2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include <linux/version.h>
37 #include <linux/pci.h>
39 #include "t4vf_common.h"
40 #include "t4vf_defs.h"
42 #include "../cxgb4/t4_regs.h"
43 #include "../cxgb4/t4fw_api.h"
46 * Wait for the device to become ready (signified by our "who am I" register
47 * returning a value other than all 1's). Return an error if it doesn't
50 int __devinit
t4vf_wait_dev_ready(struct adapter
*adapter
)
52 const u32 whoami
= T4VF_PL_BASE_ADDR
+ PL_VF_WHOAMI
;
53 const u32 notready1
= 0xffffffff;
54 const u32 notready2
= 0xeeeeeeee;
57 val
= t4_read_reg(adapter
, whoami
);
58 if (val
!= notready1
&& val
!= notready2
)
61 val
= t4_read_reg(adapter
, whoami
);
62 if (val
!= notready1
&& val
!= notready2
)
69 * Get the reply to a mailbox command and store it in @rpl in big-endian order
70 * (since the firmware data structures are specified in a big-endian layout).
72 static void get_mbox_rpl(struct adapter
*adapter
, __be64
*rpl
, int size
,
75 for ( ; size
; size
-= 8, mbox_data
+= 8)
76 *rpl
++ = cpu_to_be64(t4_read_reg64(adapter
, mbox_data
));
80 * Dump contents of mailbox with a leading tag.
82 static void dump_mbox(struct adapter
*adapter
, const char *tag
, u32 mbox_data
)
84 dev_err(adapter
->pdev_dev
,
85 "mbox %s: %llx %llx %llx %llx %llx %llx %llx %llx\n", tag
,
86 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 0),
87 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 8),
88 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 16),
89 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 24),
90 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 32),
91 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 40),
92 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 48),
93 (unsigned long long)t4_read_reg64(adapter
, mbox_data
+ 56));
97 * t4vf_wr_mbox_core - send a command to FW through the mailbox
98 * @adapter: the adapter
99 * @cmd: the command to write
100 * @size: command length in bytes
101 * @rpl: where to optionally store the reply
102 * @sleep_ok: if true we may sleep while awaiting command completion
104 * Sends the given command to FW through the mailbox and waits for the
105 * FW to execute the command. If @rpl is not %NULL it is used to store
106 * the FW's reply to the command. The command and its optional reply
107 * are of the same length. FW can take up to 500 ms to respond.
108 * @sleep_ok determines whether we may sleep while awaiting the response.
109 * If sleeping is allowed we use progressive backoff otherwise we spin.
111 * The return value is 0 on success or a negative errno on failure. A
112 * failure can happen either because we are not able to execute the
113 * command or FW executes it but signals an error. In the latter case
114 * the return value is the error code indicated by FW (negated).
116 int t4vf_wr_mbox_core(struct adapter
*adapter
, const void *cmd
, int size
,
117 void *rpl
, bool sleep_ok
)
119 static int delay
[] = {
120 1, 1, 3, 5, 10, 10, 20, 50, 100
124 int i
, ms
, delay_idx
;
126 u32 mbox_data
= T4VF_MBDATA_BASE_ADDR
;
127 u32 mbox_ctl
= T4VF_CIM_BASE_ADDR
+ CIM_VF_EXT_MAILBOX_CTRL
;
130 * Commands must be multiples of 16 bytes in length and may not be
131 * larger than the size of the Mailbox Data register array.
133 if ((size
% 16) != 0 ||
134 size
> NUM_CIM_VF_MAILBOX_DATA_INSTANCES
* 4)
138 * Loop trying to get ownership of the mailbox. Return an error
139 * if we can't gain ownership.
141 v
= MBOWNER_GET(t4_read_reg(adapter
, mbox_ctl
));
142 for (i
= 0; v
== MBOX_OWNER_NONE
&& i
< 3; i
++)
143 v
= MBOWNER_GET(t4_read_reg(adapter
, mbox_ctl
));
144 if (v
!= MBOX_OWNER_DRV
)
145 return v
== MBOX_OWNER_FW
? -EBUSY
: -ETIMEDOUT
;
148 * Write the command array into the Mailbox Data register array and
149 * transfer ownership of the mailbox to the firmware.
151 for (i
= 0, p
= cmd
; i
< size
; i
+= 8)
152 t4_write_reg64(adapter
, mbox_data
+ i
, be64_to_cpu(*p
++));
153 t4_write_reg(adapter
, mbox_ctl
,
154 MBMSGVALID
| MBOWNER(MBOX_OWNER_FW
));
155 t4_read_reg(adapter
, mbox_ctl
); /* flush write */
158 * Spin waiting for firmware to acknowledge processing our command.
163 for (i
= 0; i
< 500; i
+= ms
) {
165 ms
= delay
[delay_idx
];
166 if (delay_idx
< ARRAY_SIZE(delay
) - 1)
173 * If we're the owner, see if this is the reply we wanted.
175 v
= t4_read_reg(adapter
, mbox_ctl
);
176 if (MBOWNER_GET(v
) == MBOX_OWNER_DRV
) {
178 * If the Message Valid bit isn't on, revoke ownership
179 * of the mailbox and continue waiting for our reply.
181 if ((v
& MBMSGVALID
) == 0) {
182 t4_write_reg(adapter
, mbox_ctl
,
183 MBOWNER(MBOX_OWNER_NONE
));
188 * We now have our reply. Extract the command return
189 * value, copy the reply back to our caller's buffer
190 * (if specified) and revoke ownership of the mailbox.
