enic: Add new firmware devcmds
[linux/fpc-iii.git] / drivers / net / sfc / efx.c
blobba674c5ca29e76a87da30259505b5fa7e0e43098
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include "net_driver.h"
25 #include "efx.h"
26 #include "mdio_10g.h"
27 #include "nic.h"
29 #include "mcdi.h"
30 #include "workarounds.h"
32 /**************************************************************************
34 * Type name strings
36 **************************************************************************
39 /* Loopback mode names (see LOOPBACK_MODE()) */
40 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
41 const char *efx_loopback_mode_names[] = {
42 [LOOPBACK_NONE] = "NONE",
43 [LOOPBACK_DATA] = "DATAPATH",
44 [LOOPBACK_GMAC] = "GMAC",
45 [LOOPBACK_XGMII] = "XGMII",
46 [LOOPBACK_XGXS] = "XGXS",
47 [LOOPBACK_XAUI] = "XAUI",
48 [LOOPBACK_GMII] = "GMII",
49 [LOOPBACK_SGMII] = "SGMII",
50 [LOOPBACK_XGBR] = "XGBR",
51 [LOOPBACK_XFI] = "XFI",
52 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
53 [LOOPBACK_GMII_FAR] = "GMII_FAR",
54 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
55 [LOOPBACK_XFI_FAR] = "XFI_FAR",
56 [LOOPBACK_GPHY] = "GPHY",
57 [LOOPBACK_PHYXS] = "PHYXS",
58 [LOOPBACK_PCS] = "PCS",
59 [LOOPBACK_PMAPMD] = "PMA/PMD",
60 [LOOPBACK_XPORT] = "XPORT",
61 [LOOPBACK_XGMII_WS] = "XGMII_WS",
62 [LOOPBACK_XAUI_WS] = "XAUI_WS",
63 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
64 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
65 [LOOPBACK_GMII_WS] = "GMII_WS",
66 [LOOPBACK_XFI_WS] = "XFI_WS",
67 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
68 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
71 /* Interrupt mode names (see INT_MODE())) */
72 const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
73 const char *efx_interrupt_mode_names[] = {
74 [EFX_INT_MODE_MSIX] = "MSI-X",
75 [EFX_INT_MODE_MSI] = "MSI",
76 [EFX_INT_MODE_LEGACY] = "legacy",
79 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
80 const char *efx_reset_type_names[] = {
81 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
82 [RESET_TYPE_ALL] = "ALL",
83 [RESET_TYPE_WORLD] = "WORLD",
84 [RESET_TYPE_DISABLE] = "DISABLE",
85 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
86 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
87 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
88 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
89 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
90 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
91 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
94 #define EFX_MAX_MTU (9 * 1024)
96 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
97 * queued onto this work queue. This is not a per-nic work queue, because
98 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
100 static struct workqueue_struct *reset_workqueue;
102 /**************************************************************************
104 * Configurable values
106 *************************************************************************/
109 * Use separate channels for TX and RX events
111 * Set this to 1 to use separate channels for TX and RX. It allows us
112 * to control interrupt affinity separately for TX and RX.
114 * This is only used in MSI-X interrupt mode
116 static unsigned int separate_tx_channels;
117 module_param(separate_tx_channels, uint, 0644);
118 MODULE_PARM_DESC(separate_tx_channels,
119 "Use separate channels for TX and RX");
121 /* This is the weight assigned to each of the (per-channel) virtual
122 * NAPI devices.
124 static int napi_weight = 64;
126 /* This is the time (in jiffies) between invocations of the hardware
127 * monitor, which checks for known hardware bugs and resets the
128 * hardware and driver as necessary.
130 unsigned int efx_monitor_interval = 1 * HZ;
132 /* This controls whether or not the driver will initialise devices
133 * with invalid MAC addresses stored in the EEPROM or flash. If true,
134 * such devices will be initialised with a random locally-generated
135 * MAC address. This allows for loading the sfc_mtd driver to
136 * reprogram the flash, even if the flash contents (including the MAC
137 * address) have previously been erased.
139 static unsigned int allow_bad_hwaddr;
141 /* Initial interrupt moderation settings. They can be modified after
142 * module load with ethtool.
144 * The default for RX should strike a balance between increasing the
145 * round-trip latency and reducing overhead.
147 static unsigned int rx_irq_mod_usec = 60;
149 /* Initial interrupt moderation settings. They can be modified after
150 * module load with ethtool.
152 * This default is chosen to ensure that a 10G link does not go idle
153 * while a TX queue is stopped after it has become full. A queue is
154 * restarted when it drops below half full. The time this takes (assuming
155 * worst case 3 descriptors per packet and 1024 descriptors) is
156 * 512 / 3 * 1.2 = 205 usec.
158 static unsigned int tx_irq_mod_usec = 150;
160 /* This is the first interrupt mode to try out of:
161 * 0 => MSI-X
162 * 1 => MSI
163 * 2 => legacy
165 static unsigned int interrupt_mode;
167 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
168 * i.e. the number of CPUs among which we may distribute simultaneous
169 * interrupt handling.
171 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
172 * The default (0) means to assign an interrupt to each package (level II cache)
174 static unsigned int rss_cpus;
175 module_param(rss_cpus, uint, 0444);
176 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
178 static int phy_flash_cfg;
179 module_param(phy_flash_cfg, int, 0644);
180 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
182 static unsigned irq_adapt_low_thresh = 10000;
183 module_param(irq_adapt_low_thresh, uint, 0644);
184 MODULE_PARM_DESC(irq_adapt_low_thresh,
185 "Threshold score for reducing IRQ moderation");
187 static unsigned irq_adapt_high_thresh = 20000;
188 module_param(irq_adapt_high_thresh, uint, 0644);
189 MODULE_PARM_DESC(irq_adapt_high_thresh,
190 "Threshold score for increasing IRQ moderation");
192 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
193 NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
194 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
195 NETIF_MSG_TX_ERR | NETIF_MSG_HW);
196 module_param(debug, uint, 0);
197 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
199 /**************************************************************************
201 * Utility functions and prototypes
203 *************************************************************************/
204 static void efx_remove_channel(struct efx_channel *channel);
205 static void efx_remove_port(struct efx_nic *efx);
206 static void efx_fini_napi(struct efx_nic *efx);
207 static void efx_fini_channels(struct efx_nic *efx);
209 #define EFX_ASSERT_RESET_SERIALISED(efx) \
210 do { \
211 if ((efx->state == STATE_RUNNING) || \
212 (efx->state == STATE_DISABLED)) \
213 ASSERT_RTNL(); \
214 } while (0)
216 /**************************************************************************
218 * Event queue processing
220 *************************************************************************/
222 /* Process channel's event queue
224 * This function is responsible for processing the event queue of a
225 * single channel. The caller must guarantee that this function will
226 * never be concurrently called more than once on the same channel,
227 * though different channels may be being processed concurrently.
229 static int efx_process_channel(struct efx_channel *channel, int budget)
231 struct efx_nic *efx = channel->efx;
232 int spent;
234 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
235 !channel->enabled))
236 return 0;
238 spent = efx_nic_process_eventq(channel, budget);
239 if (spent == 0)
240 return 0;
242 /* Deliver last RX packet. */
243 if (channel->rx_pkt) {
244 __efx_rx_packet(channel, channel->rx_pkt,
245 channel->rx_pkt_csummed);
246 channel->rx_pkt = NULL;
249 efx_rx_strategy(channel);
251 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
253 return spent;
256 /* Mark channel as finished processing
258 * Note that since we will not receive further interrupts for this
259 * channel before we finish processing and call the eventq_read_ack()
260 * method, there is no need to use the interrupt hold-off timers.
262 static inline void efx_channel_processed(struct efx_channel *channel)
264 /* The interrupt handler for this channel may set work_pending
265 * as soon as we acknowledge the events we've seen. Make sure
266 * it's cleared before then. */
267 channel->work_pending = false;
268 smp_wmb();
270 efx_nic_eventq_read_ack(channel);
273 /* NAPI poll handler
275 * NAPI guarantees serialisation of polls of the same device, which
276 * provides the guarantee required by efx_process_channel().
278 static int efx_poll(struct napi_struct *napi, int budget)
280 struct efx_channel *channel =
281 container_of(napi, struct efx_channel, napi_str);
282 struct efx_nic *efx = channel->efx;
283 int spent;
285 netif_vdbg(efx, intr, efx->net_dev,
286 "channel %d NAPI poll executing on CPU %d\n",
287 channel->channel, raw_smp_processor_id());
289 spent = efx_process_channel(channel, budget);
291 if (spent < budget) {
292 if (channel->channel < efx->n_rx_channels &&
293 efx->irq_rx_adaptive &&
294 unlikely(++channel->irq_count == 1000)) {
295 if (unlikely(channel->irq_mod_score <
296 irq_adapt_low_thresh)) {
297 if (channel->irq_moderation > 1) {
298 channel->irq_moderation -= 1;
299 efx->type->push_irq_moderation(channel);
301 } else if (unlikely(channel->irq_mod_score >
302 irq_adapt_high_thresh)) {
303 if (channel->irq_moderation <
304 efx->irq_rx_moderation) {
305 channel->irq_moderation += 1;
306 efx->type->push_irq_moderation(channel);
309 channel->irq_count = 0;
310 channel->irq_mod_score = 0;
313 /* There is no race here; although napi_disable() will
314 * only wait for napi_complete(), this isn't a problem
315 * since efx_channel_processed() will have no effect if
316 * interrupts have already been disabled.
