2 * linux/fs/binfmt_elf.c
4 * These are the functions used to load ELF format executables as used
5 * on SVr4 machines. Information on the format may be found in the book
6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
12 #include <linux/module.h>
13 #include <linux/kernel.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/utsname.h>
35 #include <linux/coredump.h>
36 #include <linux/sched.h>
37 #include <asm/uaccess.h>
38 #include <asm/param.h>
42 #define user_long_t long
44 #ifndef user_siginfo_t
45 #define user_siginfo_t siginfo_t
48 static int load_elf_binary(struct linux_binprm
*bprm
);
49 static unsigned long elf_map(struct file
*, unsigned long, struct elf_phdr
*,
50 int, int, unsigned long);
53 static int load_elf_library(struct file
*);
55 #define load_elf_library NULL
59 * If we don't support core dumping, then supply a NULL so we
62 #ifdef CONFIG_ELF_CORE
63 static int elf_core_dump(struct coredump_params
*cprm
);
65 #define elf_core_dump NULL
68 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
69 #define ELF_MIN_ALIGN ELF_EXEC_PAGESIZE
71 #define ELF_MIN_ALIGN PAGE_SIZE
74 #ifndef ELF_CORE_EFLAGS
75 #define ELF_CORE_EFLAGS 0
78 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
79 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
80 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
82 static struct linux_binfmt elf_format
= {
83 .module
= THIS_MODULE
,
84 .load_binary
= load_elf_binary
,
85 .load_shlib
= load_elf_library
,
86 .core_dump
= elf_core_dump
,
87 .min_coredump
= ELF_EXEC_PAGESIZE
,
90 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
92 static int set_brk(unsigned long start
, unsigned long end
)
94 start
= ELF_PAGEALIGN(start
);
95 end
= ELF_PAGEALIGN(end
);
98 addr
= vm_brk(start
, end
- start
);
102 current
->mm
->start_brk
= current
->mm
->brk
= end
;
106 /* We need to explicitly zero any fractional pages
107 after the data section (i.e. bss). This would
108 contain the junk from the file that should not
111 static int padzero(unsigned long elf_bss
)
115 nbyte
= ELF_PAGEOFFSET(elf_bss
);
117 nbyte
= ELF_MIN_ALIGN
- nbyte
;
118 if (clear_user((void __user
*) elf_bss
, nbyte
))
124 /* Let's use some macros to make this stack manipulation a little clearer */
125 #ifdef CONFIG_STACK_GROWSUP
126 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
127 #define STACK_ROUND(sp, items) \
128 ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
129 #define STACK_ALLOC(sp, len) ({ \
130 elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
133 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
134 #define STACK_ROUND(sp, items) \
135 (((unsigned long) (sp - items)) &~ 15UL)
136 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
139 #ifndef ELF_BASE_PLATFORM
141 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
142 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
143 * will be copied to the user stack in the same manner as AT_PLATFORM.
145 #define ELF_BASE_PLATFORM NULL
149 create_elf_tables(struct linux_binprm
*bprm
, struct elfhdr
*exec
,
150 unsigned long load_addr
, unsigned long interp_load_addr
)
152 unsigned long p
= bprm
->p
;
153 int argc
= bprm
->argc
;
154 int envc
= bprm
->envc
;
155 elf_addr_t __user
*argv
;
156 elf_addr_t __user
*envp
;
157 elf_addr_t __user
*sp
;
158 elf_addr_t __user
*u_platform
;
159 elf_addr_t __user
*u_base_platform
;
160 elf_addr_t __user
*u_rand_bytes
;
161 const char *k_platform
= ELF_PLATFORM
;
162 const char *k_base_platform
= ELF_BASE_PLATFORM
;
163 unsigned char k_rand_bytes
[16];
165 elf_addr_t
*elf_info
;
167 const struct cred
*cred
= current_cred();
168 struct vm_area_struct
*vma
;
171 * In some cases (e.g. Hyper-Threading), we want to avoid L1
172 * evictions by the processes running on the same package. One
173 * thing we can do is to shuffle the initial stack for them.
176 p
= arch_align_stack(p
);
179 * If this architecture has a platform capability string, copy it
180 * to userspace. In some cases (Sparc), this info is impossible
181 * for userspace to get any other way, in others (i386) it is
186 size_t len
= strlen(k_platform
) + 1;
188 u_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
189 if (__copy_to_user(u_platform
, k_platform
, len
))
194 * If this architecture has a "base" platform capability
195 * string, copy it to userspace.
197 u_base_platform
= NULL
;
198 if (k_base_platform
) {
199 size_t len
= strlen(k_base_platform
) + 1;
201 u_base_platform
= (elf_addr_t __user
*)STACK_ALLOC(p
, len
);
202 if (__copy_to_user(u_base_platform
, k_base_platform
, len
))
207 * Generate 16 random bytes for userspace PRNG seeding.
209 get_random_bytes(k_rand_bytes
, sizeof(k_rand_bytes
));
210 u_rand_bytes
= (elf_addr_t __user
*)
211 STACK_ALLOC(p
, sizeof(k_rand_bytes
));
212 if (__copy_to_user(u_rand_bytes
, k_rand_bytes
, sizeof(k_rand_bytes
)))
215 /* Create the ELF interpreter info */
216 elf_info
= (elf_addr_t
*)current
->mm
->saved_auxv
;
217 /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
218 #define NEW_AUX_ENT(id, val) \
220 elf_info[ei_index++] = id; \
221 elf_info[ei_index++] = val; \
226 * ARCH_DLINFO must come first so PPC can do its special alignment of
228 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
229 * ARCH_DLINFO changes
233 NEW_AUX_ENT(AT_HWCAP
, ELF_HWCAP
);
234 NEW_AUX_ENT(AT_PAGESZ
, ELF_EXEC_PAGESIZE
);
235 NEW_AUX_ENT(AT_CLKTCK
, CLOCKS_PER_SEC
);
236 NEW_AUX_ENT(AT_PHDR
, load_addr
+ exec
->e_phoff
);
237 NEW_AUX_ENT(AT_PHENT
, sizeof(struct elf_phdr
));
238 NEW_AUX_ENT(AT_PHNUM
, exec
->e_phnum
);
239 NEW_AUX_ENT(AT_BASE
, interp_load_addr
);
240 NEW_AUX_ENT(AT_FLAGS
, 0);
241 NEW_AUX_ENT(AT_ENTRY
, exec
->e_entry
);
242 NEW_AUX_ENT(AT_UID
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
243 NEW_AUX_ENT(AT_EUID
, from_kuid_munged(cred
->user_ns
, cred
->euid
));
244 NEW_AUX_ENT(AT_GID
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
245 NEW_AUX_ENT(AT_EGID
, from_kgid_munged(cred
->user_ns
, cred
->egid
));
246 NEW_AUX_ENT(AT_SECURE
, security_bprm_secureexec(bprm
));
247 NEW_AUX_ENT(AT_RANDOM
, (elf_addr_t
)(unsigned long)u_rand_bytes
);
249 NEW_AUX_ENT(AT_HWCAP2
, ELF_HWCAP2
);
251 NEW_AUX_ENT(AT_EXECFN
, bprm
->exec
);
253 NEW_AUX_ENT(AT_PLATFORM
,
254 (elf_addr_t
)(unsigned long)u_platform
);
256 if (k_base_platform
) {
257 NEW_AUX_ENT(AT_BASE_PLATFORM
,
258 (elf_addr_t
)(unsigned long)u_base_platform
);
260 if (bprm
->interp_flags
& BINPRM_FLAGS_EXECFD
) {
261 NEW_AUX_ENT(AT_EXECFD
, bprm
->interp_data
);
264 /* AT_NULL is zero; clear the rest too */
265 memset(&elf_info
[ei_index
], 0,
266 sizeof current
->mm
->saved_auxv
- ei_index
* sizeof elf_info
[0]);
268 /* And advance past the AT_NULL entry. */
271 sp
= STACK_ADD(p
, ei_index
);
273 items
= (argc
+ 1) + (envc
+ 1) + 1;
274 bprm
->p
= STACK_ROUND(sp
, items
);
276 /* Point sp at the lowest address on the stack */
277 #ifdef CONFIG_STACK_GROWSUP
278 sp
= (elf_addr_t __user
*)bprm
->p
- items
- ei_index
;
279 bprm
->exec
= (unsigned long)sp
; /* XXX: PARISC HACK */
281 sp
= (elf_addr_t __user
*)bprm
->p
;
286 * Grow the stack manually; some architectures have a limit on how
287 * far ahead a user-space access may be in order to grow the stack.
