1 /*******************************************************************************
3 Intel 10 Gigabit PCI Express Linux driver
4 Copyright(c) 1999 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/pci.h>
29 #include <linux/delay.h>
30 #include <linux/sched.h>
31 #include <linux/netdevice.h>
34 #include "ixgbe_common.h"
35 #include "ixgbe_phy.h"
37 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
);
38 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
);
39 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
);
40 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
);
41 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
);
42 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
44 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
);
45 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
46 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
);
47 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
);
48 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
);
50 static void ixgbe_enable_rar(struct ixgbe_hw
*hw
, u32 index
);
51 static void ixgbe_disable_rar(struct ixgbe_hw
*hw
, u32 index
);
52 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
);
53 static void ixgbe_add_uc_addr(struct ixgbe_hw
*hw
, u8
*addr
, u32 vmdq
);
54 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
);
57 * ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
58 * @hw: pointer to hardware structure
60 * Starts the hardware by filling the bus info structure and media type, clears
61 * all on chip counters, initializes receive address registers, multicast
62 * table, VLAN filter table, calls routine to set up link and flow control
63 * settings, and leaves transmit and receive units disabled and uninitialized
65 s32
ixgbe_start_hw_generic(struct ixgbe_hw
*hw
)
69 /* Set the media type */
70 hw
->phy
.media_type
= hw
->mac
.ops
.get_media_type(hw
);
72 /* Identify the PHY */
73 hw
->phy
.ops
.identify(hw
);
75 /* Clear the VLAN filter table */
76 hw
->mac
.ops
.clear_vfta(hw
);
78 /* Clear statistics registers */
79 hw
->mac
.ops
.clear_hw_cntrs(hw
);
81 /* Set No Snoop Disable */
82 ctrl_ext
= IXGBE_READ_REG(hw
, IXGBE_CTRL_EXT
);
83 ctrl_ext
|= IXGBE_CTRL_EXT_NS_DIS
;
84 IXGBE_WRITE_REG(hw
, IXGBE_CTRL_EXT
, ctrl_ext
);
85 IXGBE_WRITE_FLUSH(hw
);
87 /* Setup flow control */
88 ixgbe_setup_fc(hw
, 0);
90 /* Clear adapter stopped flag */
91 hw
->adapter_stopped
= false;
97 * ixgbe_init_hw_generic - Generic hardware initialization
98 * @hw: pointer to hardware structure
100 * Initialize the hardware by resetting the hardware, filling the bus info
101 * structure and media type, clears all on chip counters, initializes receive
102 * address registers, multicast table, VLAN filter table, calls routine to set
103 * up link and flow control settings, and leaves transmit and receive units
104 * disabled and uninitialized
106 s32
ixgbe_init_hw_generic(struct ixgbe_hw
*hw
)
110 /* Reset the hardware */
111 status
= hw
->mac
.ops
.reset_hw(hw
);
115 status
= hw
->mac
.ops
.start_hw(hw
);
122 * ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
123 * @hw: pointer to hardware structure
125 * Clears all hardware statistics counters by reading them from the hardware
126 * Statistics counters are clear on read.
128 s32
ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw
*hw
)
132 IXGBE_READ_REG(hw
, IXGBE_CRCERRS
);
133 IXGBE_READ_REG(hw
, IXGBE_ILLERRC
);
134 IXGBE_READ_REG(hw
, IXGBE_ERRBC
);
135 IXGBE_READ_REG(hw
, IXGBE_MSPDC
);
136 for (i
= 0; i
< 8; i
++)
137 IXGBE_READ_REG(hw
, IXGBE_MPC(i
));
139 IXGBE_READ_REG(hw
, IXGBE_MLFC
);
140 IXGBE_READ_REG(hw
, IXGBE_MRFC
);
141 IXGBE_READ_REG(hw
, IXGBE_RLEC
);
142 IXGBE_READ_REG(hw
, IXGBE_LXONTXC
);
143 IXGBE_READ_REG(hw
, IXGBE_LXONRXC
);
144 IXGBE_READ_REG(hw
, IXGBE_LXOFFTXC
);
145 IXGBE_READ_REG(hw
, IXGBE_LXOFFRXC
);
147 for (i
= 0; i
< 8; i
++) {
148 IXGBE_READ_REG(hw
, IXGBE_PXONTXC(i
));
149 IXGBE_READ_REG(hw
, IXGBE_PXONRXC(i
));
150 IXGBE_READ_REG(hw
, IXGBE_PXOFFTXC(i
));
151 IXGBE_READ_REG(hw
, IXGBE_PXOFFRXC(i
));
154 IXGBE_READ_REG(hw
, IXGBE_PRC64
);
155 IXGBE_READ_REG(hw
, IXGBE_PRC127
);
156 IXGBE_READ_REG(hw
, IXGBE_PRC255
);
157 IXGBE_READ_REG(hw
, IXGBE_PRC511
);
158 IXGBE_READ_REG(hw
, IXGBE_PRC1023
);
159 IXGBE_READ_REG(hw
, IXGBE_PRC1522
);
160 IXGBE_READ_REG(hw
, IXGBE_GPRC
);
161 IXGBE_READ_REG(hw
, IXGBE_BPRC
);
162 IXGBE_READ_REG(hw
, IXGBE_MPRC
);
163 IXGBE_READ_REG(hw
, IXGBE_GPTC
);
164 IXGBE_READ_REG(hw
, IXGBE_GORCL
);
165 IXGBE_READ_REG(hw
, IXGBE_GORCH
);
166 IXGBE_READ_REG(hw
, IXGBE_GOTCL
);
167 IXGBE_READ_REG(hw
, IXGBE_GOTCH
);
168 for (i
= 0; i
< 8; i
++)
169 IXGBE_READ_REG(hw
, IXGBE_RNBC(i
));
170 IXGBE_READ_REG(hw
, IXGBE_RUC
);
171 IXGBE_READ_REG(hw
, IXGBE_RFC
);
172 IXGBE_READ_REG(hw
, IXGBE_ROC
);
173 IXGBE_READ_REG(hw
, IXGBE_RJC
);
174 IXGBE_READ_REG(hw
, IXGBE_MNGPRC
);
175 IXGBE_READ_REG(hw
, IXGBE_MNGPDC
);
176 IXGBE_READ_REG(hw
, IXGBE_MNGPTC
);
177 IXGBE_READ_REG(hw
, IXGBE_TORL
);
178 IXGBE_READ_REG(hw
, IXGBE_TORH
);
179 IXGBE_READ_REG(hw
, IXGBE_TPR
);
180 IXGBE_READ_REG(hw
, IXGBE_TPT
);
181 IXGBE_READ_REG(hw
, IXGBE_PTC64
);
182 IXGBE_READ_REG(hw
, IXGBE_PTC127
);
183 IXGBE_READ_REG(hw
, IXGBE_PTC255
);
184 IXGBE_READ_REG(hw
, IXGBE_PTC511
);
185 IXGBE_READ_REG(hw
, IXGBE_PTC1023
);
186 IXGBE_READ_REG(hw
, IXGBE_PTC1522
);
187 IXGBE_READ_REG(hw
, IXGBE_MPTC
);
188 IXGBE_READ_REG(hw
, IXGBE_BPTC
);
189 for (i
= 0; i
< 16; i
++) {
190 IXGBE_READ_REG(hw
, IXGBE_QPRC(i
));
191 IXGBE_READ_REG(hw
, IXGBE_QBRC(i
));
192 IXGBE_READ_REG(hw
, IXGBE_QPTC(i
));
193 IXGBE_READ_REG(hw
, IXGBE_QBTC(i
));
200 * ixgbe_read_pba_num_generic - Reads part number from EEPROM
201 * @hw: pointer to hardware structure
202 * @pba_num: stores the part number from the EEPROM
204 * Reads the part number from the EEPROM.
206 s32
ixgbe_read_pba_num_generic(struct ixgbe_hw
*hw
, u32
*pba_num
)
211 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM0_PTR
, &data
);
213 hw_dbg(hw
, "NVM Read Error\n");
216 *pba_num
= (u32
)(data
<< 16);
218 ret_val
= hw
->eeprom
.ops
.read(hw
, IXGBE_PBANUM1_PTR
, &data
);
220 hw_dbg(hw
, "NVM Read Error\n");
229 * ixgbe_get_mac_addr_generic - Generic get MAC address
230 * @hw: pointer to hardware structure
231 * @mac_addr: Adapter MAC address
233 * Reads the adapter's MAC address from first Receive Address Register (RAR0)
234 * A reset of the adapter must be performed prior to calling this function
235 * in order for the MAC address to have been loaded from the EEPROM into RAR0
237 s32
ixgbe_get_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*mac_addr
)
243 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(0));
244 rar_low
= IXGBE_READ_REG(hw
, IXGBE_RAL(0));
246 for (i
= 0; i
< 4; i
++)
247 mac_addr
[i
] = (u8
)(rar_low
>> (i
*8));
249 for (i
= 0; i
< 2; i
++)
250 mac_addr
[i
+4] = (u8
)(rar_high
>> (i
*8));
256 * ixgbe_get_bus_info_generic - Generic set PCI bus info
257 * @hw: pointer to hardware structure
259 * Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
261 s32
ixgbe_get_bus_info_generic(struct ixgbe_hw
*hw
)
263 struct ixgbe_adapter
*adapter
= hw
->back
;
264 struct ixgbe_mac_info
*mac
= &hw
->mac
;
267 hw
->bus
.type
= ixgbe_bus_type_pci_express
;
269 /* Get the negotiated link width and speed from PCI config space */
270 pci_read_config_word(adapter
->pdev
, IXGBE_PCI_LINK_STATUS
,
273 switch (link_status
& IXGBE_PCI_LINK_WIDTH
) {
274 case IXGBE_PCI_LINK_WIDTH_1
:
275 hw
->bus
.width
= ixgbe_bus_width_pcie_x1
;
277 case IXGBE_PCI_LINK_WIDTH_2
:
278 hw
->bus
.width
= ixgbe_bus_width_pcie_x2
;
280 case IXGBE_PCI_LINK_WIDTH_4
:
281 hw
->bus
.width
= ixgbe_bus_width_pcie_x4
;
283 case IXGBE_PCI_LINK_WIDTH_8
:
284 hw
->bus
.width
= ixgbe_bus_width_pcie_x8
;
287 hw
->bus
.width
= ixgbe_bus_width_unknown
;
291 switch (link_status
& IXGBE_PCI_LINK_SPEED
) {
292 case IXGBE_PCI_LINK_SPEED_2500
:
293 hw
->bus
.speed
= ixgbe_bus_speed_2500
;
295 case IXGBE_PCI_LINK_SPEED_5000
:
296 hw
->bus
.speed
= ixgbe_bus_speed_5000
;
299 hw
->bus
.speed
= ixgbe_bus_speed_unknown
;
303 mac
->ops
.set_lan_id(hw
);
309 * ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
310 * @hw: pointer to the HW structure
312 * Determines the LAN function id by reading memory-mapped registers
313 * and swaps the port value if requested.