191 * We return the (negated) firmware command return
192 * code (this depends on FW_SUCCESS == 0).
195 /* return value in low-order little-endian word */
196 v
= t4_read_reg(adapter
, mbox_data
);
197 if (FW_CMD_RETVAL_GET(v
))
198 dump_mbox(adapter
, "FW Error", mbox_data
);
201 /* request bit in high-order BE word */
202 WARN_ON((be32_to_cpu(*(const u32
*)cmd
)
203 & FW_CMD_REQUEST
) == 0);
204 get_mbox_rpl(adapter
, rpl
, size
, mbox_data
);
205 WARN_ON((be32_to_cpu(*(u32
*)rpl
)
206 & FW_CMD_REQUEST
) != 0);
208 t4_write_reg(adapter
, mbox_ctl
,
209 MBOWNER(MBOX_OWNER_NONE
));
210 return -FW_CMD_RETVAL_GET(v
);
215 * We timed out. Return the error ...
217 dump_mbox(adapter
, "FW Timeout", mbox_data
);
222 * hash_mac_addr - return the hash value of a MAC address
223 * @addr: the 48-bit Ethernet MAC address
225 * Hashes a MAC address according to the hash function used by hardware
226 * inexact (hash) address matching.
228 static int hash_mac_addr(const u8
*addr
)
230 u32 a
= ((u32
)addr
[0] << 16) | ((u32
)addr
[1] << 8) | addr
[2];
231 u32 b
= ((u32
)addr
[3] << 16) | ((u32
)addr
[4] << 8) | addr
[5];
239 * init_link_config - initialize a link's SW state
240 * @lc: structure holding the link state
241 * @caps: link capabilities
243 * Initializes the SW state maintained for each link, including the link's
244 * capabilities and default speed/flow-control/autonegotiation settings.
246 static void __devinit
init_link_config(struct link_config
*lc
,
249 lc
->supported
= caps
;
250 lc
->requested_speed
= 0;
252 lc
->requested_fc
= lc
->fc
= PAUSE_RX
| PAUSE_TX
;
253 if (lc
->supported
& SUPPORTED_Autoneg
) {
254 lc
->advertising
= lc
->supported
;
255 lc
->autoneg
= AUTONEG_ENABLE
;
256 lc
->requested_fc
|= PAUSE_AUTONEG
;
259 lc
->autoneg
= AUTONEG_DISABLE
;
264 * t4vf_port_init - initialize port hardware/software state
265 * @adapter: the adapter
266 * @pidx: the adapter port index
268 int __devinit
t4vf_port_init(struct adapter
*adapter
, int pidx
)
270 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
271 struct fw_vi_cmd vi_cmd
, vi_rpl
;
272 struct fw_port_cmd port_cmd
, port_rpl
;
277 * Execute a VI Read command to get our Virtual Interface information
278 * like MAC address, etc.
280 memset(&vi_cmd
, 0, sizeof(vi_cmd
));
281 vi_cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
284 vi_cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(vi_cmd
));
285 vi_cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID(pi
->viid
));
286 v
= t4vf_wr_mbox(adapter
, &vi_cmd
, sizeof(vi_cmd
), &vi_rpl
);
290 BUG_ON(pi
->port_id
!= FW_VI_CMD_PORTID_GET(vi_rpl
.portid_pkd
));
291 pi
->rss_size
= FW_VI_CMD_RSSSIZE_GET(be16_to_cpu(vi_rpl
.rsssize_pkd
));
292 t4_os_set_hw_addr(adapter
, pidx
, vi_rpl
.mac
);
295 * If we don't have read access to our port information, we're done
296 * now. Otherwise, execute a PORT Read command to get it ...
298 if (!(adapter
->params
.vfres
.r_caps
& FW_CMD_CAP_PORT
))
301 memset(&port_cmd
, 0, sizeof(port_cmd
));
302 port_cmd
.op_to_portid
= cpu_to_be32(FW_CMD_OP(FW_PORT_CMD
) |
305 FW_PORT_CMD_PORTID(pi
->port_id
));
306 port_cmd
.action_to_len16
=
307 cpu_to_be32(FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO
) |
309 v
= t4vf_wr_mbox(adapter
, &port_cmd
, sizeof(port_cmd
), &port_rpl
);
314 word
= be16_to_cpu(port_rpl
.u
.info
.pcap
);
315 if (word
& FW_PORT_CAP_SPEED_100M
)
316 v
|= SUPPORTED_100baseT_Full
;
317 if (word
& FW_PORT_CAP_SPEED_1G
)
318 v
|= SUPPORTED_1000baseT_Full
;
319 if (word
& FW_PORT_CAP_SPEED_10G
)
320 v
|= SUPPORTED_10000baseT_Full
;
321 if (word
& FW_PORT_CAP_ANEG
)
322 v
|= SUPPORTED_Autoneg
;
323 init_link_config(&pi
->link_cfg
, v
);
329 * t4vf_query_params - query FW or device parameters
330 * @adapter: the adapter
331 * @nparams: the number of parameters
332 * @params: the parameter names
333 * @vals: the parameter values
335 * Reads the values of firmware or device parameters. Up to 7 parameters
336 * can be queried at once.