289 vma
= find_extend_vma(current
->mm
, bprm
->p
);
293 /* Now, let's put argc (and argv, envp if appropriate) on the stack */
294 if (__put_user(argc
, sp
++))
297 envp
= argv
+ argc
+ 1;
299 /* Populate argv and envp */
300 p
= current
->mm
->arg_end
= current
->mm
->arg_start
;
303 if (__put_user((elf_addr_t
)p
, argv
++))
305 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
306 if (!len
|| len
> MAX_ARG_STRLEN
)
310 if (__put_user(0, argv
))
312 current
->mm
->arg_end
= current
->mm
->env_start
= p
;
315 if (__put_user((elf_addr_t
)p
, envp
++))
317 len
= strnlen_user((void __user
*)p
, MAX_ARG_STRLEN
);
318 if (!len
|| len
> MAX_ARG_STRLEN
)
322 if (__put_user(0, envp
))
324 current
->mm
->env_end
= p
;
326 /* Put the elf_info on the stack in the right place. */
327 sp
= (elf_addr_t __user
*)envp
+ 1;
328 if (copy_to_user(sp
, elf_info
, ei_index
* sizeof(elf_addr_t
)))
335 static unsigned long elf_map(struct file
*filep
, unsigned long addr
,
336 struct elf_phdr
*eppnt
, int prot
, int type
,
337 unsigned long total_size
)
339 unsigned long map_addr
;
340 unsigned long size
= eppnt
->p_filesz
+ ELF_PAGEOFFSET(eppnt
->p_vaddr
);
341 unsigned long off
= eppnt
->p_offset
- ELF_PAGEOFFSET(eppnt
->p_vaddr
);
342 addr
= ELF_PAGESTART(addr
);
343 size
= ELF_PAGEALIGN(size
);
345 /* mmap() will return -EINVAL if given a zero size, but a
346 * segment with zero filesize is perfectly valid */
351 * total_size is the size of the ELF (interpreter) image.
352 * The _first_ mmap needs to know the full size, otherwise
353 * randomization might put this image into an overlapping
354 * position with the ELF binary image. (since size < total_size)
355 * So we first map the 'big' image - and unmap the remainder at
356 * the end. (which unmap is needed for ELF images with holes.)
359 total_size
= ELF_PAGEALIGN(total_size
);
360 map_addr
= vm_mmap(filep
, addr
, total_size
, prot
, type
, off
);
361 if (!BAD_ADDR(map_addr
))
362 vm_munmap(map_addr
+size
, total_size
-size
);
364 map_addr
= vm_mmap(filep
, addr
, size
, prot
, type
, off
);
369 #endif /* !elf_map */
371 static unsigned long total_mapping_size(struct elf_phdr
*cmds
, int nr
)
373 int i
, first_idx
= -1, last_idx
= -1;
375 for (i
= 0; i
< nr
; i
++) {
376 if (cmds
[i
].p_type
== PT_LOAD
) {
385 return cmds
[last_idx
].p_vaddr
+ cmds
[last_idx
].p_memsz
-
386 ELF_PAGESTART(cmds
[first_idx
].p_vaddr
);
390 /* This is much more generalized than the library routine read function,
391 so we keep this separate. Technically the library read function
392 is only provided so that we can read a.out libraries that have
395 static unsigned long load_elf_interp(struct elfhdr
*interp_elf_ex
,
396 struct file
*interpreter
, unsigned long *interp_map_addr
,
397 unsigned long no_base
)
399 struct elf_phdr
*elf_phdata
;
400 struct elf_phdr
*eppnt
;
401 unsigned long load_addr
= 0;
402 int load_addr_set
= 0;
403 unsigned long last_bss
= 0, elf_bss
= 0;
404 unsigned long error
= ~0UL;
405 unsigned long total_size
;
408 /* First of all, some simple consistency checks */
409 if (interp_elf_ex
->e_type
!= ET_EXEC
&&
410 interp_elf_ex
->e_type
!= ET_DYN
)
412 if (!elf_check_arch(interp_elf_ex
))
414 if (!interpreter
->f_op
->mmap
)
418 * If the size of this structure has changed, then punt, since
419 * we will be doing the wrong thing.
421 if (interp_elf_ex
->e_phentsize
!= sizeof(struct elf_phdr
))
423 if (interp_elf_ex
->e_phnum
< 1 ||
424 interp_elf_ex
->e_phnum
> 65536U / sizeof(struct elf_phdr
))
427 /* Now read in all of the header information */
428 size
= sizeof(struct elf_phdr
) * interp_elf_ex
->e_phnum
;
429 if (size
> ELF_MIN_ALIGN
)
431 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
435 retval
= kernel_read(interpreter
, interp_elf_ex
->e_phoff
,
436 (char *)elf_phdata
, size
);
438 if (retval
!= size
) {
444 total_size
= total_mapping_size(elf_phdata
, interp_elf_ex
->e_phnum
);
451 for (i
= 0; i
< interp_elf_ex
->e_phnum
; i
++, eppnt
++) {
452 if (eppnt
->p_type
== PT_LOAD
) {
453 int elf_type
= MAP_PRIVATE
| MAP_DENYWRITE
;
455 unsigned long vaddr
= 0;
456 unsigned long k
, map_addr
;
458 if (eppnt
->p_flags
& PF_R
)
459 elf_prot
= PROT_READ
;
460 if (eppnt
->p_flags
& PF_W
)
461 elf_prot
|= PROT_WRITE
;
462 if (eppnt
->p_flags
& PF_X
)
463 elf_prot
|= PROT_EXEC
;
464 vaddr
= eppnt
->p_vaddr
;
465 if (interp_elf_ex
->e_type
== ET_EXEC
|| load_addr_set
)
466 elf_type
|= MAP_FIXED
;
467 else if (no_base
&& interp_elf_ex
->e_type
== ET_DYN
)
470 map_addr
= elf_map(interpreter
, load_addr
+ vaddr
,
471 eppnt
, elf_prot
, elf_type
, total_size
);
473 if (!*interp_map_addr
)
474 *interp_map_addr
= map_addr
;
476 if (BAD_ADDR(map_addr
))
479 if (!load_addr_set
&&
480 interp_elf_ex
->e_type
== ET_DYN
) {
481 load_addr
= map_addr
- ELF_PAGESTART(vaddr
);
486 * Check to see if the section's size will overflow the
487 * allowed task size. Note that p_filesz must always be
488 * <= p_memsize so it's only necessary to check p_memsz.
490 k
= load_addr
+ eppnt
->p_vaddr
;
492 eppnt
->p_filesz
> eppnt
->p_memsz
||
493 eppnt
->p_memsz
> TASK_SIZE
||
494 TASK_SIZE
- eppnt
->p_memsz
< k
) {
500 * Find the end of the file mapping for this phdr, and
501 * keep track of the largest address we see for this.
503 k
= load_addr
+ eppnt
->p_vaddr
+ eppnt
->p_filesz
;
508 * Do the same thing for the memory mapping - between
509 * elf_bss and last_bss is the bss section.
511 k
= load_addr
+ eppnt
->p_memsz
+ eppnt
->p_vaddr
;
517 if (last_bss
> elf_bss
) {
519 * Now fill out the bss section. First pad the last page up
520 * to the page boundary, and then perform a mmap to make sure
521 * that there are zero-mapped pages up to and including the
524 if (padzero(elf_bss
)) {
529 /* What we have mapped so far */
530 elf_bss
= ELF_PAGESTART(elf_bss
+ ELF_MIN_ALIGN
- 1);
532 /* Map the last of the bss segment */
533 error
= vm_brk(elf_bss
, last_bss
- elf_bss
);
547 * These are the functions used to load ELF style executables and shared
548 * libraries. There is no binary dependent code anywhere else.
