1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
31 #include <linux/time.h>
32 #include <linux/random.h>
34 #include <cluster/masklog.h>
39 #include "blockcheck.h"
42 #include "extent_map.h"
43 #include "heartbeat.h"
46 #include "localalloc.h"
53 #include "buffer_head_io.h"
54 #include "ocfs2_trace.h"
56 DEFINE_SPINLOCK(trans_inc_lock
);
58 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
60 static int ocfs2_force_read_journal(struct inode
*inode
);
61 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
62 int node_num
, int slot_num
);
63 static int __ocfs2_recovery_thread(void *arg
);
64 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
65 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
);
66 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
67 int dirty
, int replayed
);
68 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
70 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
72 static int ocfs2_commit_thread(void *arg
);
73 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
75 struct ocfs2_dinode
*la_dinode
,
76 struct ocfs2_dinode
*tl_dinode
,
77 struct ocfs2_quota_recovery
*qrec
);
79 static inline int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
81 return __ocfs2_wait_on_mount(osb
, 0);
84 static inline int ocfs2_wait_on_quotas(struct ocfs2_super
*osb
)
86 return __ocfs2_wait_on_mount(osb
, 1);
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
94 enum ocfs2_replay_state
{
95 REPLAY_UNNEEDED
= 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED
, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE
/* Replay was already queued */
100 struct ocfs2_replay_map
{
101 unsigned int rm_slots
;
102 enum ocfs2_replay_state rm_state
;
103 unsigned char rm_replay_slots
[0];
106 void ocfs2_replay_map_set_state(struct ocfs2_super
*osb
, int state
)
108 if (!osb
->replay_map
)
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb
->replay_map
->rm_state
== REPLAY_DONE
)
115 osb
->replay_map
->rm_state
= state
;
118 int ocfs2_compute_replay_slots(struct ocfs2_super
*osb
)
120 struct ocfs2_replay_map
*replay_map
;
123 /* If replay map is already set, we don't do it again */
127 replay_map
= kzalloc(sizeof(struct ocfs2_replay_map
) +
128 (osb
->max_slots
* sizeof(char)), GFP_KERNEL
);
135 spin_lock(&osb
->osb_lock
);
137 replay_map
->rm_slots
= osb
->max_slots
;
138 replay_map
->rm_state
= REPLAY_UNNEEDED
;
140 /* set rm_replay_slots for offline slot(s) */
141 for (i
= 0; i
< replay_map
->rm_slots
; i
++) {
142 if (ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
) == -ENOENT
)
143 replay_map
->rm_replay_slots
[i
] = 1;
146 osb
->replay_map
= replay_map
;
147 spin_unlock(&osb
->osb_lock
);
151 void ocfs2_queue_replay_slots(struct ocfs2_super
*osb
)
153 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
159 if (replay_map
->rm_state
!= REPLAY_NEEDED
)
162 for (i
= 0; i
< replay_map
->rm_slots
; i
++)
163 if (replay_map
->rm_replay_slots
[i
])
164 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
,
166 replay_map
->rm_state
= REPLAY_DONE
;
169 void ocfs2_free_replay_slots(struct ocfs2_super
*osb
)
171 struct ocfs2_replay_map
*replay_map
= osb
->replay_map
;
173 if (!osb
->replay_map
)
177 osb
->replay_map
= NULL
;
180 int ocfs2_recovery_init(struct ocfs2_super
*osb
)
182 struct ocfs2_recovery_map
*rm
;
184 mutex_init(&osb
->recovery_lock
);
185 osb
->disable_recovery
= 0;
186 osb
->recovery_thread_task
= NULL
;
187 init_waitqueue_head(&osb
->recovery_event
);
189 rm
= kzalloc(sizeof(struct ocfs2_recovery_map
) +
190 osb
->max_slots
* sizeof(unsigned int),
197 rm
->rm_entries
= (unsigned int *)((char *)rm
+
198 sizeof(struct ocfs2_recovery_map
));
199 osb
->recovery_map
= rm
;
204 /* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
207 static int ocfs2_recovery_thread_running(struct ocfs2_super
*osb
)
210 return osb
->recovery_thread_task
!= NULL
;
213 void ocfs2_recovery_exit(struct ocfs2_super
*osb
)
215 struct ocfs2_recovery_map
*rm
;
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb
->recovery_lock
);
220 osb
->disable_recovery
= 1;
221 mutex_unlock(&osb
->recovery_lock
);
222 wait_event(osb
->recovery_event
, !ocfs2_recovery_thread_running(osb
));
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
227 flush_workqueue(ocfs2_wq
);
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
233 rm
= osb
->recovery_map
;
234 /* XXX: Should we bug if there are dirty entries? */
239 static int __ocfs2_recovery_map_test(struct ocfs2_super
*osb
,
240 unsigned int node_num
)
243 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
245 assert_spin_locked(&osb
->osb_lock
);
247 for (i
= 0; i
< rm
->rm_used
; i
++) {
248 if (rm
->rm_entries
[i
] == node_num
)
255 /* Behaves like test-and-set. Returns the previous value */
256 static int ocfs2_recovery_map_set(struct ocfs2_super
*osb
,
257 unsigned int node_num
)
259 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
261 spin_lock(&osb
->osb_lock
);
262 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
263 spin_unlock(&osb
->osb_lock
);
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm
->rm_used
>= osb
->max_slots
);
270 rm
->rm_entries
[rm
->rm_used
] = node_num
;
272 spin_unlock(&osb
->osb_lock
);
277 static void ocfs2_recovery_map_clear(struct ocfs2_super
*osb
,
278 unsigned int node_num
)
281 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
283 spin_lock(&osb
->osb_lock
);
285 for (i
= 0; i
< rm
->rm_used
; i
++) {
286 if (rm
->rm_entries
[i
] == node_num
)
290 if (i
< rm
->rm_used
) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm
->rm_entries
[i
]), &(rm
->rm_entries
[i
+ 1]),
293 (rm
->rm_used
- i
- 1) * sizeof(unsigned int));
297 spin_unlock(&osb
->osb_lock
);
300 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
303 unsigned int flushed
;
304 struct ocfs2_journal
*journal
= NULL
;
306 journal
= osb
->journal
;
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal
->j_trans_barrier
);
311 flushed
= atomic_read(&journal
->j_num_trans
);
312 trace_ocfs2_commit_cache_begin(flushed
);
314 up_write(&journal
->j_trans_barrier
);
318 jbd2_journal_lock_updates(journal
->j_journal
);
319 status
= jbd2_journal_flush(journal
->j_journal
);
320 jbd2_journal_unlock_updates(journal
->j_journal
);
322 up_write(&journal
->j_trans_barrier
);
327 ocfs2_inc_trans_id(journal
);
329 flushed
= atomic_read(&journal
->j_num_trans
);
330 atomic_set(&journal
->j_num_trans
, 0);
331 up_write(&journal
->j_trans_barrier
);
333 trace_ocfs2_commit_cache_end(journal
->j_trans_id
, flushed
);
335 ocfs2_wake_downconvert_thread(osb
);
336 wake_up(&journal
->j_checkpointed
);
341 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
343 journal_t
*journal
= osb
->journal
->j_journal
;
346 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
348 if (ocfs2_is_hard_readonly(osb
))
349 return ERR_PTR(-EROFS
);
351 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
352 BUG_ON(max_buffs
<= 0);
354 /* Nested transaction? Just return the handle... */
355 if (journal_current_handle())
356 return jbd2_journal_start(journal
, max_buffs
);
358 sb_start_intwrite(osb
->sb
);
360 down_read(&osb
->journal
->j_trans_barrier
);
362 handle
= jbd2_journal_start(journal
, max_buffs
);
363 if (IS_ERR(handle
)) {
364 up_read(&osb
->journal
->j_trans_barrier
);
365 sb_end_intwrite(osb
->sb
);
367 mlog_errno(PTR_ERR(handle
));
369 if (is_journal_aborted(journal
)) {
370 ocfs2_abort(osb
->sb
, "Detected aborted journal");
371 handle
= ERR_PTR(-EROFS
);
374 if (!ocfs2_mount_local(osb
))
375 atomic_inc(&(osb
->journal
->j_num_trans
));
381 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
385 struct ocfs2_journal
*journal
= osb
->journal
;
389 nested
= handle
->h_ref
> 1;
390 ret
= jbd2_journal_stop(handle
);
395 up_read(&journal
->j_trans_barrier
);
396 sb_end_intwrite(osb
->sb
);
403 * 'nblocks' is what you want to add to the current transaction.