338 int t4vf_query_params(struct adapter
*adapter
, unsigned int nparams
,
339 const u32
*params
, u32
*vals
)
342 struct fw_params_cmd cmd
, rpl
;
343 struct fw_params_param
*p
;
349 memset(&cmd
, 0, sizeof(cmd
));
350 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD
) |
353 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
354 param
[nparams
].mnem
), 16);
355 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
356 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++)
357 p
->mnem
= htonl(*params
++);
359 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
361 for (i
= 0, p
= &rpl
.param
[0]; i
< nparams
; i
++, p
++)
362 *vals
++ = be32_to_cpu(p
->val
);
367 * t4vf_set_params - sets FW or device parameters
368 * @adapter: the adapter
369 * @nparams: the number of parameters
370 * @params: the parameter names
371 * @vals: the parameter values
373 * Sets the values of firmware or device parameters. Up to 7 parameters
374 * can be specified at once.
376 int t4vf_set_params(struct adapter
*adapter
, unsigned int nparams
,
377 const u32
*params
, const u32
*vals
)
380 struct fw_params_cmd cmd
;
381 struct fw_params_param
*p
;
387 memset(&cmd
, 0, sizeof(cmd
));
388 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PARAMS_CMD
) |
391 len16
= DIV_ROUND_UP(offsetof(struct fw_params_cmd
,
392 param
[nparams
]), 16);
393 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
394 for (i
= 0, p
= &cmd
.param
[0]; i
< nparams
; i
++, p
++) {
395 p
->mnem
= cpu_to_be32(*params
++);
396 p
->val
= cpu_to_be32(*vals
++);
399 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
403 * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
404 * @adapter: the adapter
406 * Retrieves various core SGE parameters in the form of hardware SGE
407 * register values. The caller is responsible for decoding these as
408 * needed. The SGE parameters are stored in @adapter->params.sge.
410 int t4vf_get_sge_params(struct adapter
*adapter
)
412 struct sge_params
*sge_params
= &adapter
->params
.sge
;
413 u32 params
[7], vals
[7];
416 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
417 FW_PARAMS_PARAM_XYZ(SGE_CONTROL
));
418 params
[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
419 FW_PARAMS_PARAM_XYZ(SGE_HOST_PAGE_SIZE
));
420 params
[2] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
421 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE0
));
422 params
[3] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
423 FW_PARAMS_PARAM_XYZ(SGE_FL_BUFFER_SIZE1
));
424 params
[4] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
425 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_0_AND_1
));
426 params
[5] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
427 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_2_AND_3
));
428 params
[6] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
429 FW_PARAMS_PARAM_XYZ(SGE_TIMER_VALUE_4_AND_5
));
430 v
= t4vf_query_params(adapter
, 7, params
, vals
);
433 sge_params
->sge_control
= vals
[0];
434 sge_params
->sge_host_page_size
= vals
[1];
435 sge_params
->sge_fl_buffer_size
[0] = vals
[2];
436 sge_params
->sge_fl_buffer_size
[1] = vals
[3];
437 sge_params
->sge_timer_value_0_and_1
= vals
[4];
438 sge_params
->sge_timer_value_2_and_3
= vals
[5];
439 sge_params
->sge_timer_value_4_and_5
= vals
[6];
441 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG
) |
442 FW_PARAMS_PARAM_XYZ(SGE_INGRESS_RX_THRESHOLD
));
443 v
= t4vf_query_params(adapter
, 1, params
, vals
);
446 sge_params
->sge_ingress_rx_threshold
= vals
[0];
452 * t4vf_get_vpd_params - retrieve device VPD paremeters
453 * @adapter: the adapter
455 * Retrives various device Vital Product Data parameters. The parameters
456 * are stored in @adapter->params.vpd.
458 int t4vf_get_vpd_params(struct adapter
*adapter
)
460 struct vpd_params
*vpd_params
= &adapter
->params
.vpd
;
461 u32 params
[7], vals
[7];
464 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
465 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CCLK
));
466 v
= t4vf_query_params(adapter
, 1, params
, vals
);
469 vpd_params
->cclk
= vals
[0];
475 * t4vf_get_dev_params - retrieve device paremeters
476 * @adapter: the adapter
478 * Retrives various device parameters. The parameters are stored in
479 * @adapter->params.dev.
481 int t4vf_get_dev_params(struct adapter
*adapter
)
483 struct dev_params
*dev_params
= &adapter
->params
.dev
;
484 u32 params
[7], vals
[7];
487 params
[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
488 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWREV
));
489 params
[1] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV
) |
490 FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPREV
));
491 v
= t4vf_query_params(adapter
, 2, params
, vals
);
494 dev_params
->fwrev
= vals
[0];
495 dev_params
->tprev
= vals
[1];
501 * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
502 * @adapter: the adapter
504 * Retrieves global RSS mode and parameters with which we have to live
505 * and stores them in the @adapter's RSS parameters.
507 int t4vf_get_rss_glb_config(struct adapter
*adapter
)
509 struct rss_params
*rss
= &adapter
->params
.rss
;
510 struct fw_rss_glb_config_cmd cmd
, rpl
;
514 * Execute an RSS Global Configuration read command to retrieve
515 * our RSS configuration.