551 #ifndef STACK_RND_MASK
552 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
555 static unsigned long randomize_stack_top(unsigned long stack_top
)
557 unsigned int random_variable
= 0;
559 if ((current
->flags
& PF_RANDOMIZE
) &&
560 !(current
->personality
& ADDR_NO_RANDOMIZE
)) {
561 random_variable
= get_random_int() & STACK_RND_MASK
;
562 random_variable
<<= PAGE_SHIFT
;
564 #ifdef CONFIG_STACK_GROWSUP
565 return PAGE_ALIGN(stack_top
) + random_variable
;
567 return PAGE_ALIGN(stack_top
) - random_variable
;
571 static int load_elf_binary(struct linux_binprm
*bprm
)
573 struct file
*interpreter
= NULL
; /* to shut gcc up */
574 unsigned long load_addr
= 0, load_bias
= 0;
575 int load_addr_set
= 0;
576 char * elf_interpreter
= NULL
;
578 struct elf_phdr
*elf_ppnt
, *elf_phdata
;
579 unsigned long elf_bss
, elf_brk
;
582 unsigned long elf_entry
;
583 unsigned long interp_load_addr
= 0;
584 unsigned long start_code
, end_code
, start_data
, end_data
;
585 unsigned long reloc_func_desc __maybe_unused
= 0;
586 int executable_stack
= EXSTACK_DEFAULT
;
587 struct pt_regs
*regs
= current_pt_regs();
589 struct elfhdr elf_ex
;
590 struct elfhdr interp_elf_ex
;
593 loc
= kmalloc(sizeof(*loc
), GFP_KERNEL
);
599 /* Get the exec-header */
600 loc
->elf_ex
= *((struct elfhdr
*)bprm
->buf
);
603 /* First of all, some simple consistency checks */
604 if (memcmp(loc
->elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
607 if (loc
->elf_ex
.e_type
!= ET_EXEC
&& loc
->elf_ex
.e_type
!= ET_DYN
)
609 if (!elf_check_arch(&loc
->elf_ex
))
611 if (!bprm
->file
->f_op
->mmap
)
614 /* Now read in all of the header information */
615 if (loc
->elf_ex
.e_phentsize
!= sizeof(struct elf_phdr
))
617 if (loc
->elf_ex
.e_phnum
< 1 ||
618 loc
->elf_ex
.e_phnum
> 65536U / sizeof(struct elf_phdr
))
620 size
= loc
->elf_ex
.e_phnum
* sizeof(struct elf_phdr
);
622 elf_phdata
= kmalloc(size
, GFP_KERNEL
);
626 retval
= kernel_read(bprm
->file
, loc
->elf_ex
.e_phoff
,
627 (char *)elf_phdata
, size
);
628 if (retval
!= size
) {
634 elf_ppnt
= elf_phdata
;
643 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++) {
644 if (elf_ppnt
->p_type
== PT_INTERP
) {
645 /* This is the program interpreter used for
646 * shared libraries - for now assume that this
647 * is an a.out format binary
650 if (elf_ppnt
->p_filesz
> PATH_MAX
||
651 elf_ppnt
->p_filesz
< 2)
655 elf_interpreter
= kmalloc(elf_ppnt
->p_filesz
,
657 if (!elf_interpreter
)
660 retval
= kernel_read(bprm
->file
, elf_ppnt
->p_offset
,
663 if (retval
!= elf_ppnt
->p_filesz
) {
666 goto out_free_interp
;
668 /* make sure path is NULL terminated */
670 if (elf_interpreter
[elf_ppnt
->p_filesz
- 1] != '\0')
671 goto out_free_interp
;
673 interpreter
= open_exec(elf_interpreter
);
674 retval
= PTR_ERR(interpreter
);
675 if (IS_ERR(interpreter
))
676 goto out_free_interp
;
679 * If the binary is not readable then enforce
680 * mm->dumpable = 0 regardless of the interpreter's
683 would_dump(bprm
, interpreter
);
685 retval
= kernel_read(interpreter
, 0, bprm
->buf
,
687 if (retval
!= BINPRM_BUF_SIZE
) {
690 goto out_free_dentry
;
693 /* Get the exec headers */
694 loc
->interp_elf_ex
= *((struct elfhdr
*)bprm
->buf
);
700 elf_ppnt
= elf_phdata
;
701 for (i
= 0; i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++)
702 if (elf_ppnt
->p_type
== PT_GNU_STACK
) {
703 if (elf_ppnt
->p_flags
& PF_X
)
704 executable_stack
= EXSTACK_ENABLE_X
;
706 executable_stack
= EXSTACK_DISABLE_X
;
710 /* Some simple consistency checks for the interpreter */
711 if (elf_interpreter
) {
713 /* Not an ELF interpreter */
714 if (memcmp(loc
->interp_elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
715 goto out_free_dentry
;
716 /* Verify the interpreter has a valid arch */
717 if (!elf_check_arch(&loc
->interp_elf_ex
))
718 goto out_free_dentry
;
721 /* Flush all traces of the currently running executable */
722 retval
= flush_old_exec(bprm
);
724 goto out_free_dentry
;
726 /* Do this immediately, since STACK_TOP as used in setup_arg_pages
727 may depend on the personality. */
728 SET_PERSONALITY(loc
->elf_ex
);
729 if (elf_read_implies_exec(loc
->elf_ex
, executable_stack
))
730 current
->personality
|= READ_IMPLIES_EXEC
;
732 if (!(current
->personality
& ADDR_NO_RANDOMIZE
) && randomize_va_space
)
733 current
->flags
|= PF_RANDOMIZE
;
735 setup_new_exec(bprm
);
737 /* Do this so that we can load the interpreter, if need be. We will
738 change some of these later */
739 retval
= setup_arg_pages(bprm
, randomize_stack_top(STACK_TOP
),
742 goto out_free_dentry
;
744 current
->mm
->start_stack
= bprm
->p
;
746 /* Now we do a little grungy work by mmapping the ELF image into
747 the correct location in memory. */
748 for(i
= 0, elf_ppnt
= elf_phdata
;
749 i
< loc
->elf_ex
.e_phnum
; i
++, elf_ppnt
++) {
750 int elf_prot
= 0, elf_flags
;
751 unsigned long k
, vaddr
;
753 if (elf_ppnt
->p_type
!= PT_LOAD
)
756 if (unlikely (elf_brk
> elf_bss
)) {
759 /* There was a PT_LOAD segment with p_memsz > p_filesz
760 before this one. Map anonymous pages, if needed,
761 and clear the area. */
762 retval
= set_brk(elf_bss
+ load_bias
,
763 elf_brk
+ load_bias
);
765 goto out_free_dentry
;
766 nbyte
= ELF_PAGEOFFSET(elf_bss
);
768 nbyte
= ELF_MIN_ALIGN
- nbyte
;
769 if (nbyte
> elf_brk
- elf_bss
)
770 nbyte
= elf_brk
- elf_bss
;
771 if (clear_user((void __user
*)elf_bss
+
774 * This bss-zeroing can fail if the ELF
775 * file specifies odd protections. So
776 * we don't check the return value
782 if (elf_ppnt
->p_flags
& PF_R
)
783 elf_prot
|= PROT_READ
;
784 if (elf_ppnt
->p_flags
& PF_W
)
785 elf_prot
|= PROT_WRITE
;
786 if (elf_ppnt
->p_flags
& PF_X
)
787 elf_prot
|= PROT_EXEC
;
789 elf_flags
= MAP_PRIVATE
| MAP_DENYWRITE
| MAP_EXECUTABLE
;
791 vaddr
= elf_ppnt
->p_vaddr
;
792 if (loc
->elf_ex
.e_type
== ET_EXEC
|| load_addr_set
) {
793 elf_flags
|= MAP_FIXED
;
794 } else if (loc
->elf_ex
.e_type
== ET_DYN
) {
795 /* Try and get dynamic programs out of the way of the
796 * default mmap base, as well as whatever program they
797 * might try to exec. This is because the brk will
798 * follow the loader, and is not movable. */
799 #ifdef CONFIG_ARCH_BINFMT_ELF_RANDOMIZE_PIE
800 /* Memory randomization might have been switched off
801 * in runtime via sysctl or explicit setting of
803 * If that is the case, retain the original non-zero
804 * load_bias value in order to establish proper
805 * non-randomized mappings.
807 if (current
->flags
& PF_RANDOMIZE
)
810 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
812 load_bias
= ELF_PAGESTART(ELF_ET_DYN_BASE
- vaddr
);
816 error
= elf_map(bprm
->file
, load_bias
+ vaddr
, elf_ppnt
,
817 elf_prot
, elf_flags
, 0);
818 if (BAD_ADDR(error
)) {
819 retval
= IS_ERR((void *)error
) ?
820 PTR_ERR((void*)error
) : -EINVAL
;
821 goto out_free_dentry
;
824 if (!load_addr_set
) {
826 load_addr
= (elf_ppnt
->p_vaddr
- elf_ppnt
->p_offset
);
827 if (loc
->elf_ex
.e_type
== ET_DYN
) {
829 ELF_PAGESTART(load_bias
+ vaddr
);
830 load_addr
+= load_bias
;
831 reloc_func_desc
= load_bias
;
834 k
= elf_ppnt
->p_vaddr
;
841 * Check to see if the section's size will overflow the
842 * allowed task size. Note that p_filesz must always be
843 * <= p_memsz so it is only necessary to check p_memsz.