318 napi_complete(napi);
319 efx_channel_processed(channel);
322 return spent;
325 /* Process the eventq of the specified channel immediately on this CPU
327 * Disable hardware generated interrupts, wait for any existing
328 * processing to finish, then directly poll (and ack ) the eventq.
329 * Finally reenable NAPI and interrupts.
331 * Since we are touching interrupts the caller should hold the suspend lock
333 void efx_process_channel_now(struct efx_channel *channel)
335 struct efx_nic *efx = channel->efx;
337 BUG_ON(!channel->enabled);
339 /* Disable interrupts and wait for ISRs to complete */
340 efx_nic_disable_interrupts(efx);
341 if (efx->legacy_irq)
342 synchronize_irq(efx->legacy_irq);
343 if (channel->irq)
344 synchronize_irq(channel->irq);
346 /* Wait for any NAPI processing to complete */
347 napi_disable(&channel->napi_str);
349 /* Poll the channel */
350 efx_process_channel(channel, EFX_EVQ_SIZE);
352 /* Ack the eventq. This may cause an interrupt to be generated
353 * when they are reenabled */
354 efx_channel_processed(channel);
356 napi_enable(&channel->napi_str);
357 efx_nic_enable_interrupts(efx);
360 /* Create event queue
361 * Event queue memory allocations are done only once. If the channel
362 * is reset, the memory buffer will be reused; this guards against
363 * errors during channel reset and also simplifies interrupt handling.
365 static int efx_probe_eventq(struct efx_channel *channel)
367 netif_dbg(channel->efx, probe, channel->efx->net_dev,
368 "chan %d create event queue\n", channel->channel);
370 return efx_nic_probe_eventq(channel);
373 /* Prepare channel's event queue */
374 static void efx_init_eventq(struct efx_channel *channel)
376 netif_dbg(channel->efx, drv, channel->efx->net_dev,
377 "chan %d init event queue\n", channel->channel);
379 channel->eventq_read_ptr = 0;
381 efx_nic_init_eventq(channel);
384 static void efx_fini_eventq(struct efx_channel *channel)
386 netif_dbg(channel->efx, drv, channel->efx->net_dev,
387 "chan %d fini event queue\n", channel->channel);
389 efx_nic_fini_eventq(channel);
392 static void efx_remove_eventq(struct efx_channel *channel)
394 netif_dbg(channel->efx, drv, channel->efx->net_dev,
395 "chan %d remove event queue\n", channel->channel);
397 efx_nic_remove_eventq(channel);
400 /**************************************************************************
402 * Channel handling
404 *************************************************************************/
406 static int efx_probe_channel(struct efx_channel *channel)
408 struct efx_tx_queue *tx_queue;
409 struct efx_rx_queue *rx_queue;
410 int rc;
412 netif_dbg(channel->efx, probe, channel->efx->net_dev,
413 "creating channel %d\n", channel->channel);
415 rc = efx_probe_eventq(channel);
416 if (rc)
417 goto fail1;
419 efx_for_each_channel_tx_queue(tx_queue, channel) {
420 rc = efx_probe_tx_queue(tx_queue);
421 if (rc)
422 goto fail2;
425 efx_for_each_channel_rx_queue(rx_queue, channel) {
426 rc = efx_probe_rx_queue(rx_queue);
427 if (rc)
428 goto fail3;
431 channel->n_rx_frm_trunc = 0;
433 return 0;
435 fail3:
436 efx_for_each_channel_rx_queue(rx_queue, channel)
437 efx_remove_rx_queue(rx_queue);
438 fail2:
439 efx_for_each_channel_tx_queue(tx_queue, channel)
440 efx_remove_tx_queue(tx_queue);
441 fail1:
442 return rc;
446 static void efx_set_channel_names(struct efx_nic *efx)
448 struct efx_channel *channel;
449 const char *type = "";
450 int number;
452 efx_for_each_channel(channel, efx) {
453 number = channel->channel;
454 if (efx->n_channels > efx->n_rx_channels) {
455 if (channel->channel < efx->n_rx_channels) {
456 type = "-rx";
457 } else {
458 type = "-tx";
459 number -= efx->n_rx_channels;
462 snprintf(channel->name, sizeof(channel->name),
463 "%s%s-%d", efx->name, type, number);
467 /* Channels are shutdown and reinitialised whilst the NIC is running
468 * to propagate configuration changes (mtu, checksum offload), or
469 * to clear hardware error conditions
471 static void efx_init_channels(struct efx_nic *efx)
473 struct efx_tx_queue *tx_queue;
474 struct efx_rx_queue *rx_queue;
475 struct efx_channel *channel;
477 /* Calculate the rx buffer allocation parameters required to
478 * support the current MTU, including padding for header
479 * alignment and overruns.
481 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
482 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
483 efx->type->rx_buffer_hash_size +
484 efx->type->rx_buffer_padding);
485 efx->rx_buffer_order = get_order(efx->rx_buffer_len +
486 sizeof(struct efx_rx_page_state));
488 /* Initialise the channels */
489 efx_for_each_channel(channel, efx) {
490 netif_dbg(channel->efx, drv, channel->efx->net_dev,
491 "init chan %d\n", channel->channel);
493 efx_init_eventq(channel);
495 efx_for_each_channel_tx_queue(tx_queue, channel)
496 efx_init_tx_queue(tx_queue);
498 /* The rx buffer allocation strategy is MTU dependent */
499 efx_rx_strategy(channel);
501 efx_for_each_channel_rx_queue(rx_queue, channel)
502 efx_init_rx_queue(rx_queue);
504 WARN_ON(channel->rx_pkt != NULL);
505 efx_rx_strategy(channel);
509 /* This enables event queue processing and packet transmission.
511 * Note that this function is not allowed to fail, since that would
512 * introduce too much complexity into the suspend/resume path.
514 static void efx_start_channel(struct efx_channel *channel)
516 struct efx_rx_queue *rx_queue;
518 netif_dbg(channel->efx, ifup, channel->efx->net_dev,
519 "starting chan %d\n", channel->channel);
521 /* The interrupt handler for this channel may set work_pending
522 * as soon as we enable it. Make sure it's cleared before
523 * then. Similarly, make sure it sees the enabled flag set. */
524 channel->work_pending = false;
525 channel->enabled = true;
526 smp_wmb();
528 /* Fill the queues before enabling NAPI */
529 efx_for_each_channel_rx_queue(rx_queue, channel)
530 efx_fast_push_rx_descriptors(rx_queue);
532 napi_enable(&channel->napi_str);
535 /* This disables event queue processing and packet transmission.
536 * This function does not guarantee that all queue processing
537 * (e.g. RX refill) is complete.
539 static void efx_stop_channel(struct efx_channel *channel)
541 if (!channel->enabled)
542 return;
544 netif_dbg(channel->efx, ifdown, channel->efx->net_dev,
545 "stop chan %d\n", channel->channel);
547 channel->enabled = false;
548 napi_disable(&channel->napi_str);
551 static void efx_fini_channels(struct efx_nic *efx)
553 struct efx_channel *channel;
554 struct efx_tx_queue *tx_queue;
555 struct efx_rx_queue *rx_queue;
556 int rc;
558 EFX_ASSERT_RESET_SERIALISED(efx);
559 BUG_ON(efx->port_enabled);
561 rc = efx_nic_flush_queues(efx);
562 if (rc && EFX_WORKAROUND_7803(efx)) {
563 /* Schedule a reset to recover from the flush failure. The
564 * descriptor caches reference memory we're about to free,
565 * but falcon_reconfigure_mac_wrapper() won't reconnect
566 * the MACs because of the pending reset. */
567 netif_err(efx, drv, efx->net_dev,
568 "Resetting to recover from flush failure\n");
569 efx_schedule_reset(efx, RESET_TYPE_ALL);
570 } else if (rc) {
571 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
572 } else {
573 netif_dbg(efx, drv, efx->net_dev,
574 "successfully flushed all queues\n");
577 efx_for_each_channel(channel, efx) {
578 netif_dbg(channel->efx, drv, channel->efx->net_dev,
579 "shut down chan %d\n", channel->channel);
581 efx_for_each_channel_rx_queue(rx_queue, channel)
582 efx_fini_rx_queue(rx_queue);
583 efx_for_each_channel_tx_queue(tx_queue, channel)
584 efx_fini_tx_queue(tx_queue);
585 efx_fini_eventq(channel);
589 static void efx_remove_channel(struct efx_channel *channel)
591 struct efx_tx_queue *tx_queue;
592 struct efx_rx_queue *rx_queue;
594 netif_dbg(channel->efx, drv, channel->efx->net_dev,
595 "destroy chan %d\n", channel->channel);
597 efx_for_each_channel_rx_queue(rx_queue, channel)
598 efx_remove_rx_queue(rx_queue);
599 efx_for_each_channel_tx_queue(tx_queue, channel)
600 efx_remove_tx_queue(tx_queue);
601 efx_remove_eventq(channel);
604 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
606 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
609 /**************************************************************************
611 * Port handling
613 **************************************************************************/
615 /* This ensures that the kernel is kept informed (via
616 * netif_carrier_on/off) of the link status, and also maintains the
617 * link status's stop on the port's TX queue.
