2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/delay.h>
30 #include <linux/clk.h>
34 #include <asm/hardware.h>
35 #include <asm/delay.h>
38 #include <asm/arch/hardware.h>
39 #include <asm/arch/pxa-regs.h>
40 #include <asm/arch/regs-ssp.h>
41 #include <asm/arch/ssp.h>
42 #include <asm/arch/pxa2xx_spi.h>
44 MODULE_AUTHOR("Stephen Street");
45 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
46 MODULE_LICENSE("GPL");
47 MODULE_ALIAS("platform:pxa2xx-spi");
51 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
52 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
53 #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
56 * for testing SSCR1 changes that require SSP restart, basically
57 * everything except the service and interrupt enables, the pxa270 developer
58 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
59 * list, but the PXA255 dev man says all bits without really meaning the
60 * service and interrupt enables
62 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
63 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
64 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
65 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
66 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
67 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
69 #define DEFINE_SSP_REG(reg, off) \
70 static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
71 static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
73 DEFINE_SSP_REG(SSCR0
, 0x00)
74 DEFINE_SSP_REG(SSCR1
, 0x04)
75 DEFINE_SSP_REG(SSSR
, 0x08)
76 DEFINE_SSP_REG(SSITR
, 0x0c)
77 DEFINE_SSP_REG(SSDR
, 0x10)
78 DEFINE_SSP_REG(SSTO
, 0x28)
79 DEFINE_SSP_REG(SSPSP
, 0x2c)
81 #define START_STATE ((void*)0)
82 #define RUNNING_STATE ((void*)1)
83 #define DONE_STATE ((void*)2)
84 #define ERROR_STATE ((void*)-1)
86 #define QUEUE_RUNNING 0
87 #define QUEUE_STOPPED 1
90 /* Driver model hookup */
91 struct platform_device
*pdev
;
94 struct ssp_device
*ssp
;
96 /* SPI framework hookup */
97 enum pxa_ssp_type ssp_type
;
98 struct spi_master
*master
;
101 struct pxa2xx_spi_master
*master_info
;
103 /* DMA setup stuff */
108 /* SSP register addresses */
118 /* Driver message queue */
119 struct workqueue_struct
*workqueue
;
120 struct work_struct pump_messages
;
122 struct list_head queue
;
126 /* Message Transfer pump */
127 struct tasklet_struct pump_transfers
;
129 /* Current message transfer state info */
130 struct spi_message
* cur_msg
;
131 struct spi_transfer
* cur_transfer
;
132 struct chip_data
*cur_chip
;
146 int (*write
)(struct driver_data
*drv_data
);
147 int (*read
)(struct driver_data
*drv_data
);
148 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
149 void (*cs_control
)(u32 command
);
165 int (*write
)(struct driver_data
*drv_data
);
166 int (*read
)(struct driver_data
*drv_data
);
167 void (*cs_control
)(u32 command
);
170 static void pump_messages(struct work_struct
*work
);
172 static int flush(struct driver_data
*drv_data
)
174 unsigned long limit
= loops_per_jiffy
<< 1;
176 void *reg
= drv_data
->ioaddr
;
179 while (read_SSSR(reg
) & SSSR_RNE
) {
182 } while ((read_SSSR(reg
) & SSSR_BSY
) && limit
--);
183 write_SSSR(SSSR_ROR
, reg
);
188 static void null_cs_control(u32 command
)
192 static int null_writer(struct driver_data
*drv_data
)
194 void *reg
= drv_data
->ioaddr
;
195 u8 n_bytes
= drv_data
->n_bytes
;
197 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
198 || (drv_data
->tx
== drv_data
->tx_end
))
202 drv_data
->tx
+= n_bytes
;
207 static int null_reader(struct driver_data
*drv_data
)
209 void *reg
= drv_data
->ioaddr
;
210 u8 n_bytes
= drv_data
->n_bytes
;
212 while ((read_SSSR(reg
) & SSSR_RNE
)
213 && (drv_data
->rx
< drv_data
->rx_end
)) {
215 drv_data
->rx
+= n_bytes
;
218 return drv_data
->rx
== drv_data
->rx_end
;
221 static int u8_writer(struct driver_data
*drv_data
)
223 void *reg
= drv_data
->ioaddr
;
225 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
226 || (drv_data
->tx
== drv_data
->tx_end
))
229 write_SSDR(*(u8
*)(drv_data
->tx
), reg
);
235 static int u8_reader(struct driver_data
*drv_data
)
237 void *reg
= drv_data
->ioaddr
;
239 while ((read_SSSR(reg
) & SSSR_RNE
)
240 && (drv_data
->rx
< drv_data
->rx_end
)) {
241 *(u8
*)(drv_data
->rx
) = read_SSDR(reg
);
245 return drv_data
->rx
== drv_data
->rx_end
;
248 static int u16_writer(struct driver_data
*drv_data
)
250 void *reg
= drv_data
->ioaddr
;
252 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
253 || (drv_data
->tx
== drv_data
->tx_end
))
256 write_SSDR(*(u16
*)(drv_data
->tx
), reg
);
262 static int u16_reader(struct driver_data
*drv_data
)
264 void *reg
= drv_data
->ioaddr
;
266 while ((read_SSSR(reg
) & SSSR_RNE
)
267 && (drv_data
->rx
< drv_data
->rx_end
)) {
268 *(u16
*)(drv_data
->rx
) = read_SSDR(reg
);
272 return drv_data
->rx
== drv_data
->rx_end
;
275 static int u32_writer(struct driver_data
*drv_data
)
277 void *reg
= drv_data
->ioaddr
;
279 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
280 || (drv_data
->tx
== drv_data
->tx_end
))
283 write_SSDR(*(u32
*)(drv_data
->tx
), reg
);
289 static int u32_reader(struct driver_data
*drv_data
)
291 void *reg
= drv_data
->ioaddr
;
293 while ((read_SSSR(reg
) & SSSR_RNE
)
294 && (drv_data
->rx
< drv_data
->rx_end
)) {
295 *(u32
*)(drv_data
->rx
) = read_SSDR(reg
);
299 return drv_data
->rx
