2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
69 static unsigned int halt_poll_ns
;
70 module_param(halt_poll_ns
, uint
, S_IRUGO
| S_IWUSR
);
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
78 DEFINE_SPINLOCK(kvm_lock
);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock
);
82 static cpumask_var_t cpus_hardware_enabled
;
83 static int kvm_usage_count
;
84 static atomic_t hardware_enable_failed
;
86 struct kmem_cache
*kvm_vcpu_cache
;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache
);
89 static __read_mostly
struct preempt_ops kvm_preempt_ops
;
91 struct dentry
*kvm_debugfs_dir
;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir
);
94 static long kvm_vcpu_ioctl(struct file
*file
, unsigned int ioctl
,
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file
*file
, unsigned int ioctl
,
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
103 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
);
105 static void kvm_release_pfn_dirty(pfn_t pfn
);
106 static void mark_page_dirty_in_slot(struct kvm
*kvm
,
107 struct kvm_memory_slot
*memslot
, gfn_t gfn
);
109 __visible
bool kvm_rebooting
;
110 EXPORT_SYMBOL_GPL(kvm_rebooting
);
112 static bool largepages_enabled
= true;
114 bool kvm_is_reserved_pfn(pfn_t pfn
)
117 return PageReserved(pfn_to_page(pfn
));
123 * Switches to specified vcpu, until a matching vcpu_put()
125 int vcpu_load(struct kvm_vcpu
*vcpu
)
129 if (mutex_lock_killable(&vcpu
->mutex
))
132 preempt_notifier_register(&vcpu
->preempt_notifier
);
133 kvm_arch_vcpu_load(vcpu
, cpu
);
137 EXPORT_SYMBOL_GPL(vcpu_load
);
139 void vcpu_put(struct kvm_vcpu
*vcpu
)
142 kvm_arch_vcpu_put(vcpu
);
143 preempt_notifier_unregister(&vcpu
->preempt_notifier
);
145 mutex_unlock(&vcpu
->mutex
);
147 EXPORT_SYMBOL_GPL(vcpu_put
);
149 static void ack_flush(void *_completed
)
153 bool kvm_make_all_cpus_request(struct kvm
*kvm
, unsigned int req
)
158 struct kvm_vcpu
*vcpu
;
160 zalloc_cpumask_var(&cpus
, GFP_ATOMIC
);
163 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
164 kvm_make_request(req
, vcpu
);
167 /* Set ->requests bit before we read ->mode */
170 if (cpus
!= NULL
&& cpu
!= -1 && cpu
!= me
&&
171 kvm_vcpu_exiting_guest_mode(vcpu
) != OUTSIDE_GUEST_MODE
)
172 cpumask_set_cpu(cpu
, cpus
);
174 if (unlikely(cpus
== NULL
))
175 smp_call_function_many(cpu_online_mask
, ack_flush
, NULL
, 1);
176 else if (!cpumask_empty(cpus
))
177 smp_call_function_many(cpus
, ack_flush
, NULL
, 1);
181 free_cpumask_var(cpus
);
185 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
186 void kvm_flush_remote_tlbs(struct kvm
*kvm
)
188 long dirty_count
= kvm
->tlbs_dirty
;
191 if (kvm_make_all_cpus_request(kvm
, KVM_REQ_TLB_FLUSH
))
192 ++kvm
->stat
.remote_tlb_flush
;
193 cmpxchg(&kvm
->tlbs_dirty
, dirty_count
, 0);
195 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs
);
198 void kvm_reload_remote_mmus(struct kvm
*kvm
)
200 kvm_make_all_cpus_request(kvm
, KVM_REQ_MMU_RELOAD
);
203 void kvm_make_mclock_inprogress_request(struct kvm
*kvm
)
205 kvm_make_all_cpus_request(kvm
, KVM_REQ_MCLOCK_INPROGRESS
);
208 void kvm_make_scan_ioapic_request(struct kvm
*kvm
)
210 kvm_make_all_cpus_request(kvm
, KVM_REQ_SCAN_IOAPIC
);
213 int kvm_vcpu_init(struct kvm_vcpu
*vcpu
, struct kvm
*kvm
, unsigned id
)
218 mutex_init(&vcpu
->mutex
);
223 init_waitqueue_head(&vcpu
->wq
);
224 kvm_async_pf_vcpu_init(vcpu
);
226 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
231 vcpu
->run
= page_address(page
);
233 kvm_vcpu_set_in_spin_loop(vcpu
, false);
234 kvm_vcpu_set_dy_eligible(vcpu
, false);
235 vcpu
->preempted
= false;
237 r
= kvm_arch_vcpu_init(vcpu
);
243 free_page((unsigned long)vcpu
->run
);
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init
);
249 void kvm_vcpu_uninit(struct kvm_vcpu
*vcpu
)
252 kvm_arch_vcpu_uninit(vcpu
);
253 free_page((unsigned long)vcpu
->run
);
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit
);
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm
*mmu_notifier_to_kvm(struct mmu_notifier
*mn
)
260 return container_of(mn
, struct kvm
, mmu_notifier
);
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier
*mn
,
264 struct mm_struct
*mm
,
265 unsigned long address
)
267 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
268 int need_tlb_flush
, idx
;
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
288 idx
= srcu_read_lock(&kvm
->srcu
);
289 spin_lock(&kvm
->mmu_lock
);
291 kvm
->mmu_notifier_seq
++;
292 need_tlb_flush
= kvm_unmap_hva(kvm
, address
) | kvm
->tlbs_dirty
;
293 /* we've to flush the tlb before the pages can be freed */
295 kvm_flush_remote_tlbs(kvm
);
297 spin_unlock(&kvm
->mmu_lock
);
299 kvm_arch_mmu_notifier_invalidate_page(kvm
, address
);
301 srcu_read_unlock(&kvm
->srcu
, idx
);
304 static void kvm_mmu_notifier_change_pte(struct mmu_notifier
*mn
,
305 struct mm_struct
*mm
,
306 unsigned long address
,
309 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
312 idx
= srcu_read_lock(&kvm
->srcu
);
313 spin_lock(&kvm
->mmu_lock
);
314 kvm
->mmu_notifier_seq
++;
315 kvm_set_spte_hva(kvm
, address
, pte
);
316 spin_unlock(&kvm
->mmu_lock
);
317 srcu_read_unlock(&kvm
->srcu
, idx
);
320 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier
*mn
,
321 struct mm_struct
*mm
,
325 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
326 int need_tlb_flush
= 0, idx
;
328 idx
= srcu_read_lock(&kvm
->srcu
);
329 spin_lock(&kvm
->mmu_lock
);
331 * The count increase must become visible at unlock time as no
332 * spte can be established without taking the mmu_lock and
333 * count is also read inside the mmu_lock critical section.
335 kvm
->mmu_notifier_count
++;
336 need_tlb_flush
= kvm_unmap_hva_range(kvm
, start
, end
);
337 need_tlb_flush
|= kvm
->tlbs_dirty
;
338 /* we've to flush the tlb before the pages can be freed */
340 kvm_flush_remote_tlbs(kvm
);
342 spin_unlock(&kvm
->mmu_lock
);
343 srcu_read_unlock(&kvm
->srcu
, idx
);
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier
*mn
,
347 struct mm_struct
*mm
,
351 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
353 spin_lock(&kvm
->mmu_lock
);
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
359 kvm
->mmu_notifier_seq
++;
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
366 kvm
->mmu_notifier_count
--;
367 spin_unlock(&kvm
->mmu_lock
);
369 BUG_ON(kvm
->mmu_notifier_count
< 0);
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier
*mn
,
373 struct mm_struct
*mm
,
377 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
380 idx
= srcu_read_lock(&kvm
->srcu
);
381 spin_lock(&kvm
->mmu_lock
);
383 young
= kvm_age_hva(kvm
, start
, end
);
385 kvm_flush_remote_tlbs(kvm
);
387 spin_unlock(&kvm
->mmu_lock
);
388 srcu_read_unlock(&kvm
->srcu
, idx
);
393 static int kvm_mmu_notifier_test_young(struct mmu_notifier
*mn
,
394 struct mm_struct
*mm
,
395 unsigned long address
)
397 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
400 idx
= srcu_read_lock(&kvm
->srcu
);
401 spin_lock(&kvm
->mmu_lock
);
402 young
= kvm_test_age_hva(kvm
, address
);
403 spin_unlock(&kvm
->mmu_lock
);
404 srcu_read_unlock(&kvm
->srcu
, idx
);
409 static void kvm_mmu_notifier_release(struct mmu_notifier
*mn
,
410 struct mm_struct
*mm
)
412 struct kvm
*kvm
= mmu_notifier_to_kvm(mn
);
415 idx
= srcu_read_lock(&kvm
->srcu
);
416 kvm_arch_flush_shadow_all(kvm
);
417 srcu_read_unlock(&kvm
->srcu
, idx
);
420 static const struct mmu_notifier_ops kvm_mmu_notifier_ops
= {
421 .invalidate_page
= kvm_mmu_notifier_invalidate_page
,
422 .invalidate_range_start
= kvm_mmu_notifier_invalidate_range_start
,
423 .invalidate_range_end
= kvm_mmu_notifier_invalidate_range_end
,
424 .clear_flush_young
= kvm_mmu_notifier_clear_flush_young
,
425 .test_young
= kvm_mmu_notifier_test_young
,
426 .change_pte
= kvm_mmu_notifier_change_pte
,
427 .release
= kvm_mmu_notifier_release
,
430 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
432 kvm
->mmu_notifier
.ops
= &kvm_mmu_notifier_ops
;
433 return mmu_notifier_register(&kvm
->mmu_notifier
, current
->mm
);
436 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
438 static int kvm_init_mmu_notifier(struct kvm
*kvm
)
443 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
445 static void kvm_init_memslots_id(struct kvm
*kvm
)
448 struct kvm_memslots
*slots
= kvm
->memslots
;
450 for (i
= 0; i
< KVM_MEM_SLOTS_NUM
; i
++)
451 slots
->id_to_index
[i
] = slots
->memslots
[i
].id
= i
;
454 static struct kvm
*kvm_create_vm(unsigned long type
)
457 struct kvm
*kvm
= kvm_arch_alloc_vm();
460 return ERR_PTR(-ENOMEM
);
462 spin_lock_init(&kvm
->mmu_lock
);
463 atomic_inc(¤t
->mm
->mm_count
);
464 kvm
->mm
= current
->mm
;
465 kvm_eventfd_init(kvm
);
466 mutex_init(&kvm
->lock
);
467 mutex_init(&kvm
->irq_lock
);
468 mutex_init(&kvm
->slots_lock
);
469 atomic_set(&kvm
->users_count
, 1);
470 INIT_LIST_HEAD(&kvm
->devices
);
472 r
= kvm_arch_init_vm(kvm
, type
);
474 goto out_err_no_disable
;
476 r
= hardware_enable_all();
478 goto out_err_no_disable
;
480 #ifdef CONFIG_HAVE_KVM_IRQFD
481 INIT_HLIST_HEAD(&kvm
->irq_ack_notifier_list
);
484 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM
> SHRT_MAX
);
487 kvm
->memslots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
489 goto out_err_no_srcu
;
492 * Init kvm generation close to the maximum to easily test the
493 * code of handling generation number wrap-around.
