1 // SPDX-License-Identifier: GPL-2.0-or-later
3 // core.c -- Voltage/Current Regulator framework.
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 static DEFINE_WW_CLASS(regulator_ww_class
);
48 static DEFINE_MUTEX(regulator_nesting_mutex
);
49 static DEFINE_MUTEX(regulator_list_mutex
);
50 static LIST_HEAD(regulator_map_list
);
51 static LIST_HEAD(regulator_ena_gpio_list
);
52 static LIST_HEAD(regulator_supply_alias_list
);
53 static LIST_HEAD(regulator_coupler_list
);
54 static bool has_full_constraints
;
56 static struct dentry
*debugfs_root
;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map
{
64 struct list_head list
;
65 const char *dev_name
; /* The dev_name() for the consumer */
67 struct regulator_dev
*regulator
;
71 * struct regulator_enable_gpio
73 * Management for shared enable GPIO pin
75 struct regulator_enable_gpio
{
76 struct list_head list
;
77 struct gpio_desc
*gpiod
;
78 u32 enable_count
; /* a number of enabled shared GPIO */
79 u32 request_count
; /* a number of requested shared GPIO */
83 * struct regulator_supply_alias
85 * Used to map lookups for a supply onto an alternative device.
87 struct regulator_supply_alias
{
88 struct list_head list
;
89 struct device
*src_dev
;
90 const char *src_supply
;
91 struct device
*alias_dev
;
92 const char *alias_supply
;
95 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
96 static int _regulator_disable(struct regulator
*regulator
);
97 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
98 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
99 static int _notifier_call_chain(struct regulator_dev
*rdev
,
100 unsigned long event
, void *data
);
101 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
102 int min_uV
, int max_uV
);
103 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
104 suspend_state_t state
);
105 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
107 const char *supply_name
);
108 static void _regulator_put(struct regulator
*regulator
);
110 const char *rdev_get_name(struct regulator_dev
*rdev
)
112 if (rdev
->constraints
&& rdev
->constraints
->name
)
113 return rdev
->constraints
->name
;
114 else if (rdev
->desc
->name
)
115 return rdev
->desc
->name
;
120 static bool have_full_constraints(void)
122 return has_full_constraints
|| of_have_populated_dt();
125 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
127 if (!rdev
->constraints
) {
128 rdev_err(rdev
, "no constraints\n");
132 if (rdev
->constraints
->valid_ops_mask
& ops
)
139 * regulator_lock_nested - lock a single regulator
140 * @rdev: regulator source
141 * @ww_ctx: w/w mutex acquire context
143 * This function can be called many times by one task on
144 * a single regulator and its mutex will be locked only
145 * once. If a task, which is calling this function is other
146 * than the one, which initially locked the mutex, it will
149 static inline int regulator_lock_nested(struct regulator_dev
*rdev
,
150 struct ww_acquire_ctx
*ww_ctx
)
155 mutex_lock(®ulator_nesting_mutex
);
157 if (ww_ctx
|| !ww_mutex_trylock(&rdev
->mutex
)) {
158 if (rdev
->mutex_owner
== current
)
164 mutex_unlock(®ulator_nesting_mutex
);
165 ret
= ww_mutex_lock(&rdev
->mutex
, ww_ctx
);
166 mutex_lock(®ulator_nesting_mutex
);
172 if (lock
&& ret
!= -EDEADLK
) {
174 rdev
->mutex_owner
= current
;
177 mutex_unlock(®ulator_nesting_mutex
);
183 * regulator_lock - lock a single regulator
184 * @rdev: regulator source
186 * This function can be called many times by one task on
187 * a single regulator and its mutex will be locked only
188 * once. If a task, which is calling this function is other
189 * than the one, which initially locked the mutex, it will
192 void regulator_lock(struct regulator_dev
*rdev
)
194 regulator_lock_nested(rdev
, NULL
);
196 EXPORT_SYMBOL_GPL(regulator_lock
);
199 * regulator_unlock - unlock a single regulator
200 * @rdev: regulator_source
202 * This function unlocks the mutex when the
203 * reference counter reaches 0.
205 void regulator_unlock(struct regulator_dev
*rdev
)
207 mutex_lock(®ulator_nesting_mutex
);
209 if (--rdev
->ref_cnt
== 0) {
210 rdev
->mutex_owner
= NULL
;
211 ww_mutex_unlock(&rdev
->mutex
);
214 WARN_ON_ONCE(rdev
->ref_cnt
< 0);
216 mutex_unlock(®ulator_nesting_mutex
);
218 EXPORT_SYMBOL_GPL(regulator_unlock
);
220 static bool regulator_supply_is_couple(struct regulator_dev
*rdev
)
222 struct regulator_dev
*c_rdev
;
225 for (i
= 1; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
226 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
228 if (rdev
->supply
->rdev
== c_rdev
)
235 static void regulator_unlock_recursive(struct regulator_dev
*rdev
,
236 unsigned int n_coupled
)
238 struct regulator_dev
*c_rdev
;
241 for (i
= n_coupled
; i
> 0; i
--) {
242 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
- 1];
247 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
))
248 regulator_unlock_recursive(
249 c_rdev
->supply
->rdev
,
250 c_rdev
->coupling_desc
.n_coupled
);
252 regulator_unlock(c_rdev
);
256 static int regulator_lock_recursive(struct regulator_dev
*rdev
,
257 struct regulator_dev
**new_contended_rdev
,
258 struct regulator_dev
**old_contended_rdev
,
259 struct ww_acquire_ctx
*ww_ctx
)
261 struct regulator_dev
*c_rdev
;
264 for (i
= 0; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
265 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
270 if (c_rdev
!= *old_contended_rdev
) {
271 err
= regulator_lock_nested(c_rdev
, ww_ctx
);
273 if (err
== -EDEADLK
) {
274 *new_contended_rdev
= c_rdev
;
278 /* shouldn't happen */
279 WARN_ON_ONCE(err
!= -EALREADY
);
282 *old_contended_rdev
= NULL
;
285 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
)) {
286 err
= regulator_lock_recursive(c_rdev
->supply
->rdev
,
291 regulator_unlock(c_rdev
);
300 regulator_unlock_recursive(rdev
, i
);
306 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
308 * @rdev: regulator source
309 * @ww_ctx: w/w mutex acquire context
311 * Unlock all regulators related with rdev by coupling or supplying.
313 static void regulator_unlock_dependent(struct regulator_dev
*rdev
,
314 struct ww_acquire_ctx
*ww_ctx
)
316 regulator_unlock_recursive(rdev
, rdev
->coupling_desc
.n_coupled
);
317 ww_acquire_fini(ww_ctx
);
321 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
322 * @rdev: regulator source
323 * @ww_ctx: w/w mutex acquire context
325 * This function as a wrapper on regulator_lock_recursive(), which locks
326 * all regulators related with rdev by coupling or supplying.
328 static void regulator_lock_dependent(struct regulator_dev
*rdev
,
329 struct ww_acquire_ctx
*ww_ctx
)
331 struct regulator_dev
*new_contended_rdev
= NULL
;
332 struct regulator_dev
*old_contended_rdev
= NULL
;
335 mutex_lock(®ulator_list_mutex
);
337 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
340 if (new_contended_rdev
) {
341 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
342 old_contended_rdev
= new_contended_rdev
;
343 old_contended_rdev
->ref_cnt
++;
346 err
= regulator_lock_recursive(rdev
,
351 if (old_contended_rdev
)
352 regulator_unlock(old_contended_rdev
);
354 } while (err
== -EDEADLK
);
356 ww_acquire_done(ww_ctx
);
358 mutex_unlock(®ulator_list_mutex
);
362 * of_get_child_regulator - get a child regulator device node
363 * based on supply name
364 * @parent: Parent device node
365 * @prop_name: Combination regulator supply name and "-supply"
367 * Traverse all child nodes.
368 * Extract the child regulator device node corresponding to the supply name.
369 * returns the device node corresponding to the regulator if found, else
372 static struct device_node
*of_get_child_regulator(struct device_node
*parent
,
373 const char *prop_name
)
375 struct device_node
*regnode
= NULL
;
376 struct device_node
*child
= NULL
;
378 for_each_child_of_node(parent
, child
) {
379 regnode
= of_parse_phandle(child
, prop_name
, 0);
382 regnode
= of_get_child_regulator(child
, prop_name
);
397 * of_get_regulator - get a regulator device node based on supply name
398 * @dev: Device pointer for the consumer (of regulator) device
399 * @supply: regulator supply name
401 * Extract the regulator device node corresponding to the supply name.
402 * returns the device node corresponding to the regulator if found, else
405 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
407 struct device_node
*regnode
= NULL
;
408 char prop_name
[32]; /* 32 is max size of property name */
410 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
412 snprintf(prop_name
, 32, "%s-supply", supply
);
413 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
416 regnode
= of_get_child_regulator(dev
->of_node
, prop_name
);
420 dev_dbg(dev
, "Looking up %s property in node %pOF failed\n",
421 prop_name
, dev
->of_node
);
427 /* Platform voltage constraint check */
428 int regulator_check_voltage(struct regulator_dev
*rdev
,
429 int *min_uV
, int *max_uV
)
431 BUG_ON(*min_uV
> *max_uV
);
433 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
434 rdev_err(rdev
, "voltage operation not allowed\n");
438 if (*max_uV
> rdev
->constraints
->max_uV
)
439 *max_uV
= rdev
->constraints
->max_uV
;
440 if (*min_uV
< rdev
->constraints
->min_uV
)
441 *min_uV
= rdev
->constraints
->min_uV
;
443 if (*min_uV
> *max_uV
) {
444 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
452 /* return 0 if the state is valid */
453 static int regulator_check_states(suspend_state_t state
)
455 return (state
> PM_SUSPEND_MAX
|| state
== PM_SUSPEND_TO_IDLE
);
458 /* Make sure we select a voltage that suits the needs of all
459 * regulator consumers
461 int regulator_check_consumers(struct regulator_dev
*rdev
,
462 int *min_uV
, int *max_uV
,
463 suspend_state_t state
)
465 struct regulator
*regulator
;
466 struct regulator_voltage
*voltage
;
468 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
469 voltage
= ®ulator
->voltage
[state
];
471 * Assume consumers that didn't say anything are OK
472 * with anything in the constraint range.
474 if (!voltage
->min_uV
&& !voltage
->max_uV
)
477 if (*max_uV
> voltage
->max_uV
)
478 *max_uV
= voltage
->max_uV
;
479 if (*min_uV
< voltage
->min_uV
)
480 *min_uV
= voltage
->min_uV
;
483 if (*min_uV
> *max_uV
) {
484 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
492 /* current constraint check */
493 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
494 int *min_uA
, int *max_uA
)
496 BUG_ON(*min_uA
> *max_uA
);
498 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
499 rdev_err(rdev
, "current operation not allowed\n");
503 if (*max_uA
> rdev
->constraints
->max_uA
)
504 *max_uA
= rdev
->constraints
->max_uA
;
505 if (*min_uA
< rdev
->constraints
->min_uA
)
506 *min_uA
= rdev
->constraints
->min_uA
;
508 if (*min_uA
> *max_uA
) {
509 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
517 /* operating mode constraint check */
518 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
522 case REGULATOR_MODE_FAST
:
523 case REGULATOR_MODE_NORMAL
:
524 case REGULATOR_MODE_IDLE
:
525 case REGULATOR_MODE_STANDBY
:
528 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
532 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
533 rdev_err(rdev
, "mode operation not allowed\n");
537 /* The modes are bitmasks, the most power hungry modes having
538 * the lowest values. If the requested mode isn't supported
539 * try higher modes. */
541 if (rdev
->constraints
->valid_modes_mask
& *mode
)
549 static inline struct regulator_state
*
550 regulator_get_suspend_state(struct regulator_dev
*rdev
, suspend_state_t state
)
552 if (rdev
->constraints
== NULL
)
556 case PM_SUSPEND_STANDBY
:
557 return &rdev
->constraints
->state_standby
;
559 return &rdev
->constraints
->state_mem
;
561 return &rdev
->constraints
->state_disk
;
567 static ssize_t
regulator_uV_show(struct device
*dev
,
568 struct device_attribute
*attr
, char *buf
)
570 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
573 regulator_lock(rdev
);
574 uV
= regulator_get_voltage_rdev(rdev
);
575 regulator_unlock(rdev
);
579 return sprintf(buf
, "%d\n", uV
);
581 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
583 static ssize_t
regulator_uA_show(struct device
*dev
,
584 struct device_attribute
*attr
, char *buf
)
586 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
588 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
590 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
592 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
595 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
597 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
599 static DEVICE_ATTR_RO(name
);
601 static const char *regulator_opmode_to_str(int mode
)
604 case REGULATOR_MODE_FAST
:
606 case REGULATOR_MODE_NORMAL
:
608 case REGULATOR_MODE_IDLE
:
610 case REGULATOR_MODE_STANDBY
:
616 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
618 return sprintf(buf
, "%s\n", regulator_opmode_to_str(mode
));
621 static ssize_t
regulator_opmode_show(struct device
*dev
,
622 struct device_attribute
*attr
, char *buf
)
624 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
626 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
628 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
630 static ssize_t
regulator_print_state(char *buf
, int state
)
633 return sprintf(buf
, "enabled\n");
635 return sprintf(buf
, "disabled\n");
637 return sprintf(buf
, "unknown\n");
640 static ssize_t
regulator_state_show(struct device
*dev
,
641 struct device_attribute
*attr
, char *buf
)
643 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
646 regulator_lock(rdev
);
647 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
648 regulator_unlock(rdev
);
652 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
654 static ssize_t
regulator_status_show(struct device
*dev
,
655 struct device_attribute
*attr
, char *buf
)
657 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
661 status
= rdev
->desc
->ops
->get_status(rdev
);
666 case REGULATOR_STATUS_OFF
:
669 case REGULATOR_STATUS_ON
:
672 case REGULATOR_STATUS_ERROR
:
675 case REGULATOR_STATUS_FAST
:
678 case REGULATOR_STATUS_NORMAL
:
681 case REGULATOR_STATUS_IDLE
:
684 case REGULATOR_STATUS_STANDBY
:
687 case REGULATOR_STATUS_BYPASS
:
690 case REGULATOR_STATUS_UNDEFINED
:
697 return sprintf(buf
, "%s\n", label
);
699 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
701 static ssize_t
regulator_min_uA_show(struct device
*dev
,
702 struct device_attribute
*attr
, char *buf
)
704 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
706 if (!rdev
->constraints
)
707 return sprintf(buf
, "constraint not defined\n");
709 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
711 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
713 static ssize_t
regulator_max_uA_show(struct device
*dev
,
714 struct device_attribute
*attr
, char *buf
)
716 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
718 if (!rdev
->constraints
)
719 return sprintf(buf
, "constraint not defined\n");
721 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
723 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
725 static ssize_t
regulator_min_uV_show(struct device
*dev
,
726 struct device_attribute
*attr
, char *buf
)
728 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
730 if (!rdev
->constraints
)
731 return sprintf(buf
, "constraint not defined\n");
733 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
735 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
737 static ssize_t
regulator_max_uV_show(struct device
*dev
,
738 struct device_attribute
*attr
, char *buf
)
740 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
742 if (!rdev
->constraints
)
743 return sprintf(buf
, "constraint not defined\n");
745 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
747 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
749 static ssize_t
regulator_total_uA_show(struct device
*dev
,
750 struct device_attribute
*attr
, char *buf
)
752 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
753 struct regulator
*regulator
;
756 regulator_lock(rdev
);
757 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
758 if (regulator
->enable_count
)
759 uA
+= regulator
->uA_load
;
761 regulator_unlock(rdev
);
762 return sprintf(buf
, "%d\n", uA
);
764 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
766 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
769 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
770 return sprintf(buf
, "%d\n", rdev
->use_count
);
772 static DEVICE_ATTR_RO(num_users
);
774 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
777 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
779 switch (rdev
->desc
->type
) {
780 case REGULATOR_VOLTAGE
:
781 return sprintf(buf
, "voltage\n");
782 case REGULATOR_CURRENT
:
783 return sprintf(buf
, "current\n");
785 return sprintf(buf
, "unknown\n");
787 static DEVICE_ATTR_RO(type
);
789 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
790 struct device_attribute
*attr
, char *buf
)
792 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
794 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
796 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
797 regulator_suspend_mem_uV_show
, NULL
);
799 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
800 struct device_attribute
*attr
, char *buf
)
802 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
804 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
806 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
807 regulator_suspend_disk_uV_show
, NULL
);
809 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
810 struct device_attribute
*attr
, char *buf
)
812 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
814 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
816 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
817 regulator_suspend_standby_uV_show
, NULL
);
819 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
820 struct device_attribute
*attr
, char *buf
)
822 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
824 return regulator_print_opmode(buf
,
825 rdev
->constraints
->state_mem
.mode
);
827 static DEVICE_ATTR(suspend_mem_mode
, 0444,
828 regulator_suspend_mem_mode_show
, NULL
);
830 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
831 struct device_attribute
*attr
, char *buf
)
833 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
835 return regulator_print_opmode(buf
,
836 rdev
->constraints
->state_disk
.mode
);
838 static DEVICE_ATTR(suspend_disk_mode
, 0444,
839 regulator_suspend_disk_mode_show
, NULL
);
841 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
842 struct device_attribute
*attr
, char *buf
)
844 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
846 return regulator_print_opmode(buf
,
847 rdev
->constraints
->state_standby
.mode
);
849 static DEVICE_ATTR(suspend_standby_mode
, 0444,
850 regulator_suspend_standby_mode_show
, NULL
);
852 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
853 struct device_attribute
*attr
, char *buf
)
855 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
857 return regulator_print_state(buf
,
858 rdev
->constraints
->state_mem
.enabled
);
860 static DEVICE_ATTR(suspend_mem_state
, 0444,
861 regulator_suspend_mem_state_show
, NULL
);
863 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
864 struct device_attribute
*attr
, char *buf
)
866 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
868 return regulator_print_state(buf
,
869 rdev
->constraints
->state_disk
.enabled
);
871 static DEVICE_ATTR(suspend_disk_state
, 0444,
872 regulator_suspend_disk_state_show
, NULL
);
874 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
875 struct device_attribute
*attr
, char *buf
)
877 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
879 return regulator_print_state(buf
,
880 rdev
->constraints
->state_standby
.enabled
);
882 static DEVICE_ATTR(suspend_standby_state
, 0444,
883 regulator_suspend_standby_state_show
, NULL
);
885 static ssize_t
regulator_bypass_show(struct device
*dev
,
886 struct device_attribute
*attr
, char *buf
)
888 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
893 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
902 return sprintf(buf
, "%s\n", report
);
904 static DEVICE_ATTR(bypass
, 0444,
905 regulator_bypass_show
, NULL
);
907 /* Calculate the new optimum regulator operating mode based on the new total
908 * consumer load. All locks held by caller */
909 static int drms_uA_update(struct regulator_dev
*rdev
)
911 struct regulator
*sibling
;
912 int current_uA
= 0, output_uV
, input_uV
, err
;
916 * first check to see if we can set modes at all, otherwise just
917 * tell the consumer everything is OK.
