1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/socket.h>
13 #include <linux/slab.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
18 #include <net/checksum.h>
19 #include "net_driver.h"
23 #include "workarounds.h"
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH 8
28 /* Maximum size of a buffer sharing a page */
29 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
31 /* Size of buffer allocated for skb header area. */
32 #define EFX_SKB_HEADERS 64u
35 * rx_alloc_method - RX buffer allocation method
37 * This driver supports two methods for allocating and using RX buffers:
38 * each RX buffer may be backed by an skb or by an order-n page.
40 * When LRO is in use then the second method has a lower overhead,
41 * since we don't have to allocate then free skbs on reassembled frames.
44 * - RX_ALLOC_METHOD_AUTO = 0
45 * - RX_ALLOC_METHOD_SKB = 1
46 * - RX_ALLOC_METHOD_PAGE = 2
48 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
49 * controlled by the parameters below.
51 * - Since pushing and popping descriptors are separated by the rx_queue
52 * size, so the watermarks should be ~rxd_size.
53 * - The performance win by using page-based allocation for LRO is less
54 * than the performance hit of using page-based allocation of non-LRO,
55 * so the watermarks should reflect this.
57 * Per channel we maintain a single variable, updated by each channel:
59 * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
60 * RX_ALLOC_FACTOR_SKB)
61 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
62 * limits the hysteresis), and update the allocation strategy:
64 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
65 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
67 static int rx_alloc_method
= RX_ALLOC_METHOD_AUTO
;
69 #define RX_ALLOC_LEVEL_LRO 0x2000
70 #define RX_ALLOC_LEVEL_MAX 0x3000
71 #define RX_ALLOC_FACTOR_LRO 1
72 #define RX_ALLOC_FACTOR_SKB (-2)
74 /* This is the percentage fill level below which new RX descriptors
75 * will be added to the RX descriptor ring.
77 static unsigned int rx_refill_threshold
= 90;
79 /* This is the percentage fill level to which an RX queue will be refilled
80 * when the "RX refill threshold" is reached.
82 static unsigned int rx_refill_limit
= 95;
85 * RX maximum head room required.
87 * This must be at least 1 to prevent overflow and at least 2 to allow
90 #define EFX_RXD_HEAD_ROOM 2
92 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer
*buf
)
94 /* Offset is always within one page, so we don't need to consider
97 return (__force
unsigned long) buf
->data
& (PAGE_SIZE
- 1);
99 static inline unsigned int efx_rx_buf_size(struct efx_nic
*efx
)
101 return PAGE_SIZE
<< efx
->rx_buffer_order
;
104 static inline u32
efx_rx_buf_hash(struct efx_rx_buffer
*buf
)
106 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
107 return __le32_to_cpup((const __le32
*)(buf
->data
- 4));
109 const u8
*data
= (const u8
*)(buf
->data
- 4);
110 return ((u32
)data
[0] |
118 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
120 * @rx_queue: Efx RX queue
122 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
123 * struct efx_rx_buffer for each one. Return a negative error code or 0
124 * on success. May fail having only inserted fewer than EFX_RX_BATCH
127 static int efx_init_rx_buffers_skb(struct efx_rx_queue
*rx_queue
)
129 struct efx_nic
*efx
= rx_queue
->efx
;
130 struct net_device
*net_dev
= efx
->net_dev
;
131 struct efx_rx_buffer
*rx_buf
;
132 int skb_len
= efx
->rx_buffer_len
;
133 unsigned index
, count
;
135 for (count
= 0; count
< EFX_RX_BATCH
; ++count
) {
136 index
= rx_queue
->added_count
& EFX_RXQ_MASK
;
137 rx_buf
= efx_rx_buffer(rx_queue
, index
);
139 rx_buf
->skb
= netdev_alloc_skb(net_dev
, skb_len
);
140 if (unlikely(!rx_buf
->skb
))
144 /* Adjust the SKB for padding and checksum */
145 skb_reserve(rx_buf
->skb
, NET_IP_ALIGN
);
146 rx_buf
->len
= skb_len
- NET_IP_ALIGN
;
147 rx_buf
->data
= (char *)rx_buf
->skb
->data
;
148 rx_buf
->skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
150 rx_buf
->dma_addr
= pci_map_single(efx
->pci_dev
,
151 rx_buf
->data
, rx_buf
->len
,
153 if (unlikely(pci_dma_mapping_error(efx
->pci_dev
,
154 rx_buf
->dma_addr
))) {
155 dev_kfree_skb_any(rx_buf
->skb
);
160 ++rx_queue
->added_count
;
161 ++rx_queue
->alloc_skb_count
;
168 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
170 * @rx_queue: Efx RX queue
172 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
173 * and populates struct efx_rx_buffers for each one. Return a negative error
174 * code or 0 on success. If a single page can be split between two buffers,
175 * then the page will either be inserted fully, or not at at all.
