", "clock-AF_CAIF" , "clock-AF_ALG" ,
297 "clock-AF_NFC" , "clock-AF_VSOCK" , "clock-AF_MAX"
301 * sk_callback_lock locking rules are per-address-family,
302 * so split the lock classes by using a per-AF key:
304 static struct lock_class_key af_callback_keys
[AF_MAX
];
306 /* Take into consideration the size of the struct sk_buff overhead in the
307 * determination of these values, since that is non-constant across
308 * platforms. This makes socket queueing behavior and performance
309 * not depend upon such differences.
311 #define _SK_MEM_PACKETS 256
312 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
313 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
314 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
316 /* Run time adjustable parameters. */
317 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
318 EXPORT_SYMBOL(sysctl_wmem_max
);
319 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
320 EXPORT_SYMBOL(sysctl_rmem_max
);
321 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
322 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
324 /* Maximal space eaten by iovec or ancillary data plus some space */
325 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
326 EXPORT_SYMBOL(sysctl_optmem_max
);
328 struct static_key memalloc_socks
= STATIC_KEY_INIT_FALSE
;
329 EXPORT_SYMBOL_GPL(memalloc_socks
);
332 * sk_set_memalloc - sets %SOCK_MEMALLOC
333 * @sk: socket to set it on
335 * Set %SOCK_MEMALLOC on a socket for access to emergency reserves.
336 * It's the responsibility of the admin to adjust min_free_kbytes
337 * to meet the requirements
339 void sk_set_memalloc(struct sock
*sk
)
341 sock_set_flag(sk
, SOCK_MEMALLOC
);
342 sk
->sk_allocation
|= __GFP_MEMALLOC
;
343 static_key_slow_inc(&memalloc_socks
);
345 EXPORT_SYMBOL_GPL(sk_set_memalloc
);
347 void sk_clear_memalloc(struct sock
*sk
)
349 sock_reset_flag(sk
, SOCK_MEMALLOC
);
350 sk
->sk_allocation
&= ~__GFP_MEMALLOC
;
351 static_key_slow_dec(&memalloc_socks
);
354 * SOCK_MEMALLOC is allowed to ignore rmem limits to ensure forward
355 * progress of swapping. However, if SOCK_MEMALLOC is cleared while
356 * it has rmem allocations there is a risk that the user of the
357 * socket cannot make forward progress due to exceeding the rmem
358 * limits. By rights, sk_clear_memalloc() should only be called
359 * on sockets being torn down but warn and reset the accounting if
360 * that assumption breaks.
362 if (WARN_ON(sk
->sk_forward_alloc
))
365 EXPORT_SYMBOL_GPL(sk_clear_memalloc
);
367 int __sk_backlog_rcv(struct sock
*sk
, struct sk_buff
*skb
)
370 unsigned long pflags
= current
->flags
;
372 /* these should have been dropped before queueing */
373 BUG_ON(!sock_flag(sk
, SOCK_MEMALLOC
));
375 current
->flags
|= PF_MEMALLOC
;
376 ret
= sk
->sk_backlog_rcv(sk
, skb
);
377 tsk_restore_flags(current
, pflags
, PF_MEMALLOC
);
381 EXPORT_SYMBOL(__sk_backlog_rcv
);
383 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
387 if (optlen
< sizeof(tv
))
389 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
391 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
395 static int warned __read_mostly
;
398 if (warned
< 10 && net_ratelimit()) {
400 pr_info("%s: `%s' (pid %d) tries to set negative timeout\n",
401 __func__
, current
->comm
, task_pid_nr(current
));
405 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
406 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
408 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
409 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
413 static void sock_warn_obsolete_bsdism(const char *name
)
416 static char warncomm
[TASK_COMM_LEN
];
417 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
418 strcpy(warncomm
, current
->comm
);
419 pr_warn("process `%s' is using obsolete %s SO_BSDCOMPAT\n",
425 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
427 static void sock_disable_timestamp(struct sock
*sk
, unsigned long flags
)
429 if (sk
->sk_flags
& flags
) {
430 sk
->sk_flags
&= ~flags
;
431 if (!(sk
->sk_flags
& SK_FLAGS_TIMESTAMP
))
432 net_disable_timestamp();
437 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
442 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
444 if (atomic_read(&sk
->sk_rmem_alloc
) >= sk
->sk_rcvbuf
) {
445 atomic_inc(&sk
->sk_drops
);
446 trace_sock_rcvqueue_full(sk
, skb
);
450 err
= sk_filter(sk
, skb
);
454 if (!sk_rmem_schedule(sk
, skb
, skb
->truesize
)) {
455 atomic_inc(&sk
->sk_drops
);
460 skb_set_owner_r(skb
, sk
);
462 /* Cache the SKB length before we tack it onto the receive
463 * queue. Once it is added it no longer belongs to us and
464 * may be freed by other threads of control pulling packets
469 /* we escape from rcu protected region, make sure we dont leak
474 spin_lock_irqsave(&list
->lock
, flags
);
475 skb
->dropcount
= atomic_read(&sk
->sk_drops
);
476 __skb_queue_tail(list
, skb
);
477 spin_unlock_irqrestore(&list
->lock
, flags
);
479 if (!sock_flag(sk
, SOCK_DEAD
))
480 sk
->sk_data_ready(sk
);
483 EXPORT_SYMBOL(sock_queue_rcv_skb
);
485 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
487 int rc
= NET_RX_SUCCESS
;
489 if (sk_filter(sk
, skb
))
490 goto discard_and_relse
;
494 if (sk_rcvqueues_full(sk
, sk
->sk_rcvbuf
)) {
495 atomic_inc(&sk
->sk_drops
);
496 goto discard_and_relse
;
499 bh_lock_sock_nested(sk
);
502 if (!sock_owned_by_user(sk
)) {
504 * trylock + unlock semantics:
506 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
508 rc
= sk_backlog_rcv(sk
, skb
);
510 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
511 } else if (sk_add_backlog(sk
, skb
, sk
->sk_rcvbuf
)) {
513 atomic_inc(&sk
->sk_drops
);
514 goto discard_and_relse
;
525 EXPORT_SYMBOL(sk_receive_skb
);
527 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
529 struct dst_entry
*dst
= __sk_dst_get(sk
);
531 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
532 sk_tx_queue_clear(sk
);
533 RCU_INIT_POINTER(sk
->sk_dst_cache
, NULL
);
540 EXPORT_SYMBOL(__sk_dst_check
);
542 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
544 struct dst_entry
*dst
= sk_dst_get(sk
);
546 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
554 EXPORT_SYMBOL(sk_dst_check
);
556 static int sock_setbindtodevice(struct sock
*sk
, char __user
*optval
,
559 int ret
= -ENOPROTOOPT
;
560 #ifdef CONFIG_NETDEVICES
561 struct net
*net
= sock_net(sk
);
562 char devname
[IFNAMSIZ
];
567 if (!ns_capable(net
->user_ns
, CAP_NET_RAW
))
574 /* Bind this socket to a particular device like "eth0",
575 * as specified in the passed interface name. If the
576 * name is "" or the option length is zero the socket
579 if (optlen
> IFNAMSIZ
- 1)
580 optlen
= IFNAMSIZ
- 1;
581 memset(devname
, 0, sizeof(devname
));
584 if (copy_from_user(devname
, optval
, optlen
))
588 if (devname
[0] != '\0') {
589 struct net_device
*dev
;
592 dev
= dev_get_by_name_rcu(net
, devname
);
594 index
= dev
->ifindex
;
602 sk
->sk_bound_dev_if
= index
;
614 static int sock_getbindtodevice(struct sock
*sk
, char __user
*optval
,
615 int __user
*optlen
, int len
)
617 int ret
= -ENOPROTOOPT
;
618 #ifdef CONFIG_NETDEVICES
619 struct net
*net
= sock_net(sk
);
620 char devname
[IFNAMSIZ
];
622 if (sk
->sk_bound_dev_if
== 0) {
631 ret
= netdev_get_name(net
, devname
, sk
->sk_bound_dev_if
);
635 len
= strlen(devname
) + 1;
638 if (copy_to_user(optval
, devname
, len
))
643 if (put_user(len
, optlen
))
654 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
657 sock_set_flag(sk
, bit
);
659 sock_reset_flag(sk
, bit
);
663 * This is meant for all protocols to use and covers goings on
664 * at the socket level. Everything here is generic.