517 memset(&cmd
, 0, sizeof(cmd
));
518 cmd
.op_to_write
= cpu_to_be32(FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD
) |
521 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
522 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
527 * Transate the big-endian RSS Global Configuration into our
528 * cpu-endian format based on the RSS mode. We also do first level
529 * filtering at this point to weed out modes which don't support
532 rss
->mode
= FW_RSS_GLB_CONFIG_CMD_MODE_GET(
533 be32_to_cpu(rpl
.u
.manual
.mode_pkd
));
535 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
536 u32 word
= be32_to_cpu(
537 rpl
.u
.basicvirtual
.synmapen_to_hashtoeplitz
);
539 rss
->u
.basicvirtual
.synmapen
=
540 ((word
& FW_RSS_GLB_CONFIG_CMD_SYNMAPEN
) != 0);
541 rss
->u
.basicvirtual
.syn4tupenipv6
=
542 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6
) != 0);
543 rss
->u
.basicvirtual
.syn2tupenipv6
=
544 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6
) != 0);
545 rss
->u
.basicvirtual
.syn4tupenipv4
=
546 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4
) != 0);
547 rss
->u
.basicvirtual
.syn2tupenipv4
=
548 ((word
& FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4
) != 0);
550 rss
->u
.basicvirtual
.ofdmapen
=
551 ((word
& FW_RSS_GLB_CONFIG_CMD_OFDMAPEN
) != 0);
553 rss
->u
.basicvirtual
.tnlmapen
=
554 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLMAPEN
) != 0);
555 rss
->u
.basicvirtual
.tnlalllookup
=
556 ((word
& FW_RSS_GLB_CONFIG_CMD_TNLALLLKP
) != 0);
558 rss
->u
.basicvirtual
.hashtoeplitz
=
559 ((word
& FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ
) != 0);
561 /* we need at least Tunnel Map Enable to be set */
562 if (!rss
->u
.basicvirtual
.tnlmapen
)
568 /* all unknown/unsupported RSS modes result in an error */
576 * t4vf_get_vfres - retrieve VF resource limits
577 * @adapter: the adapter
579 * Retrieves configured resource limits and capabilities for a virtual
580 * function. The results are stored in @adapter->vfres.
582 int t4vf_get_vfres(struct adapter
*adapter
)
584 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
585 struct fw_pfvf_cmd cmd
, rpl
;
590 * Execute PFVF Read command to get VF resource limits; bail out early
591 * with error on command failure.
593 memset(&cmd
, 0, sizeof(cmd
));
594 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_PFVF_CMD
) |
597 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
598 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
603 * Extract VF resource limits and return success.
605 word
= be32_to_cpu(rpl
.niqflint_niq
);
606 vfres
->niqflint
= FW_PFVF_CMD_NIQFLINT_GET(word
);
607 vfres
->niq
= FW_PFVF_CMD_NIQ_GET(word
);
609 word
= be32_to_cpu(rpl
.type_to_neq
);
610 vfres
->neq
= FW_PFVF_CMD_NEQ_GET(word
);
611 vfres
->pmask
= FW_PFVF_CMD_PMASK_GET(word
);
613 word
= be32_to_cpu(rpl
.tc_to_nexactf
);
614 vfres
->tc
= FW_PFVF_CMD_TC_GET(word
);
615 vfres
->nvi
= FW_PFVF_CMD_NVI_GET(word
);
616 vfres
->nexactf
= FW_PFVF_CMD_NEXACTF_GET(word
);
618 word
= be32_to_cpu(rpl
.r_caps_to_nethctrl
);
619 vfres
->r_caps
= FW_PFVF_CMD_R_CAPS_GET(word
);
620 vfres
->wx_caps
= FW_PFVF_CMD_WX_CAPS_GET(word
);
621 vfres
->nethctrl
= FW_PFVF_CMD_NETHCTRL_GET(word
);
627 * t4vf_read_rss_vi_config - read a VI's RSS configuration
628 * @adapter: the adapter
629 * @viid: Virtual Interface ID
630 * @config: pointer to host-native VI RSS Configuration buffer
632 * Reads the Virtual Interface's RSS configuration information and
633 * translates it into CPU-native format.
635 int t4vf_read_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
636 union rss_vi_config
*config
)
638 struct fw_rss_vi_config_cmd cmd
, rpl
;
641 memset(&cmd
, 0, sizeof(cmd
));
642 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD
) |
645 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
646 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
647 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
651 switch (adapter
->params
.rss
.mode
) {
652 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
653 u32 word
= be32_to_cpu(rpl
.u
.basicvirtual
.defaultq_to_udpen
);
655 config
->basicvirtual
.ip6fourtupen
=
656 ((word
& FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN
) != 0);
657 config
->basicvirtual
.ip6twotupen
=
658 ((word
& FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN
) != 0);
659 config
->basicvirtual
.ip4fourtupen
=
660 ((word
& FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN
) != 0);
661 config
->basicvirtual
.ip4twotupen
=
662 ((word
& FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN
) != 0);
663 config
->basicvirtual
.udpen
=
664 ((word
& FW_RSS_VI_CONFIG_CMD_UDPEN
) != 0);
665 config
->basicvirtual
.defaultq
=
666 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_GET(word
);
678 * t4vf_write_rss_vi_config - write a VI's RSS configuration
679 * @adapter: the adapter
680 * @viid: Virtual Interface ID
681 * @config: pointer to host-native VI RSS Configuration buffer
683 * Write the Virtual Interface's RSS configuration information
684 * (translating it into firmware-native format before writing).