405 * This might call jbd2_journal_restart() which will commit dirty buffers
406 * and then restart the transaction. Before calling
407 * ocfs2_extend_trans(), any changed blocks should have been
408 * dirtied. After calling it, all blocks which need to be changed must
409 * go through another set of journal_access/journal_dirty calls.
411 * WARNING: This will not release any semaphores or disk locks taken
412 * during the transaction, so make sure they were taken *before*
413 * start_trans or we'll have ordering deadlocks.
415 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
416 * good because transaction ids haven't yet been recorded on the
417 * cluster locks associated with this handle.
419 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
421 int status
, old_nblocks
;
429 old_nblocks
= handle
->h_buffer_credits
;
431 trace_ocfs2_extend_trans(old_nblocks
, nblocks
);
433 #ifdef CONFIG_OCFS2_DEBUG_FS
436 status
= jbd2_journal_extend(handle
, nblocks
);
444 trace_ocfs2_extend_trans_restart(old_nblocks
+ nblocks
);
445 status
= jbd2_journal_restart(handle
,
446 old_nblocks
+ nblocks
);
459 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
460 * If that fails, restart the transaction & regain write access for the
461 * buffer head which is used for metadata modifications.
462 * Taken from Ext4: extend_or_restart_transaction()
464 int ocfs2_allocate_extend_trans(handle_t
*handle
, int thresh
)
466 int status
, old_nblks
;
470 old_nblks
= handle
->h_buffer_credits
;
471 trace_ocfs2_allocate_extend_trans(old_nblks
, thresh
);
473 if (old_nblks
< thresh
)
476 status
= jbd2_journal_extend(handle
, OCFS2_MAX_TRANS_DATA
);
483 status
= jbd2_journal_restart(handle
, OCFS2_MAX_TRANS_DATA
);
493 struct ocfs2_triggers
{
494 struct jbd2_buffer_trigger_type ot_triggers
;
498 static inline struct ocfs2_triggers
*to_ocfs2_trigger(struct jbd2_buffer_trigger_type
*triggers
)
500 return container_of(triggers
, struct ocfs2_triggers
, ot_triggers
);
503 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
504 struct buffer_head
*bh
,
505 void *data
, size_t size
)
507 struct ocfs2_triggers
*ot
= to_ocfs2_trigger(triggers
);
510 * We aren't guaranteed to have the superblock here, so we
511 * must unconditionally compute the ecc data.
512 * __ocfs2_journal_access() will only set the triggers if
513 * metaecc is enabled.
515 ocfs2_block_check_compute(data
, size
, data
+ ot
->ot_offset
);
519 * Quota blocks have their own trigger because the struct ocfs2_block_check
520 * offset depends on the blocksize.
522 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
523 struct buffer_head
*bh
,
524 void *data
, size_t size
)
526 struct ocfs2_disk_dqtrailer
*dqt
=
527 ocfs2_block_dqtrailer(size
, data
);
530 * We aren't guaranteed to have the superblock here, so we
531 * must unconditionally compute the ecc data.
532 * __ocfs2_journal_access() will only set the triggers if
533 * metaecc is enabled.
535 ocfs2_block_check_compute(data
, size
, &dqt
->dq_check
);
539 * Directory blocks also have their own trigger because the
540 * struct ocfs2_block_check offset depends on the blocksize.
542 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type
*triggers
,
543 struct buffer_head
*bh
,
544 void *data
, size_t size
)
546 struct ocfs2_dir_block_trailer
*trailer
=
547 ocfs2_dir_trailer_from_size(size
, data
);
550 * We aren't guaranteed to have the superblock here, so we
551 * must unconditionally compute the ecc data.
552 * __ocfs2_journal_access() will only set the triggers if
553 * metaecc is enabled.