919 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
)) {
920 rdev_dbg(rdev
, "DRMS operation not allowed\n");
924 if (!rdev
->desc
->ops
->get_optimum_mode
&&
925 !rdev
->desc
->ops
->set_load
)
928 if (!rdev
->desc
->ops
->set_mode
&&
929 !rdev
->desc
->ops
->set_load
)
932 /* calc total requested load */
933 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
) {
934 if (sibling
->enable_count
)
935 current_uA
+= sibling
->uA_load
;
938 current_uA
+= rdev
->constraints
->system_load
;
940 if (rdev
->desc
->ops
->set_load
) {
941 /* set the optimum mode for our new total regulator load */
942 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
944 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
946 /* get output voltage */
947 output_uV
= regulator_get_voltage_rdev(rdev
);
948 if (output_uV
<= 0) {
949 rdev_err(rdev
, "invalid output voltage found\n");
953 /* get input voltage */
956 input_uV
= regulator_get_voltage(rdev
->supply
);
958 input_uV
= rdev
->constraints
->input_uV
;
960 rdev_err(rdev
, "invalid input voltage found\n");
964 /* now get the optimum mode for our new total regulator load */
965 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
966 output_uV
, current_uA
);
968 /* check the new mode is allowed */
969 err
= regulator_mode_constrain(rdev
, &mode
);
971 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
972 current_uA
, input_uV
, output_uV
);
976 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
978 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
984 static int suspend_set_state(struct regulator_dev
*rdev
,
985 suspend_state_t state
)
988 struct regulator_state
*rstate
;
990 rstate
= regulator_get_suspend_state(rdev
, state
);
994 /* If we have no suspend mode configuration don't set anything;
995 * only warn if the driver implements set_suspend_voltage or
996 * set_suspend_mode callback.
998 if (rstate
->enabled
!= ENABLE_IN_SUSPEND
&&
999 rstate
->enabled
!= DISABLE_IN_SUSPEND
) {
1000 if (rdev
->desc
->ops
->set_suspend_voltage
||
1001 rdev
->desc
->ops
->set_suspend_mode
)
1002 rdev_warn(rdev
, "No configuration\n");
1006 if (rstate
->enabled
== ENABLE_IN_SUSPEND
&&
1007 rdev
->desc
->ops
->set_suspend_enable
)
1008 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
1009 else if (rstate
->enabled
== DISABLE_IN_SUSPEND
&&
1010 rdev
->desc
->ops
->set_suspend_disable
)
1011 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
1012 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1016 rdev_err(rdev
, "failed to enabled/disable\n");
1020 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
1021 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
1023 rdev_err(rdev
, "failed to set voltage\n");
1028 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
1029 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
1031 rdev_err(rdev
, "failed to set mode\n");
1039 static void print_constraints(struct regulator_dev
*rdev
)
1041 struct regulation_constraints
*constraints
= rdev
->constraints
;
1043 size_t len
= sizeof(buf
) - 1;
1047 if (constraints
->min_uV
&& constraints
->max_uV
) {
1048 if (constraints
->min_uV
== constraints
->max_uV
)
1049 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
1050 constraints
->min_uV
/ 1000);
1052 count
+= scnprintf(buf
+ count
, len
- count
,
1054 constraints
->min_uV
/ 1000,
1055 constraints
->max_uV
/ 1000);
1058 if (!constraints
->min_uV
||
1059 constraints
->min_uV
!= constraints
->max_uV
) {
1060 ret
= regulator_get_voltage_rdev(rdev
);
1062 count
+= scnprintf(buf
+ count
, len
- count
,
1063 "at %d mV ", ret
/ 1000);
1066 if (constraints
->uV_offset
)
1067 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
1068 constraints
->uV_offset
/ 1000);
1070 if (constraints
->min_uA
&& constraints
->max_uA
) {
1071 if (constraints
->min_uA
== constraints
->max_uA
)
1072 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
1073 constraints
->min_uA
/ 1000);
1075 count
+= scnprintf(buf
+ count
, len
- count
,
1077 constraints
->min_uA
/ 1000,
1078 constraints
->max_uA
/ 1000);
1081 if (!constraints
->min_uA
||
1082 constraints
->min_uA
!= constraints
->max_uA
) {
1083 ret
= _regulator_get_current_limit(rdev
);
1085 count
+= scnprintf(buf
+ count
, len
- count
,
1086 "at %d mA ", ret
/ 1000);
1089 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
1090 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
1091 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
1092 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
1093 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
1094 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
1095 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
1096 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
1099 scnprintf(buf
, len
, "no parameters");
1101 rdev_dbg(rdev
, "%s\n", buf
);
1103 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
1104 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
1106 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1109 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
1110 struct regulation_constraints
*constraints
)
1112 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1115 /* do we need to apply the constraint voltage */
1116 if (rdev
->constraints
->apply_uV
&&
1117 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
1118 int target_min
, target_max
;
1119 int current_uV
= regulator_get_voltage_rdev(rdev
);
1121 if (current_uV
== -ENOTRECOVERABLE
) {
1122 /* This regulator can't be read and must be initialized */
1123 rdev_info(rdev
, "Setting %d-%duV\n",
1124 rdev
->constraints
->min_uV
,
1125 rdev
->constraints
->max_uV
);
1126 _regulator_do_set_voltage(rdev
,
1127 rdev
->constraints
->min_uV
,
1128 rdev
->constraints
->max_uV
);
1129 current_uV
= regulator_get_voltage_rdev(rdev
);
1132 if (current_uV
< 0) {
1134 "failed to get the current voltage(%d)\n",
1140 * If we're below the minimum voltage move up to the
1141 * minimum voltage, if we're above the maximum voltage
1142 * then move down to the maximum.
1144 target_min
= current_uV
;
1145 target_max
= current_uV
;
1147 if (current_uV
< rdev
->constraints
->min_uV
) {
1148 target_min
= rdev
->constraints
->min_uV
;
1149 target_max
= rdev
->constraints
->min_uV
;
1152 if (current_uV
> rdev
->constraints
->max_uV
) {
1153 target_min
= rdev
->constraints
->max_uV
;
1154 target_max
= rdev
->constraints
->max_uV
;
1157 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
1158 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
1159 current_uV
, target_min
, target_max
);
1160 ret
= _regulator_do_set_voltage(
1161 rdev
, target_min
, target_max
);
1164 "failed to apply %d-%duV constraint(%d)\n",
1165 target_min
, target_max
, ret
);
1171 /* constrain machine-level voltage specs to fit
1172 * the actual range supported by this regulator.
1174 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
1175 int count
= rdev
->desc
->n_voltages
;
1177 int min_uV
= INT_MAX
;
1178 int max_uV
= INT_MIN
;
1179 int cmin
= constraints
->min_uV
;
1180 int cmax
= constraints
->max_uV
;
1182 /* it's safe to autoconfigure fixed-voltage supplies
1183 and the constraints are used by list_voltage. */
1184 if (count
== 1 && !cmin
) {
1187 constraints
->min_uV
= cmin
;
1188 constraints
->max_uV
= cmax
;
1191 /* voltage constraints are optional */
1192 if ((cmin
== 0) && (cmax
== 0))
1195 /* else require explicit machine-level constraints */
1196 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
1197 rdev_err(rdev
, "invalid voltage constraints\n");
1201 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1202 for (i
= 0; i
< count
; i
++) {
1205 value
= ops
->list_voltage(rdev
, i
);
1209 /* maybe adjust [min_uV..max_uV] */
1210 if (value
>= cmin
&& value
< min_uV
)
1212 if (value
<= cmax
&& value
> max_uV
)
1216 /* final: [min_uV..max_uV] valid iff constraints valid */
1217 if (max_uV
< min_uV
) {
1219 "unsupportable voltage constraints %u-%uuV\n",
1224 /* use regulator's subset of machine constraints */
1225 if (constraints
->min_uV
< min_uV
) {
1226 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
1227 constraints
->min_uV
, min_uV
);
1228 constraints
->min_uV
= min_uV
;
1230 if (constraints
->max_uV
> max_uV
) {
1231 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
1232 constraints
->max_uV
, max_uV
);
1233 constraints
->max_uV
= max_uV
;
1240 static int machine_constraints_current(struct regulator_dev
*rdev
,
1241 struct regulation_constraints
*constraints
)
1243 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1246 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1249 if (constraints
->min_uA
> constraints
->max_uA
) {
1250 rdev_err(rdev
, "Invalid current constraints\n");
1254 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1255 rdev_warn(rdev
, "Operation of current configuration missing\n");
1259 /* Set regulator current in constraints range */
1260 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1261 constraints
->max_uA
);
1263 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1270 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1273 * set_machine_constraints - sets regulator constraints
1274 * @rdev: regulator source
1275 * @constraints: constraints to apply
1277 * Allows platform initialisation code to define and constrain
1278 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1279 * Constraints *must* be set by platform code in order for some
1280 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1283 static int set_machine_constraints(struct regulator_dev
*rdev
,
1284 const struct regulation_constraints
*constraints
)
1287 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1290 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1293 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1295 if (!rdev
->constraints
)
1298 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1302 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1306 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1307 ret
= ops
->set_input_current_limit(rdev
,
1308 rdev
->constraints
->ilim_uA
);
1310 rdev_err(rdev
, "failed to set input limit\n");
1315 /* do we need to setup our suspend state */
1316 if (rdev
->constraints
->initial_state
) {
1317 ret
= suspend_set_state(rdev
, rdev
->constraints
->initial_state
);
1319 rdev_err(rdev
, "failed to set suspend state\n");
1324 if (rdev
->constraints
->initial_mode
) {
1325 if (!ops
->set_mode
) {
1326 rdev_err(rdev
, "no set_mode operation\n");
1330 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1332 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1335 } else if (rdev
->constraints
->system_load
) {
1337 * We'll only apply the initial system load if an
1338 * initial mode wasn't specified.
1340 drms_uA_update(rdev
);
1343 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1344 && ops
->set_ramp_delay
) {
1345 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1347 rdev_err(rdev
, "failed to set ramp_delay\n");
1352 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1353 ret
= ops
->set_pull_down(rdev
);
1355 rdev_err(rdev
, "failed to set pull down\n");
1360 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1361 ret
= ops
->set_soft_start(rdev
);
1363 rdev_err(rdev
, "failed to set soft start\n");
1368 if (rdev
->constraints
->over_current_protection
1369 && ops
->set_over_current_protection
) {
1370 ret
= ops
->set_over_current_protection(rdev
);
1372 rdev_err(rdev
, "failed to set over current protection\n");
1377 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1378 bool ad_state
= (rdev
->constraints
->active_discharge
==
1379 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1381 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1383 rdev_err(rdev
, "failed to set active discharge\n");
1388 /* If the constraints say the regulator should be on at this point
1389 * and we have control then make sure it is enabled.
1391 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1393 ret
= regulator_enable(rdev
->supply
);
1395 _regulator_put(rdev
->supply
);
1396 rdev
->supply
= NULL
;
1401 ret
= _regulator_do_enable(rdev
);
1402 if (ret
< 0 && ret
!= -EINVAL
) {
1403 rdev_err(rdev
, "failed to enable\n");
1407 if (rdev
->constraints
->always_on
)
1411 print_constraints(rdev
);
1416 * set_supply - set regulator supply regulator
1417 * @rdev: regulator name
1418 * @supply_rdev: supply regulator name
1420 * Called by platform initialisation code to set the supply regulator for this
1421 * regulator. This ensures that a regulators supply will also be enabled by the
1422 * core if it's child is enabled.
1424 static int set_supply(struct regulator_dev
*rdev
,
1425 struct regulator_dev
*supply_rdev
)
1429 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1431 if (!try_module_get(supply_rdev
->owner
))
1434 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1435 if (rdev
->supply
== NULL
) {
1439 supply_rdev
->open_count
++;
1445 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1446 * @rdev: regulator source
1447 * @consumer_dev_name: dev_name() string for device supply applies to
1448 * @supply: symbolic name for supply
1450 * Allows platform initialisation code to map physical regulator
1451 * sources to symbolic names for supplies for use by devices. Devices
1452 * should use these symbolic names to request regulators, avoiding the
1453 * need to provide board-specific regulator names as platform data.
1455 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1456 const char *consumer_dev_name
,
1459 struct regulator_map
*node
;
1465 if (consumer_dev_name
!= NULL
)
1470 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1471 if (node
->dev_name
&& consumer_dev_name
) {
1472 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1474 } else if (node
->dev_name
|| consumer_dev_name
) {
1478 if (strcmp(node
->supply
, supply
) != 0)
1481 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1483 dev_name(&node
->regulator
->dev
),
1484 node
->regulator
->desc
->name
,
1486 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1490 node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1494 node
->regulator
= rdev
;
1495 node
->supply
= supply
;
1498 node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1499 if (node
->dev_name
== NULL
) {
1505 list_add(&node
->list
, ®ulator_map_list
);
1509 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1511 struct regulator_map
*node
, *n
;
1513 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1514 if (rdev
== node
->regulator
) {
1515 list_del(&node
->list
);
1516 kfree(node
->dev_name
);
1522 #ifdef CONFIG_DEBUG_FS
1523 static ssize_t
constraint_flags_read_file(struct file
*file
,
1524 char __user
*user_buf
,
1525 size_t count
, loff_t
*ppos
)
1527 const struct regulator
*regulator
= file
->private_data
;
1528 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1535 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1539 ret
= snprintf(buf
, PAGE_SIZE
,
1543 "ramp_disable: %u\n"
1546 "over_current_protection: %u\n",
1553 c
->over_current_protection
);
1555 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1563 static const struct file_operations constraint_flags_fops
= {
1564 #ifdef CONFIG_DEBUG_FS
1565 .open
= simple_open
,
1566 .read
= constraint_flags_read_file
,
1567 .llseek
= default_llseek
,
1571 #define REG_STR_SIZE 64
1573 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1575 const char *supply_name
)
1577 struct regulator
*regulator
;
1578 char buf
[REG_STR_SIZE
];
1581 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1582 if (regulator
== NULL
)
1585 regulator_lock(rdev
);
1586 regulator
->rdev
= rdev
;
1587 list_add(®ulator
->list
, &rdev
->consumer_list
);
1590 regulator
->dev
= dev
;
1592 /* Add a link to the device sysfs entry */
1593 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1594 dev
->kobj
.name
, supply_name
);
1595 if (size
>= REG_STR_SIZE
)
1598 regulator
->supply_name
= kstrdup(buf
, GFP_KERNEL
);
1599 if (regulator
->supply_name
== NULL
)
1602 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1605 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1606 dev
->kobj
.name
, err
);
1610 regulator
->supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1611 if (regulator
->supply_name
== NULL
)
1615 regulator
->debugfs
= debugfs_create_dir(regulator
->supply_name
,
1617 if (!regulator
->debugfs
) {
1618 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1620 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1621 ®ulator
->uA_load
);
1622 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1623 ®ulator
->voltage
[PM_SUSPEND_ON
].min_uV
);
1624 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1625 ®ulator
->voltage
[PM_SUSPEND_ON
].max_uV
);
1626 debugfs_create_file("constraint_flags", 0444,
1627 regulator
->debugfs
, regulator
,
1628 &constraint_flags_fops
);
1632 * Check now if the regulator is an always on regulator - if
1633 * it is then we don't need to do nearly so much work for
1634 * enable/disable calls.