177 static int efx_init_rx_buffers_page(struct efx_rx_queue
*rx_queue
)
179 struct efx_nic
*efx
= rx_queue
->efx
;
180 struct efx_rx_buffer
*rx_buf
;
183 struct efx_rx_page_state
*state
;
185 unsigned index
, count
;
187 /* We can split a page between two buffers */
188 BUILD_BUG_ON(EFX_RX_BATCH
& 1);
190 for (count
= 0; count
< EFX_RX_BATCH
; ++count
) {
191 page
= alloc_pages(__GFP_COLD
| __GFP_COMP
| GFP_ATOMIC
,
192 efx
->rx_buffer_order
);
193 if (unlikely(page
== NULL
))
195 dma_addr
= pci_map_page(efx
->pci_dev
, page
, 0,
196 efx_rx_buf_size(efx
),
198 if (unlikely(pci_dma_mapping_error(efx
->pci_dev
, dma_addr
))) {
199 __free_pages(page
, efx
->rx_buffer_order
);
202 page_addr
= page_address(page
);
205 state
->dma_addr
= dma_addr
;
207 page_addr
+= sizeof(struct efx_rx_page_state
);
208 dma_addr
+= sizeof(struct efx_rx_page_state
);
211 index
= rx_queue
->added_count
& EFX_RXQ_MASK
;
212 rx_buf
= efx_rx_buffer(rx_queue
, index
);
213 rx_buf
->dma_addr
= dma_addr
+ EFX_PAGE_IP_ALIGN
;
216 rx_buf
->data
= page_addr
+ EFX_PAGE_IP_ALIGN
;
217 rx_buf
->len
= efx
->rx_buffer_len
- EFX_PAGE_IP_ALIGN
;
218 ++rx_queue
->added_count
;
219 ++rx_queue
->alloc_page_count
;
222 if ((~count
& 1) && (efx
->rx_buffer_len
<= EFX_RX_HALF_PAGE
)) {
223 /* Use the second half of the page */
225 dma_addr
+= (PAGE_SIZE
>> 1);
226 page_addr
+= (PAGE_SIZE
>> 1);
235 static void efx_unmap_rx_buffer(struct efx_nic
*efx
,
236 struct efx_rx_buffer
*rx_buf
)
239 struct efx_rx_page_state
*state
;
241 EFX_BUG_ON_PARANOID(rx_buf
->skb
);
243 state
= page_address(rx_buf
->page
);
244 if (--state
->refcnt
== 0) {
245 pci_unmap_page(efx
->pci_dev
,
247 efx_rx_buf_size(efx
),
250 } else if (likely(rx_buf
->skb
)) {
251 pci_unmap_single(efx
->pci_dev
, rx_buf
->dma_addr
,
252 rx_buf
->len
, PCI_DMA_FROMDEVICE
);
256 static void efx_free_rx_buffer(struct efx_nic
*efx
,
257 struct efx_rx_buffer
*rx_buf
)
260 __free_pages(rx_buf
->page
, efx
->rx_buffer_order
);
262 } else if (likely(rx_buf
->skb
)) {
263 dev_kfree_skb_any(rx_buf
->skb
);
268 static void efx_fini_rx_buffer(struct efx_rx_queue
*rx_queue
,
269 struct efx_rx_buffer
*rx_buf
)
271 efx_unmap_rx_buffer(rx_queue
->efx
, rx_buf
);
272 efx_free_rx_buffer(rx_queue
->efx
, rx_buf
);
275 /* Attempt to resurrect the other receive buffer that used to share this page,
276 * which had previously been passed up to the kernel and freed. */
277 static void efx_resurrect_rx_buffer(struct efx_rx_queue
*rx_queue
,
278 struct efx_rx_buffer
*rx_buf
)
280 struct efx_rx_page_state
*state
= page_address(rx_buf
->page
);
281 struct efx_rx_buffer
*new_buf
;
282 unsigned fill_level
, index
;
284 /* +1 because efx_rx_packet() incremented removed_count. +1 because
285 * we'd like to insert an additional descriptor whilst leaving
286 * EFX_RXD_HEAD_ROOM for the non-recycle path */
287 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
+ 2);
288 if (unlikely(fill_level
>= EFX_RXQ_SIZE
- EFX_RXD_HEAD_ROOM
)) {
289 /* We could place "state" on a list, and drain the list in
290 * efx_fast_push_rx_descriptors(). For now, this will do. */
295 get_page(rx_buf
->page
);
297 index
= rx_queue
->added_count
& EFX_RXQ_MASK
;
298 new_buf
= efx_rx_buffer(rx_queue
, index
);
299 new_buf
