2 * linux/fs/jbd/transaction.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem transaction handling code; part of the ext2fs
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
20 #include <linux/time.h>
22 #include <linux/jbd.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
30 static void __journal_temp_unlink_buffer(struct journal_head
*jh
);
33 * get_transaction: obtain a new transaction_t object.
35 * Simply allocate and initialise a new transaction. Create it in
36 * RUNNING state and add it to the current journal (which should not
37 * have an existing running transaction: we only make a new transaction
38 * once we have started to commit the old one).
41 * The journal MUST be locked. We don't perform atomic mallocs on the
42 * new transaction and we can't block without protecting against other
43 * processes trying to touch the journal while it is in transition.
45 * Called under j_state_lock
48 static transaction_t
*
49 get_transaction(journal_t
*journal
, transaction_t
*transaction
)
51 transaction
->t_journal
= journal
;
52 transaction
->t_state
= T_RUNNING
;
53 transaction
->t_start_time
= ktime_get();
54 transaction
->t_tid
= journal
->j_transaction_sequence
++;
55 transaction
->t_expires
= jiffies
+ journal
->j_commit_interval
;
56 spin_lock_init(&transaction
->t_handle_lock
);
58 /* Set up the commit timer for the new transaction. */
59 journal
->j_commit_timer
.expires
=
60 round_jiffies_up(transaction
->t_expires
);
61 add_timer(&journal
->j_commit_timer
);
63 J_ASSERT(journal
->j_running_transaction
== NULL
);
64 journal
->j_running_transaction
= transaction
;
72 * A handle_t is an object which represents a single atomic update to a
73 * filesystem, and which tracks all of the modifications which form part
78 * start_this_handle: Given a handle, deal with any locking or stalling
79 * needed to make sure that there is enough journal space for the handle
80 * to begin. Attach the handle to a transaction and set up the
81 * transaction's buffer credits.
84 static int start_this_handle(journal_t
*journal
, handle_t
*handle
)
86 transaction_t
*transaction
;
88 int nblocks
= handle
->h_buffer_credits
;
89 transaction_t
*new_transaction
= NULL
;
92 if (nblocks
> journal
->j_max_transaction_buffers
) {
93 printk(KERN_ERR
"JBD: %s wants too many credits (%d > %d)\n",
94 current
->comm
, nblocks
,
95 journal
->j_max_transaction_buffers
);
101 if (!journal
->j_running_transaction
) {
102 new_transaction
= kzalloc(sizeof(*new_transaction
),
103 GFP_NOFS
|__GFP_NOFAIL
);
104 if (!new_transaction
) {
110 jbd_debug(3, "New handle %p going live.\n", handle
);
115 * We need to hold j_state_lock until t_updates has been incremented,
116 * for proper journal barrier handling
118 spin_lock(&journal
->j_state_lock
);
120 if (is_journal_aborted(journal
) ||
121 (journal
->j_errno
!= 0 && !(journal
->j_flags
& JFS_ACK_ERR
))) {
122 spin_unlock(&journal
->j_state_lock
);
127 /* Wait on the journal's transaction barrier if necessary */
128 if (journal
->j_barrier_count
) {
129 spin_unlock(&journal
->j_state_lock
);
130 wait_event(journal
->j_wait_transaction_locked
,
131 journal
->j_barrier_count
== 0);
135 if (!journal
->j_running_transaction
) {
136 if (!new_transaction
) {
137 spin_unlock(&journal
->j_state_lock
);
138 goto alloc_transaction
;
140 get_transaction(journal
, new_transaction
);
141 new_transaction
= NULL
;
144 transaction
= journal
->j_running_transaction
;
147 * If the current transaction is locked down for commit, wait for the
148 * lock to be released.
150 if (transaction
->t_state
== T_LOCKED
) {
153 prepare_to_wait(&journal
->j_wait_transaction_locked
,
154 &wait
, TASK_UNINTERRUPTIBLE
);
155 spin_unlock(&journal
->j_state_lock
);
157 finish_wait(&journal
->j_wait_transaction_locked
, &wait
);
162 * If there is not enough space left in the log to write all potential
163 * buffers requested by this operation, we need to stall pending a log
164 * checkpoint to free some more log space.
166 spin_lock(&transaction
->t_handle_lock
);
167 needed
= transaction
->t_outstanding_credits
+ nblocks
;
169 if (needed
> journal
->j_max_transaction_buffers
) {
171 * If the current transaction is already too large, then start
172 * to commit it: we can then go back and attach this handle to
177 jbd_debug(2, "Handle %p starting new commit...\n", handle
);
178 spin_unlock(&transaction
->t_handle_lock
);
179 prepare_to_wait(&journal
->j_wait_transaction_locked
, &wait
,
180 TASK_UNINTERRUPTIBLE
);
181 __log_start_commit(journal
, transaction
->t_tid
);
182 spin_unlock(&journal
->j_state_lock
);
184 finish_wait(&journal
->j_wait_transaction_locked
, &wait
);
189 * The commit code assumes that it can get enough log space
190 * without forcing a checkpoint. This is *critical* for
191 * correctness: a checkpoint of a buffer which is also
192 * associated with a committing transaction creates a deadlock,
193 * so commit simply cannot force through checkpoints.
195 * We must therefore ensure the necessary space in the journal
196 * *before* starting to dirty potentially checkpointed buffers
197 * in the new transaction.
199 * The worst part is, any transaction currently committing can
200 * reduce the free space arbitrarily. Be careful to account for
201 * those buffers when checkpointing.
205 * @@@ AKPM: This seems rather over-defensive. We're giving commit
206 * a _lot_ of headroom: 1/4 of the journal plus the size of
207 * the committing transaction. Really, we only need to give it
208 * committing_transaction->t_outstanding_credits plus "enough" for
209 * the log control blocks.
210 * Also, this test is inconsistent with the matching one in
213 if (__log_space_left(journal
) < jbd_space_needed(journal
)) {
214 jbd_debug(2, "Handle %p waiting for checkpoint...\n", handle
);
215 spin_unlock(&transaction
->t_handle_lock
);
216 __log_wait_for_space(journal
);
220 /* OK, account for the buffers that this operation expects to
221 * use and add the handle to the running transaction. */
223 handle
->h_transaction
= transaction
;
224 transaction
->t_outstanding_credits
+= nblocks
;
225 transaction
->t_updates
++;
226 transaction
->t_handle_count
++;
227 jbd_debug(4, "Handle %p given %d credits (total %d, free %d)\n",
228 handle
, nblocks
, transaction
->t_outstanding_credits
,
229 __log_space_left(journal
));
230 spin_unlock(&transaction
->t_handle_lock
);
231 spin_unlock(&journal
->j_state_lock
);
233 lock_map_acquire(&handle
->h_lockdep_map
);
235 if (unlikely(new_transaction
)) /* It's usually NULL */
236 kfree(new_transaction
);
240 static struct lock_class_key jbd_handle_key
;
242 /* Allocate a new handle. This should probably be in a slab... */
243 static handle_t
*new_handle(int nblocks
)
245 handle_t
*handle
= jbd_alloc_handle(GFP_NOFS
);
248 memset(handle
, 0, sizeof(*handle
));
249 handle
->h_buffer_credits
= nblocks
;
252 lockdep_init_map(&handle
->h_lockdep_map
, "jbd_handle", &jbd_handle_key
, 0);
258 * handle_t *journal_start() - Obtain a new handle.
259 * @journal: Journal to start transaction on.
260 * @nblocks: number of block buffer we might modify
262 * We make sure that the transaction can guarantee at least nblocks of
263 * modified buffers in the log. We block until the log can guarantee
266 * This function is visible to journal users (like ext3fs), so is not
267 * called with the journal already locked.
269 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
272 handle_t
*journal_start(journal_t
*journal
, int nblocks
)
274 handle_t
*handle
= journal_current_handle();
278 return ERR_PTR(-EROFS
);
281 J_ASSERT(handle
->h_transaction
->t_journal
== journal
);
286 handle
= new_handle(nblocks
);
288 return ERR_PTR(-ENOMEM
);
290 current
->journal_info
= handle
;
292 err
= start_this_handle(journal
, handle
);
294 jbd_free_handle(handle
);
295 current
->journal_info
= NULL
;
296 handle
= ERR_PTR(err
);
302 * int journal_extend() - extend buffer credits.
303 * @handle: handle to 'extend'
304 * @nblocks: nr blocks to try to extend by.
306 * Some transactions, such as large extends and truncates, can be done
307 * atomically all at once or in several stages. The operation requests
308 * a credit for a number of buffer modications in advance, but can
309 * extend its credit if it needs more.
311 * journal_extend tries to give the running handle more buffer credits.
312 * It does not guarantee that allocation - this is a best-effort only.
313 * The calling process MUST be able to deal cleanly with a failure to
316 * Return 0 on success, non-zero on failure.