495 kvm
->memslots
->generation
= -150;
497 kvm_init_memslots_id(kvm
);
498 if (init_srcu_struct(&kvm
->srcu
))
499 goto out_err_no_srcu
;
500 if (init_srcu_struct(&kvm
->irq_srcu
))
501 goto out_err_no_irq_srcu
;
502 for (i
= 0; i
< KVM_NR_BUSES
; i
++) {
503 kvm
->buses
[i
] = kzalloc(sizeof(struct kvm_io_bus
),
509 r
= kvm_init_mmu_notifier(kvm
);
513 spin_lock(&kvm_lock
);
514 list_add(&kvm
->vm_list
, &vm_list
);
515 spin_unlock(&kvm_lock
);
520 cleanup_srcu_struct(&kvm
->irq_srcu
);
522 cleanup_srcu_struct(&kvm
->srcu
);
524 hardware_disable_all();
526 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
527 kfree(kvm
->buses
[i
]);
528 kvfree(kvm
->memslots
);
529 kvm_arch_free_vm(kvm
);
535 * Avoid using vmalloc for a small buffer.
536 * Should not be used when the size is statically known.
538 void *kvm_kvzalloc(unsigned long size
)
540 if (size
> PAGE_SIZE
)
541 return vzalloc(size
);
543 return kzalloc(size
, GFP_KERNEL
);
546 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot
*memslot
)
548 if (!memslot
->dirty_bitmap
)
551 kvfree(memslot
->dirty_bitmap
);
552 memslot
->dirty_bitmap
= NULL
;
556 * Free any memory in @free but not in @dont.
558 static void kvm_free_physmem_slot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
559 struct kvm_memory_slot
*dont
)
561 if (!dont
|| free
->dirty_bitmap
!= dont
->dirty_bitmap
)
562 kvm_destroy_dirty_bitmap(free
);
564 kvm_arch_free_memslot(kvm
, free
, dont
);
569 static void kvm_free_physmem(struct kvm
*kvm
)
571 struct kvm_memslots
*slots
= kvm
->memslots
;
572 struct kvm_memory_slot
*memslot
;
574 kvm_for_each_memslot(memslot
, slots
)
575 kvm_free_physmem_slot(kvm
, memslot
, NULL
);
577 kvfree(kvm
->memslots
);
580 static void kvm_destroy_devices(struct kvm
*kvm
)
582 struct list_head
*node
, *tmp
;
584 list_for_each_safe(node
, tmp
, &kvm
->devices
) {
585 struct kvm_device
*dev
=
586 list_entry(node
, struct kvm_device
, vm_node
);
589 dev
->ops
->destroy(dev
);
593 static void kvm_destroy_vm(struct kvm
*kvm
)
596 struct mm_struct
*mm
= kvm
->mm
;
598 kvm_arch_sync_events(kvm
);
599 spin_lock(&kvm_lock
);
600 list_del(&kvm
->vm_list
);
601 spin_unlock(&kvm_lock
);
602 kvm_free_irq_routing(kvm
);
603 for (i
= 0; i
< KVM_NR_BUSES
; i
++)
604 kvm_io_bus_destroy(kvm
->buses
[i
]);
605 kvm_coalesced_mmio_free(kvm
);
606 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
607 mmu_notifier_unregister(&kvm
->mmu_notifier
, kvm
->mm
);
609 kvm_arch_flush_shadow_all(kvm
);
611 kvm_arch_destroy_vm(kvm
);
612 kvm_destroy_devices(kvm
);
613 kvm_free_physmem(kvm
);
614 cleanup_srcu_struct(&kvm
->irq_srcu
);
615 cleanup_srcu_struct(&kvm
->srcu
);
616 kvm_arch_free_vm(kvm
);
617 hardware_disable_all();
621 void kvm_get_kvm(struct kvm
*kvm
)
623 atomic_inc(&kvm
->users_count
);
625 EXPORT_SYMBOL_GPL(kvm_get_kvm
);
627 void kvm_put_kvm(struct kvm
*kvm
)
629 if (atomic_dec_and_test(&kvm
->users_count
))
632 EXPORT_SYMBOL_GPL(kvm_put_kvm
);
635 static int kvm_vm_release(struct inode
*inode
, struct file
*filp
)
637 struct kvm
*kvm
= filp
->private_data
;
639 kvm_irqfd_release(kvm
);
646 * Allocation size is twice as large as the actual dirty bitmap size.
647 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
649 static int kvm_create_dirty_bitmap(struct kvm_memory_slot
*memslot
)
651 unsigned long dirty_bytes
= 2 * kvm_dirty_bitmap_bytes(memslot
);
653 memslot
->dirty_bitmap
= kvm_kvzalloc(dirty_bytes
);
654 if (!memslot
->dirty_bitmap
)
661 * Insert memslot and re-sort memslots based on their GFN,
662 * so binary search could be used to lookup GFN.
663 * Sorting algorithm takes advantage of having initially
664 * sorted array and known changed memslot position.
666 static void update_memslots(struct kvm_memslots
*slots
,
667 struct kvm_memory_slot
*new)
670 int i
= slots
->id_to_index
[id
];
671 struct kvm_memory_slot
*mslots
= slots
->memslots
;
673 WARN_ON(mslots
[i
].id
!= id
);
675 WARN_ON(!mslots
[i
].npages
);
678 if (mslots
[i
].npages
)
681 if (!mslots
[i
].npages
)
685 while (i
< KVM_MEM_SLOTS_NUM
- 1 &&
686 new->base_gfn
<= mslots
[i
+ 1].base_gfn
) {
687 if (!mslots
[i
+ 1].npages
)
689 mslots
[i
] = mslots
[i
+ 1];
690 slots
->id_to_index
[mslots
[i
].id
] = i
;
695 * The ">=" is needed when creating a slot with base_gfn == 0,
696 * so that it moves before all those with base_gfn == npages == 0.
698 * On the other hand, if new->npages is zero, the above loop has
699 * already left i pointing to the beginning of the empty part of
700 * mslots, and the ">=" would move the hole backwards in this
701 * case---which is wrong. So skip the loop when deleting a slot.
705 new->base_gfn
>= mslots
[i
- 1].base_gfn
) {
706 mslots
[i
] = mslots
[i
- 1];
707 slots
->id_to_index
[mslots
[i
].id
] = i
;
711 WARN_ON_ONCE(i
!= slots
->used_slots
);
714 slots
->id_to_index
[mslots
[i
].id
] = i
;
717 static int check_memory_region_flags(struct kvm_userspace_memory_region
*mem
)
719 u32 valid_flags
= KVM_MEM_LOG_DIRTY_PAGES
;
721 #ifdef __KVM_HAVE_READONLY_MEM
722 valid_flags
|= KVM_MEM_READONLY
;
725 if (mem
->flags
& ~valid_flags
)
731 static struct kvm_memslots
*install_new_memslots(struct kvm
*kvm
,
732 struct kvm_memslots
*slots
)
734 struct kvm_memslots
*old_memslots
= kvm
->memslots
;
737 * Set the low bit in the generation, which disables SPTE caching
738 * until the end of synchronize_srcu_expedited.
740 WARN_ON(old_memslots
->generation
& 1);
741 slots
->generation
= old_memslots
->generation
+ 1;
743 rcu_assign_pointer(kvm
->memslots
, slots
);
744 synchronize_srcu_expedited(&kvm
->srcu
);
747 * Increment the new memslot generation a second time. This prevents
748 * vm exits that race with memslot updates from caching a memslot
749 * generation that will (potentially) be valid forever.
753 kvm_arch_memslots_updated(kvm
);
759 * Allocate some memory and give it an address in the guest physical address
762 * Discontiguous memory is allowed, mostly for framebuffers.
764 * Must be called holding kvm->slots_lock for write.
766 int __kvm_set_memory_region(struct kvm
*kvm
,
767 struct kvm_userspace_memory_region
*mem
)
771 unsigned long npages
;
772 struct kvm_memory_slot
*slot
;
773 struct kvm_memory_slot old
, new;
774 struct kvm_memslots
*slots
= NULL
, *old_memslots
;
775 enum kvm_mr_change change
;
777 r
= check_memory_region_flags(mem
);
782 /* General sanity checks */
783 if (mem
->memory_size
& (PAGE_SIZE
- 1))
785 if (mem
->guest_phys_addr
& (PAGE_SIZE
- 1))
787 /* We can read the guest memory with __xxx_user() later on. */
788 if ((mem
->slot
< KVM_USER_MEM_SLOTS
) &&
789 ((mem
->userspace_addr
& (PAGE_SIZE
- 1)) ||
790 !access_ok(VERIFY_WRITE
,
791 (void __user
*)(unsigned long)mem
->userspace_addr
,
794 if (mem
->slot
>= KVM_MEM_SLOTS_NUM
)
796 if (mem
->guest_phys_addr
+ mem
->memory_size
< mem
->guest_phys_addr
)
799 slot
= id_to_memslot(kvm
->memslots
, mem
->slot
);
800 base_gfn
= mem
->guest_phys_addr
>> PAGE_SHIFT
;
801 npages
= mem
->memory_size
>> PAGE_SHIFT
;
803 if (npages
> KVM_MEM_MAX_NR_PAGES
)
807 mem
->flags
&= ~KVM_MEM_LOG_DIRTY_PAGES
;
812 new.base_gfn
= base_gfn
;
814 new.flags
= mem
->flags
;
818 change
= KVM_MR_CREATE
;
819 else { /* Modify an existing slot. */
820 if ((mem
->userspace_addr
!= old
.userspace_addr
) ||
821 (npages
!= old
.npages
) ||
822 ((new.flags
^ old
.flags
) & KVM_MEM_READONLY
))
825 if (base_gfn
!= old
.base_gfn
)
826 change
= KVM_MR_MOVE
;
827 else if (new.flags
!= old
.flags
)
828 change
= KVM_MR_FLAGS_ONLY
;
829 else { /* Nothing to change. */
834 } else if (old
.npages
) {
835 change
= KVM_MR_DELETE
;
836 } else /* Modify a non-existent slot: disallowed. */
839 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
840 /* Check for overlaps */
842 kvm_for_each_memslot(slot
, kvm
->memslots
) {
843 if ((slot
->id
>= KVM_USER_MEM_SLOTS
) ||
844 (slot
->id
== mem
->slot
))
846 if (!((base_gfn
+ npages
<= slot
->base_gfn
) ||
847 (base_gfn
>= slot
->base_gfn
+ slot
->npages
)))
852 /* Free page dirty bitmap if unneeded */
853 if (!(new.flags
& KVM_MEM_LOG_DIRTY_PAGES
))
854 new.dirty_bitmap
= NULL
;
857 if (change
== KVM_MR_CREATE
) {
858 new.userspace_addr
= mem
->userspace_addr
;
860 if (kvm_arch_create_memslot(kvm
, &new, npages
))
864 /* Allocate page dirty bitmap if needed */
865 if ((new.flags
& KVM_MEM_LOG_DIRTY_PAGES
) && !new.dirty_bitmap
) {
866 if (kvm_create_dirty_bitmap(&new) < 0)
870 slots
= kvm_kvzalloc(sizeof(struct kvm_memslots
));
873 memcpy(slots
, kvm
->memslots
, sizeof(struct kvm_memslots
));
875 if ((change
== KVM_MR_DELETE
) || (change
== KVM_MR_MOVE
)) {
876 slot
= id_to_memslot(slots
, mem
->slot
);
877 slot
->flags
|= KVM_MEMSLOT_INVALID
;
879 old_memslots
= install_new_memslots(kvm
, slots
);
881 /* slot was deleted or moved, clear iommu mapping */
882 kvm_iommu_unmap_pages(kvm
, &old
);
883 /* From this point no new shadow pages pointing to a deleted,
884 * or moved, memslot will be created.