->dma_addr
= rx_buf
->dma_addr
^ (PAGE_SIZE
>> 1);
301 new_buf
->page
= rx_buf
->page
;
302 new_buf
->data
= (void *)
303 ((__force
unsigned long)rx_buf
->data
^ (PAGE_SIZE
>> 1));
304 new_buf
->len
= rx_buf
->len
;
305 ++rx_queue
->added_count
;
308 /* Recycle the given rx buffer directly back into the rx_queue. There is
309 * always room to add this buffer, because we've just popped a buffer. */
310 static void efx_recycle_rx_buffer(struct efx_channel
*channel
,
311 struct efx_rx_buffer
*rx_buf
)
313 struct efx_nic
*efx
= channel
->efx
;
314 struct efx_rx_queue
*rx_queue
= &efx
->rx_queue
[channel
->channel
];
315 struct efx_rx_buffer
*new_buf
;
318 if (rx_buf
->page
!= NULL
&& efx
->rx_buffer_len
<= EFX_RX_HALF_PAGE
&&
319 page_count(rx_buf
->page
) == 1)
320 efx_resurrect_rx_buffer(rx_queue
, rx_buf
);
322 index
= rx_queue
->added_count
& EFX_RXQ_MASK
;
323 new_buf
= efx_rx_buffer(rx_queue
, index
);
325 memcpy(new_buf
, rx_buf
, sizeof(*new_buf
));
328 ++rx_queue
->added_count
;
332 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
333 * @rx_queue: RX descriptor queue
334 * This will aim to fill the RX descriptor queue up to
335 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
336 * memory to do so, a slow fill will be scheduled.
338 * The caller must provide serialisation (none is used here). In practise,
339 * this means this function must run from the NAPI handler, or be called
340 * when NAPI is disabled.
342 void efx_fast_push_rx_descriptors(struct efx_rx_queue
*rx_queue
)
344 struct efx_channel
*channel
= rx_queue
->channel
;
348 /* Calculate current fill level, and exit if we don't need to fill */
349 fill_level
= (rx_queue
->added_count
- rx_queue
->removed_count
);
350 EFX_BUG_ON_PARANOID(fill_level
> EFX_RXQ_SIZE
);
351 if (fill_level
>= rx_queue
->fast_fill_trigger
)
354 /* Record minimum fill level */
355 if (unlikely(fill_level
< rx_queue
->min_fill
)) {
357 rx_queue
->min_fill
= fill_level
;
360 space
= rx_queue
->fast_fill_limit
- fill_level
;
361 if (space
< EFX_RX_BATCH
)
364 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
365 "RX queue %d fast-filling descriptor ring from"
366 " level %d to level %d using %s allocation\n",
367 rx_queue
->queue
, fill_level
, rx_queue
->fast_fill_limit
,
368 channel
->rx_alloc_push_pages
? "page" : "skb");
371 if (channel
->rx_alloc_push_pages
)
372 rc
= efx_init_rx_buffers_page(rx_queue
);
374 rc
= efx_init_rx_buffers_skb(rx_queue
);
376 /* Ensure that we don't leave the rx queue empty */
377 if (rx_queue
->added_count
== rx_queue
->removed_count
)
378 efx_schedule_slow_fill(rx_queue
);
381 } while ((space
-= EFX_RX_BATCH
) >= EFX_RX_BATCH
);
383 netif_vdbg(rx_queue
->efx
, rx_status
, rx_queue
->efx
->net_dev
,
384 "RX queue %d fast-filled descriptor ring "
385 "to level %d\n", rx_queue
->queue
,
386 rx_queue
->added_count
- rx_queue
->removed_count
);
389 if (rx_queue
->notified_count
!= rx_queue
->added_count
)
390 efx_nic_notify_rx_desc(rx_queue
);
393 void efx_rx_slow_fill(unsigned long context
)
395 struct efx_rx_queue
*rx_queue
= (struct efx_rx_queue
*)context
;
396 struct efx_channel
*channel
= rx_queue
->channel
;
398 /* Post an event to cause NAPI to run and refill the queue */