318 * return code < 0 implies an error
319 * return code > 0 implies normal transaction-full status.
321 int journal_extend(handle_t
*handle
, int nblocks
)
323 transaction_t
*transaction
= handle
->h_transaction
;
324 journal_t
*journal
= transaction
->t_journal
;
329 if (is_handle_aborted(handle
))
334 spin_lock(&journal
->j_state_lock
);
336 /* Don't extend a locked-down transaction! */
337 if (handle
->h_transaction
->t_state
!= T_RUNNING
) {
338 jbd_debug(3, "denied handle %p %d blocks: "
339 "transaction not running\n", handle
, nblocks
);
343 spin_lock(&transaction
->t_handle_lock
);
344 wanted
= transaction
->t_outstanding_credits
+ nblocks
;
346 if (wanted
> journal
->j_max_transaction_buffers
) {
347 jbd_debug(3, "denied handle %p %d blocks: "
348 "transaction too large\n", handle
, nblocks
);
352 if (wanted
> __log_space_left(journal
)) {
353 jbd_debug(3, "denied handle %p %d blocks: "
354 "insufficient log space\n", handle
, nblocks
);
358 handle
->h_buffer_credits
+= nblocks
;
359 transaction
->t_outstanding_credits
+= nblocks
;
362 jbd_debug(3, "extended handle %p by %d\n", handle
, nblocks
);
364 spin_unlock(&transaction
->t_handle_lock
);
366 spin_unlock(&journal
->j_state_lock
);
373 * int journal_restart() - restart a handle.
374 * @handle: handle to restart
375 * @nblocks: nr credits requested
377 * Restart a handle for a multi-transaction filesystem
380 * If the journal_extend() call above fails to grant new buffer credits
381 * to a running handle, a call to journal_restart will commit the
382 * handle's transaction so far and reattach the handle to a new
383 * transaction capabable of guaranteeing the requested number of
387 int journal_restart(handle_t
*handle
, int nblocks
)
389 transaction_t
*transaction
= handle
->h_transaction
;
390 journal_t
*journal
= transaction
->t_journal
;
393 /* If we've had an abort of any type, don't even think about
394 * actually doing the restart! */
395 if (is_handle_aborted(handle
))
399 * First unlink the handle from its current transaction, and start the
402 J_ASSERT(transaction
->t_updates
> 0);
403 J_ASSERT(journal_current_handle() == handle
);
405 spin_lock(&journal
->j_state_lock
);
406 spin_lock(&transaction
->t_handle_lock
);
407 transaction
->t_outstanding_credits
-= handle
->h_buffer_credits
;
408 transaction
->t_updates
--;
410 if (!transaction
->t_updates
)
411 wake_up(&journal
->j_wait_updates
);
412 spin_unlock(&transaction
->t_handle_lock
);
414 jbd_debug(2, "restarting handle %p\n", handle
);
415 __log_start_commit(journal
, transaction
->t_tid
);
416 spin_unlock(&journal
->j_state_lock
);
418 lock_map_release(&handle
->h_lockdep_map
);
419 handle
->h_buffer_credits
= nblocks
;
420 ret
= start_this_handle(journal
, handle
);
426 * void journal_lock_updates () - establish a transaction barrier.
427 * @journal: Journal to establish a barrier on.
429 * This locks out any further updates from being started, and blocks
430 * until all existing updates have completed, returning only once the
431 * journal is in a quiescent state with no updates running.
433 * The journal lock should not be held on entry.
435 void journal_lock_updates(journal_t
*journal
)
439 spin_lock(&journal
->j_state_lock
);
440 ++journal
->j_barrier_count
;
442 /* Wait until there are no running updates */
444 transaction_t
*transaction
= journal
->j_running_transaction
;
449 spin_lock(&transaction
->t_handle_lock
);
450 if (!transaction
->t_updates
) {
451 spin_unlock(&transaction
->t_handle_lock
);
454 prepare_to_wait(&journal
->j_wait_updates
, &wait
,
455 TASK_UNINTERRUPTIBLE
);
456 spin_unlock(&transaction
->t_handle_lock
);
457 spin_unlock(&journal
->j_state_lock
);
459 finish_wait(&journal
->j_wait_updates
, &wait
);
460 spin_lock(&journal
->j_state_lock
);
462 spin_unlock(&journal
->j_state_lock
);
465 * We have now established a barrier against other normal updates, but
466 * we also need to barrier against other journal_lock_updates() calls
467 * to make sure that we serialise special journal-locked operations
470 mutex_lock(&journal
->j_barrier
);
474 * void journal_unlock_updates (journal_t* journal) - release barrier
475 * @journal: Journal to release the barrier on.
477 * Release a transaction barrier obtained with journal_lock_updates().
479 * Should be called without the journal lock held.
481 void journal_unlock_updates (journal_t
*journal
)
483 J_ASSERT(journal
->j_barrier_count
!= 0);
485 mutex_unlock(&journal
->j_barrier
);
486 spin_lock(&journal
->j_state_lock
);
487 --journal
->j_barrier_count
;
488 spin_unlock(&journal
->j_state_lock
);
489 wake_up(&journal
->j_wait_transaction_locked
);
492 static void warn_dirty_buffer(struct buffer_head
*bh
)
494 char b
[BDEVNAME_SIZE
];
497 "JBD: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
498 "There's a risk of filesystem corruption in case of system "
500 bdevname(bh
->b_bdev
, b
), (unsigned long long)bh
->b_blocknr
);
504 * If the buffer is already part of the current transaction, then there
505 * is nothing we need to do. If it is already part of a prior
506 * transaction which we are still committing to disk, then we need to
507 * make sure that we do not overwrite the old copy: we do copy-out to
508 * preserve the copy going to disk. We also account the buffer against
509 * the handle's metadata buffer credits (unless the buffer is already
510 * part of the transaction, that is).
514 do_get_write_access(handle_t
*handle
, struct journal_head
*jh
,
517 struct buffer_head
*bh
;
518 transaction_t
*transaction
;
521 char *frozen_buffer
= NULL
;
524 if (is_handle_aborted(handle
))
527 transaction
= handle
->h_transaction
;
528 journal
= transaction
->t_journal
;
530 jbd_debug(5, "journal_head %p, force_copy %d\n", jh
, force_copy
);
532 JBUFFER_TRACE(jh
, "entry");
536 /* @@@ Need to check for errors here at some point. */
539 jbd_lock_bh_state(bh
);
541 /* We now hold the buffer lock so it is safe to query the buffer
542 * state. Is the buffer dirty?
544 * If so, there are two possibilities. The buffer may be
545 * non-journaled, and undergoing a quite legitimate writeback.
546 * Otherwise, it is journaled, and we don't expect dirty buffers
547 * in that state (the buffers should be marked JBD_Dirty
548 * instead.) So either the IO is being done under our own
549 * control and this is a bug, or it's a third party IO such as
550 * dump(8) (which may leave the buffer scheduled for read ---
551 * ie. locked but not dirty) or tune2fs (which may actually have
552 * the buffer dirtied, ugh.) */
554 if (buffer_dirty(bh
)) {
556 * First question: is this buffer already part of the current
557 * transaction or the existing committing transaction?
559 if (jh
->b_transaction
) {
561 jh
->b_transaction
== transaction
||
563 journal
->j_committing_transaction
);
564 if (jh
->b_next_transaction
)
565 J_ASSERT_JH(jh
, jh
->b_next_transaction
==
567 warn_dirty_buffer(bh
);
570 * In any case we need to clean the dirty flag and we must
571 * do it under the buffer lock to be sure we don't race
572 * with running write-out.
574 JBUFFER_TRACE(jh
, "Journalling dirty buffer");
575 clear_buffer_dirty(bh
);
576 set_buffer_jbddirty(bh
);
582 if (is_handle_aborted(handle
)) {
583 jbd_unlock_bh_state(bh
);
589 * The buffer is already part of this transaction if b_transaction or
590 * b_next_transaction points to it
592 if (jh
->b_transaction
== transaction
||
593 jh
->b_next_transaction
== transaction
)
597 * this is the first time this transaction is touching this buffer,
598 * reset the modified flag
603 * If there is already a copy-out version of this buffer, then we don't
604 * need to make another one
606 if (jh
->b_frozen_data
) {
607 JBUFFER_TRACE(jh
, "has frozen data");
608 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
609 jh
->b_next_transaction
= transaction
;
613 /* Is there data here we need to preserve? */
615 if (jh
->b_transaction
&& jh
->b_transaction
!= transaction
) {
616 JBUFFER_TRACE(jh
, "owned by older transaction");
617 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
618 J_ASSERT_JH(jh
, jh
->b_transaction
==
619 journal
->j_committing_transaction
);
621 /* There is one case we have to be very careful about.