886 * validation of sp->gfn happens in:
887 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
888 * - kvm_is_visible_gfn (mmu_check_roots)
890 kvm_arch_flush_shadow_memslot(kvm
, slot
);
893 * We can re-use the old_memslots from above, the only difference
894 * from the currently installed memslots is the invalid flag. This
895 * will get overwritten by update_memslots anyway.
897 slots
= old_memslots
;
900 r
= kvm_arch_prepare_memory_region(kvm
, &new, mem
, change
);
904 /* actual memory is freed via old in kvm_free_physmem_slot below */
905 if (change
== KVM_MR_DELETE
) {
906 new.dirty_bitmap
= NULL
;
907 memset(&new.arch
, 0, sizeof(new.arch
));
910 update_memslots(slots
, &new);
911 old_memslots
= install_new_memslots(kvm
, slots
);
913 kvm_arch_commit_memory_region(kvm
, mem
, &old
, change
);
915 kvm_free_physmem_slot(kvm
, &old
, &new);
916 kvfree(old_memslots
);
919 * IOMMU mapping: New slots need to be mapped. Old slots need to be
920 * un-mapped and re-mapped if their base changes. Since base change
921 * unmapping is handled above with slot deletion, mapping alone is
922 * needed here. Anything else the iommu might care about for existing
923 * slots (size changes, userspace addr changes and read-only flag
924 * changes) is disallowed above, so any other attribute changes getting
925 * here can be skipped.
927 if ((change
== KVM_MR_CREATE
) || (change
== KVM_MR_MOVE
)) {
928 r
= kvm_iommu_map_pages(kvm
, &new);
937 kvm_free_physmem_slot(kvm
, &new, &old
);
941 EXPORT_SYMBOL_GPL(__kvm_set_memory_region
);
943 int kvm_set_memory_region(struct kvm
*kvm
,
944 struct kvm_userspace_memory_region
*mem
)
948 mutex_lock(&kvm
->slots_lock
);
949 r
= __kvm_set_memory_region(kvm
, mem
);
950 mutex_unlock(&kvm
->slots_lock
);
953 EXPORT_SYMBOL_GPL(kvm_set_memory_region
);
955 static int kvm_vm_ioctl_set_memory_region(struct kvm
*kvm
,
956 struct kvm_userspace_memory_region
*mem
)
958 if (mem
->slot
>= KVM_USER_MEM_SLOTS
)
960 return kvm_set_memory_region(kvm
, mem
);
963 int kvm_get_dirty_log(struct kvm
*kvm
,
964 struct kvm_dirty_log
*log
, int *is_dirty
)
966 struct kvm_memory_slot
*memslot
;
969 unsigned long any
= 0;
972 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
975 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
977 if (!memslot
->dirty_bitmap
)
980 n
= kvm_dirty_bitmap_bytes(memslot
);
982 for (i
= 0; !any
&& i
< n
/sizeof(long); ++i
)
983 any
= memslot
->dirty_bitmap
[i
];
986 if (copy_to_user(log
->dirty_bitmap
, memslot
->dirty_bitmap
, n
))
996 EXPORT_SYMBOL_GPL(kvm_get_dirty_log
);
998 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1000 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1001 * are dirty write protect them for next write.
1002 * @kvm: pointer to kvm instance
1003 * @log: slot id and address to which we copy the log
1004 * @is_dirty: flag set if any page is dirty
1006 * We need to keep it in mind that VCPU threads can write to the bitmap
1007 * concurrently. So, to avoid losing track of dirty pages we keep the
1010 * 1. Take a snapshot of the bit and clear it if needed.
1011 * 2. Write protect the corresponding page.
1012 * 3. Copy the snapshot to the userspace.
1013 * 4. Upon return caller flushes TLB's if needed.
1015 * Between 2 and 4, the guest may write to the page using the remaining TLB
1016 * entry. This is not a problem because the page is reported dirty using
1017 * the snapshot taken before and step 4 ensures that writes done after
1018 * exiting to userspace will be logged for the next call.
1021 int kvm_get_dirty_log_protect(struct kvm
*kvm
,
1022 struct kvm_dirty_log
*log
, bool *is_dirty
)
1024 struct kvm_memory_slot
*memslot
;
1027 unsigned long *dirty_bitmap
;
1028 unsigned long *dirty_bitmap_buffer
;
1031 if (log
->slot
>= KVM_USER_MEM_SLOTS
)
1034 memslot
= id_to_memslot(kvm
->memslots
, log
->slot
);
1036 dirty_bitmap
= memslot
->dirty_bitmap
;
1041 n
= kvm_dirty_bitmap_bytes(memslot
);
1043 dirty_bitmap_buffer
= dirty_bitmap
+ n
/ sizeof(long);
1044 memset(dirty_bitmap_buffer
, 0, n
);
1046 spin_lock(&kvm
->mmu_lock
);
1048 for (i
= 0; i
< n
/ sizeof(long); i
++) {
1052 if (!dirty_bitmap
[i
])
1057 mask
= xchg(&dirty_bitmap
[i
], 0);
1058 dirty_bitmap_buffer
[i
] = mask
;
1061 offset
= i
* BITS_PER_LONG
;
1062 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm
, memslot
,
1067 spin_unlock(&kvm
->mmu_lock
);
1070 if (copy_to_user(log
->dirty_bitmap
, dirty_bitmap_buffer
, n
))
1077 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect
);
1080 bool kvm_largepages_enabled(void)
1082 return largepages_enabled
;
1085 void kvm_disable_largepages(void)
1087 largepages_enabled
= false;
1089 EXPORT_SYMBOL_GPL(kvm_disable_largepages
);
1091 struct kvm_memory_slot
*gfn_to_memslot(struct kvm
*kvm
, gfn_t gfn
)
1093 return __gfn_to_memslot(kvm_memslots(kvm
), gfn
);
1095 EXPORT_SYMBOL_GPL(gfn_to_memslot
);
1097 int kvm_is_visible_gfn(struct kvm
*kvm
, gfn_t gfn
)
1099 struct kvm_memory_slot
*memslot
= gfn_to_memslot(kvm
, gfn
);
1101 if (!memslot
|| memslot
->id
>= KVM_USER_MEM_SLOTS
||
1102 memslot
->flags
& KVM_MEMSLOT_INVALID
)
1107 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn
);
1109 unsigned long kvm_host_page_size(struct kvm
*kvm
, gfn_t gfn
)
1111 struct vm_area_struct
*vma
;
1112 unsigned long addr
, size
;
1116 addr
= gfn_to_hva(kvm
, gfn
);
1117 if (kvm_is_error_hva(addr
))
1120 down_read(¤t
->mm
->mmap_sem
);
1121 vma
= find_vma(current
->mm
, addr
);
1125 size
= vma_kernel_pagesize(vma
);
1128 up_read(¤t
->mm
->mmap_sem
);
1133 static bool memslot_is_readonly(struct kvm_memory_slot
*slot
)
1135 return slot
->flags
& KVM_MEM_READONLY
;
1138 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1139 gfn_t
*nr_pages
, bool write
)
1141 if (!slot
|| slot
->flags
& KVM_MEMSLOT_INVALID
)
1142 return KVM_HVA_ERR_BAD
;
1144 if (memslot_is_readonly(slot
) && write
)
1145 return KVM_HVA_ERR_RO_BAD
;
1148 *nr_pages
= slot
->npages
- (gfn
- slot
->base_gfn
);
1150 return __gfn_to_hva_memslot(slot
, gfn
);
1153 static unsigned long gfn_to_hva_many(struct kvm_memory_slot
*slot
, gfn_t gfn
,
1156 return __gfn_to_hva_many(slot
, gfn
, nr_pages
, true);
1159 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot
*slot
,
1162 return gfn_to_hva_many(slot
, gfn
, NULL
);
1164 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot
);
1166 unsigned long gfn_to_hva(struct kvm
*kvm
, gfn_t gfn
)
1168 return gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, NULL
);
1170 EXPORT_SYMBOL_GPL(gfn_to_hva
);
1173 * If writable is set to false, the hva returned by this function is only
1174 * allowed to be read.
1176 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot
*slot
,
1177 gfn_t gfn
, bool *writable
)
1179 unsigned long hva
= __gfn_to_hva_many(slot
, gfn
, NULL
, false);
1181 if (!kvm_is_error_hva(hva
) && writable
)
1182 *writable
= !memslot_is_readonly(slot
);
1187 unsigned long gfn_to_hva_prot(struct kvm
*kvm
, gfn_t gfn
, bool *writable
)
1189 struct kvm_memory_slot
*slot
= gfn_to_memslot(kvm
, gfn
);
1191 return gfn_to_hva_memslot_prot(slot
, gfn
, writable
);
1194 static int get_user_page_nowait(struct task_struct
*tsk
, struct mm_struct
*mm
,
1195 unsigned long start
, int write
, struct page
**page
)
1197 int flags
= FOLL_TOUCH
| FOLL_NOWAIT
| FOLL_HWPOISON
| FOLL_GET
;
1200 flags
|= FOLL_WRITE
;
1202 return __get_user_pages(tsk
, mm
, start
, 1, flags
, page
, NULL
, NULL
);
1205 static inline int check_user_page_hwpoison(unsigned long addr
)
1207 int rc
, flags
= FOLL_TOUCH
| FOLL_HWPOISON
| FOLL_WRITE
;
1209 rc
= __get_user_pages(current
, current
->mm
, addr
, 1,
1210 flags
, NULL
, NULL
, NULL
);
1211 return rc
== -EHWPOISON
;
1215 * The atomic path to get the writable pfn which will be stored in @pfn,
1216 * true indicates success, otherwise false is returned.
1218 static bool hva_to_pfn_fast(unsigned long addr
, bool atomic
, bool *async
,
1219 bool write_fault
, bool *writable
, pfn_t
*pfn
)
1221 struct page
*page
[1];
1224 if (!(async
|| atomic
))
1228 * Fast pin a writable pfn only if it is a write fault request
1229 * or the caller allows to map a writable pfn for a read fault
1232 if (!(write_fault
|| writable
))
1235 npages
= __get_user_pages_fast(addr
, 1, 1, page
);
1237 *pfn
= page_to_pfn(page
[0]);
1248 * The slow path to get the pfn of the specified host virtual address,
1249 * 1 indicates success, -errno is returned if error is detected.
1251 static int hva_to_pfn_slow(unsigned long addr
, bool *async
, bool write_fault
,
1252 bool *writable
, pfn_t
*pfn
)
1254 struct page
*page
[1];
1260 *writable
= write_fault
;
1263 down_read(¤t
->mm
->mmap_sem
);
1264 npages
= get_user_page_nowait(current
, current
->mm
,
1265 addr
, write_fault
, page
);
1266 up_read(¤t
->mm
->mmap_sem
);
1268 npages
= __get_user_pages_unlocked(current
, current
->mm
, addr
, 1,
1269 write_fault
, 0, page
,
1270 FOLL_TOUCH
|FOLL_HWPOISON
);
1274 /* map read fault as writable if possible */
1275 if (unlikely(!write_fault
) && writable
) {
1276 struct page
*wpage
[1];
1278 npages
= __get_user_pages_fast(addr
, 1, 1, wpage
);
1287 *pfn
= page_to_pfn(page
[0]);
1291 static bool vma_is_valid(struct vm_area_struct
*vma
, bool write_fault
)
1293 if (unlikely(!(vma
->vm_flags
& VM_READ
)))
1296 if (write_fault
&& (unlikely(!(vma
->vm_flags
& VM_WRITE
))))
1303 * Pin guest page in memory and return its pfn.
