USB: serial: option: add support for Telit LE910 PID 0x1206
[linux/fpc-iii.git] / virt / kvm / kvm_main.c
blobf9746f29f870da4a213c9d36f8ddaef4eaba6625
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
19 #include <kvm/iodev.h>
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
44 #include <linux/bitops.h>
45 #include <linux/spinlock.h>
46 #include <linux/compat.h>
47 #include <linux/srcu.h>
48 #include <linux/hugetlb.h>
49 #include <linux/slab.h>
50 #include <linux/sort.h>
51 #include <linux/bsearch.h>
53 #include <asm/processor.h>
54 #include <asm/io.h>
55 #include <asm/ioctl.h>
56 #include <asm/uaccess.h>
57 #include <asm/pgtable.h>
59 #include "coalesced_mmio.h"
60 #include "async_pf.h"
61 #include "vfio.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/kvm.h>
66 MODULE_AUTHOR("Qumranet");
67 MODULE_LICENSE("GPL");
69 static unsigned int halt_poll_ns;
70 module_param(halt_poll_ns, uint, S_IRUGO | S_IWUSR);
73 * Ordering of locks:
75 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
78 DEFINE_SPINLOCK(kvm_lock);
79 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
80 LIST_HEAD(vm_list);
82 static cpumask_var_t cpus_hardware_enabled;
83 static int kvm_usage_count;
84 static atomic_t hardware_enable_failed;
86 struct kmem_cache *kvm_vcpu_cache;
87 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
89 static __read_mostly struct preempt_ops kvm_preempt_ops;
91 struct dentry *kvm_debugfs_dir;
92 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
94 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
95 unsigned long arg);
96 #ifdef CONFIG_KVM_COMPAT
97 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
98 unsigned long arg);
99 #endif
100 static int hardware_enable_all(void);
101 static void hardware_disable_all(void);
103 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
105 static void kvm_release_pfn_dirty(pfn_t pfn);
106 static void mark_page_dirty_in_slot(struct kvm *kvm,
107 struct kvm_memory_slot *memslot, gfn_t gfn);
109 __visible bool kvm_rebooting;
110 EXPORT_SYMBOL_GPL(kvm_rebooting);
112 static bool largepages_enabled = true;
114 bool kvm_is_reserved_pfn(pfn_t pfn)
116 if (pfn_valid(pfn))
117 return PageReserved(pfn_to_page(pfn));
119 return true;
123 * Switches to specified vcpu, until a matching vcpu_put()
125 int vcpu_load(struct kvm_vcpu *vcpu)
127 int cpu;
129 if (mutex_lock_killable(&vcpu->mutex))
130 return -EINTR;
131 cpu = get_cpu();
132 preempt_notifier_register(&vcpu->preempt_notifier);
133 kvm_arch_vcpu_load(vcpu, cpu);
134 put_cpu();
135 return 0;
137 EXPORT_SYMBOL_GPL(vcpu_load);
139 void vcpu_put(struct kvm_vcpu *vcpu)
141 preempt_disable();
142 kvm_arch_vcpu_put(vcpu);
143 preempt_notifier_unregister(&vcpu->preempt_notifier);
144 preempt_enable();
145 mutex_unlock(&vcpu->mutex);
147 EXPORT_SYMBOL_GPL(vcpu_put);
149 static void ack_flush(void *_completed)
153 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
155 int i, cpu, me;
156 cpumask_var_t cpus;
157 bool called = true;
158 struct kvm_vcpu *vcpu;
160 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
162 me = get_cpu();
163 kvm_for_each_vcpu(i, vcpu, kvm) {
164 kvm_make_request(req, vcpu);
165 cpu = vcpu->cpu;
167 /* Set ->requests bit before we read ->mode */
168 smp_mb();
170 if (cpus != NULL && cpu != -1 && cpu != me &&
171 kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE)
172 cpumask_set_cpu(cpu, cpus);
174 if (unlikely(cpus == NULL))
175 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
176 else if (!cpumask_empty(cpus))
177 smp_call_function_many(cpus, ack_flush, NULL, 1);
178 else
179 called = false;
180 put_cpu();
181 free_cpumask_var(cpus);
182 return called;
185 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
186 void kvm_flush_remote_tlbs(struct kvm *kvm)
188 long dirty_count = kvm->tlbs_dirty;
190 smp_mb();
191 if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
192 ++kvm->stat.remote_tlb_flush;
193 cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
195 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
196 #endif
198 void kvm_reload_remote_mmus(struct kvm *kvm)
200 kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
203 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
205 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
208 void kvm_make_scan_ioapic_request(struct kvm *kvm)
210 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
213 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
215 struct page *page;
216 int r;
218 mutex_init(&vcpu->mutex);
219 vcpu->cpu = -1;
220 vcpu->kvm = kvm;
221 vcpu->vcpu_id = id;
222 vcpu->pid = NULL;
223 init_waitqueue_head(&vcpu->wq);
224 kvm_async_pf_vcpu_init(vcpu);
226 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
227 if (!page) {
228 r = -ENOMEM;
229 goto fail;
231 vcpu->run = page_address(page);
233 kvm_vcpu_set_in_spin_loop(vcpu, false);
234 kvm_vcpu_set_dy_eligible(vcpu, false);
235 vcpu->preempted = false;
237 r = kvm_arch_vcpu_init(vcpu);
238 if (r < 0)
239 goto fail_free_run;
240 return 0;
242 fail_free_run:
243 free_page((unsigned long)vcpu->run);
244 fail:
245 return r;
247 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
249 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
251 put_pid(vcpu->pid);
252 kvm_arch_vcpu_uninit(vcpu);
253 free_page((unsigned long)vcpu->run);
255 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
257 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
258 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
260 return container_of(mn, struct kvm, mmu_notifier);
263 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
264 struct mm_struct *mm,
265 unsigned long address)
267 struct kvm *kvm = mmu_notifier_to_kvm(mn);
268 int need_tlb_flush, idx;
271 * When ->invalidate_page runs, the linux pte has been zapped
272 * already but the page is still allocated until
273 * ->invalidate_page returns. So if we increase the sequence
274 * here the kvm page fault will notice if the spte can't be
275 * established because the page is going to be freed. If
276 * instead the kvm page fault establishes the spte before
277 * ->invalidate_page runs, kvm_unmap_hva will release it
278 * before returning.
280 * The sequence increase only need to be seen at spin_unlock
281 * time, and not at spin_lock time.
283 * Increasing the sequence after the spin_unlock would be
284 * unsafe because the kvm page fault could then establish the
285 * pte after kvm_unmap_hva returned, without noticing the page
286 * is going to be freed.
288 idx = srcu_read_lock(&kvm->srcu);
289 spin_lock(&kvm->mmu_lock);
291 kvm->mmu_notifier_seq++;
292 need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty;
293 /* we've to flush the tlb before the pages can be freed */
294 if (need_tlb_flush)
295 kvm_flush_remote_tlbs(kvm);
297 spin_unlock(&kvm->mmu_lock);
299 kvm_arch_mmu_notifier_invalidate_page(kvm, address);
301 srcu_read_unlock(&kvm->srcu, idx);
304 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
305 struct mm_struct *mm,
306 unsigned long address,
307 pte_t pte)
309 struct kvm *kvm = mmu_notifier_to_kvm(mn);
310 int idx;
312 idx = srcu_read_lock(&kvm->srcu);
313 spin_lock(&kvm->mmu_lock);
314 kvm->mmu_notifier_seq++;
315 kvm_set_spte_hva(kvm, address, pte);
316 spin_unlock(&kvm->mmu_lock);
317 srcu_read_unlock(&kvm->srcu, idx);
320 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
321 struct mm_struct *mm,
322 unsigned long start,
323 unsigned long end)
325 struct kvm *kvm = mmu_notifier_to_kvm(mn);
326 int need_tlb_flush = 0, idx;
328 idx = srcu_read_lock(&kvm->srcu);
329 spin_lock(&kvm->mmu_lock);
331 * The count increase must become visible at unlock time as no
332 * spte can be established without taking the mmu_lock and
333 * count is also read inside the mmu_lock critical section.
335 kvm->mmu_notifier_count++;
336 need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
337 need_tlb_flush |= kvm->tlbs_dirty;
338 /* we've to flush the tlb before the pages can be freed */
339 if (need_tlb_flush)
340 kvm_flush_remote_tlbs(kvm);
342 spin_unlock(&kvm->mmu_lock);
343 srcu_read_unlock(&kvm->srcu, idx);
346 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
347 struct mm_struct *mm,
348 unsigned long start,
349 unsigned long end)
351 struct kvm *kvm = mmu_notifier_to_kvm(mn);
353 spin_lock(&kvm->mmu_lock);
355 * This sequence increase will notify the kvm page fault that
356 * the page that is going to be mapped in the spte could have
357 * been freed.
359 kvm->mmu_notifier_seq++;
360 smp_wmb();
362 * The above sequence increase must be visible before the
363 * below count decrease, which is ensured by the smp_wmb above
364 * in conjunction with the smp_rmb in mmu_notifier_retry().
366 kvm->mmu_notifier_count--;
367 spin_unlock(&kvm->mmu_lock);
369 BUG_ON(kvm->mmu_notifier_count < 0);
372 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
373 struct mm_struct *mm,
374 unsigned long start,
375 unsigned long end)
377 struct kvm *kvm = mmu_notifier_to_kvm(mn);
378 int young, idx;
380 idx = srcu_read_lock(&kvm->srcu);
381 spin_lock(&kvm->mmu_lock);
383 young = kvm_age_hva(kvm, start, end);
384 if (young)
385 kvm_flush_remote_tlbs(kvm);
387 spin_unlock(&kvm->mmu_lock);
388 srcu_read_unlock(&kvm->srcu, idx);
390 return young;
393 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
394 struct mm_struct *mm,
395 unsigned long address)
397 struct kvm *kvm = mmu_notifier_to_kvm(mn);
398 int young, idx;
400 idx = srcu_read_lock(&kvm->srcu);
401 spin_lock(&kvm->mmu_lock);
402 young = kvm_test_age_hva(kvm, address);
403 spin_unlock(&kvm->mmu_lock);
404 srcu_read_unlock(&kvm->srcu, idx);
406 return young;
409 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
410 struct mm_struct *mm)
412 struct kvm *kvm = mmu_notifier_to_kvm(mn);
413 int idx;
415 idx = srcu_read_lock(&kvm->srcu);
416 kvm_arch_flush_shadow_all(kvm);
417 srcu_read_unlock(&kvm->srcu, idx);
420 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
421 .invalidate_page = kvm_mmu_notifier_invalidate_page,
422 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
423 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
424 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
425 .test_young = kvm_mmu_notifier_test_young,
426 .change_pte = kvm_mmu_notifier_change_pte,
427 .release = kvm_mmu_notifier_release,
430 static int kvm_init_mmu_notifier(struct kvm *kvm)
432 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
433 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
436 #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
438 static int kvm_init_mmu_notifier(struct kvm *kvm)
440 return 0;
443 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
445 static void kvm_init_memslots_id(struct kvm *kvm)
447 int i;
448 struct kvm_memslots *slots = kvm->memslots;
450 for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
451 slots->id_to_index[i] = slots->memslots[i].id = i;
454 static struct kvm *kvm_create_vm(unsigned long type)
456 int r, i;
457 struct kvm *kvm = kvm_arch_alloc_vm();
459 if (!kvm)
460 return ERR_PTR(-ENOMEM);
462 spin_lock_init(&kvm->mmu_lock);
463 atomic_inc(&current->mm->mm_count);
464 kvm->mm = current->mm;
465 kvm_eventfd_init(kvm);
466 mutex_init(&kvm->lock);
467 mutex_init(&kvm->irq_lock);
468 mutex_init(&kvm->slots_lock);
469 atomic_set(&kvm->users_count, 1);
470 INIT_LIST_HEAD(&kvm->devices);
472 r = kvm_arch_init_vm(kvm, type);
473 if (r)
474 goto out_err_no_disable;
476 r = hardware_enable_all();
477 if (r)
478 goto out_err_no_disable;
480 #ifdef CONFIG_HAVE_KVM_IRQFD
481 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
482 #endif
484 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
486 r = -ENOMEM;
487 kvm->memslots = kvm_kvzalloc(sizeof(struct kvm_memslots));
488 if (!kvm->memslots)
489 goto out_err_no_srcu;
492 * Init kvm generation close to the maximum to easily test the
493 * code of handling generation number wrap-around.
