Staging: hv: rename NetVsc.c and .h to netvsc.c and .h
[linux/fpc-iii.git] / kernel / sched_fair.c
blob5a5ea2cd924fa8494abfa21f8203f919f40ff1ca
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
38 unsigned int sysctl_sched_latency = 5000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 5000000ULL;
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
57 unsigned int sysctl_sched_min_granularity = 1000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 1000000ULL;
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
63 static unsigned int sched_nr_latency = 5;
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
72 * sys_sched_yield() compat mode
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
77 unsigned int __read_mostly sysctl_sched_compat_yield;
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
103 return cfs_rq->rq;
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
123 return p->se.cfs_rq;
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
129 return se->cfs_rq;
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
135 return grp->my_q;
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
157 return 0;
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
162 return se->parent;
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
168 int depth = 0;
170 for_each_sched_entity(se)
171 depth++;
173 return depth;
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
179 int se_depth, pse_depth;
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
210 static inline struct task_struct *task_of(struct sched_entity *se)
212 return container_of(se, struct task_struct, se);
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
217 return container_of(cfs_rq, struct rq, cfs);
220 #define entity_is_task(se) 1
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
227 return &task_rq(p)->cfs;
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
235 return &rq->cfs;
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
241 return NULL;
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
246 return &cpu_rq(this_cpu)->cfs;
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
255 return 1;
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
260 return NULL;
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
281 return min_vruntime;
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
290 return min_vruntime;
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
296 return (s64)(a->vruntime - b->vruntime) < 0;
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
301 return se->vruntime - cfs_rq->min_vruntime;
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
306 u64 vruntime = cfs_rq->min_vruntime;
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
326 * Enqueue an entity into the rb-tree:
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
337 * Find the right place in the rbtree:
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
379 struct rb_node *left = cfs_rq->rb_leftmost;
381 if (!left)
382 return NULL;
384 return rb_entry(left, struct sched_entity, run_node);
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
391 if (!last)
392 return NULL;
394 return rb_entry(last, struct sched_entity, run_node);
397 /**************************************************************
398 * Scheduling class statistics methods:
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
409 if (ret || !write)
410 return ret;
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
423 return 0;
425 #endif
428 * delta /= w
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
436 return delta;
440 * The idea is to set a period in which each task runs once.
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
445 * p = (nr <= nl) ? l : l*nr/nl
447 static u64 __sched_period(unsigned long nr_running)
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
457 return period;
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
464 * s = p*P[w/rw]
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
483 slice = calc_delta_mine(slice, se->load.weight, load);
485 return slice;
489 * We calculate the vruntime slice of a to be inserted task
491 * vs = s/w
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
506 unsigned long delta_exec_weighted;
508 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
510 curr->sum_exec_runtime += delta_exec;
511 schedstat_add(cfs_rq, exec_clock, delta_exec);
512 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514 curr->vruntime += delta_exec_weighted;
515 update_min_vruntime(cfs_rq);
518 static void update_curr(struct cfs_rq *cfs_rq)
520 struct sched_entity *curr = cfs_rq->curr;
521 u64 now = rq_of(cfs_rq)->clock;
522 unsigned long delta_exec;
524 if (unlikely(!curr))
525 return;
528 * Get the amount of time the current task was running
529 * since the last time we changed load (this cannot
530 * overflow on 32 bits):
532 delta_exec = (unsigned long)(now - curr->exec_start);
533 if (!delta_exec)
534 return;
536 __update_curr(cfs_rq, curr, delta_exec);
537 curr->exec_start = now;
539 if (entity_is_task(curr)) {
540 struct task_struct *curtask = task_of(curr);
542 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
543 cpuacct_charge(curtask, delta_exec);
544 account_group_exec_runtime(curtask, delta_exec);
548 static inline void
549 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
555 * Task is being enqueued - update stats:
557 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 * Are we enqueueing a waiting task? (for current tasks
561 * a dequeue/enqueue event is a NOP)
563 if (se != cfs_rq->curr)
564 update_stats_wait_start(cfs_rq, se);
567 static void
568 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570 schedstat_set(se->wait_max, max(se->wait_max,
571 rq_of(cfs_rq)->clock - se->wait_start));
572 schedstat_set(se->wait_count, se->wait_count + 1);
573 schedstat_set(se->wait_sum, se->wait_sum +
574 rq_of(cfs_rq)->clock - se->wait_start);
575 #ifdef CONFIG_SCHEDSTATS
576 if (entity_is_task(se)) {
577 trace_sched_stat_wait(task_of(se),
578 rq_of(cfs_rq)->clock - se->wait_start);
580 #endif
581 schedstat_set(se->wait_start, 0);
584 static inline void
585 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
588 * Mark the end of the wait period if dequeueing a
589 * waiting task:
591 if (se != cfs_rq->curr)
592 update_stats_wait_end(cfs_rq, se);
596 * We are picking a new current task - update its stats:
598 static inline void
599 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
602 * We are starting a new run period:
604 se->exec_start = rq_of(cfs_rq)->clock;
607 /**************************************************
608 * Scheduling class queueing methods:
611 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
612 static void
613 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615 cfs_rq->task_weight += weight;
617 #else
618 static inline void
619 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
622 #endif
624 static void
625 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 update_load_add(&cfs_rq->load, se->load.weight);
628 if (!parent_entity(se))
629 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
630 if (entity_is_task(se)) {
631 add_cfs_task_weight(cfs_rq, se->load.weight);
632 list_add(&se->group_node, &cfs_rq->tasks);
634 cfs_rq->nr_running++;
635 se->on_rq = 1;
638 static void
639 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 update_load_sub(&cfs_rq->load, se->load.weight);
642 if (!parent_entity(se))
643 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
644 if (entity_is_task(se)) {
645 add_cfs_task_weight(cfs_rq, -se->load.weight);
646 list_del_init(&se->group_node);
648 cfs_rq->nr_running--;
649 se->on_rq = 0;
652 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 #ifdef CONFIG_SCHEDSTATS
655 struct task_struct *tsk = NULL;
657 if (entity_is_task(se))
658 tsk = task_of(se);
660 if (se->sleep_start) {
661 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
663 if ((s64)delta < 0)
664 delta = 0;
666 if (unlikely(delta > se->sleep_max))
667 se->sleep_max = delta;
669 se->sleep_start = 0;
670 se->sum_sleep_runtime += delta;
672 if (tsk) {
673 account_scheduler_latency(tsk, delta >> 10, 1);
674 trace_sched_stat_sleep(tsk, delta);
677 if (se->block_start) {
678 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
680 if ((s64)delta < 0)
681 delta = 0;
683 if (unlikely(delta > se->block_max))
684 se->block_max = delta;
686 se->block_start = 0;
687 se->sum_sleep_runtime += delta;
689 if (tsk) {
690 if (tsk->in_iowait) {
691 se->iowait_sum += delta;
692 se->iowait_count++;
693 trace_sched_stat_iowait(tsk, delta);
697 * Blocking time is in units of nanosecs, so shift by
698 * 20 to get a milliseconds-range estimation of the
699 * amount of time that the task spent sleeping:
701 if (unlikely(prof_on == SLEEP_PROFILING)) {
702 profile_hits(SLEEP_PROFILING,
703 (void *)get_wchan(tsk),
704 delta >> 20);
706 account_scheduler_latency(tsk, delta >> 10, 0);
709 #endif
712 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714 #ifdef CONFIG_SCHED_DEBUG
715 s64 d = se->vruntime - cfs_rq->min_vruntime;
717 if (d < 0)
718 d = -d;
720 if (d > 3*sysctl_sched_latency)
721 schedstat_inc(cfs_rq, nr_spread_over);
722 #endif
725 static void
726 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728 u64 vruntime = cfs_rq->min_vruntime;
731 * The 'current' period is already promised to the current tasks,
732 * however the extra weight of the new task will slow them down a
733 * little, place the new task so that it fits in the slot that
734 * stays open at the end.
736 if (initial && sched_feat(START_DEBIT))
737 vruntime += sched_vslice(cfs_rq, se);
739 /* sleeps up to a single latency don't count. */
740 if (!initial && sched_feat(FAIR_SLEEPERS)) {
741 unsigned long thresh = sysctl_sched_latency;
744 * Convert the sleeper threshold into virtual time.
745 * SCHED_IDLE is a special sub-class. We care about
746 * fairness only relative to other SCHED_IDLE tasks,
747 * all of which have the same weight.
749 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
750 task_of(se)->policy != SCHED_IDLE))
751 thresh = calc_delta_fair(thresh, se);
754 * Halve their sleep time's effect, to allow
755 * for a gentler effect of sleepers:
757 if (sched_feat(GENTLE_FAIR_SLEEPERS))
758 thresh >>= 1;
760 vruntime -= thresh;
763 /* ensure we never gain time by being placed backwards. */
764 vruntime = max_vruntime(se->vruntime, vruntime);
766 se->vruntime = vruntime;
769 #define ENQUEUE_WAKEUP 1
770 #define ENQUEUE_MIGRATE 2
772 static void
773 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
776 * Update the normalized vruntime before updating min_vruntime
777 * through callig update_curr().
779 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
780 se->vruntime += cfs_rq->min_vruntime;
783 * Update run-time statistics of the 'current'.
785 update_curr(cfs_rq);
786 account_entity_enqueue(cfs_rq, se);
788 if (flags & ENQUEUE_WAKEUP) {
789 place_entity(cfs_rq, se, 0);
790 enqueue_sleeper(cfs_rq, se);
793 update_stats_enqueue(cfs_rq, se);
794 check_spread(cfs_rq, se);
795 if (se != cfs_rq->curr)
796 __enqueue_entity(cfs_rq, se);
799 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
801 if (!se || cfs_rq->last == se)
802 cfs_rq->last = NULL;
804 if (!se || cfs_rq->next == se)
805 cfs_rq->next = NULL;
808 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
810 for_each_sched_entity(se)
811 __clear_buddies(cfs_rq_of(se), se);
814 static void
815 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
818 * Update run-time statistics of the 'current'.
820 update_curr(cfs_rq);
822 update_stats_dequeue(cfs_rq, se);
823 if (sleep) {
824 #ifdef CONFIG_SCHEDSTATS
825 if (entity_is_task(se)) {
826 struct task_struct *tsk = task_of(se);
828 if (tsk->state & TASK_INTERRUPTIBLE)
829 se->sleep_start = rq_of(cfs_rq)->clock;
830 if (tsk->state & TASK_UNINTERRUPTIBLE)
831 se->block_start = rq_of(cfs_rq)->clock;
833 #endif
836 clear_buddies(cfs_rq, se);
838 if (se != cfs_rq->curr)
839 __dequeue_entity(cfs_rq, se);
840 account_entity_dequeue(cfs_rq, se);
841 update_min_vruntime(cfs_rq);
844 * Normalize the entity after updating the min_vruntime because the
845 * update can refer to the ->curr item and we need to reflect this
846 * movement in our normalized position.
