2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
37 * This file should not be included directly. Include t4vf_common.h instead.
40 #ifndef __CXGB4VF_ADAPTER_H__
41 #define __CXGB4VF_ADAPTER_H__
43 #include <linux/pci.h>
44 #include <linux/spinlock.h>
45 #include <linux/skbuff.h>
46 #include <linux/if_ether.h>
47 #include <linux/netdevice.h>
49 #include "../cxgb4/t4_hw.h"
52 * Constants of the implementation.
55 MAX_NPORTS
= 1, /* max # of "ports" */
56 MAX_PORT_QSETS
= 8, /* max # of Queue Sets / "port" */
57 MAX_ETH_QSETS
= MAX_NPORTS
*MAX_PORT_QSETS
,
60 * MSI-X interrupt index usage.
62 MSIX_FW
= 0, /* MSI-X index for firmware Q */
63 MSIX_NIQFLINT
= 1, /* MSI-X index base for Ingress Qs */
65 MSIX_ENTRIES
= MAX_ETH_QSETS
+ MSIX_EXTRAS
,
68 * The maximum number of Ingress and Egress Queues is determined by
69 * the maximum number of "Queue Sets" which we support plus any
70 * ancillary queues. Each "Queue Set" requires one Ingress Queue
71 * for RX Packet Ingress Event notifications and two Egress Queues for
72 * a Free List and an Ethernet TX list.
74 INGQ_EXTRAS
= 2, /* firmware event queue and */
75 /* forwarded interrupts */
76 MAX_INGQ
= MAX_ETH_QSETS
+INGQ_EXTRAS
,
77 MAX_EGRQ
= MAX_ETH_QSETS
*2,
81 * Forward structure definition references.
88 * Per-"port" information. This is really per-Virtual Interface information
89 * but the use of the "port" nomanclature makes it easier to go back and forth
90 * between the PF and VF drivers ...
93 struct adapter
*adapter
; /* our adapter */
94 struct vlan_group
*vlan_grp
; /* out VLAN group */
95 u16 viid
; /* virtual interface ID */
96 s16 xact_addr_filt
; /* index of our MAC address filter */
97 u16 rss_size
; /* size of VI's RSS table slice */
98 u8 pidx
; /* index into adapter port[] */
99 u8 port_id
; /* physical port ID */
100 u8 rx_offload
; /* CSO, etc. */
101 u8 nqsets
; /* # of "Queue Sets" */
102 u8 first_qset
; /* index of first "Queue Set" */
103 struct link_config link_cfg
; /* physical port configuration */
106 /* port_info.rx_offload flags */
112 * Scatter Gather Engine resources for the "adapter". Our ingress and egress
113 * queues are organized into "Queue Sets" with one ingress and one egress
114 * queue per Queue Set. These Queue Sets are aportionable between the "ports"
115 * (Virtual Interfaces). One extra ingress queue is used to receive
116 * asynchronous messages from the firmware. Note that the "Queue IDs" that we
117 * use here are really "Relative Queue IDs" which are returned as part of the
118 * firmware command to allocate queues. These queue IDs are relative to the
119 * absolute Queue ID base of the section of the Queue ID space allocated to
124 * SGE free-list queue state.
128 unsigned int avail
; /* # of available RX buffers */
129 unsigned int pend_cred
; /* new buffers since last FL DB ring */
130 unsigned int cidx
; /* consumer index */
131 unsigned int pidx
; /* producer index */
132 unsigned long alloc_failed
; /* # of buffer allocation failures */
133 unsigned long large_alloc_failed
;
134 unsigned long starving
; /* # of times FL was found starving */
137 * Write-once/infrequently fields.
138 * -------------------------------
141 unsigned int cntxt_id
; /* SGE relative QID for the free list */
142 unsigned int abs_id
; /* SGE absolute QID for the free list */
143 unsigned int size
; /* capacity of free list */
144 struct rx_sw_desc
*sdesc
; /* address of SW RX descriptor ring */
145 __be64
*desc
; /* address of HW RX descriptor ring */
146 dma_addr_t addr
; /* PCI bus address of hardware ring */
150 * An ingress packet gather list.