1636 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1637 _regulator_is_enabled(rdev
))
1638 regulator
->always_on
= true;
1640 regulator_unlock(rdev
);
1643 list_del(®ulator
->list
);
1645 regulator_unlock(rdev
);
1649 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1651 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1652 return rdev
->constraints
->enable_time
;
1653 if (rdev
->desc
->ops
->enable_time
)
1654 return rdev
->desc
->ops
->enable_time(rdev
);
1655 return rdev
->desc
->enable_time
;
1658 static struct regulator_supply_alias
*regulator_find_supply_alias(
1659 struct device
*dev
, const char *supply
)
1661 struct regulator_supply_alias
*map
;
1663 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1664 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1670 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1672 struct regulator_supply_alias
*map
;
1674 map
= regulator_find_supply_alias(*dev
, *supply
);
1676 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1677 *supply
, map
->alias_supply
,
1678 dev_name(map
->alias_dev
));
1679 *dev
= map
->alias_dev
;
1680 *supply
= map
->alias_supply
;
1684 static int regulator_match(struct device
*dev
, const void *data
)
1686 struct regulator_dev
*r
= dev_to_rdev(dev
);
1688 return strcmp(rdev_get_name(r
), data
) == 0;
1691 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1695 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1697 return dev
? dev_to_rdev(dev
) : NULL
;
1701 * regulator_dev_lookup - lookup a regulator device.
1702 * @dev: device for regulator "consumer".
1703 * @supply: Supply name or regulator ID.
1705 * If successful, returns a struct regulator_dev that corresponds to the name
1706 * @supply and with the embedded struct device refcount incremented by one.
1707 * The refcount must be dropped by calling put_device().
1708 * On failure one of the following ERR-PTR-encoded values is returned:
1709 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1712 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1715 struct regulator_dev
*r
= NULL
;
1716 struct device_node
*node
;
1717 struct regulator_map
*map
;
1718 const char *devname
= NULL
;
1720 regulator_supply_alias(&dev
, &supply
);
1722 /* first do a dt based lookup */
1723 if (dev
&& dev
->of_node
) {
1724 node
= of_get_regulator(dev
, supply
);
1726 r
= of_find_regulator_by_node(node
);
1731 * We have a node, but there is no device.
1732 * assume it has not registered yet.
1734 return ERR_PTR(-EPROBE_DEFER
);
1738 /* if not found, try doing it non-dt way */
1740 devname
= dev_name(dev
);
1742 mutex_lock(®ulator_list_mutex
);
1743 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1744 /* If the mapping has a device set up it must match */
1745 if (map
->dev_name
&&
1746 (!devname
|| strcmp(map
->dev_name
, devname
)))
1749 if (strcmp(map
->supply
, supply
) == 0 &&
1750 get_device(&map
->regulator
->dev
)) {
1755 mutex_unlock(®ulator_list_mutex
);
1760 r
= regulator_lookup_by_name(supply
);
1764 return ERR_PTR(-ENODEV
);
1767 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1769 struct regulator_dev
*r
;
1770 struct device
*dev
= rdev
->dev
.parent
;
1773 /* No supply to resolve? */
1774 if (!rdev
->supply_name
)
1777 /* Supply already resolved? */
1781 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
1785 /* Did the lookup explicitly defer for us? */
1786 if (ret
== -EPROBE_DEFER
)
1789 if (have_full_constraints()) {
1790 r
= dummy_regulator_rdev
;
1791 get_device(&r
->dev
);
1793 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1794 rdev
->supply_name
, rdev
->desc
->name
);
1795 return -EPROBE_DEFER
;
1800 * If the supply's parent device is not the same as the
1801 * regulator's parent device, then ensure the parent device
1802 * is bound before we resolve the supply, in case the parent
1803 * device get probe deferred and unregisters the supply.
1805 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
1806 if (!device_is_bound(r
->dev
.parent
)) {
1807 put_device(&r
->dev
);
1808 return -EPROBE_DEFER
;
1812 /* Recursively resolve the supply of the supply */
1813 ret
= regulator_resolve_supply(r
);
1815 put_device(&r
->dev
);
1819 ret
= set_supply(rdev
, r
);
1821 put_device(&r
->dev
);
1826 * In set_machine_constraints() we may have turned this regulator on
1827 * but we couldn't propagate to the supply if it hadn't been resolved
1830 if (rdev
->use_count
) {
1831 ret
= regulator_enable(rdev
->supply
);
1833 _regulator_put(rdev
->supply
);
1834 rdev
->supply
= NULL
;
1842 /* Internal regulator request function */
1843 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1844 enum regulator_get_type get_type
)
1846 struct regulator_dev
*rdev
;
1847 struct regulator
*regulator
;
1848 const char *devname
= dev
? dev_name(dev
) : "deviceless";
1851 if (get_type
>= MAX_GET_TYPE
) {
1852 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
1853 return ERR_PTR(-EINVAL
);
1857 pr_err("get() with no identifier\n");
1858 return ERR_PTR(-EINVAL
);
1861 rdev
= regulator_dev_lookup(dev
, id
);
1863 ret
= PTR_ERR(rdev
);
1866 * If regulator_dev_lookup() fails with error other
1867 * than -ENODEV our job here is done, we simply return it.
1870 return ERR_PTR(ret
);
1872 if (!have_full_constraints()) {
1874 "incomplete constraints, dummy supplies not allowed\n");
1875 return ERR_PTR(-ENODEV
);
1881 * Assume that a regulator is physically present and
1882 * enabled, even if it isn't hooked up, and just
1886 "%s supply %s not found, using dummy regulator\n",
1888 rdev
= dummy_regulator_rdev
;
1889 get_device(&rdev
->dev
);
1894 "dummy supplies not allowed for exclusive requests\n");
1898 return ERR_PTR(-ENODEV
);
1902 if (rdev
->exclusive
) {
1903 regulator
= ERR_PTR(-EPERM
);
1904 put_device(&rdev
->dev
);
1908 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
1909 regulator
= ERR_PTR(-EBUSY
);
1910 put_device(&rdev
->dev
);
1914 mutex_lock(®ulator_list_mutex
);
1915 ret
= (rdev
->coupling_desc
.n_resolved
!= rdev
->coupling_desc
.n_coupled
);
1916 mutex_unlock(®ulator_list_mutex
);
1919 regulator
= ERR_PTR(-EPROBE_DEFER
);
1920 put_device(&rdev
->dev
);
1924 ret
= regulator_resolve_supply(rdev
);
1926 regulator
= ERR_PTR(ret
);
1927 put_device(&rdev
->dev
);
1931 if (!try_module_get(rdev
->owner
)) {
1932 regulator
= ERR_PTR(-EPROBE_DEFER
);
1933 put_device(&rdev
->dev
);
1937 regulator
= create_regulator(rdev
, dev
, id
);
1938 if (regulator
== NULL
) {
1939 regulator
= ERR_PTR(-ENOMEM
);
1940 module_put(rdev
->owner
);
1941 put_device(&rdev
->dev
);
1946 if (get_type
== EXCLUSIVE_GET
) {
1947 rdev
->exclusive
= 1;
1949 ret
= _regulator_is_enabled(rdev
);
1951 rdev
->use_count
= 1;
1953 rdev
->use_count
= 0;
1956 device_link_add(dev
, &rdev
->dev
, DL_FLAG_STATELESS
);
1962 * regulator_get - lookup and obtain a reference to a regulator.
1963 * @dev: device for regulator "consumer"
1964 * @id: Supply name or regulator ID.
1966 * Returns a struct regulator corresponding to the regulator producer,
1967 * or IS_ERR() condition containing errno.
1969 * Use of supply names configured via regulator_set_device_supply() is
1970 * strongly encouraged. It is recommended that the supply name used
1971 * should match the name used for the supply and/or the relevant
1972 * device pins in the datasheet.
1974 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1976 return _regulator_get(dev
, id
, NORMAL_GET
);
1978 EXPORT_SYMBOL_GPL(regulator_get
);
1981 * regulator_get_exclusive - obtain exclusive access to a regulator.
1982 * @dev: device for regulator "consumer"
1983 * @id: Supply name or regulator ID.
1985 * Returns a struct regulator corresponding to the regulator producer,
1986 * or IS_ERR() condition containing errno. Other consumers will be
1987 * unable to obtain this regulator while this reference is held and the
1988 * use count for the regulator will be initialised to reflect the current
1989 * state of the regulator.
1991 * This is intended for use by consumers which cannot tolerate shared
1992 * use of the regulator such as those which need to force the
1993 * regulator off for correct operation of the hardware they are
1996 * Use of supply names configured via regulator_set_device_supply() is
1997 * strongly encouraged. It is recommended that the supply name used
1998 * should match the name used for the supply and/or the relevant
1999 * device pins in the datasheet.
2001 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
2003 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
2005 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
2008 * regulator_get_optional - obtain optional access to a regulator.
2009 * @dev: device for regulator "consumer"
2010 * @id: Supply name or regulator ID.
2012 * Returns a struct regulator corresponding to the regulator producer,
2013 * or IS_ERR() condition containing errno.
2015 * This is intended for use by consumers for devices which can have
2016 * some supplies unconnected in normal use, such as some MMC devices.
2017 * It can allow the regulator core to provide stub supplies for other
2018 * supplies requested using normal regulator_get() calls without
2019 * disrupting the operation of drivers that can handle absent
2022 * Use of supply names configured via regulator_set_device_supply() is
2023 * strongly encouraged. It is recommended that the supply name used
2024 * should match the name used for the supply and/or the relevant
2025 * device pins in the datasheet.
2027 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
2029 return _regulator_get(dev
, id
, OPTIONAL_GET
);
2031 EXPORT_SYMBOL_GPL(regulator_get_optional
);
2033 /* regulator_list_mutex lock held by regulator_put() */
2034 static void _regulator_put(struct regulator
*regulator
)
2036 struct regulator_dev
*rdev
;
2038 if (IS_ERR_OR_NULL(regulator
))
2041 lockdep_assert_held_once(®ulator_list_mutex
);
2043 /* Docs say you must disable before calling regulator_put() */
2044 WARN_ON(regulator
->enable_count
);
2046 rdev
= regulator
->rdev
;
2048 debugfs_remove_recursive(regulator
->debugfs
);
2050 if (regulator
->dev
) {
2051 device_link_remove(regulator
->dev
, &rdev
->dev
);
2053 /* remove any sysfs entries */
2054 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
2057 regulator_lock(rdev
);
2058 list_del(®ulator
->list
);
2061 rdev
->exclusive
= 0;
2062 regulator_unlock(rdev
);
2064 kfree_const(regulator
->supply_name
);
2067 module_put(rdev
->owner
);
2068 put_device(&rdev
->dev
);
2072 * regulator_put - "free" the regulator source
2073 * @regulator: regulator source
2075 * Note: drivers must ensure that all regulator_enable calls made on this
2076 * regulator source are balanced by regulator_disable calls prior to calling
2079 void regulator_put(struct regulator
*regulator
)
2081 mutex_lock(®ulator_list_mutex
);
2082 _regulator_put(regulator
);
2083 mutex_unlock(®ulator_list_mutex
);
2085 EXPORT_SYMBOL_GPL(regulator_put
);
2088 * regulator_register_supply_alias - Provide device alias for supply lookup
2090 * @dev: device that will be given as the regulator "consumer"
2091 * @id: Supply name or regulator ID
2092 * @alias_dev: device that should be used to lookup the supply
2093 * @alias_id: Supply name or regulator ID that should be used to lookup the
2096 * All lookups for id on dev will instead be conducted for alias_id on
2099 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
2100 struct device
*alias_dev
,
2101 const char *alias_id
)
2103 struct regulator_supply_alias
*map
;
2105 map
= regulator_find_supply_alias(dev
, id
);
2109 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
2114 map
->src_supply
= id
;
2115 map
->alias_dev
= alias_dev
;
2116 map
->alias_supply
= alias_id
;
2118 list_add(&map
->list
, ®ulator_supply_alias_list
);
2120 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2121 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
2125 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
2128 * regulator_unregister_supply_alias - Remove device alias
2130 * @dev: device that will be given as the regulator "consumer"
2131 * @id: Supply name or regulator ID
2133 * Remove a lookup alias if one exists for id on dev.
2135 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
2137 struct regulator_supply_alias
*map
;
2139 map
= regulator_find_supply_alias(dev
, id
);
2141 list_del(&map
->list
);
2145 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
2148 * regulator_bulk_register_supply_alias - register multiple aliases
2150 * @dev: device that will be given as the regulator "consumer"
2151 * @id: List of supply names or regulator IDs
2152 * @alias_dev: device that should be used to lookup the supply
2153 * @alias_id: List of supply names or regulator IDs that should be used to
2155 * @num_id: Number of aliases to register
2157 * @return 0 on success, an errno on failure.
2159 * This helper function allows drivers to register several supply
2160 * aliases in one operation. If any of the aliases cannot be
2161 * registered any aliases that were registered will be removed
2162 * before returning to the caller.
2164 int regulator_bulk_register_supply_alias(struct device
*dev
,
2165 const char *const *id
,
2166 struct device
*alias_dev
,
2167 const char *const *alias_id
,
2173 for (i
= 0; i
< num_id
; ++i
) {
2174 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
2184 "Failed to create supply alias %s,%s -> %s,%s\n",
2185 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
2188 regulator_unregister_supply_alias(dev
, id
[i
]);
2192 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
2195 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2197 * @dev: device that will be given as the regulator "consumer"
2198 * @id: List of supply names or regulator IDs
2199 * @num_id: Number of aliases to unregister
2201 * This helper function allows drivers to unregister several supply
2202 * aliases in one operation.
2204 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
2205 const char *const *id
,
2210 for (i
= 0; i
< num_id
; ++i
)
2211 regulator_unregister_supply_alias(dev
, id
[i
]);
2213 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
2216 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2217 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
2218 const struct regulator_config
*config
)
2220 struct regulator_enable_gpio
*pin
;
2221 struct gpio_desc
*gpiod
;
2223 gpiod
= config
->ena_gpiod
;
2225 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
2226 if (pin
->gpiod
== gpiod
) {
2227 rdev_dbg(rdev
, "GPIO is already used\n");
2228 goto update_ena_gpio_to_rdev
;
2232 pin
= kzalloc(sizeof(struct regulator_enable_gpio
), GFP_KERNEL
);
2237 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
2239 update_ena_gpio_to_rdev
:
2240 pin
->request_count
++;
2241 rdev
->ena_pin
= pin
;
2245 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
2247 struct regulator_enable_gpio
*pin
, *n
;
2252 /* Free the GPIO only in case of no use */
2253 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
2254 if (pin
->gpiod
== rdev
->ena_pin
->gpiod
) {
2255 if (pin
->request_count
<= 1) {
2256 pin
->request_count
= 0;
2257 gpiod_put(pin
->gpiod
);
2258 list_del(&pin
->list
);
2260 rdev
->ena_pin
= NULL
;
2263 pin
->request_count
--;
2270 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2271 * @rdev: regulator_dev structure
2272 * @enable: enable GPIO at initial use?
2274 * GPIO is enabled in case of initial use. (enable_count is 0)
2275 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2277 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2279 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2285 /* Enable GPIO at initial use */
2286 if (pin
->enable_count
== 0)
2287 gpiod_set_value_cansleep(pin
->gpiod
, 1);
2289 pin
->enable_count
++;
2291 if (pin
->enable_count
> 1) {
2292 pin
->enable_count
--;
2296 /* Disable GPIO if not used */
2297 if (pin
->enable_count
<= 1) {
2298 gpiod_set_value_cansleep(pin
->gpiod
, 0);
2299 pin
->enable_count
= 0;
2307 * _regulator_enable_delay - a delay helper function
2308 * @delay: time to delay in microseconds
2310 * Delay for the requested amount of time as per the guidelines in:
2312 * Documentation/timers/timers-howto.rst
2314 * The assumption here is that regulators will never be enabled in
2315 * atomic context and therefore sleeping functions can be used.
2317 static void _regulator_enable_delay(unsigned int delay
)
2319 unsigned int ms
= delay
/ 1000;
2320 unsigned int us
= delay
% 1000;
2324 * For small enough values, handle super-millisecond
2325 * delays in the usleep_range() call below.
2334 * Give the scheduler some room to coalesce with any other
2335 * wakeup sources. For delays shorter than 10 us, don't even
2336 * bother setting up high-resolution timers and just busy-
2340 usleep_range(us
, us
+ 100);
2345 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2349 /* Query before enabling in case configuration dependent. */
2350 ret
= _regulator_get_enable_time(rdev
);
2354 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2358 trace_regulator_enable(rdev_get_name(rdev
));
2360 if (rdev
->desc
->off_on_delay
) {
2361 /* if needed, keep a distance of off_on_delay from last time
2362 * this regulator was disabled.