315 void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw
*hw
)
317 struct ixgbe_bus_info
*bus
= &hw
->bus
;
320 reg
= IXGBE_READ_REG(hw
, IXGBE_STATUS
);
321 bus
->func
= (reg
& IXGBE_STATUS_LAN_ID
) >> IXGBE_STATUS_LAN_ID_SHIFT
;
322 bus
->lan_id
= bus
->func
;
324 /* check for a port swap */
325 reg
= IXGBE_READ_REG(hw
, IXGBE_FACTPS
);
326 if (reg
& IXGBE_FACTPS_LFS
)
331 * ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
332 * @hw: pointer to hardware structure
334 * Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
335 * disables transmit and receive units. The adapter_stopped flag is used by
336 * the shared code and drivers to determine if the adapter is in a stopped
337 * state and should not touch the hardware.
339 s32
ixgbe_stop_adapter_generic(struct ixgbe_hw
*hw
)
341 u32 number_of_queues
;
346 * Set the adapter_stopped flag so other driver functions stop touching
349 hw
->adapter_stopped
= true;
351 /* Disable the receive unit */
352 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXCTRL
);
353 reg_val
&= ~(IXGBE_RXCTRL_RXEN
);
354 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, reg_val
);
355 IXGBE_WRITE_FLUSH(hw
);
358 /* Clear interrupt mask to stop from interrupts being generated */
359 IXGBE_WRITE_REG(hw
, IXGBE_EIMC
, IXGBE_IRQ_CLEAR_MASK
);
361 /* Clear any pending interrupts */
362 IXGBE_READ_REG(hw
, IXGBE_EICR
);
364 /* Disable the transmit unit. Each queue must be disabled. */
365 number_of_queues
= hw
->mac
.max_tx_queues
;
366 for (i
= 0; i
< number_of_queues
; i
++) {
367 reg_val
= IXGBE_READ_REG(hw
, IXGBE_TXDCTL(i
));
368 if (reg_val
& IXGBE_TXDCTL_ENABLE
) {
369 reg_val
&= ~IXGBE_TXDCTL_ENABLE
;
370 IXGBE_WRITE_REG(hw
, IXGBE_TXDCTL(i
), reg_val
);
375 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
376 * access and verify no pending requests
378 if (ixgbe_disable_pcie_master(hw
) != 0)
379 hw_dbg(hw
, "PCI-E Master disable polling has failed.\n");
385 * ixgbe_led_on_generic - Turns on the software controllable LEDs.
386 * @hw: pointer to hardware structure
387 * @index: led number to turn on
389 s32
ixgbe_led_on_generic(struct ixgbe_hw
*hw
, u32 index
)
391 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
393 /* To turn on the LED, set mode to ON. */
394 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
395 led_reg
|= IXGBE_LED_ON
<< IXGBE_LED_MODE_SHIFT(index
);
396 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
397 IXGBE_WRITE_FLUSH(hw
);
403 * ixgbe_led_off_generic - Turns off the software controllable LEDs.
404 * @hw: pointer to hardware structure
405 * @index: led number to turn off
407 s32
ixgbe_led_off_generic(struct ixgbe_hw
*hw
, u32 index
)
409 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
411 /* To turn off the LED, set mode to OFF. */
412 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
413 led_reg
|= IXGBE_LED_OFF
<< IXGBE_LED_MODE_SHIFT(index
);
414 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
415 IXGBE_WRITE_FLUSH(hw
);
421 * ixgbe_init_eeprom_params_generic - Initialize EEPROM params
422 * @hw: pointer to hardware structure
424 * Initializes the EEPROM parameters ixgbe_eeprom_info within the
425 * ixgbe_hw struct in order to set up EEPROM access.
427 s32
ixgbe_init_eeprom_params_generic(struct ixgbe_hw
*hw
)
429 struct ixgbe_eeprom_info
*eeprom
= &hw
->eeprom
;
433 if (eeprom
->type
== ixgbe_eeprom_uninitialized
) {
434 eeprom
->type
= ixgbe_eeprom_none
;
435 /* Set default semaphore delay to 10ms which is a well
437 eeprom
->semaphore_delay
= 10;
440 * Check for EEPROM present first.
441 * If not present leave as none
443 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
444 if (eec
& IXGBE_EEC_PRES
) {
445 eeprom
->type
= ixgbe_eeprom_spi
;
448 * SPI EEPROM is assumed here. This code would need to
449 * change if a future EEPROM is not SPI.
451 eeprom_size
= (u16
)((eec
& IXGBE_EEC_SIZE
) >>
452 IXGBE_EEC_SIZE_SHIFT
);
453 eeprom
->word_size
= 1 << (eeprom_size
+
454 IXGBE_EEPROM_WORD_SIZE_SHIFT
);
457 if (eec
& IXGBE_EEC_ADDR_SIZE
)
458 eeprom
->address_bits
= 16;
460 eeprom
->address_bits
= 8;
461 hw_dbg(hw
, "Eeprom params: type = %d, size = %d, address bits: "
462 "%d\n", eeprom
->type
, eeprom
->word_size
,
463 eeprom
->address_bits
);
470 * ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
471 * @hw: pointer to hardware structure
472 * @offset: offset within the EEPROM to be written to
473 * @data: 16 bit word to be written to the EEPROM
475 * If ixgbe_eeprom_update_checksum is not called after this function, the
476 * EEPROM will most likely contain an invalid checksum.
478 s32
ixgbe_write_eeprom_generic(struct ixgbe_hw
*hw
, u16 offset
, u16 data
)
481 u8 write_opcode
= IXGBE_EEPROM_WRITE_OPCODE_SPI
;
483 hw
->eeprom
.ops
.init_params(hw
);
485 if (offset
>= hw
->eeprom
.word_size
) {
486 status
= IXGBE_ERR_EEPROM
;
490 /* Prepare the EEPROM for writing */
491 status
= ixgbe_acquire_eeprom(hw
);
494 if (ixgbe_ready_eeprom(hw
) != 0) {
495 ixgbe_release_eeprom(hw
);
496 status
= IXGBE_ERR_EEPROM
;
501 ixgbe_standby_eeprom(hw
);
503 /* Send the WRITE ENABLE command (8 bit opcode ) */
504 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_WREN_OPCODE_SPI
,
505 IXGBE_EEPROM_OPCODE_BITS
);
507 ixgbe_standby_eeprom(hw
);
510 * Some SPI eeproms use the 8th address bit embedded in the
513 if ((hw
->eeprom
.address_bits
== 8) && (offset
>= 128))
514 write_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
516 /* Send the Write command (8-bit opcode + addr) */
517 ixgbe_shift_out_eeprom_bits(hw
, write_opcode
,
518 IXGBE_EEPROM_OPCODE_BITS
);
519 ixgbe_shift_out_eeprom_bits(hw
, (u16
)(offset
*2),
520 hw
->eeprom
.address_bits
);
523 data
= (data
>> 8) | (data
<< 8);
524 ixgbe_shift_out_eeprom_bits(hw
, data
, 16);
525 ixgbe_standby_eeprom(hw
);
527 msleep(hw
->eeprom
.semaphore_delay
);
528 /* Done with writing - release the EEPROM */
529 ixgbe_release_eeprom(hw
);
537 * ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
538 * @hw: pointer to hardware structure
539 * @offset: offset within the EEPROM to be read
540 * @data: read 16 bit value from EEPROM
542 * Reads 16 bit value from EEPROM through bit-bang method
544 s32
ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw
*hw
, u16 offset
,
549 u8 read_opcode
= IXGBE_EEPROM_READ_OPCODE_SPI
;
551 hw
->eeprom
.ops
.init_params(hw
);
553 if (offset
>= hw
->eeprom
.word_size
) {
554 status
= IXGBE_ERR_EEPROM
;
558 /* Prepare the EEPROM for reading */
559 status
= ixgbe_acquire_eeprom(hw
);
562 if (ixgbe_ready_eeprom(hw
) != 0) {
563 ixgbe_release_eeprom(hw
);
564 status
= IXGBE_ERR_EEPROM
;
569 ixgbe_standby_eeprom(hw
);
572 * Some SPI eeproms use the 8th address bit embedded in the
575 if ((hw
->eeprom
.address_bits
== 8) && (offset
>= 128))
576 read_opcode
|= IXGBE_EEPROM_A8_OPCODE_SPI
;
578 /* Send the READ command (opcode + addr) */
579 ixgbe_shift_out_eeprom_bits(hw
, read_opcode
,
580 IXGBE_EEPROM_OPCODE_BITS
);
581 ixgbe_shift_out_eeprom_bits(hw
, (u16
)(offset
*2),
582 hw
->eeprom
.address_bits
);
585 word_in
= ixgbe_shift_in_eeprom_bits(hw
, 16);
586 *data
= (word_in
>> 8) | (word_in
<< 8);
588 /* End this read operation */
589 ixgbe_release_eeprom(hw
);
597 * ixgbe_read_eerd_generic - Read EEPROM word using EERD
598 * @hw: pointer to hardware structure
599 * @offset: offset of word in the EEPROM to read
600 * @data: word read from the EEPROM
602 * Reads a 16 bit word from the EEPROM using the EERD register.
604 s32
ixgbe_read_eerd_generic(struct ixgbe_hw
*hw
, u16 offset
, u16
*data
)
609 hw
->eeprom
.ops
.init_params(hw
);
611 if (offset
>= hw
->eeprom
.word_size
) {
612 status
= IXGBE_ERR_EEPROM
;
616 eerd
= (offset
<< IXGBE_EEPROM_RW_ADDR_SHIFT
) +
617 IXGBE_EEPROM_RW_REG_START
;
619 IXGBE_WRITE_REG(hw
, IXGBE_EERD
, eerd
);
620 status
= ixgbe_poll_eerd_eewr_done(hw
, IXGBE_NVM_POLL_READ
);
623 *data
= (IXGBE_READ_REG(hw
, IXGBE_EERD
) >>
624 IXGBE_EEPROM_RW_REG_DATA
);
626 hw_dbg(hw
, "Eeprom read timed out\n");
633 * ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
634 * @hw: pointer to hardware structure
635 * @ee_reg: EEPROM flag for polling
637 * Polls the status bit (bit 1) of the EERD or EEWR to determine when the
638 * read or write is done respectively.
640 s32
ixgbe_poll_eerd_eewr_done(struct ixgbe_hw
*hw
, u32 ee_reg
)
644 s32 status
= IXGBE_ERR_EEPROM
;
646 for (i
= 0; i
< IXGBE_EERD_EEWR_ATTEMPTS
; i
++) {
647 if (ee_reg
== IXGBE_NVM_POLL_READ
)
648 reg
= IXGBE_READ_REG(hw
, IXGBE_EERD
);
650 reg
= IXGBE_READ_REG(hw
, IXGBE_EEWR
);
652 if (reg
& IXGBE_EEPROM_RW_REG_DONE
) {
662 * ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
663 * @hw: pointer to hardware structure
665 * Prepares EEPROM for access using bit-bang method. This function should
666 * be called before issuing a command to the EEPROM.
