2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
63 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
65 /* let's not notify more than 100 times per second */
66 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69 * cgroup_mutex is the master lock. Any modification to cgroup or its
70 * hierarchy must be performed while holding it.
72 * css_set_lock protects task->cgroups pointer, the list of css_set
73 * objects, and the chain of tasks off each css_set.
75 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
76 * cgroup.h can use them for lockdep annotations.
78 DEFINE_MUTEX(cgroup_mutex
);
79 DEFINE_SPINLOCK(css_set_lock
);
81 #ifdef CONFIG_PROVE_RCU
82 EXPORT_SYMBOL_GPL(cgroup_mutex
);
83 EXPORT_SYMBOL_GPL(css_set_lock
);
87 * Protects cgroup_idr and css_idr so that IDs can be released without
88 * grabbing cgroup_mutex.
90 static DEFINE_SPINLOCK(cgroup_idr_lock
);
93 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
94 * against file removal/re-creation across css hiding.
96 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
98 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
100 #define cgroup_assert_mutex_or_rcu_locked() \
101 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
102 !lockdep_is_held(&cgroup_mutex), \
103 "cgroup_mutex or RCU read lock required");
106 * cgroup destruction makes heavy use of work items and there can be a lot
107 * of concurrent destructions. Use a separate workqueue so that cgroup
108 * destruction work items don't end up filling up max_active of system_wq
109 * which may lead to deadlock.
111 static struct workqueue_struct
*cgroup_destroy_wq
;
113 /* generate an array of cgroup subsystem pointers */
114 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
115 struct cgroup_subsys
*cgroup_subsys
[] = {
116 #include <linux/cgroup_subsys.h>
120 /* array of cgroup subsystem names */
121 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
122 static const char *cgroup_subsys_name
[] = {
123 #include <linux/cgroup_subsys.h>
127 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
129 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
130 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
131 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
132 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
133 #include <linux/cgroup_subsys.h>
136 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
137 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
138 #include <linux/cgroup_subsys.h>
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
143 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
144 #include <linux/cgroup_subsys.h>
148 static DEFINE_PER_CPU(struct cgroup_rstat_cpu
, cgrp_dfl_root_rstat_cpu
);
151 * The default hierarchy, reserved for the subsystems that are otherwise
152 * unattached - it never has more than a single cgroup, and all tasks are
153 * part of that cgroup.
155 struct cgroup_root cgrp_dfl_root
= { .cgrp
.rstat_cpu
= &cgrp_dfl_root_rstat_cpu
};
156 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
159 * The default hierarchy always exists but is hidden until mounted for the
160 * first time. This is for backward compatibility.
162 static bool cgrp_dfl_visible
;
164 /* some controllers are not supported in the default hierarchy */
165 static u16 cgrp_dfl_inhibit_ss_mask
;
167 /* some controllers are implicitly enabled on the default hierarchy */
168 static u16 cgrp_dfl_implicit_ss_mask
;
170 /* some controllers can be threaded on the default hierarchy */
171 static u16 cgrp_dfl_threaded_ss_mask
;
173 /* The list of hierarchy roots */
174 LIST_HEAD(cgroup_roots
);
175 static int cgroup_root_count
;
177 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
178 static DEFINE_IDR(cgroup_hierarchy_idr
);
181 * Assign a monotonically increasing serial number to csses. It guarantees
182 * cgroups with bigger numbers are newer than those with smaller numbers.
183 * Also, as csses are always appended to the parent's ->children list, it
184 * guarantees that sibling csses are always sorted in the ascending serial
185 * number order on the list. Protected by cgroup_mutex.
187 static u64 css_serial_nr_next
= 1;
190 * These bitmasks identify subsystems with specific features to avoid
191 * having to do iterative checks repeatedly.
193 static u16 have_fork_callback __read_mostly
;
194 static u16 have_exit_callback __read_mostly
;
195 static u16 have_free_callback __read_mostly
;
196 static u16 have_canfork_callback __read_mostly
;
198 /* cgroup namespace for init task */
199 struct cgroup_namespace init_cgroup_ns
= {
200 .count
= REFCOUNT_INIT(2),
201 .user_ns
= &init_user_ns
,
202 .ns
.ops
= &cgroupns_operations
,
203 .ns
.inum
= PROC_CGROUP_INIT_INO
,
204 .root_cset
= &init_css_set
,
207 static struct file_system_type cgroup2_fs_type
;
208 static struct cftype cgroup_base_files
[];
210 static int cgroup_apply_control(struct cgroup
*cgrp
);
211 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
212 static void css_task_iter_advance(struct css_task_iter
*it
);
213 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
214 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
215 struct cgroup_subsys
*ss
);
216 static void css_release(struct percpu_ref
*ref
);
217 static void kill_css(struct cgroup_subsys_state
*css
);
218 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
219 struct cgroup
*cgrp
, struct cftype cfts
[],
223 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
224 * @ssid: subsys ID of interest
226 * cgroup_subsys_enabled() can only be used with literal subsys names which
227 * is fine for individual subsystems but unsuitable for cgroup core. This
228 * is slower static_key_enabled() based test indexed by @ssid.