2364 unsigned long start_jiffy
= jiffies
;
2365 unsigned long intended
, max_delay
, remaining
;
2367 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2368 intended
= rdev
->last_off_jiffy
+ max_delay
;
2370 if (time_before(start_jiffy
, intended
)) {
2371 /* calc remaining jiffies to deal with one-time
2373 * in case of multiple timer wrapping, either it can be
2374 * detected by out-of-range remaining, or it cannot be
2375 * detected and we get a penalty of
2376 * _regulator_enable_delay().
2378 remaining
= intended
- start_jiffy
;
2379 if (remaining
<= max_delay
)
2380 _regulator_enable_delay(
2381 jiffies_to_usecs(remaining
));
2385 if (rdev
->ena_pin
) {
2386 if (!rdev
->ena_gpio_state
) {
2387 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2390 rdev
->ena_gpio_state
= 1;
2392 } else if (rdev
->desc
->ops
->enable
) {
2393 ret
= rdev
->desc
->ops
->enable(rdev
);
2400 /* Allow the regulator to ramp; it would be useful to extend
2401 * this for bulk operations so that the regulators can ramp
2403 trace_regulator_enable_delay(rdev_get_name(rdev
));
2405 _regulator_enable_delay(delay
);
2407 trace_regulator_enable_complete(rdev_get_name(rdev
));
2413 * _regulator_handle_consumer_enable - handle that a consumer enabled
2414 * @regulator: regulator source
2416 * Some things on a regulator consumer (like the contribution towards total
2417 * load on the regulator) only have an effect when the consumer wants the
2418 * regulator enabled. Explained in example with two consumers of the same
2420 * consumer A: set_load(100); => total load = 0
2421 * consumer A: regulator_enable(); => total load = 100
2422 * consumer B: set_load(1000); => total load = 100
2423 * consumer B: regulator_enable(); => total load = 1100
2424 * consumer A: regulator_disable(); => total_load = 1000
2426 * This function (together with _regulator_handle_consumer_disable) is
2427 * responsible for keeping track of the refcount for a given regulator consumer
2428 * and applying / unapplying these things.
2430 * Returns 0 upon no error; -error upon error.
2432 static int _regulator_handle_consumer_enable(struct regulator
*regulator
)
2434 struct regulator_dev
*rdev
= regulator
->rdev
;
2436 lockdep_assert_held_once(&rdev
->mutex
.base
);
2438 regulator
->enable_count
++;
2439 if (regulator
->uA_load
&& regulator
->enable_count
== 1)
2440 return drms_uA_update(rdev
);
2446 * _regulator_handle_consumer_disable - handle that a consumer disabled
2447 * @regulator: regulator source
2449 * The opposite of _regulator_handle_consumer_enable().
2451 * Returns 0 upon no error; -error upon error.
2453 static int _regulator_handle_consumer_disable(struct regulator
*regulator
)
2455 struct regulator_dev
*rdev
= regulator
->rdev
;
2457 lockdep_assert_held_once(&rdev
->mutex
.base
);
2459 if (!regulator
->enable_count
) {
2460 rdev_err(rdev
, "Underflow of regulator enable count\n");
2464 regulator
->enable_count
--;
2465 if (regulator
->uA_load
&& regulator
->enable_count
== 0)
2466 return drms_uA_update(rdev
);
2471 /* locks held by regulator_enable() */
2472 static int _regulator_enable(struct regulator
*regulator
)
2474 struct regulator_dev
*rdev
= regulator
->rdev
;
2477 lockdep_assert_held_once(&rdev
->mutex
.base
);
2479 if (rdev
->use_count
== 0 && rdev
->supply
) {
2480 ret
= _regulator_enable(rdev
->supply
);
2485 /* balance only if there are regulators coupled */
2486 if (rdev
->coupling_desc
.n_coupled
> 1) {
2487 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2489 goto err_disable_supply
;
2492 ret
= _regulator_handle_consumer_enable(regulator
);
2494 goto err_disable_supply
;
2496 if (rdev
->use_count
== 0) {
2497 /* The regulator may on if it's not switchable or left on */
2498 ret
= _regulator_is_enabled(rdev
);
2499 if (ret
== -EINVAL
|| ret
== 0) {
2500 if (!regulator_ops_is_valid(rdev
,
2501 REGULATOR_CHANGE_STATUS
)) {
2503 goto err_consumer_disable
;
2506 ret
= _regulator_do_enable(rdev
);
2508 goto err_consumer_disable
;
2510 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2512 } else if (ret
< 0) {
2513 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2514 goto err_consumer_disable
;
2516 /* Fallthrough on positive return values - already enabled */
2523 err_consumer_disable
:
2524 _regulator_handle_consumer_disable(regulator
);
2527 if (rdev
->use_count
== 0 && rdev
->supply
)
2528 _regulator_disable(rdev
->supply
);
2534 * regulator_enable - enable regulator output
2535 * @regulator: regulator source
2537 * Request that the regulator be enabled with the regulator output at
2538 * the predefined voltage or current value. Calls to regulator_enable()
2539 * must be balanced with calls to regulator_disable().
2541 * NOTE: the output value can be set by other drivers, boot loader or may be
2542 * hardwired in the regulator.
2544 int regulator_enable(struct regulator
*regulator
)
2546 struct regulator_dev
*rdev
= regulator
->rdev
;
2547 struct ww_acquire_ctx ww_ctx
;
2550 regulator_lock_dependent(rdev
, &ww_ctx
);
2551 ret
= _regulator_enable(regulator
);
2552 regulator_unlock_dependent(rdev
, &ww_ctx
);
2556 EXPORT_SYMBOL_GPL(regulator_enable
);
2558 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2562 trace_regulator_disable(rdev_get_name(rdev
));
2564 if (rdev
->ena_pin
) {
2565 if (rdev
->ena_gpio_state
) {
2566 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2569 rdev
->ena_gpio_state
= 0;
2572 } else if (rdev
->desc
->ops
->disable
) {
2573 ret
= rdev
->desc
->ops
->disable(rdev
);
2578 /* cares about last_off_jiffy only if off_on_delay is required by
2581 if (rdev
->desc
->off_on_delay
)
2582 rdev
->last_off_jiffy
= jiffies
;
2584 trace_regulator_disable_complete(rdev_get_name(rdev
));
2589 /* locks held by regulator_disable() */
2590 static int _regulator_disable(struct regulator
*regulator
)
2592 struct regulator_dev
*rdev
= regulator
->rdev
;
2595 lockdep_assert_held_once(&rdev
->mutex
.base
);
2597 if (WARN(rdev
->use_count
<= 0,
2598 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2601 /* are we the last user and permitted to disable ? */
2602 if (rdev
->use_count
== 1 &&
2603 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2605 /* we are last user */
2606 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2607 ret
= _notifier_call_chain(rdev
,
2608 REGULATOR_EVENT_PRE_DISABLE
,
2610 if (ret
& NOTIFY_STOP_MASK
)
2613 ret
= _regulator_do_disable(rdev
);
2615 rdev_err(rdev
, "failed to disable\n");
2616 _notifier_call_chain(rdev
,
2617 REGULATOR_EVENT_ABORT_DISABLE
,
2621 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2625 rdev
->use_count
= 0;
2626 } else if (rdev
->use_count
> 1) {
2631 ret
= _regulator_handle_consumer_disable(regulator
);
2633 if (ret
== 0 && rdev
->coupling_desc
.n_coupled
> 1)
2634 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2636 if (ret
== 0 && rdev
->use_count
== 0 && rdev
->supply
)
2637 ret
= _regulator_disable(rdev
->supply
);
2643 * regulator_disable - disable regulator output
2644 * @regulator: regulator source
2646 * Disable the regulator output voltage or current. Calls to
2647 * regulator_enable() must be balanced with calls to
2648 * regulator_disable().
2650 * NOTE: this will only disable the regulator output if no other consumer
2651 * devices have it enabled, the regulator device supports disabling and
2652 * machine constraints permit this operation.
2654 int regulator_disable(struct regulator
*regulator
)
2656 struct regulator_dev
*rdev
= regulator
->rdev
;
2657 struct ww_acquire_ctx ww_ctx
;
2660 regulator_lock_dependent(rdev
, &ww_ctx
);
2661 ret
= _regulator_disable(regulator
);
2662 regulator_unlock_dependent(rdev
, &ww_ctx
);
2666 EXPORT_SYMBOL_GPL(regulator_disable
);
2668 /* locks held by regulator_force_disable() */
2669 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2673 lockdep_assert_held_once(&rdev
->mutex
.base
);
2675 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2676 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2677 if (ret
& NOTIFY_STOP_MASK
)
2680 ret
= _regulator_do_disable(rdev
);
2682 rdev_err(rdev
, "failed to force disable\n");
2683 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2684 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2688 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2689 REGULATOR_EVENT_DISABLE
, NULL
);
2695 * regulator_force_disable - force disable regulator output
2696 * @regulator: regulator source
2698 * Forcibly disable the regulator output voltage or current.
2699 * NOTE: this *will* disable the regulator output even if other consumer
2700 * devices have it enabled. This should be used for situations when device
2701 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2703 int regulator_force_disable(struct regulator
*regulator
)
2705 struct regulator_dev
*rdev
= regulator
->rdev
;
2706 struct ww_acquire_ctx ww_ctx
;
2709 regulator_lock_dependent(rdev
, &ww_ctx
);
2711 ret
= _regulator_force_disable(regulator
->rdev
);
2713 if (rdev
->coupling_desc
.n_coupled
> 1)
2714 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2716 if (regulator
->uA_load
) {
2717 regulator
->uA_load
= 0;
2718 ret
= drms_uA_update(rdev
);
2721 if (rdev
->use_count
!= 0 && rdev
->supply
)
2722 _regulator_disable(rdev
->supply
);
2724 regulator_unlock_dependent(rdev
, &ww_ctx
);
2728 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2730 static void regulator_disable_work(struct work_struct
*work
)
2732 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2734 struct ww_acquire_ctx ww_ctx
;
2736 struct regulator
*regulator
;
2737 int total_count
= 0;
2739 regulator_lock_dependent(rdev
, &ww_ctx
);
2742 * Workqueue functions queue the new work instance while the previous
2743 * work instance is being processed. Cancel the queued work instance
2744 * as the work instance under processing does the job of the queued
2747 cancel_delayed_work(&rdev
->disable_work
);
2749 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
2750 count
= regulator
->deferred_disables
;
2755 total_count
+= count
;
2756 regulator
->deferred_disables
= 0;
2758 for (i
= 0; i
< count
; i
++) {
2759 ret
= _regulator_disable(regulator
);
2761 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2764 WARN_ON(!total_count
);
2766 if (rdev
->coupling_desc
.n_coupled
> 1)
2767 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2769 regulator_unlock_dependent(rdev
, &ww_ctx
);
2773 * regulator_disable_deferred - disable regulator output with delay
2774 * @regulator: regulator source
2775 * @ms: milliseconds until the regulator is disabled
2777 * Execute regulator_disable() on the regulator after a delay. This
2778 * is intended for use with devices that require some time to quiesce.
2780 * NOTE: this will only disable the regulator output if no other consumer
2781 * devices have it enabled, the regulator device supports disabling and
2782 * machine constraints permit this operation.
2784 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2786 struct regulator_dev
*rdev
= regulator
->rdev
;
2789 return regulator_disable(regulator
);
2791 regulator_lock(rdev
);
2792 regulator
->deferred_disables
++;
2793 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2794 msecs_to_jiffies(ms
));
2795 regulator_unlock(rdev
);
2799 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2801 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2803 /* A GPIO control always takes precedence */
2805 return rdev
->ena_gpio_state
;
2807 /* If we don't know then assume that the regulator is always on */
2808 if (!rdev
->desc
->ops
->is_enabled
)
2811 return rdev
->desc
->ops
->is_enabled(rdev
);
2814 static int _regulator_list_voltage(struct regulator_dev
*rdev
,
2815 unsigned selector
, int lock
)
2817 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2820 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2821 return rdev
->desc
->fixed_uV
;
2823 if (ops
->list_voltage
) {
2824 if (selector
>= rdev
->desc
->n_voltages
)
2827 regulator_lock(rdev
);
2828 ret
= ops
->list_voltage(rdev
, selector
);
2830 regulator_unlock(rdev
);
2831 } else if (rdev
->is_switch
&& rdev
->supply
) {
2832 ret
= _regulator_list_voltage(rdev
->supply
->rdev
,
2839 if (ret
< rdev
->constraints
->min_uV
)
2841 else if (ret
> rdev
->constraints
->max_uV
)
2849 * regulator_is_enabled - is the regulator output enabled
2850 * @regulator: regulator source
2852 * Returns positive if the regulator driver backing the source/client
2853 * has requested that the device be enabled, zero if it hasn't, else a
2854 * negative errno code.
2856 * Note that the device backing this regulator handle can have multiple
2857 * users, so it might be enabled even if regulator_enable() was never
2858 * called for this particular source.
2860 int regulator_is_enabled(struct regulator
*regulator
)
2864 if (regulator
->always_on
)
2867 regulator_lock(regulator
->rdev
);
2868 ret
= _regulator_is_enabled(regulator
->rdev
);
2869 regulator_unlock(regulator
->rdev
);
2873 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2876 * regulator_count_voltages - count regulator_list_voltage() selectors
2877 * @regulator: regulator source
2879 * Returns number of selectors, or negative errno. Selectors are
2880 * numbered starting at zero, and typically correspond to bitfields
2881 * in hardware registers.
2883 int regulator_count_voltages(struct regulator
*regulator
)
2885 struct regulator_dev
*rdev
= regulator
->rdev
;
2887 if (rdev
->desc
->n_voltages
)
2888 return rdev
->desc
->n_voltages
;
2890 if (!rdev
->is_switch
|| !rdev
->supply
)
2893 return regulator_count_voltages(rdev
->supply
);
2895 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2898 * regulator_list_voltage - enumerate supported voltages
2899 * @regulator: regulator source
2900 * @selector: identify voltage to list
2901 * Context: can sleep
2903 * Returns a voltage that can be passed to @regulator_set_voltage(),
2904 * zero if this selector code can't be used on this system, or a
2907 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
2909 return _regulator_list_voltage(regulator
->rdev
, selector
, 1);
2911 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
2914 * regulator_get_regmap - get the regulator's register map
2915 * @regulator: regulator source
2917 * Returns the register map for the given regulator, or an ERR_PTR value
2918 * if the regulator doesn't use regmap.
2920 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
2922 struct regmap
*map
= regulator
->rdev
->regmap
;
2924 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
2928 * regulator_get_hardware_vsel_register - get the HW voltage selector register
2929 * @regulator: regulator source
2930 * @vsel_reg: voltage selector register, output parameter
2931 * @vsel_mask: mask for voltage selector bitfield, output parameter
2933 * Returns the hardware register offset and bitmask used for setting the
2934 * regulator voltage. This might be useful when configuring voltage-scaling
2935 * hardware or firmware that can make I2C requests behind the kernel's back,
2938 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
2939 * and 0 is returned, otherwise a negative errno is returned.
2941 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
2943 unsigned *vsel_mask
)
2945 struct regulator_dev
*rdev
= regulator
->rdev
;
2946 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2948 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2951 *vsel_reg
= rdev
->desc
->vsel_reg
;
2952 *vsel_mask
= rdev
->desc
->vsel_mask
;
2956 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
2959 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
2960 * @regulator: regulator source
2961 * @selector: identify voltage to list
2963 * Converts the selector to a hardware-specific voltage selector that can be
2964 * directly written to the regulator registers. The address of the voltage
2965 * register can be determined by calling @regulator_get_hardware_vsel_register.
2967 * On error a negative errno is returned.
2969 int regulator_list_hardware_vsel(struct regulator
*regulator
,
2972 struct regulator_dev
*rdev
= regulator
->rdev
;
2973 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2975 if (selector
>= rdev
->desc
->n_voltages
)
2977 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
2982 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
2985 * regulator_get_linear_step - return the voltage step size between VSEL values
2986 * @regulator: regulator source
2988 * Returns the voltage step size between VSEL values for linear
2989 * regulators, or return 0 if the regulator isn't a linear regulator.
2991 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
2993 struct regulator_dev
*rdev
= regulator
->rdev
;
2995 return rdev
->desc
->uV_step
;
2997 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
3000 * regulator_is_supported_voltage - check if a voltage range can be supported
3002 * @regulator: Regulator to check.
3003 * @min_uV: Minimum required voltage in uV.
3004 * @max_uV: Maximum required voltage in uV.
3006 * Returns a boolean.