== drv_data
->rx_end
;
302 static void *next_transfer(struct driver_data
*drv_data
)
304 struct spi_message
*msg
= drv_data
->cur_msg
;
305 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
307 /* Move to next transfer */
308 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
309 drv_data
->cur_transfer
=
310 list_entry(trans
->transfer_list
.next
,
313 return RUNNING_STATE
;
318 static int map_dma_buffers(struct driver_data
*drv_data
)
320 struct spi_message
*msg
= drv_data
->cur_msg
;
321 struct device
*dev
= &msg
->spi
->dev
;
323 if (!drv_data
->cur_chip
->enable_dma
)
326 if (msg
->is_dma_mapped
)
327 return drv_data
->rx_dma
&& drv_data
->tx_dma
;
329 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
332 /* Modify setup if rx buffer is null */
333 if (drv_data
->rx
== NULL
) {
334 *drv_data
->null_dma_buf
= 0;
335 drv_data
->rx
= drv_data
->null_dma_buf
;
336 drv_data
->rx_map_len
= 4;
338 drv_data
->rx_map_len
= drv_data
->len
;
341 /* Modify setup if tx buffer is null */
342 if (drv_data
->tx
== NULL
) {
343 *drv_data
->null_dma_buf
= 0;
344 drv_data
->tx
= drv_data
->null_dma_buf
;
345 drv_data
->tx_map_len
= 4;
347 drv_data
->tx_map_len
= drv_data
->len
;
349 /* Stream map the rx buffer */
350 drv_data
->rx_dma
= dma_map_single(dev
, drv_data
->rx
,
351 drv_data
->rx_map_len
,
353 if (dma_mapping_error(drv_data
->rx_dma
))
356 /* Stream map the tx buffer */
357 drv_data
->tx_dma
= dma_map_single(dev
, drv_data
->tx
,
358 drv_data
->tx_map_len
,
361 if (dma_mapping_error(drv_data
->tx_dma
)) {
362 dma_unmap_single(dev
, drv_data
->rx_dma
,
363 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
370 static void unmap_dma_buffers(struct driver_data
*drv_data
)
374 if (!drv_data
->dma_mapped
)
377 if (!drv_data
->cur_msg
->is_dma_mapped
) {
378 dev
= &drv_data
->cur_msg
->spi
->dev
;
379 dma_unmap_single(dev
, drv_data
->rx_dma
,
380 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
381 dma_unmap_single(dev
, drv_data
->tx_dma
,
382 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
385 drv_data
->dma_mapped
= 0;
388 /* caller already set message->status; dma and pio irqs are blocked */
389 static void giveback(struct driver_data
*drv_data
)
391 struct spi_transfer
* last_transfer
;
393 struct spi_message
*msg
;
395 spin_lock_irqsave(&drv_data
->lock
, flags
);
396 msg
= drv_data
->cur_msg
;
397 drv_data
->cur_msg
= NULL
;
398 drv_data
->cur_transfer
= NULL
;
399 drv_data
->cur_chip
= NULL
;
400 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
401 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
403 last_transfer
= list_entry(msg
->transfers
.prev
,
407 if (!last_transfer
->cs_change
)
408 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
412 msg
->complete(msg
->context
);
415 static int wait_ssp_rx_stall(void *ioaddr
)
417 unsigned long limit
= loops_per_jiffy
<< 1;
419 while ((read_SSSR(ioaddr
) & SSSR_BSY
) && limit
--)
425 static int wait_dma_channel_stop(int channel
)
427 unsigned long limit
= loops_per_jiffy
<< 1;
429 while (!(DCSR(channel
) & DCSR_STOPSTATE
) && limit
--)
435 void dma_error_stop(struct driver_data
*drv_data
, const char *msg
)
437 void *reg
= drv_data
->ioaddr
;
440 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
441 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
442 write_SSSR(drv_data
->clear_sr
, reg
);
443 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
444 if (drv_data
->ssp_type
!= PXA25x_SSP
)
447 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
449 unmap_dma_buffers(drv_data
);
451 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
453 drv_data
->cur_msg
->state
= ERROR_STATE
;
454 tasklet_schedule(&drv_data
->pump_transfers
);
457 static void dma_transfer_complete(struct driver_data
*drv_data
)
459 void *reg
= drv_data
->ioaddr
;
460 struct spi_message
*msg
= drv_data
->cur_msg
;
462 /* Clear and disable interrupts on SSP and DMA channels*/
463 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
464 write_SSSR(drv_data
->clear_sr
, reg
);
465 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
466 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
468 if (wait_dma_channel_stop(drv_data
->rx_channel
) == 0)
469 dev_err(&drv_data
->pdev
->dev
,
470 "dma_handler: dma rx channel stop failed\n");
472 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
473 dev_err(&drv_data
->pdev
->dev
,
474 "dma_transfer: ssp rx stall failed\n");
476 unmap_dma_buffers(drv_data
);
478 /* update the buffer pointer for the amount completed in dma */
479 drv_data
->rx
+= drv_data
->len
-
480 (DCMD(drv_data
->rx_channel
) & DCMD_LENGTH
);
482 /* read trailing data from fifo, it does not matter how many
483 * bytes are in the fifo just read until buffer is full
484 * or fifo is empty, which ever occurs first */
485 drv_data
->read(drv_data
);
487 /* return count of what was actually read */
488 msg
->actual_length
+= drv_data
->len
-
489 (drv_data
->rx_end
- drv_data
->rx
);
491 /* Release chip select if requested, transfer delays are
492 * handled in pump_transfers */
493 if (drv_data
->cs_change
)
494 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
496 /* Move to next transfer */
497 msg
->state
= next_transfer(drv_data
);
499 /* Schedule transfer tasklet */
500 tasklet_schedule(&drv_data
->pump_transfers
);
503 static void dma_handler(int channel