230 bool cgroup_ssid_enabled(int ssid
)
232 if (CGROUP_SUBSYS_COUNT
== 0)
235 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
239 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
240 * @cgrp: the cgroup of interest
242 * The default hierarchy is the v2 interface of cgroup and this function
243 * can be used to test whether a cgroup is on the default hierarchy for
244 * cases where a subsystem should behave differnetly depending on the
247 * The set of behaviors which change on the default hierarchy are still
248 * being determined and the mount option is prefixed with __DEVEL__.
250 * List of changed behaviors:
252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253 * and "name" are disallowed.
255 * - When mounting an existing superblock, mount options should match.
257 * - Remount is disallowed.
259 * - rename(2) is disallowed.
261 * - "tasks" is removed. Everything should be at process granularity. Use
262 * "cgroup.procs" instead.
264 * - "cgroup.procs" is not sorted. pids will be unique unless they got
265 * recycled inbetween reads.
267 * - "release_agent" and "notify_on_release" are removed. Replacement
268 * notification mechanism will be implemented.
270 * - "cgroup.clone_children" is removed.
272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
273 * and its descendants contain no task; otherwise, 1. The file also
274 * generates kernfs notification which can be monitored through poll and
275 * [di]notify when the value of the file changes.
277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278 * take masks of ancestors with non-empty cpus/mems, instead of being
279 * moved to an ancestor.
281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
282 * masks of ancestors.
284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
287 * - blkcg: blk-throttle becomes properly hierarchical.
289 * - debug: disallowed on the default hierarchy.
291 bool cgroup_on_dfl(const struct cgroup
*cgrp
)
293 return cgrp
->root
== &cgrp_dfl_root
;
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
297 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
302 idr_preload(gfp_mask
);
303 spin_lock_bh(&cgroup_idr_lock
);
304 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
305 spin_unlock_bh(&cgroup_idr_lock
);
310 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
314 spin_lock_bh(&cgroup_idr_lock
);
315 ret
= idr_replace(idr
, ptr
, id
);
316 spin_unlock_bh(&cgroup_idr_lock
);
320 static void cgroup_idr_remove(struct idr
*idr
, int id
)
322 spin_lock_bh(&cgroup_idr_lock
);
324 spin_unlock_bh(&cgroup_idr_lock
);
327 static bool cgroup_has_tasks(struct cgroup
*cgrp
)
329 return cgrp
->nr_populated_csets
;
332 bool cgroup_is_threaded(struct cgroup
*cgrp
)
334 return cgrp
->dom_cgrp
!= cgrp
;
337 /* can @cgrp host both domain and threaded children? */
338 static bool cgroup_is_mixable(struct cgroup
*cgrp
)
341 * Root isn't under domain level resource control exempting it from
342 * the no-internal-process constraint, so it can serve as a thread
343 * root and a parent of resource domains at the same time.
345 return !cgroup_parent(cgrp
);
348 /* can @cgrp become a thread root? should always be true for a thread root */
349 static bool cgroup_can_be_thread_root(struct cgroup
*cgrp
)
351 /* mixables don't care */
352 if (cgroup_is_mixable(cgrp
))
355 /* domain roots can't be nested under threaded */
356 if (cgroup_is_threaded(cgrp
))
359 /* can only have either domain or threaded children */
360 if (cgrp
->nr_populated_domain_children
)
363 /* and no domain controllers can be enabled */
364 if (cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
370 /* is @cgrp root of a threaded subtree? */
371 bool cgroup_is_thread_root(struct cgroup
*cgrp
)
373 /* thread root should be a domain */
374 if (cgroup_is_threaded(cgrp
))
377 /* a domain w/ threaded children is a thread root */
378 if (cgrp
->nr_threaded_children
)
382 * A domain which has tasks and explicit threaded controllers
383 * enabled is a thread root.