686 int t4vf_write_rss_vi_config(struct adapter
*adapter
, unsigned int viid
,
687 union rss_vi_config
*config
)
689 struct fw_rss_vi_config_cmd cmd
, rpl
;
691 memset(&cmd
, 0, sizeof(cmd
));
692 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_VI_CONFIG_CMD
) |
695 FW_RSS_VI_CONFIG_CMD_VIID(viid
));
696 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
697 switch (adapter
->params
.rss
.mode
) {
698 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
: {
701 if (config
->basicvirtual
.ip6fourtupen
)
702 word
|= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN
;
703 if (config
->basicvirtual
.ip6twotupen
)
704 word
|= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN
;
705 if (config
->basicvirtual
.ip4fourtupen
)
706 word
|= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN
;
707 if (config
->basicvirtual
.ip4twotupen
)
708 word
|= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN
;
709 if (config
->basicvirtual
.udpen
)
710 word
|= FW_RSS_VI_CONFIG_CMD_UDPEN
;
711 word
|= FW_RSS_VI_CONFIG_CMD_DEFAULTQ(
712 config
->basicvirtual
.defaultq
);
713 cmd
.u
.basicvirtual
.defaultq_to_udpen
= cpu_to_be32(word
);
721 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
725 * t4vf_config_rss_range - configure a portion of the RSS mapping table
726 * @adapter: the adapter
727 * @viid: Virtual Interface of RSS Table Slice
728 * @start: starting entry in the table to write
729 * @n: how many table entries to write
730 * @rspq: values for the "Response Queue" (Ingress Queue) lookup table
731 * @nrspq: number of values in @rspq
733 * Programs the selected part of the VI's RSS mapping table with the
734 * provided values. If @nrspq < @n the supplied values are used repeatedly
735 * until the full table range is populated.
737 * The caller must ensure the values in @rspq are in the range 0..1023.
739 int t4vf_config_rss_range(struct adapter
*adapter
, unsigned int viid
,
740 int start
, int n
, const u16
*rspq
, int nrspq
)
742 const u16
*rsp
= rspq
;
743 const u16
*rsp_end
= rspq
+nrspq
;
744 struct fw_rss_ind_tbl_cmd cmd
;
747 * Initialize firmware command template to write the RSS table.
749 memset(&cmd
, 0, sizeof(cmd
));
750 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_RSS_IND_TBL_CMD
) |
753 FW_RSS_IND_TBL_CMD_VIID(viid
));
754 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
757 * Each firmware RSS command can accommodate up to 32 RSS Ingress
758 * Queue Identifiers. These Ingress Queue IDs are packed three to
759 * a 32-bit word as 10-bit values with the upper remaining 2 bits
763 __be32
*qp
= &cmd
.iq0_to_iq2
;
768 * Set up the firmware RSS command header to send the next
769 * "nq" Ingress Queue IDs to the firmware.
771 cmd
.niqid
= cpu_to_be16(nq
);
772 cmd
.startidx
= cpu_to_be16(start
);
775 * "nq" more done for the start of the next loop.
781 * While there are still Ingress Queue IDs to stuff into the
782 * current firmware RSS command, retrieve them from the
783 * Ingress Queue ID array and insert them into the command.
787 * Grab up to the next 3 Ingress Queue IDs (wrapping
788 * around the Ingress Queue ID array if necessary) and
789 * insert them into the firmware RSS command at the
790 * current 3-tuple position within the commad.
794 int nqbuf
= min(3, nq
);
797 qbuf
[0] = qbuf
[1] = qbuf
[2] = 0;
804 *qp
++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0(qbuf
[0]) |
805 FW_RSS_IND_TBL_CMD_IQ1(qbuf
[1]) |
806 FW_RSS_IND_TBL_CMD_IQ2(qbuf
[2]));
810 * Send this portion of the RRS table update to the firmware;
811 * bail out on any errors.
813 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
821 * t4vf_alloc_vi - allocate a virtual interface on a port
822 * @adapter: the adapter
823 * @port_id: physical port associated with the VI
825 * Allocate a new Virtual Interface and bind it to the indicated
826 * physical port. Return the new Virtual Interface Identifier on
827 * success, or a [negative] error number on failure.
829 int t4vf_alloc_vi(struct adapter
*adapter
, int port_id
)
831 struct fw_vi_cmd cmd
, rpl
;
835 * Execute a VI command to allocate Virtual Interface and return its
838 memset(&cmd
, 0, sizeof(cmd
));
839 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
843 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
845 cmd
.portid_pkd
= FW_VI_CMD_PORTID(port_id
);
846 v
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
850 return FW_VI_CMD_VIID_GET(be16_to_cpu(rpl
.type_viid
));
854 * t4vf_free_vi -- free a virtual interface
855 * @adapter: the adapter
856 * @viid: the virtual interface identifier
858 * Free a previously allocated Virtual Interface. Return an error on
861 int t4vf_free_vi(struct adapter
*adapter
, int viid
)
863 struct fw_vi_cmd cmd
;
866 * Execute a VI command to free the Virtual Interface.
868 memset(&cmd
, 0, sizeof(cmd
));
869 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_VI_CMD
) |
872 cmd
.alloc_to_len16
= cpu_to_be32(FW_LEN16(cmd
) |
874 cmd
.type_viid
= cpu_to_be16(FW_VI_CMD_VIID(viid
));
875 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
879 * t4vf_enable_vi - enable/disable a virtual interface
880 * @adapter: the adapter
881 * @viid: the Virtual Interface ID
882 * @rx_en: 1=enable Rx, 0=disable Rx
883 * @tx_en: 1=enable Tx, 0=disable Tx
885 * Enables/disables a virtual interface.
887 int t4vf_enable_vi(struct adapter
*adapter
, unsigned int viid
,
888 bool rx_en
, bool tx_en
)
890 struct fw_vi_enable_cmd cmd
;
892 memset(&cmd
, 0, sizeof(cmd
));
893 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD
) |
896 FW_VI_ENABLE_CMD_VIID(viid
));
897 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_IEN(rx_en
) |
898 FW_VI_ENABLE_CMD_EEN(tx_en
) |
900 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
904 * t4vf_identify_port - identify a VI's port by blinking its LED
905 * @adapter: the adapter
906 * @viid: the Virtual Interface ID
907 * @nblinks: how many times to blink LED at 2.5 Hz
909 * Identifies a VI's port by blinking its LED.