667 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
668 char __user
*optval
, unsigned int optlen
)
670 struct sock
*sk
= sock
->sk
;
677 * Options without arguments
680 if (optname
== SO_BINDTODEVICE
)
681 return sock_setbindtodevice(sk
, optval
, optlen
);
683 if (optlen
< sizeof(int))
686 if (get_user(val
, (int __user
*)optval
))
689 valbool
= val
? 1 : 0;
695 if (val
&& !capable(CAP_NET_ADMIN
))
698 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
701 sk
->sk_reuse
= (valbool
? SK_CAN_REUSE
: SK_NO_REUSE
);
704 sk
->sk_reuseport
= valbool
;
713 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
716 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
719 /* Don't error on this BSD doesn't and if you think
720 * about it this is right. Otherwise apps have to
721 * play 'guess the biggest size' games. RCVBUF/SNDBUF
722 * are treated in BSD as hints
724 val
= min_t(u32
, val
, sysctl_wmem_max
);
726 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
727 sk
->sk_sndbuf
= max_t(u32
, val
* 2, SOCK_MIN_SNDBUF
);
728 /* Wake up sending tasks if we upped the value. */
729 sk
->sk_write_space(sk
);
733 if (!capable(CAP_NET_ADMIN
)) {
740 /* Don't error on this BSD doesn't and if you think
741 * about it this is right. Otherwise apps have to
742 * play 'guess the biggest size' games. RCVBUF/SNDBUF
743 * are treated in BSD as hints
745 val
= min_t(u32
, val
, sysctl_rmem_max
);
747 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
749 * We double it on the way in to account for
750 * "struct sk_buff" etc. overhead. Applications
751 * assume that the SO_RCVBUF setting they make will
752 * allow that much actual data to be received on that
755 * Applications are unaware that "struct sk_buff" and
756 * other overheads allocate from the receive buffer
757 * during socket buffer allocation.
759 * And after considering the possible alternatives,
760 * returning the value we actually used in getsockopt
761 * is the most desirable behavior.
763 sk
->sk_rcvbuf
= max_t(u32
, val
* 2, SOCK_MIN_RCVBUF
);
767 if (!capable(CAP_NET_ADMIN
)) {
775 if (sk
->sk_protocol
== IPPROTO_TCP
&&
776 sk
->sk_type
== SOCK_STREAM
)
777 tcp_set_keepalive(sk
, valbool
);
779 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
783 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
787 sk
->sk_no_check_tx
= valbool
;
791 if ((val
>= 0 && val
<= 6) ||
792 ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
793 sk
->sk_priority
= val
;
799 if (optlen
< sizeof(ling
)) {
800 ret
= -EINVAL
; /* 1003.1g */
803 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
808 sock_reset_flag(sk
, SOCK_LINGER
);
810 #if (BITS_PER_LONG == 32)
811 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
812 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
815 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
816 sock_set_flag(sk
, SOCK_LINGER
);
821 sock_warn_obsolete_bsdism("setsockopt");
826 set_bit(SOCK_PASSCRED
, &sock
->flags
);
828 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
834 if (optname
== SO_TIMESTAMP
)
835 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
837 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
838 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
839 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
841 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
842 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
846 case SO_TIMESTAMPING
:
847 if (val
& ~SOF_TIMESTAMPING_MASK
) {
851 if (val
& SOF_TIMESTAMPING_OPT_ID
&&
852 !(sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_ID
)) {
853 if (sk
->sk_protocol
== IPPROTO_TCP
) {
854 if (sk
->sk_state
!= TCP_ESTABLISHED
) {
858 sk
->sk_tskey
= tcp_sk(sk
)->snd_una
;
863 sk
->sk_tsflags
= val
;
864 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
865 sock_enable_timestamp(sk
,
866 SOCK_TIMESTAMPING_RX_SOFTWARE
);
868 sock_disable_timestamp(sk
,
869 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE
));
875 sk
->sk_rcvlowat
= val
? : 1;
879 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
883 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
886 case SO_ATTACH_FILTER
:
888 if (optlen
== sizeof(struct sock_fprog
)) {
889 struct sock_fprog fprog
;
892 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
895 ret
= sk_attach_filter(&fprog
, sk
);
899 case SO_DETACH_FILTER
:
900 ret
= sk_detach_filter(sk
);
904 if (sock_flag(sk
, SOCK_FILTER_LOCKED
) && !valbool
)
907 sock_valbool_flag(sk
, SOCK_FILTER_LOCKED
, valbool
);
912 set_bit(SOCK_PASSSEC
, &sock
->flags
);
914 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
917 if (!ns_capable(sock_net(sk
)->user_ns
, CAP_NET_ADMIN
))
923 /* We implement the SO_SNDLOWAT etc to
924 not be settable (1003.1g 5.3) */
926 sock_valbool_flag(sk
, SOCK_RXQ_OVFL
, valbool
);
930 sock_valbool_flag(sk
, SOCK_WIFI_STATUS
, valbool
);
934 if (sock
->ops
->set_peek_off
)
935 ret
= sock
->ops
->set_peek_off(sk
, val
);
941 sock_valbool_flag(sk
, SOCK_NOFCS
, valbool
);
944 case SO_SELECT_ERR_QUEUE
:
945 sock_valbool_flag(sk
, SOCK_SELECT_ERR_QUEUE
, valbool
);
948 #ifdef CONFIG_NET_RX_BUSY_POLL
950 /* allow unprivileged users to decrease the value */
951 if ((val
> sk
->sk_ll_usec
) && !capable(CAP_NET_ADMIN
))
957 sk
->sk_ll_usec
= val
;
962 case SO_MAX_PACING_RATE
:
963 sk
->sk_max_pacing_rate
= val
;
964 sk
->sk_pacing_rate
= min(sk
->sk_pacing_rate
,
965 sk
->sk_max_pacing_rate
);
975 EXPORT_SYMBOL(sock_setsockopt
);
978 static void cred_to_ucred(struct pid
*pid
, const struct cred
*cred
,
981 ucred
->pid
= pid_vnr(pid
);
982 ucred
->uid
= ucred
->gid
= -1;
984 struct user_namespace
*current_ns
= current_user_ns();
986 ucred
->uid
= from_kuid_munged(current_ns
, cred
->euid
);
987 ucred
->gid
= from_kgid_munged(current_ns
, cred
->egid
);
991 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
992 char __user
*optval
, int __user
*optlen
)
994 struct sock
*sk
= sock
->sk
;
1002 int lv
= sizeof(int);
1005 if (get_user(len
, optlen
))
1010 memset(&v
, 0, sizeof(v
));
1014 v
.val
= sock_flag(sk
, SOCK_DBG
);
1018 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
1022 v
.val
= sock_flag(sk
, SOCK_BROADCAST
);
1026 v
.val
= sk
->sk_sndbuf
;
1030 v
.val
= sk
->sk_rcvbuf
;
1034 v
.val
= sk
->sk_reuse
;
1038 v
.val
= sk
->sk_reuseport
;
1042 v
.val
= sock_flag(sk
, SOCK_KEEPOPEN
);
1046 v
.val
= sk
->sk_type
;
1050 v
.val
= sk
->sk_protocol
;
1054 v
.val
= sk
->sk_family
;
1058 v
.val
= -sock_error(sk
);
1060 v
.val
= xchg(&sk
->sk_err_soft
, 0);
1064 v
.val
= sock_flag(sk
, SOCK_URGINLINE
);
1068 v
.val
= sk
->sk_no_check_tx
;
1072 v
.val
= sk
->sk_priority
;
1076 lv
= sizeof(v
.ling
);
1077 v
.ling
.l_onoff
= sock_flag(sk
, SOCK_LINGER
);
1078 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
1082 sock_warn_obsolete_bsdism("getsockopt");
1086 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