385 if (cgroup_has_tasks(cgrp
) &&
386 (cgrp
->subtree_control
& cgrp_dfl_threaded_ss_mask
))
392 /* a domain which isn't connected to the root w/o brekage can't be used */
393 static bool cgroup_is_valid_domain(struct cgroup
*cgrp
)
395 /* the cgroup itself can be a thread root */
396 if (cgroup_is_threaded(cgrp
))
399 /* but the ancestors can't be unless mixable */
400 while ((cgrp
= cgroup_parent(cgrp
))) {
401 if (!cgroup_is_mixable(cgrp
) && cgroup_is_thread_root(cgrp
))
403 if (cgroup_is_threaded(cgrp
))
410 /* subsystems visibly enabled on a cgroup */
411 static u16
cgroup_control(struct cgroup
*cgrp
)
413 struct cgroup
*parent
= cgroup_parent(cgrp
);
414 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
417 u16 ss_mask
= parent
->subtree_control
;
419 /* threaded cgroups can only have threaded controllers */
420 if (cgroup_is_threaded(cgrp
))
421 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
425 if (cgroup_on_dfl(cgrp
))
426 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
427 cgrp_dfl_implicit_ss_mask
);
431 /* subsystems enabled on a cgroup */
432 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
434 struct cgroup
*parent
= cgroup_parent(cgrp
);
437 u16 ss_mask
= parent
->subtree_ss_mask
;
439 /* threaded cgroups can only have threaded controllers */
440 if (cgroup_is_threaded(cgrp
))
441 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
445 return cgrp
->root
->subsys_mask
;
449 * cgroup_css - obtain a cgroup's css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
454 * function must be called either under cgroup_mutex or rcu_read_lock() and
455 * the caller is responsible for pinning the returned css if it wants to
456 * keep accessing it outside the said locks. This function may return
457 * %NULL if @cgrp doesn't have @subsys_id enabled.
459 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
460 struct cgroup_subsys
*ss
)
463 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
464 lockdep_is_held(&cgroup_mutex
));
470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest
474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
475 * or is offline, %NULL is returned.
477 static struct cgroup_subsys_state
*cgroup_tryget_css(struct cgroup
*cgrp
,
478 struct cgroup_subsys
*ss
)
480 struct cgroup_subsys_state
*css
;
483 css
= cgroup_css(cgrp
, ss
);
484 if (!css
|| !css_tryget_online(css
))
492 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
493 * @cgrp: the cgroup of interest
494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
496 * Similar to cgroup_css() but returns the effective css, which is defined
497 * as the matching css of the nearest ancestor including self which has @ss
498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
499 * function is guaranteed to return non-NULL css.
501 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
502 struct cgroup_subsys
*ss
)
504 lockdep_assert_held(&cgroup_mutex
);
510 * This function is used while updating css associations and thus
511 * can't test the csses directly. Test ss_mask.
513 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
514 cgrp
= cgroup_parent(cgrp
);
519 return cgroup_css(cgrp
, ss
);
523 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
524 * @cgrp: the cgroup of interest
525 * @ss: the subsystem of interest
527 * Find and get the effective css of @cgrp for @ss. The effective css is
528 * defined as the matching css of the nearest ancestor including self which
529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
530 * the root css is returned, so this function always returns a valid css.
531 * The returned css must be put using css_put().
533 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
534 struct cgroup_subsys
*ss
)
536 struct cgroup_subsys_state
*css
;
541 css
= cgroup_css(cgrp
, ss
);
543 if (css
&& css_tryget_online(css
))
545 cgrp
= cgroup_parent(cgrp
);
548 css
= init_css_set
.subsys
[ss
->id
];
555 static void cgroup_get_live(struct cgroup
*cgrp
)
557 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
558 css_get(&cgrp
->self
);
561 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
563 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
564 struct cftype
*cft
= of_cft(of
);
567 * This is open and unprotected implementation of cgroup_css().
568 * seq_css() is only called from a kernfs file operation which has
569 * an active reference on the file. Because all the subsystem
570 * files are drained before a css is disassociated with a cgroup,
571 * the matching css from the cgroup's subsys table is guaranteed to
572 * be and stay valid until the enclosing operation is complete.
575 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
579 EXPORT_SYMBOL_GPL(of_css
);
582 * for_each_css - iterate all css's of a cgroup
583 * @css: the iteration cursor
584 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
585 * @cgrp: the target cgroup to iterate css's of
587 * Should be called under cgroup_[tree_]mutex.
589 #define for_each_css(css, ssid, cgrp) \
590 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
591 if (!((css) = rcu_dereference_check( \
592 (cgrp)->subsys[(ssid)], \
593 lockdep_is_held(&cgroup_mutex)))) { } \
597 * for_each_e_css - iterate all effective css's of a cgroup
598 * @css: the iteration cursor
599 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
600 * @cgrp: the target cgroup to iterate css's of
602 * Should be called under cgroup_[tree_]mutex.