848 if (!sleep)
849 se->vruntime -= cfs_rq->min_vruntime;
853 * Preempt the current task with a newly woken task if needed:
855 static void
856 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
858 unsigned long ideal_runtime, delta_exec;
860 ideal_runtime = sched_slice(cfs_rq, curr);
861 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
862 if (delta_exec > ideal_runtime) {
863 resched_task(rq_of(cfs_rq)->curr);
865 * The current task ran long enough, ensure it doesn't get
866 * re-elected due to buddy favours.
868 clear_buddies(cfs_rq, curr);
869 return;
873 * Ensure that a task that missed wakeup preemption by a
874 * narrow margin doesn't have to wait for a full slice.
875 * This also mitigates buddy induced latencies under load.
877 if (!sched_feat(WAKEUP_PREEMPT))
878 return;
880 if (delta_exec < sysctl_sched_min_granularity)
881 return;
883 if (cfs_rq->nr_running > 1) {
884 struct sched_entity *se = __pick_next_entity(cfs_rq);
885 s64 delta = curr->vruntime - se->vruntime;
887 if (delta > ideal_runtime)
888 resched_task(rq_of(cfs_rq)->curr);
892 static void
893 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
895 /* 'current' is not kept within the tree. */
896 if (se->on_rq) {
898 * Any task has to be enqueued before it get to execute on
899 * a CPU. So account for the time it spent waiting on the
900 * runqueue.
902 update_stats_wait_end(cfs_rq, se);
903 __dequeue_entity(cfs_rq, se);
906 update_stats_curr_start(cfs_rq, se);
907 cfs_rq->curr = se;
908 #ifdef CONFIG_SCHEDSTATS
910 * Track our maximum slice length, if the CPU's load is at
911 * least twice that of our own weight (i.e. dont track it
912 * when there are only lesser-weight tasks around):
914 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
915 se->slice_max = max(se->slice_max,
916 se->sum_exec_runtime - se->prev_sum_exec_runtime);
918 #endif
919 se->prev_sum_exec_runtime = se->sum_exec_runtime;
922 static int
923 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
925 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
927 struct sched_entity *se = __pick_next_entity(cfs_rq);
928 struct sched_entity *left = se;
930 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
931 se = cfs_rq->next;
934 * Prefer last buddy, try to return the CPU to a preempted task.
936 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
937 se = cfs_rq->last;
939 clear_buddies(cfs_rq, se);
941 return se;
944 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
947 * If still on the runqueue then deactivate_task()
948 * was not called and update_curr() has to be done:
950 if (prev->on_rq)
951 update_curr(cfs_rq);
953 check_spread(cfs_rq, prev);
954 if (prev->on_rq) {
955 update_stats_wait_start(cfs_rq, prev);
956 /* Put 'current' back into the tree. */
957 __enqueue_entity(cfs_rq, prev);
959 cfs_rq->curr = NULL;
962 static void
963 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
966 * Update run-time statistics of the 'current'.
968 update_curr(cfs_rq);
970 #ifdef CONFIG_SCHED_HRTICK
972 * queued ticks are scheduled to match the slice, so don't bother
973 * validating it and just reschedule.
975 if (queued) {
976 resched_task(rq_of(cfs_rq)->curr);
977 return;
980 * don't let the period tick interfere with the hrtick preemption
982 if (!sched_feat(DOUBLE_TICK) &&
983 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
984 return;
985 #endif
987 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
988 check_preempt_tick(cfs_rq, curr);
991 /**************************************************
992 * CFS operations on tasks:
995 #ifdef CONFIG_SCHED_HRTICK
996 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
998 struct sched_entity *se = &p->se;
999 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1001 WARN_ON(task_rq(p) != rq);
1003 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1004 u64 slice = sched_slice(cfs_rq, se);
1005 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1006 s64 delta = slice - ran;
1008 if (delta < 0) {
1009 if (rq->curr == p)
1010 resched_task(p);
1011 return;
1015 * Don't schedule slices shorter than 10000ns, that just
1016 * doesn't make sense. Rely on vruntime for fairness.
1018 if (rq->curr != p)
1019 delta = max_t(s64, 10000LL, delta);
1021 hrtick_start(rq, delta);
1026 * called from enqueue/dequeue and updates the hrtick when the
1027 * current task is from our class and nr_running is low enough
1028 * to matter.
1030 static void hrtick_update(struct rq *rq)
1032 struct task_struct *curr = rq->curr;
1034 if (curr->sched_class != &fair_sched_class)
1035 return;
1037 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1038 hrtick_start_fair(rq, curr);
1040 #else /* !CONFIG_SCHED_HRTICK */
1041 static inline void
1042 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1046 static inline void hrtick_update(struct rq *rq)
1049 #endif
1052 * The enqueue_task method is called before nr_running is
1053 * increased. Here we update the fair scheduling stats and
1054 * then put the task into the rbtree:
1056 static void
1057 enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1059 struct cfs_rq *cfs_rq;
1060 struct sched_entity *se = &p->se;
1061 int flags = 0;
1063 if (wakeup)
1064 flags |= ENQUEUE_WAKEUP;
1065 if (p->state == TASK_WAKING)
1066 flags |= ENQUEUE_MIGRATE;
1068 for_each_sched_entity(se) {
1069 if (se->on_rq)
1070 break;
1071 cfs_rq = cfs_rq_of(se);
1072 enqueue_entity(cfs_rq, se, flags);
1073 flags = ENQUEUE_WAKEUP;
1076 hrtick_update(rq);
1080 * The dequeue_task method is called before nr_running is
1081 * decreased. We remove the task from the rbtree and
1082 * update the fair scheduling stats:
1084 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1086 struct cfs_rq *cfs_rq;
1087 struct sched_entity *se = &p->se;
1089 for_each_sched_entity(se) {
1090 cfs_rq = cfs_rq_of(se);
1091 dequeue_entity(cfs_rq, se, sleep);
1092 /* Don't dequeue parent if it has other entities besides us */
1093 if (cfs_rq->load.weight)
1094 break;
1095 sleep = 1;
1098 hrtick_update(rq);
1102 * sched_yield() support is very simple - we dequeue and enqueue.
1104 * If compat_yield is turned on then we requeue to the end of the tree.
1106 static void yield_task_fair(struct rq *rq)
1108 struct task_struct *curr = rq->curr;
1109 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1110 struct sched_entity *rightmost, *se = &curr->se;
1113 * Are we the only task in the tree?
1115 if (unlikely(cfs_rq->nr_running == 1))
1116 return;
1118 clear_buddies(cfs_rq, se);
1120 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1121 update_rq_clock(rq);
1123 * Update run-time statistics of the 'current'.
1125 update_curr(cfs_rq);
1127 return;
1130 * Find the rightmost entry in the rbtree:
1132 rightmost = __pick_last_entity(cfs_rq);
1134 * Already in the rightmost position?
1136 if (unlikely(!rightmost || entity_before(rightmost, se)))
1137 return;
1140 * Minimally necessary key value to be last in the tree:
1141 * Upon rescheduling, sched_class::put_prev_task() will place
1142 * 'current' within the tree based on its new key value.
1144 se->vruntime = rightmost->vruntime + 1;
1147 #ifdef CONFIG_SMP
1149 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1151 struct sched_entity *se = &p->se;
1152 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1154 se->vruntime -= cfs_rq->min_vruntime;
1157 #ifdef CONFIG_FAIR_GROUP_SCHED
1159 * effective_load() calculates the load change as seen from the root_task_group
1161 * Adding load to a group doesn't make a group heavier, but can cause movement
1162 * of group shares between cpus. Assuming the shares were perfectly aligned one
1163 * can calculate the shift in shares.
1165 * The problem is that perfectly aligning the shares is rather expensive, hence
1166 * we try to avoid doing that too often - see update_shares(), which ratelimits
1167 * this change.
1169 * We compensate this by not only taking the current delta into account, but
1170 * also considering the delta between when the shares were last adjusted and
1171 * now.
1173 * We still saw a performance dip, some tracing learned us that between
1174 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1175 * significantly. Therefore try to bias the error in direction of failing
1176 * the affine wakeup.
1179 static long effective_load(struct task_group *tg, int cpu,
1180 long wl, long wg)
1182 struct sched_entity *se = tg->se[cpu];
1184 if (!tg->parent)
1185 return wl;
1188 * By not taking the decrease of shares on the other cpu into
1189 * account our error leans towards reducing the affine wakeups.
1191 if (!wl && sched_feat(ASYM_EFF_LOAD))
1192 return wl;
1194 for_each_sched_entity(se) {
1195 long S, rw, s, a, b;
1196 long more_w;
1199 * Instead of using this increment, also add the difference
1200 * between when the shares were last updated and now.
1202 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1203 wl += more_w;
1204 wg += more_w;
1206 S = se->my_q->tg->shares;
1207 s = se->my_q->shares;
1208 rw = se->my_q->rq_weight;
1210 a = S*(rw + wl);
1211 b = S*rw + s*wg;
1213 wl = s*(a-b);
1215 if (likely(b))
1216 wl /= b;
1219 * Assume the group is already running and will
1220 * thus already be accounted for in the weight.
1222 * That is, moving shares between CPUs, does not
1223 * alter the group weight.
1225 wg = 0;
1228 return wl;
1231 #else
1233 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1234 unsigned long wl, unsigned long wg)
1236 return wl;
1239 #endif
1241 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1243 struct task_struct *curr = current;
1244 unsigned long this_load, load;
1245 int idx, this_cpu, prev_cpu;
1246 unsigned long tl_per_task;
1247 unsigned int imbalance;
1248 struct task_group *tg;
1249 unsigned long weight;
1250 int balanced;
1252 idx = sd->wake_idx;
1253 this_cpu = smp_processor_id();
1254 prev_cpu = task_cpu(p);
1255 load = source_load(prev_cpu, idx);
1256 this_load = target_load(this_cpu, idx);
1258 if (sync) {
1259 if (sched_feat(SYNC_LESS) &&
1260 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1261 p->se.avg_overlap > sysctl_sched_migration_cost))
1262 sync = 0;
1263 } else {
1264 if (sched_feat(SYNC_MORE) &&
1265 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1266 p->se.avg_overlap < sysctl_sched_migration_cost))
1267 sync = 1;
1271 * If sync wakeup then subtract the (maximum possible)
1272 * effect of the currently running task from the load
1273 * of the current CPU:
1275 if (sync) {
1276 tg = task_group(current);
1277 weight = current->se.load.weight;
1279 this_load += effective_load(tg, this_cpu, -weight, -weight);
1280 load += effective_load(tg, prev_cpu, 0, -weight);
1283 tg = task_group(p);
1284 weight = p->se.load.weight;
1286 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1289 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1290 * due to the sync cause above having dropped this_load to 0, we'll
1291 * always have an imbalance, but there's really nothing you can do
1292 * about that, so that's good too.
1294 * Otherwise check if either cpus are near enough in load to allow this
1295 * task to be woken on this_cpu.