, void *data
)
505 struct driver_data
*drv_data
= data
;
506 u32 irq_status
= DCSR(channel
) & DMA_INT_MASK
;
508 if (irq_status
& DCSR_BUSERR
) {
510 if (channel
== drv_data
->tx_channel
)
511 dma_error_stop(drv_data
,
513 "bad bus address on tx channel");
515 dma_error_stop(drv_data
,
517 "bad bus address on rx channel");
521 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
522 if ((channel
== drv_data
->tx_channel
)
523 && (irq_status
& DCSR_ENDINTR
)
524 && (drv_data
->ssp_type
== PXA25x_SSP
)) {
526 /* Wait for rx to stall */
527 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
528 dev_err(&drv_data
->pdev
->dev
,
529 "dma_handler: ssp rx stall failed\n");
531 /* finish this transfer, start the next */
532 dma_transfer_complete(drv_data
);
536 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
539 void *reg
= drv_data
->ioaddr
;
541 irq_status
= read_SSSR(reg
) & drv_data
->mask_sr
;
542 if (irq_status
& SSSR_ROR
) {
543 dma_error_stop(drv_data
, "dma_transfer: fifo overrun");
547 /* Check for false positive timeout */
548 if ((irq_status
& SSSR_TINT
)
549 && (DCSR(drv_data
->tx_channel
) & DCSR_RUN
)) {
550 write_SSSR(SSSR_TINT
, reg
);
554 if (irq_status
& SSSR_TINT
|| drv_data
->rx
== drv_data
->rx_end
) {
556 /* Clear and disable timeout interrupt, do the rest in
557 * dma_transfer_complete */
558 if (drv_data
->ssp_type
!= PXA25x_SSP
)
561 /* finish this transfer, start the next */
562 dma_transfer_complete(drv_data
);
567 /* Opps problem detected */
571 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
573 void *reg
= drv_data
->ioaddr
;
575 /* Stop and reset SSP */
576 write_SSSR(drv_data
->clear_sr
, reg
);
577 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
578 if (drv_data
->ssp_type
!= PXA25x_SSP
)
581 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
583 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
585 drv_data
->cur_msg
->state
= ERROR_STATE
;
586 tasklet_schedule(&drv_data
->pump_transfers
);
589 static void int_transfer_complete(struct driver_data
*drv_data
)
591 void *reg
= drv_data
->ioaddr
;
594 write_SSSR(drv_data
->clear_sr
, reg
);
595 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
596 if (drv_data
->ssp_type
!= PXA25x_SSP
)
599 /* Update total byte transfered return count actual bytes read */
600 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
601 (drv_data
->rx_end
- drv_data
->rx
);
603 /* Release chip select if requested, transfer delays are
604 * handled in pump_transfers */
605 if (drv_data
->cs_change
)
606 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
608 /* Move to next transfer */
609 drv_data
->cur_msg
->state
= next_transfer(drv_data
);
611 /* Schedule transfer tasklet */
612 tasklet_schedule(&drv_data
->pump_transfers
);
615 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
617 void *reg
= drv_data
->ioaddr
;
619 u32 irq_mask
= (read_SSCR1(reg
) & SSCR1_TIE
) ?
620 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
622 u32 irq_status
= read_SSSR(reg
) & irq_mask
;
624 if (irq_status
& SSSR_ROR
) {
625 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
629 if (irq_status
& SSSR_TINT
) {
630 write_SSSR(SSSR_TINT
, reg
);
631 if (drv_data
->read(drv_data
)) {
632 int_transfer_complete(drv_data
);
637 /* Drain rx fifo, Fill tx fifo and prevent overruns */
639 if (drv_data
->read(drv_data
)) {
640 int_transfer_complete(drv_data
);
643 } while (drv_data
->write(drv_data
));
645 if (drv_data
->read(drv_data
)) {
646 int_transfer_complete(drv_data
);
650 if (drv_data
->tx
== drv_data
->tx_end
) {
651 write_SSCR1(read_SSCR1(reg
) & ~SSCR1_TIE
, reg
);
652 /* PXA25x_SSP has no timeout, read trailing bytes */
653 if (drv_data
->ssp_type
== PXA25x_SSP
) {
654 if (!wait_ssp_rx_stall(reg
))
656 int_error_stop(drv_data
, "interrupt_transfer: "
660 if (!drv_data
->read(drv_data
))
662 int_error_stop(drv_data
,
663 "interrupt_transfer: "
664 "trailing byte read failed");
667 int_transfer_complete(drv_data
);
671 /* We did something */
675 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
677 struct driver_data
*drv_data
= dev_id
;
678 void *reg
= drv_data
->ioaddr
;
680 if (!drv_data
->cur_msg
) {
682 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
683 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
684 if (drv_data
->ssp_type
!= PXA25x_SSP
)
686 write_SSSR(drv_data
->clear_sr
, reg
);
688 dev_err(&drv_data
->pdev
->dev
, "bad message state "
689 "in interrupt handler\n");
695 return drv_data
->transfer_handler(drv_data
);
698 int set_dma_burst_and_threshold(struct chip_data
*chip
, struct spi_device
*spi
,
699 u8 bits_per_word
, u32
*burst_code
,
702 struct pxa2xx_spi_chip
*chip_info
=
703 (struct pxa2xx_spi_chip
*)spi
->controller_data
;
710 /* Set the threshold (in registers) to equal the same amount of data
711 * as represented by burst size (in bytes). The computation below
712 * is (burst_size rounded up to nearest 8 byte, word or long word)
713 * divided by (bytes/register); the tx threshold is the inverse of
714 * the rx, so that there will always be enough data in the rx fifo
715 * to satisfy a burst, and there will always be enough space in the
716 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
717 * there is not enough space), there must always remain enough empty
718 * space in the rx fifo for any data loaded to the tx fifo.