495 kvm->memslots->generation = -150;
497 kvm_init_memslots_id(kvm);
498 if (init_srcu_struct(&kvm->srcu))
499 goto out_err_no_srcu;
500 if (init_srcu_struct(&kvm->irq_srcu))
501 goto out_err_no_irq_srcu;
502 for (i = 0; i < KVM_NR_BUSES; i++) {
503 kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
504 GFP_KERNEL);
505 if (!kvm->buses[i])
506 goto out_err;
509 r = kvm_init_mmu_notifier(kvm);
510 if (r)
511 goto out_err;
513 spin_lock(&kvm_lock);
514 list_add(&kvm->vm_list, &vm_list);
515 spin_unlock(&kvm_lock);
517 return kvm;
519 out_err:
520 cleanup_srcu_struct(&kvm->irq_srcu);
521 out_err_no_irq_srcu:
522 cleanup_srcu_struct(&kvm->srcu);
523 out_err_no_srcu:
524 hardware_disable_all();
525 out_err_no_disable:
526 for (i = 0; i < KVM_NR_BUSES; i++)
527 kfree(kvm->buses[i]);
528 kvfree(kvm->memslots);
529 kvm_arch_free_vm(kvm);
530 mmdrop(current->mm);
531 return ERR_PTR(r);
535 * Avoid using vmalloc for a small buffer.
536 * Should not be used when the size is statically known.
538 void *kvm_kvzalloc(unsigned long size)
540 if (size > PAGE_SIZE)
541 return vzalloc(size);
542 else
543 return kzalloc(size, GFP_KERNEL);
546 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
548 if (!memslot->dirty_bitmap)
549 return;
551 kvfree(memslot->dirty_bitmap);
552 memslot->dirty_bitmap = NULL;
556 * Free any memory in @free but not in @dont.
558 static void kvm_free_physmem_slot(struct kvm *kvm, struct kvm_memory_slot *free,
559 struct kvm_memory_slot *dont)
561 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
562 kvm_destroy_dirty_bitmap(free);
564 kvm_arch_free_memslot(kvm, free, dont);
566 free->npages = 0;
569 static void kvm_free_physmem(struct kvm *kvm)
571 struct kvm_memslots *slots = kvm->memslots;
572 struct kvm_memory_slot *memslot;
574 kvm_for_each_memslot(memslot, slots)
575 kvm_free_physmem_slot(kvm, memslot, NULL);
577 kvfree(kvm->memslots);
580 static void kvm_destroy_devices(struct kvm *kvm)
582 struct list_head *node, *tmp;
584 list_for_each_safe(node, tmp, &kvm->devices) {
585 struct kvm_device *dev =
586 list_entry(node, struct kvm_device, vm_node);
588 list_del(node);
589 dev->ops->destroy(dev);
593 static void kvm_destroy_vm(struct kvm *kvm)
595 int i;
596 struct mm_struct *mm = kvm->mm;
598 kvm_arch_sync_events(kvm);
599 spin_lock(&kvm_lock);
600 list_del(&kvm->vm_list);
601 spin_unlock(&kvm_lock);
602 kvm_free_irq_routing(kvm);
603 for (i = 0; i < KVM_NR_BUSES; i++)
604 kvm_io_bus_destroy(kvm->buses[i]);
605 kvm_coalesced_mmio_free(kvm);
606 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
607 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
608 #else
609 kvm_arch_flush_shadow_all(kvm);
610 #endif
611 kvm_arch_destroy_vm(kvm);
612 kvm_destroy_devices(kvm);
613 kvm_free_physmem(kvm);
614 cleanup_srcu_struct(&kvm->irq_srcu);
615 cleanup_srcu_struct(&kvm->srcu);
616 kvm_arch_free_vm(kvm);
617 hardware_disable_all();
618 mmdrop(mm);
621 void kvm_get_kvm(struct kvm *kvm)
623 atomic_inc(&kvm->users_count);
625 EXPORT_SYMBOL_GPL(kvm_get_kvm);
627 void kvm_put_kvm(struct kvm *kvm)
629 if (atomic_dec_and_test(&kvm->users_count))
630 kvm_destroy_vm(kvm);
632 EXPORT_SYMBOL_GPL(kvm_put_kvm);
635 static int kvm_vm_release(struct inode *inode, struct file *filp)
637 struct kvm *kvm = filp->private_data;
639 kvm_irqfd_release(kvm);
641 kvm_put_kvm(kvm);
642 return 0;
646 * Allocation size is twice as large as the actual dirty bitmap size.
647 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
649 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
651 unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
653 memslot->dirty_bitmap = kvm_kvzalloc(dirty_bytes);
654 if (!memslot->dirty_bitmap)
655 return -ENOMEM;
657 return 0;
661 * Insert memslot and re-sort memslots based on their GFN,
662 * so binary search could be used to lookup GFN.
663 * Sorting algorithm takes advantage of having initially
664 * sorted array and known changed memslot position.
666 static void update_memslots(struct kvm_memslots *slots,
667 struct kvm_memory_slot *new)
669 int id = new->id;
670 int i = slots->id_to_index[id];
671 struct kvm_memory_slot *mslots = slots->memslots;
673 WARN_ON(mslots[i].id != id);
674 if (!new->npages) {
675 WARN_ON(!mslots[i].npages);
676 new->base_gfn = 0;
677 new->flags = 0;
678 if (mslots[i].npages)
679 slots->used_slots--;
680 } else {
681 if (!mslots[i].npages)
682 slots->used_slots++;
685 while (i < KVM_MEM_SLOTS_NUM - 1 &&
686 new->base_gfn <= mslots[i + 1].base_gfn) {
687 if (!mslots[i + 1].npages)
688 break;
689 mslots[i] = mslots[i + 1];
690 slots->id_to_index[mslots[i].id] = i;
691 i++;
695 * The ">=" is needed when creating a slot with base_gfn == 0,
696 * so that it moves before all those with base_gfn == npages == 0.
698 * On the other hand, if new->npages is zero, the above loop has
699 * already left i pointing to the beginning of the empty part of
700 * mslots, and the ">=" would move the hole backwards in this
701 * case---which is wrong. So skip the loop when deleting a slot.
703 if (new->npages) {
704 while (i > 0 &&
705 new->base_gfn >= mslots[i - 1].base_gfn) {
706 mslots[i] = mslots[i - 1];
707 slots->id_to_index[mslots[i].id] = i;
708 i--;
710 } else
711 WARN_ON_ONCE(i != slots->used_slots);
713 mslots[i] = *new;
714 slots->id_to_index[mslots[i].id] = i;
717 static int check_memory_region_flags(struct kvm_userspace_memory_region *mem)
719 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
721 #ifdef __KVM_HAVE_READONLY_MEM
722 valid_flags |= KVM_MEM_READONLY;
723 #endif
725 if (mem->flags & ~valid_flags)
726 return -EINVAL;
728 return 0;
731 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
732 struct kvm_memslots *slots)
734 struct kvm_memslots *old_memslots = kvm->memslots;
737 * Set the low bit in the generation, which disables SPTE caching
738 * until the end of synchronize_srcu_expedited.
740 WARN_ON(old_memslots->generation & 1);
741 slots->generation = old_memslots->generation + 1;
743 rcu_assign_pointer(kvm->memslots, slots);
744 synchronize_srcu_expedited(&kvm->srcu);
747 * Increment the new memslot generation a second time. This prevents
748 * vm exits that race with memslot updates from caching a memslot
749 * generation that will (potentially) be valid forever.
751 slots->generation++;
753 kvm_arch_memslots_updated(kvm);
755 return old_memslots;
759 * Allocate some memory and give it an address in the guest physical address
760 * space.
762 * Discontiguous memory is allowed, mostly for framebuffers.
764 * Must be called holding kvm->slots_lock for write.