1297 balanced = !this_load ||
1298 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1299 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1302 * If the currently running task will sleep within
1303 * a reasonable amount of time then attract this newly
1304 * woken task:
1306 if (sync && balanced)
1307 return 1;
1309 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1310 tl_per_task = cpu_avg_load_per_task(this_cpu);
1312 if (balanced ||
1313 (this_load <= load &&
1314 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1316 * This domain has SD_WAKE_AFFINE and
1317 * p is cache cold in this domain, and
1318 * there is no bad imbalance.
1320 schedstat_inc(sd, ttwu_move_affine);
1321 schedstat_inc(p, se.nr_wakeups_affine);
1323 return 1;
1325 return 0;
1329 * find_idlest_group finds and returns the least busy CPU group within the
1330 * domain.
1332 static struct sched_group *
1333 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1334 int this_cpu, int load_idx)
1336 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1337 unsigned long min_load = ULONG_MAX, this_load = 0;
1338 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1340 do {
1341 unsigned long load, avg_load;
1342 int local_group;
1343 int i;
1345 /* Skip over this group if it has no CPUs allowed */
1346 if (!cpumask_intersects(sched_group_cpus(group),
1347 &p->cpus_allowed))
1348 continue;
1350 local_group = cpumask_test_cpu(this_cpu,
1351 sched_group_cpus(group));
1353 /* Tally up the load of all CPUs in the group */
1354 avg_load = 0;
1356 for_each_cpu(i, sched_group_cpus(group)) {
1357 /* Bias balancing toward cpus of our domain */
1358 if (local_group)
1359 load = source_load(i, load_idx);
1360 else
1361 load = target_load(i, load_idx);
1363 avg_load += load;
1366 /* Adjust by relative CPU power of the group */
1367 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1369 if (local_group) {
1370 this_load = avg_load;
1371 this = group;
1372 } else if (avg_load < min_load) {
1373 min_load = avg_load;
1374 idlest = group;
1376 } while (group = group->next, group != sd->groups);
1378 if (!idlest || 100*this_load < imbalance*min_load)
1379 return NULL;
1380 return idlest;
1384 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1386 static int
1387 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1389 unsigned long load, min_load = ULONG_MAX;
1390 int idlest = -1;
1391 int i;
1393 /* Traverse only the allowed CPUs */
1394 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1395 load = weighted_cpuload(i);
1397 if (load < min_load || (load == min_load && i == this_cpu)) {
1398 min_load = load;
1399 idlest = i;
1403 return idlest;
1407 * Try and locate an idle CPU in the sched_domain.
1409 static int
1410 select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1412 int cpu = smp_processor_id();
1413 int prev_cpu = task_cpu(p);
1414 int i;
1417 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1418 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1419 * always a better target than the current cpu.
1421 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1422 return prev_cpu;
1425 * Otherwise, iterate the domain and find an elegible idle cpu.
1427 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1428 if (!cpu_rq(i)->cfs.nr_running) {
1429 target = i;
1430 break;
1434 return target;
1438 * sched_balance_self: balance the current task (running on cpu) in domains
1439 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1440 * SD_BALANCE_EXEC.
1442 * Balance, ie. select the least loaded group.
1444 * Returns the target CPU number, or the same CPU if no balancing is needed.
1446 * preempt must be disabled.
1448 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1450 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1451 int cpu = smp_processor_id();
1452 int prev_cpu = task_cpu(p);
1453 int new_cpu = cpu;
1454 int want_affine = 0;
1455 int want_sd = 1;
1456 int sync = wake_flags & WF_SYNC;
1458 if (sd_flag & SD_BALANCE_WAKE) {
1459 if (sched_feat(AFFINE_WAKEUPS) &&
1460 cpumask_test_cpu(cpu, &p->cpus_allowed))
1461 want_affine = 1;
1462 new_cpu = prev_cpu;
1465 for_each_domain(cpu, tmp) {
1466 if (!(tmp->flags & SD_LOAD_BALANCE))
1467 continue;
1470 * If power savings logic is enabled for a domain, see if we
1471 * are not overloaded, if so, don't balance wider.
1473 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1474 unsigned long power = 0;
1475 unsigned long nr_running = 0;
1476 unsigned long capacity;
1477 int i;
1479 for_each_cpu(i, sched_domain_span(tmp)) {
1480 power += power_of(i);
1481 nr_running += cpu_rq(i)->cfs.nr_running;
1484 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1486 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1487 nr_running /= 2;
1489 if (nr_running < capacity)
1490 want_sd = 0;
1494 * While iterating the domains looking for a spanning
1495 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1496 * in cache sharing domains along the way.
1498 if (want_affine) {
1499 int target = -1;
1502 * If both cpu and prev_cpu are part of this domain,
1503 * cpu is a valid SD_WAKE_AFFINE target.
1505 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1506 target = cpu;
1509 * If there's an idle sibling in this domain, make that
1510 * the wake_affine target instead of the current cpu.
1512 if (tmp->flags & SD_SHARE_PKG_RESOURCES)
1513 target = select_idle_sibling(p, tmp, target);
1515 if (target >= 0) {
1516 if (tmp->flags & SD_WAKE_AFFINE) {
1517 affine_sd = tmp;
1518 want_affine = 0;
1520 cpu = target;
1524 if (!want_sd && !want_affine)
1525 break;
1527 if (!(tmp->flags & sd_flag))
1528 continue;
1530 if (want_sd)
1531 sd = tmp;
1534 if (sched_feat(LB_SHARES_UPDATE)) {
1536 * Pick the largest domain to update shares over
1538 tmp = sd;
1539 if (affine_sd && (!tmp ||
1540 cpumask_weight(sched_domain_span(affine_sd)) >
1541 cpumask_weight(sched_domain_span(sd))))
1542 tmp = affine_sd;
1544 if (tmp)
1545 update_shares(tmp);
1548 if (affine_sd && wake_affine(affine_sd, p, sync))
1549 return cpu;
1551 while (sd) {
1552 int load_idx = sd->forkexec_idx;
1553 struct sched_group *group;
1554 int weight;
1556 if (!(sd->flags & sd_flag)) {
1557 sd = sd->child;
1558 continue;
1561 if (sd_flag & SD_BALANCE_WAKE)
1562 load_idx = sd->wake_idx;
1564 group = find_idlest_group(sd, p, cpu, load_idx);
1565 if (!group) {
1566 sd = sd->child;
1567 continue;
1570 new_cpu = find_idlest_cpu(group, p, cpu);
1571 if (new_cpu == -1 || new_cpu == cpu) {
1572 /* Now try balancing at a lower domain level of cpu */
1573 sd = sd->child;
1574 continue;
1577 /* Now try balancing at a lower domain level of new_cpu */
1578 cpu = new_cpu;
1579 weight = cpumask_weight(sched_domain_span(sd));
1580 sd = NULL;
1581 for_each_domain(cpu, tmp) {
1582 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1583 break;
1584 if (tmp->flags & sd_flag)
1585 sd = tmp;
1587 /* while loop will break here if sd == NULL */
1590 return new_cpu;
1592 #endif /* CONFIG_SMP */
1595 * Adaptive granularity
1597 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1598 * with the limit of wakeup_gran -- when it never does a wakeup.
1600 * So the smaller avg_wakeup is the faster we want this task to preempt,
1601 * but we don't want to treat the preemptee unfairly and therefore allow it
1602 * to run for at least the amount of time we'd like to run.
1604 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1606 * NOTE: we use *nr_running to scale with load, this nicely matches the
1607 * degrading latency on load.
1609 static unsigned long
1610 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1612 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1613 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1614 u64 gran = 0;
1616 if (this_run < expected_wakeup)
1617 gran = expected_wakeup - this_run;
1619 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1622 static unsigned long
1623 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1625 unsigned long gran = sysctl_sched_wakeup_granularity;
1627 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1628 gran = adaptive_gran(curr, se);
1631 * Since its curr running now, convert the gran from real-time
1632 * to virtual-time in his units.
1634 if (sched_feat(ASYM_GRAN)) {
1636 * By using 'se' instead of 'curr' we penalize light tasks, so
1637 * they get preempted easier. That is, if 'se' < 'curr' then
1638 * the resulting gran will be larger, therefore penalizing the
1639 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1640 * be smaller, again penalizing the lighter task.
1642 * This is especially important for buddies when the leftmost
1643 * task is higher priority than the buddy.
1645 if (unlikely(se->load.weight != NICE_0_LOAD))
1646 gran = calc_delta_fair(gran, se);
1647 } else {
1648 if (unlikely(curr->load.weight != NICE_0_LOAD))
1649 gran = calc_delta_fair(gran, curr);
1652 return gran;
1656 * Should 'se' preempt 'curr'.
1658 * |s1
1659 * |s2
1660 * |s3
1662 * |<--->|c
1664 * w(c, s1) = -1
1665 * w(c, s2) = 0
1666 * w(c, s3) = 1
1669 static int
1670 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1672 s64 gran, vdiff = curr->vruntime - se->vruntime;
1674 if (vdiff <= 0)
1675 return -1;
1677 gran = wakeup_gran(curr, se);
1678 if (vdiff > gran)
1679 return 1;
1681 return 0;
1684 static void set_last_buddy(struct sched_entity *se)
1686 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1687 for_each_sched_entity(se)
1688 cfs_rq_of(se)->last = se;
1692 static void set_next_buddy(struct sched_entity *se)
1694 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1695 for_each_sched_entity(se)
1696 cfs_rq_of(se)->next = se;
1701 * Preempt the current task with a newly woken task if needed:
1703 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1705 struct task_struct *curr = rq->curr;
1706 struct sched_entity *se = &curr->se, *pse = &p->se;
1707 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1708 int sync = wake_flags & WF_SYNC;
1709 int scale = cfs_rq->nr_running >= sched_nr_latency;
1711 if (unlikely(rt_prio(p->prio)))
1712 goto preempt;
1714 if (unlikely(p->sched_class != &fair_sched_class))
1715 return;
1717 if (unlikely(se == pse))
1718 return;
1720 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1721 set_next_buddy(pse);
1724 * We can come here with TIF_NEED_RESCHED already set from new task
1725 * wake up path.
1727 if (test_tsk_need_resched(curr))
1728 return;
1731 * Batch and idle tasks do not preempt (their preemption is driven by
1732 * the tick):
1734 if (unlikely(p->policy != SCHED_NORMAL))
1735 return;
1737 /* Idle tasks are by definition preempted by everybody. */
1738 if (unlikely(curr->policy == SCHED_IDLE))
1739 goto preempt;
1741 if (sched_feat(WAKEUP_SYNC) && sync)
1742 goto preempt;
1744 if (sched_feat(WAKEUP_OVERLAP) &&
1745 se->avg_overlap < sysctl_sched_migration_cost &&
1746 pse->avg_overlap < sysctl_sched_migration_cost)
1747 goto preempt;
1749 if (!sched_feat(WAKEUP_PREEMPT))
1750 return;
1752 update_curr(cfs_rq);
1753 find_matching_se(&se, &pse);
1754 BUG_ON(!pse);
1755 if (wakeup_preempt_entity(se, pse) == 1)
1756 goto preempt;
1758 return;
1760 preempt:
1761 resched_task(curr);
1763 * Only set the backward buddy when the current task is still
1764 * on the rq. This can happen when a wakeup gets interleaved
1765 * with schedule on the ->pre_schedule() or idle_balance()
1766 * point, either of which can * drop the rq lock.