668 static s32
ixgbe_acquire_eeprom(struct ixgbe_hw
*hw
)
674 if (ixgbe_acquire_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
) != 0)
675 status
= IXGBE_ERR_SWFW_SYNC
;
678 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
680 /* Request EEPROM Access */
681 eec
|= IXGBE_EEC_REQ
;
682 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
684 for (i
= 0; i
< IXGBE_EEPROM_GRANT_ATTEMPTS
; i
++) {
685 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
686 if (eec
& IXGBE_EEC_GNT
)
691 /* Release if grant not acquired */
692 if (!(eec
& IXGBE_EEC_GNT
)) {
693 eec
&= ~IXGBE_EEC_REQ
;
694 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
695 hw_dbg(hw
, "Could not acquire EEPROM grant\n");
697 ixgbe_release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
698 status
= IXGBE_ERR_EEPROM
;
702 /* Setup EEPROM for Read/Write */
704 /* Clear CS and SK */
705 eec
&= ~(IXGBE_EEC_CS
| IXGBE_EEC_SK
);
706 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
707 IXGBE_WRITE_FLUSH(hw
);
714 * ixgbe_get_eeprom_semaphore - Get hardware semaphore
715 * @hw: pointer to hardware structure
717 * Sets the hardware semaphores so EEPROM access can occur for bit-bang method
719 static s32
ixgbe_get_eeprom_semaphore(struct ixgbe_hw
*hw
)
721 s32 status
= IXGBE_ERR_EEPROM
;
726 /* Set timeout value based on size of EEPROM */
727 timeout
= hw
->eeprom
.word_size
+ 1;
729 /* Get SMBI software semaphore between device drivers first */
730 for (i
= 0; i
< timeout
; i
++) {
732 * If the SMBI bit is 0 when we read it, then the bit will be
733 * set and we have the semaphore
735 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
736 if (!(swsm
& IXGBE_SWSM_SMBI
)) {
743 /* Now get the semaphore between SW/FW through the SWESMBI bit */
745 for (i
= 0; i
< timeout
; i
++) {
746 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
748 /* Set the SW EEPROM semaphore bit to request access */
749 swsm
|= IXGBE_SWSM_SWESMBI
;
750 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
753 * If we set the bit successfully then we got the
756 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
757 if (swsm
& IXGBE_SWSM_SWESMBI
)
764 * Release semaphores and return error if SW EEPROM semaphore
765 * was not granted because we don't have access to the EEPROM
768 hw_dbg(hw
, "Driver can't access the Eeprom - Semaphore "
770 ixgbe_release_eeprom_semaphore(hw
);
771 status
= IXGBE_ERR_EEPROM
;
779 * ixgbe_release_eeprom_semaphore - Release hardware semaphore
780 * @hw: pointer to hardware structure
782 * This function clears hardware semaphore bits.
784 static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw
*hw
)
788 swsm
= IXGBE_READ_REG(hw
, IXGBE_SWSM
);
790 /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
791 swsm
&= ~(IXGBE_SWSM_SWESMBI
| IXGBE_SWSM_SMBI
);
792 IXGBE_WRITE_REG(hw
, IXGBE_SWSM
, swsm
);
793 IXGBE_WRITE_FLUSH(hw
);
797 * ixgbe_ready_eeprom - Polls for EEPROM ready
798 * @hw: pointer to hardware structure
800 static s32
ixgbe_ready_eeprom(struct ixgbe_hw
*hw
)
807 * Read "Status Register" repeatedly until the LSB is cleared. The
808 * EEPROM will signal that the command has been completed by clearing
809 * bit 0 of the internal status register. If it's not cleared within
810 * 5 milliseconds, then error out.
812 for (i
= 0; i
< IXGBE_EEPROM_MAX_RETRY_SPI
; i
+= 5) {
813 ixgbe_shift_out_eeprom_bits(hw
, IXGBE_EEPROM_RDSR_OPCODE_SPI
,
814 IXGBE_EEPROM_OPCODE_BITS
);
815 spi_stat_reg
= (u8
)ixgbe_shift_in_eeprom_bits(hw
, 8);
816 if (!(spi_stat_reg
& IXGBE_EEPROM_STATUS_RDY_SPI
))
820 ixgbe_standby_eeprom(hw
);
824 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
825 * devices (and only 0-5mSec on 5V devices)
827 if (i
>= IXGBE_EEPROM_MAX_RETRY_SPI
) {
828 hw_dbg(hw
, "SPI EEPROM Status error\n");
829 status
= IXGBE_ERR_EEPROM
;
836 * ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
837 * @hw: pointer to hardware structure
839 static void ixgbe_standby_eeprom(struct ixgbe_hw
*hw
)
843 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
845 /* Toggle CS to flush commands */
847 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
848 IXGBE_WRITE_FLUSH(hw
);
850 eec
&= ~IXGBE_EEC_CS
;
851 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
852 IXGBE_WRITE_FLUSH(hw
);
857 * ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
858 * @hw: pointer to hardware structure
859 * @data: data to send to the EEPROM
860 * @count: number of bits to shift out
862 static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw
*hw
, u16 data
,
869 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
872 * Mask is used to shift "count" bits of "data" out to the EEPROM
873 * one bit at a time. Determine the starting bit based on count
875 mask
= 0x01 << (count
- 1);
877 for (i
= 0; i
< count
; i
++) {
879 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
880 * "1", and then raising and then lowering the clock (the SK
881 * bit controls the clock input to the EEPROM). A "0" is
882 * shifted out to the EEPROM by setting "DI" to "0" and then
883 * raising and then lowering the clock.
888 eec
&= ~IXGBE_EEC_DI
;
890 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
891 IXGBE_WRITE_FLUSH(hw
);
895 ixgbe_raise_eeprom_clk(hw
, &eec
);
896 ixgbe_lower_eeprom_clk(hw
, &eec
);
899 * Shift mask to signify next bit of data to shift in to the
905 /* We leave the "DI" bit set to "0" when we leave this routine. */
906 eec
&= ~IXGBE_EEC_DI
;
907 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
908 IXGBE_WRITE_FLUSH(hw
);
912 * ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
913 * @hw: pointer to hardware structure
915 static u16
ixgbe_shift_in_eeprom_bits(struct ixgbe_hw
*hw
, u16 count
)
922 * In order to read a register from the EEPROM, we need to shift
923 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
924 * the clock input to the EEPROM (setting the SK bit), and then reading
925 * the value of the "DO" bit. During this "shifting in" process the
926 * "DI" bit should always be clear.
928 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
930 eec
&= ~(IXGBE_EEC_DO
| IXGBE_EEC_DI
);
932 for (i
= 0; i
< count
; i
++) {
934 ixgbe_raise_eeprom_clk(hw
, &eec
);
936 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
938 eec
&= ~(IXGBE_EEC_DI
);
939 if (eec
& IXGBE_EEC_DO
)
942 ixgbe_lower_eeprom_clk(hw
, &eec
);
949 * ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
950 * @hw: pointer to hardware structure
951 * @eec: EEC register's current value
953 static void ixgbe_raise_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
956 * Raise the clock input to the EEPROM
957 * (setting the SK bit), then delay
959 *eec
= *eec
| IXGBE_EEC_SK
;
960 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
961 IXGBE_WRITE_FLUSH(hw
);
966 * ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
967 * @hw: pointer to hardware structure
968 * @eecd: EECD's current value
970 static void ixgbe_lower_eeprom_clk(struct ixgbe_hw
*hw
, u32
*eec
)
973 * Lower the clock input to the EEPROM (clearing the SK bit), then
976 *eec
= *eec
& ~IXGBE_EEC_SK
;
977 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, *eec
);
978 IXGBE_WRITE_FLUSH(hw
);
983 * ixgbe_release_eeprom - Release EEPROM, release semaphores
984 * @hw: pointer to hardware structure
986 static void ixgbe_release_eeprom(struct ixgbe_hw
*hw
)
990 eec
= IXGBE_READ_REG(hw
, IXGBE_EEC
);
992 eec
|= IXGBE_EEC_CS
; /* Pull CS high */
993 eec
&= ~IXGBE_EEC_SK
; /* Lower SCK */
995 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
996 IXGBE_WRITE_FLUSH(hw
);
1000 /* Stop requesting EEPROM access */
1001 eec
&= ~IXGBE_EEC_REQ
;
1002 IXGBE_WRITE_REG(hw
, IXGBE_EEC
, eec
);
1004 ixgbe_release_swfw_sync(hw
, IXGBE_GSSR_EEP_SM
);
1008 * ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
1009 * @hw: pointer to hardware structure
1011 static u16
ixgbe_calc_eeprom_checksum(struct ixgbe_hw
*hw
)
1020 /* Include 0x0-0x3F in the checksum */
1021 for (i
= 0; i
< IXGBE_EEPROM_CHECKSUM
; i
++) {
1022 if (hw
->eeprom
.ops
.read(hw
, i
, &word
) != 0) {
1023 hw_dbg(hw
, "EEPROM read failed\n");
1029 /* Include all data from pointers except for the fw pointer */
1030 for (i
= IXGBE_PCIE_ANALOG_PTR
; i
< IXGBE_FW_PTR
; i
++) {
1031 hw
->eeprom
.ops
.read(hw
, i
, &pointer
);
1033 /* Make sure the pointer seems valid */
1034 if (pointer
!= 0xFFFF && pointer
!= 0) {
1035 hw
->eeprom
.ops
.read(hw
, pointer
, &length
);
1037 if (length
!= 0xFFFF && length
!= 0) {
1038 for (j
= pointer
+1; j
<= pointer
+length
; j
++) {
1039 hw
->eeprom
.ops
.read(hw
, j
, &word
);
1046 checksum
= (u16
)IXGBE_EEPROM_SUM
- checksum
;
1052 * ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1053 * @hw: pointer to hardware structure
1054 * @checksum_val: calculated checksum
1056 * Performs checksum calculation and validates the EEPROM checksum. If the
1057 * caller does not need checksum_val, the value can be NULL.
1059 s32
ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw
*hw
,
1064 u16 read_checksum
= 0;
1067 * Read the first word from the EEPROM. If this times out or fails, do
1068 * not continue or we could be in for a very long wait while every
1071 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1074 checksum
= ixgbe_calc_eeprom_checksum(hw
);
1076 hw
->eeprom
.ops
.read(hw
, IXGBE_EEPROM_CHECKSUM
, &read_checksum
);
1079 * Verify read checksum from EEPROM is the same as
1080 * calculated checksum
1082 if (read_checksum
!= checksum
)
1083 status
= IXGBE_ERR_EEPROM_CHECKSUM
;
1085 /* If the user cares, return the calculated checksum */
1087 *checksum_val
= checksum
;
1089 hw_dbg(hw
, "EEPROM read failed\n");
1096 * ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1097 * @hw: pointer to hardware structure
1099 s32
ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw
*hw
)
1105 * Read the first word from the EEPROM. If this times out or fails, do
1106 * not continue or we could be in for a very long wait while every
1109 status
= hw
->eeprom
.ops
.read(hw
, 0, &checksum
);
1112 checksum
= ixgbe_calc_eeprom_checksum(hw
);
1113 status
= hw
->eeprom
.ops
.write(hw
, IXGBE_EEPROM_CHECKSUM
,
1116 hw_dbg(hw
, "EEPROM read failed\n");
1123 * ixgbe_validate_mac_addr - Validate MAC address
1124 * @mac_addr: pointer to MAC address.