1304 * @addr: host virtual address which maps memory to the guest
1305 * @atomic: whether this function can sleep
1306 * @async: whether this function need to wait IO complete if the
1307 * host page is not in the memory
1308 * @write_fault: whether we should get a writable host page
1309 * @writable: whether it allows to map a writable host page for !@write_fault
1311 * The function will map a writable host page for these two cases:
1312 * 1): @write_fault = true
1313 * 2): @write_fault = false && @writable, @writable will tell the caller
1314 * whether the mapping is writable.
1316 static pfn_t
hva_to_pfn(unsigned long addr
, bool atomic
, bool *async
,
1317 bool write_fault
, bool *writable
)
1319 struct vm_area_struct
*vma
;
1323 /* we can do it either atomically or asynchronously, not both */
1324 BUG_ON(atomic
&& async
);
1326 if (hva_to_pfn_fast(addr
, atomic
, async
, write_fault
, writable
, &pfn
))
1330 return KVM_PFN_ERR_FAULT
;
1332 npages
= hva_to_pfn_slow(addr
, async
, write_fault
, writable
, &pfn
);
1336 down_read(¤t
->mm
->mmap_sem
);
1337 if (npages
== -EHWPOISON
||
1338 (!async
&& check_user_page_hwpoison(addr
))) {
1339 pfn
= KVM_PFN_ERR_HWPOISON
;
1343 vma
= find_vma_intersection(current
->mm
, addr
, addr
+ 1);
1346 pfn
= KVM_PFN_ERR_FAULT
;
1347 else if ((vma
->vm_flags
& VM_PFNMAP
)) {
1348 pfn
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
1350 BUG_ON(!kvm_is_reserved_pfn(pfn
));
1352 if (async
&& vma_is_valid(vma
, write_fault
))
1354 pfn
= KVM_PFN_ERR_FAULT
;
1357 up_read(¤t
->mm
->mmap_sem
);
1362 __gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
, bool atomic
,
1363 bool *async
, bool write_fault
, bool *writable
)
1365 unsigned long addr
= __gfn_to_hva_many(slot
, gfn
, NULL
, write_fault
);
1367 if (addr
== KVM_HVA_ERR_RO_BAD
)
1368 return KVM_PFN_ERR_RO_FAULT
;
1370 if (kvm_is_error_hva(addr
))
1371 return KVM_PFN_NOSLOT
;
1373 /* Do not map writable pfn in the readonly memslot. */
1374 if (writable
&& memslot_is_readonly(slot
)) {
1379 return hva_to_pfn(addr
, atomic
, async
, write_fault
,
1383 static pfn_t
__gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
, bool atomic
, bool *async
,
1384 bool write_fault
, bool *writable
)
1386 struct kvm_memory_slot
*slot
;
1391 slot
= gfn_to_memslot(kvm
, gfn
);
1393 return __gfn_to_pfn_memslot(slot
, gfn
, atomic
, async
, write_fault
,
1397 pfn_t
gfn_to_pfn_atomic(struct kvm
*kvm
, gfn_t gfn
)
1399 return __gfn_to_pfn(kvm
, gfn
, true, NULL
, true, NULL
);
1401 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic
);
1403 pfn_t
gfn_to_pfn_async(struct kvm
*kvm
, gfn_t gfn
, bool *async
,
1404 bool write_fault
, bool *writable
)
1406 return __gfn_to_pfn(kvm
, gfn
, false, async
, write_fault
, writable
);
1408 EXPORT_SYMBOL_GPL(gfn_to_pfn_async
);
1410 pfn_t
gfn_to_pfn(struct kvm
*kvm
, gfn_t gfn
)
1412 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, true, NULL
);
1414 EXPORT_SYMBOL_GPL(gfn_to_pfn
);
1416 pfn_t
gfn_to_pfn_prot(struct kvm
*kvm
, gfn_t gfn
, bool write_fault
,
1419 return __gfn_to_pfn(kvm
, gfn
, false, NULL
, write_fault
, writable
);
1421 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot
);
1423 pfn_t
gfn_to_pfn_memslot(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1425 return __gfn_to_pfn_memslot(slot
, gfn
, false, NULL
, true, NULL
);
1428 pfn_t
gfn_to_pfn_memslot_atomic(struct kvm_memory_slot
*slot
, gfn_t gfn
)
1430 return __gfn_to_pfn_memslot(slot
, gfn
, true, NULL
, true, NULL
);
1432 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic
);
1434 int gfn_to_page_many_atomic(struct kvm
*kvm
, gfn_t gfn
, struct page
**pages
,
1440 addr
= gfn_to_hva_many(gfn_to_memslot(kvm
, gfn
), gfn
, &entry
);
1441 if (kvm_is_error_hva(addr
))
1444 if (entry
< nr_pages
)
1447 return __get_user_pages_fast(addr
, nr_pages
, 1, pages
);
1449 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic
);
1451 static struct page
*kvm_pfn_to_page(pfn_t pfn
)
1453 if (is_error_noslot_pfn(pfn
))
1454 return KVM_ERR_PTR_BAD_PAGE
;
1456 if (kvm_is_reserved_pfn(pfn
)) {
1458 return KVM_ERR_PTR_BAD_PAGE
;
1461 return pfn_to_page(pfn
);
1464 struct page
*gfn_to_page(struct kvm
*kvm
, gfn_t gfn
)
1468 pfn
= gfn_to_pfn(kvm
, gfn
);
1470 return kvm_pfn_to_page(pfn
);
1472 EXPORT_SYMBOL_GPL(gfn_to_page
);
1474 void kvm_release_page_clean(struct page
*page
)
1476 WARN_ON(is_error_page(page
));
1478 kvm_release_pfn_clean(page_to_pfn(page
));
1480 EXPORT_SYMBOL_GPL(kvm_release_page_clean
);
1482 void kvm_release_pfn_clean(pfn_t pfn
)
1484 if (!is_error_noslot_pfn(pfn
) && !kvm_is_reserved_pfn(pfn
))
1485 put_page(pfn_to_page(pfn
));
1487 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean
);
1489 void kvm_release_page_dirty(struct page
*page
)
1491 WARN_ON(is_error_page(page
));
1493 kvm_release_pfn_dirty(page_to_pfn(page
));
1495 EXPORT_SYMBOL_GPL(kvm_release_page_dirty
);
1497 static void kvm_release_pfn_dirty(pfn_t pfn
)
1499 kvm_set_pfn_dirty(pfn
);
1500 kvm_release_pfn_clean(pfn
);
1503 void kvm_set_pfn_dirty(pfn_t pfn
)
1505 if (!kvm_is_reserved_pfn(pfn
)) {
1506 struct page
*page
= pfn_to_page(pfn
);
1508 if (!PageReserved(page
))
1512 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty
);
1514 void kvm_set_pfn_accessed(pfn_t pfn
)
1516 if (!kvm_is_reserved_pfn(pfn
))
1517 mark_page_accessed(pfn_to_page(pfn
));
1519 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed
);
1521 void kvm_get_pfn(pfn_t pfn
)
1523 if (!kvm_is_reserved_pfn(pfn
))
1524 get_page(pfn_to_page(pfn
));
1526 EXPORT_SYMBOL_GPL(kvm_get_pfn
);
1528 static int next_segment(unsigned long len
, int offset
)
1530 if (len
> PAGE_SIZE
- offset
)
1531 return PAGE_SIZE
- offset
;
1536 int kvm_read_guest_page(struct kvm
*kvm
, gfn_t gfn
, void *data
, int offset
,
1542 addr
= gfn_to_hva_prot(kvm
, gfn
, NULL
);
1543 if (kvm_is_error_hva(addr
))
1545 r
= __copy_from_user(data
, (void __user
*)addr
+ offset
, len
);
1550 EXPORT_SYMBOL_GPL(kvm_read_guest_page
);
1552 int kvm_read_guest(struct kvm
*kvm
, gpa_t gpa
, void *data
, unsigned long len
)
1554 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1556 int offset
= offset_in_page(gpa
);
1559 while ((seg
= next_segment(len
, offset
)) != 0) {
1560 ret
= kvm_read_guest_page(kvm
, gfn
, data
, offset
, seg
);
1570 EXPORT_SYMBOL_GPL(kvm_read_guest
);
1572 int kvm_read_guest_atomic(struct kvm
*kvm
, gpa_t gpa
, void *data
,
1577 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1578 int offset
= offset_in_page(gpa
);
1580 addr
= gfn_to_hva_prot(kvm
, gfn
, NULL
);
1581 if (kvm_is_error_hva(addr
))
1583 pagefault_disable();
1584 r
= __copy_from_user_inatomic(data
, (void __user
*)addr
+ offset
, len
);
1590 EXPORT_SYMBOL(kvm_read_guest_atomic
);
1592 int kvm_write_guest_page(struct kvm
*kvm
, gfn_t gfn
, const void *data
,
1593 int offset
, int len
)
1598 addr
= gfn_to_hva(kvm
, gfn
);
1599 if (kvm_is_error_hva(addr
))
1601 r
= __copy_to_user((void __user
*)addr
+ offset
, data
, len
);
1604 mark_page_dirty(kvm
, gfn
);
1607 EXPORT_SYMBOL_GPL(kvm_write_guest_page
);
1609 int kvm_write_guest(struct kvm
*kvm
, gpa_t gpa
, const void *data
,
1612 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1614 int offset
= offset_in_page(gpa
);
1617 while ((seg
= next_segment(len
, offset
)) != 0) {
1618 ret
= kvm_write_guest_page(kvm
, gfn
, data
, offset
, seg
);
1628 EXPORT_SYMBOL_GPL(kvm_write_guest
);
1630 int kvm_gfn_to_hva_cache_init(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1631 gpa_t gpa
, unsigned long len
)
1633 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1634 int offset
= offset_in_page(gpa
);
1635 gfn_t start_gfn
= gpa
>> PAGE_SHIFT
;
1636 gfn_t end_gfn
= (gpa
+ len
- 1) >> PAGE_SHIFT
;
1637 gfn_t nr_pages_needed
= end_gfn
- start_gfn
+ 1;
1638 gfn_t nr_pages_avail
;
1641 ghc
->generation
= slots
->generation
;
1643 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1644 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
, NULL
);
1645 if (!kvm_is_error_hva(ghc
->hva
) && nr_pages_needed
<= 1) {
1649 * If the requested region crosses two memslots, we still
1650 * verify that the entire region is valid here.