845 if (BAD_ADDR(k
) || elf_ppnt
->p_filesz
> elf_ppnt
->p_memsz
||
846 elf_ppnt
->p_memsz
> TASK_SIZE
||
847 TASK_SIZE
- elf_ppnt
->p_memsz
< k
) {
848 /* set_brk can never work. Avoid overflows. */
850 goto out_free_dentry
;
853 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_filesz
;
857 if ((elf_ppnt
->p_flags
& PF_X
) && end_code
< k
)
861 k
= elf_ppnt
->p_vaddr
+ elf_ppnt
->p_memsz
;
866 loc
->elf_ex
.e_entry
+= load_bias
;
867 elf_bss
+= load_bias
;
868 elf_brk
+= load_bias
;
869 start_code
+= load_bias
;
870 end_code
+= load_bias
;
871 start_data
+= load_bias
;
872 end_data
+= load_bias
;
874 /* Calling set_brk effectively mmaps the pages that we need
875 * for the bss and break sections. We must do this before
876 * mapping in the interpreter, to make sure it doesn't wind
877 * up getting placed where the bss needs to go.
879 retval
= set_brk(elf_bss
, elf_brk
);
881 goto out_free_dentry
;
882 if (likely(elf_bss
!= elf_brk
) && unlikely(padzero(elf_bss
))) {
883 retval
= -EFAULT
; /* Nobody gets to see this, but.. */
884 goto out_free_dentry
;
887 if (elf_interpreter
) {
888 unsigned long interp_map_addr
= 0;
890 elf_entry
= load_elf_interp(&loc
->interp_elf_ex
,
894 if (!IS_ERR((void *)elf_entry
)) {
896 * load_elf_interp() returns relocation
899 interp_load_addr
= elf_entry
;
900 elf_entry
+= loc
->interp_elf_ex
.e_entry
;
902 if (BAD_ADDR(elf_entry
)) {
903 retval
= IS_ERR((void *)elf_entry
) ?
904 (int)elf_entry
: -EINVAL
;
905 goto out_free_dentry
;
907 reloc_func_desc
= interp_load_addr
;
909 allow_write_access(interpreter
);
911 kfree(elf_interpreter
);
913 elf_entry
= loc
->elf_ex
.e_entry
;
914 if (BAD_ADDR(elf_entry
)) {
916 goto out_free_dentry
;
922 set_binfmt(&elf_format
);
924 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
925 retval
= arch_setup_additional_pages(bprm
, !!elf_interpreter
);
928 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
930 install_exec_creds(bprm
);
931 retval
= create_elf_tables(bprm
, &loc
->elf_ex
,
932 load_addr
, interp_load_addr
);
935 /* N.B. passed_fileno might not be initialized? */
936 current
->mm
->end_code
= end_code
;
937 current
->mm
->start_code
= start_code
;
938 current
->mm
->start_data
= start_data
;
939 current
->mm
->end_data
= end_data
;
940 current
->mm
->start_stack
= bprm
->p
;
942 #ifdef arch_randomize_brk
943 if ((current
->flags
& PF_RANDOMIZE
) && (randomize_va_space
> 1)) {
944 current
->mm
->brk
= current
->mm
->start_brk
=
945 arch_randomize_brk(current
->mm
);
946 #ifdef CONFIG_COMPAT_BRK
947 current
->brk_randomized
= 1;
952 if (current
->personality
& MMAP_PAGE_ZERO
) {
953 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
954 and some applications "depend" upon this behavior.
955 Since we do not have the power to recompile these, we
956 emulate the SVr4 behavior. Sigh. */
957 error
= vm_mmap(NULL
, 0, PAGE_SIZE
, PROT_READ
| PROT_EXEC
,
958 MAP_FIXED
| MAP_PRIVATE
, 0);
963 * The ABI may specify that certain registers be set up in special
964 * ways (on i386 %edx is the address of a DT_FINI function, for
965 * example. In addition, it may also specify (eg, PowerPC64 ELF)
966 * that the e_entry field is the address of the function descriptor
967 * for the startup routine, rather than the address of the startup
968 * routine itself. This macro performs whatever initialization to
969 * the regs structure is required as well as any relocations to the
970 * function descriptor entries when executing dynamically links apps.
972 ELF_PLAT_INIT(regs
, reloc_func_desc
);
975 start_thread(regs
, elf_entry
, bprm
->p
);
984 allow_write_access(interpreter
);
988 kfree(elf_interpreter
);
995 /* This is really simpleminded and specialized - we are loading an
996 a.out library that is given an ELF header. */
997 static int load_elf_library(struct file
*file
)
999 struct elf_phdr
*elf_phdata
;
1000 struct elf_phdr
*eppnt
;
1001 unsigned long elf_bss
, bss
, len
;
1002 int retval
, error
, i
, j
;
1003 struct elfhdr elf_ex
;
1006 retval
= kernel_read(file
, 0, (char *)&elf_ex
, sizeof(elf_ex
));
1007 if (retval
!= sizeof(elf_ex
))
1010 if (memcmp(elf_ex
.e_ident
, ELFMAG
, SELFMAG
) != 0)
1013 /* First of all, some simple consistency checks */
1014 if (elf_ex
.e_type
!= ET_EXEC
|| elf_ex
.e_phnum
> 2 ||
1015 !elf_check_arch(&elf_ex
) || !file
->f_op
->mmap
)
1018 /* Now read in all of the header information */
1020 j
= sizeof(struct elf_phdr
) * elf_ex
.e_phnum
;
1021 /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1024 elf_phdata
= kmalloc(j
, GFP_KERNEL
);
1030 retval
= kernel_read(file
, elf_ex
.e_phoff
, (char *)eppnt
, j
);
1034 for (j
= 0, i
= 0; i
<elf_ex
.e_phnum
; i
++)
1035 if ((eppnt
+ i
)->p_type
== PT_LOAD
)
1040 while (eppnt
->p_type
!= PT_LOAD
)
1043 /* Now use mmap to map the library into memory. */
1044 error
= vm_mmap(file
,
1045 ELF_PAGESTART(eppnt
->p_vaddr
),
1047 ELF_PAGEOFFSET(eppnt
->p_vaddr
)),
1048 PROT_READ
| PROT_WRITE
| PROT_EXEC
,
1049 MAP_FIXED
| MAP_PRIVATE
| MAP_DENYWRITE
,
1051 ELF_PAGEOFFSET(eppnt
->p_vaddr
)));
1052 if (error
!= ELF_PAGESTART(eppnt
->p_vaddr
))
1055 elf_bss
= eppnt
->p_vaddr
+ eppnt
->p_filesz
;
1056 if (padzero(elf_bss
)) {
1061 len
= ELF_PAGESTART(eppnt
->p_filesz
+ eppnt
->p_vaddr
+
1063 bss
= eppnt
->p_memsz
+ eppnt
->p_vaddr
;
1065 vm_brk(len
, bss
- len
);
1073 #endif /* #ifdef CONFIG_USELIB */
1075 #ifdef CONFIG_ELF_CORE
1079 * Modelled on fs/exec.c:aout_core_dump()
1080 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1084 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1085 * that are useful for post-mortem analysis are included in every core dump.
1086 * In that way we ensure that the core dump is fully interpretable later
1087 * without matching up the same kernel and hardware config to see what PC values
1088 * meant. These special mappings include - vDSO, vsyscall, and other
1089 * architecture specific mappings
1091 static bool always_dump_vma(struct vm_area_struct
*vma
)
1093 /* Any vsyscall mappings? */
1094 if (vma
== get_gate_vma(vma
->vm_mm
))
1098 * Assume that all vmas with a .name op should always be dumped.
1099 * If this changes, a new vm_ops field can easily be added.
1101 if (vma
->vm_ops
&& vma
->vm_ops
->name
&& vma
->vm_ops
->name(vma
))
1105 * arch_vma_name() returns non-NULL for special architecture mappings,
1106 * such as vDSO sections.
1108 if (arch_vma_name(vma
))
1115 * Decide what to dump of a segment, part, all or none.