719 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
720 * will be 8, or half the fifo;
721 * The threshold can only be set to 2, 4 or 8, but not 16, because
722 * to burst 16 to the tx fifo, the fifo would have to be empty;
723 * however, the minimum fifo trigger level is 1, and the tx will
724 * request service when the fifo is at this level, with only 15 spaces.
727 /* find bytes/word */
728 if (bits_per_word
<= 8)
730 else if (bits_per_word
<= 16)
735 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
737 req_burst_size
= chip_info
->dma_burst_size
;
739 switch (chip
->dma_burst_size
) {
741 /* if the default burst size is not set,
743 chip
->dma_burst_size
= DCMD_BURST8
;
755 if (req_burst_size
<= 8) {
756 *burst_code
= DCMD_BURST8
;
758 } else if (req_burst_size
<= 16) {
759 if (bytes_per_word
== 1) {
760 /* don't burst more than 1/2 the fifo */
761 *burst_code
= DCMD_BURST8
;
765 *burst_code
= DCMD_BURST16
;
769 if (bytes_per_word
== 1) {
770 /* don't burst more than 1/2 the fifo */
771 *burst_code
= DCMD_BURST8
;
774 } else if (bytes_per_word
== 2) {
775 /* don't burst more than 1/2 the fifo */
776 *burst_code
= DCMD_BURST16
;
780 *burst_code
= DCMD_BURST32
;
785 thresh_words
= burst_bytes
/ bytes_per_word
;
787 /* thresh_words will be between 2 and 8 */
788 *threshold
= (SSCR1_RxTresh(thresh_words
) & SSCR1_RFT
)
789 | (SSCR1_TxTresh(16-thresh_words
) & SSCR1_TFT
);
794 static unsigned int ssp_get_clk_div(struct ssp_device
*ssp
, int rate
)
796 unsigned long ssp_clk
= clk_get_rate(ssp
->clk
);
798 if (ssp
->type
== PXA25x_SSP
)
799 return ((ssp_clk
/ (2 * rate
) - 1) & 0xff) << 8;
801 return ((ssp_clk
/ rate
- 1) & 0xfff) << 8;
804 static void pump_transfers(unsigned long data
)
806 struct driver_data
*drv_data
= (struct driver_data
*)data
;
807 struct spi_message
*message
= NULL
;
808 struct spi_transfer
*transfer
= NULL
;
809 struct spi_transfer
*previous
= NULL
;
810 struct chip_data
*chip
= NULL
;
811 struct ssp_device
*ssp
= drv_data
->ssp
;
812 void *reg
= drv_data
->ioaddr
;
818 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
819 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
821 /* Get current state information */
822 message
= drv_data
->cur_msg
;
823 transfer
= drv_data
->cur_transfer
;
824 chip
= drv_data
->cur_chip
;
826 /* Handle for abort */
827 if (message
->state
== ERROR_STATE
) {
828 message
->status
= -EIO
;
833 /* Handle end of message */
834 if (message
->state
== DONE_STATE
) {
840 /* Delay if requested at end of transfer*/
841 if (message
->state
== RUNNING_STATE
) {
842 previous
= list_entry(transfer
->transfer_list
.prev
,
845 if (previous
->delay_usecs
)
846 udelay(previous
->delay_usecs
);
849 /* Check transfer length */
850 if (transfer
->len
> 8191)
852 dev_warn(&drv_data
->pdev
->dev
, "pump_transfers: transfer "
853 "length greater than 8191\n");
854 message
->status
= -EINVAL
;
859 /* Setup the transfer state based on the type of transfer */
860 if (flush(drv_data
) == 0) {
861 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
862 message
->status
= -EIO
;
866 drv_data
->n_bytes
= chip
->n_bytes
;
867 drv_data
->dma_width
= chip
->dma_width
;
868 drv_data
->cs_control
= chip
->cs_control
;
869 drv_data
->tx
= (void *)transfer
->tx_buf
;
870 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
871 drv_data
->rx
= transfer
->rx_buf
;
872 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
873 drv_data
->rx_dma
= transfer
->rx_dma
;
874 drv_data
->tx_dma
= transfer
->tx_dma
;
875 drv_data
->len
= transfer
->len
& DCMD_LENGTH
;
876 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
877 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
878 drv_data
->cs_change
= transfer
->cs_change
;
880 /* Change speed and bit per word on a per transfer */
882 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
884 bits
= chip
->bits_per_word
;
885 speed
= chip
->speed_hz
;
887 if (transfer
->speed_hz
)
888 speed
= transfer
->speed_hz
;
890 if (transfer
->bits_per_word
)
891 bits
= transfer
->bits_per_word
;
893 clk_div
= ssp_get_clk_div(ssp
, speed
);
896 drv_data
->n_bytes
= 1;
897 drv_data
->dma_width
= DCMD_WIDTH1
;
898 drv_data
->read
= drv_data
->read
!= null_reader
?