1126 * Tests a MAC address to ensure it is a valid Individual Address
1128 s32
ixgbe_validate_mac_addr(u8
*mac_addr
)
1132 /* Make sure it is not a multicast address */
1133 if (IXGBE_IS_MULTICAST(mac_addr
))
1134 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1135 /* Not a broadcast address */
1136 else if (IXGBE_IS_BROADCAST(mac_addr
))
1137 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1138 /* Reject the zero address */
1139 else if (mac_addr
[0] == 0 && mac_addr
[1] == 0 && mac_addr
[2] == 0 &&
1140 mac_addr
[3] == 0 && mac_addr
[4] == 0 && mac_addr
[5] == 0)
1141 status
= IXGBE_ERR_INVALID_MAC_ADDR
;
1147 * ixgbe_set_rar_generic - Set Rx address register
1148 * @hw: pointer to hardware structure
1149 * @index: Receive address register to write
1150 * @addr: Address to put into receive address register
1151 * @vmdq: VMDq "set" or "pool" index
1152 * @enable_addr: set flag that address is active
1154 * Puts an ethernet address into a receive address register.
1156 s32
ixgbe_set_rar_generic(struct ixgbe_hw
*hw
, u32 index
, u8
*addr
, u32 vmdq
,
1159 u32 rar_low
, rar_high
;
1160 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1162 /* setup VMDq pool selection before this RAR gets enabled */
1163 hw
->mac
.ops
.set_vmdq(hw
, index
, vmdq
);
1165 /* Make sure we are using a valid rar index range */
1166 if (index
< rar_entries
) {
1168 * HW expects these in little endian so we reverse the byte
1169 * order from network order (big endian) to little endian
1171 rar_low
= ((u32
)addr
[0] |
1172 ((u32
)addr
[1] << 8) |
1173 ((u32
)addr
[2] << 16) |
1174 ((u32
)addr
[3] << 24));
1176 * Some parts put the VMDq setting in the extra RAH bits,
1177 * so save everything except the lower 16 bits that hold part
1178 * of the address and the address valid bit.
1180 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1181 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1182 rar_high
|= ((u32
)addr
[4] | ((u32
)addr
[5] << 8));
1184 if (enable_addr
!= 0)
1185 rar_high
|= IXGBE_RAH_AV
;
1187 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), rar_low
);
1188 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1190 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1191 return IXGBE_ERR_RAR_INDEX
;
1198 * ixgbe_clear_rar_generic - Remove Rx address register
1199 * @hw: pointer to hardware structure
1200 * @index: Receive address register to write
1202 * Clears an ethernet address from a receive address register.
1204 s32
ixgbe_clear_rar_generic(struct ixgbe_hw
*hw
, u32 index
)
1207 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1209 /* Make sure we are using a valid rar index range */
1210 if (index
< rar_entries
) {
1212 * Some parts put the VMDq setting in the extra RAH bits,
1213 * so save everything except the lower 16 bits that hold part
1214 * of the address and the address valid bit.
1216 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1217 rar_high
&= ~(0x0000FFFF | IXGBE_RAH_AV
);
1219 IXGBE_WRITE_REG(hw
, IXGBE_RAL(index
), 0);
1220 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1222 hw_dbg(hw
, "RAR index %d is out of range.\n", index
);
1223 return IXGBE_ERR_RAR_INDEX
;
1226 /* clear VMDq pool/queue selection for this RAR */
1227 hw
->mac
.ops
.clear_vmdq(hw
, index
, IXGBE_CLEAR_VMDQ_ALL
);
1233 * ixgbe_enable_rar - Enable Rx address register
1234 * @hw: pointer to hardware structure
1235 * @index: index into the RAR table
1237 * Enables the select receive address register.
1239 static void ixgbe_enable_rar(struct ixgbe_hw
*hw
, u32 index
)
1243 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1244 rar_high
|= IXGBE_RAH_AV
;
1245 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1249 * ixgbe_disable_rar - Disable Rx address register
1250 * @hw: pointer to hardware structure
1251 * @index: index into the RAR table
1253 * Disables the select receive address register.
1255 static void ixgbe_disable_rar(struct ixgbe_hw
*hw
, u32 index
)
1259 rar_high
= IXGBE_READ_REG(hw
, IXGBE_RAH(index
));
1260 rar_high
&= (~IXGBE_RAH_AV
);
1261 IXGBE_WRITE_REG(hw
, IXGBE_RAH(index
), rar_high
);
1265 * ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1266 * @hw: pointer to hardware structure
1268 * Places the MAC address in receive address register 0 and clears the rest
1269 * of the receive address registers. Clears the multicast table. Assumes
1270 * the receiver is in reset when the routine is called.
1272 s32
ixgbe_init_rx_addrs_generic(struct ixgbe_hw
*hw
)
1275 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1278 * If the current mac address is valid, assume it is a software override
1279 * to the permanent address.
1280 * Otherwise, use the permanent address from the eeprom.
1282 if (ixgbe_validate_mac_addr(hw
->mac
.addr
) ==
1283 IXGBE_ERR_INVALID_MAC_ADDR
) {
1284 /* Get the MAC address from the RAR0 for later reference */
1285 hw
->mac
.ops
.get_mac_addr(hw
, hw
->mac
.addr
);
1287 hw_dbg(hw
, " Keeping Current RAR0 Addr =%pM\n", hw
->mac
.addr
);
1289 /* Setup the receive address. */
1290 hw_dbg(hw
, "Overriding MAC Address in RAR[0]\n");
1291 hw_dbg(hw
, " New MAC Addr =%pM\n", hw
->mac
.addr
);
1293 hw
->mac
.ops
.set_rar(hw
, 0, hw
->mac
.addr
, 0, IXGBE_RAH_AV
);
1295 hw
->addr_ctrl
.overflow_promisc
= 0;
1297 hw
->addr_ctrl
.rar_used_count
= 1;
1299 /* Zero out the other receive addresses. */
1300 hw_dbg(hw
, "Clearing RAR[1-%d]\n", rar_entries
- 1);
1301 for (i
= 1; i
< rar_entries
; i
++) {
1302 IXGBE_WRITE_REG(hw
, IXGBE_RAL(i
), 0);
1303 IXGBE_WRITE_REG(hw
, IXGBE_RAH(i
), 0);
1307 hw
->addr_ctrl
.mc_addr_in_rar_count
= 0;
1308 hw
->addr_ctrl
.mta_in_use
= 0;
1309 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1311 hw_dbg(hw
, " Clearing MTA\n");
1312 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1313 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1315 if (hw
->mac
.ops
.init_uta_tables
)
1316 hw
->mac
.ops
.init_uta_tables(hw
);
1322 * ixgbe_add_uc_addr - Adds a secondary unicast address.
1323 * @hw: pointer to hardware structure
1324 * @addr: new address
1326 * Adds it to unused receive address register or goes into promiscuous mode.
1328 static void ixgbe_add_uc_addr(struct ixgbe_hw
*hw
, u8
*addr
, u32 vmdq
)
1330 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1333 hw_dbg(hw
, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
1334 addr
[0], addr
[1], addr
[2], addr
[3], addr
[4], addr
[5]);
1337 * Place this address in the RAR if there is room,
1338 * else put the controller into promiscuous mode
1340 if (hw
->addr_ctrl
.rar_used_count
< rar_entries
) {
1341 rar
= hw
->addr_ctrl
.rar_used_count
-
1342 hw
->addr_ctrl
.mc_addr_in_rar_count
;
1343 hw
->mac
.ops
.set_rar(hw
, rar
, addr
, vmdq
, IXGBE_RAH_AV
);
1344 hw_dbg(hw
, "Added a secondary address to RAR[%d]\n", rar
);
1345 hw
->addr_ctrl
.rar_used_count
++;
1347 hw
->addr_ctrl
.overflow_promisc
++;
1350 hw_dbg(hw
, "ixgbe_add_uc_addr Complete\n");
1354 * ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
1355 * @hw: pointer to hardware structure
1356 * @netdev: pointer to net device structure
1358 * The given list replaces any existing list. Clears the secondary addrs from
1359 * receive address registers. Uses unused receive address registers for the
1360 * first secondary addresses, and falls back to promiscuous mode as needed.
1362 * Drivers using secondary unicast addresses must set user_set_promisc when
1363 * manually putting the device into promiscuous mode.
1365 s32
ixgbe_update_uc_addr_list_generic(struct ixgbe_hw
*hw
,
1366 struct net_device
*netdev
)
1369 u32 old_promisc_setting
= hw
->addr_ctrl
.overflow_promisc
;
1372 struct netdev_hw_addr
*ha
;
1375 * Clear accounting of old secondary address list,
1376 * don't count RAR[0]
1378 uc_addr_in_use
= hw
->addr_ctrl
.rar_used_count
- 1;
1379 hw
->addr_ctrl
.rar_used_count
-= uc_addr_in_use
;
1380 hw
->addr_ctrl
.overflow_promisc
= 0;
1382 /* Zero out the other receive addresses */
1383 hw_dbg(hw
, "Clearing RAR[1-%d]\n", uc_addr_in_use
+ 1);
1384 for (i
= 0; i
< uc_addr_in_use
; i
++) {
1385 IXGBE_WRITE_REG(hw
, IXGBE_RAL(1+i
), 0);
1386 IXGBE_WRITE_REG(hw
, IXGBE_RAH(1+i
), 0);
1389 /* Add the new addresses */
1390 netdev_for_each_uc_addr(ha
, netdev
) {
1391 hw_dbg(hw
, " Adding the secondary addresses:\n");
1392 ixgbe_add_uc_addr(hw
, ha
->addr
, 0);
1395 if (hw
->addr_ctrl
.overflow_promisc
) {
1396 /* enable promisc if not already in overflow or set by user */
1397 if (!old_promisc_setting
&& !hw
->addr_ctrl
.user_set_promisc
) {
1398 hw_dbg(hw
, " Entering address overflow promisc mode\n");
1399 fctrl
= IXGBE_READ_REG(hw
, IXGBE_FCTRL
);
1400 fctrl
|= IXGBE_FCTRL_UPE
;
1401 IXGBE_WRITE_REG(hw
, IXGBE_FCTRL
, fctrl
);
1402 hw
->addr_ctrl
.uc_set_promisc
= true;
1405 /* only disable if set by overflow, not by user */
1406 if ((old_promisc_setting
&& hw
->addr_ctrl
.uc_set_promisc
) &&
1407 !(hw
->addr_ctrl
.user_set_promisc
)) {
1408 hw_dbg(hw
, " Leaving address overflow promisc mode\n");
1409 fctrl
= IXGBE_READ_REG(hw
, IXGBE_FCTRL
);
1410 fctrl
&= ~IXGBE_FCTRL_UPE
;
1411 IXGBE_WRITE_REG(hw
, IXGBE_FCTRL
, fctrl
);
1412 hw
->addr_ctrl
.uc_set_promisc
= false;
1416 hw_dbg(hw
, "ixgbe_update_uc_addr_list_generic Complete\n");
1421 * ixgbe_mta_vector - Determines bit-vector in multicast table to set
1422 * @hw: pointer to hardware structure
1423 * @mc_addr: the multicast address
1425 * Extracts the 12 bits, from a multicast address, to determine which
1426 * bit-vector to set in the multicast table. The hardware uses 12 bits, from
1427 * incoming rx multicast addresses, to determine the bit-vector to check in
1428 * the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1429 * by the MO field of the MCSTCTRL. The MO field is set during initialization
1430 * to mc_filter_type.