1652 while (start_gfn
<= end_gfn
) {
1653 ghc
->memslot
= gfn_to_memslot(kvm
, start_gfn
);
1654 ghc
->hva
= gfn_to_hva_many(ghc
->memslot
, start_gfn
,
1656 if (kvm_is_error_hva(ghc
->hva
))
1658 start_gfn
+= nr_pages_avail
;
1660 /* Use the slow path for cross page reads and writes. */
1661 ghc
->memslot
= NULL
;
1665 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init
);
1667 int kvm_write_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1668 void *data
, unsigned long len
)
1670 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1673 BUG_ON(len
> ghc
->len
);
1675 if (slots
->generation
!= ghc
->generation
)
1676 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1678 if (unlikely(!ghc
->memslot
))
1679 return kvm_write_guest(kvm
, ghc
->gpa
, data
, len
);
1681 if (kvm_is_error_hva(ghc
->hva
))
1684 r
= __copy_to_user((void __user
*)ghc
->hva
, data
, len
);
1687 mark_page_dirty_in_slot(kvm
, ghc
->memslot
, ghc
->gpa
>> PAGE_SHIFT
);
1691 EXPORT_SYMBOL_GPL(kvm_write_guest_cached
);
1693 int kvm_read_guest_cached(struct kvm
*kvm
, struct gfn_to_hva_cache
*ghc
,
1694 void *data
, unsigned long len
)
1696 struct kvm_memslots
*slots
= kvm_memslots(kvm
);
1699 BUG_ON(len
> ghc
->len
);
1701 if (slots
->generation
!= ghc
->generation
)
1702 kvm_gfn_to_hva_cache_init(kvm
, ghc
, ghc
->gpa
, ghc
->len
);
1704 if (unlikely(!ghc
->memslot
))
1705 return kvm_read_guest(kvm
, ghc
->gpa
, data
, len
);
1707 if (kvm_is_error_hva(ghc
->hva
))
1710 r
= __copy_from_user(data
, (void __user
*)ghc
->hva
, len
);
1716 EXPORT_SYMBOL_GPL(kvm_read_guest_cached
);
1718 int kvm_clear_guest_page(struct kvm
*kvm
, gfn_t gfn
, int offset
, int len
)
1720 const void *zero_page
= (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1722 return kvm_write_guest_page(kvm
, gfn
, zero_page
, offset
, len
);
1724 EXPORT_SYMBOL_GPL(kvm_clear_guest_page
);
1726 int kvm_clear_guest(struct kvm
*kvm
, gpa_t gpa
, unsigned long len
)
1728 gfn_t gfn
= gpa
>> PAGE_SHIFT
;
1730 int offset
= offset_in_page(gpa
);
1733 while ((seg
= next_segment(len
, offset
)) != 0) {
1734 ret
= kvm_clear_guest_page(kvm
, gfn
, offset
, seg
);
1743 EXPORT_SYMBOL_GPL(kvm_clear_guest
);
1745 static void mark_page_dirty_in_slot(struct kvm
*kvm
,
1746 struct kvm_memory_slot
*memslot
,
1749 if (memslot
&& memslot
->dirty_bitmap
) {
1750 unsigned long rel_gfn
= gfn
- memslot
->base_gfn
;
1752 set_bit_le(rel_gfn
, memslot
->dirty_bitmap
);
1756 void mark_page_dirty(struct kvm
*kvm
, gfn_t gfn
)
1758 struct kvm_memory_slot
*memslot
;
1760 memslot
= gfn_to_memslot(kvm
, gfn
);
1761 mark_page_dirty_in_slot(kvm
, memslot
, gfn
);
1763 EXPORT_SYMBOL_GPL(mark_page_dirty
);
1765 static int kvm_vcpu_check_block(struct kvm_vcpu
*vcpu
)
1767 if (kvm_arch_vcpu_runnable(vcpu
)) {
1768 kvm_make_request(KVM_REQ_UNHALT
, vcpu
);
1771 if (kvm_cpu_has_pending_timer(vcpu
))
1773 if (signal_pending(current
))
1780 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1782 void kvm_vcpu_block(struct kvm_vcpu
*vcpu
)
1786 bool waited
= false;
1788 start
= cur
= ktime_get();
1790 ktime_t stop
= ktime_add_ns(ktime_get(), halt_poll_ns
);
1794 * This sets KVM_REQ_UNHALT if an interrupt
1797 if (kvm_vcpu_check_block(vcpu
) < 0) {
1798 ++vcpu
->stat
.halt_successful_poll
;
1802 } while (single_task_running() && ktime_before(cur
, stop
));
1806 prepare_to_wait(&vcpu
->wq
, &wait
, TASK_INTERRUPTIBLE
);
1808 if (kvm_vcpu_check_block(vcpu
) < 0)
1815 finish_wait(&vcpu
->wq
, &wait
);
1819 trace_kvm_vcpu_wakeup(ktime_to_ns(cur
) - ktime_to_ns(start
), waited
);
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_block
);
1825 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1827 void kvm_vcpu_kick(struct kvm_vcpu
*vcpu
)
1830 int cpu
= vcpu
->cpu
;
1831 wait_queue_head_t
*wqp
;
1833 wqp
= kvm_arch_vcpu_wq(vcpu
);
1834 if (waitqueue_active(wqp
)) {
1835 wake_up_interruptible(wqp
);
1836 ++vcpu
->stat
.halt_wakeup
;
1840 if (cpu
!= me
&& (unsigned)cpu
< nr_cpu_ids
&& cpu_online(cpu
))
1841 if (kvm_arch_vcpu_should_kick(vcpu
))
1842 smp_send_reschedule(cpu
);
1845 EXPORT_SYMBOL_GPL(kvm_vcpu_kick
);
1846 #endif /* !CONFIG_S390 */
1848 int kvm_vcpu_yield_to(struct kvm_vcpu
*target
)
1851 struct task_struct
*task
= NULL
;
1855 pid
= rcu_dereference(target
->pid
);
1857 task
= get_pid_task(pid
, PIDTYPE_PID
);
1861 ret
= yield_to(task
, 1);
1862 put_task_struct(task
);
1866 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to
);
1869 * Helper that checks whether a VCPU is eligible for directed yield.
1870 * Most eligible candidate to yield is decided by following heuristics:
1872 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1873 * (preempted lock holder), indicated by @in_spin_loop.
1874 * Set at the beiginning and cleared at the end of interception/PLE handler.
1876 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1877 * chance last time (mostly it has become eligible now since we have probably
1878 * yielded to lockholder in last iteration. This is done by toggling
1879 * @dy_eligible each time a VCPU checked for eligibility.)
1881 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1882 * to preempted lock-holder could result in wrong VCPU selection and CPU
1883 * burning. Giving priority for a potential lock-holder increases lock
1886 * Since algorithm is based on heuristics, accessing another VCPU data without
1887 * locking does not harm. It may result in trying to yield to same VCPU, fail
1888 * and continue with next VCPU and so on.
1890 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu
*vcpu
)
1892 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1895 eligible
= !vcpu
->spin_loop
.in_spin_loop
||
1896 vcpu
->spin_loop
.dy_eligible
;
1898 if (vcpu
->spin_loop
.in_spin_loop
)
1899 kvm_vcpu_set_dy_eligible(vcpu
, !vcpu
->spin_loop
.dy_eligible
);
1907 void kvm_vcpu_on_spin(struct kvm_vcpu
*me
)
1909 struct kvm
*kvm
= me
->kvm
;
1910 struct kvm_vcpu
*vcpu
;
1911 int last_boosted_vcpu
= me
->kvm
->last_boosted_vcpu
;
1917 kvm_vcpu_set_in_spin_loop(me
, true);
1919 * We boost the priority of a VCPU that is runnable but not
1920 * currently running, because it got preempted by something
1921 * else and called schedule in __vcpu_run. Hopefully that
1922 * VCPU is holding the lock that we need and will release it.
1923 * We approximate round-robin by starting at the last boosted VCPU.
1925 for (pass
= 0; pass
< 2 && !yielded
&& try; pass
++) {
1926 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1927 if (!pass
&& i
<= last_boosted_vcpu
) {
1928 i
= last_boosted_vcpu
;
1930 } else if (pass
&& i
> last_boosted_vcpu
)
1932 if (!ACCESS_ONCE(vcpu
->preempted
))
1936 if (waitqueue_active(&vcpu
->wq
) && !kvm_arch_vcpu_runnable(vcpu
))
1938 if (!kvm_vcpu_eligible_for_directed_yield(vcpu
))
1941 yielded
= kvm_vcpu_yield_to(vcpu
);
1943 kvm
->last_boosted_vcpu
= i
;
1945 } else if (yielded
< 0) {
1952 kvm_vcpu_set_in_spin_loop(me
, false);
1954 /* Ensure vcpu is not eligible during next spinloop */
1955 kvm_vcpu_set_dy_eligible(me
, false);
1957 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin
);
1959 static int kvm_vcpu_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1961 struct kvm_vcpu
*vcpu
= vma
->vm_file
->private_data
;
1964 if (vmf
->pgoff
== 0)
1965 page
= virt_to_page(vcpu
->run
);
1967 else if (vmf
->pgoff
== KVM_PIO_PAGE_OFFSET
)
1968 page
= virt_to_page(vcpu
->arch
.pio_data
);
1970 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1971 else if (vmf
->pgoff
== KVM_COALESCED_MMIO_PAGE_OFFSET
)
1972 page
= virt_to_page(vcpu
->kvm
->coalesced_mmio_ring
);
1975 return kvm_arch_vcpu_fault(vcpu
, vmf
);
1981 static const struct vm_operations_struct kvm_vcpu_vm_ops
= {
1982 .fault
= kvm_vcpu_fault
,
1985 static int kvm_vcpu_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1987 vma
->vm_ops
= &kvm_vcpu_vm_ops
;
1991 static int kvm_vcpu_release(struct inode
*inode
, struct file
*filp
)
1993 struct kvm_vcpu
*vcpu
= filp
->private_data
;
1995 kvm_put_kvm(vcpu
->kvm
);
1999 static struct file_operations kvm_vcpu_fops
= {
2000 .release
= kvm_vcpu_release
,
2001 .unlocked_ioctl
= kvm_vcpu_ioctl
,
2002 #ifdef CONFIG_KVM_COMPAT
2003 .compat_ioctl
= kvm_vcpu_compat_ioctl
,
2005 .mmap
= kvm_vcpu_mmap
,
2006 .llseek
= noop_llseek
,
2010 * Allocates an inode for the vcpu.
2012 static int create_vcpu_fd(struct kvm_vcpu
*vcpu
)
2014 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops
, vcpu
, O_RDWR
| O_CLOEXEC
);
2018 * Creates some virtual cpus. Good luck creating more than one.
2020 static int kvm_vm_ioctl_create_vcpu(struct kvm
*kvm
, u32 id
)
2023 struct kvm_vcpu
*vcpu
, *v
;
2025 if (id
>= KVM_MAX_VCPUS
)
2028 vcpu
= kvm_arch_vcpu_create(kvm
, id
);
2030 return PTR_ERR(vcpu
);
2032 preempt_notifier_init(&vcpu
->preempt_notifier
, &kvm_preempt_ops
);
2034 r
= kvm_arch_vcpu_setup(vcpu
);
2038 mutex_lock(&kvm
->lock
);
2039 if (!kvm_vcpu_compatible(vcpu
)) {
2041 goto unlock_vcpu_destroy
;
2043 if (atomic_read(&kvm
->online_vcpus
) == KVM_MAX_VCPUS
) {
2045 goto unlock_vcpu_destroy
;
2048 kvm_for_each_vcpu(r
, v
, kvm
)
2049 if (v
->vcpu_id
== id
) {
2051 goto unlock_vcpu_destroy
;
2054 BUG_ON(kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)]);
2056 /* Now it's all set up, let userspace reach it */
2058 r
= create_vcpu_fd(vcpu
);
2061 goto unlock_vcpu_destroy
;
2064 kvm
->vcpus
[atomic_read(&kvm
->online_vcpus
)] = vcpu
;
2066 atomic_inc(&kvm
->online_vcpus
);
2068 mutex_unlock(&kvm
->lock
);
2069 kvm_arch_vcpu_postcreate(vcpu
);
2072 unlock_vcpu_destroy
:
2073 mutex_unlock(&kvm
->lock
);
2075 kvm_arch_vcpu_destroy(vcpu
);
2079 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu
*vcpu
, sigset_t
*sigset
)
2082 sigdelsetmask(sigset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2083 vcpu
->sigset_active
= 1;
2084 vcpu
->sigset
= *sigset
;
2086 vcpu
->sigset_active
= 0;
2090 static long kvm_vcpu_ioctl(struct file
*filp
,
2091 unsigned int ioctl
, unsigned long arg
)
2093 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2094 void __user
*argp
= (void __user
*)arg
;
2096 struct kvm_fpu
*fpu
= NULL
;
2097 struct kvm_sregs
*kvm_sregs
= NULL
;
2099 if (vcpu
->kvm
->mm
!= current
->mm
)
2102 if (unlikely(_IOC_TYPE(ioctl
) != KVMIO
))
2105 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2107 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2108 * so vcpu_load() would break it.