766 int __kvm_set_memory_region(struct kvm *kvm,
767 struct kvm_userspace_memory_region *mem)
769 int r;
770 gfn_t base_gfn;
771 unsigned long npages;
772 struct kvm_memory_slot *slot;
773 struct kvm_memory_slot old, new;
774 struct kvm_memslots *slots = NULL, *old_memslots;
775 enum kvm_mr_change change;
777 r = check_memory_region_flags(mem);
778 if (r)
779 goto out;
781 r = -EINVAL;
782 /* General sanity checks */
783 if (mem->memory_size & (PAGE_SIZE - 1))
784 goto out;
785 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
786 goto out;
787 /* We can read the guest memory with __xxx_user() later on. */
788 if ((mem->slot < KVM_USER_MEM_SLOTS) &&
789 ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
790 !access_ok(VERIFY_WRITE,
791 (void __user *)(unsigned long)mem->userspace_addr,
792 mem->memory_size)))
793 goto out;
794 if (mem->slot >= KVM_MEM_SLOTS_NUM)
795 goto out;
796 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
797 goto out;
799 slot = id_to_memslot(kvm->memslots, mem->slot);
800 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
801 npages = mem->memory_size >> PAGE_SHIFT;
803 if (npages > KVM_MEM_MAX_NR_PAGES)
804 goto out;
806 if (!npages)
807 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
809 new = old = *slot;
811 new.id = mem->slot;
812 new.base_gfn = base_gfn;
813 new.npages = npages;
814 new.flags = mem->flags;
816 if (npages) {
817 if (!old.npages)
818 change = KVM_MR_CREATE;
819 else { /* Modify an existing slot. */
820 if ((mem->userspace_addr != old.userspace_addr) ||
821 (npages != old.npages) ||
822 ((new.flags ^ old.flags) & KVM_MEM_READONLY))
823 goto out;
825 if (base_gfn != old.base_gfn)
826 change = KVM_MR_MOVE;
827 else if (new.flags != old.flags)
828 change = KVM_MR_FLAGS_ONLY;
829 else { /* Nothing to change. */
830 r = 0;
831 goto out;
834 } else if (old.npages) {
835 change = KVM_MR_DELETE;
836 } else /* Modify a non-existent slot: disallowed. */
837 goto out;
839 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
840 /* Check for overlaps */
841 r = -EEXIST;
842 kvm_for_each_memslot(slot, kvm->memslots) {
843 if ((slot->id >= KVM_USER_MEM_SLOTS) ||
844 (slot->id == mem->slot))
845 continue;
846 if (!((base_gfn + npages <= slot->base_gfn) ||
847 (base_gfn >= slot->base_gfn + slot->npages)))
848 goto out;
852 /* Free page dirty bitmap if unneeded */
853 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
854 new.dirty_bitmap = NULL;
856 r = -ENOMEM;
857 if (change == KVM_MR_CREATE) {
858 new.userspace_addr = mem->userspace_addr;
860 if (kvm_arch_create_memslot(kvm, &new, npages))
861 goto out_free;
864 /* Allocate page dirty bitmap if needed */
865 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
866 if (kvm_create_dirty_bitmap(&new) < 0)
867 goto out_free;
870 slots = kvm_kvzalloc(sizeof(struct kvm_memslots));
871 if (!slots)
872 goto out_free;
873 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
875 if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
876 slot = id_to_memslot(slots, mem->slot);
877 slot->flags |= KVM_MEMSLOT_INVALID;
879 old_memslots = install_new_memslots(kvm, slots);
881 /* slot was deleted or moved, clear iommu mapping */
882 kvm_iommu_unmap_pages(kvm, &old);
883 /* From this point no new shadow pages pointing to a deleted,
884 * or moved, memslot will be created.
886 * validation of sp->gfn happens in:
887 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
888 * - kvm_is_visible_gfn (mmu_check_roots)
890 kvm_arch_flush_shadow_memslot(kvm, slot);
893 * We can re-use the old_memslots from above, the only difference
894 * from the currently installed memslots is the invalid flag. This
895 * will get overwritten by update_memslots anyway.
897 slots = old_memslots;
900 r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
901 if (r)
902 goto out_slots;
904 /* actual memory is freed via old in kvm_free_physmem_slot below */
905 if (change == KVM_MR_DELETE) {
906 new.dirty_bitmap = NULL;
907 memset(&new.arch, 0, sizeof(new.arch));
910 update_memslots(slots, &new);
911 old_memslots = install_new_memslots(kvm, slots);
913 kvm_arch_commit_memory_region(kvm, mem, &old, change);
915 kvm_free_physmem_slot(kvm, &old, &new);
916 kvfree(old_memslots);
919 * IOMMU mapping: New slots need to be mapped. Old slots need to be
920 * un-mapped and re-mapped if their base changes. Since base change
921 * unmapping is handled above with slot deletion, mapping alone is
922 * needed here. Anything else the iommu might care about for existing
923 * slots (size changes, userspace addr changes and read-only flag
924 * changes) is disallowed above, so any other attribute changes getting
925 * here can be skipped.
927 if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
928 r = kvm_iommu_map_pages(kvm, &new);
929 return r;
932 return 0;
934 out_slots:
935 kvfree(slots);
936 out_free:
937 kvm_free_physmem_slot(kvm, &new, &old);
938 out:
939 return r;
941 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
943 int kvm_set_memory_region(struct kvm *kvm,
944 struct kvm_userspace_memory_region *mem)
946 int r;
948 mutex_lock(&kvm->slots_lock);
949 r = __kvm_set_memory_region(kvm, mem);
950 mutex_unlock(&kvm->slots_lock);
951 return r;
953 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
955 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
956 struct kvm_userspace_memory_region *mem)
958 if (mem->slot >= KVM_USER_MEM_SLOTS)
959 return -EINVAL;
960 return kvm_set_memory_region(kvm, mem);
963 int kvm_get_dirty_log(struct kvm *kvm,
964 struct kvm_dirty_log *log, int *is_dirty)
966 struct kvm_memory_slot *memslot;
967 int r, i;
968 unsigned long n;
969 unsigned long any = 0;
971 r = -EINVAL;
972 if (log->slot >= KVM_USER_MEM_SLOTS)
973 goto out;
975 memslot = id_to_memslot(kvm->memslots, log->slot);
976 r = -ENOENT;
977 if (!memslot->dirty_bitmap)
978 goto out;
980 n = kvm_dirty_bitmap_bytes(memslot);
982 for (i = 0; !any && i < n/sizeof(long); ++i)
983 any = memslot->dirty_bitmap[i];
985 r = -EFAULT;
986 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
987 goto out;
989 if (any)
990 *is_dirty = 1;
992 r = 0;
993 out:
994 return r;
996 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
998 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1000 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1001 * are dirty write protect them for next write.
1002 * @kvm: pointer to kvm instance
1003 * @log: slot id and address to which we copy the log
1004 * @is_dirty: flag set if any page is dirty
1006 * We need to keep it in mind that VCPU threads can write to the bitmap
1007 * concurrently. So, to avoid losing track of dirty pages we keep the
1008 * following order:
1010 * 1. Take a snapshot of the bit and clear it if needed.
1011 * 2. Write protect the corresponding page.
1012 * 3. Copy the snapshot to the userspace.
1013 * 4. Upon return caller flushes TLB's if needed.
1015 * Between 2 and 4, the guest may write to the page using the remaining TLB
1016 * entry. This is not a problem because the page is reported dirty using
1017 * the snapshot taken before and step 4 ensures that writes done after
1018 * exiting to userspace will be logged for the next call.
1021 int kvm_get_dirty_log_protect(struct kvm *kvm,
1022 struct kvm_dirty_log *log, bool *is_dirty)
1024 struct kvm_memory_slot *memslot;
1025 int r, i;
1026 unsigned long n;
1027 unsigned long *dirty_bitmap;
1028 unsigned long *dirty_bitmap_buffer;
1030 r = -EINVAL;
1031 if (log->slot >= KVM_USER_MEM_SLOTS)
1032 goto out;
1034 memslot = id_to_memslot(kvm->memslots, log->slot);
1036 dirty_bitmap = memslot->dirty_bitmap;
1037 r = -ENOENT;
1038 if (!dirty_bitmap)
1039 goto out;
1041 n = kvm_dirty_bitmap_bytes(memslot);
1043 dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1044 memset(dirty_bitmap_buffer, 0, n);
1046 spin_lock(&kvm->mmu_lock);
1047 *is_dirty = false;
1048 for (i = 0; i < n / sizeof(long); i++) {
1049 unsigned long mask;
1050 gfn_t offset;
1052 if (!dirty_bitmap[i])
1053 continue;
1055 *is_dirty = true;
1057 mask = xchg(&dirty_bitmap[i], 0);
1058 dirty_bitmap_buffer[i] = mask;
1060 if (mask) {
1061 offset = i * BITS_PER_LONG;
1062 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1063 offset, mask);
1067 spin_unlock(&kvm->mmu_lock);
1069 r = -EFAULT;
1070 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1071 goto out;
1073 r = 0;
1074 out:
1075 return r;
1077 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1078 #endif
1080 bool kvm_largepages_enabled(void)
1082 return largepages_enabled;
1085 void kvm_disable_largepages(void)
1087 largepages_enabled = false;
1089 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1091 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1093 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1095 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1097 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1099 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1101 if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1102 memslot->flags & KVM_MEMSLOT_INVALID)
1103 return 0;
1105 return 1;
1107 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1109 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1111 struct vm_area_struct *vma;
1112 unsigned long addr, size;
1114 size = PAGE_SIZE;
1116 addr = gfn_to_hva(kvm, gfn);
1117 if (kvm_is_error_hva(addr))
1118 return PAGE_SIZE;
1120 down_read(&current->mm->mmap_sem);
1121 vma = find_vma(current->mm, addr);
1122 if (!vma)
1123 goto out;
1125 size = vma_kernel_pagesize(vma);
1127 out:
1128 up_read(&current->mm->mmap_sem);
1130 return size;
1133 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1135 return slot->flags & KVM_MEM_READONLY;
1138 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1139 gfn_t *nr_pages, bool write)
1141 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1142 return KVM_HVA_ERR_BAD;
1144 if (memslot_is_readonly(slot) && write)
1145 return KVM_HVA_ERR_RO_BAD;
1147 if (nr_pages)
1148 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1150 return __gfn_to_hva_memslot(slot, gfn);
1153 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1154 gfn_t *nr_pages)
1156 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1159 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1160 gfn_t gfn)
1162 return gfn_to_hva_many(slot, gfn, NULL);
1164 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1166 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1168 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1170 EXPORT_SYMBOL_GPL(gfn_to_hva);
1173 * If writable is set to false, the hva returned by this function is only
1174 * allowed to be read.
1176 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1177 gfn_t gfn, bool *writable)
1179 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1181 if (!kvm_is_error_hva(hva) && writable)
1182 *writable = !memslot_is_readonly(slot);
1184 return hva;
1187 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1189 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1191 return gfn_to_hva_memslot_prot(slot, gfn, writable);
1194 static int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm,
1195 unsigned long start, int write, struct page **page)
1197 int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET;
1199 if (write)
1200 flags |= FOLL_WRITE;
1202 return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL);
1205 static inline int check_user_page_hwpoison(unsigned long addr)
1207 int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE;
1209 rc = __get_user_pages(current, current->mm, addr, 1,
1210 flags, NULL, NULL, NULL);
1211 return rc == -EHWPOISON;
1215 * The atomic path to get the writable pfn which will be stored in @pfn,
1216 * true indicates success, otherwise false is returned.
1218 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1219 bool write_fault, bool *writable, pfn_t *pfn)
1221 struct page *page[1];
1222 int npages;
1224 if (!(async || atomic))
1225 return false;
1228 * Fast pin a writable pfn only if it is a write fault request
1229 * or the caller allows to map a writable pfn for a read fault
1230 * request.
1232 if (!(write_fault || writable))
1233 return false;
1235 npages = __get_user_pages_fast(addr, 1, 1, page);
1236 if (npages == 1) {
1237 *pfn = page_to_pfn(page[0]);
1239 if (writable)
1240 *writable = true;
1241 return true;
1244 return false;
1248 * The slow path to get the pfn of the specified host virtual address,
1249 * 1 indicates success, -errno is returned if error is detected.