911 int t4vf_identify_port(struct adapter
*adapter
, unsigned int viid
,
912 unsigned int nblinks
)
914 struct fw_vi_enable_cmd cmd
;
916 memset(&cmd
, 0, sizeof(cmd
));
917 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_ENABLE_CMD
) |
920 FW_VI_ENABLE_CMD_VIID(viid
));
921 cmd
.ien_to_len16
= cpu_to_be32(FW_VI_ENABLE_CMD_LED
|
923 cmd
.blinkdur
= cpu_to_be16(nblinks
);
924 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
928 * t4vf_set_rxmode - set Rx properties of a virtual interface
929 * @adapter: the adapter
931 * @mtu: the new MTU or -1 for no change
932 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
933 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
934 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
935 * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
938 * Sets Rx properties of a virtual interface.
940 int t4vf_set_rxmode(struct adapter
*adapter
, unsigned int viid
,
941 int mtu
, int promisc
, int all_multi
, int bcast
, int vlanex
,
944 struct fw_vi_rxmode_cmd cmd
;
946 /* convert to FW values */
948 mtu
= FW_VI_RXMODE_CMD_MTU_MASK
;
950 promisc
= FW_VI_RXMODE_CMD_PROMISCEN_MASK
;
952 all_multi
= FW_VI_RXMODE_CMD_ALLMULTIEN_MASK
;
954 bcast
= FW_VI_RXMODE_CMD_BROADCASTEN_MASK
;
956 vlanex
= FW_VI_RXMODE_CMD_VLANEXEN_MASK
;
958 memset(&cmd
, 0, sizeof(cmd
));
959 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_RXMODE_CMD
) |
962 FW_VI_RXMODE_CMD_VIID(viid
));
963 cmd
.retval_len16
= cpu_to_be32(FW_LEN16(cmd
));
964 cmd
.mtu_to_vlanexen
=
965 cpu_to_be32(FW_VI_RXMODE_CMD_MTU(mtu
) |
966 FW_VI_RXMODE_CMD_PROMISCEN(promisc
) |
967 FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi
) |
968 FW_VI_RXMODE_CMD_BROADCASTEN(bcast
) |
969 FW_VI_RXMODE_CMD_VLANEXEN(vlanex
));
970 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
974 * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
975 * @adapter: the adapter
976 * @viid: the Virtual Interface Identifier
977 * @free: if true any existing filters for this VI id are first removed
978 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
979 * @addr: the MAC address(es)
980 * @idx: where to store the index of each allocated filter
981 * @hash: pointer to hash address filter bitmap
982 * @sleep_ok: call is allowed to sleep
984 * Allocates an exact-match filter for each of the supplied addresses and
985 * sets it to the corresponding address. If @idx is not %NULL it should
986 * have at least @naddr entries, each of which will be set to the index of
987 * the filter allocated for the corresponding MAC address. If a filter
988 * could not be allocated for an address its index is set to 0xffff.
989 * If @hash is not %NULL addresses that fail to allocate an exact filter
990 * are hashed and update the hash filter bitmap pointed at by @hash.
992 * Returns a negative error number or the number of filters allocated.
994 int t4vf_alloc_mac_filt(struct adapter
*adapter
, unsigned int viid
, bool free
,
995 unsigned int naddr
, const u8
**addr
, u16
*idx
,
996 u64
*hash
, bool sleep_ok
)
999 struct fw_vi_mac_cmd cmd
, rpl
;
1000 struct fw_vi_mac_exact
*p
;
1003 if (naddr
> ARRAY_SIZE(cmd
.u
.exact
))
1005 len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1006 u
.exact
[naddr
]), 16);
1008 memset(&cmd
, 0, sizeof(cmd
));
1009 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1012 (free
? FW_CMD_EXEC
: 0) |
1013 FW_VI_MAC_CMD_VIID(viid
));
1014 cmd
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_FREEMACS(free
) |
1015 FW_CMD_LEN16(len16
));
1017 for (i
= 0, p
= cmd
.u
.exact
; i
< naddr
; i
++, p
++) {
1019 cpu_to_be16(FW_VI_MAC_CMD_VALID
|
1020 FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC
));
1021 memcpy(p
->macaddr
, addr
[i
], sizeof(p
->macaddr
));
1024 ret
= t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), &rpl
, sleep_ok
);
1028 for (i
= 0, p
= rpl
.u
.exact
; i
< naddr
; i
++, p
++) {
1029 u16 index
= FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p
->valid_to_idx
));
1032 idx
[i
] = (index
>= FW_CLS_TCAM_NUM_ENTRIES
1035 if (index
< FW_CLS_TCAM_NUM_ENTRIES
)
1038 *hash
|= (1 << hash_mac_addr(addr
[i
]));
1044 * t4vf_change_mac - modifies the exact-match filter for a MAC address
1045 * @adapter: the adapter
1046 * @viid: the Virtual Interface ID
1047 * @idx: index of existing filter for old value of MAC address, or -1
1048 * @addr: the new MAC address value
1049 * @persist: if idx < 0, the new MAC allocation should be persistent
1051 * Modifies an exact-match filter and sets it to the new MAC address.