399 efx_nic_generate_fill_event(channel
);
400 ++rx_queue
->slow_fill_count
;
403 static void efx_rx_packet__check_len(struct efx_rx_queue
*rx_queue
,
404 struct efx_rx_buffer
*rx_buf
,
405 int len
, bool *discard
,
408 struct efx_nic
*efx
= rx_queue
->efx
;
409 unsigned max_len
= rx_buf
->len
- efx
->type
->rx_buffer_padding
;
411 if (likely(len
<= max_len
))
414 /* The packet must be discarded, but this is only a fatal error
415 * if the caller indicated it was
419 if ((len
> rx_buf
->len
) && EFX_WORKAROUND_8071(efx
)) {
421 netif_err(efx
, rx_err
, efx
->net_dev
,
422 " RX queue %d seriously overlength "
423 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
424 rx_queue
->queue
, len
, max_len
,
425 efx
->type
->rx_buffer_padding
);
426 /* If this buffer was skb-allocated, then the meta
427 * data at the end of the skb will be trashed. So
428 * we have no choice but to leak the fragment.
430 *leak_packet
= (rx_buf
->skb
!= NULL
);
431 efx_schedule_reset(efx
, RESET_TYPE_RX_RECOVERY
);
434 netif_err(efx
, rx_err
, efx
->net_dev
,
435 " RX queue %d overlength RX event "
437 rx_queue
->queue
, len
, max_len
);
440 rx_queue
->channel
->n_rx_overlength
++;
443 /* Pass a received packet up through the generic LRO stack
445 * Handles driverlink veto, and passes the fragment up via
446 * the appropriate LRO method
448 static void efx_rx_packet_lro(struct efx_channel
*channel
,
449 struct efx_rx_buffer
*rx_buf
,
452 struct napi_struct
*napi
= &channel
->napi_str
;
453 gro_result_t gro_result
;
455 /* Pass the skb/page into the LRO engine */
457 struct efx_nic
*efx
= channel
->efx
;
458 struct page
*page
= rx_buf
->page
;
461 EFX_BUG_ON_PARANOID(rx_buf
->skb
);
464 skb
= napi_get_frags(napi
);
470 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
471 skb
->rxhash
= efx_rx_buf_hash(rx_buf
);
473 skb_shinfo(skb
)->frags
[0].page
= page
;
474 skb_shinfo(skb
)->frags
[0].page_offset
=
475 efx_rx_buf_offset(rx_buf
);
476 skb_shinfo(skb
)->frags
[0].size
= rx_buf
->len
;
477 skb_shinfo(skb
)->nr_frags
= 1;
479 skb
->len
= rx_buf
->len
;
480 skb
->data_len
= rx_buf
->len
;
481 skb
->truesize
+= rx_buf
->len
;
483 checksummed
? CHECKSUM_UNNECESSARY
: CHECKSUM_NONE
;
485 skb_record_rx_queue(skb
, channel
->channel
);
487 gro_result
= napi_gro_frags(napi
);
489 struct sk_buff
*skb
= rx_buf
->skb
;
491 EFX_BUG_ON_PARANOID(!skb
);
492 EFX_BUG_ON_PARANOID(!checksummed
);
495 gro_result
= napi_gro_receive(napi
, skb
);
498 if (gro_result
== GRO_NORMAL
) {
499 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
500 } else if (gro_result
!= GRO_DROP
) {
501 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_LRO
;
502 channel
->irq_mod_score
+= 2;
506 void efx_rx_packet(struct efx_rx_queue
*rx_queue
, unsigned int index
,
507 unsigned int len
, bool checksummed
, bool discard
)
509 struct efx_nic
*efx
= rx_queue
->efx
;
510 struct efx_channel
*channel
= rx_queue
->channel
;
511 struct efx_rx_buffer
*rx_buf
;
512 bool leak_packet
= false;
514 rx_buf
= efx_rx_buffer(rx_queue
, index
);
515 EFX_BUG_ON_PARANOID(!rx_buf
->data
);
516 EFX_BUG_ON_PARANOID(rx_buf
->skb
&& rx_buf
->page
);
517 EFX_BUG_ON_PARANOID(!(rx_buf
->skb
|| rx_buf
->page
));
519 /* This allows the refill path to post another buffer.