1251 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1252 bool *writable, pfn_t *pfn)
1254 struct page *page[1];
1255 int npages = 0;
1257 might_sleep();
1259 if (writable)
1260 *writable = write_fault;
1262 if (async) {
1263 down_read(&current->mm->mmap_sem);
1264 npages = get_user_page_nowait(current, current->mm,
1265 addr, write_fault, page);
1266 up_read(&current->mm->mmap_sem);
1267 } else
1268 npages = __get_user_pages_unlocked(current, current->mm, addr, 1,
1269 write_fault, 0, page,
1270 FOLL_TOUCH|FOLL_HWPOISON);
1271 if (npages != 1)
1272 return npages;
1274 /* map read fault as writable if possible */
1275 if (unlikely(!write_fault) && writable) {
1276 struct page *wpage[1];
1278 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1279 if (npages == 1) {
1280 *writable = true;
1281 put_page(page[0]);
1282 page[0] = wpage[0];
1285 npages = 1;
1287 *pfn = page_to_pfn(page[0]);
1288 return npages;
1291 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1293 if (unlikely(!(vma->vm_flags & VM_READ)))
1294 return false;
1296 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1297 return false;
1299 return true;
1303 * Pin guest page in memory and return its pfn.
1304 * @addr: host virtual address which maps memory to the guest
1305 * @atomic: whether this function can sleep
1306 * @async: whether this function need to wait IO complete if the
1307 * host page is not in the memory
1308 * @write_fault: whether we should get a writable host page
1309 * @writable: whether it allows to map a writable host page for !@write_fault
1311 * The function will map a writable host page for these two cases:
1312 * 1): @write_fault = true
1313 * 2): @write_fault = false && @writable, @writable will tell the caller
1314 * whether the mapping is writable.
1316 static pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1317 bool write_fault, bool *writable)
1319 struct vm_area_struct *vma;
1320 pfn_t pfn = 0;
1321 int npages;
1323 /* we can do it either atomically or asynchronously, not both */
1324 BUG_ON(atomic && async);
1326 if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1327 return pfn;
1329 if (atomic)
1330 return KVM_PFN_ERR_FAULT;
1332 npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1333 if (npages == 1)
1334 return pfn;
1336 down_read(&current->mm->mmap_sem);
1337 if (npages == -EHWPOISON ||
1338 (!async && check_user_page_hwpoison(addr))) {
1339 pfn = KVM_PFN_ERR_HWPOISON;
1340 goto exit;
1343 vma = find_vma_intersection(current->mm, addr, addr + 1);
1345 if (vma == NULL)
1346 pfn = KVM_PFN_ERR_FAULT;
1347 else if ((vma->vm_flags & VM_PFNMAP)) {
1348 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
1349 vma->vm_pgoff;
1350 BUG_ON(!kvm_is_reserved_pfn(pfn));
1351 } else {
1352 if (async && vma_is_valid(vma, write_fault))
1353 *async = true;
1354 pfn = KVM_PFN_ERR_FAULT;
1356 exit:
1357 up_read(&current->mm->mmap_sem);
1358 return pfn;
1361 static pfn_t
1362 __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn, bool atomic,
1363 bool *async, bool write_fault, bool *writable)
1365 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1367 if (addr == KVM_HVA_ERR_RO_BAD)
1368 return KVM_PFN_ERR_RO_FAULT;
1370 if (kvm_is_error_hva(addr))
1371 return KVM_PFN_NOSLOT;
1373 /* Do not map writable pfn in the readonly memslot. */
1374 if (writable && memslot_is_readonly(slot)) {
1375 *writable = false;
1376 writable = NULL;
1379 return hva_to_pfn(addr, atomic, async, write_fault,
1380 writable);
1383 static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
1384 bool write_fault, bool *writable)
1386 struct kvm_memory_slot *slot;
1388 if (async)
1389 *async = false;
1391 slot = gfn_to_memslot(kvm, gfn);
1393 return __gfn_to_pfn_memslot(slot, gfn, atomic, async, write_fault,
1394 writable);
1397 pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1399 return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
1401 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1403 pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
1404 bool write_fault, bool *writable)
1406 return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
1408 EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
1410 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1412 return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
1414 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1416 pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1417 bool *writable)
1419 return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
1421 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1423 pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1425 return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1428 pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1430 return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1432 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1434 int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
1435 int nr_pages)
1437 unsigned long addr;
1438 gfn_t entry;
1440 addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
1441 if (kvm_is_error_hva(addr))
1442 return -1;
1444 if (entry < nr_pages)
1445 return 0;
1447 return __get_user_pages_fast(addr, nr_pages, 1, pages);
1449 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1451 static struct page *kvm_pfn_to_page(pfn_t pfn)
1453 if (is_error_noslot_pfn(pfn))
1454 return KVM_ERR_PTR_BAD_PAGE;
1456 if (kvm_is_reserved_pfn(pfn)) {
1457 WARN_ON(1);
1458 return KVM_ERR_PTR_BAD_PAGE;
1461 return pfn_to_page(pfn);
1464 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1466 pfn_t pfn;
1468 pfn = gfn_to_pfn(kvm, gfn);
1470 return kvm_pfn_to_page(pfn);
1472 EXPORT_SYMBOL_GPL(gfn_to_page);
1474 void kvm_release_page_clean(struct page *page)
1476 WARN_ON(is_error_page(page));
1478 kvm_release_pfn_clean(page_to_pfn(page));
1480 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1482 void kvm_release_pfn_clean(pfn_t pfn)
1484 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1485 put_page(pfn_to_page(pfn));
1487 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1489 void kvm_release_page_dirty(struct page *page)
1491 WARN_ON(is_error_page(page));
1493 kvm_release_pfn_dirty(page_to_pfn(page));
1495 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1497 static void kvm_release_pfn_dirty(pfn_t pfn)
1499 kvm_set_pfn_dirty(pfn);
1500 kvm_release_pfn_clean(pfn);
1503 void kvm_set_pfn_dirty(pfn_t pfn)
1505 if (!kvm_is_reserved_pfn(pfn)) {
1506 struct page *page = pfn_to_page(pfn);
1508 if (!PageReserved(page))
1509 SetPageDirty(page);
1512 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1514 void kvm_set_pfn_accessed(pfn_t pfn)
1516 if (!kvm_is_reserved_pfn(pfn))
1517 mark_page_accessed(pfn_to_page(pfn));
1519 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1521 void kvm_get_pfn(pfn_t pfn)
1523 if (!kvm_is_reserved_pfn(pfn))
1524 get_page(pfn_to_page(pfn));
1526 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1528 static int next_segment(unsigned long len, int offset)
1530 if (len > PAGE_SIZE - offset)
1531 return PAGE_SIZE - offset;
1532 else
1533 return len;
1536 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1537 int len)
1539 int r;
1540 unsigned long addr;
1542 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1543 if (kvm_is_error_hva(addr))
1544 return -EFAULT;
1545 r = __copy_from_user(data, (void __user *)addr + offset, len);
1546 if (r)
1547 return -EFAULT;
1548 return 0;
1550 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1552 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1554 gfn_t gfn = gpa >> PAGE_SHIFT;
1555 int seg;
1556 int offset = offset_in_page(gpa);
1557 int ret;
1559 while ((seg = next_segment(len, offset)) != 0) {
1560 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1561 if (ret < 0)
1562 return ret;
1563 offset = 0;
1564 len -= seg;
1565 data += seg;
1566 ++gfn;
1568 return 0;
1570 EXPORT_SYMBOL_GPL(kvm_read_guest);
1572 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1573 unsigned long len)
1575 int r;
1576 unsigned long addr;
1577 gfn_t gfn = gpa >> PAGE_SHIFT;
1578 int offset = offset_in_page(gpa);
1580 addr = gfn_to_hva_prot(kvm, gfn, NULL);
1581 if (kvm_is_error_hva(addr))
1582 return -EFAULT;
1583 pagefault_disable();
1584 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1585 pagefault_enable();
1586 if (r)
1587 return -EFAULT;
1588 return 0;
1590 EXPORT_SYMBOL(kvm_read_guest_atomic);
1592 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1593 int offset, int len)
1595 int r;
1596 unsigned long addr;
1598 addr = gfn_to_hva(kvm, gfn);
1599 if (kvm_is_error_hva(addr))
1600 return -EFAULT;
1601 r = __copy_to_user((void __user *)addr + offset, data, len);
1602 if (r)
1603 return -EFAULT;
1604 mark_page_dirty(kvm, gfn);
1605 return 0;
1607 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1609 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1610 unsigned long len)
1612 gfn_t gfn = gpa >> PAGE_SHIFT;
1613 int seg;
1614 int offset = offset_in_page(gpa);
1615 int ret;
1617 while ((seg = next_segment(len, offset)) != 0) {
1618 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1619 if (ret < 0)
1620 return ret;
1621 offset = 0;
1622 len -= seg;
1623 data += seg;
1624 ++gfn;
1626 return 0;
1628 EXPORT_SYMBOL_GPL(kvm_write_guest);
1630 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1631 gpa_t gpa, unsigned long len)
1633 struct kvm_memslots *slots = kvm_memslots(kvm);
1634 int offset = offset_in_page(gpa);
1635 gfn_t start_gfn = gpa >> PAGE_SHIFT;
1636 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1637 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1638 gfn_t nr_pages_avail;
1640 ghc->gpa = gpa;
1641 ghc->generation = slots->generation;
1642 ghc->len = len;
1643 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1644 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1645 if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1646 ghc->hva += offset;
1647 } else {
1649 * If the requested region crosses two memslots, we still
1650 * verify that the entire region is valid here.
1652 while (start_gfn <= end_gfn) {
1653 ghc->memslot = gfn_to_memslot(kvm, start_gfn);
1654 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1655 &nr_pages_avail);
1656 if (kvm_is_error_hva(ghc->hva))
1657 return -EFAULT;
1658 start_gfn += nr_pages_avail;
1660 /* Use the slow path for cross page reads and writes. */
1661 ghc->memslot = NULL;
1663 return 0;
1665 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1667 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1668 void *data, unsigned long len)
1670 struct kvm_memslots *slots = kvm_memslots(kvm);
1671 int r;
1673 BUG_ON(len > ghc->len);
1675 if (slots->generation != ghc->generation)
1676 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1678 if (unlikely(!ghc->memslot))
1679 return kvm_write_guest(kvm, ghc->gpa, data, len);
1681 if (kvm_is_error_hva(ghc->hva))
1682 return -EFAULT;
1684 r = __copy_to_user((void __user *)ghc->hva, data, len);
1685 if (r)
1686 return -EFAULT;
1687 mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
1689 return 0;
1691 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1693 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1694 void *data, unsigned long len)
1696 struct kvm_memslots *slots = kvm_memslots(kvm);
1697 int r;
1699 BUG_ON(len > ghc->len);
1701 if (slots->generation != ghc->generation)
1702 kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len);
1704 if (unlikely(!ghc->memslot))
1705 return kvm_read_guest(kvm, ghc->gpa, data, len);
1707 if (kvm_is_error_hva(ghc->hva))
1708 return -EFAULT;
1710 r = __copy_from_user(data, (void __user *)ghc->hva, len);
1711 if (r)
1712 return -EFAULT;
1714 return 0;
1716 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
1718 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1720 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
1722 return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
1724 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1726 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1728 gfn_t gfn = gpa >> PAGE_SHIFT;
1729 int seg;
1730 int offset = offset_in_page(gpa);
1731 int ret;
1733 while ((seg = next_segment(len, offset)) != 0) {
1734 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1735 if (ret < 0)
1736 return ret;
1737 offset = 0;
1738 len -= seg;
1739 ++gfn;
1741 return 0;
1743 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1745 static void mark_page_dirty_in_slot(struct kvm *kvm,
1746 struct kvm_memory_slot *memslot,
1747 gfn_t gfn)
1749 if (memslot && memslot->dirty_bitmap) {
1750 unsigned long rel_gfn = gfn - memslot->base_gfn;
1752 set_bit_le(rel_gfn, memslot->dirty_bitmap);
1756 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1758 struct kvm_memory_slot *memslot;
1760 memslot = gfn_to_memslot(kvm, gfn);
1761 mark_page_dirty_in_slot(kvm, memslot, gfn);
1763 EXPORT_SYMBOL_GPL(mark_page_dirty);
1765 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
1767 if (kvm_arch_vcpu_runnable(vcpu)) {
1768 kvm_make_request(KVM_REQ_UNHALT, vcpu);
1769 return -EINTR;
1771 if (kvm_cpu_has_pending_timer(vcpu))
1772 return -EINTR;
1773 if (signal_pending(current))
1774 return -EINTR;
1776 return 0;
1780 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1782 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1784 ktime_t start, cur;
1785 DEFINE_WAIT(wait);
1786 bool waited = false;
1788 start = cur = ktime_get();
1789 if (halt_poll_ns) {
1790 ktime_t stop = ktime_add_ns(ktime_get(), halt_poll_ns);
1792 do {
1794 * This sets KVM_REQ_UNHALT if an interrupt
1795 * arrives.