619 void efx_link_status_changed(struct efx_nic *efx)
621 struct efx_link_state *link_state = &efx->link_state;
623 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
624 * that no events are triggered between unregister_netdev() and the
625 * driver unloading. A more general condition is that NETDEV_CHANGE
626 * can only be generated between NETDEV_UP and NETDEV_DOWN */
627 if (!netif_running(efx->net_dev))
628 return;
630 if (efx->port_inhibited) {
631 netif_carrier_off(efx->net_dev);
632 return;
635 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
636 efx->n_link_state_changes++;
638 if (link_state->up)
639 netif_carrier_on(efx->net_dev);
640 else
641 netif_carrier_off(efx->net_dev);
644 /* Status message for kernel log */
645 if (link_state->up) {
646 netif_info(efx, link, efx->net_dev,
647 "link up at %uMbps %s-duplex (MTU %d)%s\n",
648 link_state->speed, link_state->fd ? "full" : "half",
649 efx->net_dev->mtu,
650 (efx->promiscuous ? " [PROMISC]" : ""));
651 } else {
652 netif_info(efx, link, efx->net_dev, "link down\n");
657 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
659 efx->link_advertising = advertising;
660 if (advertising) {
661 if (advertising & ADVERTISED_Pause)
662 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
663 else
664 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
665 if (advertising & ADVERTISED_Asym_Pause)
666 efx->wanted_fc ^= EFX_FC_TX;
670 void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
672 efx->wanted_fc = wanted_fc;
673 if (efx->link_advertising) {
674 if (wanted_fc & EFX_FC_RX)
675 efx->link_advertising |= (ADVERTISED_Pause |
676 ADVERTISED_Asym_Pause);
677 else
678 efx->link_advertising &= ~(ADVERTISED_Pause |
679 ADVERTISED_Asym_Pause);
680 if (wanted_fc & EFX_FC_TX)
681 efx->link_advertising ^= ADVERTISED_Asym_Pause;
685 static void efx_fini_port(struct efx_nic *efx);
687 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
688 * the MAC appropriately. All other PHY configuration changes are pushed
689 * through phy_op->set_settings(), and pushed asynchronously to the MAC
690 * through efx_monitor().
692 * Callers must hold the mac_lock
694 int __efx_reconfigure_port(struct efx_nic *efx)
696 enum efx_phy_mode phy_mode;
697 int rc;
699 WARN_ON(!mutex_is_locked(&efx->mac_lock));
701 /* Serialise the promiscuous flag with efx_set_multicast_list. */
702 if (efx_dev_registered(efx)) {
703 netif_addr_lock_bh(efx->net_dev);
704 netif_addr_unlock_bh(efx->net_dev);
707 /* Disable PHY transmit in mac level loopbacks */
708 phy_mode = efx->phy_mode;
709 if (LOOPBACK_INTERNAL(efx))
710 efx->phy_mode |= PHY_MODE_TX_DISABLED;
711 else
712 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
714 rc = efx->type->reconfigure_port(efx);
716 if (rc)
717 efx->phy_mode = phy_mode;
719 return rc;
722 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
723 * disabled. */
724 int efx_reconfigure_port(struct efx_nic *efx)
726 int rc;
728 EFX_ASSERT_RESET_SERIALISED(efx);
730 mutex_lock(&efx->mac_lock);
731 rc = __efx_reconfigure_port(efx);
732 mutex_unlock(&efx->mac_lock);
734 return rc;
737 /* Asynchronous work item for changing MAC promiscuity and multicast
738 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
739 * MAC directly. */
740 static void efx_mac_work(struct work_struct *data)
742 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
744 mutex_lock(&efx->mac_lock);
745 if (efx->port_enabled) {
746 efx->type->push_multicast_hash(efx);
747 efx->mac_op->reconfigure(efx);
749 mutex_unlock(&efx->mac_lock);
752 static int efx_probe_port(struct efx_nic *efx)
754 int rc;
756 netif_dbg(efx, probe, efx->net_dev, "create port\n");
758 if (phy_flash_cfg)
759 efx->phy_mode = PHY_MODE_SPECIAL;
761 /* Connect up MAC/PHY operations table */
762 rc = efx->type->probe_port(efx);
763 if (rc)
764 goto err;
766 /* Sanity check MAC address */
767 if (is_valid_ether_addr(efx->mac_address)) {
768 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
769 } else {
770 netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n",
771 efx->mac_address);
772 if (!allow_bad_hwaddr) {
773 rc = -EINVAL;
774 goto err;
776 random_ether_addr(efx->net_dev->dev_addr);
777 netif_info(efx, probe, efx->net_dev,
778 "using locally-generated MAC %pM\n",
779 efx->net_dev->dev_addr);
782 return 0;
784 err:
785 efx_remove_port(efx);
786 return rc;
789 static int efx_init_port(struct efx_nic *efx)
791 int rc;
793 netif_dbg(efx, drv, efx->net_dev, "init port\n");
795 mutex_lock(&efx->mac_lock);
797 rc = efx->phy_op->init(efx);
798 if (rc)
799 goto fail1;
801 efx->port_initialized = true;
803 /* Reconfigure the MAC before creating dma queues (required for
804 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
805 efx->mac_op->reconfigure(efx);
807 /* Ensure the PHY advertises the correct flow control settings */
808 rc = efx->phy_op->reconfigure(efx);
809 if (rc)
810 goto fail2;
812 mutex_unlock(&efx->mac_lock);
813 return 0;
815 fail2:
816 efx->phy_op->fini(efx);
817 fail1:
818 mutex_unlock(&efx->mac_lock);
819 return rc;
822 static void efx_start_port(struct efx_nic *efx)
824 netif_dbg(efx, ifup, efx->net_dev, "start port\n");
825 BUG_ON(efx->port_enabled);
827 mutex_lock(&efx->mac_lock);
828 efx->port_enabled = true;
830 /* efx_mac_work() might have been scheduled after efx_stop_port(),
831 * and then cancelled by efx_flush_all() */
832 efx->type->push_multicast_hash(efx);
833 efx->mac_op->reconfigure(efx);
835 mutex_unlock(&efx->mac_lock);
838 /* Prevent efx_mac_work() and efx_monitor() from working */
839 static void efx_stop_port(struct efx_nic *efx)
841 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
843 mutex_lock(&efx->mac_lock);
844 efx->port_enabled = false;
845 mutex_unlock(&efx->mac_lock);
847 /* Serialise against efx_set_multicast_list() */
848 if (efx_dev_registered(efx)) {
849 netif_addr_lock_bh(efx->net_dev);
850 netif_addr_unlock_bh(efx->net_dev);
854 static void efx_fini_port(struct efx_nic *efx)
856 netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
858 if (!efx->port_initialized)
859 return;
861 efx->phy_op->fini(efx);
862 efx->port_initialized = false;
864 efx->link_state.up = false;
865 efx_link_status_changed(efx);
868 static void efx_remove_port(struct efx_nic *efx)
870 netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
872 efx->type->remove_port(efx);
875 /**************************************************************************
877 * NIC handling
879 **************************************************************************/
881 /* This configures the PCI device to enable I/O and DMA. */
882 static int efx_init_io(struct efx_nic *efx)
884 struct pci_dev *pci_dev = efx->pci_dev;
885 dma_addr_t dma_mask = efx->type->max_dma_mask;
886 int rc;
888 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
890 rc = pci_enable_device(pci_dev);
891 if (rc) {
892 netif_err(efx, probe, efx->net_dev,
893 "failed to enable PCI device\n");
894 goto fail1;
897 pci_set_master(pci_dev);
899 /* Set the PCI DMA mask. Try all possibilities from our
900 * genuine mask down to 32 bits, because some architectures
901 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
902 * masks event though they reject 46 bit masks.
904 while (dma_mask > 0x7fffffffUL) {
905 if (pci_dma_supported(pci_dev, dma_mask) &&
906 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
907 break;
908 dma_mask >>= 1;
910 if (rc) {
911 netif_err(efx, probe, efx->net_dev,
912 "could not find a suitable DMA mask\n");
913 goto fail2;
915 netif_dbg(efx, probe, efx->net_dev,
916 "using DMA mask %llx\n", (unsigned long long) dma_mask);
917 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
918 if (rc) {
919 /* pci_set_consistent_dma_mask() is not *allowed* to
920 * fail with a mask that pci_set_dma_mask() accepted,
921 * but just in case...