1117 static unsigned long vma_dump_size(struct vm_area_struct
*vma
,
1118 unsigned long mm_flags
)
1120 #define FILTER(type) (mm_flags & (1UL << MMF_DUMP_##type))
1122 /* always dump the vdso and vsyscall sections */
1123 if (always_dump_vma(vma
))
1126 if (vma
->vm_flags
& VM_DONTDUMP
)
1129 /* Hugetlb memory check */
1130 if (vma
->vm_flags
& VM_HUGETLB
) {
1131 if ((vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_SHARED
))
1133 if (!(vma
->vm_flags
& VM_SHARED
) && FILTER(HUGETLB_PRIVATE
))
1138 /* Do not dump I/O mapped devices or special mappings */
1139 if (vma
->vm_flags
& VM_IO
)
1142 /* By default, dump shared memory if mapped from an anonymous file. */
1143 if (vma
->vm_flags
& VM_SHARED
) {
1144 if (file_inode(vma
->vm_file
)->i_nlink
== 0 ?
1145 FILTER(ANON_SHARED
) : FILTER(MAPPED_SHARED
))
1150 /* Dump segments that have been written to. */
1151 if (vma
->anon_vma
&& FILTER(ANON_PRIVATE
))
1153 if (vma
->vm_file
== NULL
)
1156 if (FILTER(MAPPED_PRIVATE
))
1160 * If this looks like the beginning of a DSO or executable mapping,
1161 * check for an ELF header. If we find one, dump the first page to
1162 * aid in determining what was mapped here.
1164 if (FILTER(ELF_HEADERS
) &&
1165 vma
->vm_pgoff
== 0 && (vma
->vm_flags
& VM_READ
)) {
1166 u32 __user
*header
= (u32 __user
*) vma
->vm_start
;
1168 mm_segment_t fs
= get_fs();
1170 * Doing it this way gets the constant folded by GCC.
1174 char elfmag
[SELFMAG
];
1176 BUILD_BUG_ON(SELFMAG
!= sizeof word
);
1177 magic
.elfmag
[EI_MAG0
] = ELFMAG0
;
1178 magic
.elfmag
[EI_MAG1
] = ELFMAG1
;
1179 magic
.elfmag
[EI_MAG2
] = ELFMAG2
;
1180 magic
.elfmag
[EI_MAG3
] = ELFMAG3
;
1182 * Switch to the user "segment" for get_user(),
1183 * then put back what elf_core_dump() had in place.
1186 if (unlikely(get_user(word
, header
)))
1189 if (word
== magic
.cmp
)
1198 return vma
->vm_end
- vma
->vm_start
;
1201 /* An ELF note in memory */
1206 unsigned int datasz
;
1210 static int notesize(struct memelfnote
*en
)
1214 sz
= sizeof(struct elf_note
);
1215 sz
+= roundup(strlen(en
->name
) + 1, 4);
1216 sz
+= roundup(en
->datasz
, 4);
1221 static int writenote(struct memelfnote
*men
, struct coredump_params
*cprm
)
1224 en
.n_namesz
= strlen(men
->name
) + 1;
1225 en
.n_descsz
= men
->datasz
;
1226 en
.n_type
= men
->type
;
1228 return dump_emit(cprm
, &en
, sizeof(en
)) &&
1229 dump_emit(cprm
, men
->name
, en
.n_namesz
) && dump_align(cprm
, 4) &&
1230 dump_emit(cprm
, men
->data
, men
->datasz
) && dump_align(cprm
, 4);
1233 static void fill_elf_header(struct elfhdr
*elf
, int segs
,
1234 u16 machine
, u32 flags
)
1236 memset(elf
, 0, sizeof(*elf
));
1238 memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
1239 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
1240 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
1241 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1242 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
1244 elf
->e_type
= ET_CORE
;
1245 elf
->e_machine
= machine
;
1246 elf
->e_version
= EV_CURRENT
;
1247 elf
->e_phoff
= sizeof(struct elfhdr
);
1248 elf
->e_flags
= flags
;
1249 elf
->e_ehsize
= sizeof(struct elfhdr
);
1250 elf
->e_phentsize
= sizeof(struct elf_phdr
);
1251 elf
->e_phnum
= segs
;
1256 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, loff_t offset
)
1258 phdr
->p_type
= PT_NOTE
;
1259 phdr
->p_offset
= offset
;
1262 phdr
->p_filesz
= sz
;
1269 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
1270 unsigned int sz
, void *data
)
1280 * fill up all the fields in prstatus from the given task struct, except
1281 * registers which need to be filled up separately.
1283 static void fill_prstatus(struct elf_prstatus
*prstatus
,
1284 struct task_struct
*p
, long signr
)
1286 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
1287 prstatus
->pr_sigpend
= p
->pending
.signal
.sig
[0];
1288 prstatus
->pr_sighold
= p
->blocked
.sig
[0];
1290 prstatus
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1292 prstatus
->pr_pid
= task_pid_vnr(p
);
1293 prstatus
->pr_pgrp
= task_pgrp_vnr(p
);
1294 prstatus
->pr_sid
= task_session_vnr(p
);
1295 if (thread_group_leader(p
)) {
1296 struct task_cputime cputime
;
1299 * This is the record for the group leader. It shows the
1300 * group-wide total, not its individual thread total.
1302 thread_group_cputime(p
, &cputime
);
1303 cputime_to_timeval(cputime
.utime
, &prstatus
->pr_utime
);
1304 cputime_to_timeval(cputime
.stime
, &prstatus
->pr_stime
);
1306 cputime_t utime
, stime
;
1308 task_cputime(p
, &utime
, &stime
);
1309 cputime_to_timeval(utime
, &prstatus
->pr_utime
);
1310 cputime_to_timeval(stime
, &prstatus
->pr_stime
);
1312 cputime_to_timeval(p
->signal
->cutime
, &prstatus
->pr_cutime
);
1313 cputime_to_timeval(p
->signal
->cstime
, &prstatus
->pr_cstime
);
1316 static int fill_psinfo(struct elf_prpsinfo
*psinfo
, struct task_struct
*p
,
1317 struct mm_struct
*mm
)
1319 const struct cred
*cred
;
1320 unsigned int i
, len
;
1322 /* first copy the parameters from user space */
1323 memset(psinfo
, 0, sizeof(struct elf_prpsinfo
));
1325 len
= mm
->arg_end
- mm
->arg_start
;
1326 if (len
>= ELF_PRARGSZ
)
1327 len
= ELF_PRARGSZ
-1;
1328 if (copy_from_user(&psinfo
->pr_psargs
,
1329 (const char __user
*)mm
->arg_start
, len
))
1331 for(i
= 0; i
< len
; i
++)
1332 if (psinfo
->pr_psargs
[i
] == 0)
1333 psinfo
->pr_psargs
[i
] = ' ';
1334 psinfo
->pr_psargs
[len
] = 0;
1337 psinfo
->pr_ppid
= task_pid_vnr(rcu_dereference(p
->real_parent
));
1339 psinfo
->pr_pid
= task_pid_vnr(p
);
1340 psinfo
->pr_pgrp
= task_pgrp_vnr(p
);
1341 psinfo
->pr_sid
= task_session_vnr(p
);
1343 i
= p
->state
? ffz(~p
->state
) + 1 : 0;
1344 psinfo
->pr_state
= i
;
1345 psinfo
->pr_sname
= (i
> 5) ? '.' : "RSDTZW"[i
];
1346 psinfo
->pr_zomb
= psinfo
->pr_sname
== 'Z';
1347 psinfo
->pr_nice
= task_nice(p
);
1348 psinfo
->pr_flag
= p
->flags
;
1350 cred
= __task_cred(p
);
1351 SET_UID(psinfo
->pr_uid
, from_kuid_munged(cred
->user_ns
, cred
->uid
));
1352 SET_GID(psinfo
->pr_gid
, from_kgid_munged(cred
->user_ns
, cred
->gid
));
1354 strncpy(psinfo
->pr_fname
, p
->comm
, sizeof(psinfo
->pr_fname
));
1359 static void fill_auxv_note(struct memelfnote
*note
, struct mm_struct
*mm
)
1361 elf_addr_t
*auxv
= (elf_addr_t
*) mm
->saved_auxv
;
1365 while (auxv
[i
- 2] != AT_NULL
);
1366 fill_note(note
, "CORE", NT_AUXV
, i
* sizeof(elf_addr_t
), auxv
);
1369 static void fill_siginfo_note(struct memelfnote
*note
, user_siginfo_t
*csigdata
,
1370 const siginfo_t
*siginfo
)
1372 mm_segment_t old_fs
= get_fs();
1374 copy_siginfo_to_user((user_siginfo_t __user
*) csigdata
, siginfo
);
1376 fill_note(note
, "CORE", NT_SIGINFO
, sizeof(*csigdata
), csigdata
);
1379 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1381 * Format of NT_FILE note:
1383 * long count -- how many files are mapped
1384 * long page_size -- units for file_ofs
1385 * array of [COUNT] elements of
1389 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1391 static int fill_files_note(struct memelfnote
*note
)
1393 struct vm_area_struct
*vma
;
1394 unsigned count
, size
, names_ofs
, remaining
, n
;
1396 user_long_t
*start_end_ofs
;
1397 char *name_base
, *name_curpos
;
1399 /* *Estimated* file count and total data size needed */
1400 count
= current
->mm
->map_count
;
1403 names_ofs
= (2 + 3 * count
) * sizeof(data
[0]);
1405 if (size
>= MAX_FILE_NOTE_SIZE
) /* paranoia check */
1407 size
= round_up(size
, PAGE_SIZE
);
1408 data
= vmalloc(size
);
1412 start_end_ofs
= data
+ 2;
1413 name_base
= name_curpos
= ((char *)data
) + names_ofs
;
1414 remaining
= size
- names_ofs
;
1416 for (vma
= current
->mm
->mmap
; vma
!= NULL
; vma
= vma
->vm_next
) {
1418 const char *filename
;
1420 file
= vma
->vm_file
;
1423 filename
= d_path(&file
->f_path
, name_curpos
, remaining
);
1424 if (IS_ERR(filename
)) {
1425 if (PTR_ERR(filename
) == -ENAMETOOLONG
) {
1427 size
= size
* 5 / 4;
1433 /* d_path() fills at the end, move name down */
1434 /* n = strlen(filename) + 1: */
1435 n
= (name_curpos
+ remaining
) - filename
;
1436 remaining
= filename
- name_curpos
;
1437 memmove(name_curpos
, filename
, n
);
1440 *start_end_ofs
++ = vma
->vm_start
;
1441 *start_end_ofs
++ = vma
->vm_end
;
1442 *start_end_ofs
++ = vma
->vm_pgoff
;
1446 /* Now we know exact count of files, can store it */
1448 data
[1] = PAGE_SIZE
;
1450 * Count usually is less than current->mm->map_count,
1451 * we need to move filenames down.