1432 static s32
ixgbe_mta_vector(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1436 switch (hw
->mac
.mc_filter_type
) {
1437 case 0: /* use bits [47:36] of the address */
1438 vector
= ((mc_addr
[4] >> 4) | (((u16
)mc_addr
[5]) << 4));
1440 case 1: /* use bits [46:35] of the address */
1441 vector
= ((mc_addr
[4] >> 3) | (((u16
)mc_addr
[5]) << 5));
1443 case 2: /* use bits [45:34] of the address */
1444 vector
= ((mc_addr
[4] >> 2) | (((u16
)mc_addr
[5]) << 6));
1446 case 3: /* use bits [43:32] of the address */
1447 vector
= ((mc_addr
[4]) | (((u16
)mc_addr
[5]) << 8));
1449 default: /* Invalid mc_filter_type */
1450 hw_dbg(hw
, "MC filter type param set incorrectly\n");
1454 /* vector can only be 12-bits or boundary will be exceeded */
1460 * ixgbe_set_mta - Set bit-vector in multicast table
1461 * @hw: pointer to hardware structure
1462 * @hash_value: Multicast address hash value
1464 * Sets the bit-vector in the multicast table.
1466 static void ixgbe_set_mta(struct ixgbe_hw
*hw
, u8
*mc_addr
)
1473 hw
->addr_ctrl
.mta_in_use
++;
1475 vector
= ixgbe_mta_vector(hw
, mc_addr
);
1476 hw_dbg(hw
, " bit-vector = 0x%03X\n", vector
);
1479 * The MTA is a register array of 128 32-bit registers. It is treated
1480 * like an array of 4096 bits. We want to set bit
1481 * BitArray[vector_value]. So we figure out what register the bit is
1482 * in, read it, OR in the new bit, then write back the new value. The
1483 * register is determined by the upper 7 bits of the vector value and
1484 * the bit within that register are determined by the lower 5 bits of
1487 vector_reg
= (vector
>> 5) & 0x7F;
1488 vector_bit
= vector
& 0x1F;
1489 mta_reg
= IXGBE_READ_REG(hw
, IXGBE_MTA(vector_reg
));
1490 mta_reg
|= (1 << vector_bit
);
1491 IXGBE_WRITE_REG(hw
, IXGBE_MTA(vector_reg
), mta_reg
);
1495 * ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1496 * @hw: pointer to hardware structure
1497 * @netdev: pointer to net device structure
1499 * The given list replaces any existing list. Clears the MC addrs from receive
1500 * address registers and the multicast table. Uses unused receive address
1501 * registers for the first multicast addresses, and hashes the rest into the
1504 s32
ixgbe_update_mc_addr_list_generic(struct ixgbe_hw
*hw
,
1505 struct net_device
*netdev
)
1507 struct netdev_hw_addr
*ha
;
1511 * Set the new number of MC addresses that we are being requested to
1514 hw
->addr_ctrl
.num_mc_addrs
= netdev_mc_count(netdev
);
1515 hw
->addr_ctrl
.mta_in_use
= 0;
1518 hw_dbg(hw
, " Clearing MTA\n");
1519 for (i
= 0; i
< hw
->mac
.mcft_size
; i
++)
1520 IXGBE_WRITE_REG(hw
, IXGBE_MTA(i
), 0);
1522 /* Add the new addresses */
1523 netdev_for_each_mc_addr(ha
, netdev
) {
1524 hw_dbg(hw
, " Adding the multicast addresses:\n");
1525 ixgbe_set_mta(hw
, ha
->addr
);
1529 if (hw
->addr_ctrl
.mta_in_use
> 0)
1530 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
,
1531 IXGBE_MCSTCTRL_MFE
| hw
->mac
.mc_filter_type
);
1533 hw_dbg(hw
, "ixgbe_update_mc_addr_list_generic Complete\n");
1538 * ixgbe_enable_mc_generic - Enable multicast address in RAR
1539 * @hw: pointer to hardware structure
1541 * Enables multicast address in RAR and the use of the multicast hash table.
1543 s32
ixgbe_enable_mc_generic(struct ixgbe_hw
*hw
)
1546 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1547 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1549 if (a
->mc_addr_in_rar_count
> 0)
1550 for (i
= (rar_entries
- a
->mc_addr_in_rar_count
);
1551 i
< rar_entries
; i
++)
1552 ixgbe_enable_rar(hw
, i
);
1554 if (a
->mta_in_use
> 0)
1555 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, IXGBE_MCSTCTRL_MFE
|
1556 hw
->mac
.mc_filter_type
);
1562 * ixgbe_disable_mc_generic - Disable multicast address in RAR
1563 * @hw: pointer to hardware structure
1565 * Disables multicast address in RAR and the use of the multicast hash table.
1567 s32
ixgbe_disable_mc_generic(struct ixgbe_hw
*hw
)
1570 u32 rar_entries
= hw
->mac
.num_rar_entries
;
1571 struct ixgbe_addr_filter_info
*a
= &hw
->addr_ctrl
;
1573 if (a
->mc_addr_in_rar_count
> 0)
1574 for (i
= (rar_entries
- a
->mc_addr_in_rar_count
);
1575 i
< rar_entries
; i
++)
1576 ixgbe_disable_rar(hw
, i
);
1578 if (a
->mta_in_use
> 0)
1579 IXGBE_WRITE_REG(hw
, IXGBE_MCSTCTRL
, hw
->mac
.mc_filter_type
);
1585 * ixgbe_fc_enable_generic - Enable flow control
1586 * @hw: pointer to hardware structure
1587 * @packetbuf_num: packet buffer number (0-7)
1589 * Enable flow control according to the current settings.
1591 s32
ixgbe_fc_enable_generic(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1594 u32 mflcn_reg
, fccfg_reg
;
1599 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
)
1602 #endif /* CONFIG_DCB */
1603 /* Negotiate the fc mode to use */
1604 ret_val
= ixgbe_fc_autoneg(hw
);
1608 /* Disable any previous flow control settings */
1609 mflcn_reg
= IXGBE_READ_REG(hw
, IXGBE_MFLCN
);
1610 mflcn_reg
&= ~(IXGBE_MFLCN_RFCE
| IXGBE_MFLCN_RPFCE
);
1612 fccfg_reg
= IXGBE_READ_REG(hw
, IXGBE_FCCFG
);
1613 fccfg_reg
&= ~(IXGBE_FCCFG_TFCE_802_3X
| IXGBE_FCCFG_TFCE_PRIORITY
);
1616 * The possible values of fc.current_mode are:
1617 * 0: Flow control is completely disabled
1618 * 1: Rx flow control is enabled (we can receive pause frames,
1619 * but not send pause frames).
1620 * 2: Tx flow control is enabled (we can send pause frames but
1621 * we do not support receiving pause frames).
1622 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1623 * 4: Priority Flow Control is enabled.
1626 switch (hw
->fc
.current_mode
) {
1629 * Flow control is disabled by software override or autoneg.
1630 * The code below will actually disable it in the HW.
1633 case ixgbe_fc_rx_pause
:
1635 * Rx Flow control is enabled and Tx Flow control is
1636 * disabled by software override. Since there really
1637 * isn't a way to advertise that we are capable of RX
1638 * Pause ONLY, we will advertise that we support both
1639 * symmetric and asymmetric Rx PAUSE. Later, we will
1640 * disable the adapter's ability to send PAUSE frames.
1642 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1644 case ixgbe_fc_tx_pause
:
1646 * Tx Flow control is enabled, and Rx Flow control is
1647 * disabled by software override.
1649 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1652 /* Flow control (both Rx and Tx) is enabled by SW override. */
1653 mflcn_reg
|= IXGBE_MFLCN_RFCE
;
1654 fccfg_reg
|= IXGBE_FCCFG_TFCE_802_3X
;
1660 #endif /* CONFIG_DCB */
1662 hw_dbg(hw
, "Flow control param set incorrectly\n");
1663 ret_val
= IXGBE_ERR_CONFIG
;
1668 /* Set 802.3x based flow control settings. */
1669 mflcn_reg
|= IXGBE_MFLCN_DPF
;
1670 IXGBE_WRITE_REG(hw
, IXGBE_MFLCN
, mflcn_reg
);
1671 IXGBE_WRITE_REG(hw
, IXGBE_FCCFG
, fccfg_reg
);
1673 reg
= IXGBE_READ_REG(hw
, IXGBE_MTQC
);
1674 /* Thresholds are different for link flow control when in DCB mode */
1675 if (reg
& IXGBE_MTQC_RT_ENA
) {
1676 rx_pba_size
= IXGBE_READ_REG(hw
, IXGBE_RXPBSIZE(packetbuf_num
));
1678 /* Always disable XON for LFC when in DCB mode */
1679 reg
= (rx_pba_size
>> 5) & 0xFFE0;
1680 IXGBE_WRITE_REG(hw
, IXGBE_FCRTL_82599(packetbuf_num
), reg
);
1682 reg
= (rx_pba_size
>> 2) & 0xFFE0;
1683 if (hw
->fc
.current_mode
& ixgbe_fc_tx_pause
)
1684 reg
|= IXGBE_FCRTH_FCEN
;
1685 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(packetbuf_num
), reg
);
1688 * Set up and enable Rx high/low water mark thresholds,
1691 if (hw
->fc
.current_mode
& ixgbe_fc_tx_pause
) {
1692 if (hw
->fc
.send_xon
) {
1694 IXGBE_FCRTL_82599(packetbuf_num
),
1699 IXGBE_FCRTL_82599(packetbuf_num
),
1703 IXGBE_WRITE_REG(hw
, IXGBE_FCRTH_82599(packetbuf_num
),
1704 (hw
->fc
.high_water
| IXGBE_FCRTH_FCEN
));
1708 /* Configure pause time (2 TCs per register) */
1709 reg
= IXGBE_READ_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2));
1710 if ((packetbuf_num
& 1) == 0)
1711 reg
= (reg
& 0xFFFF0000) | hw
->fc
.pause_time
;
1713 reg
= (reg
& 0x0000FFFF) | (hw
->fc
.pause_time
<< 16);
1714 IXGBE_WRITE_REG(hw
, IXGBE_FCTTV(packetbuf_num
/ 2), reg
);
1716 IXGBE_WRITE_REG(hw
, IXGBE_FCRTV
, (hw
->fc
.pause_time
>> 1));
1723 * ixgbe_fc_autoneg - Configure flow control
1724 * @hw: pointer to hardware structure
1726 * Compares our advertised flow control capabilities to those advertised by
1727 * our link partner, and determines the proper flow control mode to use.