604 #define for_each_e_css(css, ssid, cgrp) \
605 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
606 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
611 * do_each_subsys_mask - filter for_each_subsys with a bitmask
612 * @ss: the iteration cursor
613 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
614 * @ss_mask: the bitmask
616 * The block will only run for cases where the ssid-th bit (1 << ssid) of
619 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
620 unsigned long __ss_mask = (ss_mask); \
621 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
625 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
626 (ss) = cgroup_subsys[ssid]; \
629 #define while_each_subsys_mask() \
634 /* iterate over child cgrps, lock should be held throughout iteration */
635 #define cgroup_for_each_live_child(child, cgrp) \
636 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
637 if (({ lockdep_assert_held(&cgroup_mutex); \
638 cgroup_is_dead(child); })) \
642 /* walk live descendants in preorder */
643 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
644 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
645 if (({ lockdep_assert_held(&cgroup_mutex); \
646 (dsct) = (d_css)->cgroup; \
647 cgroup_is_dead(dsct); })) \
651 /* walk live descendants in postorder */
652 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
653 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
654 if (({ lockdep_assert_held(&cgroup_mutex); \
655 (dsct) = (d_css)->cgroup; \
656 cgroup_is_dead(dsct); })) \
661 * The default css_set - used by init and its children prior to any
662 * hierarchies being mounted. It contains a pointer to the root state
663 * for each subsystem. Also used to anchor the list of css_sets. Not
664 * reference-counted, to improve performance when child cgroups
665 * haven't been created.
667 struct css_set init_css_set
= {
668 .refcount
= REFCOUNT_INIT(1),
669 .dom_cset
= &init_css_set
,
670 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
671 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
672 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
673 .threaded_csets
= LIST_HEAD_INIT(init_css_set
.threaded_csets
),
674 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
675 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
676 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
679 * The following field is re-initialized when this cset gets linked
680 * in cgroup_init(). However, let's initialize the field
681 * statically too so that the default cgroup can be accessed safely
684 .dfl_cgrp
= &cgrp_dfl_root
.cgrp
,
687 static int css_set_count
= 1; /* 1 for init_css_set */
689 static bool css_set_threaded(struct css_set
*cset
)
691 return cset
->dom_cset
!= cset
;
695 * css_set_populated - does a css_set contain any tasks?
696 * @cset: target css_set
698 * css_set_populated() should be the same as !!cset->nr_tasks at steady
699 * state. However, css_set_populated() can be called while a task is being
700 * added to or removed from the linked list before the nr_tasks is
701 * properly updated. Hence, we can't just look at ->nr_tasks here.
703 static bool css_set_populated(struct css_set
*cset
)
705 lockdep_assert_held(&css_set_lock
);
707 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
711 * cgroup_update_populated - update the populated count of a cgroup
712 * @cgrp: the target cgroup
713 * @populated: inc or dec populated count
715 * One of the css_sets associated with @cgrp is either getting its first
716 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
717 * count is propagated towards root so that a given cgroup's
718 * nr_populated_children is zero iff none of its descendants contain any
721 * @cgrp's interface file "cgroup.populated" is zero if both
722 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
723 * 1 otherwise. When the sum changes from or to zero, userland is notified
724 * that the content of the interface file has changed. This can be used to
725 * detect when @cgrp and its descendants become populated or empty.
727 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
729 struct cgroup
*child
= NULL
;
730 int adj
= populated
? 1 : -1;
732 lockdep_assert_held(&css_set_lock
);
735 bool was_populated
= cgroup_is_populated(cgrp
);
738 cgrp
->nr_populated_csets
+= adj
;
740 if (cgroup_is_threaded(child
))
741 cgrp
->nr_populated_threaded_children
+= adj
;
743 cgrp
->nr_populated_domain_children
+= adj
;
746 if (was_populated
== cgroup_is_populated(cgrp
))
749 cgroup1_check_for_release(cgrp
);
750 cgroup_file_notify(&cgrp
->events_file
);
753 cgrp
= cgroup_parent(cgrp
);
758 * css_set_update_populated - update populated state of a css_set
759 * @cset: target css_set
760 * @populated: whether @cset is populated or depopulated
762 * @cset is either getting the first task or losing the last. Update the
763 * populated counters of all associated cgroups accordingly.
765 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
767 struct cgrp_cset_link
*link
;
769 lockdep_assert_held(&css_set_lock
);
771 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
772 cgroup_update_populated(link
->cgrp
, populated
);
776 * css_set_move_task - move a task from one css_set to another
777 * @task: task being moved
778 * @from_cset: css_set @task currently belongs to (may be NULL)
779 * @to_cset: new css_set @task is being moved to (may be NULL)
780 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
782 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
783 * css_set, @from_cset can be NULL. If @task is being disassociated
784 * instead of moved, @to_cset can be NULL.
786 * This function automatically handles populated counter updates and
787 * css_task_iter adjustments but the caller is responsible for managing
788 * @from_cset and @to_cset's reference counts.