1453 n
= current
->mm
->map_count
- count
;
1455 unsigned shift_bytes
= n
* 3 * sizeof(data
[0]);
1456 memmove(name_base
- shift_bytes
, name_base
,
1457 name_curpos
- name_base
);
1458 name_curpos
-= shift_bytes
;
1461 size
= name_curpos
- (char *)data
;
1462 fill_note(note
, "CORE", NT_FILE
, size
, data
);
1466 #ifdef CORE_DUMP_USE_REGSET
1467 #include <linux/regset.h>
1469 struct elf_thread_core_info
{
1470 struct elf_thread_core_info
*next
;
1471 struct task_struct
*task
;
1472 struct elf_prstatus prstatus
;
1473 struct memelfnote notes
[0];
1476 struct elf_note_info
{
1477 struct elf_thread_core_info
*thread
;
1478 struct memelfnote psinfo
;
1479 struct memelfnote signote
;
1480 struct memelfnote auxv
;
1481 struct memelfnote files
;
1482 user_siginfo_t csigdata
;
1488 * When a regset has a writeback hook, we call it on each thread before
1489 * dumping user memory. On register window machines, this makes sure the
1490 * user memory backing the register data is up to date before we read it.
1492 static void do_thread_regset_writeback(struct task_struct
*task
,
1493 const struct user_regset
*regset
)
1495 if (regset
->writeback
)
1496 regset
->writeback(task
, regset
, 1);
1500 #define PR_REG_SIZE(S) sizeof(S)
1503 #ifndef PRSTATUS_SIZE
1504 #define PRSTATUS_SIZE(S) sizeof(S)
1508 #define PR_REG_PTR(S) (&((S)->pr_reg))
1511 #ifndef SET_PR_FPVALID
1512 #define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1515 static int fill_thread_core_info(struct elf_thread_core_info
*t
,
1516 const struct user_regset_view
*view
,
1517 long signr
, size_t *total
)
1522 * NT_PRSTATUS is the one special case, because the regset data
1523 * goes into the pr_reg field inside the note contents, rather
1524 * than being the whole note contents. We fill the reset in here.
1525 * We assume that regset 0 is NT_PRSTATUS.
1527 fill_prstatus(&t
->prstatus
, t
->task
, signr
);
1528 (void) view
->regsets
[0].get(t
->task
, &view
->regsets
[0],
1529 0, PR_REG_SIZE(t
->prstatus
.pr_reg
),
1530 PR_REG_PTR(&t
->prstatus
), NULL
);
1532 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
,
1533 PRSTATUS_SIZE(t
->prstatus
), &t
->prstatus
);
1534 *total
+= notesize(&t
->notes
[0]);
1536 do_thread_regset_writeback(t
->task
, &view
->regsets
[0]);
1539 * Each other regset might generate a note too. For each regset
1540 * that has no core_note_type or is inactive, we leave t->notes[i]
1541 * all zero and we'll know to skip writing it later.
1543 for (i
= 1; i
< view
->n
; ++i
) {
1544 const struct user_regset
*regset
= &view
->regsets
[i
];
1545 do_thread_regset_writeback(t
->task
, regset
);
1546 if (regset
->core_note_type
&& regset
->get
&&
1547 (!regset
->active
|| regset
->active(t
->task
, regset
))) {
1549 size_t size
= regset
->n
* regset
->size
;
1550 void *data
= kmalloc(size
, GFP_KERNEL
);
1551 if (unlikely(!data
))
1553 ret
= regset
->get(t
->task
, regset
,
1554 0, size
, data
, NULL
);
1558 if (regset
->core_note_type
!= NT_PRFPREG
)
1559 fill_note(&t
->notes
[i
], "LINUX",
1560 regset
->core_note_type
,
1563 SET_PR_FPVALID(&t
->prstatus
, 1);
1564 fill_note(&t
->notes
[i
], "CORE",
1565 NT_PRFPREG
, size
, data
);
1567 *total
+= notesize(&t
->notes
[i
]);
1575 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1576 struct elf_note_info
*info
,
1577 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1579 struct task_struct
*dump_task
= current
;
1580 const struct user_regset_view
*view
= task_user_regset_view(dump_task
);
1581 struct elf_thread_core_info
*t
;
1582 struct elf_prpsinfo
*psinfo
;
1583 struct core_thread
*ct
;
1587 info
->thread
= NULL
;
1589 psinfo
= kmalloc(sizeof(*psinfo
), GFP_KERNEL
);
1590 if (psinfo
== NULL
) {
1591 info
->psinfo
.data
= NULL
; /* So we don't free this wrongly */
1595 fill_note(&info
->psinfo
, "CORE", NT_PRPSINFO
, sizeof(*psinfo
), psinfo
);
1598 * Figure out how many notes we're going to need for each thread.
1600 info
->thread_notes
= 0;
1601 for (i
= 0; i
< view
->n
; ++i
)
1602 if (view
->regsets
[i
].core_note_type
!= 0)
1603 ++info
->thread_notes
;
1606 * Sanity check. We rely on regset 0 being in NT_PRSTATUS,
1607 * since it is our one special case.
1609 if (unlikely(info
->thread_notes
== 0) ||
1610 unlikely(view
->regsets
[0].core_note_type
!= NT_PRSTATUS
)) {
1616 * Initialize the ELF file header.
1618 fill_elf_header(elf
, phdrs
,
1619 view
->e_machine
, view
->e_flags
);
1622 * Allocate a structure for each thread.
1624 for (ct
= &dump_task
->mm
->core_state
->dumper
; ct
; ct
= ct
->next
) {
1625 t
= kzalloc(offsetof(struct elf_thread_core_info
,
1626 notes
[info
->thread_notes
]),
1632 if (ct
->task
== dump_task
|| !info
->thread
) {
1633 t
->next
= info
->thread
;
1637 * Make sure to keep the original task at
1638 * the head of the list.
1640 t
->next
= info
->thread
->next
;
1641 info
->thread
->next
= t
;
1646 * Now fill in each thread's information.
1648 for (t
= info
->thread
; t
!= NULL
; t
= t
->next
)
1649 if (!fill_thread_core_info(t
, view
, siginfo
->si_signo
, &info
->size
))
1653 * Fill in the two process-wide notes.