1729 s32
ixgbe_fc_autoneg(struct ixgbe_hw
*hw
)
1732 ixgbe_link_speed speed
;
1733 u32 pcs_anadv_reg
, pcs_lpab_reg
, linkstat
;
1734 u32 links2
, anlp1_reg
, autoc_reg
, links
;
1738 * AN should have completed when the cable was plugged in.
1739 * Look for reasons to bail out. Bail out if:
1740 * - FC autoneg is disabled, or if
1743 * Since we're being called from an LSC, link is already known to be up.
1744 * So use link_up_wait_to_complete=false.
1746 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
1748 if (hw
->fc
.disable_fc_autoneg
|| (!link_up
)) {
1749 hw
->fc
.fc_was_autonegged
= false;
1750 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1755 * On backplane, bail out if
1756 * - backplane autoneg was not completed, or if
1757 * - we are 82599 and link partner is not AN enabled
1759 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
1760 links
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
1761 if ((links
& IXGBE_LINKS_KX_AN_COMP
) == 0) {
1762 hw
->fc
.fc_was_autonegged
= false;
1763 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1767 if (hw
->mac
.type
== ixgbe_mac_82599EB
) {
1768 links2
= IXGBE_READ_REG(hw
, IXGBE_LINKS2
);
1769 if ((links2
& IXGBE_LINKS2_AN_SUPPORTED
) == 0) {
1770 hw
->fc
.fc_was_autonegged
= false;
1771 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1778 * On multispeed fiber at 1g, bail out if
1779 * - link is up but AN did not complete, or if
1780 * - link is up and AN completed but timed out
1782 if (hw
->phy
.multispeed_fiber
&& (speed
== IXGBE_LINK_SPEED_1GB_FULL
)) {
1783 linkstat
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLSTA
);
1784 if (((linkstat
& IXGBE_PCS1GLSTA_AN_COMPLETE
) == 0) ||
1785 ((linkstat
& IXGBE_PCS1GLSTA_AN_TIMED_OUT
) == 1)) {
1786 hw
->fc
.fc_was_autonegged
= false;
1787 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1794 * - copper or CX4 adapters
1795 * - fiber adapters running at 10gig
1797 if ((hw
->phy
.media_type
== ixgbe_media_type_copper
) ||
1798 (hw
->phy
.media_type
== ixgbe_media_type_cx4
) ||
1799 ((hw
->phy
.media_type
== ixgbe_media_type_fiber
) &&
1800 (speed
== IXGBE_LINK_SPEED_10GB_FULL
))) {
1801 hw
->fc
.fc_was_autonegged
= false;
1802 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1807 * Read the AN advertisement and LP ability registers and resolve
1808 * local flow control settings accordingly
1810 if ((speed
== IXGBE_LINK_SPEED_1GB_FULL
) &&
1811 (hw
->phy
.media_type
!= ixgbe_media_type_backplane
)) {
1812 pcs_anadv_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
1813 pcs_lpab_reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANLP
);
1814 if ((pcs_anadv_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1815 (pcs_lpab_reg
& IXGBE_PCS1GANA_SYM_PAUSE
)) {
1817 * Now we need to check if the user selected Rx ONLY
1818 * of pause frames. In this case, we had to advertise
1819 * FULL flow control because we could not advertise RX
1820 * ONLY. Hence, we must now check to see if we need to
1821 * turn OFF the TRANSMISSION of PAUSE frames.
1823 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
1824 hw
->fc
.current_mode
= ixgbe_fc_full
;
1825 hw_dbg(hw
, "Flow Control = FULL.\n");
1827 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1828 hw_dbg(hw
, "Flow Control=RX PAUSE only\n");
1830 } else if (!(pcs_anadv_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1831 (pcs_anadv_reg
& IXGBE_PCS1GANA_ASM_PAUSE
) &&
1832 (pcs_lpab_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1833 (pcs_lpab_reg
& IXGBE_PCS1GANA_ASM_PAUSE
)) {
1834 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
1835 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
1836 } else if ((pcs_anadv_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1837 (pcs_anadv_reg
& IXGBE_PCS1GANA_ASM_PAUSE
) &&
1838 !(pcs_lpab_reg
& IXGBE_PCS1GANA_SYM_PAUSE
) &&
1839 (pcs_lpab_reg
& IXGBE_PCS1GANA_ASM_PAUSE
)) {
1840 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1841 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
1843 hw
->fc
.current_mode
= ixgbe_fc_none
;
1844 hw_dbg(hw
, "Flow Control = NONE.\n");
1848 if (hw
->phy
.media_type
== ixgbe_media_type_backplane
) {
1850 * Read the 10g AN autoc and LP ability registers and resolve
1851 * local flow control settings accordingly
1853 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
1854 anlp1_reg
= IXGBE_READ_REG(hw
, IXGBE_ANLP1
);
1856 if ((autoc_reg
& IXGBE_AUTOC_SYM_PAUSE
) &&
1857 (anlp1_reg
& IXGBE_ANLP1_SYM_PAUSE
)) {
1859 * Now we need to check if the user selected Rx ONLY
1860 * of pause frames. In this case, we had to advertise
1861 * FULL flow control because we could not advertise RX
1862 * ONLY. Hence, we must now check to see if we need to
1863 * turn OFF the TRANSMISSION of PAUSE frames.
1865 if (hw
->fc
.requested_mode
== ixgbe_fc_full
) {
1866 hw
->fc
.current_mode
= ixgbe_fc_full
;
1867 hw_dbg(hw
, "Flow Control = FULL.\n");
1869 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1870 hw_dbg(hw
, "Flow Control=RX PAUSE only\n");
1872 } else if (!(autoc_reg
& IXGBE_AUTOC_SYM_PAUSE
) &&
1873 (autoc_reg
& IXGBE_AUTOC_ASM_PAUSE
) &&
1874 (anlp1_reg
& IXGBE_ANLP1_SYM_PAUSE
) &&
1875 (anlp1_reg
& IXGBE_ANLP1_ASM_PAUSE
)) {
1876 hw
->fc
.current_mode
= ixgbe_fc_tx_pause
;
1877 hw_dbg(hw
, "Flow Control = TX PAUSE frames only.\n");
1878 } else if ((autoc_reg
& IXGBE_AUTOC_SYM_PAUSE
) &&
1879 (autoc_reg
& IXGBE_AUTOC_ASM_PAUSE
) &&
1880 !(anlp1_reg
& IXGBE_ANLP1_SYM_PAUSE
) &&
1881 (anlp1_reg
& IXGBE_ANLP1_ASM_PAUSE
)) {
1882 hw
->fc
.current_mode
= ixgbe_fc_rx_pause
;
1883 hw_dbg(hw
, "Flow Control = RX PAUSE frames only.\n");
1885 hw
->fc
.current_mode
= ixgbe_fc_none
;
1886 hw_dbg(hw
, "Flow Control = NONE.\n");
1889 /* Record that current_mode is the result of a successful autoneg */
1890 hw
->fc
.fc_was_autonegged
= true;
1897 * ixgbe_setup_fc - Set up flow control
1898 * @hw: pointer to hardware structure
1900 * Called at init time to set up flow control.
1902 static s32
ixgbe_setup_fc(struct ixgbe_hw
*hw
, s32 packetbuf_num
)
1908 if (hw
->fc
.requested_mode
== ixgbe_fc_pfc
) {
1909 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
1914 /* Validate the packetbuf configuration */
1915 if (packetbuf_num
< 0 || packetbuf_num
> 7) {
1916 hw_dbg(hw
, "Invalid packet buffer number [%d], expected range "
1917 "is 0-7\n", packetbuf_num
);
1918 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1923 * Validate the water mark configuration. Zero water marks are invalid
1924 * because it causes the controller to just blast out fc packets.
1926 if (!hw
->fc
.low_water
|| !hw
->fc
.high_water
|| !hw
->fc
.pause_time
) {
1927 hw_dbg(hw
, "Invalid water mark configuration\n");
1928 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1933 * Validate the requested mode. Strict IEEE mode does not allow
1934 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
1936 if (hw
->fc
.strict_ieee
&& hw
->fc
.requested_mode
== ixgbe_fc_rx_pause
) {
1937 hw_dbg(hw
, "ixgbe_fc_rx_pause not valid in strict "
1939 ret_val
= IXGBE_ERR_INVALID_LINK_SETTINGS
;
1944 * 10gig parts do not have a word in the EEPROM to determine the
1945 * default flow control setting, so we explicitly set it to full.
1947 if (hw
->fc
.requested_mode
== ixgbe_fc_default
)
1948 hw
->fc
.requested_mode
= ixgbe_fc_full
;
1951 * Set up the 1G flow control advertisement registers so the HW will be
1952 * able to do fc autoneg once the cable is plugged in. If we end up
1953 * using 10g instead, this is harmless.
1955 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GANA
);
1958 * The possible values of fc.requested_mode are:
1959 * 0: Flow control is completely disabled
1960 * 1: Rx flow control is enabled (we can receive pause frames,
1961 * but not send pause frames).
1962 * 2: Tx flow control is enabled (we can send pause frames but
1963 * we do not support receiving pause frames).
1964 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1966 * 4: Priority Flow Control is enabled.
1970 switch (hw
->fc
.requested_mode
) {
1972 /* Flow control completely disabled by software override. */
1973 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
1975 case ixgbe_fc_rx_pause
:
1977 * Rx Flow control is enabled and Tx Flow control is
1978 * disabled by software override. Since there really
1979 * isn't a way to advertise that we are capable of RX
1980 * Pause ONLY, we will advertise that we support both
1981 * symmetric and asymmetric Rx PAUSE. Later, we will
1982 * disable the adapter's ability to send PAUSE frames.
1984 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
1986 case ixgbe_fc_tx_pause
:
1988 * Tx Flow control is enabled, and Rx Flow control is
1989 * disabled by software override.
1991 reg
|= (IXGBE_PCS1GANA_ASM_PAUSE
);
1992 reg
&= ~(IXGBE_PCS1GANA_SYM_PAUSE
);
1995 /* Flow control (both Rx and Tx) is enabled by SW override. */
1996 reg
|= (IXGBE_PCS1GANA_SYM_PAUSE
| IXGBE_PCS1GANA_ASM_PAUSE
);
2002 #endif /* CONFIG_DCB */
2004 hw_dbg(hw
, "Flow control param set incorrectly\n");
2005 ret_val
= IXGBE_ERR_CONFIG
;
2010 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GANA
, reg
);
2011 reg
= IXGBE_READ_REG(hw
, IXGBE_PCS1GLCTL
);
2013 /* Disable AN timeout */
2014 if (hw
->fc
.strict_ieee
)
2015 reg
&= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN
;
2017 IXGBE_WRITE_REG(hw
, IXGBE_PCS1GLCTL
, reg
);
2018 hw_dbg(hw
, "Set up FC; PCS1GLCTL = 0x%08X\n", reg
);
2021 * Set up the 10G flow control advertisement registers so the HW
2022 * can do fc autoneg once the cable is plugged in. If we end up
2023 * using 1g instead, this is harmless.