153 skb_frag_t frags
[MAX_SKB_FRAGS
];
154 void *va
; /* virtual address of first byte */
155 unsigned int nfrags
; /* # of fragments */
156 unsigned int tot_len
; /* total length of fragments */
159 typedef int (*rspq_handler_t
)(struct sge_rspq
*, const __be64
*,
160 const struct pkt_gl
*);
163 * State for an SGE Response Queue.
166 struct napi_struct napi
; /* NAPI scheduling control */
167 const __be64
*cur_desc
; /* current descriptor in queue */
168 unsigned int cidx
; /* consumer index */
169 u8 gen
; /* current generation bit */
170 u8 next_intr_params
; /* holdoff params for next interrupt */
171 int offset
; /* offset into current FL buffer */
173 unsigned int unhandled_irqs
; /* bogus interrupts */
176 * Write-once/infrequently fields.
177 * -------------------------------
180 u8 intr_params
; /* interrupt holdoff parameters */
181 u8 pktcnt_idx
; /* interrupt packet threshold */
182 u8 idx
; /* queue index within its group */
183 u16 cntxt_id
; /* SGE rel QID for the response Q */
184 u16 abs_id
; /* SGE abs QID for the response Q */
185 __be64
*desc
; /* address of hardware response ring */
186 dma_addr_t phys_addr
; /* PCI bus address of ring */
187 unsigned int iqe_len
; /* entry size */
188 unsigned int size
; /* capcity of response Q */
189 struct adapter
*adapter
; /* our adapter */
190 struct net_device
*netdev
; /* associated net device */
191 rspq_handler_t handler
; /* the handler for this response Q */
195 * Ethernet queue statistics
197 struct sge_eth_stats
{
198 unsigned long pkts
; /* # of ethernet packets */
199 unsigned long lro_pkts
; /* # of LRO super packets */
200 unsigned long lro_merged
; /* # of wire packets merged by LRO */
201 unsigned long rx_cso
; /* # of Rx checksum offloads */
202 unsigned long vlan_ex
; /* # of Rx VLAN extractions */
203 unsigned long rx_drops
; /* # of packets dropped due to no mem */
207 * State for an Ethernet Receive Queue.
210 struct sge_rspq rspq
; /* Response Queue */
211 struct sge_fl fl
; /* Free List */
212 struct sge_eth_stats stats
; /* receive statistics */
216 * SGE Transmit Queue state. This contains all of the resources associated
217 * with the hardware status of a TX Queue which is a circular ring of hardware
218 * TX Descriptors. For convenience, it also contains a pointer to a parallel
219 * "Software Descriptor" array but we don't know anything about it here other
220 * than its type name.
224 * Egress Queues are measured in units of SGE_EQ_IDXSIZE by the
225 * hardware: Sizes, Producer and Consumer indices, etc.
227 __be64 flit
[SGE_EQ_IDXSIZE
/sizeof(__be64
)];
231 unsigned int in_use
; /* # of in-use TX descriptors */
232 unsigned int size
; /* # of descriptors */
233 unsigned int cidx
; /* SW consumer index */
234 unsigned int pidx
; /* producer index */
235 unsigned long stops
; /* # of times queue has been stopped */
236 unsigned long restarts
; /* # of queue restarts */
239 * Write-once/infrequently fields.
240 * -------------------------------
243 unsigned int cntxt_id
; /* SGE relative QID for the TX Q */
244 unsigned int abs_id
; /* SGE absolute QID for the TX Q */
245 struct tx_desc
*desc
; /* address of HW TX descriptor ring */
246 struct tx_sw_desc
*sdesc
; /* address of SW TX descriptor ring */
247 struct sge_qstat
*stat
; /* queue status entry */
248 dma_addr_t phys_addr
; /* PCI bus address of hardware ring */
252 * State for an Ethernet Transmit Queue.
255 struct sge_txq q
; /* SGE TX Queue */
256 struct netdev_queue
*txq
; /* associated netdev TX queue */
257 unsigned long tso
; /* # of TSO requests */
258 unsigned long tx_cso
; /* # of TX checksum offloads */
259 unsigned long vlan_ins
; /* # of TX VLAN insertions */
260 unsigned long mapping_err
; /* # of I/O MMU packet mapping errors */
264 * The complete set of Scatter/Gather Engine resources.
268 * Our "Queue Sets" ...