1768 * Also, during early boot the idle thread is in the fair class,
1769 * for obvious reasons its a bad idea to schedule back to it.
1771 if (unlikely(!se->on_rq || curr == rq->idle))
1772 return;
1774 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1775 set_last_buddy(se);
1778 static struct task_struct *pick_next_task_fair(struct rq *rq)
1780 struct task_struct *p;
1781 struct cfs_rq *cfs_rq = &rq->cfs;
1782 struct sched_entity *se;
1784 if (!cfs_rq->nr_running)
1785 return NULL;
1787 do {
1788 se = pick_next_entity(cfs_rq);
1789 set_next_entity(cfs_rq, se);
1790 cfs_rq = group_cfs_rq(se);
1791 } while (cfs_rq);
1793 p = task_of(se);
1794 hrtick_start_fair(rq, p);
1796 return p;
1800 * Account for a descheduled task:
1802 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1804 struct sched_entity *se = &prev->se;
1805 struct cfs_rq *cfs_rq;
1807 for_each_sched_entity(se) {
1808 cfs_rq = cfs_rq_of(se);
1809 put_prev_entity(cfs_rq, se);
1813 #ifdef CONFIG_SMP
1814 /**************************************************
1815 * Fair scheduling class load-balancing methods:
1819 * pull_task - move a task from a remote runqueue to the local runqueue.
1820 * Both runqueues must be locked.
1822 static void pull_task(struct rq *src_rq, struct task_struct *p,
1823 struct rq *this_rq, int this_cpu)
1825 deactivate_task(src_rq, p, 0);
1826 set_task_cpu(p, this_cpu);
1827 activate_task(this_rq, p, 0);
1828 check_preempt_curr(this_rq, p, 0);
1832 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1834 static
1835 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1836 struct sched_domain *sd, enum cpu_idle_type idle,
1837 int *all_pinned)
1839 int tsk_cache_hot = 0;
1841 * We do not migrate tasks that are:
1842 * 1) running (obviously), or
1843 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1844 * 3) are cache-hot on their current CPU.
1846 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1847 schedstat_inc(p, se.nr_failed_migrations_affine);
1848 return 0;
1850 *all_pinned = 0;
1852 if (task_running(rq, p)) {
1853 schedstat_inc(p, se.nr_failed_migrations_running);
1854 return 0;
1858 * Aggressive migration if:
1859 * 1) task is cache cold, or
1860 * 2) too many balance attempts have failed.
1863 tsk_cache_hot = task_hot(p, rq->clock, sd);
1864 if (!tsk_cache_hot ||
1865 sd->nr_balance_failed > sd->cache_nice_tries) {
1866 #ifdef CONFIG_SCHEDSTATS
1867 if (tsk_cache_hot) {
1868 schedstat_inc(sd, lb_hot_gained[idle]);
1869 schedstat_inc(p, se.nr_forced_migrations);
1871 #endif
1872 return 1;
1875 if (tsk_cache_hot) {
1876 schedstat_inc(p, se.nr_failed_migrations_hot);
1877 return 0;
1879 return 1;
1883 * move_one_task tries to move exactly one task from busiest to this_rq, as
1884 * part of active balancing operations within "domain".
1885 * Returns 1 if successful and 0 otherwise.
1887 * Called with both runqueues locked.
1889 static int
1890 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1891 struct sched_domain *sd, enum cpu_idle_type idle)
1893 struct task_struct *p, *n;
1894 struct cfs_rq *cfs_rq;
1895 int pinned = 0;
1897 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1898 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1900 if (!can_migrate_task(p, busiest, this_cpu,
1901 sd, idle, &pinned))
1902 continue;
1904 pull_task(busiest, p, this_rq, this_cpu);
1906 * Right now, this is only the second place pull_task()
1907 * is called, so we can safely collect pull_task()
1908 * stats here rather than inside pull_task().
1910 schedstat_inc(sd, lb_gained[idle]);
1911 return 1;
1915 return 0;
1918 static unsigned long
1919 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1920 unsigned long max_load_move, struct sched_domain *sd,
1921 enum cpu_idle_type idle, int *all_pinned,
1922 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1924 int loops = 0, pulled = 0, pinned = 0;
1925 long rem_load_move = max_load_move;
1926 struct task_struct *p, *n;
1928 if (max_load_move == 0)
1929 goto out;
1931 pinned = 1;
1933 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1934 if (loops++ > sysctl_sched_nr_migrate)
1935 break;
1937 if ((p->se.load.weight >> 1) > rem_load_move ||
1938 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1939 continue;
1941 pull_task(busiest, p, this_rq, this_cpu);
1942 pulled++;
1943 rem_load_move -= p->se.load.weight;
1945 #ifdef CONFIG_PREEMPT
1947 * NEWIDLE balancing is a source of latency, so preemptible
1948 * kernels will stop after the first task is pulled to minimize
1949 * the critical section.
1951 if (idle == CPU_NEWLY_IDLE)
1952 break;
1953 #endif
1956 * We only want to steal up to the prescribed amount of
1957 * weighted load.
1959 if (rem_load_move <= 0)
1960 break;
1962 if (p->prio < *this_best_prio)
1963 *this_best_prio = p->prio;
1965 out:
1967 * Right now, this is one of only two places pull_task() is called,
1968 * so we can safely collect pull_task() stats here rather than
1969 * inside pull_task().
1971 schedstat_add(sd, lb_gained[idle], pulled);
1973 if (all_pinned)
1974 *all_pinned = pinned;
1976 return max_load_move - rem_load_move;
1979 #ifdef CONFIG_FAIR_GROUP_SCHED
1980 static unsigned long
1981 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1982 unsigned long max_load_move,
1983 struct sched_domain *sd, enum cpu_idle_type idle,
1984 int *all_pinned, int *this_best_prio)
1986 long rem_load_move = max_load_move;
1987 int busiest_cpu = cpu_of(busiest);
1988 struct task_group *tg;
1990 rcu_read_lock();
1991 update_h_load(busiest_cpu);
1993 list_for_each_entry_rcu(tg, &task_groups, list) {
1994 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1995 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1996 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1997 u64 rem_load, moved_load;
2000 * empty group
2002 if (!busiest_cfs_rq->task_weight)
2003 continue;
2005 rem_load = (u64)rem_load_move * busiest_weight;
2006 rem_load = div_u64(rem_load, busiest_h_load + 1);
2008 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2009 rem_load, sd, idle, all_pinned, this_best_prio,
2010 busiest_cfs_rq);
2012 if (!moved_load)
2013 continue;
2015 moved_load *= busiest_h_load;
2016 moved_load = div_u64(moved_load, busiest_weight + 1);
2018 rem_load_move -= moved_load;
2019 if (rem_load_move < 0)
2020 break;
2022 rcu_read_unlock();
2024 return max_load_move - rem_load_move;
2026 #else
2027 static unsigned long
2028 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2029 unsigned long max_load_move,
2030 struct sched_domain *sd, enum cpu_idle_type idle,
2031 int *all_pinned, int *this_best_prio)
2033 return balance_tasks(this_rq, this_cpu, busiest,
2034 max_load_move, sd, idle, all_pinned,
2035 this_best_prio, &busiest->cfs);
2037 #endif
2040 * move_tasks tries to move up to max_load_move weighted load from busiest to
2041 * this_rq, as part of a balancing operation within domain "sd".
2042 * Returns 1 if successful and 0 otherwise.
2044 * Called with both runqueues locked.
2046 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2047 unsigned long max_load_move,
2048 struct sched_domain *sd, enum cpu_idle_type idle,
2049 int *all_pinned)
2051 unsigned long total_load_moved = 0, load_moved;
2052 int this_best_prio = this_rq->curr->prio;
2054 do {
2055 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2056 max_load_move - total_load_moved,
2057 sd, idle, all_pinned, &this_best_prio);
2059 total_load_moved += load_moved;
2061 #ifdef CONFIG_PREEMPT
2063 * NEWIDLE balancing is a source of latency, so preemptible
2064 * kernels will stop after the first task is pulled to minimize
2065 * the critical section.
2067 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2068 break;
2070 if (raw_spin_is_contended(&this_rq->lock) ||
2071 raw_spin_is_contended(&busiest->lock))
2072 break;
2073 #endif
2074 } while (load_moved && max_load_move > total_load_moved);
2076 return total_load_moved > 0;
2079 /********** Helpers for find_busiest_group ************************/
2081 * sd_lb_stats - Structure to store the statistics of a sched_domain
2082 * during load balancing.
2084 struct sd_lb_stats {
2085 struct sched_group *busiest; /* Busiest group in this sd */
2086 struct sched_group *this; /* Local group in this sd */
2087 unsigned long total_load; /* Total load of all groups in sd */
2088 unsigned long total_pwr; /* Total power of all groups in sd */
2089 unsigned long avg_load; /* Average load across all groups in sd */
2091 /** Statistics of this group */
2092 unsigned long this_load;
2093 unsigned long this_load_per_task;
2094 unsigned long this_nr_running;
2096 /* Statistics of the busiest group */
2097 unsigned long max_load;
2098 unsigned long busiest_load_per_task;
2099 unsigned long busiest_nr_running;
2100 unsigned long busiest_group_capacity;
2102 int group_imb; /* Is there imbalance in this sd */
2103 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2104 int power_savings_balance; /* Is powersave balance needed for this sd */
2105 struct sched_group *group_min; /* Least loaded group in sd */
2106 struct sched_group *group_leader; /* Group which relieves group_min */
2107 unsigned long min_load_per_task; /* load_per_task in group_min */
2108 unsigned long leader_nr_running; /* Nr running of group_leader */
2109 unsigned long min_nr_running; /* Nr running of group_min */
2110 #endif
2114 * sg_lb_stats - stats of a sched_group required for load_balancing
2116 struct sg_lb_stats {
2117 unsigned long avg_load; /*Avg load across the CPUs of the group */
2118 unsigned long group_load; /* Total load over the CPUs of the group */
2119 unsigned long sum_nr_running; /* Nr tasks running in the group */
2120 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2121 unsigned long group_capacity;
2122 int group_imb; /* Is there an imbalance in the group ? */
2126 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2127 * @group: The group whose first cpu is to be returned.
2129 static inline unsigned int group_first_cpu(struct sched_group *group)
2131 return cpumask_first(sched_group_cpus(group));
2135 * get_sd_load_idx - Obtain the load index for a given sched domain.
