enic: Add new firmware devcmds
[linux/fpc-iii.git] / drivers / net / sfc / rx.c
blob799c461ce7b850c91fbdbff627c4993880a43c43
1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2009 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <net/ip.h>
18 #include <net/checksum.h>
19 #include "net_driver.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "selftest.h"
23 #include "workarounds.h"
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH 8
28 /* Maximum size of a buffer sharing a page */
29 #define EFX_RX_HALF_PAGE ((PAGE_SIZE >> 1) - sizeof(struct efx_rx_page_state))
31 /* Size of buffer allocated for skb header area. */
32 #define EFX_SKB_HEADERS 64u
35 * rx_alloc_method - RX buffer allocation method
37 * This driver supports two methods for allocating and using RX buffers:
38 * each RX buffer may be backed by an skb or by an order-n page.
40 * When LRO is in use then the second method has a lower overhead,
41 * since we don't have to allocate then free skbs on reassembled frames.
43 * Values:
44 * - RX_ALLOC_METHOD_AUTO = 0
45 * - RX_ALLOC_METHOD_SKB = 1
46 * - RX_ALLOC_METHOD_PAGE = 2
48 * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
49 * controlled by the parameters below.
51 * - Since pushing and popping descriptors are separated by the rx_queue
52 * size, so the watermarks should be ~rxd_size.
53 * - The performance win by using page-based allocation for LRO is less
54 * than the performance hit of using page-based allocation of non-LRO,
55 * so the watermarks should reflect this.
57 * Per channel we maintain a single variable, updated by each channel:
59 * rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
60 * RX_ALLOC_FACTOR_SKB)
61 * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
62 * limits the hysteresis), and update the allocation strategy:
64 * rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
65 * RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
67 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
69 #define RX_ALLOC_LEVEL_LRO 0x2000
70 #define RX_ALLOC_LEVEL_MAX 0x3000
71 #define RX_ALLOC_FACTOR_LRO 1
72 #define RX_ALLOC_FACTOR_SKB (-2)
74 /* This is the percentage fill level below which new RX descriptors
75 * will be added to the RX descriptor ring.
77 static unsigned int rx_refill_threshold = 90;
79 /* This is the percentage fill level to which an RX queue will be refilled
80 * when the "RX refill threshold" is reached.
82 static unsigned int rx_refill_limit = 95;
85 * RX maximum head room required.
87 * This must be at least 1 to prevent overflow and at least 2 to allow
88 * pipelined receives.
90 #define EFX_RXD_HEAD_ROOM 2
92 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
94 /* Offset is always within one page, so we don't need to consider
95 * the page order.
97 return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
99 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
101 return PAGE_SIZE << efx->rx_buffer_order;
104 static inline u32 efx_rx_buf_hash(struct efx_rx_buffer *buf)
106 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || NET_IP_ALIGN % 4 == 0
107 return __le32_to_cpup((const __le32 *)(buf->data - 4));
108 #else
109 const u8 *data = (const u8 *)(buf->data - 4);
110 return ((u32)data[0] |
111 (u32)data[1] << 8 |
112 (u32)data[2] << 16 |
113 (u32)data[3] << 24);
114 #endif
118 * efx_init_rx_buffers_skb - create EFX_RX_BATCH skb-based RX buffers
120 * @rx_queue: Efx RX queue
122 * This allocates EFX_RX_BATCH skbs, maps them for DMA, and populates a
123 * struct efx_rx_buffer for each one. Return a negative error code or 0
124 * on success. May fail having only inserted fewer than EFX_RX_BATCH
125 * buffers.