2025 reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2028 * The possible values of fc.requested_mode are:
2029 * 0: Flow control is completely disabled
2030 * 1: Rx flow control is enabled (we can receive pause frames,
2031 * but not send pause frames).
2032 * 2: Tx flow control is enabled (we can send pause frames but
2033 * we do not support receiving pause frames).
2034 * 3: Both Rx and Tx flow control (symmetric) are enabled.
2037 switch (hw
->fc
.requested_mode
) {
2039 /* Flow control completely disabled by software override. */
2040 reg
&= ~(IXGBE_AUTOC_SYM_PAUSE
| IXGBE_AUTOC_ASM_PAUSE
);
2042 case ixgbe_fc_rx_pause
:
2044 * Rx Flow control is enabled and Tx Flow control is
2045 * disabled by software override. Since there really
2046 * isn't a way to advertise that we are capable of RX
2047 * Pause ONLY, we will advertise that we support both
2048 * symmetric and asymmetric Rx PAUSE. Later, we will
2049 * disable the adapter's ability to send PAUSE frames.
2051 reg
|= (IXGBE_AUTOC_SYM_PAUSE
| IXGBE_AUTOC_ASM_PAUSE
);
2053 case ixgbe_fc_tx_pause
:
2055 * Tx Flow control is enabled, and Rx Flow control is
2056 * disabled by software override.
2058 reg
|= (IXGBE_AUTOC_ASM_PAUSE
);
2059 reg
&= ~(IXGBE_AUTOC_SYM_PAUSE
);
2062 /* Flow control (both Rx and Tx) is enabled by SW override. */
2063 reg
|= (IXGBE_AUTOC_SYM_PAUSE
| IXGBE_AUTOC_ASM_PAUSE
);
2069 #endif /* CONFIG_DCB */
2071 hw_dbg(hw
, "Flow control param set incorrectly\n");
2072 ret_val
= IXGBE_ERR_CONFIG
;
2077 * AUTOC restart handles negotiation of 1G and 10G. There is
2078 * no need to set the PCS1GCTL register.
2080 reg
|= IXGBE_AUTOC_AN_RESTART
;
2081 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, reg
);
2082 hw_dbg(hw
, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg
);
2089 * ixgbe_disable_pcie_master - Disable PCI-express master access
2090 * @hw: pointer to hardware structure
2092 * Disables PCI-Express master access and verifies there are no pending
2093 * requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2094 * bit hasn't caused the master requests to be disabled, else 0
2095 * is returned signifying master requests disabled.
2097 s32
ixgbe_disable_pcie_master(struct ixgbe_hw
*hw
)
2101 u32 number_of_queues
;
2102 s32 status
= IXGBE_ERR_MASTER_REQUESTS_PENDING
;
2104 /* Disable the receive unit by stopping each queue */
2105 number_of_queues
= hw
->mac
.max_rx_queues
;
2106 for (i
= 0; i
< number_of_queues
; i
++) {
2107 reg_val
= IXGBE_READ_REG(hw
, IXGBE_RXDCTL(i
));
2108 if (reg_val
& IXGBE_RXDCTL_ENABLE
) {
2109 reg_val
&= ~IXGBE_RXDCTL_ENABLE
;
2110 IXGBE_WRITE_REG(hw
, IXGBE_RXDCTL(i
), reg_val
);
2114 reg_val
= IXGBE_READ_REG(hw
, IXGBE_CTRL
);
2115 reg_val
|= IXGBE_CTRL_GIO_DIS
;
2116 IXGBE_WRITE_REG(hw
, IXGBE_CTRL
, reg_val
);
2118 for (i
= 0; i
< IXGBE_PCI_MASTER_DISABLE_TIMEOUT
; i
++) {
2119 if (!(IXGBE_READ_REG(hw
, IXGBE_STATUS
) & IXGBE_STATUS_GIO
)) {
2131 * ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2132 * @hw: pointer to hardware structure
2133 * @mask: Mask to specify which semaphore to acquire
2135 * Acquires the SWFW semaphore thought the GSSR register for the specified
2136 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2138 s32
ixgbe_acquire_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2142 u32 fwmask
= mask
<< 5;
2146 if (ixgbe_get_eeprom_semaphore(hw
))
2147 return IXGBE_ERR_SWFW_SYNC
;
2149 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2150 if (!(gssr
& (fwmask
| swmask
)))
2154 * Firmware currently using resource (fwmask) or other software
2155 * thread currently using resource (swmask)
2157 ixgbe_release_eeprom_semaphore(hw
);
2163 hw_dbg(hw
, "Driver can't access resource, GSSR timeout.\n");
2164 return IXGBE_ERR_SWFW_SYNC
;
2168 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2170 ixgbe_release_eeprom_semaphore(hw
);
2175 * ixgbe_release_swfw_sync - Release SWFW semaphore
2176 * @hw: pointer to hardware structure
2177 * @mask: Mask to specify which semaphore to release
2179 * Releases the SWFW semaphore thought the GSSR register for the specified
2180 * function (CSR, PHY0, PHY1, EEPROM, Flash)
2182 void ixgbe_release_swfw_sync(struct ixgbe_hw
*hw
, u16 mask
)
2187 ixgbe_get_eeprom_semaphore(hw
);
2189 gssr
= IXGBE_READ_REG(hw
, IXGBE_GSSR
);
2191 IXGBE_WRITE_REG(hw
, IXGBE_GSSR
, gssr
);
2193 ixgbe_release_eeprom_semaphore(hw
);
2197 * ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2198 * @hw: pointer to hardware structure
2199 * @regval: register value to write to RXCTRL
2201 * Enables the Rx DMA unit
2203 s32
ixgbe_enable_rx_dma_generic(struct ixgbe_hw
*hw
, u32 regval
)
2205 IXGBE_WRITE_REG(hw
, IXGBE_RXCTRL
, regval
);
2211 * ixgbe_blink_led_start_generic - Blink LED based on index.
2212 * @hw: pointer to hardware structure
2213 * @index: led number to blink
2215 s32
ixgbe_blink_led_start_generic(struct ixgbe_hw
*hw
, u32 index
)
2217 ixgbe_link_speed speed
= 0;
2219 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2220 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2223 * Link must be up to auto-blink the LEDs;
2224 * Force it if link is down.
2226 hw
->mac
.ops
.check_link(hw
, &speed
, &link_up
, false);
2229 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2230 autoc_reg
|= IXGBE_AUTOC_FLU
;
2231 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2235 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2236 led_reg
|= IXGBE_LED_BLINK(index
);
2237 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2238 IXGBE_WRITE_FLUSH(hw
);
2244 * ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2245 * @hw: pointer to hardware structure
2246 * @index: led number to stop blinking
2248 s32
ixgbe_blink_led_stop_generic(struct ixgbe_hw
*hw
, u32 index
)
2250 u32 autoc_reg
= IXGBE_READ_REG(hw
, IXGBE_AUTOC
);
2251 u32 led_reg
= IXGBE_READ_REG(hw
, IXGBE_LEDCTL
);
2253 autoc_reg
&= ~IXGBE_AUTOC_FLU
;
2254 autoc_reg
|= IXGBE_AUTOC_AN_RESTART
;
2255 IXGBE_WRITE_REG(hw
, IXGBE_AUTOC
, autoc_reg
);
2257 led_reg
&= ~IXGBE_LED_MODE_MASK(index
);
2258 led_reg
&= ~IXGBE_LED_BLINK(index
);
2259 led_reg
|= IXGBE_LED_LINK_ACTIVE
<< IXGBE_LED_MODE_SHIFT(index
);
2260 IXGBE_WRITE_REG(hw
, IXGBE_LEDCTL
, led_reg
);
2261 IXGBE_WRITE_FLUSH(hw
);
2267 * ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2268 * @hw: pointer to hardware structure
2269 * @san_mac_offset: SAN MAC address offset
2271 * This function will read the EEPROM location for the SAN MAC address
2272 * pointer, and returns the value at that location. This is used in both
2273 * get and set mac_addr routines.
2275 static s32
ixgbe_get_san_mac_addr_offset(struct ixgbe_hw
*hw
,
2276 u16
*san_mac_offset
)
2279 * First read the EEPROM pointer to see if the MAC addresses are
2282 hw
->eeprom
.ops
.read(hw
, IXGBE_SAN_MAC_ADDR_PTR
, san_mac_offset
);
2288 * ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2289 * @hw: pointer to hardware structure
2290 * @san_mac_addr: SAN MAC address
2292 * Reads the SAN MAC address from the EEPROM, if it's available. This is
2293 * per-port, so set_lan_id() must be called before reading the addresses.
2294 * set_lan_id() is called by identify_sfp(), but this cannot be relied
2295 * upon for non-SFP connections, so we must call it here.
2297 s32
ixgbe_get_san_mac_addr_generic(struct ixgbe_hw
*hw
, u8
*san_mac_addr
)
2299 u16 san_mac_data
, san_mac_offset
;
2303 * First read the EEPROM pointer to see if the MAC addresses are
2304 * available. If they're not, no point in calling set_lan_id() here.
2306 ixgbe_get_san_mac_addr_offset(hw
, &san_mac_offset
);
2308 if ((san_mac_offset
== 0) || (san_mac_offset
== 0xFFFF)) {
2310 * No addresses available in this EEPROM. It's not an
2311 * error though, so just wipe the local address and return.
2313 for (i
= 0; i
< 6; i
++)
2314 san_mac_addr
[i
] = 0xFF;
2316 goto san_mac_addr_out
;
2319 /* make sure we know which port we need to program */
2320 hw
->mac
.ops
.set_lan_id(hw
);
2321 /* apply the port offset to the address offset */
2322 (hw
->bus
.func
) ? (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT1_OFFSET
) :
2323 (san_mac_offset
+= IXGBE_SAN_MAC_ADDR_PORT0_OFFSET
);
2324 for (i
= 0; i
< 3; i
++) {
2325 hw
->eeprom
.ops
.read(hw
, san_mac_offset
, &san_mac_data
);
2326 san_mac_addr
[i
* 2] = (u8
)(san_mac_data
);
2327 san_mac_addr
[i
* 2 + 1] = (u8
)(san_mac_data
>> 8);
2336 * ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2337 * @hw: pointer to hardware structure
2339 * Read PCIe configuration space, and get the MSI-X vector count from
2340 * the capabilities table.