520 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
521 * isn't overwritten yet.
523 rx_queue
->removed_count
++;
525 /* Validate the length encoded in the event vs the descriptor pushed */
526 efx_rx_packet__check_len(rx_queue
, rx_buf
, len
,
527 &discard
, &leak_packet
);
529 netif_vdbg(efx
, rx_status
, efx
->net_dev
,
530 "RX queue %d received id %x at %llx+%x %s%s\n",
531 rx_queue
->queue
, index
,
532 (unsigned long long)rx_buf
->dma_addr
, len
,
533 (checksummed
? " [SUMMED]" : ""),
534 (discard
? " [DISCARD]" : ""));
536 /* Discard packet, if instructed to do so */
537 if (unlikely(discard
)) {
538 if (unlikely(leak_packet
))
539 channel
->n_skbuff_leaks
++;
541 efx_recycle_rx_buffer(channel
, rx_buf
);
543 /* Don't hold off the previous receive */
548 /* Release card resources - assumes all RX buffers consumed in-order
551 efx_unmap_rx_buffer(efx
, rx_buf
);
553 /* Prefetch nice and early so data will (hopefully) be in cache by
554 * the time we look at it.
556 prefetch(rx_buf
->data
);
558 /* Pipeline receives so that we give time for packet headers to be
559 * prefetched into cache.
563 if (rx_queue
->channel
->rx_pkt
)
564 __efx_rx_packet(rx_queue
->channel
,
565 rx_queue
->channel
->rx_pkt
,
566 rx_queue
->channel
->rx_pkt_csummed
);
567 rx_queue
->channel
->rx_pkt
= rx_buf
;
568 rx_queue
->channel
->rx_pkt_csummed
= checksummed
;
571 /* Handle a received packet. Second half: Touches packet payload. */
572 void __efx_rx_packet(struct efx_channel
*channel
,
573 struct efx_rx_buffer
*rx_buf
, bool checksummed
)
575 struct efx_nic
*efx
= channel
->efx
;
578 rx_buf
->data
+= efx
->type
->rx_buffer_hash_size
;
579 rx_buf
->len
-= efx
->type
->rx_buffer_hash_size
;
581 /* If we're in loopback test, then pass the packet directly to the
582 * loopback layer, and free the rx_buf here
584 if (unlikely(efx
->loopback_selftest
)) {
585 efx_loopback_rx_packet(efx
, rx_buf
->data
, rx_buf
->len
);
586 efx_free_rx_buffer(efx
, rx_buf
);
591 prefetch(skb_shinfo(rx_buf
->skb
));
593 skb_reserve(rx_buf
->skb
, efx
->type
->rx_buffer_hash_size
);
594 skb_put(rx_buf
->skb
, rx_buf
->len
);
596 if (efx
->net_dev
->features
& NETIF_F_RXHASH
)
597 rx_buf
->skb
->rxhash
= efx_rx_buf_hash(rx_buf
);
599 /* Move past the ethernet header. rx_buf->data still points
600 * at the ethernet header */
601 rx_buf
->skb
->protocol
= eth_type_trans(rx_buf
->skb
,
604 skb_record_rx_queue(rx_buf
->skb
, channel
->channel
);
607 if (likely(checksummed
|| rx_buf
->page
)) {
608 efx_rx_packet_lro(channel
, rx_buf
, checksummed
);
612 /* We now own the SKB */
615 EFX_BUG_ON_PARANOID(!skb
);
617 /* Set the SKB flags */
618 skb
->ip_summed
= CHECKSUM_NONE
;
620 /* Pass the packet up */
621 netif_receive_skb(skb
);
623 /* Update allocation strategy method */
624 channel
->rx_alloc_level
+= RX_ALLOC_FACTOR_SKB
;
627 void efx_rx_strategy(struct efx_channel
*channel
)
629 enum efx_rx_alloc_method method
= rx_alloc_method
;
631 /* Only makes sense to use page based allocation if LRO is enabled */
632 if (!(channel
->efx
->net_dev
->features
& NETIF_F_GRO
)) {
633 method
= RX_ALLOC_METHOD_SKB
;
634 } else if (method
== RX_ALLOC_METHOD_AUTO
) {
635 /* Constrain the rx_alloc_level */
636 if (channel
->rx_alloc_level
< 0)
637 channel
->rx_alloc_level
= 0;
638 else if (channel
->rx_alloc_level
> RX_ALLOC_LEVEL_MAX
)
639 channel
->rx_alloc_level
= RX_ALLOC_LEVEL_MAX
;
641 /* Decide on the allocation method */
642 method
= ((channel
->rx_alloc_level
> RX_ALLOC_LEVEL_LRO
) ?