622 * If the committing transaction is currently writing
623 * this buffer out to disk and has NOT made a copy-out,
624 * then we cannot modify the buffer contents at all
625 * right now. The essence of copy-out is that it is the
626 * extra copy, not the primary copy, which gets
627 * journaled. If the primary copy is already going to
628 * disk then we cannot do copy-out here. */
630 if (jh
->b_jlist
== BJ_Shadow
) {
631 DEFINE_WAIT_BIT(wait
, &bh
->b_state
, BH_Unshadow
);
632 wait_queue_head_t
*wqh
;
634 wqh
= bit_waitqueue(&bh
->b_state
, BH_Unshadow
);
636 JBUFFER_TRACE(jh
, "on shadow: sleep");
637 jbd_unlock_bh_state(bh
);
638 /* commit wakes up all shadow buffers after IO */
640 prepare_to_wait(wqh
, &wait
.wait
,
641 TASK_UNINTERRUPTIBLE
);
642 if (jh
->b_jlist
!= BJ_Shadow
)
646 finish_wait(wqh
, &wait
.wait
);
650 /* Only do the copy if the currently-owning transaction
651 * still needs it. If it is on the Forget list, the
652 * committing transaction is past that stage. The
653 * buffer had better remain locked during the kmalloc,
654 * but that should be true --- we hold the journal lock
655 * still and the buffer is already on the BUF_JOURNAL
656 * list so won't be flushed.
658 * Subtle point, though: if this is a get_undo_access,
659 * then we will be relying on the frozen_data to contain
660 * the new value of the committed_data record after the
661 * transaction, so we HAVE to force the frozen_data copy
664 if (jh
->b_jlist
!= BJ_Forget
|| force_copy
) {
665 JBUFFER_TRACE(jh
, "generate frozen data");
666 if (!frozen_buffer
) {
667 JBUFFER_TRACE(jh
, "allocate memory for buffer");
668 jbd_unlock_bh_state(bh
);
670 jbd_alloc(jh2bh(jh
)->b_size
,
672 if (!frozen_buffer
) {
674 "%s: OOM for frozen_buffer\n",
676 JBUFFER_TRACE(jh
, "oom!");
678 jbd_lock_bh_state(bh
);
683 jh
->b_frozen_data
= frozen_buffer
;
684 frozen_buffer
= NULL
;
687 jh
->b_next_transaction
= transaction
;
692 * Finally, if the buffer is not journaled right now, we need to make
693 * sure it doesn't get written to disk before the caller actually
694 * commits the new data
696 if (!jh
->b_transaction
) {
697 JBUFFER_TRACE(jh
, "no transaction");
698 J_ASSERT_JH(jh
, !jh
->b_next_transaction
);
699 jh
->b_transaction
= transaction
;
700 JBUFFER_TRACE(jh
, "file as BJ_Reserved");
701 spin_lock(&journal
->j_list_lock
);
702 __journal_file_buffer(jh
, transaction
, BJ_Reserved
);
703 spin_unlock(&journal
->j_list_lock
);
712 J_EXPECT_JH(jh
, buffer_uptodate(jh2bh(jh
)),
713 "Possible IO failure.\n");
714 page
= jh2bh(jh
)->b_page
;
715 offset
= offset_in_page(jh2bh(jh
)->b_data
);
716 source
= kmap_atomic(page
, KM_USER0
);
717 memcpy(jh
->b_frozen_data
, source
+offset
, jh2bh(jh
)->b_size
);
718 kunmap_atomic(source
, KM_USER0
);
720 jbd_unlock_bh_state(bh
);
723 * If we are about to journal a buffer, then any revoke pending on it is
726 journal_cancel_revoke(handle
, jh
);
729 if (unlikely(frozen_buffer
)) /* It's usually NULL */
730 jbd_free(frozen_buffer
, bh
->b_size
);
732 JBUFFER_TRACE(jh
, "exit");
737 * int journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
738 * @handle: transaction to add buffer modifications to
739 * @bh: bh to be used for metadata writes
741 * Returns an error code or 0 on success.
743 * In full data journalling mode the buffer may be of type BJ_AsyncData,
744 * because we're write()ing a buffer which is also part of a shared mapping.
747 int journal_get_write_access(handle_t
*handle
, struct buffer_head
*bh
)
749 struct journal_head
*jh
= journal_add_journal_head(bh
);
752 /* We do not want to get caught playing with fields which the
753 * log thread also manipulates. Make sure that the buffer
754 * completes any outstanding IO before proceeding. */
755 rc
= do_get_write_access(handle
, jh
, 0);
756 journal_put_journal_head(jh
);
762 * When the user wants to journal a newly created buffer_head
763 * (ie. getblk() returned a new buffer and we are going to populate it
764 * manually rather than reading off disk), then we need to keep the
765 * buffer_head locked until it has been completely filled with new
766 * data. In this case, we should be able to make the assertion that
767 * the bh is not already part of an existing transaction.
769 * The buffer should already be locked by the caller by this point.
770 * There is no lock ranking violation: it was a newly created,
771 * unlocked buffer beforehand. */
774 * int journal_get_create_access () - notify intent to use newly created bh
775 * @handle: transaction to new buffer to
778 * Call this if you create a new bh.
780 int journal_get_create_access(handle_t
*handle
, struct buffer_head
*bh
)
782 transaction_t
*transaction
= handle
->h_transaction
;
783 journal_t
*journal
= transaction
->t_journal
;
784 struct journal_head
*jh
= journal_add_journal_head(bh
);
787 jbd_debug(5, "journal_head %p\n", jh
);
789 if (is_handle_aborted(handle
))
793 JBUFFER_TRACE(jh
, "entry");
795 * The buffer may already belong to this transaction due to pre-zeroing
796 * in the filesystem's new_block code. It may also be on the previous,
797 * committing transaction's lists, but it HAS to be in Forget state in
798 * that case: the transaction must have deleted the buffer for it to be
801 jbd_lock_bh_state(bh
);
802 spin_lock(&journal
->j_list_lock
);
803 J_ASSERT_JH(jh
, (jh
->b_transaction
== transaction
||
804 jh
->b_transaction
== NULL
||
805 (jh
->b_transaction
== journal
->j_committing_transaction
&&
806 jh
->b_jlist
== BJ_Forget
)));
808 J_ASSERT_JH(jh
, jh
->b_next_transaction
== NULL
);
809 J_ASSERT_JH(jh
, buffer_locked(jh2bh(jh
)));
811 if (jh
->b_transaction
== NULL
) {
813 * Previous journal_forget() could have left the buffer
814 * with jbddirty bit set because it was being committed. When
815 * the commit finished, we've filed the buffer for
816 * checkpointing and marked it dirty. Now we are reallocating
817 * the buffer so the transaction freeing it must have
818 * committed and so it's safe to clear the dirty bit.
820 clear_buffer_dirty(jh2bh(jh
));
821 jh
->b_transaction
= transaction
;
823 /* first access by this transaction */
826 JBUFFER_TRACE(jh
, "file as BJ_Reserved");
827 __journal_file_buffer(jh
, transaction
, BJ_Reserved
);
828 } else if (jh
->b_transaction
== journal
->j_committing_transaction
) {
829 /* first access by this transaction */
832 JBUFFER_TRACE(jh
, "set next transaction");
833 jh
->b_next_transaction
= transaction
;
835 spin_unlock(&journal
->j_list_lock
);
836 jbd_unlock_bh_state(bh
);
839 * akpm: I added this. ext3_alloc_branch can pick up new indirect
840 * blocks which contain freed but then revoked metadata. We need
841 * to cancel the revoke in case we end up freeing it yet again
842 * and the reallocating as data - this would cause a second revoke,
843 * which hits an assertion error.
845 JBUFFER_TRACE(jh
, "cancelling revoke");
846 journal_cancel_revoke(handle
, jh
);
847 journal_put_journal_head(jh
);
853 * int journal_get_undo_access() - Notify intent to modify metadata with non-rewindable consequences
854 * @handle: transaction
855 * @bh: buffer to undo
857 * Sometimes there is a need to distinguish between metadata which has
858 * been committed to disk and that which has not. The ext3fs code uses
859 * this for freeing and allocating space, we have to make sure that we
860 * do not reuse freed space until the deallocation has been committed,
861 * since if we overwrote that space we would make the delete
862 * un-rewindable in case of a crash.
864 * To deal with that, journal_get_undo_access requests write access to a
865 * buffer for parts of non-rewindable operations such as delete
866 * operations on the bitmaps. The journaling code must keep a copy of
867 * the buffer's contents prior to the undo_access call until such time
868 * as we know that the buffer has definitely been committed to disk.
870 * We never need to know which transaction the committed data is part
871 * of, buffers touched here are guaranteed to be dirtied later and so
872 * will be committed to a new transaction in due course, at which point
873 * we can discard the old committed data pointer.
875 * Returns error number or 0 on success.