2110 if (ioctl
== KVM_S390_INTERRUPT
|| ioctl
== KVM_S390_IRQ
|| ioctl
== KVM_INTERRUPT
)
2111 return kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2115 r
= vcpu_load(vcpu
);
2123 if (unlikely(vcpu
->pid
!= current
->pids
[PIDTYPE_PID
].pid
)) {
2124 /* The thread running this VCPU changed. */
2125 struct pid
*oldpid
= vcpu
->pid
;
2126 struct pid
*newpid
= get_task_pid(current
, PIDTYPE_PID
);
2128 rcu_assign_pointer(vcpu
->pid
, newpid
);
2133 r
= kvm_arch_vcpu_ioctl_run(vcpu
, vcpu
->run
);
2134 trace_kvm_userspace_exit(vcpu
->run
->exit_reason
, r
);
2136 case KVM_GET_REGS
: {
2137 struct kvm_regs
*kvm_regs
;
2140 kvm_regs
= kzalloc(sizeof(struct kvm_regs
), GFP_KERNEL
);
2143 r
= kvm_arch_vcpu_ioctl_get_regs(vcpu
, kvm_regs
);
2147 if (copy_to_user(argp
, kvm_regs
, sizeof(struct kvm_regs
)))
2154 case KVM_SET_REGS
: {
2155 struct kvm_regs
*kvm_regs
;
2158 kvm_regs
= memdup_user(argp
, sizeof(*kvm_regs
));
2159 if (IS_ERR(kvm_regs
)) {
2160 r
= PTR_ERR(kvm_regs
);
2163 r
= kvm_arch_vcpu_ioctl_set_regs(vcpu
, kvm_regs
);
2167 case KVM_GET_SREGS
: {
2168 kvm_sregs
= kzalloc(sizeof(struct kvm_sregs
), GFP_KERNEL
);
2172 r
= kvm_arch_vcpu_ioctl_get_sregs(vcpu
, kvm_sregs
);
2176 if (copy_to_user(argp
, kvm_sregs
, sizeof(struct kvm_sregs
)))
2181 case KVM_SET_SREGS
: {
2182 kvm_sregs
= memdup_user(argp
, sizeof(*kvm_sregs
));
2183 if (IS_ERR(kvm_sregs
)) {
2184 r
= PTR_ERR(kvm_sregs
);
2188 r
= kvm_arch_vcpu_ioctl_set_sregs(vcpu
, kvm_sregs
);
2191 case KVM_GET_MP_STATE
: {
2192 struct kvm_mp_state mp_state
;
2194 r
= kvm_arch_vcpu_ioctl_get_mpstate(vcpu
, &mp_state
);
2198 if (copy_to_user(argp
, &mp_state
, sizeof(mp_state
)))
2203 case KVM_SET_MP_STATE
: {
2204 struct kvm_mp_state mp_state
;
2207 if (copy_from_user(&mp_state
, argp
, sizeof(mp_state
)))
2209 r
= kvm_arch_vcpu_ioctl_set_mpstate(vcpu
, &mp_state
);
2212 case KVM_TRANSLATE
: {
2213 struct kvm_translation tr
;
2216 if (copy_from_user(&tr
, argp
, sizeof(tr
)))
2218 r
= kvm_arch_vcpu_ioctl_translate(vcpu
, &tr
);
2222 if (copy_to_user(argp
, &tr
, sizeof(tr
)))
2227 case KVM_SET_GUEST_DEBUG
: {
2228 struct kvm_guest_debug dbg
;
2231 if (copy_from_user(&dbg
, argp
, sizeof(dbg
)))
2233 r
= kvm_arch_vcpu_ioctl_set_guest_debug(vcpu
, &dbg
);
2236 case KVM_SET_SIGNAL_MASK
: {
2237 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2238 struct kvm_signal_mask kvm_sigmask
;
2239 sigset_t sigset
, *p
;
2244 if (copy_from_user(&kvm_sigmask
, argp
,
2245 sizeof(kvm_sigmask
)))
2248 if (kvm_sigmask
.len
!= sizeof(sigset
))
2251 if (copy_from_user(&sigset
, sigmask_arg
->sigset
,
2256 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, p
);
2260 fpu
= kzalloc(sizeof(struct kvm_fpu
), GFP_KERNEL
);
2264 r
= kvm_arch_vcpu_ioctl_get_fpu(vcpu
, fpu
);
2268 if (copy_to_user(argp
, fpu
, sizeof(struct kvm_fpu
)))
2274 fpu
= memdup_user(argp
, sizeof(*fpu
));
2280 r
= kvm_arch_vcpu_ioctl_set_fpu(vcpu
, fpu
);
2284 r
= kvm_arch_vcpu_ioctl(filp
, ioctl
, arg
);
2293 #ifdef CONFIG_KVM_COMPAT
2294 static long kvm_vcpu_compat_ioctl(struct file
*filp
,
2295 unsigned int ioctl
, unsigned long arg
)
2297 struct kvm_vcpu
*vcpu
= filp
->private_data
;
2298 void __user
*argp
= compat_ptr(arg
);
2301 if (vcpu
->kvm
->mm
!= current
->mm
)
2305 case KVM_SET_SIGNAL_MASK
: {
2306 struct kvm_signal_mask __user
*sigmask_arg
= argp
;
2307 struct kvm_signal_mask kvm_sigmask
;
2308 compat_sigset_t csigset
;
2313 if (copy_from_user(&kvm_sigmask
, argp
,
2314 sizeof(kvm_sigmask
)))
2317 if (kvm_sigmask
.len
!= sizeof(csigset
))
2320 if (copy_from_user(&csigset
, sigmask_arg
->sigset
,
2323 sigset_from_compat(&sigset
, &csigset
);
2324 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, &sigset
);
2326 r
= kvm_vcpu_ioctl_set_sigmask(vcpu
, NULL
);
2330 r
= kvm_vcpu_ioctl(filp
, ioctl
, arg
);
2338 static int kvm_device_ioctl_attr(struct kvm_device
*dev
,
2339 int (*accessor
)(struct kvm_device
*dev
,
2340 struct kvm_device_attr
*attr
),
2343 struct kvm_device_attr attr
;
2348 if (copy_from_user(&attr
, (void __user
*)arg
, sizeof(attr
)))
2351 return accessor(dev
, &attr
);
2354 static long kvm_device_ioctl(struct file
*filp
, unsigned int ioctl
,
2357 struct kvm_device
*dev
= filp
->private_data
;
2360 case KVM_SET_DEVICE_ATTR
:
2361 return kvm_device_ioctl_attr(dev
, dev
->ops
->set_attr
, arg
);
2362 case KVM_GET_DEVICE_ATTR
:
2363 return kvm_device_ioctl_attr(dev
, dev
->ops
->get_attr
, arg
);
2364 case KVM_HAS_DEVICE_ATTR
:
2365 return kvm_device_ioctl_attr(dev
, dev
->ops
->has_attr
, arg
);
2367 if (dev
->ops
->ioctl
)
2368 return dev
->ops
->ioctl(dev
, ioctl
, arg
);
2374 static int kvm_device_release(struct inode
*inode
, struct file
*filp
)
2376 struct kvm_device
*dev
= filp
->private_data
;
2377 struct kvm
*kvm
= dev
->kvm
;
2383 static const struct file_operations kvm_device_fops
= {
2384 .unlocked_ioctl
= kvm_device_ioctl
,
2385 #ifdef CONFIG_KVM_COMPAT
2386 .compat_ioctl
= kvm_device_ioctl
,
2388 .release
= kvm_device_release
,
2391 struct kvm_device
*kvm_device_from_filp(struct file
*filp
)
2393 if (filp
->f_op
!= &kvm_device_fops
)
2396 return filp
->private_data
;
2399 static struct kvm_device_ops
*kvm_device_ops_table
[KVM_DEV_TYPE_MAX
] = {
2400 #ifdef CONFIG_KVM_MPIC
2401 [KVM_DEV_TYPE_FSL_MPIC_20
] = &kvm_mpic_ops
,
2402 [KVM_DEV_TYPE_FSL_MPIC_42
] = &kvm_mpic_ops
,
2405 #ifdef CONFIG_KVM_XICS
2406 [KVM_DEV_TYPE_XICS
] = &kvm_xics_ops
,
2410 int kvm_register_device_ops(struct kvm_device_ops
*ops
, u32 type
)
2412 if (type
>= ARRAY_SIZE(kvm_device_ops_table
))
2415 if (kvm_device_ops_table
[type
] != NULL
)
2418 kvm_device_ops_table
[type
] = ops
;
2422 void kvm_unregister_device_ops(u32 type
)
2424 if (kvm_device_ops_table
[type
] != NULL
)
2425 kvm_device_ops_table
[type
] = NULL
;
2428 static int kvm_ioctl_create_device(struct kvm
*kvm
,
2429 struct kvm_create_device
*cd
)
2431 struct kvm_device_ops
*ops
= NULL
;
2432 struct kvm_device
*dev
;
2433 bool test
= cd
->flags
& KVM_CREATE_DEVICE_TEST
;
2436 if (cd
->type
>= ARRAY_SIZE(kvm_device_ops_table
))
2439 ops
= kvm_device_ops_table
[cd
->type
];
2446 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
2453 ret
= ops
->create(dev
, cd
->type
);
2459 ret
= anon_inode_getfd(ops
->name
, &kvm_device_fops
, dev
, O_RDWR
| O_CLOEXEC
);
2465 list_add(&dev
->vm_node
, &kvm
->devices
);
2471 static long kvm_vm_ioctl_check_extension_generic(struct kvm
*kvm
, long arg
)
2474 case KVM_CAP_USER_MEMORY
:
2475 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS
:
2476 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
:
2477 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2478 case KVM_CAP_SET_BOOT_CPU_ID
:
2480 case KVM_CAP_INTERNAL_ERROR_DATA
:
2481 #ifdef CONFIG_HAVE_KVM_MSI
2482 case KVM_CAP_SIGNAL_MSI
:
2484 #ifdef CONFIG_HAVE_KVM_IRQFD
2486 case KVM_CAP_IRQFD_RESAMPLE
:
2488 case KVM_CAP_CHECK_EXTENSION_VM
:
2490 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2491 case KVM_CAP_IRQ_ROUTING
:
2492 return KVM_MAX_IRQ_ROUTES
;
2497 return kvm_vm_ioctl_check_extension(kvm
, arg
);
2500 static long kvm_vm_ioctl(struct file
*filp
,
2501 unsigned int ioctl
, unsigned long arg
)
2503 struct kvm
*kvm
= filp
->private_data
;
2504 void __user
*argp
= (void __user
*)arg
;
2507 if (kvm
->mm
!= current
->mm
)
2510 case KVM_CREATE_VCPU
:
2511 r
= kvm_vm_ioctl_create_vcpu(kvm
, arg
);
2513 case KVM_SET_USER_MEMORY_REGION
: {
2514 struct kvm_userspace_memory_region kvm_userspace_mem
;
2517 if (copy_from_user(&kvm_userspace_mem
, argp
,
2518 sizeof(kvm_userspace_mem
)))
2521 r
= kvm_vm_ioctl_set_memory_region(kvm
, &kvm_userspace_mem
);
2524 case KVM_GET_DIRTY_LOG
: {
2525 struct kvm_dirty_log log
;
2528 if (copy_from_user(&log
, argp
, sizeof(log