790 static void css_set_move_task(struct task_struct
*task
,
791 struct css_set
*from_cset
, struct css_set
*to_cset
,
794 lockdep_assert_held(&css_set_lock
);
796 if (to_cset
&& !css_set_populated(to_cset
))
797 css_set_update_populated(to_cset
, true);
800 struct css_task_iter
*it
, *pos
;
802 WARN_ON_ONCE(list_empty(&task
->cg_list
));
805 * @task is leaving, advance task iterators which are
806 * pointing to it so that they can resume at the next
807 * position. Advancing an iterator might remove it from
808 * the list, use safe walk. See css_task_iter_advance*()
811 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
813 if (it
->task_pos
== &task
->cg_list
)
814 css_task_iter_advance(it
);
816 list_del_init(&task
->cg_list
);
817 if (!css_set_populated(from_cset
))
818 css_set_update_populated(from_cset
, false);
820 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
825 * We are synchronized through cgroup_threadgroup_rwsem
826 * against PF_EXITING setting such that we can't race
827 * against cgroup_exit() changing the css_set to
828 * init_css_set and dropping the old one.
830 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
832 rcu_assign_pointer(task
->cgroups
, to_cset
);
833 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
839 * hash table for cgroup groups. This improves the performance to find
840 * an existing css_set. This hash doesn't (currently) take into
841 * account cgroups in empty hierarchies.
843 #define CSS_SET_HASH_BITS 7
844 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
846 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
848 unsigned long key
= 0UL;
849 struct cgroup_subsys
*ss
;
852 for_each_subsys(ss
, i
)
853 key
+= (unsigned long)css
[i
];
854 key
= (key
>> 16) ^ key
;
859 void put_css_set_locked(struct css_set
*cset
)
861 struct cgrp_cset_link
*link
, *tmp_link
;
862 struct cgroup_subsys
*ss
;
865 lockdep_assert_held(&css_set_lock
);
867 if (!refcount_dec_and_test(&cset
->refcount
))
870 WARN_ON_ONCE(!list_empty(&cset
->threaded_csets
));
872 /* This css_set is dead. unlink it and release cgroup and css refs */
873 for_each_subsys(ss
, ssid
) {
874 list_del(&cset
->e_cset_node
[ssid
]);
875 css_put(cset
->subsys
[ssid
]);
877 hash_del(&cset
->hlist
);
880 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
881 list_del(&link
->cset_link
);
882 list_del(&link
->cgrp_link
);
883 if (cgroup_parent(link
->cgrp
))
884 cgroup_put(link
->cgrp
);
888 if (css_set_threaded(cset
)) {
889 list_del(&cset
->threaded_csets_node
);
890 put_css_set_locked(cset
->dom_cset
);
893 kfree_rcu(cset
, rcu_head
);
897 * compare_css_sets - helper function for find_existing_css_set().
898 * @cset: candidate css_set being tested
899 * @old_cset: existing css_set for a task
900 * @new_cgrp: cgroup that's being entered by the task
901 * @template: desired set of css pointers in css_set (pre-calculated)
903 * Returns true if "cset" matches "old_cset" except for the hierarchy
904 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
906 static bool compare_css_sets(struct css_set
*cset
,
907 struct css_set
*old_cset
,
908 struct cgroup
*new_cgrp
,
909 struct cgroup_subsys_state
*template[])
911 struct cgroup
*new_dfl_cgrp
;
912 struct list_head
*l1
, *l2
;
915 * On the default hierarchy, there can be csets which are
916 * associated with the same set of cgroups but different csses.
917 * Let's first ensure that csses match.
919 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
923 /* @cset's domain should match the default cgroup's */
924 if (cgroup_on_dfl(new_cgrp
))
925 new_dfl_cgrp
= new_cgrp
;
927 new_dfl_cgrp
= old_cset
->dfl_cgrp
;
929 if (new_dfl_cgrp
->dom_cgrp
!= cset
->dom_cset
->dfl_cgrp
)
933 * Compare cgroup pointers in order to distinguish between
934 * different cgroups in hierarchies. As different cgroups may
935 * share the same effective css, this comparison is always
938 l1
= &cset
->cgrp_links
;
939 l2
= &old_cset
->cgrp_links
;
941 struct cgrp_cset_link
*link1
, *link2
;
942 struct cgroup
*cgrp1
, *cgrp2
;
946 /* See if we reached the end - both lists are equal length. */
947 if (l1
== &cset
->cgrp_links
) {
948 BUG_ON(l2
!= &old_cset
->cgrp_links
);
951 BUG_ON(l2
== &old_cset
->cgrp_links
);
953 /* Locate the cgroups associated with these links. */
954 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
955 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
958 /* Hierarchies should be linked in the same order. */
959 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
962 * If this hierarchy is the hierarchy of the cgroup
963 * that's changing, then we need to check that this
964 * css_set points to the new cgroup; if it's any other
965 * hierarchy, then this css_set should point to the
966 * same cgroup as the old css_set.