1087 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1090 case SO_TIMESTAMPNS
:
1091 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
1094 case SO_TIMESTAMPING
:
1095 v
.val
= sk
->sk_tsflags
;
1099 lv
= sizeof(struct timeval
);
1100 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1104 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
1105 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
1110 lv
= sizeof(struct timeval
);
1111 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
1115 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
1116 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
1121 v
.val
= sk
->sk_rcvlowat
;
1129 v
.val
= !!test_bit(SOCK_PASSCRED
, &sock
->flags
);
1134 struct ucred peercred
;
1135 if (len
> sizeof(peercred
))
1136 len
= sizeof(peercred
);
1137 cred_to_ucred(sk
->sk_peer_pid
, sk
->sk_peer_cred
, &peercred
);
1138 if (copy_to_user(optval
, &peercred
, len
))
1147 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
1151 if (copy_to_user(optval
, address
, len
))
1156 /* Dubious BSD thing... Probably nobody even uses it, but
1157 * the UNIX standard wants it for whatever reason... -DaveM
1160 v
.val
= sk
->sk_state
== TCP_LISTEN
;
1164 v
.val
= !!test_bit(SOCK_PASSSEC
, &sock
->flags
);
1168 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
1171 v
.val
= sk
->sk_mark
;
1175 v
.val
= sock_flag(sk
, SOCK_RXQ_OVFL
);
1178 case SO_WIFI_STATUS
:
1179 v
.val
= sock_flag(sk
, SOCK_WIFI_STATUS
);
1183 if (!sock
->ops
->set_peek_off
)
1186 v
.val
= sk
->sk_peek_off
;
1189 v
.val
= sock_flag(sk
, SOCK_NOFCS
);
1192 case SO_BINDTODEVICE
:
1193 return sock_getbindtodevice(sk
, optval
, optlen
, len
);
1196 len
= sk_get_filter(sk
, (struct sock_filter __user
*)optval
, len
);
1202 case SO_LOCK_FILTER
:
1203 v
.val
= sock_flag(sk
, SOCK_FILTER_LOCKED
);
1206 case SO_BPF_EXTENSIONS
:
1207 v
.val
= bpf_tell_extensions();
1210 case SO_SELECT_ERR_QUEUE
:
1211 v
.val
= sock_flag(sk
, SOCK_SELECT_ERR_QUEUE
);
1214 #ifdef CONFIG_NET_RX_BUSY_POLL
1216 v
.val
= sk
->sk_ll_usec
;
1220 case SO_MAX_PACING_RATE
:
1221 v
.val
= sk
->sk_max_pacing_rate
;
1225 return -ENOPROTOOPT
;
1230 if (copy_to_user(optval
, &v
, len
))
1233 if (put_user(len
, optlen
))
1239 * Initialize an sk_lock.
1241 * (We also register the sk_lock with the lock validator.)
1243 static inline void sock_lock_init(struct sock
*sk
)
1245 sock_lock_init_class_and_name(sk
,
1246 af_family_slock_key_strings
[sk
->sk_family
],
1247 af_family_slock_keys
+ sk
->sk_family
,
1248 af_family_key_strings
[sk
->sk_family
],
1249 af_family_keys
+ sk
->sk_family
);
1253 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
1254 * even temporarly, because of RCU lookups. sk_node should also be left as is.
1255 * We must not copy fields between sk_dontcopy_begin and sk_dontcopy_end
1257 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
1259 #ifdef CONFIG_SECURITY_NETWORK
1260 void *sptr
= nsk
->sk_security
;
1262 memcpy(nsk
, osk
, offsetof(struct sock
, sk_dontcopy_begin
));
1264 memcpy(&nsk
->sk_dontcopy_end
, &osk
->sk_dontcopy_end
,
1265 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_dontcopy_end
));
1267 #ifdef CONFIG_SECURITY_NETWORK
1268 nsk
->sk_security
= sptr
;
1269 security_sk_clone(osk
, nsk
);
1273 void sk_prot_clear_portaddr_nulls(struct sock
*sk
, int size
)
1275 unsigned long nulls1
, nulls2
;
1277 nulls1
= offsetof(struct sock
, __sk_common
.skc_node
.next
);
1278 nulls2
= offsetof(struct sock
, __sk_common
.skc_portaddr_node
.next
);
1279 if (nulls1
> nulls2
)
1280 swap(nulls1
, nulls2
);
1283 memset((char *)sk
, 0, nulls1
);
1284 memset((char *)sk
+ nulls1
+ sizeof(void *), 0,
1285 nulls2
- nulls1
- sizeof(void *));
1286 memset((char *)sk
+ nulls2
+ sizeof(void *), 0,
1287 size
- nulls2
- sizeof(void *));
1289 EXPORT_SYMBOL(sk_prot_clear_portaddr_nulls
);
1291 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
1295 struct kmem_cache
*slab
;
1299 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
1302 if (priority
& __GFP_ZERO
) {
1304 prot
->clear_sk(sk
, prot
->obj_size
);
1306 sk_prot_clear_nulls(sk
, prot
->obj_size
);
1309 sk
= kmalloc(prot
->obj_size
, priority
);
1312 kmemcheck_annotate_bitfield(sk
, flags
);
1314 if (security_sk_alloc(sk
, family
, priority
))
1317 if (!try_module_get(prot
->owner
))
1319 sk_tx_queue_clear(sk
);
1325 security_sk_free(sk
);
1328 kmem_cache_free(slab
, sk
);
1334 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1336 struct kmem_cache
*slab
;
1337 struct module
*owner
;
1339 owner
= prot
->owner
;
1342 security_sk_free(sk
);
1344 kmem_cache_free(slab
, sk
);
1350 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
1351 void sock_update_netprioidx(struct sock
*sk
)
1356 sk
->sk_cgrp_prioidx
= task_netprioidx(current
);
1358 EXPORT_SYMBOL_GPL(sock_update_netprioidx
);
1362 * sk_alloc - All socket objects are allocated here
1363 * @net: the applicable net namespace
1364 * @family: protocol family
1365 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1366 * @prot: struct proto associated with this new sock instance
1368 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1373 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1375 sk
->sk_family
= family
;
1377 * See comment in struct sock definition to understand
1378 * why we need sk_prot_creator -acme
1380 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1382 sock_net_set(sk
, get_net(net
));
1383 atomic_set(&sk
->sk_wmem_alloc
, 1);
1385 sock_update_classid(sk
);
1386 sock_update_netprioidx(sk
);
1391 EXPORT_SYMBOL(sk_alloc
);
1393 static void __sk_free(struct sock
*sk
)
1395 struct sk_filter
*filter
;
1397 if (sk
->sk_destruct
)
1398 sk
->sk_destruct(sk
);
1400 filter
= rcu_dereference_check(sk
->sk_filter
,
1401 atomic_read(&sk
->sk_wmem_alloc
) == 0);
1403 sk_filter_uncharge(sk
, filter
);
1404 RCU_INIT_POINTER(sk
->sk_filter
, NULL
);
1407 sock_disable_timestamp(sk
, SK_FLAGS_TIMESTAMP
);
1409 if (atomic_read(&sk
->sk_omem_alloc
))
1410 pr_debug("%s: optmem leakage (%d bytes) detected\n",
1411 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1413 if (sk
->sk_peer_cred
)
1414 put_cred(sk
->sk_peer_cred
);
1415 put_pid(sk
->sk_peer_pid
);
1416 put_net(sock_net(sk
));
1417 sk_prot_free(sk
->sk_prot_creator
, sk
);
1420 void sk_free(struct sock
*sk
)
1423 * We subtract one from sk_wmem_alloc and can know if
1424 * some packets are still in some tx queue.
1425 * If not null, sock_wfree() will call __sk_free(sk) later
1427 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1430 EXPORT_SYMBOL(sk_free
);
1433 * Last sock_put should drop reference to sk->sk_net. It has already
1434 * been dropped in sk_change_net. Taking reference to stopping namespace
1436 * Take reference to a socket to remove it from hash _alive_ and after that
1437 * destroy it in the context of init_net.