)))
2530 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2533 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2534 case KVM_REGISTER_COALESCED_MMIO
: {
2535 struct kvm_coalesced_mmio_zone zone
;
2538 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2540 r
= kvm_vm_ioctl_register_coalesced_mmio(kvm
, &zone
);
2543 case KVM_UNREGISTER_COALESCED_MMIO
: {
2544 struct kvm_coalesced_mmio_zone zone
;
2547 if (copy_from_user(&zone
, argp
, sizeof(zone
)))
2549 r
= kvm_vm_ioctl_unregister_coalesced_mmio(kvm
, &zone
);
2554 struct kvm_irqfd data
;
2557 if (copy_from_user(&data
, argp
, sizeof(data
)))
2559 r
= kvm_irqfd(kvm
, &data
);
2562 case KVM_IOEVENTFD
: {
2563 struct kvm_ioeventfd data
;
2566 if (copy_from_user(&data
, argp
, sizeof(data
)))
2568 r
= kvm_ioeventfd(kvm
, &data
);
2571 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2572 case KVM_SET_BOOT_CPU_ID
:
2574 mutex_lock(&kvm
->lock
);
2575 if (atomic_read(&kvm
->online_vcpus
) != 0)
2578 kvm
->bsp_vcpu_id
= arg
;
2579 mutex_unlock(&kvm
->lock
);
2582 #ifdef CONFIG_HAVE_KVM_MSI
2583 case KVM_SIGNAL_MSI
: {
2587 if (copy_from_user(&msi
, argp
, sizeof(msi
)))
2589 r
= kvm_send_userspace_msi(kvm
, &msi
);
2593 #ifdef __KVM_HAVE_IRQ_LINE
2594 case KVM_IRQ_LINE_STATUS
:
2595 case KVM_IRQ_LINE
: {
2596 struct kvm_irq_level irq_event
;
2599 if (copy_from_user(&irq_event
, argp
, sizeof(irq_event
)))
2602 r
= kvm_vm_ioctl_irq_line(kvm
, &irq_event
,
2603 ioctl
== KVM_IRQ_LINE_STATUS
);
2608 if (ioctl
== KVM_IRQ_LINE_STATUS
) {
2609 if (copy_to_user(argp
, &irq_event
, sizeof(irq_event
)))
2617 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2618 case KVM_SET_GSI_ROUTING
: {
2619 struct kvm_irq_routing routing
;
2620 struct kvm_irq_routing __user
*urouting
;
2621 struct kvm_irq_routing_entry
*entries
;
2624 if (copy_from_user(&routing
, argp
, sizeof(routing
)))
2627 if (routing
.nr
> KVM_MAX_IRQ_ROUTES
)
2632 entries
= vmalloc(routing
.nr
* sizeof(*entries
));
2637 if (copy_from_user(entries
, urouting
->entries
,
2638 routing
.nr
* sizeof(*entries
)))
2639 goto out_free_irq_routing
;
2640 r
= kvm_set_irq_routing(kvm
, entries
, routing
.nr
,
2642 out_free_irq_routing
:
2646 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2647 case KVM_CREATE_DEVICE
: {
2648 struct kvm_create_device cd
;
2651 if (copy_from_user(&cd
, argp
, sizeof(cd
)))
2654 r
= kvm_ioctl_create_device(kvm
, &cd
);
2659 if (copy_to_user(argp
, &cd
, sizeof(cd
)))
2665 case KVM_CHECK_EXTENSION
:
2666 r
= kvm_vm_ioctl_check_extension_generic(kvm
, arg
);
2669 r
= kvm_arch_vm_ioctl(filp
, ioctl
, arg
);
2675 #ifdef CONFIG_KVM_COMPAT
2676 struct compat_kvm_dirty_log
{
2680 compat_uptr_t dirty_bitmap
; /* one bit per page */
2685 static long kvm_vm_compat_ioctl(struct file
*filp
,
2686 unsigned int ioctl
, unsigned long arg
)
2688 struct kvm
*kvm
= filp
->private_data
;
2691 if (kvm
->mm
!= current
->mm
)
2694 case KVM_GET_DIRTY_LOG
: {
2695 struct compat_kvm_dirty_log compat_log
;
2696 struct kvm_dirty_log log
;
2699 if (copy_from_user(&compat_log
, (void __user
*)arg
,
2700 sizeof(compat_log
)))
2702 log
.slot
= compat_log
.slot
;
2703 log
.padding1
= compat_log
.padding1
;
2704 log
.padding2
= compat_log
.padding2
;
2705 log
.dirty_bitmap
= compat_ptr(compat_log
.dirty_bitmap
);
2707 r
= kvm_vm_ioctl_get_dirty_log(kvm
, &log
);
2711 r
= kvm_vm_ioctl(filp
, ioctl
, arg
);
2719 static struct file_operations kvm_vm_fops
= {
2720 .release
= kvm_vm_release
,
2721 .unlocked_ioctl
= kvm_vm_ioctl
,
2722 #ifdef CONFIG_KVM_COMPAT
2723 .compat_ioctl
= kvm_vm_compat_ioctl
,
2725 .llseek
= noop_llseek
,
2728 static int kvm_dev_ioctl_create_vm(unsigned long type
)
2733 kvm
= kvm_create_vm(type
);
2735 return PTR_ERR(kvm
);
2736 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2737 r
= kvm_coalesced_mmio_init(kvm
);
2743 r
= anon_inode_getfd("kvm-vm", &kvm_vm_fops
, kvm
, O_RDWR
| O_CLOEXEC
);
2750 static long kvm_dev_ioctl(struct file
*filp
,
2751 unsigned int ioctl
, unsigned long arg
)
2756 case KVM_GET_API_VERSION
:
2759 r
= KVM_API_VERSION
;
2762 r
= kvm_dev_ioctl_create_vm(arg
);
2764 case KVM_CHECK_EXTENSION
:
2765 r
= kvm_vm_ioctl_check_extension_generic(NULL
, arg
);
2767 case KVM_GET_VCPU_MMAP_SIZE
:
2770 r
= PAGE_SIZE
; /* struct kvm_run */
2772 r
+= PAGE_SIZE
; /* pio data page */
2774 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2775 r
+= PAGE_SIZE
; /* coalesced mmio ring page */
2778 case KVM_TRACE_ENABLE
:
2779 case KVM_TRACE_PAUSE
:
2780 case KVM_TRACE_DISABLE
:
2784 return kvm_arch_dev_ioctl(filp
, ioctl
, arg
);
2790 static struct file_operations kvm_chardev_ops
= {
2791 .unlocked_ioctl
= kvm_dev_ioctl
,
2792 .compat_ioctl
= kvm_dev_ioctl
,
2793 .llseek
= noop_llseek
,
2796 static struct miscdevice kvm_dev
= {
2802 static void hardware_enable_nolock(void *junk
)
2804 int cpu
= raw_smp_processor_id();
2807 if (cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2810 cpumask_set_cpu(cpu
, cpus_hardware_enabled
);
2812 r
= kvm_arch_hardware_enable();
2815 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2816 atomic_inc(&hardware_enable_failed
);
2817 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu
);
2821 static void hardware_enable(void)
2823 raw_spin_lock(&kvm_count_lock
);
2824 if (kvm_usage_count
)
2825 hardware_enable_nolock(NULL
);
2826 raw_spin_unlock(&kvm_count_lock
);
2829 static void hardware_disable_nolock(void *junk
)
2831 int cpu
= raw_smp_processor_id();
2833 if (!cpumask_test_cpu(cpu
, cpus_hardware_enabled
))
2835 cpumask_clear_cpu(cpu
, cpus_hardware_enabled
);
2836 kvm_arch_hardware_disable();
2839 static void hardware_disable(void)
2841 raw_spin_lock(&kvm_count_lock
);
2842 if (kvm_usage_count
)
2843 hardware_disable_nolock(NULL
);
2844 raw_spin_unlock(&kvm_count_lock
);
2847 static void hardware_disable_all_nolock(void)
2849 BUG_ON(!kvm_usage_count
);
2852 if (!kvm_usage_count
)
2853 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2856 static void hardware_disable_all(void)
2858 raw_spin_lock(&kvm_count_lock
);
2859 hardware_disable_all_nolock();
2860 raw_spin_unlock(&kvm_count_lock
);
2863 static int hardware_enable_all(void)
2867 raw_spin_lock(&kvm_count_lock
);
2870 if (kvm_usage_count
== 1) {
2871 atomic_set(&hardware_enable_failed
, 0);
2872 on_each_cpu(hardware_enable_nolock
, NULL
, 1);
2874 if (atomic_read(&hardware_enable_failed
)) {
2875 hardware_disable_all_nolock();
2880 raw_spin_unlock(&kvm_count_lock
);
2885 static int kvm_cpu_hotplug(struct notifier_block
*notifier
, unsigned long val
,
2890 val
&= ~CPU_TASKS_FROZEN
;
2893 pr_info("kvm: disabling virtualization on CPU%d\n",
2898 pr_info("kvm: enabling virtualization on CPU%d\n",
2906 static int kvm_reboot(struct notifier_block
*notifier
, unsigned long val
,
2910 * Some (well, at least mine) BIOSes hang on reboot if
2913 * And Intel TXT required VMX off for all cpu when system shutdown.
2915 pr_info("kvm: exiting hardware virtualization\n");
2916 kvm_rebooting
= true;
2917 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
2921 static struct notifier_block kvm_reboot_notifier
= {
2922 .notifier_call
= kvm_reboot
,
2926 static void kvm_io_bus_destroy(struct kvm_io_bus
*bus
)
2930 for (i
= 0; i
< bus
->dev_count
; i
++) {
2931 struct kvm_io_device
*pos
= bus
->range
[i
].dev
;
2933 kvm_iodevice_destructor(pos
);
2938 static inline int kvm_io_bus_cmp(const struct kvm_io_range
*r1
,
2939 const struct kvm_io_range
*r2
)
2941 gpa_t addr1
= r1
->addr
;
2942 gpa_t addr2
= r2
->addr
;
2947 /* If r2->len == 0, match the exact address. If r2->len != 0,
2948 * accept any overlapping write. Any order is acceptable for
2949 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
2950 * we process all of them.