968 if (cgrp1
->root
== new_cgrp
->root
) {
969 if (cgrp1
!= new_cgrp
)
980 * find_existing_css_set - init css array and find the matching css_set
981 * @old_cset: the css_set that we're using before the cgroup transition
982 * @cgrp: the cgroup that we're moving into
983 * @template: out param for the new set of csses, should be clear on entry
985 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
987 struct cgroup_subsys_state
*template[])
989 struct cgroup_root
*root
= cgrp
->root
;
990 struct cgroup_subsys
*ss
;
991 struct css_set
*cset
;
996 * Build the set of subsystem state objects that we want to see in the
997 * new css_set. while subsystems can change globally, the entries here
998 * won't change, so no need for locking.
1000 for_each_subsys(ss
, i
) {
1001 if (root
->subsys_mask
& (1UL << i
)) {
1003 * @ss is in this hierarchy, so we want the
1004 * effective css from @cgrp.
1006 template[i
] = cgroup_e_css(cgrp
, ss
);
1009 * @ss is not in this hierarchy, so we don't want
1010 * to change the css.
1012 template[i
] = old_cset
->subsys
[i
];
1016 key
= css_set_hash(template);
1017 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
1018 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
1021 /* This css_set matches what we need */
1025 /* No existing cgroup group matched */
1029 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
1031 struct cgrp_cset_link
*link
, *tmp_link
;
1033 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
1034 list_del(&link
->cset_link
);
1040 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1041 * @count: the number of links to allocate
1042 * @tmp_links: list_head the allocated links are put on
1044 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1045 * through ->cset_link. Returns 0 on success or -errno.
1047 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1049 struct cgrp_cset_link
*link
;
1052 INIT_LIST_HEAD(tmp_links
);
1054 for (i
= 0; i
< count
; i
++) {
1055 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1057 free_cgrp_cset_links(tmp_links
);
1060 list_add(&link
->cset_link
, tmp_links
);
1066 * link_css_set - a helper function to link a css_set to a cgroup
1067 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1068 * @cset: the css_set to be linked
1069 * @cgrp: the destination cgroup
1071 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1072 struct cgroup
*cgrp
)
1074 struct cgrp_cset_link
*link
;
1076 BUG_ON(list_empty(tmp_links
));
1078 if (cgroup_on_dfl(cgrp
))
1079 cset
->dfl_cgrp
= cgrp
;
1081 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1086 * Always add links to the tail of the lists so that the lists are
1087 * in choronological order.
1089 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1090 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1092 if (cgroup_parent(cgrp
))
1093 cgroup_get_live(cgrp
);
1097 * find_css_set - return a new css_set with one cgroup updated
1098 * @old_cset: the baseline css_set
1099 * @cgrp: the cgroup to be updated
1101 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1102 * substituted into the appropriate hierarchy.
1104 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1105 struct cgroup
*cgrp
)
1107 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1108 struct css_set
*cset
;
1109 struct list_head tmp_links
;
1110 struct cgrp_cset_link
*link
;
1111 struct cgroup_subsys
*ss
;
1115 lockdep_assert_held(&cgroup_mutex
);
1117 /* First see if we already have a cgroup group that matches
1118 * the desired set */
1119 spin_lock_irq(&css_set_lock
);
1120 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1123 spin_unlock_irq(&css_set_lock
);
1128 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1132 /* Allocate all the cgrp_cset_link objects that we'll need */
1133 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1138 refcount_set(&cset
->refcount
, 1);
1139 cset
->dom_cset
= cset
;
1140 INIT_LIST_HEAD(&cset
->tasks
);
1141 INIT_LIST_HEAD(&cset
->mg_tasks
);
1142 INIT_LIST_HEAD(&cset
->task_iters
);
1143 INIT_LIST_HEAD(&cset
->threaded_csets
);
1144 INIT_HLIST_NODE(&cset
->hlist
);
1145 INIT_LIST_HEAD(&cset
->cgrp_links
);
1146 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1147 INIT_LIST_HEAD(&cset
->mg_node
);
1149 /* Copy the set of subsystem state objects generated in
1150 * find_existing_css_set() */
1151 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1153 spin_lock_irq(&css_set_lock
);
1154 /* Add reference counts and links from the new css_set. */
1155 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1156 struct cgroup
*c
= link
->cgrp
;
1158 if (c
->root
== cgrp
->root
)
1160 link_css_set(&tmp_links
, cset
, c
);
1163 BUG_ON(!list_empty(&tmp_links
));
1167 /* Add @cset to the hash table */
1168 key
= css_set_hash(cset
->subsys
);
1169 hash_add(css_set_table
, &cset
->hlist
, key
);
1171 for_each_subsys(ss
, ssid
) {
1172 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1174 list_add_tail(&cset
->e_cset_node
[ssid
],
1175 &css
->cgroup
->e_csets
[ssid
]);
1179 spin_unlock_irq(&css_set_lock
);
1182 * If @cset should be threaded, look up the matching dom_cset and
1183 * link them up. We first fully initialize @cset then look for the
1184 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1185 * to stay empty until we return.