877 int journal_get_undo_access(handle_t
*handle
, struct buffer_head
*bh
)
880 struct journal_head
*jh
= journal_add_journal_head(bh
);
881 char *committed_data
= NULL
;
883 JBUFFER_TRACE(jh
, "entry");
886 * Do this first --- it can drop the journal lock, so we want to
887 * make sure that obtaining the committed_data is done
888 * atomically wrt. completion of any outstanding commits.
890 err
= do_get_write_access(handle
, jh
, 1);
895 if (!jh
->b_committed_data
) {
896 committed_data
= jbd_alloc(jh2bh(jh
)->b_size
, GFP_NOFS
);
897 if (!committed_data
) {
898 printk(KERN_EMERG
"%s: No memory for committed data\n",
905 jbd_lock_bh_state(bh
);
906 if (!jh
->b_committed_data
) {
907 /* Copy out the current buffer contents into the
908 * preserved, committed copy. */
909 JBUFFER_TRACE(jh
, "generate b_committed data");
910 if (!committed_data
) {
911 jbd_unlock_bh_state(bh
);
915 jh
->b_committed_data
= committed_data
;
916 committed_data
= NULL
;
917 memcpy(jh
->b_committed_data
, bh
->b_data
, bh
->b_size
);
919 jbd_unlock_bh_state(bh
);
921 journal_put_journal_head(jh
);
922 if (unlikely(committed_data
))
923 jbd_free(committed_data
, bh
->b_size
);
928 * int journal_dirty_data() - mark a buffer as containing dirty data to be flushed
929 * @handle: transaction
930 * @bh: bufferhead to mark
933 * Mark a buffer as containing dirty data which needs to be flushed before
934 * we can commit the current transaction.
936 * The buffer is placed on the transaction's data list and is marked as
937 * belonging to the transaction.
939 * Returns error number or 0 on success.
941 * journal_dirty_data() can be called via page_launder->ext3_writepage
944 int journal_dirty_data(handle_t
*handle
, struct buffer_head
*bh
)
946 journal_t
*journal
= handle
->h_transaction
->t_journal
;
948 struct journal_head
*jh
;
951 if (is_handle_aborted(handle
))
954 jh
= journal_add_journal_head(bh
);
955 JBUFFER_TRACE(jh
, "entry");
958 * The buffer could *already* be dirty. Writeout can start
961 jbd_debug(4, "jh: %p, tid:%d\n", jh
, handle
->h_transaction
->t_tid
);
964 * What if the buffer is already part of a running transaction?
966 * There are two cases:
967 * 1) It is part of the current running transaction. Refile it,
968 * just in case we have allocated it as metadata, deallocated
969 * it, then reallocated it as data.
970 * 2) It is part of the previous, still-committing transaction.
971 * If all we want to do is to guarantee that the buffer will be
972 * written to disk before this new transaction commits, then
973 * being sure that the *previous* transaction has this same
974 * property is sufficient for us! Just leave it on its old
977 * In case (2), the buffer must not already exist as metadata
978 * --- that would violate write ordering (a transaction is free
979 * to write its data at any point, even before the previous
980 * committing transaction has committed). The caller must
981 * never, ever allow this to happen: there's nothing we can do
982 * about it in this layer.
984 jbd_lock_bh_state(bh
);
985 spin_lock(&journal
->j_list_lock
);
987 /* Now that we have bh_state locked, are we really still mapped? */
988 if (!buffer_mapped(bh
)) {
989 JBUFFER_TRACE(jh
, "unmapped buffer, bailing out");
993 if (jh
->b_transaction
) {
994 JBUFFER_TRACE(jh
, "has transaction");
995 if (jh
->b_transaction
!= handle
->h_transaction
) {
996 JBUFFER_TRACE(jh
, "belongs to older transaction");
997 J_ASSERT_JH(jh
, jh
->b_transaction
==
998 journal
->j_committing_transaction
);
1000 /* @@@ IS THIS TRUE ? */
1002 * Not any more. Scenario: someone does a write()
1003 * in data=journal mode. The buffer's transaction has
1004 * moved into commit. Then someone does another
1005 * write() to the file. We do the frozen data copyout
1006 * and set b_next_transaction to point to j_running_t.
1007 * And while we're in that state, someone does a
1008 * writepage() in an attempt to pageout the same area
1009 * of the file via a shared mapping. At present that
1010 * calls journal_dirty_data(), and we get right here.
1011 * It may be too late to journal the data. Simply
1012 * falling through to the next test will suffice: the
1013 * data will be dirty and wil be checkpointed. The
1014 * ordering comments in the next comment block still
1017 //J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1020 * If we're journalling data, and this buffer was
1021 * subject to a write(), it could be metadata, forget
1022 * or shadow against the committing transaction. Now,
1023 * someone has dirtied the same darn page via a mapping
1024 * and it is being writepage()'d.
1025 * We *could* just steal the page from commit, with some
1026 * fancy locking there. Instead, we just skip it -
1027 * don't tie the page's buffers to the new transaction
1029 * Implication: if we crash before the writepage() data
1030 * is written into the filesystem, recovery will replay
1033 if (jh
->b_jlist
!= BJ_None
&&
1034 jh
->b_jlist
!= BJ_SyncData
&&
1035 jh
->b_jlist
!= BJ_Locked
) {
1036 JBUFFER_TRACE(jh
, "Not stealing");
1041 * This buffer may be undergoing writeout in commit. We
1042 * can't return from here and let the caller dirty it
1043 * again because that can cause the write-out loop in
1044 * commit to never terminate.
1046 if (buffer_dirty(bh
)) {
1048 spin_unlock(&journal
->j_list_lock
);
1049 jbd_unlock_bh_state(bh
);
1051 sync_dirty_buffer(bh
);
1052 jbd_lock_bh_state(bh
);
1053 spin_lock(&journal
->j_list_lock
);
1054 /* Since we dropped the lock... */
1055 if (!buffer_mapped(bh
)) {
1056 JBUFFER_TRACE(jh
, "buffer got unmapped");
1059 /* The buffer may become locked again at any
1060 time if it is redirtied */
1064 * We cannot remove the buffer with io error from the
1065 * committing transaction, because otherwise it would
1066 * miss the error and the commit would not abort.
1068 if (unlikely(!buffer_uptodate(bh
))) {
1073 if (jh
->b_transaction
!= NULL
) {
1074 JBUFFER_TRACE(jh
, "unfile from commit");
1075 __journal_temp_unlink_buffer(jh
);
1076 /* It still points to the committing
1077 * transaction; move it to this one so
1078 * that the refile assert checks are
1080 jh
->b_transaction
= handle
->h_transaction
;
1082 /* The buffer will be refiled below */
1086 * Special case --- the buffer might actually have been
1087 * allocated and then immediately deallocated in the previous,
1088 * committing transaction, so might still be left on that
1089 * transaction's metadata lists.
1091 if (jh
->b_jlist
!= BJ_SyncData
&& jh
->b_jlist
!= BJ_Locked
) {
1092 JBUFFER_TRACE(jh
, "not on correct data list: unfile");
1093 J_ASSERT_JH(jh
, jh
->b_jlist
!= BJ_Shadow
);
1094 __journal_temp_unlink_buffer(jh
);
1095 jh
->b_transaction
= handle
->h_transaction
;
1096 JBUFFER_TRACE(jh
, "file as data");
1097 __journal_file_buffer(jh
, handle
->h_transaction
,
1101 JBUFFER_TRACE(jh
, "not on a transaction");
1102 __journal_file_buffer(jh
, handle
->h_transaction
, BJ_SyncData
);
1105 spin_unlock(&journal
->j_list_lock
);
1106 jbd_unlock_bh_state(bh
);
1108 BUFFER_TRACE(bh
, "brelse");
1111 JBUFFER_TRACE(jh
, "exit");
1112 journal_put_journal_head(jh
);
1117 * int journal_dirty_metadata() - mark a buffer as containing dirty metadata
1118 * @handle: transaction to add buffer to.
1119 * @bh: buffer to mark
1121 * Mark dirty metadata which needs to be journaled as part of the current
1124 * The buffer is placed on the transaction's metadata list and is marked
1125 * as belonging to the transaction.
1127 * Returns error number or 0 on success.
1129 * Special care needs to be taken if the buffer already belongs to the
1130 * current committing transaction (in which case we should have frozen
1131 * data present for that commit). In that case, we don't relink the
1132 * buffer: that only gets done when the old transaction finally
1133 * completes its commit.
1135 int journal_dirty_metadata(handle_t
*handle
, struct buffer_head
*bh
)
1137 transaction_t
*transaction
= handle
->h_transaction
;
1138 journal_t
*journal
= transaction
->t_journal
;
1139 struct journal_head
*jh
= bh2jh(bh
);
1141 jbd_debug(5, "journal_head %p\n", jh
);
1142 JBUFFER_TRACE(jh
, "entry");
1143 if (is_handle_aborted(handle
))
1146 jbd_lock_bh_state(bh
);
1148 if (jh
->b_modified
== 0) {
1150 * This buffer's got modified and becoming part
1151 * of the transaction. This needs to be done
1152 * once a transaction -bzzz
1155 J_ASSERT_JH(jh
, handle
->h_buffer_credits
> 0);
1156 handle
->h_buffer_credits
--;
1160 * fastpath, to avoid expensive locking. If this buffer is already
1161 * on the running transaction's metadata list there is nothing to do.