1439 void sk_release_kernel(struct sock
*sk
)
1441 if (sk
== NULL
|| sk
->sk_socket
== NULL
)
1445 sock_release(sk
->sk_socket
);
1446 release_net(sock_net(sk
));
1447 sock_net_set(sk
, get_net(&init_net
));
1450 EXPORT_SYMBOL(sk_release_kernel
);
1452 static void sk_update_clone(const struct sock
*sk
, struct sock
*newsk
)
1454 if (mem_cgroup_sockets_enabled
&& sk
->sk_cgrp
)
1455 sock_update_memcg(newsk
);
1459 * sk_clone_lock - clone a socket, and lock its clone
1460 * @sk: the socket to clone
1461 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1463 * Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1465 struct sock
*sk_clone_lock(const struct sock
*sk
, const gfp_t priority
)
1468 bool is_charged
= true;
1470 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1471 if (newsk
!= NULL
) {
1472 struct sk_filter
*filter
;
1474 sock_copy(newsk
, sk
);
1477 get_net(sock_net(newsk
));
1478 sk_node_init(&newsk
->sk_node
);
1479 sock_lock_init(newsk
);
1480 bh_lock_sock(newsk
);
1481 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1482 newsk
->sk_backlog
.len
= 0;
1484 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1486 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1488 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1489 atomic_set(&newsk
->sk_omem_alloc
, 0);
1490 skb_queue_head_init(&newsk
->sk_receive_queue
);
1491 skb_queue_head_init(&newsk
->sk_write_queue
);
1492 #ifdef CONFIG_NET_DMA
1493 skb_queue_head_init(&newsk
->sk_async_wait_queue
);
1496 spin_lock_init(&newsk
->sk_dst_lock
);
1497 rwlock_init(&newsk
->sk_callback_lock
);
1498 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1499 af_callback_keys
+ newsk
->sk_family
,
1500 af_family_clock_key_strings
[newsk
->sk_family
]);
1502 newsk
->sk_dst_cache
= NULL
;
1503 newsk
->sk_wmem_queued
= 0;
1504 newsk
->sk_forward_alloc
= 0;
1505 newsk
->sk_send_head
= NULL
;
1506 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1508 sock_reset_flag(newsk
, SOCK_DONE
);
1509 skb_queue_head_init(&newsk
->sk_error_queue
);
1511 filter
= rcu_dereference_protected(newsk
->sk_filter
, 1);
1513 /* though it's an empty new sock, the charging may fail
1514 * if sysctl_optmem_max was changed between creation of
1515 * original socket and cloning
1517 is_charged
= sk_filter_charge(newsk
, filter
);
1519 if (unlikely(!is_charged
|| xfrm_sk_clone_policy(newsk
))) {
1520 /* It is still raw copy of parent, so invalidate
1521 * destructor and make plain sk_free() */
1522 newsk
->sk_destruct
= NULL
;
1523 bh_unlock_sock(newsk
);
1530 newsk
->sk_priority
= 0;
1532 * Before updating sk_refcnt, we must commit prior changes to memory
1533 * (Documentation/RCU/rculist_nulls.txt for details)
1536 atomic_set(&newsk
->sk_refcnt
, 2);
1539 * Increment the counter in the same struct proto as the master
1540 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1541 * is the same as sk->sk_prot->socks, as this field was copied
1544 * This _changes_ the previous behaviour, where
1545 * tcp_create_openreq_child always was incrementing the
1546 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1547 * to be taken into account in all callers. -acme
1549 sk_refcnt_debug_inc(newsk
);
1550 sk_set_socket(newsk
, NULL
);
1551 newsk
->sk_wq
= NULL
;
1553 sk_update_clone(sk
, newsk
);
1555 if (newsk
->sk_prot
->sockets_allocated
)
1556 sk_sockets_allocated_inc(newsk
);
1558 if (newsk
->sk_flags
& SK_FLAGS_TIMESTAMP
)
1559 net_enable_timestamp();
1564 EXPORT_SYMBOL_GPL(sk_clone_lock
);
1566 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1568 __sk_dst_set(sk
, dst
);
1569 sk
->sk_route_caps
= dst
->dev
->features
;
1570 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1571 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1572 sk
->sk_route_caps
&= ~sk
->sk_route_nocaps
;
1573 if (sk_can_gso(sk
)) {
1574 if (dst
->header_len
) {
1575 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1577 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1578 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1579 sk
->sk_gso_max_segs
= dst
->dev
->gso_max_segs
;
1583 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1586 * Simple resource managers for sockets.
1591 * Write buffer destructor automatically called from kfree_skb.
1593 void sock_wfree(struct sk_buff
*skb
)
1595 struct sock
*sk
= skb
->sk
;
1596 unsigned int len
= skb
->truesize
;
1598 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1600 * Keep a reference on sk_wmem_alloc, this will be released
1601 * after sk_write_space() call
1603 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1604 sk
->sk_write_space(sk
);
1608 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1609 * could not do because of in-flight packets
1611 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1614 EXPORT_SYMBOL(sock_wfree
);
1616 void skb_orphan_partial(struct sk_buff
*skb
)
1618 /* TCP stack sets skb->ooo_okay based on sk_wmem_alloc,
1619 * so we do not completely orphan skb, but transfert all
1620 * accounted bytes but one, to avoid unexpected reorders.
1622 if (skb
->destructor
== sock_wfree
1624 || skb
->destructor
== tcp_wfree
1627 atomic_sub(skb
->truesize
- 1, &skb
->sk
->sk_wmem_alloc
);
1633 EXPORT_SYMBOL(skb_orphan_partial
);
1636 * Read buffer destructor automatically called from kfree_skb.
1638 void sock_rfree(struct sk_buff
*skb
)
1640 struct sock
*sk
= skb
->sk
;
1641 unsigned int len
= skb
->truesize
;
1643 atomic_sub(len
, &sk
->sk_rmem_alloc
);
1644 sk_mem_uncharge(sk
, len
);
1646 EXPORT_SYMBOL(sock_rfree
);
1648 void sock_edemux(struct sk_buff
*skb
)
1650 struct sock
*sk
= skb
->sk
;
1653 if (sk
->sk_state
== TCP_TIME_WAIT
)
1654 inet_twsk_put(inet_twsk(sk
));
1659 EXPORT_SYMBOL(sock_edemux
);
1661 kuid_t
sock_i_uid(struct sock
*sk
)
1665 read_lock_bh(&sk
->sk_callback_lock
);
1666 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: GLOBAL_ROOT_UID
;
1667 read_unlock_bh(&sk
->sk_callback_lock
);
1670 EXPORT_SYMBOL(sock_i_uid
);
1672 unsigned long sock_i_ino(struct sock
*sk
)
1676 read_lock_bh(&sk
->sk_callback_lock
);
1677 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1678 read_unlock_bh(&sk
->sk_callback_lock
);
1681 EXPORT_SYMBOL(sock_i_ino
);
1684 * Allocate a skb from the socket's send buffer.
1686 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1689 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1690 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1692 skb_set_owner_w(skb
, sk
);
1698 EXPORT_SYMBOL(sock_wmalloc
);
1701 * Allocate a memory block from the socket's option memory buffer.
1703 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1705 if ((unsigned int)size
<= sysctl_optmem_max
&&
1706 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1708 /* First do the add, to avoid the race if kmalloc
1711 atomic_add(size
, &sk
->sk_omem_alloc
);
1712 mem
= kmalloc(size
, priority
);
1715 atomic_sub(size
, &sk
->sk_omem_alloc
);
1719 EXPORT_SYMBOL(sock_kmalloc
);
1722 * Free an option memory block.
1724 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1727 atomic_sub(size
, &sk
->sk_omem_alloc
);
1729 EXPORT_SYMBOL(sock_kfree_s
);
1731 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1732 I think, these locks should be removed for datagram sockets.