3008 int regulator_is_supported_voltage(struct regulator
*regulator
,
3009 int min_uV
, int max_uV
)
3011 struct regulator_dev
*rdev
= regulator
->rdev
;
3012 int i
, voltages
, ret
;
3014 /* If we can't change voltage check the current voltage */
3015 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3016 ret
= regulator_get_voltage(regulator
);
3018 return min_uV
<= ret
&& ret
<= max_uV
;
3023 /* Any voltage within constrains range is fine? */
3024 if (rdev
->desc
->continuous_voltage_range
)
3025 return min_uV
>= rdev
->constraints
->min_uV
&&
3026 max_uV
<= rdev
->constraints
->max_uV
;
3028 ret
= regulator_count_voltages(regulator
);
3033 for (i
= 0; i
< voltages
; i
++) {
3034 ret
= regulator_list_voltage(regulator
, i
);
3036 if (ret
>= min_uV
&& ret
<= max_uV
)
3042 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
3044 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
3047 const struct regulator_desc
*desc
= rdev
->desc
;
3049 if (desc
->ops
->map_voltage
)
3050 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
3052 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
3053 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
3055 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
3056 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
3058 if (desc
->ops
->list_voltage
==
3059 regulator_list_voltage_pickable_linear_range
)
3060 return regulator_map_voltage_pickable_linear_range(rdev
,
3063 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
3066 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
3067 int min_uV
, int max_uV
,
3070 struct pre_voltage_change_data data
;
3073 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3074 data
.min_uV
= min_uV
;
3075 data
.max_uV
= max_uV
;
3076 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3078 if (ret
& NOTIFY_STOP_MASK
)
3081 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
3085 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3086 (void *)data
.old_uV
);
3091 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
3092 int uV
, unsigned selector
)
3094 struct pre_voltage_change_data data
;
3097 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3100 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3102 if (ret
& NOTIFY_STOP_MASK
)
3105 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
3109 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3110 (void *)data
.old_uV
);
3115 static int _regulator_set_voltage_sel_step(struct regulator_dev
*rdev
,
3116 int uV
, int new_selector
)
3118 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3119 int diff
, old_sel
, curr_sel
, ret
;
3121 /* Stepping is only needed if the regulator is enabled. */
3122 if (!_regulator_is_enabled(rdev
))
3125 if (!ops
->get_voltage_sel
)
3128 old_sel
= ops
->get_voltage_sel(rdev
);
3132 diff
= new_selector
- old_sel
;
3134 return 0; /* No change needed. */
3138 for (curr_sel
= old_sel
+ rdev
->desc
->vsel_step
;
3139 curr_sel
< new_selector
;
3140 curr_sel
+= rdev
->desc
->vsel_step
) {
3142 * Call the callback directly instead of using
3143 * _regulator_call_set_voltage_sel() as we don't
3144 * want to notify anyone yet. Same in the branch
3147 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3152 /* Stepping down. */
3153 for (curr_sel
= old_sel
- rdev
->desc
->vsel_step
;
3154 curr_sel
> new_selector
;
3155 curr_sel
-= rdev
->desc
->vsel_step
) {
3156 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3163 /* The final selector will trigger the notifiers. */
3164 return _regulator_call_set_voltage_sel(rdev
, uV
, new_selector
);
3168 * At least try to return to the previous voltage if setting a new
3171 (void)ops
->set_voltage_sel(rdev
, old_sel
);
3175 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
3176 int old_uV
, int new_uV
)
3178 unsigned int ramp_delay
= 0;
3180 if (rdev
->constraints
->ramp_delay
)
3181 ramp_delay
= rdev
->constraints
->ramp_delay
;
3182 else if (rdev
->desc
->ramp_delay
)
3183 ramp_delay
= rdev
->desc
->ramp_delay
;
3184 else if (rdev
->constraints
->settling_time
)
3185 return rdev
->constraints
->settling_time
;
3186 else if (rdev
->constraints
->settling_time_up
&&
3188 return rdev
->constraints
->settling_time_up
;
3189 else if (rdev
->constraints
->settling_time_down
&&
3191 return rdev
->constraints
->settling_time_down
;
3193 if (ramp_delay
== 0) {
3194 rdev_dbg(rdev
, "ramp_delay not set\n");
3198 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
3201 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
3202 int min_uV
, int max_uV
)
3207 unsigned int selector
;
3208 int old_selector
= -1;
3209 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3210 int old_uV
= regulator_get_voltage_rdev(rdev
);
3212 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
3214 min_uV
+= rdev
->constraints
->uV_offset
;
3215 max_uV
+= rdev
->constraints
->uV_offset
;
3218 * If we can't obtain the old selector there is not enough
3219 * info to call set_voltage_time_sel().
3221 if (_regulator_is_enabled(rdev
) &&
3222 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
3223 old_selector
= ops
->get_voltage_sel(rdev
);
3224 if (old_selector
< 0)
3225 return old_selector
;
3228 if (ops
->set_voltage
) {
3229 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
3233 if (ops
->list_voltage
)
3234 best_val
= ops
->list_voltage(rdev
,
3237 best_val
= regulator_get_voltage_rdev(rdev
);
3240 } else if (ops
->set_voltage_sel
) {
3241 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3243 best_val
= ops
->list_voltage(rdev
, ret
);
3244 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
3246 if (old_selector
== selector
)
3248 else if (rdev
->desc
->vsel_step
)
3249 ret
= _regulator_set_voltage_sel_step(
3250 rdev
, best_val
, selector
);
3252 ret
= _regulator_call_set_voltage_sel(
3253 rdev
, best_val
, selector
);
3265 if (ops
->set_voltage_time_sel
) {
3267 * Call set_voltage_time_sel if successfully obtained
3270 if (old_selector
>= 0 && old_selector
!= selector
)
3271 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
3274 if (old_uV
!= best_val
) {
3275 if (ops
->set_voltage_time
)
3276 delay
= ops
->set_voltage_time(rdev
, old_uV
,
3279 delay
= _regulator_set_voltage_time(rdev
,
3286 rdev_warn(rdev
, "failed to get delay: %d\n", delay
);
3290 /* Insert any necessary delays */
3291 if (delay
>= 1000) {
3292 mdelay(delay
/ 1000);
3293 udelay(delay
% 1000);
3298 if (best_val
>= 0) {
3299 unsigned long data
= best_val
;
3301 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
3306 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
3311 static int _regulator_do_set_suspend_voltage(struct regulator_dev
*rdev
,
3312 int min_uV
, int max_uV
, suspend_state_t state
)
3314 struct regulator_state
*rstate
;
3317 rstate
= regulator_get_suspend_state(rdev
, state
);
3321 if (min_uV
< rstate
->min_uV
)
3322 min_uV
= rstate
->min_uV
;
3323 if (max_uV
> rstate
->max_uV
)
3324 max_uV
= rstate
->max_uV
;
3326 sel
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3330 uV
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3331 if (uV
>= min_uV
&& uV
<= max_uV
)
3337 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
3338 int min_uV
, int max_uV
,
3339 suspend_state_t state
)
3341 struct regulator_dev
*rdev
= regulator
->rdev
;
3342 struct regulator_voltage
*voltage
= ®ulator
->voltage
[state
];
3344 int old_min_uV
, old_max_uV
;
3347 /* If we're setting the same range as last time the change
3348 * should be a noop (some cpufreq implementations use the same
3349 * voltage for multiple frequencies, for example).
3351 if (voltage
->min_uV
== min_uV
&& voltage
->max_uV
== max_uV
)
3354 /* If we're trying to set a range that overlaps the current voltage,
3355 * return successfully even though the regulator does not support
3356 * changing the voltage.
3358 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3359 current_uV
= regulator_get_voltage_rdev(rdev
);
3360 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
3361 voltage
->min_uV
= min_uV
;
3362 voltage
->max_uV
= max_uV
;
3368 if (!rdev
->desc
->ops
->set_voltage
&&
3369 !rdev
->desc
->ops
->set_voltage_sel
) {
3374 /* constraints check */
3375 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3379 /* restore original values in case of error */
3380 old_min_uV
= voltage
->min_uV
;
3381 old_max_uV
= voltage
->max_uV
;
3382 voltage
->min_uV
= min_uV
;
3383 voltage
->max_uV
= max_uV
;
3385 /* for not coupled regulators this will just set the voltage */
3386 ret
= regulator_balance_voltage(rdev
, state
);
3388 voltage
->min_uV
= old_min_uV
;
3389 voltage
->max_uV
= old_max_uV
;
3396 int regulator_set_voltage_rdev(struct regulator_dev
*rdev
, int min_uV
,
3397 int max_uV
, suspend_state_t state
)
3399 int best_supply_uV
= 0;
3400 int supply_change_uV
= 0;
3404 regulator_ops_is_valid(rdev
->supply
->rdev
,
3405 REGULATOR_CHANGE_VOLTAGE
) &&
3406 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
3407 rdev
->desc
->ops
->get_voltage_sel
))) {
3408 int current_supply_uV
;
3411 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3417 best_supply_uV
= _regulator_list_voltage(rdev
, selector
, 0);
3418 if (best_supply_uV
< 0) {
3419 ret
= best_supply_uV
;
3423 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
3425 current_supply_uV
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
3426 if (current_supply_uV
< 0) {
3427 ret
= current_supply_uV
;
3431 supply_change_uV
= best_supply_uV
- current_supply_uV
;
3434 if (supply_change_uV
> 0) {
3435 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3436 best_supply_uV
, INT_MAX
, state
);
3438 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
3444 if (state
== PM_SUSPEND_ON
)
3445 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3447 ret
= _regulator_do_set_suspend_voltage(rdev
, min_uV
,
3452 if (supply_change_uV
< 0) {
3453 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3454 best_supply_uV
, INT_MAX
, state
);
3456 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
3458 /* No need to fail here */
3465 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev
);
3467 static int regulator_limit_voltage_step(struct regulator_dev
*rdev
,
3468 int *current_uV
, int *min_uV
)
3470 struct regulation_constraints
*constraints
= rdev
->constraints
;
3472 /* Limit voltage change only if necessary */
3473 if (!constraints
->max_uV_step
|| !_regulator_is_enabled(rdev
))
3476 if (*current_uV
< 0) {
3477 *current_uV
= regulator_get_voltage_rdev(rdev
);
3479 if (*current_uV
< 0)
3483 if (abs(*current_uV
- *min_uV
) <= constraints
->max_uV_step
)
3486 /* Clamp target voltage within the given step */
3487 if (*current_uV
< *min_uV
)
3488 *min_uV
= min(*current_uV
+ constraints
->max_uV_step
,
3491 *min_uV
= max(*current_uV
- constraints
->max_uV_step
,
3497 static int regulator_get_optimal_voltage(struct regulator_dev
*rdev
,
3499 int *min_uV
, int *max_uV
,
3500 suspend_state_t state
,
3503 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3504 struct regulator_dev
**c_rdevs
= c_desc
->coupled_rdevs
;
3505 struct regulation_constraints
*constraints
= rdev
->constraints
;
3506 int desired_min_uV
= 0, desired_max_uV
= INT_MAX
;
3507 int max_current_uV
= 0, min_current_uV
= INT_MAX
;
3508 int highest_min_uV
= 0, target_uV
, possible_uV
;
3509 int i
, ret
, max_spread
;
3515 * If there are no coupled regulators, simply set the voltage
3516 * demanded by consumers.
3518 if (n_coupled
== 1) {
3520 * If consumers don't provide any demands, set voltage
3523 desired_min_uV
= constraints
->min_uV
;
3524 desired_max_uV
= constraints
->max_uV
;
3526 ret
= regulator_check_consumers(rdev
,
3528 &desired_max_uV
, state
);
3532 possible_uV
= desired_min_uV
;
3538 /* Find highest min desired voltage */
3539 for (i
= 0; i
< n_coupled
; i
++) {
3541 int tmp_max
= INT_MAX
;
3543 lockdep_assert_held_once(&c_rdevs
[i
]->mutex
.base
);
3545 ret
= regulator_check_consumers(c_rdevs
[i
],
3551 ret
= regulator_check_voltage(c_rdevs
[i
], &tmp_min
, &tmp_max
);
3555 highest_min_uV
= max(highest_min_uV
, tmp_min
);
3558 desired_min_uV
= tmp_min
;
3559 desired_max_uV
= tmp_max
;
3563 max_spread
= constraints
->max_spread
[0];
3566 * Let target_uV be equal to the desired one if possible.
3567 * If not, set it to minimum voltage, allowed by other coupled
3570 target_uV
= max(desired_min_uV
, highest_min_uV
- max_spread
);
3573 * Find min and max voltages, which currently aren't violating
3576 for (i
= 1; i
< n_coupled
; i
++) {
3579 if (!_regulator_is_enabled(c_rdevs
[i
]))
3582 tmp_act
= regulator_get_voltage_rdev(c_rdevs
[i
]);
3586 min_current_uV
= min(tmp_act
, min_current_uV
);
3587 max_current_uV
= max(tmp_act
, max_current_uV
);
3590 /* There aren't any other regulators enabled */
3591 if (max_current_uV
== 0) {
3592 possible_uV
= target_uV
;
3595 * Correct target voltage, so as it currently isn't
3596 * violating max_spread
3598 possible_uV
= max(target_uV
, max_current_uV
- max_spread
);
3599 possible_uV
= min(possible_uV
, min_current_uV
+ max_spread
);
3602 if (possible_uV
> desired_max_uV
)
3605 done
= (possible_uV
== target_uV
);
3606 desired_min_uV
= possible_uV
;
3609 /* Apply max_uV_step constraint if necessary */
3610 if (state
== PM_SUSPEND_ON
) {
3611 ret
= regulator_limit_voltage_step(rdev
, current_uV
,
3620 /* Set current_uV if wasn't done earlier in the code and if necessary */
3621 if (n_coupled
> 1 && *current_uV
== -1) {
3623 if (_regulator_is_enabled(rdev
)) {
3624 ret
= regulator_get_voltage_rdev(rdev
);
3630 *current_uV
= desired_min_uV
;
3634 *min_uV
= desired_min_uV
;
3635 *max_uV
= desired_max_uV
;
3640 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
3641 suspend_state_t state
)
3643 struct regulator_dev
**c_rdevs
;
3644 struct regulator_dev
*best_rdev
;
3645 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3646 struct regulator_coupler
*coupler
= c_desc
->coupler
;
3647 int i
, ret
, n_coupled
, best_min_uV
, best_max_uV
, best_c_rdev
;
3648 unsigned int delta
, best_delta
;
3649 unsigned long c_rdev_done
= 0;
3650 bool best_c_rdev_done
;
3652 c_rdevs
= c_desc
->coupled_rdevs
;
3653 n_coupled
= c_desc
->n_coupled
;
3656 * If system is in a state other than PM_SUSPEND_ON, don't check
3657 * other coupled regulators.
3659 if (state
!= PM_SUSPEND_ON
)
3662 if (c_desc
->n_resolved
< n_coupled
) {
3663 rdev_err(rdev
, "Not all coupled regulators registered\n");
3667 /* Invoke custom balancer for customized couplers */
3668 if (coupler
&& coupler
->balance_voltage
)
3669 return coupler
->balance_voltage(coupler
, rdev
, state
);
3672 * Find the best possible voltage change on each loop. Leave the loop
3673 * if there isn't any possible change.
3676 best_c_rdev_done
= false;
3684 * Find highest difference between optimal voltage
3685 * and current voltage.
3687 for (i
= 0; i
< n_coupled
; i
++) {
3689 * optimal_uV is the best voltage that can be set for
3690 * i-th regulator at the moment without violating
3691 * max_spread constraint in order to balance
3692 * the coupled voltages.
3694 int optimal_uV
= 0, optimal_max_uV
= 0, current_uV
= 0;
3696 if (test_bit(i
, &c_rdev_done
))
3699 ret
= regulator_get_optimal_voltage(c_rdevs
[i
],
3707 delta
= abs(optimal_uV
- current_uV
);
3709 if (delta
&& best_delta
<= delta
) {
3710 best_c_rdev_done
= ret
;
3712 best_rdev
= c_rdevs
[i
];
3713 best_min_uV
= optimal_uV
;
3714 best_max_uV
= optimal_max_uV
;
3719 /* Nothing to change, return successfully */
3725 ret
= regulator_set_voltage_rdev(best_rdev
, best_min_uV
,
3726 best_max_uV
, state
);
3731 if (best_c_rdev_done
)
3732 set_bit(best_c_rdev
, &c_rdev_done
);
3734 } while (n_coupled
> 1);
3741 * regulator_set_voltage - set regulator output voltage
3742 * @regulator: regulator source
3743 * @min_uV: Minimum required voltage in uV
3744 * @max_uV: Maximum acceptable voltage in uV
3746 * Sets a voltage regulator to the desired output voltage. This can be set
3747 * during any regulator state. IOW, regulator can be disabled or enabled.
3749 * If the regulator is enabled then the voltage will change to the new value
3750 * immediately otherwise if the regulator is disabled the regulator will
3751 * output at the new voltage when enabled.
3753 * NOTE: If the regulator is shared between several devices then the lowest
3754 * request voltage that meets the system constraints will be used.
3755 * Regulator system constraints must be set for this regulator before
3756 * calling this function otherwise this call will fail.
3758 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
3760 struct ww_acquire_ctx ww_ctx
;
3763 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3765 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
,
3768 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3772 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
3774 static inline int regulator_suspend_toggle(struct regulator_dev
*rdev
,
3775 suspend_state_t state
, bool en
)
3777 struct regulator_state
*rstate
;
3779 rstate
= regulator_get_suspend_state(rdev
, state
);
3783 if (!rstate
->changeable
)
3786 rstate
->enabled
= (en
) ? ENABLE_IN_SUSPEND
: DISABLE_IN_SUSPEND
;
3791 int regulator_suspend_enable(struct regulator_dev
*rdev
,
3792 suspend_state_t state
)
3794 return regulator_suspend_toggle(rdev
, state
, true);
3796 EXPORT_SYMBOL_GPL(regulator_suspend_enable
);
3798 int regulator_suspend_disable(struct regulator_dev
*rdev
,
3799 suspend_state_t state
)
3801 struct regulator
*regulator
;
3802 struct regulator_voltage
*voltage
;
3805 * if any consumer wants this regulator device keeping on in
3806 * suspend states, don't set it as disabled.