555 ocfs2_block_check_compute(data
, size
, &trailer
->db_check
);
558 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type
*triggers
,
559 struct buffer_head
*bh
)
562 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
563 "bh->b_blocknr = %llu\n",
565 (unsigned long long)bh
->b_blocknr
);
567 /* We aren't guaranteed to have the superblock here - but if we
568 * don't, it'll just crash. */
569 ocfs2_error(bh
->b_assoc_map
->host
->i_sb
,
570 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
573 static struct ocfs2_triggers di_triggers
= {
575 .t_frozen
= ocfs2_frozen_trigger
,
576 .t_abort
= ocfs2_abort_trigger
,
578 .ot_offset
= offsetof(struct ocfs2_dinode
, i_check
),
581 static struct ocfs2_triggers eb_triggers
= {
583 .t_frozen
= ocfs2_frozen_trigger
,
584 .t_abort
= ocfs2_abort_trigger
,
586 .ot_offset
= offsetof(struct ocfs2_extent_block
, h_check
),
589 static struct ocfs2_triggers rb_triggers
= {
591 .t_frozen
= ocfs2_frozen_trigger
,
592 .t_abort
= ocfs2_abort_trigger
,
594 .ot_offset
= offsetof(struct ocfs2_refcount_block
, rf_check
),
597 static struct ocfs2_triggers gd_triggers
= {
599 .t_frozen
= ocfs2_frozen_trigger
,
600 .t_abort
= ocfs2_abort_trigger
,
602 .ot_offset
= offsetof(struct ocfs2_group_desc
, bg_check
),
605 static struct ocfs2_triggers db_triggers
= {
607 .t_frozen
= ocfs2_db_frozen_trigger
,
608 .t_abort
= ocfs2_abort_trigger
,
612 static struct ocfs2_triggers xb_triggers
= {
614 .t_frozen
= ocfs2_frozen_trigger
,
615 .t_abort
= ocfs2_abort_trigger
,
617 .ot_offset
= offsetof(struct ocfs2_xattr_block
, xb_check
),
620 static struct ocfs2_triggers dq_triggers
= {
622 .t_frozen
= ocfs2_dq_frozen_trigger
,
623 .t_abort
= ocfs2_abort_trigger
,
627 static struct ocfs2_triggers dr_triggers
= {
629 .t_frozen
= ocfs2_frozen_trigger
,
630 .t_abort
= ocfs2_abort_trigger
,
632 .ot_offset
= offsetof(struct ocfs2_dx_root_block
, dr_check
),
635 static struct ocfs2_triggers dl_triggers
= {
637 .t_frozen
= ocfs2_frozen_trigger
,
638 .t_abort
= ocfs2_abort_trigger
,
640 .ot_offset
= offsetof(struct ocfs2_dx_leaf
, dl_check
),
643 static int __ocfs2_journal_access(handle_t
*handle
,
644 struct ocfs2_caching_info
*ci
,
645 struct buffer_head
*bh
,
646 struct ocfs2_triggers
*triggers
,
650 struct ocfs2_super
*osb
=
651 OCFS2_SB(ocfs2_metadata_cache_get_super(ci
));
653 BUG_ON(!ci
|| !ci
->ci_ops
);
657 trace_ocfs2_journal_access(
658 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
659 (unsigned long long)bh
->b_blocknr
, type
, bh
->b_size
);
661 /* we can safely remove this assertion after testing. */
662 if (!buffer_uptodate(bh
)) {
663 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
664 mlog(ML_ERROR
, "b_blocknr=%llu\n",
665 (unsigned long long)bh
->b_blocknr
);
669 /* Set the current transaction information on the ci so
670 * that the locking code knows whether it can drop it's locks
671 * on this ci or not. We're protected from the commit
672 * thread updating the current transaction id until
673 * ocfs2_commit_trans() because ocfs2_start_trans() took
674 * j_trans_barrier for us. */
675 ocfs2_set_ci_lock_trans(osb
->journal
, ci
);
677 ocfs2_metadata_cache_io_lock(ci
);
679 case OCFS2_JOURNAL_ACCESS_CREATE
:
680 case OCFS2_JOURNAL_ACCESS_WRITE
:
681 status
= jbd2_journal_get_write_access(handle
, bh
);
684 case OCFS2_JOURNAL_ACCESS_UNDO
:
685 status
= jbd2_journal_get_undo_access(handle
, bh
);
690 mlog(ML_ERROR
, "Unknown access type!\n");
692 if (!status
&& ocfs2_meta_ecc(osb
) && triggers
)
693 jbd2_journal_set_triggers(bh
, &triggers
->ot_triggers
);
694 ocfs2_metadata_cache_io_unlock(ci
);
697 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
703 int ocfs2_journal_access_di(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
704 struct buffer_head
*bh
, int type
)
706 return __ocfs2_journal_access(handle
, ci
, bh
, &di_triggers
, type
);
709 int ocfs2_journal_access_eb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
710 struct buffer_head
*bh
, int type
)
712 return __ocfs2_journal_access(handle
, ci
, bh
, &eb_triggers
, type
);
715 int ocfs2_journal_access_rb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
716 struct buffer_head
*bh
, int type
)
718 return __ocfs2_journal_access(handle
, ci
, bh
, &rb_triggers
,
722 int ocfs2_journal_access_gd(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
723 struct buffer_head
*bh
, int type
)
725 return __ocfs2_journal_access(handle
, ci
, bh
, &gd_triggers
, type
);
728 int ocfs2_journal_access_db(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
729 struct buffer_head
*bh
, int type
)
731 return __ocfs2_journal_access(handle
, ci
, bh
, &db_triggers
, type
);
734 int ocfs2_journal_access_xb(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
735 struct buffer_head
*bh
, int type
)
737 return __ocfs2_journal_access(handle
, ci
, bh
, &xb_triggers
, type
);
740 int ocfs2_journal_access_dq(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
741 struct buffer_head
*bh
, int type
)
743 return __ocfs2_journal_access(handle
, ci
, bh
, &dq_triggers
, type
);
746 int ocfs2_journal_access_dr(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
747 struct buffer_head
*bh
, int type
)
749 return __ocfs2_journal_access(handle
, ci
, bh
, &dr_triggers
, type
);
752 int ocfs2_journal_access_dl(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
753 struct buffer_head
*bh
, int type
)
755 return __ocfs2_journal_access(handle
, ci
, bh
, &dl_triggers
, type
);
758 int ocfs2_journal_access(handle_t
*handle
, struct ocfs2_caching_info
*ci
,
759 struct buffer_head
*bh
, int type
)
761 return __ocfs2_journal_access(handle
, ci
, bh
, NULL
, type
);
764 void ocfs2_journal_dirty(handle_t
*handle
, struct buffer_head
*bh
)
768 trace_ocfs2_journal_dirty((unsigned long long)bh
->b_blocknr
);
770 status
= jbd2_journal_dirty_metadata(handle
, bh
);
774 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
776 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
778 journal_t
*journal
= osb
->journal
->j_journal
;
779 unsigned long commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
781 if (osb
->osb_commit_interval
)
782 commit_interval
= osb
->osb_commit_interval
;
784 write_lock(&journal
->j_state_lock
);
785 journal
->j_commit_interval
= commit_interval
;
786 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
787 journal
->j_flags
|= JBD2_BARRIER
;
789 journal
->j_flags
&= ~JBD2_BARRIER
;
790 write_unlock(&journal
->j_state_lock
);
793 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
796 struct inode
*inode
= NULL
; /* the journal inode */
797 journal_t
*j_journal
= NULL
;
798 struct ocfs2_dinode
*di
= NULL
;
799 struct buffer_head
*bh
= NULL
;
800 struct ocfs2_super
*osb
;
805 osb
= journal
->j_osb
;
807 /* already have the inode for our journal */
808 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
815 if (is_bad_inode(inode
)) {
816 mlog(ML_ERROR
, "access error (bad inode)\n");
823 SET_INODE_JOURNAL(inode
);
824 OCFS2_I(inode
)->ip_open_count
++;
826 /* Skip recovery waits here - journal inode metadata never
827 * changes in a live cluster so it can be considered an
828 * exception to the rule. */
829 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
831 if (status
!= -ERESTARTSYS
)
832 mlog(ML_ERROR
, "Could not get lock on journal!\n");
837 di
= (struct ocfs2_dinode
*)bh
->b_data
;
839 if (i_size_read(inode
) < OCFS2_MIN_JOURNAL_SIZE
) {
840 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
846 trace_ocfs2_journal_init(i_size_read(inode
),
847 (unsigned long long)inode
->i_blocks
,
848 OCFS2_I(inode
)->ip_clusters
);
850 /* call the kernels journal init function now */
851 j_journal
= jbd2_journal_init_inode(inode
);
852 if (j_journal
== NULL
) {
853 mlog(ML_ERROR
, "Linux journal layer error\n");
858 trace_ocfs2_journal_init_maxlen(j_journal
->j_maxlen
);
860 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
861 OCFS2_JOURNAL_DIRTY_FL
);
863 journal
->j_journal
= j_journal
;
864 journal
->j_inode
= inode
;
867 ocfs2_set_journal_params(osb
);
869 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
875 ocfs2_inode_unlock(inode
, 1);
878 OCFS2_I(inode
)->ip_open_count
--;
886 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode
*di
)
888 le32_add_cpu(&(di
->id1
.journal1
.ij_recovery_generation
), 1);
891 static u32
ocfs2_get_recovery_generation(struct ocfs2_dinode
*di
)
893 return le32_to_cpu(di
->id1
.journal1
.ij_recovery_generation
);
896 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
897 int dirty
, int replayed
)
901 struct ocfs2_journal
*journal
= osb
->journal
;
902 struct buffer_head
*bh
= journal
->j_bh
;
903 struct ocfs2_dinode
*fe
;
905 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
907 /* The journal bh on the osb always comes from ocfs2_journal_init()
908 * and was validated there inside ocfs2_inode_lock_full(). It's a
909 * code bug if we mess it up. */
910 BUG_ON(!OCFS2_IS_VALID_DINODE(fe
));
912 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
914 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
916 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
917 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
920 ocfs2_bump_recovery_generation(fe
);
922 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
923 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(journal
->j_inode
));
931 * If the journal has been kmalloc'd it needs to be freed after this
934 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
936 struct ocfs2_journal
*journal
= NULL
;
938 struct inode
*inode
= NULL
;
939 int num_running_trans
= 0;
943 journal
= osb
->journal
;
947 inode
= journal
->j_inode
;
949 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
952 /* need to inc inode use count - jbd2_journal_destroy will iput. */
956 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
957 trace_ocfs2_journal_shutdown(num_running_trans
);
959 /* Do a commit_cache here. It will flush our journal, *and*
960 * release any locks that are still held.