899 u8_reader
: null_reader
;
900 drv_data
->write
= drv_data
->write
!= null_writer
?
901 u8_writer
: null_writer
;
902 } else if (bits
<= 16) {
903 drv_data
->n_bytes
= 2;
904 drv_data
->dma_width
= DCMD_WIDTH2
;
905 drv_data
->read
= drv_data
->read
!= null_reader
?
906 u16_reader
: null_reader
;
907 drv_data
->write
= drv_data
->write
!= null_writer
?
908 u16_writer
: null_writer
;
909 } else if (bits
<= 32) {
910 drv_data
->n_bytes
= 4;
911 drv_data
->dma_width
= DCMD_WIDTH4
;
912 drv_data
->read
= drv_data
->read
!= null_reader
?
913 u32_reader
: null_reader
;
914 drv_data
->write
= drv_data
->write
!= null_writer
?
915 u32_writer
: null_writer
;
917 /* if bits/word is changed in dma mode, then must check the
918 * thresholds and burst also */
919 if (chip
->enable_dma
) {
920 if (set_dma_burst_and_threshold(chip
, message
->spi
,
923 if (printk_ratelimit())
924 dev_warn(&message
->spi
->dev
,
926 "DMA burst size reduced to "
927 "match bits_per_word\n");
932 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
934 | (bits
> 16 ? SSCR0_EDSS
: 0);
937 message
->state
= RUNNING_STATE
;
939 /* Try to map dma buffer and do a dma transfer if successful */
940 if ((drv_data
->dma_mapped
= map_dma_buffers(drv_data
))) {
942 /* Ensure we have the correct interrupt handler */
943 drv_data
->transfer_handler
= dma_transfer
;
945 /* Setup rx DMA Channel */
946 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
947 DSADR(drv_data
->rx_channel
) = drv_data
->ssdr_physical
;
948 DTADR(drv_data
->rx_channel
) = drv_data
->rx_dma
;
949 if (drv_data
->rx
== drv_data
->null_dma_buf
)
950 /* No target address increment */
951 DCMD(drv_data
->rx_channel
) = DCMD_FLOWSRC
952 | drv_data
->dma_width
956 DCMD(drv_data
->rx_channel
) = DCMD_INCTRGADDR
958 | drv_data
->dma_width
962 /* Setup tx DMA Channel */
963 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
964 DSADR(drv_data
->tx_channel
) = drv_data
->tx_dma
;
965 DTADR(drv_data
->tx_channel
) = drv_data
->ssdr_physical
;
966 if (drv_data
->tx
== drv_data
->null_dma_buf
)
967 /* No source address increment */
968 DCMD(drv_data
->tx_channel
) = DCMD_FLOWTRG
969 | drv_data
->dma_width
973 DCMD(drv_data
->tx_channel
) = DCMD_INCSRCADDR
975 | drv_data
->dma_width
979 /* Enable dma end irqs on SSP to detect end of transfer */
980 if (drv_data
->ssp_type
== PXA25x_SSP
)
981 DCMD(drv_data
->tx_channel
) |= DCMD_ENDIRQEN
;
983 /* Clear status and start DMA engine */
984 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
985 write_SSSR(drv_data
->clear_sr
, reg
);
986 DCSR(drv_data
->rx_channel
) |= DCSR_RUN
;
987 DCSR(drv_data
->tx_channel
) |= DCSR_RUN
;
989 /* Ensure we have the correct interrupt handler */
990 drv_data
->transfer_handler
= interrupt_transfer
;
993 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
994 write_SSSR(drv_data
->clear_sr
, reg
);
997 /* see if we need to reload the config registers */
998 if ((read_SSCR0(reg
) != cr0
)
999 || (read_SSCR1(reg
) & SSCR1_CHANGE_MASK
) !=
1000 (cr1
& SSCR1_CHANGE_MASK
)) {
1002 /* stop the SSP, and update the other bits */
1003 write_SSCR0(cr0
& ~SSCR0_SSE
, reg
);
1004 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1005 write_SSTO(chip
->timeout
, reg
);
1006 /* first set CR1 without interrupt and service enables */
1007 write_SSCR1(cr1
& SSCR1_CHANGE_MASK
, reg
);
1008 /* restart the SSP */
1009 write_SSCR0(cr0
, reg
);
1012 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1013 write_SSTO(chip
->timeout
, reg
);
1016 /* FIXME, need to handle cs polarity,
1017 * this driver uses struct pxa2xx_spi_chip.cs_control to
1018 * specify a CS handling function, and it ignores most
1019 * struct spi_device.mode[s], including SPI_CS_HIGH */
1020 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
1022 /* after chip select, release the data by enabling service
1023 * requests and interrupts, without changing any mode bits */
1024 write_SSCR1(cr1
, reg
);
1027 static void pump_messages(struct work_struct
*work
)
1029 struct driver_data
*drv_data
=
1030 container_of(work
, struct driver_data
, pump_messages
);
1031 unsigned long flags
;
1033 /* Lock queue and check for queue work */
1034 spin_lock_irqsave(&drv_data
->lock
, flags
);