270 struct sge_eth_txq ethtxq
[MAX_ETH_QSETS
];
271 struct sge_eth_rxq ethrxq
[MAX_ETH_QSETS
];
274 * Extra ingress queues for asynchronous firmware events and
275 * forwarded interrupts (when in MSI mode).
277 struct sge_rspq fw_evtq ____cacheline_aligned_in_smp
;
279 struct sge_rspq intrq ____cacheline_aligned_in_smp
;
280 spinlock_t intrq_lock
;
283 * State for managing "starving Free Lists" -- Free Lists which have
284 * fallen below a certain threshold of buffers available to the
285 * hardware and attempts to refill them up to that threshold have
286 * failed. We have a regular "slow tick" timer process which will
287 * make periodic attempts to refill these starving Free Lists ...
289 DECLARE_BITMAP(starving_fl
, MAX_EGRQ
);
290 struct timer_list rx_timer
;
293 * State for cleaning up completed TX descriptors.
295 struct timer_list tx_timer
;
298 * Write-once/infrequently fields.
299 * -------------------------------
302 u16 max_ethqsets
; /* # of available Ethernet queue sets */
303 u16 ethqsets
; /* # of active Ethernet queue sets */
304 u16 ethtxq_rover
; /* Tx queue to clean up next */
305 u16 timer_val
[SGE_NTIMERS
]; /* interrupt holdoff timer array */
306 u8 counter_val
[SGE_NCOUNTERS
]; /* interrupt RX threshold array */
309 * Reverse maps from Absolute Queue IDs to associated queue pointers.
310 * The absolute Queue IDs are in a compact range which start at a
311 * [potentially large] Base Queue ID. We perform the reverse map by
312 * first converting the Absolute Queue ID into a Relative Queue ID by
313 * subtracting off the Base Queue ID and then use a Relative Queue ID
314 * indexed table to get the pointer to the corresponding software
317 unsigned int egr_base
;
318 unsigned int ingr_base
;
319 void *egr_map
[MAX_EGRQ
];
320 struct sge_rspq
*ingr_map
[MAX_INGQ
];
324 * Utility macros to convert Absolute- to Relative-Queue indices and Egress-
325 * and Ingress-Queues. The EQ_MAP() and IQ_MAP() macros which provide
326 * pointers to Ingress- and Egress-Queues can be used as both L- and R-values
328 #define EQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->egr_base))
329 #define IQ_IDX(s, abs_id) ((unsigned int)((abs_id) - (s)->ingr_base))
331 #define EQ_MAP(s, abs_id) ((s)->egr_map[EQ_IDX(s, abs_id)])
332 #define IQ_MAP(s, abs_id) ((s)->ingr_map[IQ_IDX(s, abs_id)])
335 * Macro to iterate across Queue Sets ("rxq" is a historic misnomer).
337 #define for_each_ethrxq(sge, iter) \
338 for (iter = 0; iter < (sge)->ethqsets; iter++)
341 * Per-"adapter" (Virtual Function) information.
346 struct pci_dev
*pdev
;
347 struct device
*pdev_dev
;
349 /* "adapter" resources */
350 unsigned long registered_device_map
;
351 unsigned long open_device_map
;
353 struct adapter_params params
;
355 /* queue and interrupt resources */
359 } msix_info
[MSIX_ENTRIES
];
362 /* Linux network device resources */
363 struct net_device
*port
[MAX_NPORTS
];
365 unsigned int msg_enable
;
367 /* debugfs resources */
368 struct dentry
*debugfs_root
;
371 spinlock_t stats_lock
;
374 enum { /* adapter flags */
375 FULL_INIT_DONE
= (1UL << 0),
376 USING_MSI
= (1UL << 1),
377 USING_MSIX
= (1UL << 2),
378 QUEUES_BOUND
= (1UL << 3),
382 * The following register read/write routine definitions are required by
387 * t4_read_reg - read a HW register
388 * @adapter: the adapter
389 * @reg_addr: the register address
391 * Returns the 32-bit value of the given HW register.
393 static inline u32
t4_read_reg(struct adapter
*adapter
, u32 reg_addr
)
395 return readl(adapter
->regs
+ reg_addr
);
399 * t4_write_reg - write a HW register
400 * @adapter: the adapter
401 * @reg_addr: the register address
402 * @val: the value to write
404 * Write a 32-bit value into the given HW register.