961 * set the SHUTDOWN flag and release the trans lock.
962 * the commit thread will take the trans lock for us below. */
963 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
965 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
966 * drop the trans_lock (which we want to hold until we
967 * completely destroy the journal. */
968 if (osb
->commit_task
) {
969 /* Wait for the commit thread */
970 trace_ocfs2_journal_shutdown_wait(osb
->commit_task
);
971 kthread_stop(osb
->commit_task
);
972 osb
->commit_task
= NULL
;
975 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
977 if (ocfs2_mount_local(osb
)) {
978 jbd2_journal_lock_updates(journal
->j_journal
);
979 status
= jbd2_journal_flush(journal
->j_journal
);
980 jbd2_journal_unlock_updates(journal
->j_journal
);
987 * Do not toggle if flush was unsuccessful otherwise
988 * will leave dirty metadata in a "clean" journal
990 status
= ocfs2_journal_toggle_dirty(osb
, 0, 0);
995 /* Shutdown the kernel journal system */
996 jbd2_journal_destroy(journal
->j_journal
);
997 journal
->j_journal
= NULL
;
999 OCFS2_I(inode
)->ip_open_count
--;
1001 /* unlock our journal */
1002 ocfs2_inode_unlock(inode
, 1);
1004 brelse(journal
->j_bh
);
1005 journal
->j_bh
= NULL
;
1007 journal
->j_state
= OCFS2_JOURNAL_FREE
;
1009 // up_write(&journal->j_trans_barrier);
1015 static void ocfs2_clear_journal_error(struct super_block
*sb
,
1021 olderr
= jbd2_journal_errno(journal
);
1023 mlog(ML_ERROR
, "File system error %d recorded in "
1024 "journal %u.\n", olderr
, slot
);
1025 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
1028 jbd2_journal_ack_err(journal
);
1029 jbd2_journal_clear_err(journal
);
1033 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
, int replayed
)
1036 struct ocfs2_super
*osb
;
1040 osb
= journal
->j_osb
;
1042 status
= jbd2_journal_load(journal
->j_journal
);
1044 mlog(ML_ERROR
, "Failed to load journal!\n");
1048 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
1050 status
= ocfs2_journal_toggle_dirty(osb
, 1, replayed
);
1056 /* Launch the commit thread */
1058 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
1060 if (IS_ERR(osb
->commit_task
)) {
1061 status
= PTR_ERR(osb
->commit_task
);
1062 osb
->commit_task
= NULL
;
1063 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
1064 "error=%d", status
);
1068 osb
->commit_task
= NULL
;
1075 /* 'full' flag tells us whether we clear out all blocks or if we just
1076 * mark the journal clean */
1077 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
1083 status
= jbd2_journal_wipe(journal
->j_journal
, full
);
1089 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0, 0);
1097 static int ocfs2_recovery_completed(struct ocfs2_super
*osb
)
1100 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1102 spin_lock(&osb
->osb_lock
);
1103 empty
= (rm
->rm_used
== 0);
1104 spin_unlock(&osb
->osb_lock
);
1109 void ocfs2_wait_for_recovery(struct ocfs2_super
*osb
)
1111 wait_event(osb
->recovery_event
, ocfs2_recovery_completed(osb
));
1115 * JBD Might read a cached version of another nodes journal file. We
1116 * don't want this as this file changes often and we get no
1117 * notification on those changes. The only way to be sure that we've
1118 * got the most up to date version of those blocks then is to force
1119 * read them off disk. Just searching through the buffer cache won't
1120 * work as there may be pages backing this file which are still marked
1121 * up to date. We know things can't change on this file underneath us
1122 * as we have the lock by now :)
1124 static int ocfs2_force_read_journal(struct inode
*inode
)
1128 u64 v_blkno
, p_blkno
, p_blocks
, num_blocks
;
1129 #define CONCURRENT_JOURNAL_FILL 32ULL
1130 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
1132 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
1134 num_blocks
= ocfs2_blocks_for_bytes(inode
->i_sb
, i_size_read(inode
));
1136 while (v_blkno
< num_blocks
) {
1137 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
1138 &p_blkno
, &p_blocks
, NULL
);
1144 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
1145 p_blocks
= CONCURRENT_JOURNAL_FILL
;
1147 /* We are reading journal data which should not
1148 * be put in the uptodate cache */
1149 status
= ocfs2_read_blocks_sync(OCFS2_SB(inode
->i_sb
),
1150 p_blkno
, p_blocks
, bhs
);
1156 for(i
= 0; i
< p_blocks
; i
++) {
1161 v_blkno
+= p_blocks
;
1165 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
1170 struct ocfs2_la_recovery_item
{
1171 struct list_head lri_list
;
1173 struct ocfs2_dinode
*lri_la_dinode
;
1174 struct ocfs2_dinode
*lri_tl_dinode
;
1175 struct ocfs2_quota_recovery
*lri_qrec
;
1178 /* Does the second half of the recovery process. By this point, the
1179 * node is marked clean and can actually be considered recovered,
1180 * hence it's no longer in the recovery map, but there's still some
1181 * cleanup we can do which shouldn't happen within the recovery thread
1182 * as locking in that context becomes very difficult if we are to take
1183 * recovering nodes into account.