1035 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1037 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1041 /* Make sure we are not already running a message */
1042 if (drv_data
->cur_msg
) {
1043 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1047 /* Extract head of queue */
1048 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1049 struct spi_message
, queue
);
1050 list_del_init(&drv_data
->cur_msg
->queue
);
1052 /* Initial message state*/
1053 drv_data
->cur_msg
->state
= START_STATE
;
1054 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1055 struct spi_transfer
,
1058 /* prepare to setup the SSP, in pump_transfers, using the per
1059 * chip configuration */
1060 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1062 /* Mark as busy and launch transfers */
1063 tasklet_schedule(&drv_data
->pump_transfers
);
1066 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1069 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1071 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1072 unsigned long flags
;
1074 spin_lock_irqsave(&drv_data
->lock
, flags
);
1076 if (drv_data
->run
== QUEUE_STOPPED
) {
1077 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1081 msg
->actual_length
= 0;
1082 msg
->status
= -EINPROGRESS
;
1083 msg
->state
= START_STATE
;
1085 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1087 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1088 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1090 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1095 /* the spi->mode bits understood by this driver: */
1096 #define MODEBITS (SPI_CPOL | SPI_CPHA)
1098 static int setup(struct spi_device
*spi
)
1100 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1101 struct chip_data
*chip
;
1102 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1103 struct ssp_device
*ssp
= drv_data
->ssp
;
1104 unsigned int clk_div
;
1106 if (!spi
->bits_per_word
)
1107 spi
->bits_per_word
= 8;
1109 if (drv_data
->ssp_type
!= PXA25x_SSP
1110 && (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 32)) {
1111 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1112 "b/w not 4-32 for type non-PXA25x_SSP\n",
1113 drv_data
->ssp_type
, spi
->bits_per_word
);
1116 else if (drv_data
->ssp_type
== PXA25x_SSP
1117 && (spi
->bits_per_word
< 4
1118 || spi
->bits_per_word
> 16)) {
1119 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1120 "b/w not 4-16 for type PXA25x_SSP\n",
1121 drv_data
->ssp_type
, spi
->bits_per_word
);
1125 if (spi
->mode
& ~MODEBITS
) {
1126 dev_dbg(&spi
->dev
, "setup: unsupported mode bits %x\n",
1127 spi
->mode
& ~MODEBITS
);
1131 /* Only alloc on first setup */
1132 chip
= spi_get_ctldata(spi
);
1134 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1137 "failed setup: can't allocate chip data\n");
1141 chip
->cs_control
= null_cs_control
;
1142 chip
->enable_dma
= 0;
1143 chip
->timeout
= 1000;
1144 chip
->threshold
= SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
1145 chip
->dma_burst_size
= drv_data
->master_info
->enable_dma
?
1149 /* protocol drivers may change the chip settings, so...
1150 * if chip_info exists, use it */
1151 chip_info
= spi
->controller_data
;
1153 /* chip_info isn't always needed */
1156 if (chip_info
->cs_control
)
1157 chip
->cs_control
= chip_info
->cs_control
;
1159 chip
->timeout
= chip_info
->timeout
;
1161 chip
->threshold
= (SSCR1_RxTresh(chip_info
->rx_threshold
) &
1163 (SSCR1_TxTresh(chip_info
->tx_threshold
) &
1166 chip
->enable_dma
= chip_info
->dma_burst_size
!= 0
1167 && drv_data
->master_info
->enable_dma
;
1168 chip
->dma_threshold
= 0;
1170 if (chip_info
->enable_loopback
)
1171 chip
->cr1
= SSCR1_LBM
;
1174 /* set dma burst and threshold outside of chip_info path so that if
1175 * chip_info goes away after setting chip->enable_dma, the
1176 * burst and threshold can still respond to changes in bits_per_word */
1177 if (chip
->enable_dma
) {
1178 /* set up legal burst and threshold for dma */
1179 if (set_dma_burst_and_threshold(chip
, spi
, spi
->bits_per_word
,
1180 &chip
->dma_burst_size
,
1181 &chip
->dma_threshold
)) {
1182 dev_warn(&spi
->dev
, "in setup: DMA burst size reduced "
1183 "to match bits_per_word\n");
1187 clk_div
= ssp_get_clk_div(ssp
, spi
->max_speed_hz
);
1188 chip
->speed_hz
= spi
->max_speed_hz
;
1192 | SSCR0_DataSize(spi
->bits_per_word
> 16 ?