127 static int efx_init_rx_buffers_skb(struct efx_rx_queue *rx_queue)
129 struct efx_nic *efx = rx_queue->efx;
130 struct net_device *net_dev = efx->net_dev;
131 struct efx_rx_buffer *rx_buf;
132 int skb_len = efx->rx_buffer_len;
133 unsigned index, count;
135 for (count = 0; count < EFX_RX_BATCH; ++count) {
136 index = rx_queue->added_count & EFX_RXQ_MASK;
137 rx_buf = efx_rx_buffer(rx_queue, index);
139 rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
140 if (unlikely(!rx_buf->skb))
141 return -ENOMEM;
142 rx_buf->page = NULL;
144 /* Adjust the SKB for padding and checksum */
145 skb_reserve(rx_buf->skb, NET_IP_ALIGN);
146 rx_buf->len = skb_len - NET_IP_ALIGN;
147 rx_buf->data = (char *)rx_buf->skb->data;
148 rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
150 rx_buf->dma_addr = pci_map_single(efx->pci_dev,
151 rx_buf->data, rx_buf->len,
152 PCI_DMA_FROMDEVICE);
153 if (unlikely(pci_dma_mapping_error(efx->pci_dev,
154 rx_buf->dma_addr))) {
155 dev_kfree_skb_any(rx_buf->skb);
156 rx_buf->skb = NULL;
157 return -EIO;
160 ++rx_queue->added_count;
161 ++rx_queue->alloc_skb_count;
164 return 0;
168 * efx_init_rx_buffers_page - create EFX_RX_BATCH page-based RX buffers
170 * @rx_queue: Efx RX queue
172 * This allocates memory for EFX_RX_BATCH receive buffers, maps them for DMA,
173 * and populates struct efx_rx_buffers for each one. Return a negative error
174 * code or 0 on success. If a single page can be split between two buffers,
175 * then the page will either be inserted fully, or not at at all.
177 static int efx_init_rx_buffers_page(struct efx_rx_queue *rx_queue)
179 struct efx_nic *efx = rx_queue->efx;
180 struct efx_rx_buffer *rx_buf;
181 struct page *page;
182 void *page_addr;
183 struct efx_rx_page_state *state;
184 dma_addr_t dma_addr;
185 unsigned index, count;
187 /* We can split a page between two buffers */
188 BUILD_BUG_ON(EFX_RX_BATCH & 1);
190 for (count = 0; count < EFX_RX_BATCH; ++count) {
191 page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
192 efx->rx_buffer_order);
193 if (unlikely(page == NULL))
194 return -ENOMEM;
195 dma_addr = pci_map_page(efx->pci_dev, page, 0,
196 efx_rx_buf_size(efx),
197 PCI_DMA_FROMDEVICE);
198 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
199 __free_pages(page, efx->rx_buffer_order);
200 return -EIO;
202 page_addr = page_address(page);
203 state = page_addr;
204 state->refcnt = 0;
205 state->dma_addr = dma_addr;
207 page_addr += sizeof(struct efx_rx_page_state);
208 dma_addr += sizeof(struct efx_rx_page_state);
210 split:
211 index = rx_queue->added_count & EFX_RXQ_MASK;
212 rx_buf = efx_rx_buffer(rx_queue, index);
213 rx_buf->dma_addr = dma_addr + EFX_PAGE_IP_ALIGN;
214 rx_buf->skb = NULL;
215 rx_buf->page = page;
216 rx_buf->data = page_addr + EFX_PAGE_IP_ALIGN;
217 rx_buf->len = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
218 ++rx_queue->added_count;
219 ++rx_queue->alloc_page_count;
220 ++state->refcnt;
222 if ((~count & 1) && (efx->rx_buffer_len <= EFX_RX_HALF_PAGE)) {
223 /* Use the second half of the page */
224 get_page(page);
225 dma_addr += (PAGE_SIZE >> 1);
226 page_addr += (PAGE_SIZE >> 1);
227 ++count;
228 goto split;
232 return 0;
235 static void efx_unmap_rx_buffer(struct efx_nic *efx,
236 struct efx_rx_buffer *rx_buf)
238 if (rx_buf->page) {
239 struct efx_rx_page_state *state;
241 EFX_BUG_ON_PARANOID(rx_buf->skb);