1185 * NOTE: This function can and will sleep on recovery of other nodes
1186 * during cluster locking, just like any other ocfs2 process.
1188 void ocfs2_complete_recovery(struct work_struct
*work
)
1191 struct ocfs2_journal
*journal
=
1192 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
1193 struct ocfs2_super
*osb
= journal
->j_osb
;
1194 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
1195 struct ocfs2_la_recovery_item
*item
, *n
;
1196 struct ocfs2_quota_recovery
*qrec
;
1197 LIST_HEAD(tmp_la_list
);
1199 trace_ocfs2_complete_recovery(
1200 (unsigned long long)OCFS2_I(journal
->j_inode
)->ip_blkno
);
1202 spin_lock(&journal
->j_lock
);
1203 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
1204 spin_unlock(&journal
->j_lock
);
1206 list_for_each_entry_safe(item
, n
, &tmp_la_list
, lri_list
) {
1207 list_del_init(&item
->lri_list
);
1209 ocfs2_wait_on_quotas(osb
);
1211 la_dinode
= item
->lri_la_dinode
;
1212 tl_dinode
= item
->lri_tl_dinode
;
1213 qrec
= item
->lri_qrec
;
1215 trace_ocfs2_complete_recovery_slot(item
->lri_slot
,
1216 la_dinode
? le64_to_cpu(la_dinode
->i_blkno
) : 0,
1217 tl_dinode
? le64_to_cpu(tl_dinode
->i_blkno
) : 0,
1221 ret
= ocfs2_complete_local_alloc_recovery(osb
,
1230 ret
= ocfs2_complete_truncate_log_recovery(osb
,
1238 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
1243 ret
= ocfs2_finish_quota_recovery(osb
, qrec
,
1247 /* Recovery info is already freed now */
1253 trace_ocfs2_complete_recovery_end(ret
);
1256 /* NOTE: This function always eats your references to la_dinode and
1257 * tl_dinode, either manually on error, or by passing them to
1258 * ocfs2_complete_recovery */
1259 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
1261 struct ocfs2_dinode
*la_dinode
,
1262 struct ocfs2_dinode
*tl_dinode
,
1263 struct ocfs2_quota_recovery
*qrec
)
1265 struct ocfs2_la_recovery_item
*item
;
1267 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
1269 /* Though we wish to avoid it, we are in fact safe in
1270 * skipping local alloc cleanup as fsck.ocfs2 is more
1271 * than capable of reclaiming unused space. */
1276 ocfs2_free_quota_recovery(qrec
);
1278 mlog_errno(-ENOMEM
);
1282 INIT_LIST_HEAD(&item
->lri_list
);
1283 item
->lri_la_dinode
= la_dinode
;
1284 item
->lri_slot
= slot_num
;
1285 item
->lri_tl_dinode
= tl_dinode
;
1286 item
->lri_qrec
= qrec
;
1288 spin_lock(&journal
->j_lock
);
1289 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
1290 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
1291 spin_unlock(&journal
->j_lock
);
1294 /* Called by the mount code to queue recovery the last part of
1295 * recovery for it's own and offline slot(s). */
1296 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
1298 struct ocfs2_journal
*journal
= osb
->journal
;
1300 if (ocfs2_is_hard_readonly(osb
))
1303 /* No need to queue up our truncate_log as regular cleanup will catch
1305 ocfs2_queue_recovery_completion(journal
, osb
->slot_num
,
1306 osb
->local_alloc_copy
, NULL
, NULL
);
1307 ocfs2_schedule_truncate_log_flush(osb
, 0);
1309 osb
->local_alloc_copy
= NULL
;
1312 /* queue to recover orphan slots for all offline slots */
1313 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1314 ocfs2_queue_replay_slots(osb
);
1315 ocfs2_free_replay_slots(osb
);
1318 void ocfs2_complete_quota_recovery(struct ocfs2_super
*osb
)
1320 if (osb
->quota_rec
) {
1321 ocfs2_queue_recovery_completion(osb
->journal
,
1326 osb
->quota_rec
= NULL
;
1330 static int __ocfs2_recovery_thread(void *arg
)
1332 int status
, node_num
, slot_num
;
1333 struct ocfs2_super
*osb
= arg
;
1334 struct ocfs2_recovery_map
*rm
= osb
->recovery_map
;
1335 int *rm_quota
= NULL
;
1336 int rm_quota_used
= 0, i
;
1337 struct ocfs2_quota_recovery
*qrec
;
1339 status
= ocfs2_wait_on_mount(osb
);
1344 rm_quota
= kzalloc(osb
->max_slots
* sizeof(int), GFP_NOFS
);
1350 status
= ocfs2_super_lock(osb
, 1);
1356 status
= ocfs2_compute_replay_slots(osb
);
1360 /* queue recovery for our own slot */
1361 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
1364 spin_lock(&osb
->osb_lock
);
1365 while (rm
->rm_used
) {
1366 /* It's always safe to remove entry zero, as we won't
1367 * clear it until ocfs2_recover_node() has succeeded. */
1368 node_num
= rm
->rm_entries
[0];
1369 spin_unlock(&osb
->osb_lock
);
1370 slot_num
= ocfs2_node_num_to_slot(osb
, node_num
);
1371 trace_ocfs2_recovery_thread_node(node_num
, slot_num
);
1372 if (slot_num
== -ENOENT
) {
1377 /* It is a bit subtle with quota recovery. We cannot do it
1378 * immediately because we have to obtain cluster locks from
1379 * quota files and we also don't want to just skip it because
1380 * then quota usage would be out of sync until some node takes
1381 * the slot. So we remember which nodes need quota recovery
1382 * and when everything else is done, we recover quotas. */
1383 for (i
= 0; i
< rm_quota_used
&& rm_quota
[i
] != slot_num
; i
++);
1384 if (i
== rm_quota_used
)
1385 rm_quota
[rm_quota_used
++] = slot_num
;
1387 status
= ocfs2_recover_node(osb
, node_num
, slot_num
);
1390 ocfs2_recovery_map_clear(osb
, node_num
);
1393 "Error %d recovering node %d on device (%u,%u)!\n",
1395 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
1396 mlog(ML_ERROR
, "Volume requires unmount.\n");
1399 spin_lock(&osb
->osb_lock
);
1401 spin_unlock(&osb
->osb_lock
);
1402 trace_ocfs2_recovery_thread_end(status
);
1404 /* Refresh all journal recovery generations from disk */
1405 status
= ocfs2_check_journals_nolocks(osb
);
1406 status
= (status
== -EROFS
) ? 0 : status
;
1410 /* Now it is right time to recover quotas... We have to do this under
1411 * superblock lock so that no one can start using the slot (and crash)
1412 * before we recover it */
1413 for (i
= 0; i
< rm_quota_used
; i
++) {
1414 qrec
= ocfs2_begin_quota_recovery(osb
, rm_quota
[i
]);
1416 status
= PTR_ERR(qrec
);
1420 ocfs2_queue_recovery_completion(osb
->journal
, rm_quota
[i
],
1424 ocfs2_super_unlock(osb
, 1);
1426 /* queue recovery for offline slots */
1427 ocfs2_queue_replay_slots(osb
);
1430 mutex_lock(&osb
->recovery_lock
);
1431 if (!status
&& !ocfs2_recovery_completed(osb
)) {
1432 mutex_unlock(&osb
->recovery_lock
);
1436 ocfs2_free_replay_slots(osb
);
1437 osb
->recovery_thread_task
= NULL
;
1438 mb(); /* sync with ocfs2_recovery_thread_running */
1439 wake_up(&osb
->recovery_event
);
1441 mutex_unlock(&osb
->recovery_lock
);
1445 /* no one is callint kthread_stop() for us so the kthread() api
1446 * requires that we call do_exit(). And it isn't exported, but
1447 * complete_and_exit() seems to be a minimal wrapper around it. */
1448 complete_and_exit(NULL
, status
);
1452 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
1454 mutex_lock(&osb
->recovery_lock
);
1456 trace_ocfs2_recovery_thread(node_num
, osb
->node_num
,
1457 osb
->disable_recovery
, osb
->recovery_thread_task
,
1458 osb
->disable_recovery
?