1193 spi
->bits_per_word
- 16 : spi
->bits_per_word
)
1195 | (spi
->bits_per_word
> 16 ? SSCR0_EDSS
: 0);
1196 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1197 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1198 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1200 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1201 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1202 dev_dbg(&spi
->dev
, "%d bits/word, %ld Hz, mode %d\n",
1204 clk_get_rate(ssp
->clk
)
1205 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1208 dev_dbg(&spi
->dev
, "%d bits/word, %ld Hz, mode %d\n",
1210 clk_get_rate(ssp
->clk
)
1211 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1214 if (spi
->bits_per_word
<= 8) {
1216 chip
->dma_width
= DCMD_WIDTH1
;
1217 chip
->read
= u8_reader
;
1218 chip
->write
= u8_writer
;
1219 } else if (spi
->bits_per_word
<= 16) {
1221 chip
->dma_width
= DCMD_WIDTH2
;
1222 chip
->read
= u16_reader
;
1223 chip
->write
= u16_writer
;
1224 } else if (spi
->bits_per_word
<= 32) {
1225 chip
->cr0
|= SSCR0_EDSS
;
1227 chip
->dma_width
= DCMD_WIDTH4
;
1228 chip
->read
= u32_reader
;
1229 chip
->write
= u32_writer
;
1231 dev_err(&spi
->dev
, "invalid wordsize\n");
1234 chip
->bits_per_word
= spi
->bits_per_word
;
1236 spi_set_ctldata(spi
, chip
);
1241 static void cleanup(struct spi_device
*spi
)
1243 struct chip_data
*chip
= spi_get_ctldata(spi
);
1248 static int __init
init_queue(struct driver_data
*drv_data
)
1250 INIT_LIST_HEAD(&drv_data
->queue
);
1251 spin_lock_init(&drv_data
->lock
);
1253 drv_data
->run
= QUEUE_STOPPED
;
1256 tasklet_init(&drv_data
->pump_transfers
,
1257 pump_transfers
, (unsigned long)drv_data
);
1259 INIT_WORK(&drv_data
->pump_messages
, pump_messages
);
1260 drv_data
->workqueue
= create_singlethread_workqueue(
1261 drv_data
->master
->dev
.parent
->bus_id
);
1262 if (drv_data
->workqueue
== NULL
)
1268 static int start_queue(struct driver_data
*drv_data
)
1270 unsigned long flags
;
1272 spin_lock_irqsave(&drv_data
->lock
, flags
);
1274 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1275 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1279 drv_data
->run
= QUEUE_RUNNING
;
1280 drv_data
->cur_msg
= NULL
;
1281 drv_data
->cur_transfer
= NULL
;
1282 drv_data
->cur_chip
= NULL
;
1283 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1285 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1290 static int stop_queue(struct driver_data
*drv_data
)
1292 unsigned long flags
;
1293 unsigned limit
= 500;
1296 spin_lock_irqsave(&drv_data
->lock
, flags
);
1298 /* This is a bit lame, but is optimized for the common execution path.
1299 * A wait_queue on the drv_data->busy could be used, but then the common
1300 * execution path (pump_messages) would be required to call wake_up or
1301 * friends on every SPI message. Do this instead */
1302 drv_data
->run
= QUEUE_STOPPED
;
1303 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1304 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1306 spin_lock_irqsave(&drv_data
->lock
, flags
);
1309 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1312 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1317 static int destroy_queue(struct driver_data
*drv_data
)
1321 status
= stop_queue(drv_data
);
1322 /* we are unloading the module or failing to load (only two calls
1323 * to this routine), and neither call can handle a return value.
1324 * However, destroy_workqueue calls flush_workqueue, and that will
1325 * block until all work is done. If the reason that stop_queue
1326 * timed out is that the work will never finish, then it does no
1327 * good to call destroy_workqueue, so return anyway. */
1331 destroy_workqueue(drv_data
->workqueue
);
1336 static int __init
pxa2xx_spi_probe(struct platform_device
*pdev
)
1338 struct device
*dev
= &pdev
->dev
;
1339 struct pxa2xx_spi_master
*platform_info
;
1340 struct spi_master
*master
;
1341 struct driver_data
*drv_data
= 0;
1342 struct ssp_device
*ssp
;
1345 platform_info
= dev
->platform_data
;
1347 ssp
= ssp_request(pdev
->id
, pdev
->name
);
1349 dev_err(&pdev
->dev
, "failed to request SSP%d\n", pdev
->id
);
1353 /* Allocate master with space for drv_data and null dma buffer */
1354 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1356 dev_err(&pdev
->dev
, "can not alloc spi_master\n");
1360 drv_data
= spi_master_get_devdata(master
);
1361 drv_data
->master
= master
;
1362 drv_data
->master_info
= platform_info
;
1363 drv_data
->pdev
= pdev
;
1364 drv_data
->ssp
= ssp
;
1366 master
->bus_num
= pdev
->id
;
1367 master
->num_chipselect
= platform_info
->num_chipselect
;
1368 master
->cleanup
= cleanup
;
1369 master
->setup
= setup
;
1370 master
->transfer
= transfer
;
1372 drv_data
->ssp_type
= ssp
->type
;
1373 drv_data
->null_dma_buf
= (u32
*)ALIGN((u32
)(drv_data
+
1374 sizeof(struct driver_data
)), 8);
1376 drv_data
->ioaddr
= ssp
->mmio_base
;
1377 drv_data
->ssdr_physical
= ssp
->phys_base
+ SSDR
;
1378 if (ssp
->type
== PXA25x_SSP
) {
1379 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1380 drv_data
->dma_cr1
= 0;
1381 drv_data
->clear_sr
= SSSR_ROR
;
1382 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1384 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1385 drv_data
->dma_cr1