1162 * Nobody can take it off again because there is a handle open.
1163 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1164 * result in this test being false, so we go in and take the locks.
1166 if (jh
->b_transaction
== transaction
&& jh
->b_jlist
== BJ_Metadata
) {
1167 JBUFFER_TRACE(jh
, "fastpath");
1168 J_ASSERT_JH(jh
, jh
->b_transaction
==
1169 journal
->j_running_transaction
);
1173 set_buffer_jbddirty(bh
);
1176 * Metadata already on the current transaction list doesn't
1177 * need to be filed. Metadata on another transaction's list must
1178 * be committing, and will be refiled once the commit completes:
1179 * leave it alone for now.
1181 if (jh
->b_transaction
!= transaction
) {
1182 JBUFFER_TRACE(jh
, "already on other transaction");
1183 J_ASSERT_JH(jh
, jh
->b_transaction
==
1184 journal
->j_committing_transaction
);
1185 J_ASSERT_JH(jh
, jh
->b_next_transaction
== transaction
);
1186 /* And this case is illegal: we can't reuse another
1187 * transaction's data buffer, ever. */
1191 /* That test should have eliminated the following case: */
1192 J_ASSERT_JH(jh
, jh
->b_frozen_data
== NULL
);
1194 JBUFFER_TRACE(jh
, "file as BJ_Metadata");
1195 spin_lock(&journal
->j_list_lock
);
1196 __journal_file_buffer(jh
, handle
->h_transaction
, BJ_Metadata
);
1197 spin_unlock(&journal
->j_list_lock
);
1199 jbd_unlock_bh_state(bh
);
1201 JBUFFER_TRACE(jh
, "exit");
1206 * journal_release_buffer: undo a get_write_access without any buffer
1207 * updates, if the update decided in the end that it didn't need access.
1211 journal_release_buffer(handle_t
*handle
, struct buffer_head
*bh
)
1213 BUFFER_TRACE(bh
, "entry");
1217 * void journal_forget() - bforget() for potentially-journaled buffers.
1218 * @handle: transaction handle
1219 * @bh: bh to 'forget'
1221 * We can only do the bforget if there are no commits pending against the
1222 * buffer. If the buffer is dirty in the current running transaction we
1223 * can safely unlink it.
1225 * bh may not be a journalled buffer at all - it may be a non-JBD
1226 * buffer which came off the hashtable. Check for this.
1228 * Decrements bh->b_count by one.
1230 * Allow this call even if the handle has aborted --- it may be part of
1231 * the caller's cleanup after an abort.
1233 int journal_forget (handle_t
*handle
, struct buffer_head
*bh
)
1235 transaction_t
*transaction
= handle
->h_transaction
;
1236 journal_t
*journal
= transaction
->t_journal
;
1237 struct journal_head
*jh
;
1238 int drop_reserve
= 0;
1240 int was_modified
= 0;
1242 BUFFER_TRACE(bh
, "entry");
1244 jbd_lock_bh_state(bh
);
1245 spin_lock(&journal
->j_list_lock
);
1247 if (!buffer_jbd(bh
))
1251 /* Critical error: attempting to delete a bitmap buffer, maybe?
1252 * Don't do any jbd operations, and return an error. */
1253 if (!J_EXPECT_JH(jh
, !jh
->b_committed_data
,
1254 "inconsistent data on disk")) {
1259 /* keep track of wether or not this transaction modified us */
1260 was_modified
= jh
->b_modified
;
1263 * The buffer's going from the transaction, we must drop
1264 * all references -bzzz
1268 if (jh
->b_transaction
== handle
->h_transaction
) {
1269 J_ASSERT_JH(jh
, !jh
->b_frozen_data
);
1271 /* If we are forgetting a buffer which is already part
1272 * of this transaction, then we can just drop it from
1273 * the transaction immediately. */
1274 clear_buffer_dirty(bh
);
1275 clear_buffer_jbddirty(bh
);
1277 JBUFFER_TRACE(jh
, "belongs to current transaction: unfile");
1280 * we only want to drop a reference if this transaction
1281 * modified the buffer
1287 * We are no longer going to journal this buffer.
1288 * However, the commit of this transaction is still
1289 * important to the buffer: the delete that we are now
1290 * processing might obsolete an old log entry, so by
1291 * committing, we can satisfy the buffer's checkpoint.
1293 * So, if we have a checkpoint on the buffer, we should
1294 * now refile the buffer on our BJ_Forget list so that
1295 * we know to remove the checkpoint after we commit.
1298 if (jh
->b_cp_transaction
) {
1299 __journal_temp_unlink_buffer(jh
);
1300 __journal_file_buffer(jh
, transaction
, BJ_Forget
);
1302 __journal_unfile_buffer(jh
);
1303 journal_remove_journal_head(bh
);
1305 if (!buffer_jbd(bh
)) {
1306 spin_unlock(&journal
->j_list_lock
);
1307 jbd_unlock_bh_state(bh
);
1312 } else if (jh
->b_transaction
) {
1313 J_ASSERT_JH(jh
, (jh
->b_transaction
==
1314 journal
->j_committing_transaction
));
1315 /* However, if the buffer is still owned by a prior
1316 * (committing) transaction, we can't drop it yet... */
1317 JBUFFER_TRACE(jh
, "belongs to older transaction");
1318 /* ... but we CAN drop it from the new transaction if we
1319 * have also modified it since the original commit. */
1321 if (jh
->b_next_transaction
) {
1322 J_ASSERT(jh
->b_next_transaction
== transaction
);
1323 jh
->b_next_transaction
= NULL
;
1326 * only drop a reference if this transaction modified
1335 spin_unlock(&journal
->j_list_lock
);
1336 jbd_unlock_bh_state(bh
);
1340 /* no need to reserve log space for this block -bzzz */
1341 handle
->h_buffer_credits
++;
1347 * int journal_stop() - complete a transaction
1348 * @handle: tranaction to complete.
1350 * All done for a particular handle.
1352 * There is not much action needed here. We just return any remaining
1353 * buffer credits to the transaction and remove the handle. The only
1354 * complication is that we need to start a commit operation if the
1355 * filesystem is marked for synchronous update.
1357 * journal_stop itself will not usually return an error, but it may
1358 * do so in unusual circumstances. In particular, expect it to
1359 * return -EIO if a journal_abort has been executed since the
1360 * transaction began.
1362 int journal_stop(handle_t
*handle
)
1364 transaction_t
*transaction
= handle
->h_transaction
;
1365 journal_t
*journal
= transaction
->t_journal
;
1369 J_ASSERT(journal_current_handle() == handle
);
1371 if (is_handle_aborted(handle
))
1374 J_ASSERT(transaction
->t_updates
> 0);
1378 if (--handle
->h_ref
> 0) {
1379 jbd_debug(4, "h_ref %d -> %d\n", handle
->h_ref
+ 1,
1384 jbd_debug(4, "Handle %p going down\n", handle
);
1387 * Implement synchronous transaction batching. If the handle
1388 * was synchronous, don't force a commit immediately. Let's
1389 * yield and let another thread piggyback onto this transaction.
1390 * Keep doing that while new threads continue to arrive.
1391 * It doesn't cost much - we're about to run a commit and sleep
1392 * on IO anyway. Speeds up many-threaded, many-dir operations
1395 * We try and optimize the sleep time against what the underlying disk
1396 * can do, instead of having a static sleep time. This is useful for
1397 * the case where our storage is so fast that it is more optimal to go
1398 * ahead and force a flush and wait for the transaction to be committed
1399 * than it is to wait for an arbitrary amount of time for new writers to
1400 * join the transaction. We achieve this by measuring how long it takes
1401 * to commit a transaction, and compare it with how long this
1402 * transaction has been running, and if run time < commit time then we
1403 * sleep for the delta and commit. This greatly helps super fast disks
1404 * that would see slowdowns as more threads started doing fsyncs.
1406 * But don't do this if this process was the most recent one to
1407 * perform a synchronous write. We do this to detect the case where a
1408 * single process is doing a stream of sync writes. No point in waiting
1409 * for joiners in that case.