1797 if (kvm_vcpu_check_block(vcpu) < 0) {
1798 ++vcpu->stat.halt_successful_poll;
1799 goto out;
1801 cur = ktime_get();
1802 } while (single_task_running() && ktime_before(cur, stop));
1805 for (;;) {
1806 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1808 if (kvm_vcpu_check_block(vcpu) < 0)
1809 break;
1811 waited = true;
1812 schedule();
1815 finish_wait(&vcpu->wq, &wait);
1816 cur = ktime_get();
1818 out:
1819 trace_kvm_vcpu_wakeup(ktime_to_ns(cur) - ktime_to_ns(start), waited);
1821 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
1823 #ifndef CONFIG_S390
1825 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
1827 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
1829 int me;
1830 int cpu = vcpu->cpu;
1831 wait_queue_head_t *wqp;
1833 wqp = kvm_arch_vcpu_wq(vcpu);
1834 if (waitqueue_active(wqp)) {
1835 wake_up_interruptible(wqp);
1836 ++vcpu->stat.halt_wakeup;
1839 me = get_cpu();
1840 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
1841 if (kvm_arch_vcpu_should_kick(vcpu))
1842 smp_send_reschedule(cpu);
1843 put_cpu();
1845 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
1846 #endif /* !CONFIG_S390 */
1848 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
1850 struct pid *pid;
1851 struct task_struct *task = NULL;
1852 int ret = 0;
1854 rcu_read_lock();
1855 pid = rcu_dereference(target->pid);
1856 if (pid)
1857 task = get_pid_task(pid, PIDTYPE_PID);
1858 rcu_read_unlock();
1859 if (!task)
1860 return ret;
1861 ret = yield_to(task, 1);
1862 put_task_struct(task);
1864 return ret;
1866 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
1869 * Helper that checks whether a VCPU is eligible for directed yield.
1870 * Most eligible candidate to yield is decided by following heuristics:
1872 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
1873 * (preempted lock holder), indicated by @in_spin_loop.
1874 * Set at the beiginning and cleared at the end of interception/PLE handler.
1876 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
1877 * chance last time (mostly it has become eligible now since we have probably
1878 * yielded to lockholder in last iteration. This is done by toggling
1879 * @dy_eligible each time a VCPU checked for eligibility.)
1881 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
1882 * to preempted lock-holder could result in wrong VCPU selection and CPU
1883 * burning. Giving priority for a potential lock-holder increases lock
1884 * progress.
1886 * Since algorithm is based on heuristics, accessing another VCPU data without
1887 * locking does not harm. It may result in trying to yield to same VCPU, fail
1888 * and continue with next VCPU and so on.
1890 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
1892 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
1893 bool eligible;
1895 eligible = !vcpu->spin_loop.in_spin_loop ||
1896 vcpu->spin_loop.dy_eligible;
1898 if (vcpu->spin_loop.in_spin_loop)
1899 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
1901 return eligible;
1902 #else
1903 return true;
1904 #endif
1907 void kvm_vcpu_on_spin(struct kvm_vcpu *me)
1909 struct kvm *kvm = me->kvm;
1910 struct kvm_vcpu *vcpu;
1911 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
1912 int yielded = 0;
1913 int try = 3;
1914 int pass;
1915 int i;
1917 kvm_vcpu_set_in_spin_loop(me, true);
1919 * We boost the priority of a VCPU that is runnable but not
1920 * currently running, because it got preempted by something
1921 * else and called schedule in __vcpu_run. Hopefully that
1922 * VCPU is holding the lock that we need and will release it.
1923 * We approximate round-robin by starting at the last boosted VCPU.
1925 for (pass = 0; pass < 2 && !yielded && try; pass++) {
1926 kvm_for_each_vcpu(i, vcpu, kvm) {
1927 if (!pass && i <= last_boosted_vcpu) {
1928 i = last_boosted_vcpu;
1929 continue;
1930 } else if (pass && i > last_boosted_vcpu)
1931 break;
1932 if (!ACCESS_ONCE(vcpu->preempted))
1933 continue;
1934 if (vcpu == me)
1935 continue;
1936 if (waitqueue_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
1937 continue;
1938 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
1939 continue;
1941 yielded = kvm_vcpu_yield_to(vcpu);
1942 if (yielded > 0) {
1943 kvm->last_boosted_vcpu = i;
1944 break;
1945 } else if (yielded < 0) {
1946 try--;
1947 if (!try)
1948 break;
1952 kvm_vcpu_set_in_spin_loop(me, false);
1954 /* Ensure vcpu is not eligible during next spinloop */
1955 kvm_vcpu_set_dy_eligible(me, false);
1957 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
1959 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1961 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1962 struct page *page;
1964 if (vmf->pgoff == 0)
1965 page = virt_to_page(vcpu->run);
1966 #ifdef CONFIG_X86
1967 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1968 page = virt_to_page(vcpu->arch.pio_data);
1969 #endif
1970 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1971 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1972 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1973 #endif
1974 else
1975 return kvm_arch_vcpu_fault(vcpu, vmf);
1976 get_page(page);
1977 vmf->page = page;
1978 return 0;
1981 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
1982 .fault = kvm_vcpu_fault,
1985 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1987 vma->vm_ops = &kvm_vcpu_vm_ops;
1988 return 0;
1991 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1993 struct kvm_vcpu *vcpu = filp->private_data;
1995 kvm_put_kvm(vcpu->kvm);
1996 return 0;
1999 static struct file_operations kvm_vcpu_fops = {
2000 .release = kvm_vcpu_release,
2001 .unlocked_ioctl = kvm_vcpu_ioctl,
2002 #ifdef CONFIG_KVM_COMPAT
2003 .compat_ioctl = kvm_vcpu_compat_ioctl,
2004 #endif
2005 .mmap = kvm_vcpu_mmap,
2006 .llseek = noop_llseek,
2010 * Allocates an inode for the vcpu.
2012 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2014 return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2018 * Creates some virtual cpus. Good luck creating more than one.
2020 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2022 int r;
2023 struct kvm_vcpu *vcpu, *v;
2025 if (id >= KVM_MAX_VCPUS)
2026 return -EINVAL;
2028 vcpu = kvm_arch_vcpu_create(kvm, id);
2029 if (IS_ERR(vcpu))
2030 return PTR_ERR(vcpu);
2032 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2034 r = kvm_arch_vcpu_setup(vcpu);
2035 if (r)
2036 goto vcpu_destroy;
2038 mutex_lock(&kvm->lock);
2039 if (!kvm_vcpu_compatible(vcpu)) {
2040 r = -EINVAL;
2041 goto unlock_vcpu_destroy;
2043 if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
2044 r = -EINVAL;
2045 goto unlock_vcpu_destroy;
2048 kvm_for_each_vcpu(r, v, kvm)
2049 if (v->vcpu_id == id) {
2050 r = -EEXIST;
2051 goto unlock_vcpu_destroy;
2054 BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2056 /* Now it's all set up, let userspace reach it */
2057 kvm_get_kvm(kvm);
2058 r = create_vcpu_fd(vcpu);
2059 if (r < 0) {
2060 kvm_put_kvm(kvm);
2061 goto unlock_vcpu_destroy;
2064 kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2065 smp_wmb();
2066 atomic_inc(&kvm->online_vcpus);
2068 mutex_unlock(&kvm->lock);
2069 kvm_arch_vcpu_postcreate(vcpu);
2070 return r;
2072 unlock_vcpu_destroy:
2073 mutex_unlock(&kvm->lock);
2074 vcpu_destroy:
2075 kvm_arch_vcpu_destroy(vcpu);
2076 return r;
2079 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2081 if (sigset) {
2082 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2083 vcpu->sigset_active = 1;
2084 vcpu->sigset = *sigset;
2085 } else
2086 vcpu->sigset_active = 0;
2087 return 0;
2090 static long kvm_vcpu_ioctl(struct file *filp,
2091 unsigned int ioctl, unsigned long arg)
2093 struct kvm_vcpu *vcpu = filp->private_data;
2094 void __user *argp = (void __user *)arg;
2095 int r;
2096 struct kvm_fpu *fpu = NULL;
2097 struct kvm_sregs *kvm_sregs = NULL;
2099 if (vcpu->kvm->mm != current->mm)
2100 return -EIO;
2102 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2103 return -EINVAL;
2105 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2107 * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2108 * so vcpu_load() would break it.