3808 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
3809 voltage
= ®ulator
->voltage
[state
];
3810 if (voltage
->min_uV
|| voltage
->max_uV
)
3814 return regulator_suspend_toggle(rdev
, state
, false);
3816 EXPORT_SYMBOL_GPL(regulator_suspend_disable
);
3818 static int _regulator_set_suspend_voltage(struct regulator
*regulator
,
3819 int min_uV
, int max_uV
,
3820 suspend_state_t state
)
3822 struct regulator_dev
*rdev
= regulator
->rdev
;
3823 struct regulator_state
*rstate
;
3825 rstate
= regulator_get_suspend_state(rdev
, state
);
3829 if (rstate
->min_uV
== rstate
->max_uV
) {
3830 rdev_err(rdev
, "The suspend voltage can't be changed!\n");
3834 return regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
, state
);
3837 int regulator_set_suspend_voltage(struct regulator
*regulator
, int min_uV
,
3838 int max_uV
, suspend_state_t state
)
3840 struct ww_acquire_ctx ww_ctx
;
3843 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3844 if (regulator_check_states(state
) || state
== PM_SUSPEND_ON
)
3847 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3849 ret
= _regulator_set_suspend_voltage(regulator
, min_uV
,
3852 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3856 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage
);
3859 * regulator_set_voltage_time - get raise/fall time
3860 * @regulator: regulator source
3861 * @old_uV: starting voltage in microvolts
3862 * @new_uV: target voltage in microvolts
3864 * Provided with the starting and ending voltage, this function attempts to
3865 * calculate the time in microseconds required to rise or fall to this new
3868 int regulator_set_voltage_time(struct regulator
*regulator
,
3869 int old_uV
, int new_uV
)
3871 struct regulator_dev
*rdev
= regulator
->rdev
;
3872 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3878 if (ops
->set_voltage_time
)
3879 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
3880 else if (!ops
->set_voltage_time_sel
)
3881 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
3883 /* Currently requires operations to do this */
3884 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
3887 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3888 /* We only look for exact voltage matches here */
3889 voltage
= regulator_list_voltage(regulator
, i
);
3894 if (voltage
== old_uV
)
3896 if (voltage
== new_uV
)
3900 if (old_sel
< 0 || new_sel
< 0)
3903 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
3905 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
3908 * regulator_set_voltage_time_sel - get raise/fall time
3909 * @rdev: regulator source device
3910 * @old_selector: selector for starting voltage
3911 * @new_selector: selector for target voltage
3913 * Provided with the starting and target voltage selectors, this function
3914 * returns time in microseconds required to rise or fall to this new voltage
3916 * Drivers providing ramp_delay in regulation_constraints can use this as their
3917 * set_voltage_time_sel() operation.
3919 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
3920 unsigned int old_selector
,
3921 unsigned int new_selector
)
3923 int old_volt
, new_volt
;
3926 if (!rdev
->desc
->ops
->list_voltage
)
3929 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
3930 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
3932 if (rdev
->desc
->ops
->set_voltage_time
)
3933 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
3936 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
3938 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
3941 * regulator_sync_voltage - re-apply last regulator output voltage
3942 * @regulator: regulator source
3944 * Re-apply the last configured voltage. This is intended to be used
3945 * where some external control source the consumer is cooperating with
3946 * has caused the configured voltage to change.
3948 int regulator_sync_voltage(struct regulator
*regulator
)
3950 struct regulator_dev
*rdev
= regulator
->rdev
;
3951 struct regulator_voltage
*voltage
= ®ulator
->voltage
[PM_SUSPEND_ON
];
3952 int ret
, min_uV
, max_uV
;
3954 regulator_lock(rdev
);
3956 if (!rdev
->desc
->ops
->set_voltage
&&
3957 !rdev
->desc
->ops
->set_voltage_sel
) {
3962 /* This is only going to work if we've had a voltage configured. */
3963 if (!voltage
->min_uV
&& !voltage
->max_uV
) {
3968 min_uV
= voltage
->min_uV
;
3969 max_uV
= voltage
->max_uV
;
3971 /* This should be a paranoia check... */
3972 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3976 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, 0);
3980 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3983 regulator_unlock(rdev
);
3986 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
3988 int regulator_get_voltage_rdev(struct regulator_dev
*rdev
)
3993 if (rdev
->desc
->ops
->get_bypass
) {
3994 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
3998 /* if bypassed the regulator must have a supply */
3999 if (!rdev
->supply
) {
4001 "bypassed regulator has no supply!\n");
4002 return -EPROBE_DEFER
;
4005 return regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4009 if (rdev
->desc
->ops
->get_voltage_sel
) {
4010 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
4013 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
4014 } else if (rdev
->desc
->ops
->get_voltage
) {
4015 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
4016 } else if (rdev
->desc
->ops
->list_voltage
) {
4017 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
4018 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
4019 ret
= rdev
->desc
->fixed_uV
;
4020 } else if (rdev
->supply
) {
4021 ret
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4028 return ret
- rdev
->constraints
->uV_offset
;
4030 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev
);
4033 * regulator_get_voltage - get regulator output voltage
4034 * @regulator: regulator source
4036 * This returns the current regulator voltage in uV.
4038 * NOTE: If the regulator is disabled it will return the voltage value. This
4039 * function should not be used to determine regulator state.
4041 int regulator_get_voltage(struct regulator
*regulator
)
4043 struct ww_acquire_ctx ww_ctx
;
4046 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
4047 ret
= regulator_get_voltage_rdev(regulator
->rdev
);
4048 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
4052 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
4055 * regulator_set_current_limit - set regulator output current limit
4056 * @regulator: regulator source
4057 * @min_uA: Minimum supported current in uA
4058 * @max_uA: Maximum supported current in uA
4060 * Sets current sink to the desired output current. This can be set during
4061 * any regulator state. IOW, regulator can be disabled or enabled.
4063 * If the regulator is enabled then the current will change to the new value
4064 * immediately otherwise if the regulator is disabled the regulator will
4065 * output at the new current when enabled.
4067 * NOTE: Regulator system constraints must be set for this regulator before
4068 * calling this function otherwise this call will fail.
4070 int regulator_set_current_limit(struct regulator
*regulator
,
4071 int min_uA
, int max_uA
)
4073 struct regulator_dev
*rdev
= regulator
->rdev
;
4076 regulator_lock(rdev
);
4079 if (!rdev
->desc
->ops
->set_current_limit
) {
4084 /* constraints check */
4085 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
4089 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
4091 regulator_unlock(rdev
);
4094 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
4096 static int _regulator_get_current_limit_unlocked(struct regulator_dev
*rdev
)
4099 if (!rdev
->desc
->ops
->get_current_limit
)
4102 return rdev
->desc
->ops
->get_current_limit(rdev
);
4105 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
4109 regulator_lock(rdev
);
4110 ret
= _regulator_get_current_limit_unlocked(rdev
);
4111 regulator_unlock(rdev
);
4117 * regulator_get_current_limit - get regulator output current
4118 * @regulator: regulator source
4120 * This returns the current supplied by the specified current sink in uA.
4122 * NOTE: If the regulator is disabled it will return the current value. This
4123 * function should not be used to determine regulator state.
4125 int regulator_get_current_limit(struct regulator
*regulator
)
4127 return _regulator_get_current_limit(regulator
->rdev
);
4129 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
4132 * regulator_set_mode - set regulator operating mode
4133 * @regulator: regulator source
4134 * @mode: operating mode - one of the REGULATOR_MODE constants
4136 * Set regulator operating mode to increase regulator efficiency or improve
4137 * regulation performance.
4139 * NOTE: Regulator system constraints must be set for this regulator before
4140 * calling this function otherwise this call will fail.
4142 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
4144 struct regulator_dev
*rdev
= regulator
->rdev
;
4146 int regulator_curr_mode
;
4148 regulator_lock(rdev
);
4151 if (!rdev
->desc
->ops
->set_mode
) {
4156 /* return if the same mode is requested */
4157 if (rdev
->desc
->ops
->get_mode
) {
4158 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
4159 if (regulator_curr_mode
== mode
) {
4165 /* constraints check */
4166 ret
= regulator_mode_constrain(rdev
, &mode
);
4170 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
4172 regulator_unlock(rdev
);
4175 EXPORT_SYMBOL_GPL(regulator_set_mode
);
4177 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev
*rdev
)
4180 if (!rdev
->desc
->ops
->get_mode
)
4183 return rdev
->desc
->ops
->get_mode(rdev
);
4186 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
4190 regulator_lock(rdev
);
4191 ret
= _regulator_get_mode_unlocked(rdev
);
4192 regulator_unlock(rdev
);
4198 * regulator_get_mode - get regulator operating mode
4199 * @regulator: regulator source
4201 * Get the current regulator operating mode.
4203 unsigned int regulator_get_mode(struct regulator
*regulator
)
4205 return _regulator_get_mode(regulator
->rdev
);
4207 EXPORT_SYMBOL_GPL(regulator_get_mode
);
4209 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
4210 unsigned int *flags
)
4214 regulator_lock(rdev
);
4217 if (!rdev
->desc
->ops
->get_error_flags
) {
4222 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
4224 regulator_unlock(rdev
);
4229 * regulator_get_error_flags - get regulator error information
4230 * @regulator: regulator source
4231 * @flags: pointer to store error flags
4233 * Get the current regulator error information.
4235 int regulator_get_error_flags(struct regulator
*regulator
,
4236 unsigned int *flags
)
4238 return _regulator_get_error_flags(regulator
->rdev
, flags
);
4240 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
4243 * regulator_set_load - set regulator load
4244 * @regulator: regulator source
4245 * @uA_load: load current
4247 * Notifies the regulator core of a new device load. This is then used by
4248 * DRMS (if enabled by constraints) to set the most efficient regulator
4249 * operating mode for the new regulator loading.
4251 * Consumer devices notify their supply regulator of the maximum power
4252 * they will require (can be taken from device datasheet in the power
4253 * consumption tables) when they change operational status and hence power
4254 * state. Examples of operational state changes that can affect power
4255 * consumption are :-
4257 * o Device is opened / closed.
4258 * o Device I/O is about to begin or has just finished.
4259 * o Device is idling in between work.
4261 * This information is also exported via sysfs to userspace.
4263 * DRMS will sum the total requested load on the regulator and change
4264 * to the most efficient operating mode if platform constraints allow.
4266 * NOTE: when a regulator consumer requests to have a regulator
4267 * disabled then any load that consumer requested no longer counts
4268 * toward the total requested load. If the regulator is re-enabled
4269 * then the previously requested load will start counting again.
4271 * If a regulator is an always-on regulator then an individual consumer's
4272 * load will still be removed if that consumer is fully disabled.
4274 * On error a negative errno is returned.
4276 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
4278 struct regulator_dev
*rdev
= regulator
->rdev
;
4282 regulator_lock(rdev
);
4283 old_uA_load
= regulator
->uA_load
;
4284 regulator
->uA_load
= uA_load
;
4285 if (regulator
->enable_count
&& old_uA_load
!= uA_load
) {
4286 ret
= drms_uA_update(rdev
);
4288 regulator
->uA_load
= old_uA_load
;
4290 regulator_unlock(rdev
);
4294 EXPORT_SYMBOL_GPL(regulator_set_load
);
4297 * regulator_allow_bypass - allow the regulator to go into bypass mode
4299 * @regulator: Regulator to configure
4300 * @enable: enable or disable bypass mode
4302 * Allow the regulator to go into bypass mode if all other consumers
4303 * for the regulator also enable bypass mode and the machine
4304 * constraints allow this. Bypass mode means that the regulator is
4305 * simply passing the input directly to the output with no regulation.
4307 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
4309 struct regulator_dev
*rdev
= regulator
->rdev
;
4312 if (!rdev
->desc
->ops
->set_bypass
)
4315 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
4318 regulator_lock(rdev
);
4320 if (enable
&& !regulator
->bypass
) {
4321 rdev
->bypass_count
++;
4323 if (rdev
->bypass_count
== rdev
->open_count
) {
4324 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4326 rdev
->bypass_count
--;
4329 } else if (!enable
&& regulator
->bypass
) {
4330 rdev
->bypass_count
--;
4332 if (rdev
->bypass_count
!= rdev
->open_count
) {
4333 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4335 rdev
->bypass_count
++;
4340 regulator
->bypass
= enable
;
4342 regulator_unlock(rdev
);
4346 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
4349 * regulator_register_notifier - register regulator event notifier
4350 * @regulator: regulator source
4351 * @nb: notifier block
4353 * Register notifier block to receive regulator events.
4355 int regulator_register_notifier(struct regulator
*regulator
,
4356 struct notifier_block
*nb
)
4358 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
4361 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
4364 * regulator_unregister_notifier - unregister regulator event notifier
4365 * @regulator: regulator source
4366 * @nb: notifier block
4368 * Unregister regulator event notifier block.
4370 int regulator_unregister_notifier(struct regulator
*regulator
,
4371 struct notifier_block
*nb
)
4373 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
4376 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
4378 /* notify regulator consumers and downstream regulator consumers.
4379 * Note mutex must be held by caller.
4381 static int _notifier_call_chain(struct regulator_dev
*rdev
,
4382 unsigned long event
, void *data
)
4384 /* call rdev chain first */
4385 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
4389 * regulator_bulk_get - get multiple regulator consumers
4391 * @dev: Device to supply
4392 * @num_consumers: Number of consumers to register
4393 * @consumers: Configuration of consumers; clients are stored here.
4395 * @return 0 on success, an errno on failure.
4397 * This helper function allows drivers to get several regulator
4398 * consumers in one operation. If any of the regulators cannot be
4399 * acquired then any regulators that were allocated will be freed
4400 * before returning to the caller.
4402 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
4403 struct regulator_bulk_data
*consumers
)
4408 for (i
= 0; i
< num_consumers
; i
++)
4409 consumers
[i
].consumer
= NULL
;
4411 for (i
= 0; i
< num_consumers
; i
++) {
4412 consumers
[i
].consumer
= regulator_get(dev
,
4413 consumers
[i
].supply
);
4414 if (IS_ERR(consumers
[i
].consumer
)) {
4415 ret
= PTR_ERR(consumers
[i
].consumer
);
4416 consumers
[i
].consumer
= NULL
;
4424 if (ret
!= -EPROBE_DEFER
)
4425 dev_err(dev
, "Failed to get supply '%s': %d\n",
4426 consumers
[i
].supply
, ret
);
4428 dev_dbg(dev
, "Failed to get supply '%s', deferring\n",
4429 consumers
[i
].supply
);
4432 regulator_put(consumers
[i
].consumer
);
4436 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
4438 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
4440 struct regulator_bulk_data
*bulk
= data
;
4442 bulk
->ret
= regulator_enable(bulk
->consumer
);
4446 * regulator_bulk_enable - enable multiple regulator consumers
4448 * @num_consumers: Number of consumers
4449 * @consumers: Consumer data; clients are stored here.
4450 * @return 0 on success, an errno on failure
4452 * This convenience API allows consumers to enable multiple regulator
4453 * clients in a single API call. If any consumers cannot be enabled
4454 * then any others that were enabled will be disabled again prior to
4457 int regulator_bulk_enable(int num_consumers
,
4458 struct regulator_bulk_data
*consumers
)
4460 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
4464 for (i
= 0; i
< num_consumers
; i
++) {
4465 async_schedule_domain(regulator_bulk_enable_async
,
4466 &consumers
[i
], &async_domain
);
4469 async_synchronize_full_domain(&async_domain
);
4471 /* If any consumer failed we need to unwind any that succeeded */
4472 for (i
= 0; i
< num_consumers
; i
++) {
4473 if (consumers
[i
].ret
!= 0) {
4474 ret
= consumers
[i
].ret
;
4482 for (i
= 0; i
< num_consumers
; i
++) {
4483 if (consumers
[i
].ret
< 0)
4484 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
4487 regulator_disable(consumers
[i
].consumer
);
4492 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
4495 * regulator_bulk_disable - disable multiple regulator consumers
4497 * @num_consumers: Number of consumers
4498 * @consumers: Consumer data; clients are stored here.
4499 * @return 0 on success, an errno on failure
4501 * This convenience API allows consumers to disable multiple regulator
4502 * clients in a single API call. If any consumers cannot be disabled
4503 * then any others that were disabled will be enabled again prior to
4506 int regulator_bulk_disable(int num_consumers
,
4507 struct regulator_bulk_data
*consumers
)
4512 for (i
= num_consumers
- 1; i
>= 0; --i
) {
4513 ret
= regulator_disable(consumers
[i
].consumer
);
4521 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
4522 for (++i
; i
< num_consumers
; ++i
) {
4523 r
= regulator_enable(consumers
[i
].consumer
);
4525 pr_err("Failed to re-enable %s: %d\n",
4526 consumers
[i
].supply
, r
);
4531 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
4534 * regulator_bulk_force_disable - force disable multiple regulator consumers
4536 * @num_consumers: Number of consumers
4537 * @consumers: Consumer data; clients are stored here.