1412 if (handle
->h_sync
&& journal
->j_last_sync_writer
!= pid
) {
1413 u64 commit_time
, trans_time
;
1415 journal
->j_last_sync_writer
= pid
;
1417 spin_lock(&journal
->j_state_lock
);
1418 commit_time
= journal
->j_average_commit_time
;
1419 spin_unlock(&journal
->j_state_lock
);
1421 trans_time
= ktime_to_ns(ktime_sub(ktime_get(),
1422 transaction
->t_start_time
));
1424 commit_time
= min_t(u64
, commit_time
,
1425 1000*jiffies_to_usecs(1));
1427 if (trans_time
< commit_time
) {
1428 ktime_t expires
= ktime_add_ns(ktime_get(),
1430 set_current_state(TASK_UNINTERRUPTIBLE
);
1431 schedule_hrtimeout(&expires
, HRTIMER_MODE_ABS
);
1436 transaction
->t_synchronous_commit
= 1;
1437 current
->journal_info
= NULL
;
1438 spin_lock(&journal
->j_state_lock
);
1439 spin_lock(&transaction
->t_handle_lock
);
1440 transaction
->t_outstanding_credits
-= handle
->h_buffer_credits
;
1441 transaction
->t_updates
--;
1442 if (!transaction
->t_updates
) {
1443 wake_up(&journal
->j_wait_updates
);
1444 if (journal
->j_barrier_count
)
1445 wake_up(&journal
->j_wait_transaction_locked
);
1449 * If the handle is marked SYNC, we need to set another commit
1450 * going! We also want to force a commit if the current
1451 * transaction is occupying too much of the log, or if the
1452 * transaction is too old now.
1454 if (handle
->h_sync
||
1455 transaction
->t_outstanding_credits
>
1456 journal
->j_max_transaction_buffers
||
1457 time_after_eq(jiffies
, transaction
->t_expires
)) {
1458 /* Do this even for aborted journals: an abort still
1459 * completes the commit thread, it just doesn't write
1460 * anything to disk. */
1461 tid_t tid
= transaction
->t_tid
;
1463 spin_unlock(&transaction
->t_handle_lock
);
1464 jbd_debug(2, "transaction too old, requesting commit for "
1465 "handle %p\n", handle
);
1466 /* This is non-blocking */
1467 __log_start_commit(journal
, transaction
->t_tid
);
1468 spin_unlock(&journal
->j_state_lock
);
1471 * Special case: JFS_SYNC synchronous updates require us
1472 * to wait for the commit to complete.
1474 if (handle
->h_sync
&& !(current
->flags
& PF_MEMALLOC
))
1475 err
= log_wait_commit(journal
, tid
);
1477 spin_unlock(&transaction
->t_handle_lock
);
1478 spin_unlock(&journal
->j_state_lock
);
1481 lock_map_release(&handle
->h_lockdep_map
);
1483 jbd_free_handle(handle
);
1488 * int journal_force_commit() - force any uncommitted transactions
1489 * @journal: journal to force
1491 * For synchronous operations: force any uncommitted transactions
1492 * to disk. May seem kludgy, but it reuses all the handle batching
1493 * code in a very simple manner.
1495 int journal_force_commit(journal_t
*journal
)
1500 handle
= journal_start(journal
, 1);
1501 if (IS_ERR(handle
)) {
1502 ret
= PTR_ERR(handle
);
1505 ret
= journal_stop(handle
);
1512 * List management code snippets: various functions for manipulating the
1513 * transaction buffer lists.
1518 * Append a buffer to a transaction list, given the transaction's list head
1521 * j_list_lock is held.
1523 * jbd_lock_bh_state(jh2bh(jh)) is held.
1527 __blist_add_buffer(struct journal_head
**list
, struct journal_head
*jh
)
1530 jh
->b_tnext
= jh
->b_tprev
= jh
;
1533 /* Insert at the tail of the list to preserve order */
1534 struct journal_head
*first
= *list
, *last
= first
->b_tprev
;
1536 jh
->b_tnext
= first
;
1537 last
->b_tnext
= first
->b_tprev
= jh
;
1542 * Remove a buffer from a transaction list, given the transaction's list
1545 * Called with j_list_lock held, and the journal may not be locked.
1547 * jbd_lock_bh_state(jh2bh(jh)) is held.
1551 __blist_del_buffer(struct journal_head
**list
, struct journal_head
*jh
)
1554 *list
= jh
->b_tnext
;
1558 jh
->b_tprev
->b_tnext
= jh
->b_tnext
;
1559 jh
->b_tnext
->b_tprev
= jh
->b_tprev
;
1563 * Remove a buffer from the appropriate transaction list.
1565 * Note that this function can *change* the value of
1566 * bh->b_transaction->t_sync_datalist, t_buffers, t_forget,
1567 * t_iobuf_list, t_shadow_list, t_log_list or t_reserved_list. If the caller
1568 * is holding onto a copy of one of thee pointers, it could go bad.
1569 * Generally the caller needs to re-read the pointer from the transaction_t.
1571 * Called under j_list_lock. The journal may not be locked.
1573 static void __journal_temp_unlink_buffer(struct journal_head
*jh
)
1575 struct journal_head
**list
= NULL
;
1576 transaction_t
*transaction
;
1577 struct buffer_head
*bh
= jh2bh(jh
);
1579 J_ASSERT_JH(jh
, jbd_is_locked_bh_state(bh
));
1580 transaction
= jh
->b_transaction
;
1582 assert_spin_locked(&transaction
->t_journal
->j_list_lock
);
1584 J_ASSERT_JH(jh
, jh
->b_jlist
< BJ_Types
);
1585 if (jh
->b_jlist
!= BJ_None
)
1586 J_ASSERT_JH(jh
, transaction
!= NULL
);
1588 switch (jh
->b_jlist
) {
1592 list
= &transaction
->t_sync_datalist
;
1595 transaction
->t_nr_buffers
--;
1596 J_ASSERT_JH(jh
, transaction
->t_nr_buffers
>= 0);
1597 list
= &transaction
->t_buffers
;
1600 list
= &transaction
->t_forget
;
1603 list
= &transaction
->t_iobuf_list
;
1606 list
= &transaction
->t_shadow_list
;
1609 list
= &transaction
->t_log_list
;
1612 list
= &transaction
->t_reserved_list
;
1615 list
= &transaction
->t_locked_list
;
1619 __blist_del_buffer(list
, jh
);
1620 jh
->b_jlist
= BJ_None
;
1621 if (test_clear_buffer_jbddirty(bh
))
1622 mark_buffer_dirty(bh
); /* Expose it to the VM */
1625 void __journal_unfile_buffer(struct journal_head
*jh
)
1627 __journal_temp_unlink_buffer(jh
);
1628 jh
->b_transaction
= NULL
;
1631 void journal_unfile_buffer(journal_t
*journal
, struct journal_head
*jh
)
1633 jbd_lock_bh_state(jh2bh(jh
));
1634 spin_lock(&journal
->j_list_lock
);
1635 __journal_unfile_buffer(jh
);
1636 spin_unlock(&journal
->j_list_lock
);
1637 jbd_unlock_bh_state(jh2bh(jh
));
1641 * Called from journal_try_to_free_buffers().
1643 * Called under jbd_lock_bh_state(bh)
1646 __journal_try_to_free_buffer(journal_t
*journal
, struct buffer_head
*bh
)
1648 struct journal_head
*jh
;
1652 if (buffer_locked(bh
) || buffer_dirty(bh
))
1655 if (jh
->b_next_transaction
!= NULL
)
1658 spin_lock(&journal
->j_list_lock
);
1659 if (jh
->b_transaction
!= NULL
&& jh
->b_cp_transaction
== NULL
) {
1660 if (jh
->b_jlist
== BJ_SyncData
|| jh
->b_jlist
== BJ_Locked
) {
1661 /* A written-back ordered data buffer */
1662 JBUFFER_TRACE(jh
, "release data");
1663 __journal_unfile_buffer(jh
);
1664 journal_remove_journal_head(bh
);
1667 } else if (jh
->b_cp_transaction
!= NULL
&& jh
->b_transaction
== NULL
) {
1668 /* written-back checkpointed metadata buffer */
1669 if (jh
->b_jlist
== BJ_None
) {
1670 JBUFFER_TRACE(jh
, "remove from checkpoint list");
1671 __journal_remove_checkpoint(jh
);
1672 journal_remove_journal_head(bh
);
1676 spin_unlock(&journal
->j_list_lock
);
1682 * int journal_try_to_free_buffers() - try to free page buffers.
1683 * @journal: journal for operation
1684 * @page: to try and free
1685 * @gfp_mask: we use the mask to detect how hard should we try to release
1686 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1687 * release the buffers.
1690 * For all the buffers on this page,
1691 * if they are fully written out ordered data, move them onto BUF_CLEAN
1692 * so try_to_free_buffers() can reap them.
1694 * This function returns non-zero if we wish try_to_free_buffers()
1695 * to be called. We do this if the page is releasable by try_to_free_buffers().
1696 * We also do it if the page has locked or dirty buffers and the caller wants
1697 * us to perform sync or async writeout.