1734 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1738 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1742 if (signal_pending(current
))
1744 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1745 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1746 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1748 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1752 timeo
= schedule_timeout(timeo
);
1754 finish_wait(sk_sleep(sk
), &wait
);
1760 * Generic send/receive buffer handlers
1763 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1764 unsigned long data_len
, int noblock
,
1765 int *errcode
, int max_page_order
)
1767 struct sk_buff
*skb
= NULL
;
1768 unsigned long chunk
;
1772 int npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
1777 if (npages
> MAX_SKB_FRAGS
)
1780 timeo
= sock_sndtimeo(sk
, noblock
);
1782 err
= sock_error(sk
);
1787 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1790 if (atomic_read(&sk
->sk_wmem_alloc
) >= sk
->sk_sndbuf
) {
1791 set_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1792 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1796 if (signal_pending(current
))
1798 timeo
= sock_wait_for_wmem(sk
, timeo
);
1803 gfp_mask
= sk
->sk_allocation
;
1804 if (gfp_mask
& __GFP_WAIT
)
1805 gfp_mask
|= __GFP_REPEAT
;
1807 skb
= alloc_skb(header_len
, gfp_mask
);
1811 skb
->truesize
+= data_len
;
1813 for (i
= 0; npages
> 0; i
++) {
1814 int order
= max_page_order
;
1817 if (npages
>= 1 << order
) {
1818 page
= alloc_pages(sk
->sk_allocation
|
1825 /* Do not retry other high order allocations */
1831 page
= alloc_page(sk
->sk_allocation
);
1835 chunk
= min_t(unsigned long, data_len
,
1836 PAGE_SIZE
<< order
);
1837 skb_fill_page_desc(skb
, i
, page
, 0, chunk
);
1839 npages
-= 1 << order
;
1843 skb_set_owner_w(skb
, sk
);
1847 err
= sock_intr_errno(timeo
);
1853 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1855 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1856 int noblock
, int *errcode
)
1858 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
, 0);
1860 EXPORT_SYMBOL(sock_alloc_send_skb
);
1862 /* On 32bit arches, an skb frag is limited to 2^15 */
1863 #define SKB_FRAG_PAGE_ORDER get_order(32768)
1866 * skb_page_frag_refill - check that a page_frag contains enough room
1867 * @sz: minimum size of the fragment we want to get
1868 * @pfrag: pointer to page_frag
1869 * @prio: priority for memory allocation
1871 * Note: While this allocator tries to use high order pages, there is
1872 * no guarantee that allocations succeed. Therefore, @sz MUST be
1873 * less or equal than PAGE_SIZE.
1875 bool skb_page_frag_refill(unsigned int sz
, struct page_frag
*pfrag
, gfp_t gfp
)
1878 if (atomic_read(&pfrag
->page
->_count
) == 1) {
1882 if (pfrag
->offset
+ sz
<= pfrag
->size
)
1884 put_page(pfrag
->page
);
1888 if (SKB_FRAG_PAGE_ORDER
) {
1889 pfrag
->page
= alloc_pages(gfp
| __GFP_COMP
|
1890 __GFP_NOWARN
| __GFP_NORETRY
,
1891 SKB_FRAG_PAGE_ORDER
);
1892 if (likely(pfrag
->page
)) {
1893 pfrag
->size
= PAGE_SIZE
<< SKB_FRAG_PAGE_ORDER
;
1897 pfrag
->page
= alloc_page(gfp
);
1898 if (likely(pfrag
->page
)) {
1899 pfrag
->size
= PAGE_SIZE
;
1904 EXPORT_SYMBOL(skb_page_frag_refill
);
1906 bool sk_page_frag_refill(struct sock
*sk
, struct page_frag
*pfrag
)
1908 if (likely(skb_page_frag_refill(32U, pfrag
, sk
->sk_allocation
)))
1911 sk_enter_memory_pressure(sk
);
1912 sk_stream_moderate_sndbuf(sk
);
1915 EXPORT_SYMBOL(sk_page_frag_refill
);
1917 static void __lock_sock(struct sock
*sk
)
1918 __releases(&sk
->sk_lock
.slock
)
1919 __acquires(&sk
->sk_lock
.slock
)
1924 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1925 TASK_UNINTERRUPTIBLE
);
1926 spin_unlock_bh(&sk
->sk_lock
.slock
);
1928 spin_lock_bh(&sk
->sk_lock
.slock
);
1929 if (!sock_owned_by_user(sk
))
1932 finish_wait(&sk
->sk_lock
.wq
, &wait
);
1935 static void __release_sock(struct sock
*sk
)
1936 __releases(&sk
->sk_lock
.slock
)
1937 __acquires(&sk
->sk_lock
.slock
)
1939 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
1942 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
1946 struct sk_buff
*next
= skb
->next
;
1949 WARN_ON_ONCE(skb_dst_is_noref(skb
));
1951 sk_backlog_rcv(sk
, skb
);
1954 * We are in process context here with softirqs
1955 * disabled, use cond_resched_softirq() to preempt.
1956 * This is safe to do because we've taken the backlog
1959 cond_resched_softirq();
1962 } while (skb
!= NULL
);
1965 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
1968 * Doing the zeroing here guarantee we can not loop forever
1969 * while a wild producer attempts to flood us.
1971 sk
->sk_backlog
.len
= 0;
1975 * sk_wait_data - wait for data to arrive at sk_receive_queue
1976 * @sk: sock to wait on
1977 * @timeo: for how long
1979 * Now socket state including sk->sk_err is changed only under lock,
1980 * hence we may omit checks after joining wait queue.
1981 * We check receive queue before schedule() only as optimization;
1982 * it is very likely that release_sock() added new data.
1984 int sk_wait_data(struct sock
*sk
, long *timeo
)
1989 prepare_to_wait(sk_sleep(sk
), &wait
, TASK_INTERRUPTIBLE
);
1990 set_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1991 rc
= sk_wait_event(sk
, timeo
, !skb_queue_empty(&sk
->sk_receive_queue
));
1992 clear_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1993 finish_wait(sk_sleep(sk
), &wait
);
1996 EXPORT_SYMBOL(sk_wait_data
);
1999 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
2001 * @size: memory size to allocate
2002 * @kind: allocation type
2004 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
2005 * rmem allocation. This function assumes that protocols which have
2006 * memory_pressure use sk_wmem_queued as write buffer accounting.
2008 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
2010 struct proto
*prot
= sk
->sk_prot
;
2011 int amt
= sk_mem_pages(size
);
2013 int parent_status
= UNDER_LIMIT
;
2015 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
2017 allocated
= sk_memory_allocated_add(sk
, amt
, &parent_status
);
2020 if (parent_status
== UNDER_LIMIT
&&
2021 allocated
<= sk_prot_mem_limits(sk
, 0)) {
2022 sk_leave_memory_pressure(sk
);
2026 /* Under pressure. (we or our parents) */
2027 if ((parent_status
> SOFT_LIMIT
) ||
2028 allocated
> sk_prot_mem_limits(sk
, 1))
2029 sk_enter_memory_pressure(sk
);
2031 /* Over hard limit (we or our parents) */
2032 if ((parent_status
== OVER_LIMIT
) ||
2033 (allocated
> sk_prot_mem_limits(sk
, 2)))
2034 goto suppress_allocation
;
2036 /* guarantee minimum buffer size under pressure */
2037 if (kind
== SK_MEM_RECV
) {
2038 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
2041 } else { /* SK_MEM_SEND */
2042 if (sk
->sk_type
== SOCK_STREAM
) {
2043 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
2045 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
2046 prot
->sysctl_wmem
[0])
2050 if (sk_has_memory_pressure(sk
)) {
2053 if (!sk_under_memory_pressure(sk
))
2055 alloc
= sk_sockets_allocated_read_positive(sk
);
2056 if (sk_prot_mem_limits(sk
, 2) > alloc
*
2057 sk_mem_pages(sk
->sk_wmem_queued
+
2058 atomic_read(&sk
->sk_rmem_alloc
) +
2059 sk
->sk_forward_alloc
))
2063 suppress_allocation
:
2065 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
2066 sk_stream_moderate_sndbuf(sk
);
2068 /* Fail only if socket is _under_ its sndbuf.