2136 * @sd: The sched_domain whose load_idx is to be obtained.
2137 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2139 static inline int get_sd_load_idx(struct sched_domain *sd,
2140 enum cpu_idle_type idle)
2142 int load_idx;
2144 switch (idle) {
2145 case CPU_NOT_IDLE:
2146 load_idx = sd->busy_idx;
2147 break;
2149 case CPU_NEWLY_IDLE:
2150 load_idx = sd->newidle_idx;
2151 break;
2152 default:
2153 load_idx = sd->idle_idx;
2154 break;
2157 return load_idx;
2161 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2163 * init_sd_power_savings_stats - Initialize power savings statistics for
2164 * the given sched_domain, during load balancing.
2166 * @sd: Sched domain whose power-savings statistics are to be initialized.
2167 * @sds: Variable containing the statistics for sd.
2168 * @idle: Idle status of the CPU at which we're performing load-balancing.
2170 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2171 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2174 * Busy processors will not participate in power savings
2175 * balance.
2177 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2178 sds->power_savings_balance = 0;
2179 else {
2180 sds->power_savings_balance = 1;
2181 sds->min_nr_running = ULONG_MAX;
2182 sds->leader_nr_running = 0;
2187 * update_sd_power_savings_stats - Update the power saving stats for a
2188 * sched_domain while performing load balancing.
2190 * @group: sched_group belonging to the sched_domain under consideration.
2191 * @sds: Variable containing the statistics of the sched_domain
2192 * @local_group: Does group contain the CPU for which we're performing
2193 * load balancing ?
2194 * @sgs: Variable containing the statistics of the group.
2196 static inline void update_sd_power_savings_stats(struct sched_group *group,
2197 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2200 if (!sds->power_savings_balance)
2201 return;
2204 * If the local group is idle or completely loaded
2205 * no need to do power savings balance at this domain
2207 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2208 !sds->this_nr_running))
2209 sds->power_savings_balance = 0;
2212 * If a group is already running at full capacity or idle,
2213 * don't include that group in power savings calculations
2215 if (!sds->power_savings_balance ||
2216 sgs->sum_nr_running >= sgs->group_capacity ||
2217 !sgs->sum_nr_running)
2218 return;
2221 * Calculate the group which has the least non-idle load.
2222 * This is the group from where we need to pick up the load
2223 * for saving power
2225 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2226 (sgs->sum_nr_running == sds->min_nr_running &&
2227 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2228 sds->group_min = group;
2229 sds->min_nr_running = sgs->sum_nr_running;
2230 sds->min_load_per_task = sgs->sum_weighted_load /
2231 sgs->sum_nr_running;
2235 * Calculate the group which is almost near its
2236 * capacity but still has some space to pick up some load
2237 * from other group and save more power
2239 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2240 return;
2242 if (sgs->sum_nr_running > sds->leader_nr_running ||
2243 (sgs->sum_nr_running == sds->leader_nr_running &&
2244 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2245 sds->group_leader = group;
2246 sds->leader_nr_running = sgs->sum_nr_running;
2251 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2252 * @sds: Variable containing the statistics of the sched_domain
2253 * under consideration.
2254 * @this_cpu: Cpu at which we're currently performing load-balancing.
2255 * @imbalance: Variable to store the imbalance.
2257 * Description:
2258 * Check if we have potential to perform some power-savings balance.
2259 * If yes, set the busiest group to be the least loaded group in the
2260 * sched_domain, so that it's CPUs can be put to idle.
2262 * Returns 1 if there is potential to perform power-savings balance.
2263 * Else returns 0.
2265 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2266 int this_cpu, unsigned long *imbalance)
2268 if (!sds->power_savings_balance)
2269 return 0;
2271 if (sds->this != sds->group_leader ||
2272 sds->group_leader == sds->group_min)
2273 return 0;
2275 *imbalance = sds->min_load_per_task;
2276 sds->busiest = sds->group_min;
2278 return 1;
2281 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2282 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2283 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2285 return;
2288 static inline void update_sd_power_savings_stats(struct sched_group *group,
2289 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2291 return;
2294 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2295 int this_cpu, unsigned long *imbalance)
2297 return 0;
2299 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2302 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2304 return SCHED_LOAD_SCALE;
2307 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2309 return default_scale_freq_power(sd, cpu);
2312 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2314 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2315 unsigned long smt_gain = sd->smt_gain;
2317 smt_gain /= weight;
2319 return smt_gain;
2322 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2324 return default_scale_smt_power(sd, cpu);
2327 unsigned long scale_rt_power(int cpu)
2329 struct rq *rq = cpu_rq(cpu);
2330 u64 total, available;
2332 sched_avg_update(rq);
2334 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2335 available = total - rq->rt_avg;
2337 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2338 total = SCHED_LOAD_SCALE;
2340 total >>= SCHED_LOAD_SHIFT;
2342 return div_u64(available, total);
2345 static void update_cpu_power(struct sched_domain *sd, int cpu)
2347 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2348 unsigned long power = SCHED_LOAD_SCALE;
2349 struct sched_group *sdg = sd->groups;
2351 if (sched_feat(ARCH_POWER))
2352 power *= arch_scale_freq_power(sd, cpu);
2353 else
2354 power *= default_scale_freq_power(sd, cpu);
2356 power >>= SCHED_LOAD_SHIFT;
2358 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2359 if (sched_feat(ARCH_POWER))
2360 power *= arch_scale_smt_power(sd, cpu);
2361 else
2362 power *= default_scale_smt_power(sd, cpu);
2364 power >>= SCHED_LOAD_SHIFT;
2367 power *= scale_rt_power(cpu);
2368 power >>= SCHED_LOAD_SHIFT;
2370 if (!power)
2371 power = 1;
2373 sdg->cpu_power = power;
2376 static void update_group_power(struct sched_domain *sd, int cpu)
2378 struct sched_domain *child = sd->child;
2379 struct sched_group *group, *sdg = sd->groups;
2380 unsigned long power;
2382 if (!child) {
2383 update_cpu_power(sd, cpu);
2384 return;
2387 power = 0;
2389 group = child->groups;
2390 do {
2391 power += group->cpu_power;
2392 group = group->next;
2393 } while (group != child->groups);
2395 sdg->cpu_power = power;
2399 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2400 * @sd: The sched_domain whose statistics are to be updated.
2401 * @group: sched_group whose statistics are to be updated.
2402 * @this_cpu: Cpu for which load balance is currently performed.
2403 * @idle: Idle status of this_cpu
2404 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2405 * @sd_idle: Idle status of the sched_domain containing group.
2406 * @local_group: Does group contain this_cpu.
2407 * @cpus: Set of cpus considered for load balancing.
2408 * @balance: Should we balance.
2409 * @sgs: variable to hold the statistics for this group.
2411 static inline void update_sg_lb_stats(struct sched_domain *sd,
2412 struct sched_group *group, int this_cpu,
2413 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2414 int local_group, const struct cpumask *cpus,
2415 int *balance, struct sg_lb_stats *sgs)
2417 unsigned long load, max_cpu_load, min_cpu_load;
2418 int i;
2419 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2420 unsigned long avg_load_per_task = 0;
2422 if (local_group)
2423 balance_cpu = group_first_cpu(group);
2425 /* Tally up the load of all CPUs in the group */
2426 max_cpu_load = 0;
2427 min_cpu_load = ~0UL;
2429 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2430 struct rq *rq = cpu_rq(i);
2432 if (*sd_idle && rq->nr_running)
2433 *sd_idle = 0;
2435 /* Bias balancing toward cpus of our domain */
2436 if (local_group) {
2437 if (idle_cpu(i) && !first_idle_cpu) {
2438 first_idle_cpu = 1;
2439 balance_cpu = i;
2442 load = target_load(i, load_idx);
2443 } else {
2444 load = source_load(i, load_idx);
2445 if (load > max_cpu_load)
2446 max_cpu_load = load;
2447 if (min_cpu_load > load)
2448 min_cpu_load = load;
2451 sgs->group_load += load;
2452 sgs->sum_nr_running += rq->nr_running;
2453 sgs->sum_weighted_load += weighted_cpuload(i);
2458 * First idle cpu or the first cpu(busiest) in this sched group
2459 * is eligible for doing load balancing at this and above
2460 * domains. In the newly idle case, we will allow all the cpu's
2461 * to do the newly idle load balance.
2463 if (idle != CPU_NEWLY_IDLE && local_group &&
2464 balance_cpu != this_cpu) {
2465 *balance = 0;
2466 return;
2469 update_group_power(sd, this_cpu);
2471 /* Adjust by relative CPU power of the group */
2472 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2475 * Consider the group unbalanced when the imbalance is larger
2476 * than the average weight of two tasks.
2478 * APZ: with cgroup the avg task weight can vary wildly and
2479 * might not be a suitable number - should we keep a
2480 * normalized nr_running number somewhere that negates
2481 * the hierarchy?
2483 if (sgs->sum_nr_running)
2484 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2486 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2487 sgs->group_imb = 1;
2489 sgs->group_capacity =
2490 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2494 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2495 * @sd: sched_domain whose statistics are to be updated.
2496 * @this_cpu: Cpu for which load balance is currently performed.
2497 * @idle: Idle status of this_cpu
2498 * @sd_idle: Idle status of the sched_domain containing group.
2499 * @cpus: Set of cpus considered for load balancing.
2500 * @balance: Should we balance.
2501 * @sds: variable to hold the statistics for this sched_domain.
2503 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2504 enum cpu_idle_type idle, int *sd_idle,
2505 const struct cpumask *cpus, int *balance,
2506 struct sd_lb_stats *sds)
2508 struct sched_domain *child = sd->child;
2509 struct sched_group *group = sd->groups;
2510 struct sg_lb_stats sgs;
2511 int load_idx, prefer_sibling = 0;
2513 if (child && child->flags & SD_PREFER_SIBLING)
2514 prefer_sibling = 1;
2516 init_sd_power_savings_stats(sd, sds, idle);
2517 load_idx = get_sd_load_idx(sd, idle);
2519 do {
2520 int local_group;
2522 local_group = cpumask_test_cpu(this_cpu,
2523 sched_group_cpus(group));
2524 memset(&sgs, 0, sizeof(sgs));
2525 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2526 local_group, cpus, balance, &sgs);
2528 if (local_group && !(*balance))
2529 return;
2531 sds->total_load += sgs.group_load;
2532 sds->total_pwr += group->cpu_power;
2535 * In case the child domain prefers tasks go to siblings
2536 * first, lower the group capacity to one so that we'll try
2537 * and move all the excess tasks away.