1655 fill_psinfo(psinfo
, dump_task
->group_leader
, dump_task
->mm
);
1656 info
->size
+= notesize(&info
->psinfo
);
1658 fill_siginfo_note(&info
->signote
, &info
->csigdata
, siginfo
);
1659 info
->size
+= notesize(&info
->signote
);
1661 fill_auxv_note(&info
->auxv
, current
->mm
);
1662 info
->size
+= notesize(&info
->auxv
);
1664 if (fill_files_note(&info
->files
) == 0)
1665 info
->size
+= notesize(&info
->files
);
1670 static size_t get_note_info_size(struct elf_note_info
*info
)
1676 * Write all the notes for each thread. When writing the first thread, the
1677 * process-wide notes are interleaved after the first thread-specific note.
1679 static int write_note_info(struct elf_note_info
*info
,
1680 struct coredump_params
*cprm
)
1683 struct elf_thread_core_info
*t
= info
->thread
;
1688 if (!writenote(&t
->notes
[0], cprm
))
1691 if (first
&& !writenote(&info
->psinfo
, cprm
))
1693 if (first
&& !writenote(&info
->signote
, cprm
))
1695 if (first
&& !writenote(&info
->auxv
, cprm
))
1697 if (first
&& info
->files
.data
&&
1698 !writenote(&info
->files
, cprm
))
1701 for (i
= 1; i
< info
->thread_notes
; ++i
)
1702 if (t
->notes
[i
].data
&&
1703 !writenote(&t
->notes
[i
], cprm
))
1713 static void free_note_info(struct elf_note_info
*info
)
1715 struct elf_thread_core_info
*threads
= info
->thread
;
1718 struct elf_thread_core_info
*t
= threads
;
1720 WARN_ON(t
->notes
[0].data
&& t
->notes
[0].data
!= &t
->prstatus
);
1721 for (i
= 1; i
< info
->thread_notes
; ++i
)
1722 kfree(t
->notes
[i
].data
);
1725 kfree(info
->psinfo
.data
);
1726 vfree(info
->files
.data
);
1731 /* Here is the structure in which status of each thread is captured. */
1732 struct elf_thread_status
1734 struct list_head list
;
1735 struct elf_prstatus prstatus
; /* NT_PRSTATUS */
1736 elf_fpregset_t fpu
; /* NT_PRFPREG */
1737 struct task_struct
*thread
;
1738 #ifdef ELF_CORE_COPY_XFPREGS
1739 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
1741 struct memelfnote notes
[3];
1746 * In order to add the specific thread information for the elf file format,
1747 * we need to keep a linked list of every threads pr_status and then create
1748 * a single section for them in the final core file.
1750 static int elf_dump_thread_status(long signr
, struct elf_thread_status
*t
)
1753 struct task_struct
*p
= t
->thread
;
1756 fill_prstatus(&t
->prstatus
, p
, signr
);
1757 elf_core_copy_task_regs(p
, &t
->prstatus
.pr_reg
);
1759 fill_note(&t
->notes
[0], "CORE", NT_PRSTATUS
, sizeof(t
->prstatus
),
1762 sz
+= notesize(&t
->notes
[0]);
1764 if ((t
->prstatus
.pr_fpvalid
= elf_core_copy_task_fpregs(p
, NULL
,
1766 fill_note(&t
->notes
[1], "CORE", NT_PRFPREG
, sizeof(t
->fpu
),
1769 sz
+= notesize(&t
->notes
[1]);
1772 #ifdef ELF_CORE_COPY_XFPREGS
1773 if (elf_core_copy_task_xfpregs(p
, &t
->xfpu
)) {
1774 fill_note(&t
->notes
[2], "LINUX", ELF_CORE_XFPREG_TYPE
,
1775 sizeof(t
->xfpu
), &t
->xfpu
);
1777 sz
+= notesize(&t
->notes
[2]);
1783 struct elf_note_info
{
1784 struct memelfnote
*notes
;
1785 struct memelfnote
*notes_files
;
1786 struct elf_prstatus
*prstatus
; /* NT_PRSTATUS */
1787 struct elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
1788 struct list_head thread_list
;
1789 elf_fpregset_t
*fpu
;
1790 #ifdef ELF_CORE_COPY_XFPREGS
1791 elf_fpxregset_t
*xfpu
;
1793 user_siginfo_t csigdata
;
1794 int thread_status_size
;
1798 static int elf_note_info_init(struct elf_note_info
*info
)
1800 memset(info
, 0, sizeof(*info
));
1801 INIT_LIST_HEAD(&info
->thread_list
);
1803 /* Allocate space for ELF notes */
1804 info
->notes
= kmalloc(8 * sizeof(struct memelfnote
), GFP_KERNEL
);
1807 info
->psinfo
= kmalloc(sizeof(*info
->psinfo
), GFP_KERNEL
);
1810 info
->prstatus
= kmalloc(sizeof(*info
->prstatus
), GFP_KERNEL
);
1811 if (!info
->prstatus
)
1813 info
->fpu
= kmalloc(sizeof(*info
->fpu
), GFP_KERNEL
);
1816 #ifdef ELF_CORE_COPY_XFPREGS
1817 info
->xfpu
= kmalloc(sizeof(*info
->xfpu
), GFP_KERNEL
);
1824 static int fill_note_info(struct elfhdr
*elf
, int phdrs
,
1825 struct elf_note_info
*info
,
1826 const siginfo_t
*siginfo
, struct pt_regs
*regs
)
1828 struct list_head
*t
;
1829 struct core_thread
*ct
;
1830 struct elf_thread_status
*ets
;
1832 if (!elf_note_info_init(info
))
1835 for (ct
= current
->mm
->core_state
->dumper
.next
;
1836 ct
; ct
= ct
->next
) {
1837 ets
= kzalloc(sizeof(*ets
), GFP_KERNEL
);
1841 ets
->thread
= ct
->task
;
1842 list_add(&ets
->list
, &info
->thread_list
);
1845 list_for_each(t
, &info
->thread_list
) {
1848 ets
= list_entry(t
, struct elf_thread_status
, list
);
1849 sz
= elf_dump_thread_status(siginfo
->si_signo
, ets
);
1850 info
->thread_status_size
+= sz
;
1852 /* now collect the dump for the current */
1853 memset(info
->prstatus
, 0, sizeof(*info
->prstatus
));
1854 fill_prstatus(info
->prstatus
, current
, siginfo
->si_signo
);
1855 elf_core_copy_regs(&info
->prstatus
->pr_reg
, regs
);
1858 fill_elf_header(elf
, phdrs
, ELF_ARCH
, ELF_CORE_EFLAGS
);
1861 * Set up the notes in similar form to SVR4 core dumps made
1862 * with info from their /proc.
1865 fill_note(info
->notes
+ 0, "CORE", NT_PRSTATUS
,
1866 sizeof(*info
->prstatus
), info
->prstatus
);
1867 fill_psinfo(info
->psinfo
, current
->group_leader
, current
->mm
);
1868 fill_note(info
->notes
+ 1, "CORE", NT_PRPSINFO
,
1869 sizeof(*info
->psinfo
), info
->psinfo
);
1871 fill_siginfo_note(info
->notes
+ 2, &info
->csigdata
, siginfo
);
1872 fill_auxv_note(info
->notes
+ 3, current
->mm
);
1875 if (fill_files_note(info
->notes
+ info
->numnote
) == 0) {
1876 info
->notes_files
= info
->notes
+ info
->numnote
;
1880 /* Try to dump the FPU. */
1881 info
->prstatus
->pr_fpvalid
= elf_core_copy_task_fpregs(current
, regs
,
1883 if (info
->prstatus
->pr_fpvalid
)
1884 fill_note(info
->notes
+ info
->numnote
++,
1885 "CORE", NT_PRFPREG
, sizeof(*info
->fpu
), info
->fpu
);
1886 #ifdef ELF_CORE_COPY_XFPREGS
1887 if (elf_core_copy_task_xfpregs(current
, info
->xfpu
))
1888 fill_note(info
->notes
+ info
->numnote
++,
1889 "LINUX", ELF_CORE_XFPREG_TYPE
,
1890 sizeof(*info
->xfpu
), info
->xfpu
);
1896 static size_t get_note_info_size(struct elf_note_info
*info
)
1901 for (i
= 0; i
< info
->numnote
; i
++)
1902 sz
+= notesize(info
->notes
+ i
);
1904 sz
+= info
->thread_status_size
;
1909 static int write_note_info(struct elf_note_info
*info
,
1910 struct coredump_params
*cprm
)
1913 struct list_head
*t
;
1915 for (i
= 0; i
< info
->numnote
; i
++)
1916 if (!writenote(info
->notes
+ i
, cprm
))
1919 /* write out the thread status notes section */
1920 list_for_each(t
, &info
->thread_list
) {
1921 struct elf_thread_status
*tmp
=
1922 list_entry(t
, struct elf_thread_status
, list
);
1924 for (i
= 0; i
< tmp
->num_notes
; i
++)
1925 if (!writenote(&tmp
->notes
[i
], cprm
))
1932 static void free_note_info(struct elf_note_info
*info
)
1934 while (!list_empty(&info
->thread_list
)) {
1935 struct list_head
*tmp
= info
->thread_list
.next
;
1937 kfree(list_entry(tmp
, struct elf_thread_status
, list
));
1940 /* Free data possibly allocated by fill_files_note(): */
1941 if (info
->notes_files
)
1942 vfree(info
->notes_files
->data
);
1944 kfree(info
->prstatus
);
1945 kfree(info
->psinfo
);
1948 #ifdef ELF_CORE_COPY_XFPREGS
1955 static struct vm_area_struct
*first_vma(struct task_struct
*tsk
,
1956 struct vm_area_struct
*gate_vma
)
1958 struct vm_area_struct
*ret
= tsk
->mm
->mmap
;
1965 * Helper function for iterating across a vma list. It ensures that the caller
1966 * will visit `gate_vma' prior to terminating the search.