2069 * In this case we cannot block, so that we have to fail.
2071 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
2075 trace_sock_exceed_buf_limit(sk
, prot
, allocated
);
2077 /* Alas. Undo changes. */
2078 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
2080 sk_memory_allocated_sub(sk
, amt
);
2084 EXPORT_SYMBOL(__sk_mem_schedule
);
2087 * __sk_reclaim - reclaim memory_allocated
2090 void __sk_mem_reclaim(struct sock
*sk
)
2092 sk_memory_allocated_sub(sk
,
2093 sk
->sk_forward_alloc
>> SK_MEM_QUANTUM_SHIFT
);
2094 sk
->sk_forward_alloc
&= SK_MEM_QUANTUM
- 1;
2096 if (sk_under_memory_pressure(sk
) &&
2097 (sk_memory_allocated(sk
) < sk_prot_mem_limits(sk
, 0)))
2098 sk_leave_memory_pressure(sk
);
2100 EXPORT_SYMBOL(__sk_mem_reclaim
);
2104 * Set of default routines for initialising struct proto_ops when
2105 * the protocol does not support a particular function. In certain
2106 * cases where it makes no sense for a protocol to have a "do nothing"
2107 * function, some default processing is provided.
2110 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
2114 EXPORT_SYMBOL(sock_no_bind
);
2116 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
2121 EXPORT_SYMBOL(sock_no_connect
);
2123 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
2127 EXPORT_SYMBOL(sock_no_socketpair
);
2129 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
2133 EXPORT_SYMBOL(sock_no_accept
);
2135 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
2140 EXPORT_SYMBOL(sock_no_getname
);
2142 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
2146 EXPORT_SYMBOL(sock_no_poll
);
2148 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
2152 EXPORT_SYMBOL(sock_no_ioctl
);
2154 int sock_no_listen(struct socket
*sock
, int backlog
)
2158 EXPORT_SYMBOL(sock_no_listen
);
2160 int sock_no_shutdown(struct socket
*sock
, int how
)
2164 EXPORT_SYMBOL(sock_no_shutdown
);
2166 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
2167 char __user
*optval
, unsigned int optlen
)
2171 EXPORT_SYMBOL(sock_no_setsockopt
);
2173 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
2174 char __user
*optval
, int __user
*optlen
)
2178 EXPORT_SYMBOL(sock_no_getsockopt
);
2180 int sock_no_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
2185 EXPORT_SYMBOL(sock_no_sendmsg
);
2187 int sock_no_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
2188 size_t len
, int flags
)
2192 EXPORT_SYMBOL(sock_no_recvmsg
);
2194 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
2196 /* Mirror missing mmap method error code */
2199 EXPORT_SYMBOL(sock_no_mmap
);
2201 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
2204 struct msghdr msg
= {.msg_flags
= flags
};
2206 char *kaddr
= kmap(page
);
2207 iov
.iov_base
= kaddr
+ offset
;
2209 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
2213 EXPORT_SYMBOL(sock_no_sendpage
);
2216 * Default Socket Callbacks
2219 static void sock_def_wakeup(struct sock
*sk
)
2221 struct socket_wq
*wq
;
2224 wq
= rcu_dereference(sk
->sk_wq
);
2225 if (wq_has_sleeper(wq
))
2226 wake_up_interruptible_all(&wq
->wait
);
2230 static void sock_def_error_report(struct sock
*sk
)
2232 struct socket_wq
*wq
;
2235 wq
= rcu_dereference(sk
->sk_wq
);
2236 if (wq_has_sleeper(wq
))
2237 wake_up_interruptible_poll(&wq
->wait
, POLLERR
);
2238 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
2242 static void sock_def_readable(struct sock
*sk
)
2244 struct socket_wq
*wq
;
2247 wq
= rcu_dereference(sk
->sk_wq
);
2248 if (wq_has_sleeper(wq
))
2249 wake_up_interruptible_sync_poll(&wq
->wait
, POLLIN
| POLLPRI
|
2250 POLLRDNORM
| POLLRDBAND
);
2251 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
2255 static void sock_def_write_space(struct sock
*sk
)
2257 struct socket_wq
*wq
;
2261 /* Do not wake up a writer until he can make "significant"
2264 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
2265 wq
= rcu_dereference(sk
->sk_wq
);
2266 if (wq_has_sleeper(wq
))
2267 wake_up_interruptible_sync_poll(&wq
->wait
, POLLOUT
|
2268 POLLWRNORM
| POLLWRBAND
);
2270 /* Should agree with poll, otherwise some programs break */
2271 if (sock_writeable(sk
))
2272 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
2278 static void sock_def_destruct(struct sock
*sk
)
2280 kfree(sk
->sk_protinfo
);
2283 void sk_send_sigurg(struct sock
*sk
)
2285 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
2286 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
2287 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
2289 EXPORT_SYMBOL(sk_send_sigurg
);
2291 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
2292 unsigned long expires
)
2294 if (!mod_timer(timer
, expires
))
2297 EXPORT_SYMBOL(sk_reset_timer
);
2299 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
2301 if (del_timer(timer
))
2304 EXPORT_SYMBOL(sk_stop_timer
);
2306 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
2308 skb_queue_head_init(&sk
->sk_receive_queue
);
2309 skb_queue_head_init(&sk
->sk_write_queue
);
2310 skb_queue_head_init(&sk
->sk_error_queue
);
2311 #ifdef CONFIG_NET_DMA
2312 skb_queue_head_init(&sk
->sk_async_wait_queue
);
2315 sk
->sk_send_head
= NULL
;
2317 init_timer(&sk
->sk_timer
);
2319 sk
->sk_allocation
= GFP_KERNEL
;
2320 sk
->sk_rcvbuf
= sysctl_rmem_default
;
2321 sk
->sk_sndbuf
= sysctl_wmem_default
;
2322 sk
->sk_state
= TCP_CLOSE
;
2323 sk_set_socket(sk
, sock
);
2325 sock_set_flag(sk
, SOCK_ZAPPED
);
2328 sk
->sk_type
= sock
->type
;
2329 sk
->sk_wq
= sock
->wq
;
2334 spin_lock_init(&sk
->sk_dst_lock
);
2335 rwlock_init(&sk
->sk_callback_lock
);
2336 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
2337 af_callback_keys
+ sk
->sk_family
,
2338 af_family_clock_key_strings
[sk
->sk_family
]);
2340 sk
->sk_state_change
= sock_def_wakeup
;
2341 sk
->sk_data_ready
= sock_def_readable
;
2342 sk
->sk_write_space
= sock_def_write_space
;
2343 sk
->sk_error_report
= sock_def_error_report
;
2344 sk
->sk_destruct
= sock_def_destruct
;
2346 sk
->sk_frag
.page
= NULL
;
2347 sk
->sk_frag
.offset
= 0;
2348 sk
->sk_peek_off
= -1;
2350 sk
->sk_peer_pid
= NULL
;
2351 sk
->sk_peer_cred
= NULL
;
2352 sk
->sk_write_pending
= 0;
2353 sk
->sk_rcvlowat
= 1;
2354 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
2355 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
2357 sk
->sk_stamp
= ktime_set(-1L, 0);
2359 #ifdef CONFIG_NET_RX_BUSY_POLL
2361 sk
->sk_ll_usec
= sysctl_net_busy_read
;
2364 sk
->sk_max_pacing_rate
= ~0U;
2365 sk
->sk_pacing_rate
= ~0U;
2367 * Before updating sk_refcnt, we must commit prior changes to memory
2368 * (Documentation/RCU/rculist_nulls.txt for details)
2371 atomic_set(&sk
->sk_refcnt
, 1);
2372 atomic_set(&sk
->sk_drops
, 0);
2374 EXPORT_SYMBOL(sock_init_data
);
2376 void lock_sock_nested(struct sock
*sk
, int subclass
)
2379 spin_lock_bh(&sk
->sk_lock
.slock
);
2380 if (sk
->sk_lock
.owned
)
2382 sk
->sk_lock
.owned
= 1;
2383 spin_unlock(&sk
->sk_lock
.slock
);
2385 * The sk_lock has mutex_lock() semantics here:
2387 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
2390 EXPORT_SYMBOL(lock_sock_nested
);
2392 void release_sock(struct sock
*sk
)
2395 * The sk_lock has mutex_unlock() semantics:
2397 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
2399 spin_lock_bh(&sk
->sk_lock
.slock
);
2400 if (sk
->sk_backlog
.tail
)
2403 /* Warning : release_cb() might need to release sk ownership,
2404 * ie call sock_release_ownership(sk) before us.