2110 if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2111 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2112 #endif
2115 r = vcpu_load(vcpu);
2116 if (r)
2117 return r;
2118 switch (ioctl) {
2119 case KVM_RUN:
2120 r = -EINVAL;
2121 if (arg)
2122 goto out;
2123 if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) {
2124 /* The thread running this VCPU changed. */
2125 struct pid *oldpid = vcpu->pid;
2126 struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2128 rcu_assign_pointer(vcpu->pid, newpid);
2129 if (oldpid)
2130 synchronize_rcu();
2131 put_pid(oldpid);
2133 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2134 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2135 break;
2136 case KVM_GET_REGS: {
2137 struct kvm_regs *kvm_regs;
2139 r = -ENOMEM;
2140 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2141 if (!kvm_regs)
2142 goto out;
2143 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2144 if (r)
2145 goto out_free1;
2146 r = -EFAULT;
2147 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2148 goto out_free1;
2149 r = 0;
2150 out_free1:
2151 kfree(kvm_regs);
2152 break;
2154 case KVM_SET_REGS: {
2155 struct kvm_regs *kvm_regs;
2157 r = -ENOMEM;
2158 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2159 if (IS_ERR(kvm_regs)) {
2160 r = PTR_ERR(kvm_regs);
2161 goto out;
2163 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2164 kfree(kvm_regs);
2165 break;
2167 case KVM_GET_SREGS: {
2168 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2169 r = -ENOMEM;
2170 if (!kvm_sregs)
2171 goto out;
2172 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2173 if (r)
2174 goto out;
2175 r = -EFAULT;
2176 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2177 goto out;
2178 r = 0;
2179 break;
2181 case KVM_SET_SREGS: {
2182 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2183 if (IS_ERR(kvm_sregs)) {
2184 r = PTR_ERR(kvm_sregs);
2185 kvm_sregs = NULL;
2186 goto out;
2188 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2189 break;
2191 case KVM_GET_MP_STATE: {
2192 struct kvm_mp_state mp_state;
2194 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2195 if (r)
2196 goto out;
2197 r = -EFAULT;
2198 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2199 goto out;
2200 r = 0;
2201 break;
2203 case KVM_SET_MP_STATE: {
2204 struct kvm_mp_state mp_state;
2206 r = -EFAULT;
2207 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2208 goto out;
2209 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2210 break;
2212 case KVM_TRANSLATE: {
2213 struct kvm_translation tr;
2215 r = -EFAULT;
2216 if (copy_from_user(&tr, argp, sizeof(tr)))
2217 goto out;
2218 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2219 if (r)
2220 goto out;
2221 r = -EFAULT;
2222 if (copy_to_user(argp, &tr, sizeof(tr)))
2223 goto out;
2224 r = 0;
2225 break;
2227 case KVM_SET_GUEST_DEBUG: {
2228 struct kvm_guest_debug dbg;
2230 r = -EFAULT;
2231 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2232 goto out;
2233 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2234 break;
2236 case KVM_SET_SIGNAL_MASK: {
2237 struct kvm_signal_mask __user *sigmask_arg = argp;
2238 struct kvm_signal_mask kvm_sigmask;
2239 sigset_t sigset, *p;
2241 p = NULL;
2242 if (argp) {
2243 r = -EFAULT;
2244 if (copy_from_user(&kvm_sigmask, argp,
2245 sizeof(kvm_sigmask)))
2246 goto out;
2247 r = -EINVAL;
2248 if (kvm_sigmask.len != sizeof(sigset))
2249 goto out;
2250 r = -EFAULT;
2251 if (copy_from_user(&sigset, sigmask_arg->sigset,
2252 sizeof(sigset)))
2253 goto out;
2254 p = &sigset;
2256 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2257 break;
2259 case KVM_GET_FPU: {
2260 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2261 r = -ENOMEM;
2262 if (!fpu)
2263 goto out;
2264 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2265 if (r)
2266 goto out;
2267 r = -EFAULT;
2268 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2269 goto out;
2270 r = 0;
2271 break;
2273 case KVM_SET_FPU: {
2274 fpu = memdup_user(argp, sizeof(*fpu));
2275 if (IS_ERR(fpu)) {
2276 r = PTR_ERR(fpu);
2277 fpu = NULL;
2278 goto out;
2280 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2281 break;
2283 default:
2284 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2286 out:
2287 vcpu_put(vcpu);
2288 kfree(fpu);
2289 kfree(kvm_sregs);
2290 return r;
2293 #ifdef CONFIG_KVM_COMPAT
2294 static long kvm_vcpu_compat_ioctl(struct file *filp,
2295 unsigned int ioctl, unsigned long arg)
2297 struct kvm_vcpu *vcpu = filp->private_data;
2298 void __user *argp = compat_ptr(arg);
2299 int r;
2301 if (vcpu->kvm->mm != current->mm)
2302 return -EIO;
2304 switch (ioctl) {
2305 case KVM_SET_SIGNAL_MASK: {
2306 struct kvm_signal_mask __user *sigmask_arg = argp;
2307 struct kvm_signal_mask kvm_sigmask;
2308 compat_sigset_t csigset;
2309 sigset_t sigset;
2311 if (argp) {
2312 r = -EFAULT;
2313 if (copy_from_user(&kvm_sigmask, argp,
2314 sizeof(kvm_sigmask)))
2315 goto out;
2316 r = -EINVAL;
2317 if (kvm_sigmask.len != sizeof(csigset))
2318 goto out;
2319 r = -EFAULT;
2320 if (copy_from_user(&csigset, sigmask_arg->sigset,
2321 sizeof(csigset)))
2322 goto out;
2323 sigset_from_compat(&sigset, &csigset);
2324 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2325 } else
2326 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2327 break;
2329 default:
2330 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2333 out:
2334 return r;
2336 #endif
2338 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2339 int (*accessor)(struct kvm_device *dev,
2340 struct kvm_device_attr *attr),
2341 unsigned long arg)
2343 struct kvm_device_attr attr;
2345 if (!accessor)
2346 return -EPERM;
2348 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2349 return -EFAULT;
2351 return accessor(dev, &attr);
2354 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2355 unsigned long arg)
2357 struct kvm_device *dev = filp->private_data;
2359 switch (ioctl) {
2360 case KVM_SET_DEVICE_ATTR:
2361 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2362 case KVM_GET_DEVICE_ATTR:
2363 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2364 case KVM_HAS_DEVICE_ATTR:
2365 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2366 default:
2367 if (dev->ops->ioctl)
2368 return dev->ops->ioctl(dev, ioctl, arg);
2370 return -ENOTTY;
2374 static int kvm_device_release(struct inode *inode, struct file *filp)
2376 struct kvm_device *dev = filp->private_data;
2377 struct kvm *kvm = dev->kvm;
2379 kvm_put_kvm(kvm);
2380 return 0;
2383 static const struct file_operations kvm_device_fops = {
2384 .unlocked_ioctl = kvm_device_ioctl,
2385 #ifdef CONFIG_KVM_COMPAT
2386 .compat_ioctl = kvm_device_ioctl,
2387 #endif
2388 .release = kvm_device_release,
2391 struct kvm_device *kvm_device_from_filp(struct file *filp)
2393 if (filp->f_op != &kvm_device_fops)
2394 return NULL;
2396 return filp->private_data;
2399 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2400 #ifdef CONFIG_KVM_MPIC
2401 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
2402 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
2403 #endif
2405 #ifdef CONFIG_KVM_XICS
2406 [KVM_DEV_TYPE_XICS] = &kvm_xics_ops,
2407 #endif
2410 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2412 if (type >= ARRAY_SIZE(kvm_device_ops_table))
2413 return -ENOSPC;
2415 if (kvm_device_ops_table[type] != NULL)
2416 return -EEXIST;
2418 kvm_device_ops_table[type] = ops;
2419 return 0;
2422 void kvm_unregister_device_ops(u32 type)
2424 if (kvm_device_ops_table[type] != NULL)
2425 kvm_device_ops_table[type] = NULL;
2428 static int kvm_ioctl_create_device(struct kvm *kvm,
2429 struct kvm_create_device *cd)
2431 struct kvm_device_ops *ops = NULL;
2432 struct kvm_device *dev;
2433 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2434 int ret;
2436 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2437 return -ENODEV;
2439 ops = kvm_device_ops_table[cd->type];
2440 if (ops == NULL)
2441 return -ENODEV;
2443 if (test)
2444 return 0;
2446 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2447 if (!dev)
2448 return -ENOMEM;
2450 dev->ops = ops;
2451 dev->kvm = kvm;
2453 ret = ops->create(dev, cd->type);
2454 if (ret < 0) {
2455 kfree(dev);
2456 return ret;
2459 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2460 if (ret < 0) {
2461 ops->destroy(dev);
2462 return ret;
2465 list_add(&dev->vm_node, &kvm->devices);
2466 kvm_get_kvm(kvm);
2467 cd->fd = ret;
2468 return 0;
2471 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2473 switch (arg) {
2474 case KVM_CAP_USER_MEMORY:
2475 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2476 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2477 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2478 case KVM_CAP_SET_BOOT_CPU_ID:
2479 #endif
2480 case KVM_CAP_INTERNAL_ERROR_DATA:
2481 #ifdef CONFIG_HAVE_KVM_MSI
2482 case KVM_CAP_SIGNAL_MSI:
2483 #endif
2484 #ifdef CONFIG_HAVE_KVM_IRQFD
2485 case KVM_CAP_IRQFD:
2486 case KVM_CAP_IRQFD_RESAMPLE:
2487 #endif
2488 case KVM_CAP_CHECK_EXTENSION_VM:
2489 return 1;
2490 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2491 case KVM_CAP_IRQ_ROUTING:
2492 return KVM_MAX_IRQ_ROUTES;
2493 #endif
2494 default:
2495 break;
2497 return kvm_vm_ioctl_check_extension(kvm, arg);
2500 static long kvm_vm_ioctl(struct file *filp,
2501 unsigned int ioctl, unsigned long arg)
2503 struct kvm *kvm = filp->private_data;
2504 void __user *argp = (void __user *)arg;
2505 int r;
2507 if (kvm->mm != current->mm)
2508 return -EIO;
2509 switch (ioctl) {
2510 case KVM_CREATE_VCPU:
2511 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2512 break;
2513 case KVM_SET_USER_MEMORY_REGION: {
2514 struct kvm_userspace_memory_region kvm_userspace_mem;
2516 r = -EFAULT;
2517 if (copy_from_user(&kvm_userspace_mem, argp,
2518 sizeof(kvm_userspace_mem)))
2519 goto out;