1968 static struct vm_area_struct
*next_vma(struct vm_area_struct
*this_vma
,
1969 struct vm_area_struct
*gate_vma
)
1971 struct vm_area_struct
*ret
;
1973 ret
= this_vma
->vm_next
;
1976 if (this_vma
== gate_vma
)
1981 static void fill_extnum_info(struct elfhdr
*elf
, struct elf_shdr
*shdr4extnum
,
1982 elf_addr_t e_shoff
, int segs
)
1984 elf
->e_shoff
= e_shoff
;
1985 elf
->e_shentsize
= sizeof(*shdr4extnum
);
1987 elf
->e_shstrndx
= SHN_UNDEF
;
1989 memset(shdr4extnum
, 0, sizeof(*shdr4extnum
));
1991 shdr4extnum
->sh_type
= SHT_NULL
;
1992 shdr4extnum
->sh_size
= elf
->e_shnum
;
1993 shdr4extnum
->sh_link
= elf
->e_shstrndx
;
1994 shdr4extnum
->sh_info
= segs
;
1997 static size_t elf_core_vma_data_size(struct vm_area_struct
*gate_vma
,
1998 unsigned long mm_flags
)
2000 struct vm_area_struct
*vma
;
2003 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2004 vma
= next_vma(vma
, gate_vma
))
2005 size
+= vma_dump_size(vma
, mm_flags
);
2012 * This is a two-pass process; first we find the offsets of the bits,
2013 * and then they are actually written out. If we run out of core limit
2016 static int elf_core_dump(struct coredump_params
*cprm
)
2021 struct vm_area_struct
*vma
, *gate_vma
;
2022 struct elfhdr
*elf
= NULL
;
2023 loff_t offset
= 0, dataoff
;
2024 struct elf_note_info info
= { };
2025 struct elf_phdr
*phdr4note
= NULL
;
2026 struct elf_shdr
*shdr4extnum
= NULL
;
2031 * We no longer stop all VM operations.
2033 * This is because those proceses that could possibly change map_count
2034 * or the mmap / vma pages are now blocked in do_exit on current
2035 * finishing this core dump.
2037 * Only ptrace can touch these memory addresses, but it doesn't change
2038 * the map_count or the pages allocated. So no possibility of crashing
2039 * exists while dumping the mm->vm_next areas to the core file.
2042 /* alloc memory for large data structures: too large to be on stack */
2043 elf
= kmalloc(sizeof(*elf
), GFP_KERNEL
);
2047 * The number of segs are recored into ELF header as 16bit value.
2048 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2050 segs
= current
->mm
->map_count
;
2051 segs
+= elf_core_extra_phdrs();
2053 gate_vma
= get_gate_vma(current
->mm
);
2054 if (gate_vma
!= NULL
)
2057 /* for notes section */
2060 /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2061 * this, kernel supports extended numbering. Have a look at
2062 * include/linux/elf.h for further information. */
2063 e_phnum
= segs
> PN_XNUM
? PN_XNUM
: segs
;
2066 * Collect all the non-memory information about the process for the
2067 * notes. This also sets up the file header.
2069 if (!fill_note_info(elf
, e_phnum
, &info
, cprm
->siginfo
, cprm
->regs
))
2077 offset
+= sizeof(*elf
); /* Elf header */
2078 offset
+= segs
* sizeof(struct elf_phdr
); /* Program headers */
2080 /* Write notes phdr entry */
2082 size_t sz
= get_note_info_size(&info
);
2084 sz
+= elf_coredump_extra_notes_size();
2086 phdr4note
= kmalloc(sizeof(*phdr4note
), GFP_KERNEL
);
2090 fill_elf_note_phdr(phdr4note
, sz
, offset
);
2094 dataoff
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
2096 offset
+= elf_core_vma_data_size(gate_vma
, cprm
->mm_flags
);
2097 offset
+= elf_core_extra_data_size();
2100 if (e_phnum
== PN_XNUM
) {
2101 shdr4extnum
= kmalloc(sizeof(*shdr4extnum
), GFP_KERNEL
);
2104 fill_extnum_info(elf
, shdr4extnum
, e_shoff
, segs
);
2109 if (!dump_emit(cprm
, elf
, sizeof(*elf
)))
2112 if (!dump_emit(cprm
, phdr4note
, sizeof(*phdr4note
)))
2115 /* Write program headers for segments dump */
2116 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2117 vma
= next_vma(vma
, gate_vma
)) {
2118 struct elf_phdr phdr
;
2120 phdr
.p_type
= PT_LOAD
;
2121 phdr
.p_offset
= offset
;
2122 phdr
.p_vaddr
= vma
->vm_start
;
2124 phdr
.p_filesz
= vma_dump_size(vma
, cprm
->mm_flags
);
2125 phdr
.p_memsz
= vma
->vm_end
- vma
->vm_start
;
2126 offset
+= phdr
.p_filesz
;
2127 phdr
.p_flags
= vma
->vm_flags
& VM_READ
? PF_R
: 0;
2128 if (vma
->vm_flags
& VM_WRITE
)
2129 phdr
.p_flags
|= PF_W
;
2130 if (vma
->vm_flags
& VM_EXEC
)
2131 phdr
.p_flags
|= PF_X
;
2132 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
2134 if (!dump_emit(cprm
, &phdr
, sizeof(phdr
)))
2138 if (!elf_core_write_extra_phdrs(cprm
, offset
))
2141 /* write out the notes section */
2142 if (!write_note_info(&info
, cprm
))
2145 if (elf_coredump_extra_notes_write(cprm
))
2149 if (!dump_skip(cprm
, dataoff
- cprm
->written
))
2152 for (vma
= first_vma(current
, gate_vma
); vma
!= NULL
;
2153 vma
= next_vma(vma
, gate_vma
)) {
2157 end
= vma
->vm_start
+ vma_dump_size(vma
, cprm
->mm_flags
);
2159 for (addr
= vma
->vm_start
; addr
< end
; addr
+= PAGE_SIZE
) {
2163 page
= get_dump_page(addr
);
2165 void *kaddr
= kmap(page
);
2166 stop
= !dump_emit(cprm
, kaddr
, PAGE_SIZE
);
2168 page_cache_release(page
);
2170 stop
= !dump_skip(cprm
, PAGE_SIZE
);
2176 if (!elf_core_write_extra_data(cprm
))
2179 if (e_phnum
== PN_XNUM
) {
2180 if (!dump_emit(cprm
, shdr4extnum
, sizeof(*shdr4extnum
)))
2188 free_note_info(&info
);
2196 #endif /* CONFIG_ELF_CORE */
2198 static int __init
init_elf_binfmt(void)
2200 register_binfmt(&elf_format
);
2204 static void __exit
exit_elf_binfmt(void)
2206 /* Remove the COFF and ELF loaders. */
2207 unregister_binfmt(&elf_format
);
2210 core_initcall(init_elf_binfmt
);
2211 module_exit(exit_elf_binfmt
);
2212 MODULE_LICENSE("GPL");