1459 -1 : ocfs2_recovery_map_set(osb
, node_num
));
1461 if (osb
->disable_recovery
)
1464 if (osb
->recovery_thread_task
)
1467 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
1469 if (IS_ERR(osb
->recovery_thread_task
)) {
1470 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
1471 osb
->recovery_thread_task
= NULL
;
1475 mutex_unlock(&osb
->recovery_lock
);
1476 wake_up(&osb
->recovery_event
);
1479 static int ocfs2_read_journal_inode(struct ocfs2_super
*osb
,
1481 struct buffer_head
**bh
,
1482 struct inode
**ret_inode
)
1484 int status
= -EACCES
;
1485 struct inode
*inode
= NULL
;
1487 BUG_ON(slot_num
>= osb
->max_slots
);
1489 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1491 if (!inode
|| is_bad_inode(inode
)) {
1495 SET_INODE_JOURNAL(inode
);
1497 status
= ocfs2_read_inode_block_full(inode
, bh
, OCFS2_BH_IGNORE_CACHE
);
1507 if (status
|| !ret_inode
)
1515 /* Does the actual journal replay and marks the journal inode as
1516 * clean. Will only replay if the journal inode is marked dirty. */
1517 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
1524 struct inode
*inode
= NULL
;
1525 struct ocfs2_dinode
*fe
;
1526 journal_t
*journal
= NULL
;
1527 struct buffer_head
*bh
= NULL
;
1530 status
= ocfs2_read_journal_inode(osb
, slot_num
, &bh
, &inode
);
1536 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
1537 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1542 * As the fs recovery is asynchronous, there is a small chance that
1543 * another node mounted (and recovered) the slot before the recovery
1544 * thread could get the lock. To handle that, we dirty read the journal
1545 * inode for that slot to get the recovery generation. If it is
1546 * different than what we expected, the slot has been recovered.
1547 * If not, it needs recovery.
1549 if (osb
->slot_recovery_generations
[slot_num
] != slot_reco_gen
) {
1550 trace_ocfs2_replay_journal_recovered(slot_num
,
1551 osb
->slot_recovery_generations
[slot_num
], slot_reco_gen
);
1552 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1557 /* Continue with recovery as the journal has not yet been recovered */
1559 status
= ocfs2_inode_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
1561 trace_ocfs2_replay_journal_lock_err(status
);
1562 if (status
!= -ERESTARTSYS
)
1563 mlog(ML_ERROR
, "Could not lock journal!\n");
1568 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
1570 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1571 slot_reco_gen
= ocfs2_get_recovery_generation(fe
);
1573 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
1574 trace_ocfs2_replay_journal_skip(node_num
);
1575 /* Refresh recovery generation for the slot */
1576 osb
->slot_recovery_generations
[slot_num
] = slot_reco_gen
;
1580 /* we need to run complete recovery for offline orphan slots */
1581 ocfs2_replay_map_set_state(osb
, REPLAY_NEEDED
);
1583 printk(KERN_NOTICE
"ocfs2: Begin replay journal (node %d, slot %d) on "\
1584 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1585 MINOR(osb
->sb
->s_dev
));
1587 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1589 status
= ocfs2_force_read_journal(inode
);
1595 journal
= jbd2_journal_init_inode(inode
);
1596 if (journal
== NULL
) {
1597 mlog(ML_ERROR
, "Linux journal layer error\n");
1602 status
= jbd2_journal_load(journal
);
1607 jbd2_journal_destroy(journal
);
1611 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1613 /* wipe the journal */
1614 jbd2_journal_lock_updates(journal
);
1615 status
= jbd2_journal_flush(journal
);
1616 jbd2_journal_unlock_updates(journal
);
1620 /* This will mark the node clean */
1621 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1622 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1623 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1625 /* Increment recovery generation to indicate successful recovery */
1626 ocfs2_bump_recovery_generation(fe
);
1627 osb
->slot_recovery_generations
[slot_num
] =
1628 ocfs2_get_recovery_generation(fe
);
1630 ocfs2_compute_meta_ecc(osb
->sb
, bh
->b_data
, &fe
->i_check
);
1631 status
= ocfs2_write_block(osb
, bh
, INODE_CACHE(inode
));
1638 jbd2_journal_destroy(journal
);
1640 printk(KERN_NOTICE
"ocfs2: End replay journal (node %d, slot %d) on "\
1641 "device (%u,%u)\n", node_num
, slot_num
, MAJOR(osb
->sb
->s_dev
),
1642 MINOR(osb
->sb
->s_dev
));
1644 /* drop the lock on this nodes journal */
1646 ocfs2_inode_unlock(inode
, 1);
1657 * Do the most important parts of node recovery:
1658 * - Replay it's journal
1659 * - Stamp a clean local allocator file
1660 * - Stamp a clean truncate log
1661 * - Mark the node clean
1663 * If this function completes without error, a node in OCFS2 can be
1664 * said to have been safely recovered. As a result, failure during the
1665 * second part of a nodes recovery process (local alloc recovery) is
1666 * far less concerning.