243 state = page_address(rx_buf->page);
244 if (--state->refcnt == 0) {
245 pci_unmap_page(efx->pci_dev,
246 state->dma_addr,
247 efx_rx_buf_size(efx),
248 PCI_DMA_FROMDEVICE);
250 } else if (likely(rx_buf->skb)) {
251 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
252 rx_buf->len, PCI_DMA_FROMDEVICE);
256 static void efx_free_rx_buffer(struct efx_nic *efx,
257 struct efx_rx_buffer *rx_buf)
259 if (rx_buf->page) {
260 __free_pages(rx_buf->page, efx->rx_buffer_order);
261 rx_buf->page = NULL;
262 } else if (likely(rx_buf->skb)) {
263 dev_kfree_skb_any(rx_buf->skb);
264 rx_buf->skb = NULL;
268 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
269 struct efx_rx_buffer *rx_buf)
271 efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
272 efx_free_rx_buffer(rx_queue->efx, rx_buf);
275 /* Attempt to resurrect the other receive buffer that used to share this page,
276 * which had previously been passed up to the kernel and freed. */
277 static void efx_resurrect_rx_buffer(struct efx_rx_queue *rx_queue,
278 struct efx_rx_buffer *rx_buf)
280 struct efx_rx_page_state *state = page_address(rx_buf->page);
281 struct efx_rx_buffer *new_buf;
282 unsigned fill_level, index;
284 /* +1 because efx_rx_packet() incremented removed_count. +1 because
285 * we'd like to insert an additional descriptor whilst leaving
286 * EFX_RXD_HEAD_ROOM for the non-recycle path */
287 fill_level = (rx_queue->added_count - rx_queue->removed_count + 2);
288 if (unlikely(fill_level >= EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM)) {
289 /* We could place "state" on a list, and drain the list in
290 * efx_fast_push_rx_descriptors(). For now, this will do. */
291 return;
294 ++state->refcnt;
295 get_page(rx_buf->page);
297 index = rx_queue->added_count & EFX_RXQ_MASK;
298 new_buf = efx_rx_buffer(rx_queue, index);
299 new_buf->dma_addr = rx_buf->dma_addr ^ (PAGE_SIZE >> 1);
300 new_buf->skb = NULL;
301 new_buf->page = rx_buf->page;
302 new_buf->data = (void *)
303 ((__force unsigned long)rx_buf->data ^ (PAGE_SIZE >> 1));
304 new_buf->len = rx_buf->len;
305 ++rx_queue->added_count;
308 /* Recycle the given rx buffer directly back into the rx_queue. There is
309 * always room to add this buffer, because we've just popped a buffer. */
310 static void efx_recycle_rx_buffer(struct efx_channel *channel,
311 struct efx_rx_buffer *rx_buf)
313 struct efx_nic *efx = channel->efx;
314 struct efx_rx_queue *rx_queue = &efx->rx_queue[channel->channel];
315 struct efx_rx_buffer *new_buf;
316 unsigned index;
318 if (rx_buf->page != NULL && efx->rx_buffer_len <= EFX_RX_HALF_PAGE &&
319 page_count(rx_buf->page) == 1)
320 efx_resurrect_rx_buffer(rx_queue, rx_buf);
322 index = rx_queue->added_count & EFX_RXQ_MASK;
323 new_buf = efx_rx_buffer(rx_queue, index);
325 memcpy(new_buf, rx_buf, sizeof(*new_buf));
326 rx_buf->page = NULL;
327 rx_buf->skb = NULL;
328 ++rx_queue->added_count;
332 * efx_fast_push_rx_descriptors - push new RX descriptors quickly
333 * @rx_queue: RX descriptor queue
334 * This will aim to fill the RX descriptor queue up to
335 * @rx_queue->@fast_fill_limit. If there is insufficient atomic
336 * memory to do so, a slow fill will be scheduled.
338 * The caller must provide serialisation (none is used here). In practise,
339 * this means this function must run from the NAPI handler, or be called
340 * when NAPI is disabled.