1052 * Note that in general it is not possible to modify the value of a given
1053 * filter so the generic way to modify an address filter is to free the
1054 * one being used by the old address value and allocate a new filter for
1055 * the new address value. @idx can be -1 if the address is a new
1058 * Returns a negative error number or the index of the filter with the new
1061 int t4vf_change_mac(struct adapter
*adapter
, unsigned int viid
,
1062 int idx
, const u8
*addr
, bool persist
)
1065 struct fw_vi_mac_cmd cmd
, rpl
;
1066 struct fw_vi_mac_exact
*p
= &cmd
.u
.exact
[0];
1067 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1071 * If this is a new allocation, determine whether it should be
1072 * persistent (across a "freemacs" operation) or not.
1075 idx
= persist
? FW_VI_MAC_ADD_PERSIST_MAC
: FW_VI_MAC_ADD_MAC
;
1077 memset(&cmd
, 0, sizeof(cmd
));
1078 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1081 FW_VI_MAC_CMD_VIID(viid
));
1082 cmd
.freemacs_to_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
1083 p
->valid_to_idx
= cpu_to_be16(FW_VI_MAC_CMD_VALID
|
1084 FW_VI_MAC_CMD_IDX(idx
));
1085 memcpy(p
->macaddr
, addr
, sizeof(p
->macaddr
));
1087 ret
= t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), &rpl
);
1089 p
= &rpl
.u
.exact
[0];
1090 ret
= FW_VI_MAC_CMD_IDX_GET(be16_to_cpu(p
->valid_to_idx
));
1091 if (ret
>= FW_CLS_TCAM_NUM_ENTRIES
)
1098 * t4vf_set_addr_hash - program the MAC inexact-match hash filter
1099 * @adapter: the adapter
1100 * @viid: the Virtual Interface Identifier
1101 * @ucast: whether the hash filter should also match unicast addresses
1102 * @vec: the value to be written to the hash filter
1103 * @sleep_ok: call is allowed to sleep
1105 * Sets the 64-bit inexact-match hash filter for a virtual interface.
1107 int t4vf_set_addr_hash(struct adapter
*adapter
, unsigned int viid
,
1108 bool ucast
, u64 vec
, bool sleep_ok
)
1110 struct fw_vi_mac_cmd cmd
;
1111 size_t len16
= DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd
,
1114 memset(&cmd
, 0, sizeof(cmd
));
1115 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_MAC_CMD
) |
1118 FW_VI_ENABLE_CMD_VIID(viid
));
1119 cmd
.freemacs_to_len16
= cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN
|
1120 FW_VI_MAC_CMD_HASHUNIEN(ucast
) |
1121 FW_CMD_LEN16(len16
));
1122 cmd
.u
.hash
.hashvec
= cpu_to_be64(vec
);
1123 return t4vf_wr_mbox_core(adapter
, &cmd
, sizeof(cmd
), NULL
, sleep_ok
);
1127 * t4vf_get_port_stats - collect "port" statistics
1128 * @adapter: the adapter
1129 * @pidx: the port index
1130 * @s: the stats structure to fill
1132 * Collect statistics for the "port"'s Virtual Interface.
1134 int t4vf_get_port_stats(struct adapter
*adapter
, int pidx
,
1135 struct t4vf_port_stats
*s
)
1137 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1138 struct fw_vi_stats_vf fwstats
;
1139 unsigned int rem
= VI_VF_NUM_STATS
;
1140 __be64
*fwsp
= (__be64
*)&fwstats
;
1143 * Grab the Virtual Interface statistics a chunk at a time via mailbox
1144 * commands. We could use a Work Request and get all of them at once
1145 * but that's an asynchronous interface which is awkward to use.
1148 unsigned int ix
= VI_VF_NUM_STATS
- rem
;
1149 unsigned int nstats
= min(6U, rem
);
1150 struct fw_vi_stats_cmd cmd
, rpl
;
1151 size_t len
= (offsetof(struct fw_vi_stats_cmd
, u
) +
1152 sizeof(struct fw_vi_stats_ctl
));
1153 size_t len16
= DIV_ROUND_UP(len
, 16);
1156 memset(&cmd
, 0, sizeof(cmd
));
1157 cmd
.op_to_viid
= cpu_to_be32(FW_CMD_OP(FW_VI_STATS_CMD
) |
1158 FW_VI_STATS_CMD_VIID(pi
->viid
) |
1161 cmd
.retval_len16
= cpu_to_be32(FW_CMD_LEN16(len16
));
1162 cmd
.u
.ctl
.nstats_ix
=
1163 cpu_to_be16(FW_VI_STATS_CMD_IX(ix
) |
1164 FW_VI_STATS_CMD_NSTATS(nstats
));
1165 ret
= t4vf_wr_mbox_ns(adapter
, &cmd
, len
, &rpl
);
1169 memcpy(fwsp
, &rpl
.u
.ctl
.stat0
, sizeof(__be64
) * nstats
);
1176 * Translate firmware statistics into host native statistics.