2406 if (sk
->sk_prot
->release_cb
)
2407 sk
->sk_prot
->release_cb(sk
);
2409 sock_release_ownership(sk
);
2410 if (waitqueue_active(&sk
->sk_lock
.wq
))
2411 wake_up(&sk
->sk_lock
.wq
);
2412 spin_unlock_bh(&sk
->sk_lock
.slock
);
2414 EXPORT_SYMBOL(release_sock
);
2417 * lock_sock_fast - fast version of lock_sock
2420 * This version should be used for very small section, where process wont block
2421 * return false if fast path is taken
2422 * sk_lock.slock locked, owned = 0, BH disabled
2423 * return true if slow path is taken
2424 * sk_lock.slock unlocked, owned = 1, BH enabled
2426 bool lock_sock_fast(struct sock
*sk
)
2429 spin_lock_bh(&sk
->sk_lock
.slock
);
2431 if (!sk
->sk_lock
.owned
)
2433 * Note : We must disable BH
2438 sk
->sk_lock
.owned
= 1;
2439 spin_unlock(&sk
->sk_lock
.slock
);
2441 * The sk_lock has mutex_lock() semantics here:
2443 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 0, _RET_IP_
);
2447 EXPORT_SYMBOL(lock_sock_fast
);
2449 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
2452 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2453 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2454 tv
= ktime_to_timeval(sk
->sk_stamp
);
2455 if (tv
.tv_sec
== -1)
2457 if (tv
.tv_sec
== 0) {
2458 sk
->sk_stamp
= ktime_get_real();
2459 tv
= ktime_to_timeval(sk
->sk_stamp
);
2461 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
2463 EXPORT_SYMBOL(sock_get_timestamp
);
2465 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
2468 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
2469 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
2470 ts
= ktime_to_timespec(sk
->sk_stamp
);
2471 if (ts
.tv_sec
== -1)
2473 if (ts
.tv_sec
== 0) {
2474 sk
->sk_stamp
= ktime_get_real();
2475 ts
= ktime_to_timespec(sk
->sk_stamp
);
2477 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
2479 EXPORT_SYMBOL(sock_get_timestampns
);
2481 void sock_enable_timestamp(struct sock
*sk
, int flag
)
2483 if (!sock_flag(sk
, flag
)) {
2484 unsigned long previous_flags
= sk
->sk_flags
;
2486 sock_set_flag(sk
, flag
);
2488 * we just set one of the two flags which require net
2489 * time stamping, but time stamping might have been on
2490 * already because of the other one
2492 if (!(previous_flags
& SK_FLAGS_TIMESTAMP
))
2493 net_enable_timestamp();
2497 int sock_recv_errqueue(struct sock
*sk
, struct msghdr
*msg
, int len
,
2498 int level
, int type
)
2500 struct sock_exterr_skb
*serr
;
2501 struct sk_buff
*skb
, *skb2
;
2505 skb
= skb_dequeue(&sk
->sk_error_queue
);
2511 msg
->msg_flags
|= MSG_TRUNC
;
2514 err
= skb_copy_datagram_iovec(skb
, 0, msg
->msg_iov
, copied
);
2518 sock_recv_timestamp(msg
, sk
, skb
);
2520 serr
= SKB_EXT_ERR(skb
);
2521 put_cmsg(msg
, level
, type
, sizeof(serr
->ee
), &serr
->ee
);
2523 msg
->msg_flags
|= MSG_ERRQUEUE
;
2526 /* Reset and regenerate socket error */
2527 spin_lock_bh(&sk
->sk_error_queue
.lock
);
2529 if ((skb2
= skb_peek(&sk
->sk_error_queue
)) != NULL
) {
2530 sk
->sk_err
= SKB_EXT_ERR(skb2
)->ee
.ee_errno
;
2531 spin_unlock_bh(&sk
->sk_error_queue
.lock
);
2532 sk
->sk_error_report(sk
);
2534 spin_unlock_bh(&sk
->sk_error_queue
.lock
);
2541 EXPORT_SYMBOL(sock_recv_errqueue
);
2544 * Get a socket option on an socket.
2546 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2547 * asynchronous errors should be reported by getsockopt. We assume
2548 * this means if you specify SO_ERROR (otherwise whats the point of it).
2550 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2551 char __user
*optval
, int __user
*optlen
)
2553 struct sock
*sk
= sock
->sk
;
2555 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2557 EXPORT_SYMBOL(sock_common_getsockopt
);
2559 #ifdef CONFIG_COMPAT
2560 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2561 char __user
*optval
, int __user
*optlen
)
2563 struct sock
*sk
= sock
->sk
;
2565 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2566 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2568 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2570 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2573 int sock_common_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
2574 struct msghdr
*msg
, size_t size
, int flags
)
2576 struct sock
*sk
= sock
->sk
;
2580 err
= sk
->sk_prot
->recvmsg(iocb
, sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2581 flags
& ~MSG_DONTWAIT
, &addr_len
);
2583 msg
->msg_namelen
= addr_len
;
2586 EXPORT_SYMBOL(sock_common_recvmsg
);
2589 * Set socket options on an inet socket.
2591 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2592 char __user
*optval
, unsigned int optlen
)
2594 struct sock
*sk
= sock
->sk
;
2596 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2598 EXPORT_SYMBOL(sock_common_setsockopt
);
2600 #ifdef CONFIG_COMPAT
2601 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2602 char __user
*optval
, unsigned int optlen
)
2604 struct sock
*sk
= sock
->sk
;
2606 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2607 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2609 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2611 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2614 void sk_common_release(struct sock
*sk
)
2616 if (sk
->sk_prot
->destroy
)
2617 sk
->sk_prot
->destroy(sk
);
2620 * Observation: when sock_common_release is called, processes have
2621 * no access to socket. But net still has.
2622 * Step one, detach it from networking:
2624 * A. Remove from hash tables.
2627 sk
->sk_prot
->unhash(sk
);
2630 * In this point socket cannot receive new packets, but it is possible
2631 * that some packets are in flight because some CPU runs receiver and
2632 * did hash table lookup before we unhashed socket. They will achieve
2633 * receive queue and will be purged by socket destructor.
2635 * Also we still have packets pending on receive queue and probably,
2636 * our own packets waiting in device queues. sock_destroy will drain
2637 * receive queue, but transmitted packets will delay socket destruction
2638 * until the last reference will be released.