4538 * @return 0 on success, an errno on failure
4540 * This convenience API allows consumers to forcibly disable multiple regulator
4541 * clients in a single API call.
4542 * NOTE: This should be used for situations when device damage will
4543 * likely occur if the regulators are not disabled (e.g. over temp).
4544 * Although regulator_force_disable function call for some consumers can
4545 * return error numbers, the function is called for all consumers.
4547 int regulator_bulk_force_disable(int num_consumers
,
4548 struct regulator_bulk_data
*consumers
)
4553 for (i
= 0; i
< num_consumers
; i
++) {
4555 regulator_force_disable(consumers
[i
].consumer
);
4557 /* Store first error for reporting */
4558 if (consumers
[i
].ret
&& !ret
)
4559 ret
= consumers
[i
].ret
;
4564 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
4567 * regulator_bulk_free - free multiple regulator consumers
4569 * @num_consumers: Number of consumers
4570 * @consumers: Consumer data; clients are stored here.
4572 * This convenience API allows consumers to free multiple regulator
4573 * clients in a single API call.
4575 void regulator_bulk_free(int num_consumers
,
4576 struct regulator_bulk_data
*consumers
)
4580 for (i
= 0; i
< num_consumers
; i
++) {
4581 regulator_put(consumers
[i
].consumer
);
4582 consumers
[i
].consumer
= NULL
;
4585 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
4588 * regulator_notifier_call_chain - call regulator event notifier
4589 * @rdev: regulator source
4590 * @event: notifier block
4591 * @data: callback-specific data.
4593 * Called by regulator drivers to notify clients a regulator event has
4594 * occurred. We also notify regulator clients downstream.
4595 * Note lock must be held by caller.
4597 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
4598 unsigned long event
, void *data
)
4600 lockdep_assert_held_once(&rdev
->mutex
.base
);
4602 _notifier_call_chain(rdev
, event
, data
);
4606 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
4609 * regulator_mode_to_status - convert a regulator mode into a status
4611 * @mode: Mode to convert
4613 * Convert a regulator mode into a status.
4615 int regulator_mode_to_status(unsigned int mode
)
4618 case REGULATOR_MODE_FAST
:
4619 return REGULATOR_STATUS_FAST
;
4620 case REGULATOR_MODE_NORMAL
:
4621 return REGULATOR_STATUS_NORMAL
;
4622 case REGULATOR_MODE_IDLE
:
4623 return REGULATOR_STATUS_IDLE
;
4624 case REGULATOR_MODE_STANDBY
:
4625 return REGULATOR_STATUS_STANDBY
;
4627 return REGULATOR_STATUS_UNDEFINED
;
4630 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
4632 static struct attribute
*regulator_dev_attrs
[] = {
4633 &dev_attr_name
.attr
,
4634 &dev_attr_num_users
.attr
,
4635 &dev_attr_type
.attr
,
4636 &dev_attr_microvolts
.attr
,
4637 &dev_attr_microamps
.attr
,
4638 &dev_attr_opmode
.attr
,
4639 &dev_attr_state
.attr
,
4640 &dev_attr_status
.attr
,
4641 &dev_attr_bypass
.attr
,
4642 &dev_attr_requested_microamps
.attr
,
4643 &dev_attr_min_microvolts
.attr
,
4644 &dev_attr_max_microvolts
.attr
,
4645 &dev_attr_min_microamps
.attr
,
4646 &dev_attr_max_microamps
.attr
,
4647 &dev_attr_suspend_standby_state
.attr
,
4648 &dev_attr_suspend_mem_state
.attr
,
4649 &dev_attr_suspend_disk_state
.attr
,
4650 &dev_attr_suspend_standby_microvolts
.attr
,
4651 &dev_attr_suspend_mem_microvolts
.attr
,
4652 &dev_attr_suspend_disk_microvolts
.attr
,
4653 &dev_attr_suspend_standby_mode
.attr
,
4654 &dev_attr_suspend_mem_mode
.attr
,
4655 &dev_attr_suspend_disk_mode
.attr
,
4660 * To avoid cluttering sysfs (and memory) with useless state, only
4661 * create attributes that can be meaningfully displayed.
4663 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
4664 struct attribute
*attr
, int idx
)
4666 struct device
*dev
= kobj_to_dev(kobj
);
4667 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4668 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4669 umode_t mode
= attr
->mode
;
4671 /* these three are always present */
4672 if (attr
== &dev_attr_name
.attr
||
4673 attr
== &dev_attr_num_users
.attr
||
4674 attr
== &dev_attr_type
.attr
)
4677 /* some attributes need specific methods to be displayed */
4678 if (attr
== &dev_attr_microvolts
.attr
) {
4679 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
4680 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
4681 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
4682 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
4687 if (attr
== &dev_attr_microamps
.attr
)
4688 return ops
->get_current_limit
? mode
: 0;
4690 if (attr
== &dev_attr_opmode
.attr
)
4691 return ops
->get_mode
? mode
: 0;
4693 if (attr
== &dev_attr_state
.attr
)
4694 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
4696 if (attr
== &dev_attr_status
.attr
)
4697 return ops
->get_status
? mode
: 0;
4699 if (attr
== &dev_attr_bypass
.attr
)
4700 return ops
->get_bypass
? mode
: 0;
4702 /* constraints need specific supporting methods */
4703 if (attr
== &dev_attr_min_microvolts
.attr
||
4704 attr
== &dev_attr_max_microvolts
.attr
)
4705 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
4707 if (attr
== &dev_attr_min_microamps
.attr
||
4708 attr
== &dev_attr_max_microamps
.attr
)
4709 return ops
->set_current_limit
? mode
: 0;
4711 if (attr
== &dev_attr_suspend_standby_state
.attr
||
4712 attr
== &dev_attr_suspend_mem_state
.attr
||
4713 attr
== &dev_attr_suspend_disk_state
.attr
)
4716 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
4717 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
4718 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
4719 return ops
->set_suspend_voltage
? mode
: 0;
4721 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
4722 attr
== &dev_attr_suspend_mem_mode
.attr
||
4723 attr
== &dev_attr_suspend_disk_mode
.attr
)
4724 return ops
->set_suspend_mode
? mode
: 0;
4729 static const struct attribute_group regulator_dev_group
= {
4730 .attrs
= regulator_dev_attrs
,
4731 .is_visible
= regulator_attr_is_visible
,
4734 static const struct attribute_group
*regulator_dev_groups
[] = {
4735 ®ulator_dev_group
,
4739 static void regulator_dev_release(struct device
*dev
)
4741 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
4743 kfree(rdev
->constraints
);
4744 of_node_put(rdev
->dev
.of_node
);
4748 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
4750 struct device
*parent
= rdev
->dev
.parent
;
4751 const char *rname
= rdev_get_name(rdev
);
4752 char name
[NAME_MAX
];
4754 /* Avoid duplicate debugfs directory names */
4755 if (parent
&& rname
== rdev
->desc
->name
) {
4756 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
4761 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
4762 if (!rdev
->debugfs
) {
4763 rdev_warn(rdev
, "Failed to create debugfs directory\n");
4767 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
4769 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
4771 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
4772 &rdev
->bypass_count
);
4775 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
4777 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4779 if (regulator_resolve_supply(rdev
))
4780 rdev_dbg(rdev
, "unable to resolve supply\n");
4785 int regulator_coupler_register(struct regulator_coupler
*coupler
)
4787 mutex_lock(®ulator_list_mutex
);
4788 list_add_tail(&coupler
->list
, ®ulator_coupler_list
);
4789 mutex_unlock(®ulator_list_mutex
);
4794 static struct regulator_coupler
*
4795 regulator_find_coupler(struct regulator_dev
*rdev
)
4797 struct regulator_coupler
*coupler
;
4801 * Note that regulators are appended to the list and the generic
4802 * coupler is registered first, hence it will be attached at last
4805 list_for_each_entry_reverse(coupler
, ®ulator_coupler_list
, list
) {
4806 err
= coupler
->attach_regulator(coupler
, rdev
);
4808 if (!coupler
->balance_voltage
&&
4809 rdev
->coupling_desc
.n_coupled
> 2)
4810 goto err_unsupported
;
4816 return ERR_PTR(err
);
4824 return ERR_PTR(-EINVAL
);
4827 if (coupler
->detach_regulator
)
4828 coupler
->detach_regulator(coupler
, rdev
);
4831 "Voltage balancing for multiple regulator couples is unimplemented\n");
4833 return ERR_PTR(-EPERM
);
4836 static void regulator_resolve_coupling(struct regulator_dev
*rdev
)
4838 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
4839 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
4840 int n_coupled
= c_desc
->n_coupled
;
4841 struct regulator_dev
*c_rdev
;
4844 for (i
= 1; i
< n_coupled
; i
++) {
4845 /* already resolved */
4846 if (c_desc
->coupled_rdevs
[i
])
4849 c_rdev
= of_parse_coupled_regulator(rdev
, i
- 1);
4854 if (c_rdev
->coupling_desc
.coupler
!= coupler
) {
4855 rdev_err(rdev
, "coupler mismatch with %s\n",
4856 rdev_get_name(c_rdev
));
4860 regulator_lock(c_rdev
);
4862 c_desc
->coupled_rdevs
[i
] = c_rdev
;
4863 c_desc
->n_resolved
++;
4865 regulator_unlock(c_rdev
);
4867 regulator_resolve_coupling(c_rdev
);
4871 static void regulator_remove_coupling(struct regulator_dev
*rdev
)
4873 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
4874 struct coupling_desc
*__c_desc
, *c_desc
= &rdev
->coupling_desc
;
4875 struct regulator_dev
*__c_rdev
, *c_rdev
;
4876 unsigned int __n_coupled
, n_coupled
;
4880 n_coupled
= c_desc
->n_coupled
;
4882 for (i
= 1; i
< n_coupled
; i
++) {
4883 c_rdev
= c_desc
->coupled_rdevs
[i
];
4888 regulator_lock(c_rdev
);
4890 __c_desc
= &c_rdev
->coupling_desc
;
4891 __n_coupled
= __c_desc
->n_coupled
;
4893 for (k
= 1; k
< __n_coupled
; k
++) {
4894 __c_rdev
= __c_desc
->coupled_rdevs
[k
];
4896 if (__c_rdev
== rdev
) {
4897 __c_desc
->coupled_rdevs
[k
] = NULL
;
4898 __c_desc
->n_resolved
--;
4903 regulator_unlock(c_rdev
);
4905 c_desc
->coupled_rdevs
[i
] = NULL
;
4906 c_desc
->n_resolved
--;
4909 if (coupler
&& coupler
->detach_regulator
) {
4910 err
= coupler
->detach_regulator(coupler
, rdev
);
4912 rdev_err(rdev
, "failed to detach from coupler: %d\n",
4916 kfree(rdev
->coupling_desc
.coupled_rdevs
);
4917 rdev
->coupling_desc
.coupled_rdevs
= NULL
;
4920 static int regulator_init_coupling(struct regulator_dev
*rdev
)
4922 int err
, n_phandles
;
4925 if (!IS_ENABLED(CONFIG_OF
))
4928 n_phandles
= of_get_n_coupled(rdev
);
4930 alloc_size
= sizeof(*rdev
) * (n_phandles
+ 1);
4932 rdev
->coupling_desc
.coupled_rdevs
= kzalloc(alloc_size
, GFP_KERNEL
);
4933 if (!rdev
->coupling_desc
.coupled_rdevs
)
4937 * Every regulator should always have coupling descriptor filled with
4938 * at least pointer to itself.
4940 rdev
->coupling_desc
.coupled_rdevs
[0] = rdev
;
4941 rdev
->coupling_desc
.n_coupled
= n_phandles
+ 1;
4942 rdev
->coupling_desc
.n_resolved
++;
4944 /* regulator isn't coupled */
4945 if (n_phandles
== 0)
4948 if (!of_check_coupling_data(rdev
))
4951 rdev
->coupling_desc
.coupler
= regulator_find_coupler(rdev
);
4952 if (IS_ERR(rdev
->coupling_desc
.coupler
)) {
4953 err
= PTR_ERR(rdev
->coupling_desc
.coupler
);
4954 rdev_err(rdev
, "failed to get coupler: %d\n", err
);
4961 static int generic_coupler_attach(struct regulator_coupler
*coupler
,
4962 struct regulator_dev
*rdev
)
4964 if (rdev
->coupling_desc
.n_coupled
> 2) {
4966 "Voltage balancing for multiple regulator couples is unimplemented\n");
4973 static struct regulator_coupler generic_regulator_coupler
= {
4974 .attach_regulator
= generic_coupler_attach
,
4978 * regulator_register - register regulator
4979 * @regulator_desc: regulator to register
4980 * @cfg: runtime configuration for regulator
4982 * Called by regulator drivers to register a regulator.
4983 * Returns a valid pointer to struct regulator_dev on success
4984 * or an ERR_PTR() on error.
4986 struct regulator_dev
*
4987 regulator_register(const struct regulator_desc
*regulator_desc
,
4988 const struct regulator_config
*cfg
)
4990 const struct regulation_constraints
*constraints
= NULL
;
4991 const struct regulator_init_data
*init_data
;
4992 struct regulator_config
*config
= NULL
;
4993 static atomic_t regulator_no
= ATOMIC_INIT(-1);
4994 struct regulator_dev
*rdev
;
4995 bool dangling_cfg_gpiod
= false;
4996 bool dangling_of_gpiod
= false;
5001 return ERR_PTR(-EINVAL
);
5003 dangling_cfg_gpiod
= true;
5004 if (regulator_desc
== NULL
) {
5012 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
) {
5017 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
5018 regulator_desc
->type
!= REGULATOR_CURRENT
) {
5023 /* Only one of each should be implemented */
5024 WARN_ON(regulator_desc
->ops
->get_voltage
&&
5025 regulator_desc
->ops
->get_voltage_sel
);
5026 WARN_ON(regulator_desc
->ops
->set_voltage
&&
5027 regulator_desc
->ops
->set_voltage_sel
);
5029 /* If we're using selectors we must implement list_voltage. */
5030 if (regulator_desc
->ops
->get_voltage_sel
&&
5031 !regulator_desc
->ops
->list_voltage
) {
5035 if (regulator_desc
->ops
->set_voltage_sel
&&
5036 !regulator_desc
->ops
->list_voltage
) {
5041 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
5048 * Duplicate the config so the driver could override it after
5049 * parsing init data.
5051 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
5052 if (config
== NULL
) {
5058 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
5059 &rdev
->dev
.of_node
);
5062 * Sometimes not all resources are probed already so we need to take
5063 * that into account. This happens most the time if the ena_gpiod comes
5064 * from a gpio extender or something else.
5066 if (PTR_ERR(init_data
) == -EPROBE_DEFER
) {
5069 ret
= -EPROBE_DEFER
;
5074 * We need to keep track of any GPIO descriptor coming from the
5075 * device tree until we have handled it over to the core. If the
5076 * config that was passed in to this function DOES NOT contain
5077 * a descriptor, and the config after this call DOES contain
5078 * a descriptor, we definitely got one from parsing the device
5081 if (!cfg
->ena_gpiod
&& config
->ena_gpiod
)
5082 dangling_of_gpiod
= true;
5084 init_data
= config
->init_data
;
5085 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
5088 ww_mutex_init(&rdev
->mutex
, ®ulator_ww_class
);
5089 rdev
->reg_data
= config
->driver_data
;
5090 rdev
->owner
= regulator_desc
->owner
;
5091 rdev
->desc
= regulator_desc
;
5093 rdev
->regmap
= config
->regmap
;
5094 else if (dev_get_regmap(dev
, NULL
))
5095 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
5096 else if (dev
->parent
)
5097 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
5098 INIT_LIST_HEAD(&rdev
->consumer_list
);
5099 INIT_LIST_HEAD(&rdev
->list
);
5100 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
5101 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
5103 /* preform any regulator specific init */
5104 if (init_data
&& init_data
->regulator_init
) {
5105 ret
= init_data
->regulator_init(rdev
->reg_data
);
5110 if (config
->ena_gpiod
) {
5111 mutex_lock(®ulator_list_mutex
);
5112 ret
= regulator_ena_gpio_request(rdev
, config
);
5113 mutex_unlock(®ulator_list_mutex
);
5115 rdev_err(rdev
, "Failed to request enable GPIO: %d\n",
5119 /* The regulator core took over the GPIO descriptor */
5120 dangling_cfg_gpiod
= false;
5121 dangling_of_gpiod
= false;
5124 /* register with sysfs */
5125 device_initialize(&rdev
->dev
);
5126 rdev
->dev
.class = ®ulator_class
;
5127 rdev
->dev
.parent
= dev
;
5128 dev_set_name(&rdev
->dev
, "regulator.%lu",
5129 (unsigned long) atomic_inc_return(®ulator_no
));
5130 dev_set_drvdata(&rdev
->dev
, rdev
);
5132 /* set regulator constraints */
5134 constraints
= &init_data
->constraints
;
5136 if (init_data
&& init_data
->supply_regulator
)
5137 rdev
->supply_name
= init_data
->supply_regulator
;
5138 else if (regulator_desc
->supply_name
)
5139 rdev
->supply_name
= regulator_desc
->supply_name
;
5142 * Attempt to resolve the regulator supply, if specified,
5143 * but don't return an error if we fail because we will try
5144 * to resolve it again later as more regulators are added.