2539 if (prefer_sibling)
2540 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2542 if (local_group) {
2543 sds->this_load = sgs.avg_load;
2544 sds->this = group;
2545 sds->this_nr_running = sgs.sum_nr_running;
2546 sds->this_load_per_task = sgs.sum_weighted_load;
2547 } else if (sgs.avg_load > sds->max_load &&
2548 (sgs.sum_nr_running > sgs.group_capacity ||
2549 sgs.group_imb)) {
2550 sds->max_load = sgs.avg_load;
2551 sds->busiest = group;
2552 sds->busiest_nr_running = sgs.sum_nr_running;
2553 sds->busiest_group_capacity = sgs.group_capacity;
2554 sds->busiest_load_per_task = sgs.sum_weighted_load;
2555 sds->group_imb = sgs.group_imb;
2558 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2559 group = group->next;
2560 } while (group != sd->groups);
2564 * fix_small_imbalance - Calculate the minor imbalance that exists
2565 * amongst the groups of a sched_domain, during
2566 * load balancing.
2567 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2568 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2569 * @imbalance: Variable to store the imbalance.
2571 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2572 int this_cpu, unsigned long *imbalance)
2574 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2575 unsigned int imbn = 2;
2576 unsigned long scaled_busy_load_per_task;
2578 if (sds->this_nr_running) {
2579 sds->this_load_per_task /= sds->this_nr_running;
2580 if (sds->busiest_load_per_task >
2581 sds->this_load_per_task)
2582 imbn = 1;
2583 } else
2584 sds->this_load_per_task =
2585 cpu_avg_load_per_task(this_cpu);
2587 scaled_busy_load_per_task = sds->busiest_load_per_task
2588 * SCHED_LOAD_SCALE;
2589 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2591 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2592 (scaled_busy_load_per_task * imbn)) {
2593 *imbalance = sds->busiest_load_per_task;
2594 return;
2598 * OK, we don't have enough imbalance to justify moving tasks,
2599 * however we may be able to increase total CPU power used by
2600 * moving them.
2603 pwr_now += sds->busiest->cpu_power *
2604 min(sds->busiest_load_per_task, sds->max_load);
2605 pwr_now += sds->this->cpu_power *
2606 min(sds->this_load_per_task, sds->this_load);
2607 pwr_now /= SCHED_LOAD_SCALE;
2609 /* Amount of load we'd subtract */
2610 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2611 sds->busiest->cpu_power;
2612 if (sds->max_load > tmp)
2613 pwr_move += sds->busiest->cpu_power *
2614 min(sds->busiest_load_per_task, sds->max_load - tmp);
2616 /* Amount of load we'd add */
2617 if (sds->max_load * sds->busiest->cpu_power <
2618 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2619 tmp = (sds->max_load * sds->busiest->cpu_power) /
2620 sds->this->cpu_power;
2621 else
2622 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2623 sds->this->cpu_power;
2624 pwr_move += sds->this->cpu_power *
2625 min(sds->this_load_per_task, sds->this_load + tmp);
2626 pwr_move /= SCHED_LOAD_SCALE;
2628 /* Move if we gain throughput */
2629 if (pwr_move > pwr_now)
2630 *imbalance = sds->busiest_load_per_task;
2634 * calculate_imbalance - Calculate the amount of imbalance present within the
2635 * groups of a given sched_domain during load balance.
2636 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2637 * @this_cpu: Cpu for which currently load balance is being performed.
2638 * @imbalance: The variable to store the imbalance.
2640 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2641 unsigned long *imbalance)
2643 unsigned long max_pull, load_above_capacity = ~0UL;
2645 sds->busiest_load_per_task /= sds->busiest_nr_running;
2646 if (sds->group_imb) {
2647 sds->busiest_load_per_task =
2648 min(sds->busiest_load_per_task, sds->avg_load);
2652 * In the presence of smp nice balancing, certain scenarios can have
2653 * max load less than avg load(as we skip the groups at or below
2654 * its cpu_power, while calculating max_load..)
2656 if (sds->max_load < sds->avg_load) {
2657 *imbalance = 0;
2658 return fix_small_imbalance(sds, this_cpu, imbalance);
2661 if (!sds->group_imb) {
2663 * Don't want to pull so many tasks that a group would go idle.
2665 load_above_capacity = (sds->busiest_nr_running -
2666 sds->busiest_group_capacity);
2668 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2670 load_above_capacity /= sds->busiest->cpu_power;
2674 * We're trying to get all the cpus to the average_load, so we don't
2675 * want to push ourselves above the average load, nor do we wish to
2676 * reduce the max loaded cpu below the average load. At the same time,
2677 * we also don't want to reduce the group load below the group capacity
2678 * (so that we can implement power-savings policies etc). Thus we look
2679 * for the minimum possible imbalance.
2680 * Be careful of negative numbers as they'll appear as very large values
2681 * with unsigned longs.
2683 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2685 /* How much load to actually move to equalise the imbalance */
2686 *imbalance = min(max_pull * sds->busiest->cpu_power,
2687 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2688 / SCHED_LOAD_SCALE;
2691 * if *imbalance is less than the average load per runnable task
2692 * there is no gaurantee that any tasks will be moved so we'll have
2693 * a think about bumping its value to force at least one task to be
2694 * moved
2696 if (*imbalance < sds->busiest_load_per_task)
2697 return fix_small_imbalance(sds, this_cpu, imbalance);
2700 /******* find_busiest_group() helpers end here *********************/
2703 * find_busiest_group - Returns the busiest group within the sched_domain
2704 * if there is an imbalance. If there isn't an imbalance, and
2705 * the user has opted for power-savings, it returns a group whose
2706 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2707 * such a group exists.
2709 * Also calculates the amount of weighted load which should be moved
2710 * to restore balance.
2712 * @sd: The sched_domain whose busiest group is to be returned.
2713 * @this_cpu: The cpu for which load balancing is currently being performed.
2714 * @imbalance: Variable which stores amount of weighted load which should
2715 * be moved to restore balance/put a group to idle.
2716 * @idle: The idle status of this_cpu.
2717 * @sd_idle: The idleness of sd
2718 * @cpus: The set of CPUs under consideration for load-balancing.
2719 * @balance: Pointer to a variable indicating if this_cpu
2720 * is the appropriate cpu to perform load balancing at this_level.
2722 * Returns: - the busiest group if imbalance exists.
2723 * - If no imbalance and user has opted for power-savings balance,
2724 * return the least loaded group whose CPUs can be
2725 * put to idle by rebalancing its tasks onto our group.
2727 static struct sched_group *
2728 find_busiest_group(struct sched_domain *sd, int this_cpu,
2729 unsigned long *imbalance, enum cpu_idle_type idle,
2730 int *sd_idle, const struct cpumask *cpus, int *balance)
2732 struct sd_lb_stats sds;
2734 memset(&sds, 0, sizeof(sds));
2737 * Compute the various statistics relavent for load balancing at
2738 * this level.
2740 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2741 balance, &sds);
2743 /* Cases where imbalance does not exist from POV of this_cpu */
2744 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2745 * at this level.
2746 * 2) There is no busy sibling group to pull from.
2747 * 3) This group is the busiest group.
2748 * 4) This group is more busy than the avg busieness at this
2749 * sched_domain.
2750 * 5) The imbalance is within the specified limit.
2752 if (!(*balance))
2753 goto ret;
2755 if (!sds.busiest || sds.busiest_nr_running == 0)
2756 goto out_balanced;
2758 if (sds.this_load >= sds.max_load)
2759 goto out_balanced;
2761 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2763 if (sds.this_load >= sds.avg_load)
2764 goto out_balanced;
2766 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2767 goto out_balanced;
2769 /* Looks like there is an imbalance. Compute it */
2770 calculate_imbalance(&sds, this_cpu, imbalance);
2771 return sds.busiest;
2773 out_balanced:
2775 * There is no obvious imbalance. But check if we can do some balancing
2776 * to save power.
2778 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2779 return sds.busiest;
2780 ret:
2781 *imbalance = 0;
2782 return NULL;
2786 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2788 static struct rq *
2789 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2790 unsigned long imbalance, const struct cpumask *cpus)
2792 struct rq *busiest = NULL, *rq;
2793 unsigned long max_load = 0;
2794 int i;
2796 for_each_cpu(i, sched_group_cpus(group)) {
2797 unsigned long power = power_of(i);
2798 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2799 unsigned long wl;
2801 if (!cpumask_test_cpu(i, cpus))
2802 continue;
2804 rq = cpu_rq(i);
2805 wl = weighted_cpuload(i);
2808 * When comparing with imbalance, use weighted_cpuload()
2809 * which is not scaled with the cpu power.
2811 if (capacity && rq->nr_running == 1 && wl > imbalance)
2812 continue;
2815 * For the load comparisons with the other cpu's, consider
2816 * the weighted_cpuload() scaled with the cpu power, so that
2817 * the load can be moved away from the cpu that is potentially
2818 * running at a lower capacity.
2820 wl = (wl * SCHED_LOAD_SCALE) / power;
2822 if (wl > max_load) {
2823 max_load = wl;
2824 busiest = rq;
2828 return busiest;
2832 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2833 * so long as it is large enough.
2835 #define MAX_PINNED_INTERVAL 512
2837 /* Working cpumask for load_balance and load_balance_newidle. */
2838 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2840 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2842 if (idle == CPU_NEWLY_IDLE) {
2844 * The only task running in a non-idle cpu can be moved to this
2845 * cpu in an attempt to completely freeup the other CPU
2846 * package.
2848 * The package power saving logic comes from
2849 * find_busiest_group(). If there are no imbalance, then
2850 * f_b_g() will return NULL. However when sched_mc={1,2} then
2851 * f_b_g() will select a group from which a running task may be
2852 * pulled to this cpu in order to make the other package idle.
2853 * If there is no opportunity to make a package idle and if
2854 * there are no imbalance, then f_b_g() will return NULL and no
2855 * action will be taken in load_balance_newidle().
2857 * Under normal task pull operation due to imbalance, there
2858 * will be more than one task in the source run queue and
2859 * move_tasks() will succeed. ld_moved will be true and this
2860 * active balance code will not be triggered.
2862 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2863 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2864 return 0;
2866 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2867 return 0;
2870 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2874 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2875 * tasks if there is an imbalance.
2877 static int load_balance(int this_cpu, struct rq *this_rq,
2878 struct sched_domain *sd, enum cpu_idle_type idle,
2879 int *balance)
2881 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2882 struct sched_group *group;
2883 unsigned long imbalance;
2884 struct rq *busiest;
2885 unsigned long flags;
2886 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2888 cpumask_copy(cpus, cpu_active_mask);
2891 * When power savings policy is enabled for the parent domain, idle
2892 * sibling can pick up load irrespective of busy siblings. In this case,
2893 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2894 * portraying it as CPU_NOT_IDLE.