342 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
344 struct efx_channel *channel = rx_queue->channel;
345 unsigned fill_level;
346 int space, rc = 0;
348 /* Calculate current fill level, and exit if we don't need to fill */
349 fill_level = (rx_queue->added_count - rx_queue->removed_count);
350 EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
351 if (fill_level >= rx_queue->fast_fill_trigger)
352 goto out;
354 /* Record minimum fill level */
355 if (unlikely(fill_level < rx_queue->min_fill)) {
356 if (fill_level)
357 rx_queue->min_fill = fill_level;
360 space = rx_queue->fast_fill_limit - fill_level;
361 if (space < EFX_RX_BATCH)
362 goto out;
364 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
365 "RX queue %d fast-filling descriptor ring from"
366 " level %d to level %d using %s allocation\n",
367 rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
368 channel->rx_alloc_push_pages ? "page" : "skb");
370 do {
371 if (channel->rx_alloc_push_pages)
372 rc = efx_init_rx_buffers_page(rx_queue);
373 else
374 rc = efx_init_rx_buffers_skb(rx_queue);
375 if (unlikely(rc)) {
376 /* Ensure that we don't leave the rx queue empty */
377 if (rx_queue->added_count == rx_queue->removed_count)
378 efx_schedule_slow_fill(rx_queue);
379 goto out;
381 } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
383 netif_vdbg(rx_queue->efx, rx_status, rx_queue->efx->net_dev,
384 "RX queue %d fast-filled descriptor ring "
385 "to level %d\n", rx_queue->queue,
386 rx_queue->added_count - rx_queue->removed_count);
388 out:
389 if (rx_queue->notified_count != rx_queue->added_count)
390 efx_nic_notify_rx_desc(rx_queue);
393 void efx_rx_slow_fill(unsigned long context)
395 struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
396 struct efx_channel *channel = rx_queue->channel;
398 /* Post an event to cause NAPI to run and refill the queue */
399 efx_nic_generate_fill_event(channel);
400 ++rx_queue->slow_fill_count;
403 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
404 struct efx_rx_buffer *rx_buf,
405 int len, bool *discard,
406 bool *leak_packet)
408 struct efx_nic *efx = rx_queue->efx;
409 unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
411 if (likely(len <= max_len))
412 return;
414 /* The packet must be discarded, but this is only a fatal error
415 * if the caller indicated it was
417 *discard = true;
419 if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
420 if (net_ratelimit())
421 netif_err(efx, rx_err, efx->net_dev,
422 " RX queue %d seriously overlength "
423 "RX event (0x%x > 0x%x+0x%x). Leaking\n",
424 rx_queue->queue, len, max_len,
425 efx->type->rx_buffer_padding);
426 /* If this buffer was skb-allocated, then the meta
427 * data at the end of the skb will be trashed. So
428 * we have no choice but to leak the fragment.
430 *leak_packet = (rx_buf->skb != NULL);
431 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
432 } else {
433 if (net_ratelimit())
434 netif_err(efx, rx_err, efx->net_dev,
435 " RX queue %d overlength RX event "
436 "(0x%x > 0x%x)\n",
437 rx_queue->queue, len, max_len);
440 rx_queue->channel->n_rx_overlength++;
443 /* Pass a received packet up through the generic LRO stack
445 * Handles driverlink veto, and passes the fragment up via
446 * the appropriate LRO method
448 static void efx_rx_packet_lro(struct efx_channel *channel,
449 struct efx_rx_buffer *rx_buf,
450 bool checksummed)
452 struct napi_struct *napi = &channel->napi_str;
453 gro_result_t gro_result;
455 /* Pass the skb/page into the LRO engine */
456 if (rx_buf->page) {
457 struct efx_nic *efx = channel->efx;
458 struct page *page = rx_buf->page;
459 struct sk_buff *skb;
461 EFX_BUG_ON_PARANOID(rx_buf->skb);
462 rx_buf->page = NULL;
464 skb = napi_get_frags(napi);
465 if (!skb) {
466 put_page(page);
467 return;