923 netif_err(efx, probe, efx->net_dev,
924 "failed to set consistent DMA mask\n");
925 goto fail2;
928 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
929 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
930 if (rc) {
931 netif_err(efx, probe, efx->net_dev,
932 "request for memory BAR failed\n");
933 rc = -EIO;
934 goto fail3;
936 efx->membase = ioremap_nocache(efx->membase_phys,
937 efx->type->mem_map_size);
938 if (!efx->membase) {
939 netif_err(efx, probe, efx->net_dev,
940 "could not map memory BAR at %llx+%x\n",
941 (unsigned long long)efx->membase_phys,
942 efx->type->mem_map_size);
943 rc = -ENOMEM;
944 goto fail4;
946 netif_dbg(efx, probe, efx->net_dev,
947 "memory BAR at %llx+%x (virtual %p)\n",
948 (unsigned long long)efx->membase_phys,
949 efx->type->mem_map_size, efx->membase);
951 return 0;
953 fail4:
954 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
955 fail3:
956 efx->membase_phys = 0;
957 fail2:
958 pci_disable_device(efx->pci_dev);
959 fail1:
960 return rc;
963 static void efx_fini_io(struct efx_nic *efx)
965 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
967 if (efx->membase) {
968 iounmap(efx->membase);
969 efx->membase = NULL;
972 if (efx->membase_phys) {
973 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
974 efx->membase_phys = 0;
977 pci_disable_device(efx->pci_dev);
980 /* Get number of channels wanted. Each channel will have its own IRQ,
981 * 1 RX queue and/or 2 TX queues. */
982 static int efx_wanted_channels(void)
984 cpumask_var_t core_mask;
985 int count;
986 int cpu;
988 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
989 printk(KERN_WARNING
990 "sfc: RSS disabled due to allocation failure\n");
991 return 1;
994 count = 0;
995 for_each_online_cpu(cpu) {
996 if (!cpumask_test_cpu(cpu, core_mask)) {
997 ++count;
998 cpumask_or(core_mask, core_mask,
999 topology_core_cpumask(cpu));
1003 free_cpumask_var(core_mask);
1004 return count;
1007 /* Probe the number and type of interrupts we are able to obtain, and
1008 * the resulting numbers of channels and RX queues.
1010 static void efx_probe_interrupts(struct efx_nic *efx)
1012 int max_channels =
1013 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1014 int rc, i;
1016 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1017 struct msix_entry xentries[EFX_MAX_CHANNELS];
1018 int n_channels;
1020 n_channels = efx_wanted_channels();
1021 if (separate_tx_channels)
1022 n_channels *= 2;
1023 n_channels = min(n_channels, max_channels);
1025 for (i = 0; i < n_channels; i++)
1026 xentries[i].entry = i;
1027 rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1028 if (rc > 0) {
1029 netif_err(efx, drv, efx->net_dev,
1030 "WARNING: Insufficient MSI-X vectors"
1031 " available (%d < %d).\n", rc, n_channels);
1032 netif_err(efx, drv, efx->net_dev,
1033 "WARNING: Performance may be reduced.\n");
1034 EFX_BUG_ON_PARANOID(rc >= n_channels);
1035 n_channels = rc;
1036 rc = pci_enable_msix(efx->pci_dev, xentries,
1037 n_channels);
1040 if (rc == 0) {
1041 efx->n_channels = n_channels;
1042 if (separate_tx_channels) {
1043 efx->n_tx_channels =
1044 max(efx->n_channels / 2, 1U);
1045 efx->n_rx_channels =
1046 max(efx->n_channels -
1047 efx->n_tx_channels, 1U);
1048 } else {
1049 efx->n_tx_channels = efx->n_channels;
1050 efx->n_rx_channels = efx->n_channels;
1052 for (i = 0; i < n_channels; i++)
1053 efx->channel[i].irq = xentries[i].vector;
1054 } else {
1055 /* Fall back to single channel MSI */
1056 efx->interrupt_mode = EFX_INT_MODE_MSI;
1057 netif_err(efx, drv, efx->net_dev,
1058 "could not enable MSI-X\n");
1062 /* Try single interrupt MSI */
1063 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1064 efx->n_channels = 1;
1065 efx->n_rx_channels = 1;
1066 efx->n_tx_channels = 1;
1067 rc = pci_enable_msi(efx->pci_dev);
1068 if (rc == 0) {
1069 efx->channel[0].irq = efx->pci_dev->irq;
1070 } else {
1071 netif_err(efx, drv, efx->net_dev,
1072 "could not enable MSI\n");
1073 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1077 /* Assume legacy interrupts */
1078 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1079 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1080 efx->n_rx_channels = 1;
1081 efx->n_tx_channels = 1;
1082 efx->legacy_irq = efx->pci_dev->irq;
1086 static void efx_remove_interrupts(struct efx_nic *efx)
1088 struct efx_channel *channel;
1090 /* Remove MSI/MSI-X interrupts */
1091 efx_for_each_channel(channel, efx)
1092 channel->irq = 0;
1093 pci_disable_msi(efx->pci_dev);
1094 pci_disable_msix(efx->pci_dev);
1096 /* Remove legacy interrupt */
1097 efx->legacy_irq = 0;
1100 static void efx_set_channels(struct efx_nic *efx)
1102 struct efx_channel *channel;
1103 struct efx_tx_queue *tx_queue;
1104 struct efx_rx_queue *rx_queue;
1105 unsigned tx_channel_offset =
1106 separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1108 efx_for_each_channel(channel, efx) {
1109 if (channel->channel - tx_channel_offset < efx->n_tx_channels) {
1110 channel->tx_queue = &efx->tx_queue[
1111 (channel->channel - tx_channel_offset) *
1112 EFX_TXQ_TYPES];
1113 efx_for_each_channel_tx_queue(tx_queue, channel)
1114 tx_queue->channel = channel;
1118 efx_for_each_rx_queue(rx_queue, efx)
1119 rx_queue->channel = &efx->channel[rx_queue->queue];
1122 static int efx_probe_nic(struct efx_nic *efx)
1124 size_t i;
1125 int rc;
1127 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1129 /* Carry out hardware-type specific initialisation */
1130 rc = efx->type->probe(efx);
1131 if (rc)
1132 return rc;
1134 /* Determine the number of channels and queues by trying to hook
1135 * in MSI-X interrupts. */
1136 efx_probe_interrupts(efx);
1138 if (efx->n_channels > 1)
1139 get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1140 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1141 efx->rx_indir_table[i] = i % efx->n_rx_channels;
1143 efx_set_channels(efx);
1144 efx->net_dev->real_num_tx_queues = efx->n_tx_channels;
1146 /* Initialise the interrupt moderation settings */
1147 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
1149 return 0;
1152 static void efx_remove_nic(struct efx_nic *efx)
1154 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1156 efx_remove_interrupts(efx);
1157 efx->type->remove(efx);
1160 /**************************************************************************
1162 * NIC startup/shutdown
1164 *************************************************************************/
1166 static int efx_probe_all(struct efx_nic *efx)
1168 struct efx_channel *channel;
1169 int rc;
1171 /* Create NIC */
1172 rc = efx_probe_nic(efx);
1173 if (rc) {
1174 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1175 goto fail1;
1178 /* Create port */
1179 rc = efx_probe_port(efx);
1180 if (rc) {
1181 netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1182 goto fail2;
1185 /* Create channels */
1186 efx_for_each_channel(channel, efx) {
1187 rc = efx_probe_channel(channel);
1188 if (rc) {
1189 netif_err(efx, probe, efx->net_dev,
1190 "failed to create channel %d\n",
1191 channel->channel);
1192 goto fail3;
1195 efx_set_channel_names(efx);
1197 return 0;
1199 fail3:
1200 efx_for_each_channel(channel, efx)
1201 efx_remove_channel(channel);
1202 efx_remove_port(efx);
1203 fail2:
1204 efx_remove_nic(efx);
1205 fail1:
1206 return rc;
1209 /* Called after previous invocation(s) of efx_stop_all, restarts the
1210 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1211 * and ensures that the port is scheduled to be reconfigured.
1212 * This function is safe to call multiple times when the NIC is in any
1213 * state. */
1214 static void efx_start_all(struct efx_nic *efx)
1216 struct efx_channel *channel;
1218 EFX_ASSERT_RESET_SERIALISED(efx);
1220 /* Check that it is appropriate to restart the interface. All
1221 * of these flags are safe to read under just the rtnl lock */
1222 if (efx->port_enabled)
1223 return;
1224 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1225 return;
1226 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
1227 return;
1229 /* Mark the port as enabled so port reconfigurations can start, then
1230 * restart the transmit interface early so the watchdog timer stops */
1231 efx_start_port(efx);
1233 efx_for_each_channel(channel, efx) {
1234 if (efx_dev_registered(efx))
1235 efx_wake_queue(channel);
1236 efx_start_channel(channel);
1239 efx_nic_enable_interrupts(efx);
1241 /* Switch to event based MCDI completions after enabling interrupts.
1242 * If a reset has been scheduled, then we need to stay in polled mode.