2521 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2522 break;
2524 case KVM_GET_DIRTY_LOG: {
2525 struct kvm_dirty_log log;
2527 r = -EFAULT;
2528 if (copy_from_user(&log, argp, sizeof(log)))
2529 goto out;
2530 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2531 break;
2533 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2534 case KVM_REGISTER_COALESCED_MMIO: {
2535 struct kvm_coalesced_mmio_zone zone;
2537 r = -EFAULT;
2538 if (copy_from_user(&zone, argp, sizeof(zone)))
2539 goto out;
2540 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
2541 break;
2543 case KVM_UNREGISTER_COALESCED_MMIO: {
2544 struct kvm_coalesced_mmio_zone zone;
2546 r = -EFAULT;
2547 if (copy_from_user(&zone, argp, sizeof(zone)))
2548 goto out;
2549 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
2550 break;
2552 #endif
2553 case KVM_IRQFD: {
2554 struct kvm_irqfd data;
2556 r = -EFAULT;
2557 if (copy_from_user(&data, argp, sizeof(data)))
2558 goto out;
2559 r = kvm_irqfd(kvm, &data);
2560 break;
2562 case KVM_IOEVENTFD: {
2563 struct kvm_ioeventfd data;
2565 r = -EFAULT;
2566 if (copy_from_user(&data, argp, sizeof(data)))
2567 goto out;
2568 r = kvm_ioeventfd(kvm, &data);
2569 break;
2571 #ifdef CONFIG_KVM_APIC_ARCHITECTURE
2572 case KVM_SET_BOOT_CPU_ID:
2573 r = 0;
2574 mutex_lock(&kvm->lock);
2575 if (atomic_read(&kvm->online_vcpus) != 0)
2576 r = -EBUSY;
2577 else
2578 kvm->bsp_vcpu_id = arg;
2579 mutex_unlock(&kvm->lock);
2580 break;
2581 #endif
2582 #ifdef CONFIG_HAVE_KVM_MSI
2583 case KVM_SIGNAL_MSI: {
2584 struct kvm_msi msi;
2586 r = -EFAULT;
2587 if (copy_from_user(&msi, argp, sizeof(msi)))
2588 goto out;
2589 r = kvm_send_userspace_msi(kvm, &msi);
2590 break;
2592 #endif
2593 #ifdef __KVM_HAVE_IRQ_LINE
2594 case KVM_IRQ_LINE_STATUS:
2595 case KVM_IRQ_LINE: {
2596 struct kvm_irq_level irq_event;
2598 r = -EFAULT;
2599 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
2600 goto out;
2602 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
2603 ioctl == KVM_IRQ_LINE_STATUS);
2604 if (r)
2605 goto out;
2607 r = -EFAULT;
2608 if (ioctl == KVM_IRQ_LINE_STATUS) {
2609 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
2610 goto out;
2613 r = 0;
2614 break;
2616 #endif
2617 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2618 case KVM_SET_GSI_ROUTING: {
2619 struct kvm_irq_routing routing;
2620 struct kvm_irq_routing __user *urouting;
2621 struct kvm_irq_routing_entry *entries;
2623 r = -EFAULT;
2624 if (copy_from_user(&routing, argp, sizeof(routing)))
2625 goto out;
2626 r = -EINVAL;
2627 if (routing.nr > KVM_MAX_IRQ_ROUTES)
2628 goto out;
2629 if (routing.flags)
2630 goto out;
2631 r = -ENOMEM;
2632 entries = vmalloc(routing.nr * sizeof(*entries));
2633 if (!entries)
2634 goto out;
2635 r = -EFAULT;
2636 urouting = argp;
2637 if (copy_from_user(entries, urouting->entries,
2638 routing.nr * sizeof(*entries)))
2639 goto out_free_irq_routing;
2640 r = kvm_set_irq_routing(kvm, entries, routing.nr,
2641 routing.flags);
2642 out_free_irq_routing:
2643 vfree(entries);
2644 break;
2646 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
2647 case KVM_CREATE_DEVICE: {
2648 struct kvm_create_device cd;
2650 r = -EFAULT;
2651 if (copy_from_user(&cd, argp, sizeof(cd)))
2652 goto out;
2654 r = kvm_ioctl_create_device(kvm, &cd);
2655 if (r)
2656 goto out;
2658 r = -EFAULT;
2659 if (copy_to_user(argp, &cd, sizeof(cd)))
2660 goto out;
2662 r = 0;
2663 break;
2665 case KVM_CHECK_EXTENSION:
2666 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
2667 break;
2668 default:
2669 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
2671 out:
2672 return r;
2675 #ifdef CONFIG_KVM_COMPAT
2676 struct compat_kvm_dirty_log {
2677 __u32 slot;
2678 __u32 padding1;
2679 union {
2680 compat_uptr_t dirty_bitmap; /* one bit per page */
2681 __u64 padding2;
2685 static long kvm_vm_compat_ioctl(struct file *filp,
2686 unsigned int ioctl, unsigned long arg)
2688 struct kvm *kvm = filp->private_data;
2689 int r;
2691 if (kvm->mm != current->mm)
2692 return -EIO;
2693 switch (ioctl) {
2694 case KVM_GET_DIRTY_LOG: {
2695 struct compat_kvm_dirty_log compat_log;
2696 struct kvm_dirty_log log;
2698 r = -EFAULT;
2699 if (copy_from_user(&compat_log, (void __user *)arg,
2700 sizeof(compat_log)))
2701 goto out;
2702 log.slot = compat_log.slot;
2703 log.padding1 = compat_log.padding1;
2704 log.padding2 = compat_log.padding2;
2705 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
2707 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2708 break;
2710 default:
2711 r = kvm_vm_ioctl(filp, ioctl, arg);
2714 out:
2715 return r;
2717 #endif
2719 static struct file_operations kvm_vm_fops = {
2720 .release = kvm_vm_release,
2721 .unlocked_ioctl = kvm_vm_ioctl,
2722 #ifdef CONFIG_KVM_COMPAT
2723 .compat_ioctl = kvm_vm_compat_ioctl,
2724 #endif
2725 .llseek = noop_llseek,
2728 static int kvm_dev_ioctl_create_vm(unsigned long type)
2730 int r;
2731 struct kvm *kvm;
2733 kvm = kvm_create_vm(type);
2734 if (IS_ERR(kvm))
2735 return PTR_ERR(kvm);
2736 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2737 r = kvm_coalesced_mmio_init(kvm);
2738 if (r < 0) {
2739 kvm_put_kvm(kvm);
2740 return r;
2742 #endif
2743 r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR | O_CLOEXEC);
2744 if (r < 0)
2745 kvm_put_kvm(kvm);
2747 return r;
2750 static long kvm_dev_ioctl(struct file *filp,
2751 unsigned int ioctl, unsigned long arg)
2753 long r = -EINVAL;
2755 switch (ioctl) {
2756 case KVM_GET_API_VERSION:
2757 if (arg)
2758 goto out;
2759 r = KVM_API_VERSION;
2760 break;
2761 case KVM_CREATE_VM:
2762 r = kvm_dev_ioctl_create_vm(arg);
2763 break;
2764 case KVM_CHECK_EXTENSION:
2765 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
2766 break;
2767 case KVM_GET_VCPU_MMAP_SIZE:
2768 if (arg)
2769 goto out;
2770 r = PAGE_SIZE; /* struct kvm_run */
2771 #ifdef CONFIG_X86
2772 r += PAGE_SIZE; /* pio data page */
2773 #endif
2774 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2775 r += PAGE_SIZE; /* coalesced mmio ring page */
2776 #endif
2777 break;
2778 case KVM_TRACE_ENABLE:
2779 case KVM_TRACE_PAUSE:
2780 case KVM_TRACE_DISABLE:
2781 r = -EOPNOTSUPP;
2782 break;
2783 default:
2784 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2786 out:
2787 return r;
2790 static struct file_operations kvm_chardev_ops = {
2791 .unlocked_ioctl = kvm_dev_ioctl,
2792 .compat_ioctl = kvm_dev_ioctl,
2793 .llseek = noop_llseek,
2796 static struct miscdevice kvm_dev = {
2797 KVM_MINOR,
2798 "kvm",
2799 &kvm_chardev_ops,
2802 static void hardware_enable_nolock(void *junk)
2804 int cpu = raw_smp_processor_id();
2805 int r;
2807 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2808 return;
2810 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2812 r = kvm_arch_hardware_enable();
2814 if (r) {
2815 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2816 atomic_inc(&hardware_enable_failed);
2817 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
2821 static void hardware_enable(void)
2823 raw_spin_lock(&kvm_count_lock);
2824 if (kvm_usage_count)
2825 hardware_enable_nolock(NULL);
2826 raw_spin_unlock(&kvm_count_lock);
2829 static void hardware_disable_nolock(void *junk)
2831 int cpu = raw_smp_processor_id();
2833 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2834 return;
2835 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2836 kvm_arch_hardware_disable();
2839 static void hardware_disable(void)
2841 raw_spin_lock(&kvm_count_lock);
2842 if (kvm_usage_count)
2843 hardware_disable_nolock(NULL);
2844 raw_spin_unlock(&kvm_count_lock);
2847 static void hardware_disable_all_nolock(void)
2849 BUG_ON(!kvm_usage_count);
2851 kvm_usage_count--;
2852 if (!kvm_usage_count)
2853 on_each_cpu(hardware_disable_nolock, NULL, 1);
2856 static void hardware_disable_all(void)
2858 raw_spin_lock(&kvm_count_lock);
2859 hardware_disable_all_nolock();
2860 raw_spin_unlock(&kvm_count_lock);
2863 static int hardware_enable_all(void)
2865 int r = 0;
2867 raw_spin_lock(&kvm_count_lock);
2869 kvm_usage_count++;
2870 if (kvm_usage_count == 1) {
2871 atomic_set(&hardware_enable_failed, 0);
2872 on_each_cpu(hardware_enable_nolock, NULL, 1);
2874 if (atomic_read(&hardware_enable_failed)) {
2875 hardware_disable_all_nolock();
2876 r = -EBUSY;
2880 raw_spin_unlock(&kvm_count_lock);
2882 return r;
2885 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2886 void *v)
2888 int cpu = (long)v;
2890 val &= ~CPU_TASKS_FROZEN;
2891 switch (val) {
2892 case CPU_DYING:
2893 pr_info("kvm: disabling virtualization on CPU%d\n",
2894 cpu);
2895 hardware_disable();
2896 break;
2897 case CPU_STARTING:
2898 pr_info("kvm: enabling virtualization on CPU%d\n",
2899 cpu);
2900 hardware_enable();
2901 break;
2903 return NOTIFY_OK;
2906 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2907 void *v)
2910 * Some (well, at least mine) BIOSes hang on reboot if
2911 * in vmx root mode.
2913 * And Intel TXT required VMX off for all cpu when system shutdown.
2915 pr_info("kvm: exiting hardware virtualization\n");
2916 kvm_rebooting = true;
2917 on_each_cpu(hardware_disable_nolock, NULL, 1);
2918 return NOTIFY_OK;
2921 static struct notifier_block kvm_reboot_notifier = {
2922 .notifier_call = kvm_reboot,
2923 .priority = 0,
2926 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2928 int i;
2930 for (i = 0; i < bus->dev_count; i++) {
2931 struct kvm_io_device *pos = bus->range[i].dev;
2933 kvm_iodevice_destructor(pos);
2935 kfree(bus);
2938 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
2939 const struct kvm_io_range *r2)
2941 gpa_t addr1 = r1->addr;
2942 gpa_t addr2 = r2->addr;
2944 if (addr1 < addr2)
2945 return -1;
2947 /* If r2->len == 0, match the exact address. If r2->len != 0,
2948 * accept any overlapping write. Any order is acceptable for
2949 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
2950 * we process all of them.