1187 if (cgroup_is_threaded(cset
->dfl_cgrp
)) {
1188 struct css_set
*dcset
;
1190 dcset
= find_css_set(cset
, cset
->dfl_cgrp
->dom_cgrp
);
1196 spin_lock_irq(&css_set_lock
);
1197 cset
->dom_cset
= dcset
;
1198 list_add_tail(&cset
->threaded_csets_node
,
1199 &dcset
->threaded_csets
);
1200 spin_unlock_irq(&css_set_lock
);
1206 struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1208 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1210 return root_cgrp
->root
;
1213 static int cgroup_init_root_id(struct cgroup_root
*root
)
1217 lockdep_assert_held(&cgroup_mutex
);
1219 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1223 root
->hierarchy_id
= id
;
1227 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1229 lockdep_assert_held(&cgroup_mutex
);
1231 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1234 void cgroup_free_root(struct cgroup_root
*root
)
1237 idr_destroy(&root
->cgroup_idr
);
1242 static void cgroup_destroy_root(struct cgroup_root
*root
)
1244 struct cgroup
*cgrp
= &root
->cgrp
;
1245 struct cgrp_cset_link
*link
, *tmp_link
;
1247 trace_cgroup_destroy_root(root
);
1249 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1251 BUG_ON(atomic_read(&root
->nr_cgrps
));
1252 BUG_ON(!list_empty(&cgrp
->self
.children
));
1254 /* Rebind all subsystems back to the default hierarchy */
1255 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1258 * Release all the links from cset_links to this hierarchy's
1261 spin_lock_irq(&css_set_lock
);
1263 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1264 list_del(&link
->cset_link
);
1265 list_del(&link
->cgrp_link
);
1269 spin_unlock_irq(&css_set_lock
);
1271 if (!list_empty(&root
->root_list
)) {
1272 list_del(&root
->root_list
);
1273 cgroup_root_count
--;
1276 cgroup_exit_root_id(root
);
1278 mutex_unlock(&cgroup_mutex
);
1280 kernfs_destroy_root(root
->kf_root
);
1281 cgroup_free_root(root
);
1285 * look up cgroup associated with current task's cgroup namespace on the
1286 * specified hierarchy
1288 static struct cgroup
*
1289 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1291 struct cgroup
*res
= NULL
;
1292 struct css_set
*cset
;
1294 lockdep_assert_held(&css_set_lock
);
1298 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1299 if (cset
== &init_css_set
) {
1302 struct cgrp_cset_link
*link
;
1304 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1305 struct cgroup
*c
= link
->cgrp
;
1307 if (c
->root
== root
) {
1319 /* look up cgroup associated with given css_set on the specified hierarchy */
1320 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1321 struct cgroup_root
*root
)
1323 struct cgroup
*res
= NULL
;
1325 lockdep_assert_held(&cgroup_mutex
);
1326 lockdep_assert_held(&css_set_lock
);
1328 if (cset
== &init_css_set
) {
1330 } else if (root
== &cgrp_dfl_root
) {
1331 res
= cset
->dfl_cgrp
;
1333 struct cgrp_cset_link
*link
;
1335 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1336 struct cgroup
*c
= link
->cgrp
;
1338 if (c
->root
== root
) {
1350 * Return the cgroup for "task" from the given hierarchy. Must be
1351 * called with cgroup_mutex and css_set_lock held.
1353 struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1354 struct cgroup_root
*root
)
1357 * No need to lock the task - since we hold cgroup_mutex the
1358 * task can't change groups, so the only thing that can happen
1359 * is that it exits and its css is set back to init_css_set.
1361 return cset_cgroup_from_root(task_css_set(task
), root
);
1365 * A task must hold cgroup_mutex to modify cgroups.
1367 * Any task can increment and decrement the count field without lock.
1368 * So in general, code holding cgroup_mutex can't rely on the count
1369 * field not changing. However, if the count goes to zero, then only
1370 * cgroup_attach_task() can increment it again. Because a count of zero
1371 * means that no tasks are currently attached, therefore there is no
1372 * way a task attached to that cgroup can fork (the other way to
1373 * increment the count). So code holding cgroup_mutex can safely
1374 * assume that if the count is zero, it will stay zero. Similarly, if
1375 * a task holds cgroup_mutex on a cgroup with zero count, it
1376 * knows that the cgroup won't be removed, as cgroup_rmdir()
1379 * A cgroup can only be deleted if both its 'count' of using tasks
1380 * is zero, and its list of 'children' cgroups is empty. Since all
1381 * tasks in the system use _some_ cgroup, and since there is always at
1382 * least one task in the system (init, pid == 1), therefore, root cgroup
1383 * always has either children cgroups and/or using tasks. So we don't
1384 * need a special hack to ensure that root cgroup cannot be deleted.