2643 xfrm_sk_free_policy(sk
);
2645 sk_refcnt_debug_release(sk
);
2647 if (sk
->sk_frag
.page
) {
2648 put_page(sk
->sk_frag
.page
);
2649 sk
->sk_frag
.page
= NULL
;
2654 EXPORT_SYMBOL(sk_common_release
);
2656 #ifdef CONFIG_PROC_FS
2657 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2659 int val
[PROTO_INUSE_NR
];
2662 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2664 #ifdef CONFIG_NET_NS
2665 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2667 __this_cpu_add(net
->core
.inuse
->val
[prot
->inuse_idx
], val
);
2669 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2671 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2673 int cpu
, idx
= prot
->inuse_idx
;
2676 for_each_possible_cpu(cpu
)
2677 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2679 return res
>= 0 ? res
: 0;
2681 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2683 static int __net_init
sock_inuse_init_net(struct net
*net
)
2685 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2686 return net
->core
.inuse
? 0 : -ENOMEM
;
2689 static void __net_exit
sock_inuse_exit_net(struct net
*net
)
2691 free_percpu(net
->core
.inuse
);
2694 static struct pernet_operations net_inuse_ops
= {
2695 .init
= sock_inuse_init_net
,
2696 .exit
= sock_inuse_exit_net
,
2699 static __init
int net_inuse_init(void)
2701 if (register_pernet_subsys(&net_inuse_ops
))
2702 panic("Cannot initialize net inuse counters");
2707 core_initcall(net_inuse_init
);
2709 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2711 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2713 __this_cpu_add(prot_inuse
.val
[prot
->inuse_idx
], val
);
2715 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2717 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2719 int cpu
, idx
= prot
->inuse_idx
;
2722 for_each_possible_cpu(cpu
)
2723 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2725 return res
>= 0 ? res
: 0;
2727 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2730 static void assign_proto_idx(struct proto
*prot
)
2732 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2734 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2735 pr_err("PROTO_INUSE_NR exhausted\n");
2739 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2742 static void release_proto_idx(struct proto
*prot
)
2744 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2745 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2748 static inline void assign_proto_idx(struct proto
*prot
)
2752 static inline void release_proto_idx(struct proto
*prot
)
2757 int proto_register(struct proto
*prot
, int alloc_slab
)
2760 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2761 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2764 if (prot
->slab
== NULL
) {
2765 pr_crit("%s: Can't create sock SLAB cache!\n",
2770 if (prot
->rsk_prot
!= NULL
) {
2771 prot
->rsk_prot
->slab_name
= kasprintf(GFP_KERNEL
, "request_sock_%s", prot
->name
);
2772 if (prot
->rsk_prot
->slab_name
== NULL
)
2773 goto out_free_sock_slab
;
2775 prot
->rsk_prot
->slab
= kmem_cache_create(prot
->rsk_prot
->slab_name
,
2776 prot
->rsk_prot
->obj_size
, 0,
2777 SLAB_HWCACHE_ALIGN
, NULL
);
2779 if (prot
->rsk_prot
->slab
== NULL
) {
2780 pr_crit("%s: Can't create request sock SLAB cache!\n",
2782 goto out_free_request_sock_slab_name
;
2786 if (prot
->twsk_prot
!= NULL
) {
2787 prot
->twsk_prot
->twsk_slab_name
= kasprintf(GFP_KERNEL
, "tw_sock_%s", prot
->name
);
2789 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2790 goto out_free_request_sock_slab
;
2792 prot
->twsk_prot
->twsk_slab
=
2793 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2794 prot
->twsk_prot
->twsk_obj_size
,
2796 SLAB_HWCACHE_ALIGN
|
2799 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2800 goto out_free_timewait_sock_slab_name
;
2804 mutex_lock(&proto_list_mutex
);
2805 list_add(&prot
->node
, &proto_list
);
2806 assign_proto_idx(prot
);
2807 mutex_unlock(&proto_list_mutex
);
2810 out_free_timewait_sock_slab_name
:
2811 kfree(prot
->twsk_prot
->twsk_slab_name
);
2812 out_free_request_sock_slab
:
2813 if (prot
->rsk_prot
&& prot
->rsk_prot
->slab
) {
2814 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2815 prot
->rsk_prot
->slab
= NULL
;
2817 out_free_request_sock_slab_name
:
2819 kfree(prot
->rsk_prot
->slab_name
);
2821 kmem_cache_destroy(prot
->slab
);
2826 EXPORT_SYMBOL(proto_register
);
2828 void proto_unregister(struct proto
*prot
)
2830 mutex_lock(&proto_list_mutex
);
2831 release_proto_idx(prot
);
2832 list_del(&prot
->node
);
2833 mutex_unlock(&proto_list_mutex
);
2835 if (prot
->slab
!= NULL
) {
2836 kmem_cache_destroy(prot
->slab
);
2840 if (prot
->rsk_prot
!= NULL
&& prot
->rsk_prot
->slab
!= NULL
) {
2841 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2842 kfree(prot
->rsk_prot
->slab_name
);
2843 prot
->rsk_prot
->slab
= NULL
;
2846 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2847 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2848 kfree(prot
->twsk_prot
->twsk_slab_name
);
2849 prot
->twsk_prot
->twsk_slab
= NULL
;
2852 EXPORT_SYMBOL(proto_unregister
);
2854 #ifdef CONFIG_PROC_FS
2855 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2856 __acquires(proto_list_mutex
)
2858 mutex_lock(&proto_list_mutex
);
2859 return seq_list_start_head(&proto_list
, *pos
);
2862 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2864 return seq_list_next(v
, &proto_list
, pos
);
2867 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2868 __releases(proto_list_mutex
)
2870 mutex_unlock(&proto_list_mutex
);
2873 static char proto_method_implemented(const void *method
)
2875 return method
== NULL
? 'n' : 'y';
2877 static long sock_prot_memory_allocated(struct proto
*proto
)
2879 return proto
->memory_allocated
!= NULL
? proto_memory_allocated(proto
) : -1L;
2882 static char *sock_prot_memory_pressure(struct proto
*proto
)
2884 return proto
->memory_pressure
!= NULL
?
2885 proto_memory_pressure(proto
) ? "yes" : "no" : "NI";
2888 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2891 seq_printf(seq
, "%-9s %4u %6d %6ld %-3s %6u %-3s %-10s "
2892 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2895 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2896 sock_prot_memory_allocated(proto
),
2897 sock_prot_memory_pressure(proto
),
2899 proto
->slab
== NULL
? "no" : "yes",
2900 module_name(proto
->owner
),
2901 proto_method_implemented(proto
->close
),
2902 proto_method_implemented(proto
->connect
),
2903 proto_method_implemented(proto
->disconnect
),
2904 proto_method_implemented(proto
->accept
),
2905 proto_method_implemented(proto
->ioctl
),
2906 proto_method_implemented(proto
->init
),
2907 proto_method_implemented(proto
->destroy
),
2908 proto_method_implemented(proto
->shutdown
),
2909 proto_method_implemented(proto
->setsockopt
),
2910 proto_method_implemented(proto
->getsockopt
),
2911 proto_method_implemented(proto
->sendmsg
),
2912 proto_method_implemented(proto
->recvmsg
),
2913 proto_method_implemented(proto
->sendpage
),
2914 proto_method_implemented(proto
->bind
),
2915 proto_method_implemented(proto
->backlog_rcv
),
2916 proto_method_implemented(proto
->hash
),
2917 proto_method_implemented(proto
->unhash
),
2918 proto_method_implemented(proto
->get_port
),
2919 proto_method_implemented(proto
->enter_memory_pressure
));
2922 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2924 if (v
== &proto_list
)
2925 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2934 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2936 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
2940 static const struct seq_operations proto_seq_ops
= {
2941 .start
= proto_seq_start
,
2942 .next
= proto_seq_next
,
2943 .stop
= proto_seq_stop
,
2944 .show
= proto_seq_show
,
2947 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
2949 return seq_open_net(inode
, file
, &proto_seq_ops
,
2950 sizeof(struct seq_net_private
));
2953 static const struct file_operations proto_seq_fops
= {
2954 .owner
= THIS_MODULE
,
2955 .open
= proto_seq_open
,
2957 .llseek
= seq_lseek
,
2958 .release
= seq_release_net
,
2961 static __net_init
int proto_init_net(struct net
*net
)
2963 if (!proc_create("protocols", S_IRUGO
, net
->proc_net
, &proto_seq_fops
))
2969 static __net_exit
void proto_exit_net(struct net
*net
)
2971 remove_proc_entry("protocols", net
->proc_net
);
2975 static __net_initdata
struct pernet_operations proto_net_ops
= {
2976 .init
= proto_init_net
,
2977 .exit
= proto_exit_net
,
2980 static int __init
proto_init(void)
2982 return register_pernet_subsys(&proto_net_ops
);
2985 subsys_initcall(proto_init
);
2987 #endif /* PROC_FS */