1668 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1669 int node_num
, int slot_num
)
1672 struct ocfs2_dinode
*la_copy
= NULL
;
1673 struct ocfs2_dinode
*tl_copy
= NULL
;
1675 trace_ocfs2_recover_node(node_num
, slot_num
, osb
->node_num
);
1677 /* Should not ever be called to recover ourselves -- in that
1678 * case we should've called ocfs2_journal_load instead. */
1679 BUG_ON(osb
->node_num
== node_num
);
1681 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1683 if (status
== -EBUSY
) {
1684 trace_ocfs2_recover_node_skip(slot_num
, node_num
);
1692 /* Stamp a clean local alloc file AFTER recovering the journal... */
1693 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1699 /* An error from begin_truncate_log_recovery is not
1700 * serious enough to warrant halting the rest of
1702 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1706 /* Likewise, this would be a strange but ultimately not so
1707 * harmful place to get an error... */
1708 status
= ocfs2_clear_slot(osb
, slot_num
);
1712 /* This will kfree the memory pointed to by la_copy and tl_copy */
1713 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1722 /* Test node liveness by trylocking his journal. If we get the lock,
1723 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1724 * still alive (we couldn't get the lock) and < 0 on error. */
1725 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1729 struct inode
*inode
= NULL
;
1731 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1733 if (inode
== NULL
) {
1734 mlog(ML_ERROR
, "access error\n");
1738 if (is_bad_inode(inode
)) {
1739 mlog(ML_ERROR
, "access error (bad inode)\n");
1745 SET_INODE_JOURNAL(inode
);
1747 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1748 status
= ocfs2_inode_lock_full(inode
, NULL
, 1, flags
);
1750 if (status
!= -EAGAIN
)
1755 ocfs2_inode_unlock(inode
, 1);
1763 /* Call this underneath ocfs2_super_lock. It also assumes that the
1764 * slot info struct has been updated from disk. */
1765 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1767 unsigned int node_num
;
1770 struct buffer_head
*bh
= NULL
;
1771 struct ocfs2_dinode
*di
;
1773 /* This is called with the super block cluster lock, so we
1774 * know that the slot map can't change underneath us. */
1776 for (i
= 0; i
< osb
->max_slots
; i
++) {
1777 /* Read journal inode to get the recovery generation */
1778 status
= ocfs2_read_journal_inode(osb
, i
, &bh
, NULL
);
1783 di
= (struct ocfs2_dinode
*)bh
->b_data
;
1784 gen
= ocfs2_get_recovery_generation(di
);
1788 spin_lock(&osb
->osb_lock
);
1789 osb
->slot_recovery_generations
[i
] = gen
;
1791 trace_ocfs2_mark_dead_nodes(i
,
1792 osb
->slot_recovery_generations
[i
]);
1794 if (i
== osb
->slot_num
) {
1795 spin_unlock(&osb
->osb_lock
);
1799 status
= ocfs2_slot_to_node_num_locked(osb
, i
, &node_num
);
1800 if (status
== -ENOENT
) {
1801 spin_unlock(&osb
->osb_lock
);
1805 if (__ocfs2_recovery_map_test(osb
, node_num
)) {
1806 spin_unlock(&osb
->osb_lock
);
1809 spin_unlock(&osb
->osb_lock
);
1811 /* Ok, we have a slot occupied by another node which
1812 * is not in the recovery map. We trylock his journal
1813 * file here to test if he's alive. */
1814 status
= ocfs2_trylock_journal(osb
, i
);
1816 /* Since we're called from mount, we know that
1817 * the recovery thread can't race us on
1818 * setting / checking the recovery bits. */
1819 ocfs2_recovery_thread(osb
, node_num
);
1820 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1832 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1833 * randomness to the timeout to minimize multple nodes firing the timer at the
1836 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1840 get_random_bytes(&time
, sizeof(time
));
1841 time
= ORPHAN_SCAN_SCHEDULE_TIMEOUT
+ (time
% 5000);
1842 return msecs_to_jiffies(time
);
1846 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1847 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1848 * is done to catch any orphans that are left over in orphan directories.
1850 * It scans all slots, even ones that are in use. It does so to handle the
1851 * case described below:
1853 * Node 1 has an inode it was using. The dentry went away due to memory
1854 * pressure. Node 1 closes the inode, but it's on the free list. The node
1855 * has the open lock.
1856 * Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1857 * but node 1 has no dentry and doesn't get the message. It trylocks the
1858 * open lock, sees that another node has a PR, and does nothing.
1859 * Later node 2 runs its orphan dir. It igets the inode, trylocks the
1860 * open lock, sees the PR still, and does nothing.
1861 * Basically, we have to trigger an orphan iput on node 1. The only way
1862 * for this to happen is if node 1 runs node 2's orphan dir.
1864 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1865 * seconds. It gets an EX lock on os_lockres and checks sequence number
1866 * stored in LVB. If the sequence number has changed, it means some other
1867 * node has done the scan. This node skips the scan and tracks the
1868 * sequence number. If the sequence number didn't change, it means a scan
1869 * hasn't happened. The node queues a scan and increments the
1870 * sequence number in the LVB.
1872 void ocfs2_queue_orphan_scan(struct ocfs2_super
*osb
)
1874 struct ocfs2_orphan_scan
*os
;
1878 os
= &osb
->osb_orphan_scan
;
1880 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1883 trace_ocfs2_queue_orphan_scan_begin(os
->os_count
, os
->os_seqno
,
1884 atomic_read(&os
->os_state
));
1886 status
= ocfs2_orphan_scan_lock(osb
, &seqno
);
1888 if (status
!= -EAGAIN
)
1893 /* Do no queue the tasks if the volume is being umounted */
1894 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_INACTIVE
)
1897 if (os
->os_seqno
!= seqno
) {
1898 os
->os_seqno
= seqno
;
1902 for (i
= 0; i
< osb
->max_slots
; i
++)
1903 ocfs2_queue_recovery_completion(osb
->journal
, i
, NULL
, NULL
,
1906 * We queued a recovery on orphan slots, increment the sequence
1907 * number and update LVB so other node will skip the scan for a while
1911 os
->os_scantime
= CURRENT_TIME
;
1913 ocfs2_orphan_scan_unlock(osb
, seqno
);
1915 trace_ocfs2_queue_orphan_scan_end(os
->os_count
, os
->os_seqno
,
1916 atomic_read(&os
->os_state
));
1920 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1921 void ocfs2_orphan_scan_work(struct work_struct
*work
)
1923 struct ocfs2_orphan_scan
*os
;
1924 struct ocfs2_super
*osb
;
1926 os
= container_of(work
, struct ocfs2_orphan_scan
,
1927 os_orphan_scan_work
.work
);
1930 mutex_lock(&os
->os_lock
);
1931 ocfs2_queue_orphan_scan(osb
);
1932 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
)
1933 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1934 ocfs2_orphan_scan_timeout());
1935 mutex_unlock(&os
->os_lock
);
1938 void ocfs2_orphan_scan_stop(struct ocfs2_super
*osb
)
1940 struct ocfs2_orphan_scan
*os
;
1942 os
= &osb
->osb_orphan_scan
;
1943 if (atomic_read(&os
->os_state
) == ORPHAN_SCAN_ACTIVE
) {
1944 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1945 mutex_lock(&os
->os_lock
);
1946 cancel_delayed_work(&os
->os_orphan_scan_work
);
1947 mutex_unlock(&os
->os_lock
);
1951 void ocfs2_orphan_scan_init(struct ocfs2_super
*osb
)
1953 struct ocfs2_orphan_scan