1699 * This complicates JBD locking somewhat. We aren't protected by the
1700 * BKL here. We wish to remove the buffer from its committing or
1701 * running transaction's ->t_datalist via __journal_unfile_buffer.
1703 * This may *change* the value of transaction_t->t_datalist, so anyone
1704 * who looks at t_datalist needs to lock against this function.
1706 * Even worse, someone may be doing a journal_dirty_data on this
1707 * buffer. So we need to lock against that. journal_dirty_data()
1708 * will come out of the lock with the buffer dirty, which makes it
1709 * ineligible for release here.
1711 * Who else is affected by this? hmm... Really the only contender
1712 * is do_get_write_access() - it could be looking at the buffer while
1713 * journal_try_to_free_buffer() is changing its state. But that
1714 * cannot happen because we never reallocate freed data as metadata
1715 * while the data is part of a transaction. Yes?
1717 * Return 0 on failure, 1 on success
1719 int journal_try_to_free_buffers(journal_t
*journal
,
1720 struct page
*page
, gfp_t gfp_mask
)
1722 struct buffer_head
*head
;
1723 struct buffer_head
*bh
;
1726 J_ASSERT(PageLocked(page
));
1728 head
= page_buffers(page
);
1731 struct journal_head
*jh
;
1734 * We take our own ref against the journal_head here to avoid
1735 * having to add tons of locking around each instance of
1736 * journal_remove_journal_head() and journal_put_journal_head().
1738 jh
= journal_grab_journal_head(bh
);
1742 jbd_lock_bh_state(bh
);
1743 __journal_try_to_free_buffer(journal
, bh
);
1744 journal_put_journal_head(jh
);
1745 jbd_unlock_bh_state(bh
);
1748 } while ((bh
= bh
->b_this_page
) != head
);
1750 ret
= try_to_free_buffers(page
);
1757 * This buffer is no longer needed. If it is on an older transaction's
1758 * checkpoint list we need to record it on this transaction's forget list
1759 * to pin this buffer (and hence its checkpointing transaction) down until
1760 * this transaction commits. If the buffer isn't on a checkpoint list, we
1762 * Returns non-zero if JBD no longer has an interest in the buffer.
1764 * Called under j_list_lock.
1766 * Called under jbd_lock_bh_state(bh).
1768 static int __dispose_buffer(struct journal_head
*jh
, transaction_t
*transaction
)
1771 struct buffer_head
*bh
= jh2bh(jh
);
1773 __journal_unfile_buffer(jh
);
1775 if (jh
->b_cp_transaction
) {
1776 JBUFFER_TRACE(jh
, "on running+cp transaction");
1778 * We don't want to write the buffer anymore, clear the
1779 * bit so that we don't confuse checks in
1780 * __journal_file_buffer
1782 clear_buffer_dirty(bh
);
1783 __journal_file_buffer(jh
, transaction
, BJ_Forget
);
1786 JBUFFER_TRACE(jh
, "on running transaction");
1787 journal_remove_journal_head(bh
);
1794 * journal_invalidatepage
1796 * This code is tricky. It has a number of cases to deal with.
1798 * There are two invariants which this code relies on:
1800 * i_size must be updated on disk before we start calling invalidatepage on the
1803 * This is done in ext3 by defining an ext3_setattr method which
1804 * updates i_size before truncate gets going. By maintaining this
1805 * invariant, we can be sure that it is safe to throw away any buffers
1806 * attached to the current transaction: once the transaction commits,
1807 * we know that the data will not be needed.
1809 * Note however that we can *not* throw away data belonging to the
1810 * previous, committing transaction!
1812 * Any disk blocks which *are* part of the previous, committing
1813 * transaction (and which therefore cannot be discarded immediately) are
1814 * not going to be reused in the new running transaction
1816 * The bitmap committed_data images guarantee this: any block which is
1817 * allocated in one transaction and removed in the next will be marked
1818 * as in-use in the committed_data bitmap, so cannot be reused until
1819 * the next transaction to delete the block commits. This means that
1820 * leaving committing buffers dirty is quite safe: the disk blocks
1821 * cannot be reallocated to a different file and so buffer aliasing is
1825 * The above applies mainly to ordered data mode. In writeback mode we
1826 * don't make guarantees about the order in which data hits disk --- in
1827 * particular we don't guarantee that new dirty data is flushed before
1828 * transaction commit --- so it is always safe just to discard data
1829 * immediately in that mode. --sct
1833 * The journal_unmap_buffer helper function returns zero if the buffer
1834 * concerned remains pinned as an anonymous buffer belonging to an older
1837 * We're outside-transaction here. Either or both of j_running_transaction
1838 * and j_committing_transaction may be NULL.
1840 static int journal_unmap_buffer(journal_t
*journal
, struct buffer_head
*bh
,
1843 transaction_t
*transaction
;
1844 struct journal_head
*jh
;
1847 BUFFER_TRACE(bh
, "entry");
1851 * It is safe to proceed here without the j_list_lock because the
1852 * buffers cannot be stolen by try_to_free_buffers as long as we are
1853 * holding the page lock. --sct
1856 if (!buffer_jbd(bh
))
1857 goto zap_buffer_unlocked
;
1859 spin_lock(&journal
->j_state_lock
);
1860 jbd_lock_bh_state(bh
);
1861 spin_lock(&journal
->j_list_lock
);
1863 jh
= journal_grab_journal_head(bh
);
1865 goto zap_buffer_no_jh
;
1868 * We cannot remove the buffer from checkpoint lists until the
1869 * transaction adding inode to orphan list (let's call it T)
1870 * is committed. Otherwise if the transaction changing the
1871 * buffer would be cleaned from the journal before T is
1872 * committed, a crash will cause that the correct contents of
1873 * the buffer will be lost. On the other hand we have to
1874 * clear the buffer dirty bit at latest at the moment when the
1875 * transaction marking the buffer as freed in the filesystem
1876 * structures is committed because from that moment on the
1877 * block can be reallocated and used by a different page.
1878 * Since the block hasn't been freed yet but the inode has
1879 * already been added to orphan list, it is safe for us to add
1880 * the buffer to BJ_Forget list of the newest transaction.
1882 * Also we have to clear buffer_mapped flag of a truncated buffer
1883 * because the buffer_head may be attached to the page straddling
1884 * i_size (can happen only when blocksize < pagesize) and thus the
1885 * buffer_head can be reused when the file is extended again. So we end
1886 * up keeping around invalidated buffers attached to transactions'
1887 * BJ_Forget list just to stop checkpointing code from cleaning up
1888 * the transaction this buffer was modified in.
1890 transaction
= jh
->b_transaction
;
1891 if (transaction
== NULL
) {
1892 /* First case: not on any transaction. If it
1893 * has no checkpoint link, then we can zap it:
1894 * it's a writeback-mode buffer so we don't care
1895 * if it hits disk safely. */
1896 if (!jh
->b_cp_transaction
) {
1897 JBUFFER_TRACE(jh
, "not on any transaction: zap");
1901 if (!buffer_dirty(bh
)) {
1902 /* bdflush has written it. We can drop it now */
1906 /* OK, it must be in the journal but still not
1907 * written fully to disk: it's metadata or
1908 * journaled data... */
1910 if (journal
->j_running_transaction
) {
1911 /* ... and once the current transaction has
1912 * committed, the buffer won't be needed any
1914 JBUFFER_TRACE(jh
, "checkpointed: add to BJ_Forget");
1915 may_free
= __dispose_buffer(jh
,
1916 journal
->j_running_transaction
);
1919 /* There is no currently-running transaction. So the
1920 * orphan record which we wrote for this file must have
1921 * passed into commit. We must attach this buffer to
1922 * the committing transaction, if it exists. */
1923 if (journal
->j_committing_transaction
) {
1924 JBUFFER_TRACE(jh
, "give to committing trans");
1925 may_free
= __dispose_buffer(jh
,
1926 journal
->j_committing_transaction
);
1929 /* The orphan record's transaction has
1930 * committed. We can cleanse this buffer */
1931 clear_buffer_jbddirty(bh
);
1935 } else if (transaction
== journal
->j_committing_transaction
) {
1936 JBUFFER_TRACE(jh
, "on committing transaction");
1937 if (jh
->b_jlist
== BJ_Locked
) {
1939 * The buffer is on the committing transaction's locked
1940 * list. We have the buffer locked, so I/O has
1941 * completed. So we can nail the buffer now.
1943 may_free
= __dispose_buffer(jh
, transaction
);
1947 * The buffer is committing, we simply cannot touch
1948 * it. If the page is straddling i_size we have to wait
1949 * for commit and try again.
1952 tid_t tid
= journal
->j_committing_transaction
->t_tid
;
1954 journal_put_journal_head(jh
);
1955 spin_unlock(&journal
->j_list_lock
);
1956 jbd_unlock_bh_state(bh
);
1957 spin_unlock(&journal
->j_state_lock
);
1959 log_wait_commit(journal
, tid
);
1964 * OK, buffer won't be reachable after truncate. We just set
1965 * j_next_transaction to the running transaction (if there is
1966 * one) and mark buffer as freed so that commit code knows it
1967 * should clear dirty bits when it is done with the buffer.