5146 if (regulator_resolve_supply(rdev
))
5147 rdev_dbg(rdev
, "unable to resolve supply\n");
5149 ret
= set_machine_constraints(rdev
, constraints
);
5153 mutex_lock(®ulator_list_mutex
);
5154 ret
= regulator_init_coupling(rdev
);
5155 mutex_unlock(®ulator_list_mutex
);
5159 /* add consumers devices */
5161 mutex_lock(®ulator_list_mutex
);
5162 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
5163 ret
= set_consumer_device_supply(rdev
,
5164 init_data
->consumer_supplies
[i
].dev_name
,
5165 init_data
->consumer_supplies
[i
].supply
);
5167 mutex_unlock(®ulator_list_mutex
);
5168 dev_err(dev
, "Failed to set supply %s\n",
5169 init_data
->consumer_supplies
[i
].supply
);
5170 goto unset_supplies
;
5173 mutex_unlock(®ulator_list_mutex
);
5176 if (!rdev
->desc
->ops
->get_voltage
&&
5177 !rdev
->desc
->ops
->list_voltage
&&
5178 !rdev
->desc
->fixed_uV
)
5179 rdev
->is_switch
= true;
5181 ret
= device_add(&rdev
->dev
);
5183 goto unset_supplies
;
5185 rdev_init_debugfs(rdev
);
5187 /* try to resolve regulators coupling since a new one was registered */
5188 mutex_lock(®ulator_list_mutex
);
5189 regulator_resolve_coupling(rdev
);
5190 mutex_unlock(®ulator_list_mutex
);
5192 /* try to resolve regulators supply since a new one was registered */
5193 class_for_each_device(®ulator_class
, NULL
, NULL
,
5194 regulator_register_resolve_supply
);
5199 mutex_lock(®ulator_list_mutex
);
5200 unset_regulator_supplies(rdev
);
5201 regulator_remove_coupling(rdev
);
5202 mutex_unlock(®ulator_list_mutex
);
5204 kfree(rdev
->coupling_desc
.coupled_rdevs
);
5205 mutex_lock(®ulator_list_mutex
);
5206 regulator_ena_gpio_free(rdev
);
5207 mutex_unlock(®ulator_list_mutex
);
5208 put_device(&rdev
->dev
);
5211 if (dangling_of_gpiod
)
5212 gpiod_put(config
->ena_gpiod
);
5216 if (dangling_cfg_gpiod
)
5217 gpiod_put(cfg
->ena_gpiod
);
5218 return ERR_PTR(ret
);
5220 EXPORT_SYMBOL_GPL(regulator_register
);
5223 * regulator_unregister - unregister regulator
5224 * @rdev: regulator to unregister
5226 * Called by regulator drivers to unregister a regulator.
5228 void regulator_unregister(struct regulator_dev
*rdev
)
5234 while (rdev
->use_count
--)
5235 regulator_disable(rdev
->supply
);
5236 regulator_put(rdev
->supply
);
5239 flush_work(&rdev
->disable_work
.work
);
5241 mutex_lock(®ulator_list_mutex
);
5243 debugfs_remove_recursive(rdev
->debugfs
);
5244 WARN_ON(rdev
->open_count
);
5245 regulator_remove_coupling(rdev
);
5246 unset_regulator_supplies(rdev
);
5247 list_del(&rdev
->list
);
5248 regulator_ena_gpio_free(rdev
);
5249 device_unregister(&rdev
->dev
);
5251 mutex_unlock(®ulator_list_mutex
);
5253 EXPORT_SYMBOL_GPL(regulator_unregister
);
5255 #ifdef CONFIG_SUSPEND
5257 * regulator_suspend - prepare regulators for system wide suspend
5258 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5260 * Configure each regulator with it's suspend operating parameters for state.
5262 static int regulator_suspend(struct device
*dev
)
5264 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5265 suspend_state_t state
= pm_suspend_target_state
;
5268 regulator_lock(rdev
);
5269 ret
= suspend_set_state(rdev
, state
);
5270 regulator_unlock(rdev
);
5275 static int regulator_resume(struct device
*dev
)
5277 suspend_state_t state
= pm_suspend_target_state
;
5278 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5279 struct regulator_state
*rstate
;
5282 rstate
= regulator_get_suspend_state(rdev
, state
);
5286 regulator_lock(rdev
);
5288 if (rdev
->desc
->ops
->resume
&&
5289 (rstate
->enabled
== ENABLE_IN_SUSPEND
||
5290 rstate
->enabled
== DISABLE_IN_SUSPEND
))
5291 ret
= rdev
->desc
->ops
->resume(rdev
);
5293 regulator_unlock(rdev
);
5297 #else /* !CONFIG_SUSPEND */
5299 #define regulator_suspend NULL
5300 #define regulator_resume NULL
5302 #endif /* !CONFIG_SUSPEND */
5305 static const struct dev_pm_ops __maybe_unused regulator_pm_ops
= {
5306 .suspend
= regulator_suspend
,
5307 .resume
= regulator_resume
,
5311 struct class regulator_class
= {
5312 .name
= "regulator",
5313 .dev_release
= regulator_dev_release
,
5314 .dev_groups
= regulator_dev_groups
,
5316 .pm
= ®ulator_pm_ops
,
5320 * regulator_has_full_constraints - the system has fully specified constraints
5322 * Calling this function will cause the regulator API to disable all
5323 * regulators which have a zero use count and don't have an always_on
5324 * constraint in a late_initcall.
5326 * The intention is that this will become the default behaviour in a
5327 * future kernel release so users are encouraged to use this facility
5330 void regulator_has_full_constraints(void)
5332 has_full_constraints
= 1;
5334 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
5337 * rdev_get_drvdata - get rdev regulator driver data
5340 * Get rdev regulator driver private data. This call can be used in the
5341 * regulator driver context.
5343 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
5345 return rdev
->reg_data
;
5347 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
5350 * regulator_get_drvdata - get regulator driver data
5351 * @regulator: regulator
5353 * Get regulator driver private data. This call can be used in the consumer
5354 * driver context when non API regulator specific functions need to be called.
5356 void *regulator_get_drvdata(struct regulator
*regulator
)
5358 return regulator
->rdev
->reg_data
;
5360 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
5363 * regulator_set_drvdata - set regulator driver data
5364 * @regulator: regulator
5367 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
5369 regulator
->rdev
->reg_data
= data
;
5371 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
5374 * regulator_get_id - get regulator ID
5377 int rdev_get_id(struct regulator_dev
*rdev
)
5379 return rdev
->desc
->id
;
5381 EXPORT_SYMBOL_GPL(rdev_get_id
);
5383 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
5387 EXPORT_SYMBOL_GPL(rdev_get_dev
);
5389 struct regmap
*rdev_get_regmap(struct regulator_dev
*rdev
)
5391 return rdev
->regmap
;
5393 EXPORT_SYMBOL_GPL(rdev_get_regmap
);
5395 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
5397 return reg_init_data
->driver_data
;
5399 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
5401 #ifdef CONFIG_DEBUG_FS
5402 static int supply_map_show(struct seq_file
*sf
, void *data
)
5404 struct regulator_map
*map
;
5406 list_for_each_entry(map
, ®ulator_map_list
, list
) {
5407 seq_printf(sf
, "%s -> %s.%s\n",
5408 rdev_get_name(map
->regulator
), map
->dev_name
,
5414 DEFINE_SHOW_ATTRIBUTE(supply_map
);
5416 struct summary_data
{
5418 struct regulator_dev
*parent
;
5422 static void regulator_summary_show_subtree(struct seq_file
*s
,
5423 struct regulator_dev
*rdev
,
5426 static int regulator_summary_show_children(struct device
*dev
, void *data
)
5428 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5429 struct summary_data
*summary_data
= data
;
5431 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
5432 regulator_summary_show_subtree(summary_data
->s
, rdev
,
5433 summary_data
->level
+ 1);
5438 static void regulator_summary_show_subtree(struct seq_file
*s
,
5439 struct regulator_dev
*rdev
,
5442 struct regulation_constraints
*c
;
5443 struct regulator
*consumer
;
5444 struct summary_data summary_data
;
5445 unsigned int opmode
;
5450 opmode
= _regulator_get_mode_unlocked(rdev
);
5451 seq_printf(s
, "%*s%-*s %3d %4d %6d %7s ",
5453 30 - level
* 3, rdev_get_name(rdev
),
5454 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
,
5455 regulator_opmode_to_str(opmode
));
5457 seq_printf(s
, "%5dmV ", regulator_get_voltage_rdev(rdev
) / 1000);
5458 seq_printf(s
, "%5dmA ",
5459 _regulator_get_current_limit_unlocked(rdev
) / 1000);
5461 c
= rdev
->constraints
;
5463 switch (rdev
->desc
->type
) {
5464 case REGULATOR_VOLTAGE
:
5465 seq_printf(s
, "%5dmV %5dmV ",
5466 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
5468 case REGULATOR_CURRENT
:
5469 seq_printf(s
, "%5dmA %5dmA ",
5470 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
5477 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
5478 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
5481 seq_printf(s
, "%*s%-*s ",
5482 (level
+ 1) * 3 + 1, "",
5483 30 - (level
+ 1) * 3,
5484 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
5486 switch (rdev
->desc
->type
) {
5487 case REGULATOR_VOLTAGE
:
5488 seq_printf(s
, "%3d %33dmA%c%5dmV %5dmV",
5489 consumer
->enable_count
,
5490 consumer
->uA_load
/ 1000,
5491 consumer
->uA_load
&& !consumer
->enable_count
?
5493 consumer
->voltage
[PM_SUSPEND_ON
].min_uV
/ 1000,
5494 consumer
->voltage
[PM_SUSPEND_ON
].max_uV
/ 1000);
5496 case REGULATOR_CURRENT
:
5504 summary_data
.level
= level
;
5505 summary_data
.parent
= rdev
;
5507 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
5508 regulator_summary_show_children
);
5511 struct summary_lock_data
{
5512 struct ww_acquire_ctx
*ww_ctx
;
5513 struct regulator_dev
**new_contended_rdev
;
5514 struct regulator_dev
**old_contended_rdev
;
5517 static int regulator_summary_lock_one(struct device
*dev
, void *data
)
5519 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5520 struct summary_lock_data
*lock_data
= data
;
5523 if (rdev
!= *lock_data
->old_contended_rdev
) {
5524 ret
= regulator_lock_nested(rdev
, lock_data
->ww_ctx
);
5526 if (ret
== -EDEADLK
)
5527 *lock_data
->new_contended_rdev
= rdev
;
5531 *lock_data
->old_contended_rdev
= NULL
;
5537 static int regulator_summary_unlock_one(struct device
*dev
, void *data
)
5539 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5540 struct summary_lock_data
*lock_data
= data
;
5543 if (rdev
== *lock_data
->new_contended_rdev
)
5547 regulator_unlock(rdev
);
5552 static int regulator_summary_lock_all(struct ww_acquire_ctx
*ww_ctx
,
5553 struct regulator_dev
**new_contended_rdev
,
5554 struct regulator_dev
**old_contended_rdev
)
5556 struct summary_lock_data lock_data
;
5559 lock_data
.ww_ctx
= ww_ctx
;
5560 lock_data
.new_contended_rdev
= new_contended_rdev
;
5561 lock_data
.old_contended_rdev
= old_contended_rdev
;
5563 ret
= class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5564 regulator_summary_lock_one
);
5566 class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5567 regulator_summary_unlock_one
);
5572 static void regulator_summary_lock(struct ww_acquire_ctx
*ww_ctx
)
5574 struct regulator_dev
*new_contended_rdev
= NULL
;
5575 struct regulator_dev
*old_contended_rdev
= NULL
;
5578 mutex_lock(®ulator_list_mutex
);
5580 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
5583 if (new_contended_rdev
) {
5584 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
5585 old_contended_rdev
= new_contended_rdev
;
5586 old_contended_rdev
->ref_cnt
++;
5589 err
= regulator_summary_lock_all(ww_ctx
,
5590 &new_contended_rdev
,
5591 &old_contended_rdev
);
5593 if (old_contended_rdev
)
5594 regulator_unlock(old_contended_rdev
);
5596 } while (err
== -EDEADLK
);
5598 ww_acquire_done(ww_ctx
);
5601 static void regulator_summary_unlock(struct ww_acquire_ctx
*ww_ctx
)
5603 class_for_each_device(®ulator_class
, NULL
, NULL
,
5604 regulator_summary_unlock_one
);
5605 ww_acquire_fini(ww_ctx
);
5607 mutex_unlock(®ulator_list_mutex
);
5610 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
5612 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5613 struct seq_file
*s
= data
;
5616 regulator_summary_show_subtree(s
, rdev
, 0);
5621 static int regulator_summary_show(struct seq_file
*s
, void *data
)
5623 struct ww_acquire_ctx ww_ctx
;
5625 seq_puts(s
, " regulator use open bypass opmode voltage current min max\n");
5626 seq_puts(s
, "---------------------------------------------------------------------------------------\n");
5628 regulator_summary_lock(&ww_ctx
);
5630 class_for_each_device(®ulator_class
, NULL
, s
,
5631 regulator_summary_show_roots
);
5633 regulator_summary_unlock(&ww_ctx
);
5637 DEFINE_SHOW_ATTRIBUTE(regulator_summary
);
5638 #endif /* CONFIG_DEBUG_FS */
5640 static int __init
regulator_init(void)
5644 ret
= class_register(®ulator_class
);
5646 debugfs_root
= debugfs_create_dir("regulator", NULL
);
5648 pr_warn("regulator: Failed to create debugfs directory\n");
5650 #ifdef CONFIG_DEBUG_FS
5651 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
5654 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
5655 NULL
, ®ulator_summary_fops
);
5657 regulator_dummy_init();
5659 regulator_coupler_register(&generic_regulator_coupler
);
5664 /* init early to allow our consumers to complete system booting */
5665 core_initcall(regulator_init
);
5667 static int regulator_late_cleanup(struct device
*dev
, void *data
)
5669 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5670 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
5671 struct regulation_constraints
*c
= rdev
->constraints
;
5674 if (c
&& c
->always_on
)
5677 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
5680 regulator_lock(rdev
);
5682 if (rdev
->use_count
)
5685 /* If we can't read the status assume it's on. */
5686 if (ops
->is_enabled
)
5687 enabled
= ops
->is_enabled(rdev
);
5694 if (have_full_constraints()) {
5695 /* We log since this may kill the system if it goes
5697 rdev_info(rdev
, "disabling\n");
5698 ret
= _regulator_do_disable(rdev
);
5700 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
5702 /* The intention is that in future we will
5703 * assume that full constraints are provided
5704 * so warn even if we aren't going to do
5707 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
5711 regulator_unlock(rdev
);
5716 static void regulator_init_complete_work_function(struct work_struct
*work
)
5719 * Regulators may had failed to resolve their input supplies
5720 * when were registered, either because the input supply was
5721 * not registered yet or because its parent device was not
5722 * bound yet. So attempt to resolve the input supplies for
5723 * pending regulators before trying to disable unused ones.
5725 class_for_each_device(®ulator_class
, NULL
, NULL
,
5726 regulator_register_resolve_supply
);
5728 /* If we have a full configuration then disable any regulators
5729 * we have permission to change the status for and which are
5730 * not in use or always_on. This is effectively the default
5731 * for DT and ACPI as they have full constraints.
5733 class_for_each_device(®ulator_class
, NULL
, NULL
,
5734 regulator_late_cleanup
);
5737 static DECLARE_DELAYED_WORK(regulator_init_complete_work
,
5738 regulator_init_complete_work_function
);
5740 static int __init
regulator_init_complete(void)
5743 * Since DT doesn't provide an idiomatic mechanism for
5744 * enabling full constraints and since it's much more natural
5745 * with DT to provide them just assume that a DT enabled
5746 * system has full constraints.
5748 if (of_have_populated_dt())
5749 has_full_constraints
= true;
5752 * We punt completion for an arbitrary amount of time since
5753 * systems like distros will load many drivers from userspace
5754 * so consumers might not always be ready yet, this is
5755 * particularly an issue with laptops where this might bounce
5756 * the display off then on. Ideally we'd get a notification
5757 * from userspace when this happens but we don't so just wait
5758 * a bit and hope we waited long enough. It'd be better if
5759 * we'd only do this on systems that need it, and a kernel
5760 * command line option might be useful.
5762 schedule_delayed_work(®ulator_init_complete_work
,
5763 msecs_to_jiffies(30000));
5767 late_initcall_sync(regulator_init_complete
);