1243 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1244 * reset_pending [modified from an atomic context], we instead guarantee
1245 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1246 efx_mcdi_mode_event(efx);
1247 if (efx->reset_pending != RESET_TYPE_NONE)
1248 efx_mcdi_mode_poll(efx);
1250 /* Start the hardware monitor if there is one. Otherwise (we're link
1251 * event driven), we have to poll the PHY because after an event queue
1252 * flush, we could have a missed a link state change */
1253 if (efx->type->monitor != NULL) {
1254 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1255 efx_monitor_interval);
1256 } else {
1257 mutex_lock(&efx->mac_lock);
1258 if (efx->phy_op->poll(efx))
1259 efx_link_status_changed(efx);
1260 mutex_unlock(&efx->mac_lock);
1263 efx->type->start_stats(efx);
1266 /* Flush all delayed work. Should only be called when no more delayed work
1267 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1268 * since we're holding the rtnl_lock at this point. */
1269 static void efx_flush_all(struct efx_nic *efx)
1271 /* Make sure the hardware monitor is stopped */
1272 cancel_delayed_work_sync(&efx->monitor_work);
1273 /* Stop scheduled port reconfigurations */
1274 cancel_work_sync(&efx->mac_work);
1277 /* Quiesce hardware and software without bringing the link down.
1278 * Safe to call multiple times, when the nic and interface is in any
1279 * state. The caller is guaranteed to subsequently be in a position
1280 * to modify any hardware and software state they see fit without
1281 * taking locks. */
1282 static void efx_stop_all(struct efx_nic *efx)
1284 struct efx_channel *channel;
1286 EFX_ASSERT_RESET_SERIALISED(efx);
1288 /* port_enabled can be read safely under the rtnl lock */
1289 if (!efx->port_enabled)
1290 return;
1292 efx->type->stop_stats(efx);
1294 /* Switch to MCDI polling on Siena before disabling interrupts */
1295 efx_mcdi_mode_poll(efx);
1297 /* Disable interrupts and wait for ISR to complete */
1298 efx_nic_disable_interrupts(efx);
1299 if (efx->legacy_irq)
1300 synchronize_irq(efx->legacy_irq);
1301 efx_for_each_channel(channel, efx) {
1302 if (channel->irq)
1303 synchronize_irq(channel->irq);
1306 /* Stop all NAPI processing and synchronous rx refills */
1307 efx_for_each_channel(channel, efx)
1308 efx_stop_channel(channel);
1310 /* Stop all asynchronous port reconfigurations. Since all
1311 * event processing has already been stopped, there is no
1312 * window to loose phy events */
1313 efx_stop_port(efx);
1315 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1316 efx_flush_all(efx);
1318 /* Stop the kernel transmit interface late, so the watchdog
1319 * timer isn't ticking over the flush */
1320 if (efx_dev_registered(efx)) {
1321 struct efx_channel *channel;
1322 efx_for_each_channel(channel, efx)
1323 efx_stop_queue(channel);
1324 netif_tx_lock_bh(efx->net_dev);
1325 netif_tx_unlock_bh(efx->net_dev);
1329 static void efx_remove_all(struct efx_nic *efx)
1331 struct efx_channel *channel;
1333 efx_for_each_channel(channel, efx)
1334 efx_remove_channel(channel);
1335 efx_remove_port(efx);
1336 efx_remove_nic(efx);
1339 /**************************************************************************
1341 * Interrupt moderation
1343 **************************************************************************/
1345 static unsigned irq_mod_ticks(int usecs, int resolution)
1347 if (usecs <= 0)
1348 return 0; /* cannot receive interrupts ahead of time :-) */
1349 if (usecs < resolution)
1350 return 1; /* never round down to 0 */
1351 return usecs / resolution;
1354 /* Set interrupt moderation parameters */
1355 void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1356 bool rx_adaptive)
1358 struct efx_tx_queue *tx_queue;
1359 struct efx_rx_queue *rx_queue;
1360 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1361 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
1363 EFX_ASSERT_RESET_SERIALISED(efx);
1365 efx_for_each_tx_queue(tx_queue, efx)
1366 tx_queue->channel->irq_moderation = tx_ticks;
1368 efx->irq_rx_adaptive = rx_adaptive;
1369 efx->irq_rx_moderation = rx_ticks;
1370 efx_for_each_rx_queue(rx_queue, efx)
1371 rx_queue->channel->irq_moderation = rx_ticks;
1374 /**************************************************************************
1376 * Hardware monitor
1378 **************************************************************************/
1380 /* Run periodically off the general workqueue. Serialised against
1381 * efx_reconfigure_port via the mac_lock */
1382 static void efx_monitor(struct work_struct *data)
1384 struct efx_nic *efx = container_of(data, struct efx_nic,
1385 monitor_work.work);
1387 netif_vdbg(efx, timer, efx->net_dev,
1388 "hardware monitor executing on CPU %d\n",
1389 raw_smp_processor_id());
1390 BUG_ON(efx->type->monitor == NULL);
1392 /* If the mac_lock is already held then it is likely a port
1393 * reconfiguration is already in place, which will likely do
1394 * most of the work of check_hw() anyway. */
1395 if (!mutex_trylock(&efx->mac_lock))
1396 goto out_requeue;
1397 if (!efx->port_enabled)
1398 goto out_unlock;
1399 efx->type->monitor(efx);
1401 out_unlock:
1402 mutex_unlock(&efx->mac_lock);
1403 out_requeue:
1404 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1405 efx_monitor_interval);
1408 /**************************************************************************
1410 * ioctls
1412 *************************************************************************/
1414 /* Net device ioctl
1415 * Context: process, rtnl_lock() held.
1417 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1419 struct efx_nic *efx = netdev_priv(net_dev);
1420 struct mii_ioctl_data *data = if_mii(ifr);
1422 EFX_ASSERT_RESET_SERIALISED(efx);
1424 /* Convert phy_id from older PRTAD/DEVAD format */
1425 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1426 (data->phy_id & 0xfc00) == 0x0400)
1427 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1429 return mdio_mii_ioctl(&efx->mdio, data, cmd);
1432 /**************************************************************************
1434 * NAPI interface
1436 **************************************************************************/
1438 static int efx_init_napi(struct efx_nic *efx)
1440 struct efx_channel *channel;
1442 efx_for_each_channel(channel, efx) {
1443 channel->napi_dev = efx->net_dev;
1444 netif_napi_add(channel->napi_dev, &channel->napi_str,
1445 efx_poll, napi_weight);
1447 return 0;
1450 static void efx_fini_napi(struct efx_nic *efx)
1452 struct efx_channel *channel;
1454 efx_for_each_channel(channel, efx) {
1455 if (channel->napi_dev)
1456 netif_napi_del(&channel->napi_str);
1457 channel->napi_dev = NULL;
1461 /**************************************************************************
1463 * Kernel netpoll interface
1465 *************************************************************************/
1467 #ifdef CONFIG_NET_POLL_CONTROLLER
1469 /* Although in the common case interrupts will be disabled, this is not
1470 * guaranteed. However, all our work happens inside the NAPI callback,
1471 * so no locking is required.
1473 static void efx_netpoll(struct net_device *net_dev)
1475 struct efx_nic *efx = netdev_priv(net_dev);
1476 struct efx_channel *channel;
1478 efx_for_each_channel(channel, efx)
1479 efx_schedule_channel(channel);
1482 #endif
1484 /**************************************************************************
1486 * Kernel net device interface
1488 *************************************************************************/
1490 /* Context: process, rtnl_lock() held. */
1491 static int efx_net_open(struct net_device *net_dev)
1493 struct efx_nic *efx = netdev_priv(net_dev);
1494 EFX_ASSERT_RESET_SERIALISED(efx);
1496 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1497 raw_smp_processor_id());
1499 if (efx->state == STATE_DISABLED)
1500 return -EIO;
1501 if (efx->phy_mode & PHY_MODE_SPECIAL)
1502 return -EBUSY;
1503 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1504 return -EIO;
1506 /* Notify the kernel of the link state polled during driver load,
1507 * before the monitor starts running */
1508 efx_link_status_changed(efx);
1510 efx_start_all(efx);
1511 return 0;
1514 /* Context: process, rtnl_lock() held.
1515 * Note that the kernel will ignore our return code; this method
1516 * should really be a void.