470 if (efx->net_dev->features & NETIF_F_RXHASH)
471 skb->rxhash = efx_rx_buf_hash(rx_buf);
473 skb_shinfo(skb)->frags[0].page = page;
474 skb_shinfo(skb)->frags[0].page_offset =
475 efx_rx_buf_offset(rx_buf);
476 skb_shinfo(skb)->frags[0].size = rx_buf->len;
477 skb_shinfo(skb)->nr_frags = 1;
479 skb->len = rx_buf->len;
480 skb->data_len = rx_buf->len;
481 skb->truesize += rx_buf->len;
482 skb->ip_summed =
483 checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
485 skb_record_rx_queue(skb, channel->channel);
487 gro_result = napi_gro_frags(napi);
488 } else {
489 struct sk_buff *skb = rx_buf->skb;
491 EFX_BUG_ON_PARANOID(!skb);
492 EFX_BUG_ON_PARANOID(!checksummed);
493 rx_buf->skb = NULL;
495 gro_result = napi_gro_receive(napi, skb);
498 if (gro_result == GRO_NORMAL) {
499 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
500 } else if (gro_result != GRO_DROP) {
501 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
502 channel->irq_mod_score += 2;
506 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
507 unsigned int len, bool checksummed, bool discard)
509 struct efx_nic *efx = rx_queue->efx;
510 struct efx_channel *channel = rx_queue->channel;
511 struct efx_rx_buffer *rx_buf;
512 bool leak_packet = false;
514 rx_buf = efx_rx_buffer(rx_queue, index);
515 EFX_BUG_ON_PARANOID(!rx_buf->data);
516 EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
517 EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
519 /* This allows the refill path to post another buffer.
520 * EFX_RXD_HEAD_ROOM ensures that the slot we are using
521 * isn't overwritten yet.
523 rx_queue->removed_count++;
525 /* Validate the length encoded in the event vs the descriptor pushed */
526 efx_rx_packet__check_len(rx_queue, rx_buf, len,
527 &discard, &leak_packet);
529 netif_vdbg(efx, rx_status, efx->net_dev,
530 "RX queue %d received id %x at %llx+%x %s%s\n",
531 rx_queue->queue, index,
532 (unsigned long long)rx_buf->dma_addr, len,
533 (checksummed ? " [SUMMED]" : ""),
534 (discard ? " [DISCARD]" : ""));
536 /* Discard packet, if instructed to do so */
537 if (unlikely(discard)) {
538 if (unlikely(leak_packet))
539 channel->n_skbuff_leaks++;
540 else
541 efx_recycle_rx_buffer(channel, rx_buf);
543 /* Don't hold off the previous receive */
544 rx_buf = NULL;
545 goto out;
548 /* Release card resources - assumes all RX buffers consumed in-order
549 * per RX queue
551 efx_unmap_rx_buffer(efx, rx_buf);
553 /* Prefetch nice and early so data will (hopefully) be in cache by
554 * the time we look at it.
556 prefetch(rx_buf->data);
558 /* Pipeline receives so that we give time for packet headers to be
559 * prefetched into cache.
561 rx_buf->len = len;
562 out:
563 if (rx_queue->channel->rx_pkt)
564 __efx_rx_packet(rx_queue->channel,
565 rx_queue->channel->rx_pkt,
566 rx_queue->channel->rx_pkt_csummed);
567 rx_queue->channel->rx_pkt = rx_buf;
568 rx_queue->channel->rx_pkt_csummed = checksummed;
571 /* Handle a received packet. Second half: Touches packet payload. */
572 void __efx_rx_packet(struct efx_channel *channel,
573 struct efx_rx_buffer *rx_buf, bool checksummed)
575 struct efx_nic *efx = channel->efx;
576 struct sk_buff *skb;
578 rx_buf->data += efx->type->rx_buffer_hash_size;
579 rx_buf->len -= efx->type->rx_buffer_hash_size;
581 /* If we're in loopback test, then pass the packet directly to the
582 * loopback layer, and free the rx_buf here
584 if (unlikely(efx->loopback_selftest)) {
585 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
586 efx_free_rx_buffer(efx, rx_buf);
587 return;
590 if (rx_buf->skb) {
591 prefetch(skb_shinfo(rx_buf->skb));
593 skb_reserve(rx_buf->skb, efx->type->rx_buffer_hash_size);
594 skb_put(rx_buf->skb, rx_buf->len);
596 if (efx->net_dev->features & NETIF_F_RXHASH)
597 rx_buf->skb->rxhash = efx_rx_buf_hash(rx_buf);