2952 if (r2->len) {
2953 addr1 += r1->len;
2954 addr2 += r2->len;
2957 if (addr1 > addr2)
2958 return 1;
2960 return 0;
2963 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
2965 return kvm_io_bus_cmp(p1, p2);
2968 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
2969 gpa_t addr, int len)
2971 bus->range[bus->dev_count++] = (struct kvm_io_range) {
2972 .addr = addr,
2973 .len = len,
2974 .dev = dev,
2977 sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
2978 kvm_io_bus_sort_cmp, NULL);
2980 return 0;
2983 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
2984 gpa_t addr, int len)
2986 struct kvm_io_range *range, key;
2987 int off;
2989 key = (struct kvm_io_range) {
2990 .addr = addr,
2991 .len = len,
2994 range = bsearch(&key, bus->range, bus->dev_count,
2995 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
2996 if (range == NULL)
2997 return -ENOENT;
2999 off = range - bus->range;
3001 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3002 off--;
3004 return off;
3007 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3008 struct kvm_io_range *range, const void *val)
3010 int idx;
3012 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3013 if (idx < 0)
3014 return -EOPNOTSUPP;
3016 while (idx < bus->dev_count &&
3017 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3018 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3019 range->len, val))
3020 return idx;
3021 idx++;
3024 return -EOPNOTSUPP;
3027 /* kvm_io_bus_write - called under kvm->slots_lock */
3028 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3029 int len, const void *val)
3031 struct kvm_io_bus *bus;
3032 struct kvm_io_range range;
3033 int r;
3035 range = (struct kvm_io_range) {
3036 .addr = addr,
3037 .len = len,
3040 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3041 r = __kvm_io_bus_write(vcpu, bus, &range, val);
3042 return r < 0 ? r : 0;
3045 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3046 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3047 gpa_t addr, int len, const void *val, long cookie)
3049 struct kvm_io_bus *bus;
3050 struct kvm_io_range range;
3052 range = (struct kvm_io_range) {
3053 .addr = addr,
3054 .len = len,
3057 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3059 /* First try the device referenced by cookie. */
3060 if ((cookie >= 0) && (cookie < bus->dev_count) &&
3061 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3062 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3063 val))
3064 return cookie;
3067 * cookie contained garbage; fall back to search and return the
3068 * correct cookie value.
3070 return __kvm_io_bus_write(vcpu, bus, &range, val);
3073 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3074 struct kvm_io_range *range, void *val)
3076 int idx;
3078 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3079 if (idx < 0)
3080 return -EOPNOTSUPP;
3082 while (idx < bus->dev_count &&
3083 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3084 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3085 range->len, val))
3086 return idx;
3087 idx++;
3090 return -EOPNOTSUPP;
3092 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3094 /* kvm_io_bus_read - called under kvm->slots_lock */
3095 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3096 int len, void *val)
3098 struct kvm_io_bus *bus;
3099 struct kvm_io_range range;
3100 int r;
3102 range = (struct kvm_io_range) {
3103 .addr = addr,
3104 .len = len,
3107 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3108 r = __kvm_io_bus_read(vcpu, bus, &range, val);
3109 return r < 0 ? r : 0;
3113 /* Caller must hold slots_lock. */
3114 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3115 int len, struct kvm_io_device *dev)
3117 struct kvm_io_bus *new_bus, *bus;
3119 bus = kvm->buses[bus_idx];
3120 /* exclude ioeventfd which is limited by maximum fd */
3121 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3122 return -ENOSPC;
3124 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3125 sizeof(struct kvm_io_range)), GFP_KERNEL);
3126 if (!new_bus)
3127 return -ENOMEM;
3128 memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3129 sizeof(struct kvm_io_range)));
3130 kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3131 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3132 synchronize_srcu_expedited(&kvm->srcu);
3133 kfree(bus);
3135 return 0;
3138 /* Caller must hold slots_lock. */
3139 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3140 struct kvm_io_device *dev)
3142 int i, r;
3143 struct kvm_io_bus *new_bus, *bus;
3145 bus = kvm->buses[bus_idx];
3146 r = -ENOENT;
3147 for (i = 0; i < bus->dev_count; i++)
3148 if (bus->range[i].dev == dev) {
3149 r = 0;
3150 break;
3153 if (r)
3154 return r;
3156 new_bus = kzalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3157 sizeof(struct kvm_io_range)), GFP_KERNEL);
3158 if (!new_bus)
3159 return -ENOMEM;
3161 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3162 new_bus->dev_count--;
3163 memcpy(new_bus->range + i, bus->range + i + 1,
3164 (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3166 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3167 synchronize_srcu_expedited(&kvm->srcu);
3168 kfree(bus);
3169 return r;
3172 static struct notifier_block kvm_cpu_notifier = {
3173 .notifier_call = kvm_cpu_hotplug,
3176 static int vm_stat_get(void *_offset, u64 *val)
3178 unsigned offset = (long)_offset;
3179 struct kvm *kvm;
3181 *val = 0;
3182 spin_lock(&kvm_lock);
3183 list_for_each_entry(kvm, &vm_list, vm_list)
3184 *val += *(u32 *)((void *)kvm + offset);
3185 spin_unlock(&kvm_lock);
3186 return 0;
3189 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
3191 static int vcpu_stat_get(void *_offset, u64 *val)
3193 unsigned offset = (long)_offset;
3194 struct kvm *kvm;
3195 struct kvm_vcpu *vcpu;
3196 int i;
3198 *val = 0;
3199 spin_lock(&kvm_lock);
3200 list_for_each_entry(kvm, &vm_list, vm_list)
3201 kvm_for_each_vcpu(i, vcpu, kvm)
3202 *val += *(u32 *)((void *)vcpu + offset);
3204 spin_unlock(&kvm_lock);
3205 return 0;
3208 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
3210 static const struct file_operations *stat_fops[] = {
3211 [KVM_STAT_VCPU] = &vcpu_stat_fops,
3212 [KVM_STAT_VM] = &vm_stat_fops,
3215 static int kvm_init_debug(void)
3217 int r = -EEXIST;
3218 struct kvm_stats_debugfs_item *p;
3220 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3221 if (kvm_debugfs_dir == NULL)
3222 goto out;
3224 for (p = debugfs_entries; p->name; ++p) {
3225 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
3226 (void *)(long)p->offset,
3227 stat_fops[p->kind]);
3228 if (p->dentry == NULL)
3229 goto out_dir;
3232 return 0;
3234 out_dir:
3235 debugfs_remove_recursive(kvm_debugfs_dir);
3236 out:
3237 return r;
3240 static void kvm_exit_debug(void)
3242 struct kvm_stats_debugfs_item *p;
3244 for (p = debugfs_entries; p->name; ++p)
3245 debugfs_remove(p->dentry);
3246 debugfs_remove(kvm_debugfs_dir);
3249 static int kvm_suspend(void)
3251 if (kvm_usage_count)
3252 hardware_disable_nolock(NULL);
3253 return 0;
3256 static void kvm_resume(void)
3258 if (kvm_usage_count) {
3259 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3260 hardware_enable_nolock(NULL);
3264 static struct syscore_ops kvm_syscore_ops = {
3265 .suspend = kvm_suspend,
3266 .resume = kvm_resume,
3269 static inline
3270 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3272 return container_of(pn, struct kvm_vcpu, preempt_notifier);
3275 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3277 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3279 if (vcpu->preempted)
3280 vcpu->preempted = false;
3282 kvm_arch_sched_in(vcpu, cpu);
3284 kvm_arch_vcpu_load(vcpu, cpu);
3287 static void kvm_sched_out(struct preempt_notifier *pn,
3288 struct task_struct *next)
3290 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3292 if (current->state == TASK_RUNNING)
3293 vcpu->preempted = true;
3294 kvm_arch_vcpu_put(vcpu);
3297 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3298 struct module *module)
3300 int r;
3301 int cpu;
3303 r = kvm_arch_init(opaque);
3304 if (r)
3305 goto out_fail;
3308 * kvm_arch_init makes sure there's at most one caller
3309 * for architectures that support multiple implementations,
3310 * like intel and amd on x86.
3311 * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
3312 * conflicts in case kvm is already setup for another implementation.
3314 r = kvm_irqfd_init();
3315 if (r)
3316 goto out_irqfd;
3318 if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
3319 r = -ENOMEM;
3320 goto out_free_0;
3323 r = kvm_arch_hardware_setup();
3324 if (r < 0)
3325 goto out_free_0a;
3327 for_each_online_cpu(cpu) {
3328 smp_call_function_single(cpu,
3329 kvm_arch_check_processor_compat,
3330 &r, 1);
3331 if (r < 0)
3332 goto out_free_1;
3335 r = register_cpu_notifier(&kvm_cpu_notifier);
3336 if (r)
3337 goto out_free_2;
3338 register_reboot_notifier(&kvm_reboot_notifier);
3340 /* A kmem cache lets us meet the alignment requirements of fx_save. */
3341 if (!vcpu_align)
3342 vcpu_align = __alignof__(struct kvm_vcpu);
3343 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
3344 0, NULL);
3345 if (!kvm_vcpu_cache) {
3346 r = -ENOMEM;
3347 goto out_free_3;
3350 r = kvm_async_pf_init();
3351 if (r)
3352 goto out_free;
3354 kvm_chardev_ops.owner = module;
3355 kvm_vm_fops.owner = module;
3356 kvm_vcpu_fops.owner = module;
3358 r = misc_register(&kvm_dev);
3359 if (r) {
3360 pr_err("kvm: misc device register failed\n");
3361 goto out_unreg;
3364 register_syscore_ops(&kvm_syscore_ops);
3366 kvm_preempt_ops.sched_in = kvm_sched_in;
3367 kvm_preempt_ops.sched_out = kvm_sched_out;
3369 r = kvm_init_debug();
3370 if (r) {
3371 pr_err("kvm: create debugfs files failed\n");
3372 goto out_undebugfs;
3375 r = kvm_vfio_ops_init();
3376 WARN_ON(r);
3378 return 0;
3380 out_undebugfs:
3381 unregister_syscore_ops(&kvm_syscore_ops);
3382 misc_deregister(&kvm_dev);
3383 out_unreg:
3384 kvm_async_pf_deinit();
3385 out_free:
3386 kmem_cache_destroy(kvm_vcpu_cache);
3387 out_free_3:
3388 unregister_reboot_notifier(&kvm_reboot_notifier);
3389 unregister_cpu_notifier(&kvm_cpu_notifier);
3390 out_free_2:
3391 out_free_1:
3392 kvm_arch_hardware_unsetup();
3393 out_free_0a:
3394 free_cpumask_var(cpus_hardware_enabled);
3395 out_free_0:
3396 kvm_irqfd_exit();
3397 out_irqfd:
3398 kvm_arch_exit();
3399 out_fail:
3400 return r;
3402 EXPORT_SYMBOL_GPL(kvm_init);
3404 void kvm_exit(void)
3406 kvm_exit_debug();
3407 misc_deregister(&kvm_dev);
3408 kmem_cache_destroy(kvm_vcpu_cache);
3409 kvm_async_pf_deinit();
3410 unregister_syscore_ops(&kvm_syscore_ops);
3411 unregister_reboot_notifier(&kvm_reboot_notifier);
3412 unregister_cpu_notifier(&kvm_cpu_notifier);
3413 on_each_cpu(hardware_disable_nolock, NULL, 1);
3414 kvm_arch_hardware_unsetup();
3415 kvm_arch_exit();
3416 kvm_irqfd_exit();
3417 free_cpumask_var(cpus_hardware_enabled);
3418 kvm_vfio_ops_exit();
3420 EXPORT_SYMBOL_GPL(kvm_exit);