1518 static int efx_net_stop(struct net_device *net_dev)
1520 struct efx_nic *efx = netdev_priv(net_dev);
1522 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1523 raw_smp_processor_id());
1525 if (efx->state != STATE_DISABLED) {
1526 /* Stop the device and flush all the channels */
1527 efx_stop_all(efx);
1528 efx_fini_channels(efx);
1529 efx_init_channels(efx);
1532 return 0;
1535 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1536 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats)
1538 struct efx_nic *efx = netdev_priv(net_dev);
1539 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1541 spin_lock_bh(&efx->stats_lock);
1542 efx->type->update_stats(efx);
1543 spin_unlock_bh(&efx->stats_lock);
1545 stats->rx_packets = mac_stats->rx_packets;
1546 stats->tx_packets = mac_stats->tx_packets;
1547 stats->rx_bytes = mac_stats->rx_bytes;
1548 stats->tx_bytes = mac_stats->tx_bytes;
1549 stats->multicast = mac_stats->rx_multicast;
1550 stats->collisions = mac_stats->tx_collision;
1551 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1552 mac_stats->rx_length_error);
1553 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1554 stats->rx_crc_errors = mac_stats->rx_bad;
1555 stats->rx_frame_errors = mac_stats->rx_align_error;
1556 stats->rx_fifo_errors = mac_stats->rx_overflow;
1557 stats->rx_missed_errors = mac_stats->rx_missed;
1558 stats->tx_window_errors = mac_stats->tx_late_collision;
1560 stats->rx_errors = (stats->rx_length_errors +
1561 stats->rx_crc_errors +
1562 stats->rx_frame_errors +
1563 mac_stats->rx_symbol_error);
1564 stats->tx_errors = (stats->tx_window_errors +
1565 mac_stats->tx_bad);
1567 return stats;
1570 /* Context: netif_tx_lock held, BHs disabled. */
1571 static void efx_watchdog(struct net_device *net_dev)
1573 struct efx_nic *efx = netdev_priv(net_dev);
1575 netif_err(efx, tx_err, efx->net_dev,
1576 "TX stuck with port_enabled=%d: resetting channels\n",
1577 efx->port_enabled);
1579 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
1583 /* Context: process, rtnl_lock() held. */
1584 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1586 struct efx_nic *efx = netdev_priv(net_dev);
1587 int rc = 0;
1589 EFX_ASSERT_RESET_SERIALISED(efx);
1591 if (new_mtu > EFX_MAX_MTU)
1592 return -EINVAL;
1594 efx_stop_all(efx);
1596 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1598 efx_fini_channels(efx);
1600 mutex_lock(&efx->mac_lock);
1601 /* Reconfigure the MAC before enabling the dma queues so that
1602 * the RX buffers don't overflow */
1603 net_dev->mtu = new_mtu;
1604 efx->mac_op->reconfigure(efx);
1605 mutex_unlock(&efx->mac_lock);
1607 efx_init_channels(efx);
1609 efx_start_all(efx);
1610 return rc;
1613 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1615 struct efx_nic *efx = netdev_priv(net_dev);
1616 struct sockaddr *addr = data;
1617 char *new_addr = addr->sa_data;
1619 EFX_ASSERT_RESET_SERIALISED(efx);
1621 if (!is_valid_ether_addr(new_addr)) {
1622 netif_err(efx, drv, efx->net_dev,
1623 "invalid ethernet MAC address requested: %pM\n",
1624 new_addr);
1625 return -EINVAL;
1628 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1630 /* Reconfigure the MAC */
1631 mutex_lock(&efx->mac_lock);
1632 efx->mac_op->reconfigure(efx);
1633 mutex_unlock(&efx->mac_lock);
1635 return 0;
1638 /* Context: netif_addr_lock held, BHs disabled. */
1639 static void efx_set_multicast_list(struct net_device *net_dev)
1641 struct efx_nic *efx = netdev_priv(net_dev);
1642 struct netdev_hw_addr *ha;
1643 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1644 u32 crc;
1645 int bit;
1647 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
1649 /* Build multicast hash table */
1650 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1651 memset(mc_hash, 0xff, sizeof(*mc_hash));
1652 } else {
1653 memset(mc_hash, 0x00, sizeof(*mc_hash));
1654 netdev_for_each_mc_addr(ha, net_dev) {
1655 crc = ether_crc_le(ETH_ALEN, ha->addr);
1656 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1657 set_bit_le(bit, mc_hash->byte);
1660 /* Broadcast packets go through the multicast hash filter.
1661 * ether_crc_le() of the broadcast address is 0xbe2612ff
1662 * so we always add bit 0xff to the mask.
1664 set_bit_le(0xff, mc_hash->byte);
1667 if (efx->port_enabled)
1668 queue_work(efx->workqueue, &efx->mac_work);
1669 /* Otherwise efx_start_port() will do this */
1672 static const struct net_device_ops efx_netdev_ops = {
1673 .ndo_open = efx_net_open,
1674 .ndo_stop = efx_net_stop,
1675 .ndo_get_stats64 = efx_net_stats,
1676 .ndo_tx_timeout = efx_watchdog,
1677 .ndo_start_xmit = efx_hard_start_xmit,
1678 .ndo_validate_addr = eth_validate_addr,
1679 .ndo_do_ioctl = efx_ioctl,
1680 .ndo_change_mtu = efx_change_mtu,
1681 .ndo_set_mac_address = efx_set_mac_address,
1682 .ndo_set_multicast_list = efx_set_multicast_list,
1683 #ifdef CONFIG_NET_POLL_CONTROLLER
1684 .ndo_poll_controller = efx_netpoll,
1685 #endif
1688 static void efx_update_name(struct efx_nic *efx)
1690 strcpy(efx->name, efx->net_dev->name);
1691 efx_mtd_rename(efx);
1692 efx_set_channel_names(efx);
1695 static int efx_netdev_event(struct notifier_block *this,
1696 unsigned long event, void *ptr)
1698 struct net_device *net_dev = ptr;
1700 if (net_dev->netdev_ops == &efx_netdev_ops &&
1701 event == NETDEV_CHANGENAME)
1702 efx_update_name(netdev_priv(net_dev));
1704 return NOTIFY_DONE;
1707 static struct notifier_block efx_netdev_notifier = {
1708 .notifier_call = efx_netdev_event,
1711 static ssize_t
1712 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1714 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1715 return sprintf(buf, "%d\n", efx->phy_type);
1717 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1719 static int efx_register_netdev(struct efx_nic *efx)
1721 struct net_device *net_dev = efx->net_dev;
1722 int rc;
1724 net_dev->watchdog_timeo = 5 * HZ;
1725 net_dev->irq = efx->pci_dev->irq;
1726 net_dev->netdev_ops = &efx_netdev_ops;
1727 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1729 /* Clear MAC statistics */
1730 efx->mac_op->update_stats(efx);
1731 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1733 rtnl_lock();
1735 rc = dev_alloc_name(net_dev, net_dev->name);
1736 if (rc < 0)
1737 goto fail_locked;
1738 efx_update_name(efx);
1740 rc = register_netdevice(net_dev);
1741 if (rc)
1742 goto fail_locked;
1744 /* Always start with carrier off; PHY events will detect the link */
1745 netif_carrier_off(efx->net_dev);
1747 rtnl_unlock();
1749 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1750 if (rc) {
1751 netif_err(efx, drv, efx->net_dev,
1752 "failed to init net dev attributes\n");
1753 goto fail_registered;
1756 return 0;
1758 fail_locked:
1759 rtnl_unlock();
1760 netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
1761 return rc;
1763 fail_registered:
1764 unregister_netdev(net_dev);
1765 return rc;
1768 static void efx_unregister_netdev(struct efx_nic *efx)
1770 struct efx_tx_queue *tx_queue;
1772 if (!efx->net_dev)
1773 return;
1775 BUG_ON(netdev_priv(efx->net_dev) != efx);
1777 /* Free up any skbs still remaining. This has to happen before
1778 * we try to unregister the netdev as running their destructors
1779 * may be needed to get the device ref. count to 0. */
1780 efx_for_each_tx_queue(tx_queue, efx)
1781 efx_release_tx_buffers(tx_queue);
1783 if (efx_dev_registered(efx)) {
1784 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1785 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1786 unregister_netdev(efx->net_dev);
1790 /**************************************************************************
1792 * Device reset and suspend
1794 **************************************************************************/
1796 /* Tears down the entire software state and most of the hardware state
1797 * before reset. */
1798 void efx_reset_down(struct efx_nic *efx, enum reset_type method)
1800 EFX_ASSERT_RESET_SERIALISED(efx);
1802 efx_stop_all(efx);
1803 mutex_lock(&efx->mac_lock);
1804 mutex_lock(&efx->spi_lock);
1806 efx_fini_channels(efx);
1807 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1808 efx->phy_op->fini(efx);
1809 efx->type->fini(efx);
1812 /* This function will always ensure that the locks acquired in
1813 * efx_reset_down() are released. A failure return code indicates
1814 * that we were unable to reinitialise the hardware, and the
1815 * driver should be disabled. If ok is false, then the rx and tx
1816 * engines are not restarted, pending a RESET_DISABLE. */
1817 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
1819 int rc;
1821 EFX_ASSERT_RESET_SERIALISED(efx);
1823 rc = efx->type->init(efx);
1824 if (rc) {
1825 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
1826 goto fail;
1829 if (!ok)
1830 goto fail;
1832 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1833 rc = efx->phy_op->init(efx);
1834 if (rc)
1835 goto fail;
1836 if (efx->phy_op->reconfigure(efx))
1837 netif_err(efx, drv, efx->net_dev,
1838 "could not restore PHY settings\n");
1841 efx->mac_op->reconfigure(efx);
1843 efx_init_channels(efx);
1845 mutex_unlock(&efx->spi_lock);
1846 mutex_unlock(&efx->mac_lock);
1848 efx_start_all(efx);
1850 return 0;
1852 fail:
1853 efx->port_initialized = false;
1855 mutex_unlock(&efx->spi_lock);
1856 mutex_unlock(&efx->mac_lock);
1858 return rc;
1861 /* Reset the NIC using the specified method. Note that the reset may
1862 * fail, in which case the card will be left in an unusable state.
1864 * Caller must hold the rtnl_lock.