1969 set_buffer_freed(bh
);
1970 if (journal
->j_running_transaction
&& buffer_jbddirty(bh
))
1971 jh
->b_next_transaction
= journal
->j_running_transaction
;
1972 journal_put_journal_head(jh
);
1973 spin_unlock(&journal
->j_list_lock
);
1974 jbd_unlock_bh_state(bh
);
1975 spin_unlock(&journal
->j_state_lock
);
1978 /* Good, the buffer belongs to the running transaction.
1979 * We are writing our own transaction's data, not any
1980 * previous one's, so it is safe to throw it away
1981 * (remember that we expect the filesystem to have set
1982 * i_size already for this truncate so recovery will not
1983 * expose the disk blocks we are discarding here.) */
1984 J_ASSERT_JH(jh
, transaction
== journal
->j_running_transaction
);
1985 JBUFFER_TRACE(jh
, "on running transaction");
1986 may_free
= __dispose_buffer(jh
, transaction
);
1991 * This is tricky. Although the buffer is truncated, it may be reused
1992 * if blocksize < pagesize and it is attached to the page straddling
1993 * EOF. Since the buffer might have been added to BJ_Forget list of the
1994 * running transaction, journal_get_write_access() won't clear
1995 * b_modified and credit accounting gets confused. So clear b_modified
1998 journal_put_journal_head(jh
);
2000 spin_unlock(&journal
->j_list_lock
);
2001 jbd_unlock_bh_state(bh
);
2002 spin_unlock(&journal
->j_state_lock
);
2003 zap_buffer_unlocked
:
2004 clear_buffer_dirty(bh
);
2005 J_ASSERT_BH(bh
, !buffer_jbddirty(bh
));
2006 clear_buffer_mapped(bh
);
2007 clear_buffer_req(bh
);
2008 clear_buffer_new(bh
);
2014 * void journal_invalidatepage() - invalidate a journal page
2015 * @journal: journal to use for flush
2016 * @page: page to flush
2017 * @offset: length of page to invalidate.
2019 * Reap page buffers containing data after offset in page.
2021 void journal_invalidatepage(journal_t
*journal
,
2023 unsigned long offset
)
2025 struct buffer_head
*head
, *bh
, *next
;
2026 unsigned int curr_off
= 0;
2029 if (!PageLocked(page
))
2031 if (!page_has_buffers(page
))
2034 /* We will potentially be playing with lists other than just the
2035 * data lists (especially for journaled data mode), so be
2036 * cautious in our locking. */
2038 head
= bh
= page_buffers(page
);
2040 unsigned int next_off
= curr_off
+ bh
->b_size
;
2041 next
= bh
->b_this_page
;
2043 if (offset
<= curr_off
) {
2044 /* This block is wholly outside the truncation point */
2046 may_free
&= journal_unmap_buffer(journal
, bh
,
2050 curr_off
= next_off
;
2053 } while (bh
!= head
);
2056 if (may_free
&& try_to_free_buffers(page
))
2057 J_ASSERT(!page_has_buffers(page
));
2062 * File a buffer on the given transaction list.
2064 void __journal_file_buffer(struct journal_head
*jh
,
2065 transaction_t
*transaction
, int jlist
)
2067 struct journal_head
**list
= NULL
;
2069 struct buffer_head
*bh
= jh2bh(jh
);
2071 J_ASSERT_JH(jh
, jbd_is_locked_bh_state(bh
));
2072 assert_spin_locked(&transaction
->t_journal
->j_list_lock
);
2074 J_ASSERT_JH(jh
, jh
->b_jlist
< BJ_Types
);
2075 J_ASSERT_JH(jh
, jh
->b_transaction
== transaction
||
2076 jh
->b_transaction
== NULL
);
2078 if (jh
->b_transaction
&& jh
->b_jlist
== jlist
)
2081 if (jlist
== BJ_Metadata
|| jlist
== BJ_Reserved
||
2082 jlist
== BJ_Shadow
|| jlist
== BJ_Forget
) {
2084 * For metadata buffers, we track dirty bit in buffer_jbddirty
2085 * instead of buffer_dirty. We should not see a dirty bit set
2086 * here because we clear it in do_get_write_access but e.g.
2087 * tune2fs can modify the sb and set the dirty bit at any time
2088 * so we try to gracefully handle that.
2090 if (buffer_dirty(bh
))
2091 warn_dirty_buffer(bh
);
2092 if (test_clear_buffer_dirty(bh
) ||
2093 test_clear_buffer_jbddirty(bh
))
2097 if (jh
->b_transaction
)
2098 __journal_temp_unlink_buffer(jh
);
2099 jh
->b_transaction
= transaction
;
2103 J_ASSERT_JH(jh
, !jh
->b_committed_data
);
2104 J_ASSERT_JH(jh
, !jh
->b_frozen_data
);
2107 list
= &transaction
->t_sync_datalist
;
2110 transaction
->t_nr_buffers
++;
2111 list
= &transaction
->t_buffers
;
2114 list
= &transaction
->t_forget
;
2117 list
= &transaction
->t_iobuf_list
;
2120 list
= &transaction
->t_shadow_list
;
2123 list
= &transaction
->t_log_list
;
2126 list
= &transaction
->t_reserved_list
;
2129 list
= &transaction
->t_locked_list
;
2133 __blist_add_buffer(list
, jh
);
2134 jh
->b_jlist
= jlist
;
2137 set_buffer_jbddirty(bh
);
2140 void journal_file_buffer(struct journal_head
*jh
,
2141 transaction_t
*transaction
, int jlist
)
2143 jbd_lock_bh_state(jh2bh(jh
));
2144 spin_lock(&transaction
->t_journal
->j_list_lock
);
2145 __journal_file_buffer(jh
, transaction
, jlist
);
2146 spin_unlock(&transaction
->t_journal
->j_list_lock
);
2147 jbd_unlock_bh_state(jh2bh(jh
));
2151 * Remove a buffer from its current buffer list in preparation for
2152 * dropping it from its current transaction entirely. If the buffer has
2153 * already started to be used by a subsequent transaction, refile the
2154 * buffer on that transaction's metadata list.
2156 * Called under journal->j_list_lock
2158 * Called under jbd_lock_bh_state(jh2bh(jh))
2160 void __journal_refile_buffer(struct journal_head
*jh
)
2162 int was_dirty
, jlist
;
2163 struct buffer_head
*bh
= jh2bh(jh
);
2165 J_ASSERT_JH(jh
, jbd_is_locked_bh_state(bh
));
2166 if (jh
->b_transaction
)
2167 assert_spin_locked(&jh
->b_transaction
->t_journal
->j_list_lock
);
2169 /* If the buffer is now unused, just drop it. */
2170 if (jh
->b_next_transaction
== NULL
) {
2171 __journal_unfile_buffer(jh
);
2176 * It has been modified by a later transaction: add it to the new
2177 * transaction's metadata list.
2180 was_dirty
= test_clear_buffer_jbddirty(bh
);
2181 __journal_temp_unlink_buffer(jh
);
2182 jh
->b_transaction
= jh
->b_next_transaction
;
2183 jh
->b_next_transaction
= NULL
;
2184 if (buffer_freed(bh
))
2186 else if (jh
->b_modified
)
2187 jlist
= BJ_Metadata
;
2189 jlist
= BJ_Reserved
;
2190 __journal_file_buffer(jh
, jh
->b_transaction
, jlist
);
2191 J_ASSERT_JH(jh
, jh
->b_transaction
->t_state
== T_RUNNING
);
2194 set_buffer_jbddirty(bh
);
2198 * For the unlocked version of this call, also make sure that any
2199 * hanging journal_head is cleaned up if necessary.
2201 * __journal_refile_buffer is usually called as part of a single locked
2202 * operation on a buffer_head, in which the caller is probably going to
2203 * be hooking the journal_head onto other lists. In that case it is up
2204 * to the caller to remove the journal_head if necessary. For the
2205 * unlocked journal_refile_buffer call, the caller isn't going to be
2206 * doing anything else to the buffer so we need to do the cleanup
2207 * ourselves to avoid a jh leak.
2209 * *** The journal_head may be freed by this call! ***
2211 void journal_refile_buffer(journal_t
*journal
, struct journal_head
*jh
)
2213 struct buffer_head
*bh
= jh2bh(jh
);
2215 jbd_lock_bh_state(bh
);
2216 spin_lock(&journal
->j_list_lock
);
2218 __journal_refile_buffer(jh
);
2219 jbd_unlock_bh_state(bh
);
2220 journal_remove_journal_head(bh
);
2222 spin_unlock(&journal
->j_list_lock
);