406 static inline void t4_write_reg(struct adapter
*adapter
, u32 reg_addr
, u32 val
)
408 writel(val
, adapter
->regs
+ reg_addr
);
412 static inline u64
readq(const volatile void __iomem
*addr
)
414 return readl(addr
) + ((u64
)readl(addr
+ 4) << 32);
417 static inline void writeq(u64 val
, volatile void __iomem
*addr
)
420 writel(val
>> 32, addr
+ 4);
425 * t4_read_reg64 - read a 64-bit HW register
426 * @adapter: the adapter
427 * @reg_addr: the register address
429 * Returns the 64-bit value of the given HW register.
431 static inline u64
t4_read_reg64(struct adapter
*adapter
, u32 reg_addr
)
433 return readq(adapter
->regs
+ reg_addr
);
437 * t4_write_reg64 - write a 64-bit HW register
438 * @adapter: the adapter
439 * @reg_addr: the register address
440 * @val: the value to write
442 * Write a 64-bit value into the given HW register.
444 static inline void t4_write_reg64(struct adapter
*adapter
, u32 reg_addr
,
447 writeq(val
, adapter
->regs
+ reg_addr
);
451 * port_name - return the string name of a port
452 * @adapter: the adapter
453 * @pidx: the port index
455 * Return the string name of the selected port.
457 static inline const char *port_name(struct adapter
*adapter
, int pidx
)
459 return adapter
->port
[pidx
]->name
;
463 * t4_os_set_hw_addr - store a port's MAC address in SW
464 * @adapter: the adapter
465 * @pidx: the port index
466 * @hw_addr: the Ethernet address
468 * Store the Ethernet address of the given port in SW. Called by the common
469 * code when it retrieves a port's Ethernet address from EEPROM.
471 static inline void t4_os_set_hw_addr(struct adapter
*adapter
, int pidx
,
474 memcpy(adapter
->port
[pidx
]->dev_addr
, hw_addr
, ETH_ALEN
);
475 memcpy(adapter
->port
[pidx
]->perm_addr
, hw_addr
, ETH_ALEN
);
479 * netdev2pinfo - return the port_info structure associated with a net_device
482 * Return the struct port_info associated with a net_device
484 static inline struct port_info
*netdev2pinfo(const struct net_device
*dev
)
486 return netdev_priv(dev
);
490 * adap2pinfo - return the port_info of a port
492 * @pidx: the port index
494 * Return the port_info structure for the adapter.
496 static inline struct port_info
*adap2pinfo(struct adapter
*adapter
, int pidx
)
498 return netdev_priv(adapter
->port
[pidx
]);
502 * netdev2adap - return the adapter structure associated with a net_device
505 * Return the struct adapter associated with a net_device
507 static inline struct adapter
*netdev2adap(const struct net_device
*dev
)
509 return netdev2pinfo(dev
)->adapter
;
513 * OS "Callback" function declarations. These are functions that the OS code
514 * is "contracted" to provide for the common code.
516 void t4vf_os_link_changed(struct adapter
*, int, int);
519 * SGE function prototype declarations.
521 int t4vf_sge_alloc_rxq(struct adapter
*, struct sge_rspq
*, bool,
522 struct net_device
*, int,
523 struct sge_fl
*, rspq_handler_t
);
524 int t4vf_sge_alloc_eth_txq(struct adapter
*, struct sge_eth_txq
*,
525 struct net_device
*, struct netdev_queue
*,
527 void t4vf_free_sge_resources(struct adapter
*);
529 int t4vf_eth_xmit(struct sk_buff
*, struct net_device
*);
530 int t4vf_ethrx_handler(struct sge_rspq
*, const __be64
*,
531 const struct pkt_gl
*);
533 irq_handler_t
t4vf_intr_handler(struct adapter
*);
534 irqreturn_t
t4vf_sge_intr_msix(int, void *);
536 int t4vf_sge_init(struct adapter
*);
537 void t4vf_sge_start(struct adapter
*);
538 void t4vf_sge_stop(struct adapter
*);
540 #endif /* __CXGB4VF_ADAPTER_H__ */