2896 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2897 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2898 sd_idle = 1;
2900 schedstat_inc(sd, lb_count[idle]);
2902 redo:
2903 update_shares(sd);
2904 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2905 cpus, balance);
2907 if (*balance == 0)
2908 goto out_balanced;
2910 if (!group) {
2911 schedstat_inc(sd, lb_nobusyg[idle]);
2912 goto out_balanced;
2915 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2916 if (!busiest) {
2917 schedstat_inc(sd, lb_nobusyq[idle]);
2918 goto out_balanced;
2921 BUG_ON(busiest == this_rq);
2923 schedstat_add(sd, lb_imbalance[idle], imbalance);
2925 ld_moved = 0;
2926 if (busiest->nr_running > 1) {
2928 * Attempt to move tasks. If find_busiest_group has found
2929 * an imbalance but busiest->nr_running <= 1, the group is
2930 * still unbalanced. ld_moved simply stays zero, so it is
2931 * correctly treated as an imbalance.
2933 local_irq_save(flags);
2934 double_rq_lock(this_rq, busiest);
2935 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2936 imbalance, sd, idle, &all_pinned);
2937 double_rq_unlock(this_rq, busiest);
2938 local_irq_restore(flags);
2941 * some other cpu did the load balance for us.
2943 if (ld_moved && this_cpu != smp_processor_id())
2944 resched_cpu(this_cpu);
2946 /* All tasks on this runqueue were pinned by CPU affinity */
2947 if (unlikely(all_pinned)) {
2948 cpumask_clear_cpu(cpu_of(busiest), cpus);
2949 if (!cpumask_empty(cpus))
2950 goto redo;
2951 goto out_balanced;
2955 if (!ld_moved) {
2956 schedstat_inc(sd, lb_failed[idle]);
2957 sd->nr_balance_failed++;
2959 if (need_active_balance(sd, sd_idle, idle)) {
2960 raw_spin_lock_irqsave(&busiest->lock, flags);
2962 /* don't kick the migration_thread, if the curr
2963 * task on busiest cpu can't be moved to this_cpu
2965 if (!cpumask_test_cpu(this_cpu,
2966 &busiest->curr->cpus_allowed)) {
2967 raw_spin_unlock_irqrestore(&busiest->lock,
2968 flags);
2969 all_pinned = 1;
2970 goto out_one_pinned;
2973 if (!busiest->active_balance) {
2974 busiest->active_balance = 1;
2975 busiest->push_cpu = this_cpu;
2976 active_balance = 1;
2978 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2979 if (active_balance)
2980 wake_up_process(busiest->migration_thread);
2983 * We've kicked active balancing, reset the failure
2984 * counter.
2986 sd->nr_balance_failed = sd->cache_nice_tries+1;
2988 } else
2989 sd->nr_balance_failed = 0;
2991 if (likely(!active_balance)) {
2992 /* We were unbalanced, so reset the balancing interval */
2993 sd->balance_interval = sd->min_interval;
2994 } else {
2996 * If we've begun active balancing, start to back off. This
2997 * case may not be covered by the all_pinned logic if there
2998 * is only 1 task on the busy runqueue (because we don't call
2999 * move_tasks).
3001 if (sd->balance_interval < sd->max_interval)
3002 sd->balance_interval *= 2;
3005 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3006 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3007 ld_moved = -1;
3009 goto out;
3011 out_balanced:
3012 schedstat_inc(sd, lb_balanced[idle]);
3014 sd->nr_balance_failed = 0;
3016 out_one_pinned:
3017 /* tune up the balancing interval */
3018 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3019 (sd->balance_interval < sd->max_interval))
3020 sd->balance_interval *= 2;
3022 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3023 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3024 ld_moved = -1;
3025 else
3026 ld_moved = 0;
3027 out:
3028 if (ld_moved)
3029 update_shares(sd);
3030 return ld_moved;
3034 * idle_balance is called by schedule() if this_cpu is about to become
3035 * idle. Attempts to pull tasks from other CPUs.
3037 static void idle_balance(int this_cpu, struct rq *this_rq)
3039 struct sched_domain *sd;
3040 int pulled_task = 0;
3041 unsigned long next_balance = jiffies + HZ;
3043 this_rq->idle_stamp = this_rq->clock;
3045 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3046 return;
3049 * Drop the rq->lock, but keep IRQ/preempt disabled.
3051 raw_spin_unlock(&this_rq->lock);
3053 for_each_domain(this_cpu, sd) {
3054 unsigned long interval;
3055 int balance = 1;
3057 if (!(sd->flags & SD_LOAD_BALANCE))
3058 continue;
3060 if (sd->flags & SD_BALANCE_NEWIDLE) {
3061 /* If we've pulled tasks over stop searching: */
3062 pulled_task = load_balance(this_cpu, this_rq,
3063 sd, CPU_NEWLY_IDLE, &balance);
3066 interval = msecs_to_jiffies(sd->balance_interval);
3067 if (time_after(next_balance, sd->last_balance + interval))
3068 next_balance = sd->last_balance + interval;
3069 if (pulled_task) {
3070 this_rq->idle_stamp = 0;
3071 break;
3075 raw_spin_lock(&this_rq->lock);
3077 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3079 * We are going idle. next_balance may be set based on
3080 * a busy processor. So reset next_balance.
3082 this_rq->next_balance = next_balance;
3087 * active_load_balance is run by migration threads. It pushes running tasks
3088 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3089 * running on each physical CPU where possible, and avoids physical /
3090 * logical imbalances.
3092 * Called with busiest_rq locked.
3094 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3096 int target_cpu = busiest_rq->push_cpu;
3097 struct sched_domain *sd;
3098 struct rq *target_rq;
3100 /* Is there any task to move? */
3101 if (busiest_rq->nr_running <= 1)
3102 return;
3104 target_rq = cpu_rq(target_cpu);
3107 * This condition is "impossible", if it occurs
3108 * we need to fix it. Originally reported by
3109 * Bjorn Helgaas on a 128-cpu setup.
3111 BUG_ON(busiest_rq == target_rq);
3113 /* move a task from busiest_rq to target_rq */
3114 double_lock_balance(busiest_rq, target_rq);
3115 update_rq_clock(busiest_rq);
3116 update_rq_clock(target_rq);
3118 /* Search for an sd spanning us and the target CPU. */
3119 for_each_domain(target_cpu, sd) {
3120 if ((sd->flags & SD_LOAD_BALANCE) &&
3121 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3122 break;
3125 if (likely(sd)) {
3126 schedstat_inc(sd, alb_count);
3128 if (move_one_task(target_rq, target_cpu, busiest_rq,
3129 sd, CPU_IDLE))
3130 schedstat_inc(sd, alb_pushed);
3131 else
3132 schedstat_inc(sd, alb_failed);
3134 double_unlock_balance(busiest_rq, target_rq);
3137 #ifdef CONFIG_NO_HZ
3138 static struct {
3139 atomic_t load_balancer;
3140 cpumask_var_t cpu_mask;
3141 cpumask_var_t ilb_grp_nohz_mask;
3142 } nohz ____cacheline_aligned = {
3143 .load_balancer = ATOMIC_INIT(-1),
3146 int get_nohz_load_balancer(void)
3148 return atomic_read(&nohz.load_balancer);
3151 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3153 * lowest_flag_domain - Return lowest sched_domain containing flag.
3154 * @cpu: The cpu whose lowest level of sched domain is to
3155 * be returned.
3156 * @flag: The flag to check for the lowest sched_domain
3157 * for the given cpu.
3159 * Returns the lowest sched_domain of a cpu which contains the given flag.
3161 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3163 struct sched_domain *sd;
3165 for_each_domain(cpu, sd)
3166 if (sd && (sd->flags & flag))
3167 break;
3169 return sd;
3173 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3174 * @cpu: The cpu whose domains we're iterating over.
3175 * @sd: variable holding the value of the power_savings_sd
3176 * for cpu.
3177 * @flag: The flag to filter the sched_domains to be iterated.
3179 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3180 * set, starting from the lowest sched_domain to the highest.
3182 #define for_each_flag_domain(cpu, sd, flag) \
3183 for (sd = lowest_flag_domain(cpu, flag); \
3184 (sd && (sd->flags & flag)); sd = sd->parent)
3187 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3188 * @ilb_group: group to be checked for semi-idleness
3190 * Returns: 1 if the group is semi-idle. 0 otherwise.
3192 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3193 * and atleast one non-idle CPU. This helper function checks if the given
3194 * sched_group is semi-idle or not.
3196 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3198 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3199 sched_group_cpus(ilb_group));
3202 * A sched_group is semi-idle when it has atleast one busy cpu
3203 * and atleast one idle cpu.
3205 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3206 return 0;
3208 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3209 return 0;
3211 return 1;
3214 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3215 * @cpu: The cpu which is nominating a new idle_load_balancer.
3217 * Returns: Returns the id of the idle load balancer if it exists,
3218 * Else, returns >= nr_cpu_ids.
3220 * This algorithm picks the idle load balancer such that it belongs to a
3221 * semi-idle powersavings sched_domain. The idea is to try and avoid
3222 * completely idle packages/cores just for the purpose of idle load balancing
3223 * when there are other idle cpu's which are better suited for that job.
3225 static int find_new_ilb(int cpu)
3227 struct sched_domain *sd;
3228 struct sched_group *ilb_group;
3231 * Have idle load balancer selection from semi-idle packages only
3232 * when power-aware load balancing is enabled
3234 if (!(sched_smt_power_savings || sched_mc_power_savings))
3235 goto out_done;
3238 * Optimize for the case when we have no idle CPUs or only one
3239 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3241 if (cpumask_weight(nohz.cpu_mask) < 2)
3242 goto out_done;
3244 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3245 ilb_group = sd->groups;
3247 do {
3248 if (is_semi_idle_group(ilb_group))
3249 return cpumask_first(nohz.ilb_grp_nohz_mask);
3251 ilb_group = ilb_group->next;
3253 } while (ilb_group != sd->groups);
3256 out_done:
3257 return cpumask_first(nohz.cpu_mask);
3259 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3260 static inline int find_new_ilb(int call_cpu)
3262 return cpumask_first(nohz.cpu_mask);
3264 #endif
3267 * This routine will try to nominate the ilb (idle load balancing)
3268 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3269 * load balancing on behalf of all those cpus. If all the cpus in the system
3270 * go into this tickless mode, then there will be no ilb owner (as there is
3271 * no need for one) and all the cpus will sleep till the next wakeup event
3272 * arrives...
3274 * For the ilb owner, tick is not stopped. And this tick will be used
3275 * for idle load balancing. ilb owner will still be part of
3276 * nohz.cpu_mask..
3278 * While stopping the tick, this cpu will become the ilb owner if there
3279 * is no other owner. And will be the owner till that cpu becomes busy
3280 * or if all cpus in the system stop their ticks at which point
3281 * there is no need for ilb owner.
3283 * When the ilb owner becomes busy, it nominates another owner, during the
3284 * next busy scheduler_tick()
3286 int select_nohz_load_balancer(int stop_tick)
3288 int cpu = smp_processor_id();
3290 if (stop_tick) {
3291 cpu_rq(cpu)->in_nohz_recently = 1;
3293 if (!cpu_active(cpu)) {
3294 if (atomic_read(&nohz.load_balancer) != cpu)
3295 return 0;
3298 * If we are going offline and still the leader,
3299 * give up!