1866 int efx_reset(struct efx_nic *efx, enum reset_type method)
1868 int rc, rc2;
1869 bool disabled;
1871 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
1872 RESET_TYPE(method));
1874 efx_reset_down(efx, method);
1876 rc = efx->type->reset(efx, method);
1877 if (rc) {
1878 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
1879 goto out;
1882 /* Allow resets to be rescheduled. */
1883 efx->reset_pending = RESET_TYPE_NONE;
1885 /* Reinitialise bus-mastering, which may have been turned off before
1886 * the reset was scheduled. This is still appropriate, even in the
1887 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1888 * can respond to requests. */
1889 pci_set_master(efx->pci_dev);
1891 out:
1892 /* Leave device stopped if necessary */
1893 disabled = rc || method == RESET_TYPE_DISABLE;
1894 rc2 = efx_reset_up(efx, method, !disabled);
1895 if (rc2) {
1896 disabled = true;
1897 if (!rc)
1898 rc = rc2;
1901 if (disabled) {
1902 dev_close(efx->net_dev);
1903 netif_err(efx, drv, efx->net_dev, "has been disabled\n");
1904 efx->state = STATE_DISABLED;
1905 } else {
1906 netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
1908 return rc;
1911 /* The worker thread exists so that code that cannot sleep can
1912 * schedule a reset for later.
1914 static void efx_reset_work(struct work_struct *data)
1916 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
1918 if (efx->reset_pending == RESET_TYPE_NONE)
1919 return;
1921 /* If we're not RUNNING then don't reset. Leave the reset_pending
1922 * flag set so that efx_pci_probe_main will be retried */
1923 if (efx->state != STATE_RUNNING) {
1924 netif_info(efx, drv, efx->net_dev,
1925 "scheduled reset quenched. NIC not RUNNING\n");
1926 return;
1929 rtnl_lock();
1930 (void)efx_reset(efx, efx->reset_pending);
1931 rtnl_unlock();
1934 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1936 enum reset_type method;
1938 if (efx->reset_pending != RESET_TYPE_NONE) {
1939 netif_info(efx, drv, efx->net_dev,
1940 "quenching already scheduled reset\n");
1941 return;
1944 switch (type) {
1945 case RESET_TYPE_INVISIBLE:
1946 case RESET_TYPE_ALL:
1947 case RESET_TYPE_WORLD:
1948 case RESET_TYPE_DISABLE:
1949 method = type;
1950 break;
1951 case RESET_TYPE_RX_RECOVERY:
1952 case RESET_TYPE_RX_DESC_FETCH:
1953 case RESET_TYPE_TX_DESC_FETCH:
1954 case RESET_TYPE_TX_SKIP:
1955 method = RESET_TYPE_INVISIBLE;
1956 break;
1957 case RESET_TYPE_MC_FAILURE:
1958 default:
1959 method = RESET_TYPE_ALL;
1960 break;
1963 if (method != type)
1964 netif_dbg(efx, drv, efx->net_dev,
1965 "scheduling %s reset for %s\n",
1966 RESET_TYPE(method), RESET_TYPE(type));
1967 else
1968 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
1969 RESET_TYPE(method));
1971 efx->reset_pending = method;
1973 /* efx_process_channel() will no longer read events once a
1974 * reset is scheduled. So switch back to poll'd MCDI completions. */
1975 efx_mcdi_mode_poll(efx);
1977 queue_work(reset_workqueue, &efx->reset_work);
1980 /**************************************************************************
1982 * List of NICs we support
1984 **************************************************************************/
1986 /* PCI device ID table */
1987 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
1988 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1989 .driver_data = (unsigned long) &falcon_a1_nic_type},
1990 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1991 .driver_data = (unsigned long) &falcon_b0_nic_type},
1992 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1993 .driver_data = (unsigned long) &siena_a0_nic_type},
1994 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1995 .driver_data = (unsigned long) &siena_a0_nic_type},
1996 {0} /* end of list */
1999 /**************************************************************************
2001 * Dummy PHY/MAC operations
2003 * Can be used for some unimplemented operations
2004 * Needed so all function pointers are valid and do not have to be tested
2005 * before use
2007 **************************************************************************/
2008 int efx_port_dummy_op_int(struct efx_nic *efx)
2010 return 0;
2012 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2013 void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2016 bool efx_port_dummy_op_poll(struct efx_nic *efx)
2018 return false;
2021 static struct efx_phy_operations efx_dummy_phy_operations = {
2022 .init = efx_port_dummy_op_int,
2023 .reconfigure = efx_port_dummy_op_int,
2024 .poll = efx_port_dummy_op_poll,
2025 .fini = efx_port_dummy_op_void,
2028 /**************************************************************************
2030 * Data housekeeping
2032 **************************************************************************/
2034 /* This zeroes out and then fills in the invariants in a struct
2035 * efx_nic (including all sub-structures).
2037 static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
2038 struct pci_dev *pci_dev, struct net_device *net_dev)
2040 struct efx_channel *channel;
2041 struct efx_tx_queue *tx_queue;
2042 struct efx_rx_queue *rx_queue;
2043 int i;
2045 /* Initialise common structures */
2046 memset(efx, 0, sizeof(*efx));
2047 spin_lock_init(&efx->biu_lock);
2048 mutex_init(&efx->mdio_lock);
2049 mutex_init(&efx->spi_lock);
2050 #ifdef CONFIG_SFC_MTD
2051 INIT_LIST_HEAD(&efx->mtd_list);
2052 #endif
2053 INIT_WORK(&efx->reset_work, efx_reset_work);
2054 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2055 efx->pci_dev = pci_dev;
2056 efx->msg_enable = debug;
2057 efx->state = STATE_INIT;
2058 efx->reset_pending = RESET_TYPE_NONE;
2059 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2061 efx->net_dev = net_dev;
2062 efx->rx_checksum_enabled = true;
2063 spin_lock_init(&efx->stats_lock);
2064 mutex_init(&efx->mac_lock);
2065 efx->mac_op = type->default_mac_ops;
2066 efx->phy_op = &efx_dummy_phy_operations;
2067 efx->mdio.dev = net_dev;
2068 INIT_WORK(&efx->mac_work, efx_mac_work);
2070 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2071 channel = &efx->channel[i];
2072 channel->efx = efx;
2073 channel->channel = i;
2074 channel->work_pending = false;
2075 spin_lock_init(&channel->tx_stop_lock);
2076 atomic_set(&channel->tx_stop_count, 1);
2078 for (i = 0; i < EFX_MAX_TX_QUEUES; i++) {
2079 tx_queue = &efx->tx_queue[i];
2080 tx_queue->efx = efx;
2081 tx_queue->queue = i;
2082 tx_queue->buffer = NULL;
2083 tx_queue->channel = &efx->channel[0]; /* for safety */
2084 tx_queue->tso_headers_free = NULL;
2086 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2087 rx_queue = &efx->rx_queue[i];
2088 rx_queue->efx = efx;
2089 rx_queue->queue = i;
2090 rx_queue->channel = &efx->channel[0]; /* for safety */
2091 rx_queue->buffer = NULL;
2092 setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
2093 (unsigned long)rx_queue);
2096 efx->type = type;
2098 /* As close as we can get to guaranteeing that we don't overflow */
2099 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2101 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2103 /* Higher numbered interrupt modes are less capable! */
2104 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2105 interrupt_mode);
2107 /* Would be good to use the net_dev name, but we're too early */
2108 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2109 pci_name(pci_dev));
2110 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
2111 if (!efx->workqueue)
2112 return -ENOMEM;
2114 return 0;
2117 static void efx_fini_struct(struct efx_nic *efx)
2119 if (efx->workqueue) {
2120 destroy_workqueue(efx->workqueue);
2121 efx->workqueue = NULL;
2125 /**************************************************************************
2127 * PCI interface
2129 **************************************************************************/
2131 /* Main body of final NIC shutdown code
2132 * This is called only at module unload (or hotplug removal).
2134 static void efx_pci_remove_main(struct efx_nic *efx)
2136 efx_nic_fini_interrupt(efx);
2137 efx_fini_channels(efx);
2138 efx_fini_port(efx);
2139 efx->type->fini(efx);
2140 efx_fini_napi(efx);
2141 efx_remove_all(efx);
2144 /* Final NIC shutdown
2145 * This is called only at module unload (or hotplug removal).
2147 static void efx_pci_remove(struct pci_dev *pci_dev)
2149 struct efx_nic *efx;
2151 efx = pci_get_drvdata(pci_dev);
2152 if (!efx)
2153 return;
2155 /* Mark the NIC as fini, then stop the interface */
2156 rtnl_lock();
2157 efx->state = STATE_FINI;
2158 dev_close(efx->net_dev);
2160 /* Allow any queued efx_resets() to complete */
2161 rtnl_unlock();
2163 efx_unregister_netdev(efx);
2165 efx_mtd_remove(efx);
2167 /* Wait for any scheduled resets to complete. No more will be
2168 * scheduled from this point because efx_stop_all() has been
2169 * called, we are no longer registered with driverlink, and
2170 * the net_device's have been removed. */
2171 cancel_work_sync(&efx->reset_work);
2173 efx_pci_remove_main(efx);
2175 efx_fini_io(efx);
2176 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2178 pci_set_drvdata(pci_dev, NULL);
2179 efx_fini_struct(efx);
2180 free_netdev(efx->net_dev);
2183 /* Main body of NIC initialisation
2184 * This is called at module load (or hotplug insertion, theoretically).