1178 s
->tx_bcast_bytes
= be64_to_cpu(fwstats
.tx_bcast_bytes
);
1179 s
->tx_bcast_frames
= be64_to_cpu(fwstats
.tx_bcast_frames
);
1180 s
->tx_mcast_bytes
= be64_to_cpu(fwstats
.tx_mcast_bytes
);
1181 s
->tx_mcast_frames
= be64_to_cpu(fwstats
.tx_mcast_frames
);
1182 s
->tx_ucast_bytes
= be64_to_cpu(fwstats
.tx_ucast_bytes
);
1183 s
->tx_ucast_frames
= be64_to_cpu(fwstats
.tx_ucast_frames
);
1184 s
->tx_drop_frames
= be64_to_cpu(fwstats
.tx_drop_frames
);
1185 s
->tx_offload_bytes
= be64_to_cpu(fwstats
.tx_offload_bytes
);
1186 s
->tx_offload_frames
= be64_to_cpu(fwstats
.tx_offload_frames
);
1188 s
->rx_bcast_bytes
= be64_to_cpu(fwstats
.rx_bcast_bytes
);
1189 s
->rx_bcast_frames
= be64_to_cpu(fwstats
.rx_bcast_frames
);
1190 s
->rx_mcast_bytes
= be64_to_cpu(fwstats
.rx_mcast_bytes
);
1191 s
->rx_mcast_frames
= be64_to_cpu(fwstats
.rx_mcast_frames
);
1192 s
->rx_ucast_bytes
= be64_to_cpu(fwstats
.rx_ucast_bytes
);
1193 s
->rx_ucast_frames
= be64_to_cpu(fwstats
.rx_ucast_frames
);
1195 s
->rx_err_frames
= be64_to_cpu(fwstats
.rx_err_frames
);
1201 * t4vf_iq_free - free an ingress queue and its free lists
1202 * @adapter: the adapter
1203 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
1204 * @iqid: ingress queue ID
1205 * @fl0id: FL0 queue ID or 0xffff if no attached FL0
1206 * @fl1id: FL1 queue ID or 0xffff if no attached FL1
1208 * Frees an ingress queue and its associated free lists, if any.
1210 int t4vf_iq_free(struct adapter
*adapter
, unsigned int iqtype
,
1211 unsigned int iqid
, unsigned int fl0id
, unsigned int fl1id
)
1213 struct fw_iq_cmd cmd
;
1215 memset(&cmd
, 0, sizeof(cmd
));
1216 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_IQ_CMD
) |
1219 cmd
.alloc_to_len16
= cpu_to_be32(FW_IQ_CMD_FREE
|
1221 cmd
.type_to_iqandstindex
=
1222 cpu_to_be32(FW_IQ_CMD_TYPE(iqtype
));
1224 cmd
.iqid
= cpu_to_be16(iqid
);
1225 cmd
.fl0id
= cpu_to_be16(fl0id
);
1226 cmd
.fl1id
= cpu_to_be16(fl1id
);
1227 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1231 * t4vf_eth_eq_free - free an Ethernet egress queue
1232 * @adapter: the adapter
1233 * @eqid: egress queue ID
1235 * Frees an Ethernet egress queue.
1237 int t4vf_eth_eq_free(struct adapter
*adapter
, unsigned int eqid
)
1239 struct fw_eq_eth_cmd cmd
;
1241 memset(&cmd
, 0, sizeof(cmd
));
1242 cmd
.op_to_vfn
= cpu_to_be32(FW_CMD_OP(FW_EQ_ETH_CMD
) |
1245 cmd
.alloc_to_len16
= cpu_to_be32(FW_EQ_ETH_CMD_FREE
|
1247 cmd
.eqid_pkd
= cpu_to_be32(FW_EQ_ETH_CMD_EQID(eqid
));
1248 return t4vf_wr_mbox(adapter
, &cmd
, sizeof(cmd
), NULL
);
1252 * t4vf_handle_fw_rpl - process a firmware reply message
1253 * @adapter: the adapter
1254 * @rpl: start of the firmware message
1256 * Processes a firmware message, such as link state change messages.
1258 int t4vf_handle_fw_rpl(struct adapter
*adapter
, const __be64
*rpl
)
1260 struct fw_cmd_hdr
*cmd_hdr
= (struct fw_cmd_hdr
*)rpl
;
1261 u8 opcode
= FW_CMD_OP_GET(be32_to_cpu(cmd_hdr
->hi
));
1266 * Link/module state change message.
1268 const struct fw_port_cmd
*port_cmd
= (void *)rpl
;
1270 int action
, port_id
, link_ok
, speed
, fc
, pidx
;
1273 * Extract various fields from port status change message.
1275 action
= FW_PORT_CMD_ACTION_GET(
1276 be32_to_cpu(port_cmd
->action_to_len16
));
1277 if (action
!= FW_PORT_ACTION_GET_PORT_INFO
) {
1278 dev_err(adapter
->pdev_dev
,
1279 "Unknown firmware PORT reply action %x\n",
1284 port_id
= FW_PORT_CMD_PORTID_GET(
1285 be32_to_cpu(port_cmd
->op_to_portid
));
1287 word
= be32_to_cpu(port_cmd
->u
.info
.lstatus_to_modtype
);
1288 link_ok
= (word
& FW_PORT_CMD_LSTATUS
) != 0;
1291 if (word
& FW_PORT_CMD_RXPAUSE
)
1293 if (word
& FW_PORT_CMD_TXPAUSE
)
1295 if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M
))
1297 else if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G
))
1299 else if (word
& FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G
))
1300 speed
= SPEED_10000
;
1303 * Scan all of our "ports" (Virtual Interfaces) looking for
1304 * those bound to the physical port which has changed. If
1305 * our recorded state doesn't match the current state,
1306 * signal that change to the OS code.
1308 for_each_port(adapter
, pidx
) {
1309 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
1310 struct link_config
*lc
;
1312 if (pi
->port_id
!= port_id
)
1316 if (link_ok
!= lc
->link_ok
|| speed
!= lc
->speed
||
1318 /* something changed */
1319 lc
->link_ok
= link_ok
;
1322 t4vf_os_link_changed(adapter
, pidx
, link_ok
);
1329 dev_err(adapter
->pdev_dev
, "Unknown firmware reply %X\n",