3301 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3302 BUG();
3304 return 0;
3307 cpumask_set_cpu(cpu, nohz.cpu_mask);
3309 /* time for ilb owner also to sleep */
3310 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3311 if (atomic_read(&nohz.load_balancer) == cpu)
3312 atomic_set(&nohz.load_balancer, -1);
3313 return 0;
3316 if (atomic_read(&nohz.load_balancer) == -1) {
3317 /* make me the ilb owner */
3318 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3319 return 1;
3320 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3321 int new_ilb;
3323 if (!(sched_smt_power_savings ||
3324 sched_mc_power_savings))
3325 return 1;
3327 * Check to see if there is a more power-efficient
3328 * ilb.
3330 new_ilb = find_new_ilb(cpu);
3331 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3332 atomic_set(&nohz.load_balancer, -1);
3333 resched_cpu(new_ilb);
3334 return 0;
3336 return 1;
3338 } else {
3339 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3340 return 0;
3342 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3344 if (atomic_read(&nohz.load_balancer) == cpu)
3345 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3346 BUG();
3348 return 0;
3350 #endif
3352 static DEFINE_SPINLOCK(balancing);
3355 * It checks each scheduling domain to see if it is due to be balanced,
3356 * and initiates a balancing operation if so.
3358 * Balancing parameters are set up in arch_init_sched_domains.
3360 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3362 int balance = 1;
3363 struct rq *rq = cpu_rq(cpu);
3364 unsigned long interval;
3365 struct sched_domain *sd;
3366 /* Earliest time when we have to do rebalance again */
3367 unsigned long next_balance = jiffies + 60*HZ;
3368 int update_next_balance = 0;
3369 int need_serialize;
3371 for_each_domain(cpu, sd) {
3372 if (!(sd->flags & SD_LOAD_BALANCE))
3373 continue;
3375 interval = sd->balance_interval;
3376 if (idle != CPU_IDLE)
3377 interval *= sd->busy_factor;
3379 /* scale ms to jiffies */
3380 interval = msecs_to_jiffies(interval);
3381 if (unlikely(!interval))
3382 interval = 1;
3383 if (interval > HZ*NR_CPUS/10)
3384 interval = HZ*NR_CPUS/10;
3386 need_serialize = sd->flags & SD_SERIALIZE;
3388 if (need_serialize) {
3389 if (!spin_trylock(&balancing))
3390 goto out;
3393 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3394 if (load_balance(cpu, rq, sd, idle, &balance)) {
3396 * We've pulled tasks over so either we're no
3397 * longer idle, or one of our SMT siblings is
3398 * not idle.
3400 idle = CPU_NOT_IDLE;
3402 sd->last_balance = jiffies;
3404 if (need_serialize)
3405 spin_unlock(&balancing);
3406 out:
3407 if (time_after(next_balance, sd->last_balance + interval)) {
3408 next_balance = sd->last_balance + interval;
3409 update_next_balance = 1;
3413 * Stop the load balance at this level. There is another
3414 * CPU in our sched group which is doing load balancing more
3415 * actively.
3417 if (!balance)
3418 break;
3422 * next_balance will be updated only when there is a need.
3423 * When the cpu is attached to null domain for ex, it will not be
3424 * updated.
3426 if (likely(update_next_balance))
3427 rq->next_balance = next_balance;
3431 * run_rebalance_domains is triggered when needed from the scheduler tick.
3432 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3433 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3435 static void run_rebalance_domains(struct softirq_action *h)
3437 int this_cpu = smp_processor_id();
3438 struct rq *this_rq = cpu_rq(this_cpu);
3439 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3440 CPU_IDLE : CPU_NOT_IDLE;
3442 rebalance_domains(this_cpu, idle);
3444 #ifdef CONFIG_NO_HZ
3446 * If this cpu is the owner for idle load balancing, then do the
3447 * balancing on behalf of the other idle cpus whose ticks are
3448 * stopped.
3450 if (this_rq->idle_at_tick &&
3451 atomic_read(&nohz.load_balancer) == this_cpu) {
3452 struct rq *rq;
3453 int balance_cpu;
3455 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3456 if (balance_cpu == this_cpu)
3457 continue;
3460 * If this cpu gets work to do, stop the load balancing
3461 * work being done for other cpus. Next load
3462 * balancing owner will pick it up.
3464 if (need_resched())
3465 break;
3467 rebalance_domains(balance_cpu, CPU_IDLE);
3469 rq = cpu_rq(balance_cpu);
3470 if (time_after(this_rq->next_balance, rq->next_balance))
3471 this_rq->next_balance = rq->next_balance;
3474 #endif
3477 static inline int on_null_domain(int cpu)
3479 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3483 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3485 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3486 * idle load balancing owner or decide to stop the periodic load balancing,
3487 * if the whole system is idle.
3489 static inline void trigger_load_balance(struct rq *rq, int cpu)
3491 #ifdef CONFIG_NO_HZ
3493 * If we were in the nohz mode recently and busy at the current
3494 * scheduler tick, then check if we need to nominate new idle
3495 * load balancer.
3497 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3498 rq->in_nohz_recently = 0;
3500 if (atomic_read(&nohz.load_balancer) == cpu) {
3501 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3502 atomic_set(&nohz.load_balancer, -1);
3505 if (atomic_read(&nohz.load_balancer) == -1) {
3506 int ilb = find_new_ilb(cpu);
3508 if (ilb < nr_cpu_ids)
3509 resched_cpu(ilb);
3514 * If this cpu is idle and doing idle load balancing for all the
3515 * cpus with ticks stopped, is it time for that to stop?
3517 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3518 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3519 resched_cpu(cpu);
3520 return;
3524 * If this cpu is idle and the idle load balancing is done by
3525 * someone else, then no need raise the SCHED_SOFTIRQ
3527 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3528 cpumask_test_cpu(cpu, nohz.cpu_mask))
3529 return;
3530 #endif
3531 /* Don't need to rebalance while attached to NULL domain */
3532 if (time_after_eq(jiffies, rq->next_balance) &&
3533 likely(!on_null_domain(cpu)))
3534 raise_softirq(SCHED_SOFTIRQ);
3537 static void rq_online_fair(struct rq *rq)
3539 update_sysctl();
3542 static void rq_offline_fair(struct rq *rq)
3544 update_sysctl();
3547 #else /* CONFIG_SMP */
3550 * on UP we do not need to balance between CPUs:
3552 static inline void idle_balance(int cpu, struct rq *rq)
3556 #endif /* CONFIG_SMP */
3559 * scheduler tick hitting a task of our scheduling class:
3561 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3563 struct cfs_rq *cfs_rq;
3564 struct sched_entity *se = &curr->se;
3566 for_each_sched_entity(se) {
3567 cfs_rq = cfs_rq_of(se);
3568 entity_tick(cfs_rq, se, queued);
3573 * called on fork with the child task as argument from the parent's context
3574 * - child not yet on the tasklist
3575 * - preemption disabled
3577 static void task_fork_fair(struct task_struct *p)
3579 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3580 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3581 int this_cpu = smp_processor_id();
3582 struct rq *rq = this_rq();
3583 unsigned long flags;
3585 raw_spin_lock_irqsave(&rq->lock, flags);
3587 if (unlikely(task_cpu(p) != this_cpu))
3588 __set_task_cpu(p, this_cpu);
3590 update_curr(cfs_rq);
3592 if (curr)
3593 se->vruntime = curr->vruntime;
3594 place_entity(cfs_rq, se, 1);
3596 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3598 * Upon rescheduling, sched_class::put_prev_task() will place
3599 * 'current' within the tree based on its new key value.
3601 swap(curr->vruntime, se->vruntime);
3602 resched_task(rq->curr);
3605 se->vruntime -= cfs_rq->min_vruntime;
3607 raw_spin_unlock_irqrestore(&rq->lock, flags);
3611 * Priority of the task has changed. Check to see if we preempt
3612 * the current task.
3614 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3615 int oldprio, int running)
3618 * Reschedule if we are currently running on this runqueue and
3619 * our priority decreased, or if we are not currently running on
3620 * this runqueue and our priority is higher than the current's
3622 if (running) {
3623 if (p->prio > oldprio)
3624 resched_task(rq->curr);
3625 } else
3626 check_preempt_curr(rq, p, 0);
3630 * We switched to the sched_fair class.
3632 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3633 int running)
3636 * We were most likely switched from sched_rt, so
3637 * kick off the schedule if running, otherwise just see
3638 * if we can still preempt the current task.
3640 if (running)
3641 resched_task(rq->curr);
3642 else
3643 check_preempt_curr(rq, p, 0);
3646 /* Account for a task changing its policy or group.
3648 * This routine is mostly called to set cfs_rq->curr field when a task
3649 * migrates between groups/classes.
3651 static void set_curr_task_fair(struct rq *rq)
3653 struct sched_entity *se = &rq->curr->se;
3655 for_each_sched_entity(se)
3656 set_next_entity(cfs_rq_of(se), se);
3659 #ifdef CONFIG_FAIR_GROUP_SCHED
3660 static void moved_group_fair(struct task_struct *p, int on_rq)
3662 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3664 update_curr(cfs_rq);
3665 if (!on_rq)
3666 place_entity(cfs_rq, &p->se, 1);
3668 #endif
3670 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3672 struct sched_entity *se = &task->se;
3673 unsigned int rr_interval = 0;
3676 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3677 * idle runqueue:
3679 if (rq->cfs.load.weight)
3680 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3682 return rr_interval;
3686 * All the scheduling class methods:
3688 static const struct sched_class fair_sched_class = {
3689 .next = &idle_sched_class,
3690 .enqueue_task = enqueue_task_fair,
3691 .dequeue_task = dequeue_task_fair,
3692 .yield_task = yield_task_fair,
3694 .check_preempt_curr = check_preempt_wakeup,
3696 .pick_next_task = pick_next_task_fair,
3697 .put_prev_task = put_prev_task_fair,
3699 #ifdef CONFIG_SMP
3700 .select_task_rq = select_task_rq_fair,
3702 .rq_online = rq_online_fair,
3703 .rq_offline = rq_offline_fair,
3705 .task_waking = task_waking_fair,
3706 #endif
3708 .set_curr_task = set_curr_task_fair,
3709 .task_tick = task_tick_fair,
3710 .task_fork = task_fork_fair,
3712 .prio_changed = prio_changed_fair,
3713 .switched_to = switched_to_fair,
3715 .get_rr_interval = get_rr_interval_fair,
3717 #ifdef CONFIG_FAIR_GROUP_SCHED
3718 .moved_group = moved_group_fair,
3719 #endif
3722 #ifdef CONFIG_SCHED_DEBUG
3723 static void print_cfs_stats(struct seq_file *m, int cpu)
3725 struct cfs_rq *cfs_rq;
3727 rcu_read_lock();
3728 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3729 print_cfs_rq(m, cpu, cfs_rq);
3730 rcu_read_unlock();
3732 #endif