2186 static int efx_pci_probe_main(struct efx_nic *efx)
2188 int rc;
2190 /* Do start-of-day initialisation */
2191 rc = efx_probe_all(efx);
2192 if (rc)
2193 goto fail1;
2195 rc = efx_init_napi(efx);
2196 if (rc)
2197 goto fail2;
2199 rc = efx->type->init(efx);
2200 if (rc) {
2201 netif_err(efx, probe, efx->net_dev,
2202 "failed to initialise NIC\n");
2203 goto fail3;
2206 rc = efx_init_port(efx);
2207 if (rc) {
2208 netif_err(efx, probe, efx->net_dev,
2209 "failed to initialise port\n");
2210 goto fail4;
2213 efx_init_channels(efx);
2215 rc = efx_nic_init_interrupt(efx);
2216 if (rc)
2217 goto fail5;
2219 return 0;
2221 fail5:
2222 efx_fini_channels(efx);
2223 efx_fini_port(efx);
2224 fail4:
2225 efx->type->fini(efx);
2226 fail3:
2227 efx_fini_napi(efx);
2228 fail2:
2229 efx_remove_all(efx);
2230 fail1:
2231 return rc;
2234 /* NIC initialisation
2236 * This is called at module load (or hotplug insertion,
2237 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2238 * sets up and registers the network devices with the kernel and hooks
2239 * the interrupt service routine. It does not prepare the device for
2240 * transmission; this is left to the first time one of the network
2241 * interfaces is brought up (i.e. efx_net_open).
2243 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2244 const struct pci_device_id *entry)
2246 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2247 struct net_device *net_dev;
2248 struct efx_nic *efx;
2249 int i, rc;
2251 /* Allocate and initialise a struct net_device and struct efx_nic */
2252 net_dev = alloc_etherdev_mq(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES);
2253 if (!net_dev)
2254 return -ENOMEM;
2255 net_dev->features |= (type->offload_features | NETIF_F_SG |
2256 NETIF_F_HIGHDMA | NETIF_F_TSO |
2257 NETIF_F_GRO);
2258 if (type->offload_features & NETIF_F_V6_CSUM)
2259 net_dev->features |= NETIF_F_TSO6;
2260 /* Mask for features that also apply to VLAN devices */
2261 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2262 NETIF_F_HIGHDMA | NETIF_F_TSO);
2263 efx = netdev_priv(net_dev);
2264 pci_set_drvdata(pci_dev, efx);
2265 SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2266 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2267 if (rc)
2268 goto fail1;
2270 netif_info(efx, probe, efx->net_dev,
2271 "Solarflare Communications NIC detected\n");
2273 /* Set up basic I/O (BAR mappings etc) */
2274 rc = efx_init_io(efx);
2275 if (rc)
2276 goto fail2;
2278 /* No serialisation is required with the reset path because
2279 * we're in STATE_INIT. */
2280 for (i = 0; i < 5; i++) {
2281 rc = efx_pci_probe_main(efx);
2283 /* Serialise against efx_reset(). No more resets will be
2284 * scheduled since efx_stop_all() has been called, and we
2285 * have not and never have been registered with either
2286 * the rtnetlink or driverlink layers. */
2287 cancel_work_sync(&efx->reset_work);
2289 if (rc == 0) {
2290 if (efx->reset_pending != RESET_TYPE_NONE) {
2291 /* If there was a scheduled reset during
2292 * probe, the NIC is probably hosed anyway */
2293 efx_pci_remove_main(efx);
2294 rc = -EIO;
2295 } else {
2296 break;
2300 /* Retry if a recoverably reset event has been scheduled */
2301 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2302 (efx->reset_pending != RESET_TYPE_ALL))
2303 goto fail3;
2305 efx->reset_pending = RESET_TYPE_NONE;
2308 if (rc) {
2309 netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n");
2310 goto fail4;
2313 /* Switch to the running state before we expose the device to the OS,
2314 * so that dev_open()|efx_start_all() will actually start the device */
2315 efx->state = STATE_RUNNING;
2317 rc = efx_register_netdev(efx);
2318 if (rc)
2319 goto fail5;
2321 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2323 rtnl_lock();
2324 efx_mtd_probe(efx); /* allowed to fail */
2325 rtnl_unlock();
2326 return 0;
2328 fail5:
2329 efx_pci_remove_main(efx);
2330 fail4:
2331 fail3:
2332 efx_fini_io(efx);
2333 fail2:
2334 efx_fini_struct(efx);
2335 fail1:
2336 WARN_ON(rc > 0);
2337 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2338 free_netdev(net_dev);
2339 return rc;
2342 static int efx_pm_freeze(struct device *dev)
2344 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2346 efx->state = STATE_FINI;
2348 netif_device_detach(efx->net_dev);
2350 efx_stop_all(efx);
2351 efx_fini_channels(efx);
2353 return 0;
2356 static int efx_pm_thaw(struct device *dev)
2358 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2360 efx->state = STATE_INIT;
2362 efx_init_channels(efx);
2364 mutex_lock(&efx->mac_lock);
2365 efx->phy_op->reconfigure(efx);
2366 mutex_unlock(&efx->mac_lock);
2368 efx_start_all(efx);
2370 netif_device_attach(efx->net_dev);
2372 efx->state = STATE_RUNNING;
2374 efx->type->resume_wol(efx);
2376 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2377 queue_work(reset_workqueue, &efx->reset_work);
2379 return 0;
2382 static int efx_pm_poweroff(struct device *dev)
2384 struct pci_dev *pci_dev = to_pci_dev(dev);
2385 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2387 efx->type->fini(efx);
2389 efx->reset_pending = RESET_TYPE_NONE;
2391 pci_save_state(pci_dev);
2392 return pci_set_power_state(pci_dev, PCI_D3hot);
2395 /* Used for both resume and restore */
2396 static int efx_pm_resume(struct device *dev)
2398 struct pci_dev *pci_dev = to_pci_dev(dev);
2399 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2400 int rc;
2402 rc = pci_set_power_state(pci_dev, PCI_D0);
2403 if (rc)
2404 return rc;
2405 pci_restore_state(pci_dev);
2406 rc = pci_enable_device(pci_dev);
2407 if (rc)
2408 return rc;
2409 pci_set_master(efx->pci_dev);
2410 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2411 if (rc)
2412 return rc;
2413 rc = efx->type->init(efx);
2414 if (rc)
2415 return rc;
2416 efx_pm_thaw(dev);
2417 return 0;
2420 static int efx_pm_suspend(struct device *dev)
2422 int rc;
2424 efx_pm_freeze(dev);
2425 rc = efx_pm_poweroff(dev);
2426 if (rc)
2427 efx_pm_resume(dev);
2428 return rc;
2431 static struct dev_pm_ops efx_pm_ops = {
2432 .suspend = efx_pm_suspend,
2433 .resume = efx_pm_resume,
2434 .freeze = efx_pm_freeze,
2435 .thaw = efx_pm_thaw,
2436 .poweroff = efx_pm_poweroff,
2437 .restore = efx_pm_resume,
2440 static struct pci_driver efx_pci_driver = {
2441 .name = KBUILD_MODNAME,
2442 .id_table = efx_pci_table,
2443 .probe = efx_pci_probe,
2444 .remove = efx_pci_remove,
2445 .driver.pm = &efx_pm_ops,
2448 /**************************************************************************
2450 * Kernel module interface
2452 *************************************************************************/
2454 module_param(interrupt_mode, uint, 0444);
2455 MODULE_PARM_DESC(interrupt_mode,
2456 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2458 static int __init efx_init_module(void)
2460 int rc;
2462 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2464 rc = register_netdevice_notifier(&efx_netdev_notifier);
2465 if (rc)
2466 goto err_notifier;
2468 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2469 if (!reset_workqueue) {
2470 rc = -ENOMEM;
2471 goto err_reset;
2474 rc = pci_register_driver(&efx_pci_driver);
2475 if (rc < 0)
2476 goto err_pci;
2478 return 0;
2480 err_pci:
2481 destroy_workqueue(reset_workqueue);
2482 err_reset:
2483 unregister_netdevice_notifier(&efx_netdev_notifier);
2484 err_notifier:
2485 return rc;
2488 static void __exit efx_exit_module(void)
2490 printk(KERN_INFO "Solarflare NET driver unloading\n");
2492 pci_unregister_driver(&efx_pci_driver);
2493 destroy_workqueue(reset_workqueue);
2494 unregister_netdevice_notifier(&efx_netdev_notifier);
2498 module_init(efx_init_module);
2499 module_exit(efx_exit_module);
2501 MODULE_AUTHOR("Solarflare Communications and "
2502 "Michael Brown <mbrown@fensystems.co.uk>");
2503 MODULE_DESCRIPTION("Solarflare Communications network driver");
2504 MODULE_LICENSE("GPL");
2505 MODULE_DEVICE_TABLE(pci, efx_pci_table);