599 /* Move past the ethernet header. rx_buf->data still points
600 * at the ethernet header */
601 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
602 efx->net_dev);
604 skb_record_rx_queue(rx_buf->skb, channel->channel);
607 if (likely(checksummed || rx_buf->page)) {
608 efx_rx_packet_lro(channel, rx_buf, checksummed);
609 return;
612 /* We now own the SKB */
613 skb = rx_buf->skb;
614 rx_buf->skb = NULL;
615 EFX_BUG_ON_PARANOID(!skb);
617 /* Set the SKB flags */
618 skb->ip_summed = CHECKSUM_NONE;
620 /* Pass the packet up */
621 netif_receive_skb(skb);
623 /* Update allocation strategy method */
624 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
627 void efx_rx_strategy(struct efx_channel *channel)
629 enum efx_rx_alloc_method method = rx_alloc_method;
631 /* Only makes sense to use page based allocation if LRO is enabled */
632 if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
633 method = RX_ALLOC_METHOD_SKB;
634 } else if (method == RX_ALLOC_METHOD_AUTO) {
635 /* Constrain the rx_alloc_level */
636 if (channel->rx_alloc_level < 0)
637 channel->rx_alloc_level = 0;
638 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
639 channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
641 /* Decide on the allocation method */
642 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
643 RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
646 /* Push the option */
647 channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
650 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
652 struct efx_nic *efx = rx_queue->efx;
653 unsigned int rxq_size;
654 int rc;
656 netif_dbg(efx, probe, efx->net_dev,
657 "creating RX queue %d\n", rx_queue->queue);
659 /* Allocate RX buffers */
660 rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
661 rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
662 if (!rx_queue->buffer)
663 return -ENOMEM;
665 rc = efx_nic_probe_rx(rx_queue);
666 if (rc) {
667 kfree(rx_queue->buffer);
668 rx_queue->buffer = NULL;
670 return rc;
673 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
675 unsigned int max_fill, trigger, limit;
677 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
678 "initialising RX queue %d\n", rx_queue->queue);
680 /* Initialise ptr fields */
681 rx_queue->added_count = 0;
682 rx_queue->notified_count = 0;
683 rx_queue->removed_count = 0;
684 rx_queue->min_fill = -1U;
685 rx_queue->min_overfill = -1U;
687 /* Initialise limit fields */
688 max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
689 trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
690 limit = max_fill * min(rx_refill_limit, 100U) / 100U;
692 rx_queue->max_fill = max_fill;
693 rx_queue->fast_fill_trigger = trigger;
694 rx_queue->fast_fill_limit = limit;
696 /* Set up RX descriptor ring */
697 efx_nic_init_rx(rx_queue);
700 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
702 int i;
703 struct efx_rx_buffer *rx_buf;
705 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
706 "shutting down RX queue %d\n", rx_queue->queue);
708 del_timer_sync(&rx_queue->slow_fill);
709 efx_nic_fini_rx(rx_queue);
711 /* Release RX buffers NB start at index 0 not current HW ptr */
712 if (rx_queue->buffer) {
713 for (i = 0; i <= EFX_RXQ_MASK; i++) {
714 rx_buf = efx_rx_buffer(rx_queue, i);
715 efx_fini_rx_buffer(rx_queue, rx_buf);
720 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
722 netif_dbg(rx_queue->efx, drv, rx_queue->efx->net_dev,
723 "destroying RX queue %d\n", rx_queue->queue);
725 efx_nic_remove_rx(rx_queue);
727 kfree(rx_queue->buffer);
728 rx_queue->buffer = NULL;
732 module_param(rx_alloc_method, int, 0644);
733 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
735 module_param(rx_refill_threshold, uint, 0444);
736 MODULE_PARM_DESC(rx_refill_threshold,
737 "RX descriptor ring fast/slow fill threshold (%)");