*os
;
1955 os
= &osb
->osb_orphan_scan
;
1959 mutex_init(&os
->os_lock
);
1960 INIT_DELAYED_WORK(&os
->os_orphan_scan_work
, ocfs2_orphan_scan_work
);
1963 void ocfs2_orphan_scan_start(struct ocfs2_super
*osb
)
1965 struct ocfs2_orphan_scan
*os
;
1967 os
= &osb
->osb_orphan_scan
;
1968 os
->os_scantime
= CURRENT_TIME
;
1969 if (ocfs2_is_hard_readonly(osb
) || ocfs2_mount_local(osb
))
1970 atomic_set(&os
->os_state
, ORPHAN_SCAN_INACTIVE
);
1972 atomic_set(&os
->os_state
, ORPHAN_SCAN_ACTIVE
);
1973 queue_delayed_work(ocfs2_wq
, &os
->os_orphan_scan_work
,
1974 ocfs2_orphan_scan_timeout());
1978 struct ocfs2_orphan_filldir_priv
{
1979 struct dir_context ctx
;
1981 struct ocfs2_super
*osb
;
1984 static int ocfs2_orphan_filldir(void *priv
, const char *name
, int name_len
,
1985 loff_t pos
, u64 ino
, unsigned type
)
1987 struct ocfs2_orphan_filldir_priv
*p
= priv
;
1990 if (name_len
== 1 && !strncmp(".", name
, 1))
1992 if (name_len
== 2 && !strncmp("..", name
, 2))
1995 /* Skip bad inodes so that recovery can continue */
1996 iter
= ocfs2_iget(p
->osb
, ino
,
1997 OCFS2_FI_FLAG_ORPHAN_RECOVERY
, 0);
2001 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter
)->ip_blkno
);
2002 /* No locking is required for the next_orphan queue as there
2003 * is only ever a single process doing orphan recovery. */
2004 OCFS2_I(iter
)->ip_next_orphan
= p
->head
;
2010 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
2012 struct inode
**head
)
2015 struct inode
*orphan_dir_inode
= NULL
;
2016 struct ocfs2_orphan_filldir_priv priv
= {
2017 .ctx
.actor
= ocfs2_orphan_filldir
,
2022 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
2023 ORPHAN_DIR_SYSTEM_INODE
,
2025 if (!orphan_dir_inode
) {
2031 mutex_lock(&orphan_dir_inode
->i_mutex
);
2032 status
= ocfs2_inode_lock(orphan_dir_inode
, NULL
, 0);
2038 status
= ocfs2_dir_foreach(orphan_dir_inode
, &priv
.ctx
);
2047 ocfs2_inode_unlock(orphan_dir_inode
, 0);
2049 mutex_unlock(&orphan_dir_inode
->i_mutex
);
2050 iput(orphan_dir_inode
);
2054 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
2059 spin_lock(&osb
->osb_lock
);
2060 ret
= !osb
->osb_orphan_wipes
[slot
];
2061 spin_unlock(&osb
->osb_lock
);
2065 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
2068 spin_lock(&osb
->osb_lock
);
2069 /* Mark ourselves such that new processes in delete_inode()
2070 * know to quit early. */
2071 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2072 while (osb
->osb_orphan_wipes
[slot
]) {
2073 /* If any processes are already in the middle of an
2074 * orphan wipe on this dir, then we need to wait for
2076 spin_unlock(&osb
->osb_lock
);
2077 wait_event_interruptible(osb
->osb_wipe_event
,
2078 ocfs2_orphan_recovery_can_continue(osb
, slot
));
2079 spin_lock(&osb
->osb_lock
);
2081 spin_unlock(&osb
->osb_lock
);
2084 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
2087 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
2091 * Orphan recovery. Each mounted node has it's own orphan dir which we
2092 * must run during recovery. Our strategy here is to build a list of
2093 * the inodes in the orphan dir and iget/iput them. The VFS does
2094 * (most) of the rest of the work.
2096 * Orphan recovery can happen at any time, not just mount so we have a
2097 * couple of extra considerations.
2099 * - We grab as many inodes as we can under the orphan dir lock -
2100 * doing iget() outside the orphan dir risks getting a reference on
2102 * - We must be sure not to deadlock with other processes on the
2103 * system wanting to run delete_inode(). This can happen when they go
2104 * to lock the orphan dir and the orphan recovery process attempts to
2105 * iget() inside the orphan dir lock. This can be avoided by
2106 * advertising our state to ocfs2_delete_inode().
2108 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
2112 struct inode
*inode
= NULL
;
2114 struct ocfs2_inode_info
*oi
;
2116 trace_ocfs2_recover_orphans(slot
);
2118 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
2119 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
2120 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
2122 /* Error here should be noted, but we want to continue with as
2123 * many queued inodes as we've got. */
2128 oi
= OCFS2_I(inode
);
2129 trace_ocfs2_recover_orphans_iput(
2130 (unsigned long long)oi
->ip_blkno
);
2132 iter
= oi
->ip_next_orphan
;
2134 spin_lock(&oi
->ip_lock
);
2135 /* The remote delete code may have set these on the
2136 * assumption that the other node would wipe them
2137 * successfully. If they are still in the node's
2138 * orphan dir, we need to reset that state. */
2139 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
2141 /* Set the proper information to get us going into
2142 * ocfs2_delete_inode. */
2143 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
2144 spin_unlock(&oi
->ip_lock
);
2154 static int __ocfs2_wait_on_mount(struct ocfs2_super
*osb
, int quota
)
2156 /* This check is good because ocfs2 will wait on our recovery
2157 * thread before changing it to something other than MOUNTED
2159 wait_event(osb
->osb_mount_event
,
2160 (!quota
&& atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
) ||
2161 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED_QUOTAS
||
2162 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
2164 /* If there's an error on mount, then we may never get to the
2165 * MOUNTED flag, but this is set right before
2166 * dismount_volume() so we can trust it. */
2167 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
2168 trace_ocfs2_wait_on_mount(VOLUME_DISABLED
);
2169 mlog(0, "mount error, exiting!\n");
2176 static int ocfs2_commit_thread(void *arg
)
2179 struct ocfs2_super
*osb
= arg
;
2180 struct ocfs2_journal
*journal
= osb
->journal
;
2182 /* we can trust j_num_trans here because _should_stop() is only set in
2183 * shutdown and nobody other than ourselves should be able to start
2184 * transactions. committing on shutdown might take a few iterations
2185 * as final transactions put deleted inodes on the list */
2186 while (!(kthread_should_stop() &&
2187 atomic_read(&journal
->j_num_trans
) == 0)) {
2189 wait_event_interruptible(osb
->checkpoint_event
,
2190 atomic_read(&journal
->j_num_trans
)
2191 || kthread_should_stop());
2193 status
= ocfs2_commit_cache(osb
);
2197 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
2199 "commit_thread: %u transactions pending on "
2201 atomic_read(&journal
->j_num_trans
));
2208 /* Reads all the journal inodes without taking any cluster locks. Used
2209 * for hard readonly access to determine whether any journal requires
2210 * recovery. Also used to refresh the recovery generation numbers after
2211 * a journal has been recovered by another node.
2213 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
2217 struct buffer_head
*di_bh
= NULL
;
2218 struct ocfs2_dinode
*di
;
2219 int journal_dirty
= 0;
2221 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
2222 ret
= ocfs2_read_journal_inode(osb
, slot
, &di_bh
, NULL
);
2228 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
2230 osb
->slot_recovery_generations
[slot
] =
2231 ocfs2_get_recovery_generation(di
);
2233 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
2234 OCFS2_JOURNAL_DIRTY_FL
)