= SSCR1_TSRE
| SSCR1_RSRE
| SSCR1_TINTE
;
1386 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1387 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1390 status
= request_irq(ssp
->irq
, ssp_int
, 0, dev
->bus_id
, drv_data
);
1392 dev_err(&pdev
->dev
, "can not get IRQ\n");
1393 goto out_error_master_alloc
;
1396 /* Setup DMA if requested */
1397 drv_data
->tx_channel
= -1;
1398 drv_data
->rx_channel
= -1;
1399 if (platform_info
->enable_dma
) {
1401 /* Get two DMA channels (rx and tx) */
1402 drv_data
->rx_channel
= pxa_request_dma("pxa2xx_spi_ssp_rx",
1406 if (drv_data
->rx_channel
< 0) {
1407 dev_err(dev
, "problem (%d) requesting rx channel\n",
1408 drv_data
->rx_channel
);
1410 goto out_error_irq_alloc
;
1412 drv_data
->tx_channel
= pxa_request_dma("pxa2xx_spi_ssp_tx",
1416 if (drv_data
->tx_channel
< 0) {
1417 dev_err(dev
, "problem (%d) requesting tx channel\n",
1418 drv_data
->tx_channel
);
1420 goto out_error_dma_alloc
;
1423 DRCMR(ssp
->drcmr_rx
) = DRCMR_MAPVLD
| drv_data
->rx_channel
;
1424 DRCMR(ssp
->drcmr_tx
) = DRCMR_MAPVLD
| drv_data
->tx_channel
;
1427 /* Enable SOC clock */
1428 clk_enable(ssp
->clk
);
1430 /* Load default SSP configuration */
1431 write_SSCR0(0, drv_data
->ioaddr
);
1432 write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data
->ioaddr
);
1433 write_SSCR0(SSCR0_SerClkDiv(2)
1435 | SSCR0_DataSize(8),
1437 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1438 write_SSTO(0, drv_data
->ioaddr
);
1439 write_SSPSP(0, drv_data
->ioaddr
);
1441 /* Initial and start queue */
1442 status
= init_queue(drv_data
);
1444 dev_err(&pdev
->dev
, "problem initializing queue\n");
1445 goto out_error_clock_enabled
;
1447 status
= start_queue(drv_data
);
1449 dev_err(&pdev
->dev
, "problem starting queue\n");
1450 goto out_error_clock_enabled
;
1453 /* Register with the SPI framework */
1454 platform_set_drvdata(pdev
, drv_data
);
1455 status
= spi_register_master(master
);
1457 dev_err(&pdev
->dev
, "problem registering spi master\n");
1458 goto out_error_queue_alloc
;
1463 out_error_queue_alloc
:
1464 destroy_queue(drv_data
);
1466 out_error_clock_enabled
:
1467 clk_disable(ssp
->clk
);
1469 out_error_dma_alloc
:
1470 if (drv_data
->tx_channel
!= -1)
1471 pxa_free_dma(drv_data
->tx_channel
);
1472 if (drv_data
->rx_channel
!= -1)
1473 pxa_free_dma(drv_data
->rx_channel
);
1475 out_error_irq_alloc
:
1476 free_irq(ssp
->irq
, drv_data
);
1478 out_error_master_alloc
:
1479 spi_master_put(master
);
1484 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1486 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1487 struct ssp_device
*ssp
= drv_data
->ssp
;
1493 /* Remove the queue */
1494 status
= destroy_queue(drv_data
);
1496 /* the kernel does not check the return status of this
1497 * this routine (mod->exit, within the kernel). Therefore
1498 * nothing is gained by returning from here, the module is
1499 * going away regardless, and we should not leave any more
1500 * resources allocated than necessary. We cannot free the
1501 * message memory in drv_data->queue, but we can release the
1502 * resources below. I think the kernel should honor -EBUSY
1504 dev_err(&pdev
->dev
, "pxa2xx_spi_remove: workqueue will not "
1505 "complete, message memory not freed\n");
1507 /* Disable the SSP at the peripheral and SOC level */
1508 write_SSCR0(0, drv_data
->ioaddr
);
1509 clk_disable(ssp
->clk
);
1512 if (drv_data
->master_info
->enable_dma
) {
1513 DRCMR(ssp
->drcmr_rx
) = 0;
1514 DRCMR(ssp
->drcmr_tx
) = 0;
1515 pxa_free_dma(drv_data
->tx_channel
);
1516 pxa_free_dma(drv_data
->rx_channel
);
1520 free_irq(ssp
->irq
, drv_data
);
1525 /* Disconnect from the SPI framework */
1526 spi_unregister_master(drv_data
->master
);
1528 /* Prevent double remove */
1529 platform_set_drvdata(pdev
, NULL
);
1534 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1538 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1539 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1544 static int pxa2xx_spi_suspend(struct platform_device
*pdev
, pm_message_t state
)
1546 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1547 struct ssp_device
*ssp
= drv_data
->ssp
;
1550 status
= stop_queue(drv_data
);
1553 write_SSCR0(0, drv_data
->ioaddr
);
1554 clk_disable(ssp
->clk
);
1559 static int pxa2xx_spi_resume(struct platform_device
*pdev
)
1561 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1562 struct ssp_device
*ssp
= drv_data
->ssp
;
1565 /* Enable the SSP clock */
1566 clk_disable(ssp
->clk
);
1568 /* Start the queue running */
1569 status
= start_queue(drv_data
);
1571 dev_err(&pdev
->dev
, "problem starting queue (%d)\n", status
);
1578 #define pxa2xx_spi_suspend NULL
1579 #define pxa2xx_spi_resume NULL
1580 #endif /* CONFIG_PM */
1582 static struct platform_driver driver
= {
1584 .name
= "pxa2xx-spi",
1585 .owner
= THIS_MODULE
,
1587 .remove
= pxa2xx_spi_remove
,
1588 .shutdown
= pxa2xx_spi_shutdown
,
1589 .suspend
= pxa2xx_spi_suspend
,
1590 .resume
= pxa2xx_spi_resume
,
1593 static int __init
pxa2xx_spi_init(void)
1595 return platform_driver_probe(&driver
, pxa2xx_spi_probe
);
1597 module_init(pxa2xx_spi_init
);
1599 static void __exit
pxa2xx_spi_exit(void)
1601 platform_driver_unregister(&driver
);
1603 module_exit(pxa2xx_spi_exit
);