643 RX_ALLOC_METHOD_PAGE
: RX_ALLOC_METHOD_SKB
);
646 /* Push the option */
647 channel
->rx_alloc_push_pages
= (method
== RX_ALLOC_METHOD_PAGE
);
650 int efx_probe_rx_queue(struct efx_rx_queue
*rx_queue
)
652 struct efx_nic
*efx
= rx_queue
->efx
;
653 unsigned int rxq_size
;
656 netif_dbg(efx
, probe
, efx
->net_dev
,
657 "creating RX queue %d\n", rx_queue
->queue
);
659 /* Allocate RX buffers */
660 rxq_size
= EFX_RXQ_SIZE
* sizeof(*rx_queue
->buffer
);
661 rx_queue
->buffer
= kzalloc(rxq_size
, GFP_KERNEL
);
662 if (!rx_queue
->buffer
)
665 rc
= efx_nic_probe_rx(rx_queue
);
667 kfree(rx_queue
->buffer
);
668 rx_queue
->buffer
= NULL
;
673 void efx_init_rx_queue(struct efx_rx_queue
*rx_queue
)
675 unsigned int max_fill
, trigger
, limit
;
677 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
678 "initialising RX queue %d\n", rx_queue
->queue
);
680 /* Initialise ptr fields */
681 rx_queue
->added_count
= 0;
682 rx_queue
->notified_count
= 0;
683 rx_queue
->removed_count
= 0;
684 rx_queue
->min_fill
= -1U;
685 rx_queue
->min_overfill
= -1U;
687 /* Initialise limit fields */
688 max_fill
= EFX_RXQ_SIZE
- EFX_RXD_HEAD_ROOM
;
689 trigger
= max_fill
* min(rx_refill_threshold
, 100U) / 100U;
690 limit
= max_fill
* min(rx_refill_limit
, 100U) / 100U;
692 rx_queue
->max_fill
= max_fill
;
693 rx_queue
->fast_fill_trigger
= trigger
;
694 rx_queue
->fast_fill_limit
= limit
;
696 /* Set up RX descriptor ring */
697 efx_nic_init_rx(rx_queue
);
700 void efx_fini_rx_queue(struct efx_rx_queue
*rx_queue
)
703 struct efx_rx_buffer
*rx_buf
;
705 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
706 "shutting down RX queue %d\n", rx_queue
->queue
);
708 del_timer_sync(&rx_queue
->slow_fill
);
709 efx_nic_fini_rx(rx_queue
);
711 /* Release RX buffers NB start at index 0 not current HW ptr */
712 if (rx_queue
->buffer
) {
713 for (i
= 0; i
<= EFX_RXQ_MASK
; i
++) {
714 rx_buf
= efx_rx_buffer(rx_queue
, i
);
715 efx_fini_rx_buffer(rx_queue
, rx_buf
);
720 void efx_remove_rx_queue(struct efx_rx_queue
*rx_queue
)
722 netif_dbg(rx_queue
->efx
, drv
, rx_queue
->efx
->net_dev
,
723 "destroying RX queue %d\n", rx_queue
->queue
);
725 efx_nic_remove_rx(rx_queue
);
727 kfree(rx_queue
->buffer
);
728 rx_queue
->buffer
= NULL
;
732 module_param(rx_alloc_method
, int, 0644);
733 MODULE_PARM_DESC(rx_alloc_method
, "Allocation method used for RX buffers");
735 module_param(rx_refill_threshold
, uint
, 0444);
736 MODULE_PARM_DESC(rx_refill_threshold
,
737 "RX descriptor ring fast/slow fill threshold (%)");