2963 static int kvm_io_bus_sort_cmp(const void *p1
, const void *p2
)
2965 return kvm_io_bus_cmp(p1
, p2
);
2968 static int kvm_io_bus_insert_dev(struct kvm_io_bus
*bus
, struct kvm_io_device
*dev
,
2969 gpa_t addr
, int len
)
2971 bus
->range
[bus
->dev_count
++] = (struct kvm_io_range
) {
2977 sort(bus
->range
, bus
->dev_count
, sizeof(struct kvm_io_range
),
2978 kvm_io_bus_sort_cmp
, NULL
);
2983 static int kvm_io_bus_get_first_dev(struct kvm_io_bus
*bus
,
2984 gpa_t addr
, int len
)
2986 struct kvm_io_range
*range
, key
;
2989 key
= (struct kvm_io_range
) {
2994 range
= bsearch(&key
, bus
->range
, bus
->dev_count
,
2995 sizeof(struct kvm_io_range
), kvm_io_bus_sort_cmp
);
2999 off
= range
- bus
->range
;
3001 while (off
> 0 && kvm_io_bus_cmp(&key
, &bus
->range
[off
-1]) == 0)
3007 static int __kvm_io_bus_write(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3008 struct kvm_io_range
*range
, const void *val
)
3012 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3016 while (idx
< bus
->dev_count
&&
3017 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3018 if (!kvm_iodevice_write(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3027 /* kvm_io_bus_write - called under kvm->slots_lock */
3028 int kvm_io_bus_write(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3029 int len
, const void *val
)
3031 struct kvm_io_bus
*bus
;
3032 struct kvm_io_range range
;
3035 range
= (struct kvm_io_range
) {
3040 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3041 r
= __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3042 return r
< 0 ? r
: 0;
3045 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3046 int kvm_io_bus_write_cookie(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
,
3047 gpa_t addr
, int len
, const void *val
, long cookie
)
3049 struct kvm_io_bus
*bus
;
3050 struct kvm_io_range range
;
3052 range
= (struct kvm_io_range
) {
3057 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3059 /* First try the device referenced by cookie. */
3060 if ((cookie
>= 0) && (cookie
< bus
->dev_count
) &&
3061 (kvm_io_bus_cmp(&range
, &bus
->range
[cookie
]) == 0))
3062 if (!kvm_iodevice_write(vcpu
, bus
->range
[cookie
].dev
, addr
, len
,
3067 * cookie contained garbage; fall back to search and return the
3068 * correct cookie value.
3070 return __kvm_io_bus_write(vcpu
, bus
, &range
, val
);
3073 static int __kvm_io_bus_read(struct kvm_vcpu
*vcpu
, struct kvm_io_bus
*bus
,
3074 struct kvm_io_range
*range
, void *val
)
3078 idx
= kvm_io_bus_get_first_dev(bus
, range
->addr
, range
->len
);
3082 while (idx
< bus
->dev_count
&&
3083 kvm_io_bus_cmp(range
, &bus
->range
[idx
]) == 0) {
3084 if (!kvm_iodevice_read(vcpu
, bus
->range
[idx
].dev
, range
->addr
,
3092 EXPORT_SYMBOL_GPL(kvm_io_bus_write
);
3094 /* kvm_io_bus_read - called under kvm->slots_lock */
3095 int kvm_io_bus_read(struct kvm_vcpu
*vcpu
, enum kvm_bus bus_idx
, gpa_t addr
,
3098 struct kvm_io_bus
*bus
;
3099 struct kvm_io_range range
;
3102 range
= (struct kvm_io_range
) {
3107 bus
= srcu_dereference(vcpu
->kvm
->buses
[bus_idx
], &vcpu
->kvm
->srcu
);
3108 r
= __kvm_io_bus_read(vcpu
, bus
, &range
, val
);
3109 return r
< 0 ? r
: 0;
3113 /* Caller must hold slots_lock. */
3114 int kvm_io_bus_register_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
, gpa_t addr
,
3115 int len
, struct kvm_io_device
*dev
)
3117 struct kvm_io_bus
*new_bus
, *bus
;
3119 bus
= kvm
->buses
[bus_idx
];
3120 /* exclude ioeventfd which is limited by maximum fd */
3121 if (bus
->dev_count
- bus
->ioeventfd_count
> NR_IOBUS_DEVS
- 1)
3124 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
+ 1) *
3125 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3128 memcpy(new_bus
, bus
, sizeof(*bus
) + (bus
->dev_count
*
3129 sizeof(struct kvm_io_range
)));
3130 kvm_io_bus_insert_dev(new_bus
, dev
, addr
, len
);
3131 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3132 synchronize_srcu_expedited(&kvm
->srcu
);
3138 /* Caller must hold slots_lock. */
3139 int kvm_io_bus_unregister_dev(struct kvm
*kvm
, enum kvm_bus bus_idx
,
3140 struct kvm_io_device
*dev
)
3143 struct kvm_io_bus
*new_bus
, *bus
;
3145 bus
= kvm
->buses
[bus_idx
];
3147 for (i
= 0; i
< bus
->dev_count
; i
++)
3148 if (bus
->range
[i
].dev
== dev
) {
3156 new_bus
= kzalloc(sizeof(*bus
) + ((bus
->dev_count
- 1) *
3157 sizeof(struct kvm_io_range
)), GFP_KERNEL
);
3161 memcpy(new_bus
, bus
, sizeof(*bus
) + i
* sizeof(struct kvm_io_range
));
3162 new_bus
->dev_count
--;
3163 memcpy(new_bus
->range
+ i
, bus
->range
+ i
+ 1,
3164 (new_bus
->dev_count
- i
) * sizeof(struct kvm_io_range
));
3166 rcu_assign_pointer(kvm
->buses
[bus_idx
], new_bus
);
3167 synchronize_srcu_expedited(&kvm
->srcu
);
3172 static struct notifier_block kvm_cpu_notifier
= {
3173 .notifier_call
= kvm_cpu_hotplug
,
3176 static int vm_stat_get(void *_offset
, u64
*val
)
3178 unsigned offset
= (long)_offset
;
3182 spin_lock(&kvm_lock
);
3183 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3184 *val
+= *(u32
*)((void *)kvm
+ offset
);
3185 spin_unlock(&kvm_lock
);
3189 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops
, vm_stat_get
, NULL
, "%llu\n");
3191 static int vcpu_stat_get(void *_offset
, u64
*val
)
3193 unsigned offset
= (long)_offset
;
3195 struct kvm_vcpu
*vcpu
;
3199 spin_lock(&kvm_lock
);
3200 list_for_each_entry(kvm
, &vm_list
, vm_list
)
3201 kvm_for_each_vcpu(i
, vcpu
, kvm
)
3202 *val
+= *(u32
*)((void *)vcpu
+ offset
);
3204 spin_unlock(&kvm_lock
);
3208 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops
, vcpu_stat_get
, NULL
, "%llu\n");
3210 static const struct file_operations
*stat_fops
[] = {
3211 [KVM_STAT_VCPU
] = &vcpu_stat_fops
,
3212 [KVM_STAT_VM
] = &vm_stat_fops
,
3215 static int kvm_init_debug(void)
3218 struct kvm_stats_debugfs_item
*p
;
3220 kvm_debugfs_dir
= debugfs_create_dir("kvm", NULL
);
3221 if (kvm_debugfs_dir
== NULL
)
3224 for (p
= debugfs_entries
; p
->name
; ++p
) {
3225 p
->dentry
= debugfs_create_file(p
->name
, 0444, kvm_debugfs_dir
,
3226 (void *)(long)p
->offset
,
3227 stat_fops
[p
->kind
]);
3228 if (p
->dentry
== NULL
)
3235 debugfs_remove_recursive(kvm_debugfs_dir
);
3240 static void kvm_exit_debug(void)
3242 struct kvm_stats_debugfs_item
*p
;
3244 for (p
= debugfs_entries
; p
->name
; ++p
)
3245 debugfs_remove(p
->dentry
);
3246 debugfs_remove(kvm_debugfs_dir
);
3249 static int kvm_suspend(void)
3251 if (kvm_usage_count
)
3252 hardware_disable_nolock(NULL
);
3256 static void kvm_resume(void)
3258 if (kvm_usage_count
) {
3259 WARN_ON(raw_spin_is_locked(&kvm_count_lock
));
3260 hardware_enable_nolock(NULL
);
3264 static struct syscore_ops kvm_syscore_ops
= {
3265 .suspend
= kvm_suspend
,
3266 .resume
= kvm_resume
,
3270 struct kvm_vcpu
*preempt_notifier_to_vcpu(struct preempt_notifier
*pn
)
3272 return container_of(pn
, struct kvm_vcpu
, preempt_notifier
);
3275 static void kvm_sched_in(struct preempt_notifier
*pn
, int cpu
)
3277 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3279 if (vcpu
->preempted
)
3280 vcpu
->preempted
= false;
3282 kvm_arch_sched_in(vcpu
, cpu
);
3284 kvm_arch_vcpu_load(vcpu
, cpu
);
3287 static void kvm_sched_out(struct preempt_notifier
*pn
,
3288 struct task_struct
*next
)
3290 struct kvm_vcpu
*vcpu
= preempt_notifier_to_vcpu(pn
);
3292 if (current
->state
== TASK_RUNNING
)
3293 vcpu
->preempted
= true;
3294 kvm_arch_vcpu_put(vcpu
);
3297 int kvm_init(void *opaque
, unsigned vcpu_size
, unsigned vcpu_align
,
3298 struct module
*module
)
3303 r
= kvm_arch_init(opaque
);
3308 * kvm_arch_init makes sure there's at most one caller
3309 * for architectures that support multiple implementations,
3310 * like intel and amd on x86.
3311 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3312 * conflicts in case kvm is already setup for another implementation.
3314 r
= kvm_irqfd_init();
3318 if (!zalloc_cpumask_var(&cpus_hardware_enabled
, GFP_KERNEL
)) {
3323 r
= kvm_arch_hardware_setup();
3327 for_each_online_cpu(cpu
) {
3328 smp_call_function_single(cpu
,
3329 kvm_arch_check_processor_compat
,
3335 r
= register_cpu_notifier(&kvm_cpu_notifier
);
3338 register_reboot_notifier(&kvm_reboot_notifier
);
3340 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3342 vcpu_align
= __alignof__(struct kvm_vcpu
);
3343 kvm_vcpu_cache
= kmem_cache_create("kvm_vcpu", vcpu_size
, vcpu_align
,
3345 if (!kvm_vcpu_cache
) {
3350 r
= kvm_async_pf_init();
3354 kvm_chardev_ops
.owner
= module
;
3355 kvm_vm_fops
.owner
= module
;
3356 kvm_vcpu_fops
.owner
= module
;
3358 r
= misc_register(&kvm_dev
);
3360 pr_err("kvm: misc device register failed\n");
3364 register_syscore_ops(&kvm_syscore_ops
);
3366 kvm_preempt_ops
.sched_in
= kvm_sched_in
;
3367 kvm_preempt_ops
.sched_out
= kvm_sched_out
;
3369 r
= kvm_init_debug();
3371 pr_err("kvm: create debugfs files failed\n");
3375 r
= kvm_vfio_ops_init();
3381 unregister_syscore_ops(&kvm_syscore_ops
);
3382 misc_deregister(&kvm_dev
);
3384 kvm_async_pf_deinit();
3386 kmem_cache_destroy(kvm_vcpu_cache
);
3388 unregister_reboot_notifier(&kvm_reboot_notifier
);
3389 unregister_cpu_notifier(&kvm_cpu_notifier
);
3392 kvm_arch_hardware_unsetup();
3394 free_cpumask_var(cpus_hardware_enabled
);
3402 EXPORT_SYMBOL_GPL(kvm_init
);
3407 misc_deregister(&kvm_dev
);
3408 kmem_cache_destroy(kvm_vcpu_cache
);
3409 kvm_async_pf_deinit();
3410 unregister_syscore_ops(&kvm_syscore_ops
);
3411 unregister_reboot_notifier(&kvm_reboot_notifier
);
3412 unregister_cpu_notifier(&kvm_cpu_notifier
);
3413 on_each_cpu(hardware_disable_nolock
, NULL
, 1);
3414 kvm_arch_hardware_unsetup();
3417 free_cpumask_var(cpus_hardware_enabled
);
3418 kvm_vfio_ops_exit();
3420 EXPORT_SYMBOL_GPL(kvm_exit
);