2342 u32
ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw
*hw
)
2344 struct ixgbe_adapter
*adapter
= hw
->back
;
2346 pci_read_config_word(adapter
->pdev
, IXGBE_PCIE_MSIX_82599_CAPS
,
2348 msix_count
&= IXGBE_PCIE_MSIX_TBL_SZ_MASK
;
2350 /* MSI-X count is zero-based in HW, so increment to give proper value */
2357 * ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2358 * @hw: pointer to hardware struct
2359 * @rar: receive address register index to disassociate
2360 * @vmdq: VMDq pool index to remove from the rar
2362 s32
ixgbe_clear_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2364 u32 mpsar_lo
, mpsar_hi
;
2365 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2367 if (rar
< rar_entries
) {
2368 mpsar_lo
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2369 mpsar_hi
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2371 if (!mpsar_lo
&& !mpsar_hi
)
2374 if (vmdq
== IXGBE_CLEAR_VMDQ_ALL
) {
2376 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), 0);
2380 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), 0);
2383 } else if (vmdq
< 32) {
2384 mpsar_lo
&= ~(1 << vmdq
);
2385 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar_lo
);
2387 mpsar_hi
&= ~(1 << (vmdq
- 32));
2388 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar_hi
);
2391 /* was that the last pool using this rar? */
2392 if (mpsar_lo
== 0 && mpsar_hi
== 0 && rar
!= 0)
2393 hw
->mac
.ops
.clear_rar(hw
, rar
);
2395 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2403 * ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2404 * @hw: pointer to hardware struct
2405 * @rar: receive address register index to associate with a VMDq index
2406 * @vmdq: VMDq pool index
2408 s32
ixgbe_set_vmdq_generic(struct ixgbe_hw
*hw
, u32 rar
, u32 vmdq
)
2411 u32 rar_entries
= hw
->mac
.num_rar_entries
;
2413 if (rar
< rar_entries
) {
2415 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_LO(rar
));
2417 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_LO(rar
), mpsar
);
2419 mpsar
= IXGBE_READ_REG(hw
, IXGBE_MPSAR_HI(rar
));
2420 mpsar
|= 1 << (vmdq
- 32);
2421 IXGBE_WRITE_REG(hw
, IXGBE_MPSAR_HI(rar
), mpsar
);
2424 hw_dbg(hw
, "RAR index %d is out of range.\n", rar
);
2430 * ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2431 * @hw: pointer to hardware structure
2433 s32
ixgbe_init_uta_tables_generic(struct ixgbe_hw
*hw
)
2438 for (i
= 0; i
< 128; i
++)
2439 IXGBE_WRITE_REG(hw
, IXGBE_UTA(i
), 0);
2445 * ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2446 * @hw: pointer to hardware structure
2447 * @vlan: VLAN id to write to VLAN filter
2449 * return the VLVF index where this VLAN id should be placed
2452 s32
ixgbe_find_vlvf_slot(struct ixgbe_hw
*hw
, u32 vlan
)
2455 u32 first_empty_slot
= 0;
2458 /* short cut the special case */
2463 * Search for the vlan id in the VLVF entries. Save off the first empty
2464 * slot found along the way
2466 for (regindex
= 1; regindex
< IXGBE_VLVF_ENTRIES
; regindex
++) {
2467 bits
= IXGBE_READ_REG(hw
, IXGBE_VLVF(regindex
));
2468 if (!bits
&& !(first_empty_slot
))
2469 first_empty_slot
= regindex
;
2470 else if ((bits
& 0x0FFF) == vlan
)
2475 * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2476 * in the VLVF. Else use the first empty VLVF register for this
2479 if (regindex
>= IXGBE_VLVF_ENTRIES
) {
2480 if (first_empty_slot
)
2481 regindex
= first_empty_slot
;
2483 hw_dbg(hw
, "No space in VLVF.\n");
2484 regindex
= IXGBE_ERR_NO_SPACE
;
2492 * ixgbe_set_vfta_generic - Set VLAN filter table
2493 * @hw: pointer to hardware structure
2494 * @vlan: VLAN id to write to VLAN filter
2495 * @vind: VMDq output index that maps queue to VLAN id in VFVFB
2496 * @vlan_on: boolean flag to turn on/off VLAN in VFVF
2498 * Turn on/off specified VLAN in the VLAN filter table.
2500 s32
ixgbe_set_vfta_generic(struct ixgbe_hw
*hw
, u32 vlan
, u32 vind
,
2509 bool vfta_changed
= false;
2512 return IXGBE_ERR_PARAM
;
2515 * this is a 2 part operation - first the VFTA, then the
2516 * VLVF and VLVFB if VT Mode is set
2517 * We don't write the VFTA until we know the VLVF part succeeded.
2521 * The VFTA is a bitstring made up of 128 32-bit registers
2522 * that enable the particular VLAN id, much like the MTA:
2523 * bits[11-5]: which register
2524 * bits[4-0]: which bit in the register
2526 regindex
= (vlan
>> 5) & 0x7F;
2527 bitindex
= vlan
& 0x1F;
2528 targetbit
= (1 << bitindex
);
2529 vfta
= IXGBE_READ_REG(hw
, IXGBE_VFTA(regindex
));
2532 if (!(vfta
& targetbit
)) {
2534 vfta_changed
= true;
2537 if ((vfta
& targetbit
)) {
2539 vfta_changed
= true;
2546 * make sure the vlan is in VLVF
2547 * set the vind bit in the matching VLVFB
2549 * clear the pool bit and possibly the vind
2551 vt
= IXGBE_READ_REG(hw
, IXGBE_VT_CTL
);
2552 if (vt
& IXGBE_VT_CTL_VT_ENABLE
) {
2555 vlvf_index
= ixgbe_find_vlvf_slot(hw
, vlan
);
2560 /* set the pool bit */
2562 bits
= IXGBE_READ_REG(hw
,
2563 IXGBE_VLVFB(vlvf_index
*2));
2564 bits
|= (1 << vind
);
2566 IXGBE_VLVFB(vlvf_index
*2),
2569 bits
= IXGBE_READ_REG(hw
,
2570 IXGBE_VLVFB((vlvf_index
*2)+1));
2571 bits
|= (1 << (vind
-32));
2573 IXGBE_VLVFB((vlvf_index
*2)+1),
2577 /* clear the pool bit */
2579 bits
= IXGBE_READ_REG(hw
,
2580 IXGBE_VLVFB(vlvf_index
*2));
2581 bits
&= ~(1 << vind
);
2583 IXGBE_VLVFB(vlvf_index
*2),
2585 bits
|= IXGBE_READ_REG(hw
,
2586 IXGBE_VLVFB((vlvf_index
*2)+1));
2588 bits
= IXGBE_READ_REG(hw
,
2589 IXGBE_VLVFB((vlvf_index
*2)+1));
2590 bits
&= ~(1 << (vind
-32));
2592 IXGBE_VLVFB((vlvf_index
*2)+1),
2594 bits
|= IXGBE_READ_REG(hw
,
2595 IXGBE_VLVFB(vlvf_index
*2));
2600 * If there are still bits set in the VLVFB registers
2601 * for the VLAN ID indicated we need to see if the
2602 * caller is requesting that we clear the VFTA entry bit.
2603 * If the caller has requested that we clear the VFTA
2604 * entry bit but there are still pools/VFs using this VLAN
2605 * ID entry then ignore the request. We're not worried
2606 * about the case where we're turning the VFTA VLAN ID
2607 * entry bit on, only when requested to turn it off as
2608 * there may be multiple pools and/or VFs using the
2609 * VLAN ID entry. In that case we cannot clear the
2610 * VFTA bit until all pools/VFs using that VLAN ID have also
2611 * been cleared. This will be indicated by "bits" being
2615 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
),
2616 (IXGBE_VLVF_VIEN
| vlan
));
2618 /* someone wants to clear the vfta entry
2619 * but some pools/VFs are still using it.
2621 vfta_changed
= false;
2625 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(vlvf_index
), 0);
2629 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(regindex
), vfta
);
2635 * ixgbe_clear_vfta_generic - Clear VLAN filter table
2636 * @hw: pointer to hardware structure
2638 * Clears the VLAN filer table, and the VMDq index associated with the filter
2640 s32
ixgbe_clear_vfta_generic(struct ixgbe_hw
*hw
)
2644 for (offset
= 0; offset
< hw
->mac
.vft_size
; offset
++)
2645 IXGBE_WRITE_REG(hw
, IXGBE_VFTA(offset
), 0);
2647 for (offset
= 0; offset
< IXGBE_VLVF_ENTRIES
; offset
++) {
2648 IXGBE_WRITE_REG(hw
, IXGBE_VLVF(offset
), 0);
2649 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB(offset
*2), 0);
2650 IXGBE_WRITE_REG(hw
, IXGBE_VLVFB((offset
*2)+1), 0);
2657 * ixgbe_check_mac_link_generic - Determine link and speed status
2658 * @hw: pointer to hardware structure
2659 * @speed: pointer to link speed
2660 * @link_up: true when link is up
2661 * @link_up_wait_to_complete: bool used to wait for link up or not
2663 * Reads the links register to determine if link is up and the current speed
2665 s32
ixgbe_check_mac_link_generic(struct ixgbe_hw
*hw
, ixgbe_link_speed
*speed
,
2666 bool *link_up
, bool link_up_wait_to_complete
)
2671 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2672 if (link_up_wait_to_complete
) {
2673 for (i
= 0; i
< IXGBE_LINK_UP_TIME
; i
++) {
2674 if (links_reg
& IXGBE_LINKS_UP
) {
2681 links_reg
= IXGBE_READ_REG(hw
, IXGBE_LINKS
);
2684 if (links_reg
& IXGBE_LINKS_UP
)
2690 if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
2691 IXGBE_LINKS_SPEED_10G_82599
)
2692 *speed
= IXGBE_LINK_SPEED_10GB_FULL
;
2693 else if ((links_reg
& IXGBE_LINKS_SPEED_82599
) ==
2694 IXGBE_LINKS_SPEED_1G_82599
)
2695 *speed
= IXGBE_LINK_SPEED_1GB_FULL
;
2697 *speed
= IXGBE_LINK_SPEED_100_FULL
;
2699 /* if link is down, zero out the current_mode */
2700 if (*link_up
== false) {
2701 hw
->fc
.current_mode
= ixgbe_fc_none
;
2702 hw
->fc
.fc_was_autonegged
= false;
2709 * ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
2711 * @hw: pointer to hardware structure
2712 * @wwnn_prefix: the alternative WWNN prefix
2713 * @wwpn_prefix: the alternative WWPN prefix
2715 * This function will read the EEPROM from the alternative SAN MAC address
2716 * block to check the support for the alternative WWNN/WWPN prefix support.
2718 s32
ixgbe_get_wwn_prefix_generic(struct ixgbe_hw
*hw
, u16
*wwnn_prefix
,
2722 u16 alt_san_mac_blk_offset
;
2724 /* clear output first */
2725 *wwnn_prefix
= 0xFFFF;
2726 *wwpn_prefix
= 0xFFFF;
2728 /* check if alternative SAN MAC is supported */
2729 hw
->eeprom
.ops
.read(hw
, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR
,
2730 &alt_san_mac_blk_offset
);
2732 if ((alt_san_mac_blk_offset
== 0) ||
2733 (alt_san_mac_blk_offset
== 0xFFFF))
2734 goto wwn_prefix_out
;
2736 /* check capability in alternative san mac address block */
2737 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET
;
2738 hw
->eeprom
.ops
.read(hw
, offset
, &caps
);
2739 if (!(caps
& IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN
))
2740 goto wwn_prefix_out
;
2742 /* get the corresponding prefix for WWNN/WWPN */
2743 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET
;
2744 hw
->eeprom
.ops
.read(hw
, offset
, wwnn_prefix
);
2746 offset
= alt_san_mac_blk_offset
+ IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET
;
2747 hw
->eeprom
.ops
.read(hw
, offset
, wwpn_prefix
);