1386 * P.S. One more locking exception. RCU is used to guard the
1387 * update of a tasks cgroup pointer by cgroup_attach_task()
1390 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1392 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1395 struct cgroup_subsys
*ss
= cft
->ss
;
1397 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1398 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1399 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1400 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1403 strscpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1408 * cgroup_file_mode - deduce file mode of a control file
1409 * @cft: the control file in question
1411 * S_IRUGO for read, S_IWUSR for write.
1413 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1417 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1420 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1421 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1431 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1432 * @subtree_control: the new subtree_control mask to consider
1433 * @this_ss_mask: available subsystems
1435 * On the default hierarchy, a subsystem may request other subsystems to be
1436 * enabled together through its ->depends_on mask. In such cases, more
1437 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1439 * This function calculates which subsystems need to be enabled if
1440 * @subtree_control is to be applied while restricted to @this_ss_mask.
1442 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1444 u16 cur_ss_mask
= subtree_control
;
1445 struct cgroup_subsys
*ss
;
1448 lockdep_assert_held(&cgroup_mutex
);
1450 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1453 u16 new_ss_mask
= cur_ss_mask
;
1455 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1456 new_ss_mask
|= ss
->depends_on
;
1457 } while_each_subsys_mask();
1460 * Mask out subsystems which aren't available. This can
1461 * happen only if some depended-upon subsystems were bound
1462 * to non-default hierarchies.
1464 new_ss_mask
&= this_ss_mask
;
1466 if (new_ss_mask
== cur_ss_mask
)
1468 cur_ss_mask
= new_ss_mask
;
1475 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1476 * @kn: the kernfs_node being serviced
1478 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1479 * the method finishes if locking succeeded. Note that once this function
1480 * returns the cgroup returned by cgroup_kn_lock_live() may become
1481 * inaccessible any time. If the caller intends to continue to access the
1482 * cgroup, it should pin it before invoking this function.
1484 void cgroup_kn_unlock(struct kernfs_node
*kn
)
1486 struct cgroup
*cgrp
;
1488 if (kernfs_type(kn
) == KERNFS_DIR
)
1491 cgrp
= kn
->parent
->priv
;
1493 mutex_unlock(&cgroup_mutex
);
1495 kernfs_unbreak_active_protection(kn
);
1500 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1501 * @kn: the kernfs_node being serviced
1502 * @drain_offline: perform offline draining on the cgroup
1504 * This helper is to be used by a cgroup kernfs method currently servicing
1505 * @kn. It breaks the active protection, performs cgroup locking and
1506 * verifies that the associated cgroup is alive. Returns the cgroup if
1507 * alive; otherwise, %NULL. A successful return should be undone by a
1508 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1509 * cgroup is drained of offlining csses before return.
1511 * Any cgroup kernfs method implementation which requires locking the
1512 * associated cgroup should use this helper. It avoids nesting cgroup
1513 * locking under kernfs active protection and allows all kernfs operations
1514 * including self-removal.
1516 struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
, bool drain_offline
)
1518 struct cgroup
*cgrp
;
1520 if (kernfs_type(kn
) == KERNFS_DIR
)
1523 cgrp
= kn
->parent
->priv
;
1526 * We're gonna grab cgroup_mutex which nests outside kernfs
1527 * active_ref. cgroup liveliness check alone provides enough
1528 * protection against removal. Ensure @cgrp stays accessible and
1529 * break the active_ref protection.
1531 if (!cgroup_tryget(cgrp
))
1533 kernfs_break_active_protection(kn
);
1536 cgroup_lock_and_drain_offline(cgrp
);
1538 mutex_lock(&cgroup_mutex
);
1540 if (!cgroup_is_dead(cgrp
))
1543 cgroup_kn_unlock(kn
);
1547 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1549 char name
[CGROUP_FILE_NAME_MAX
];
1551 lockdep_assert_held(&cgroup_mutex
);
1553 if (cft
->file_offset
) {
1554 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1555 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1557 spin_lock_irq(&cgroup_file_kn_lock
);
1559 spin_unlock_irq(&cgroup_file_kn_lock
);
1561 del_timer_sync(&cfile
->notify_timer
);
1564 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1568 * css_clear_dir - remove subsys files in a cgroup directory
1571 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1573 struct cgroup
*cgrp
= css
->cgroup
;
1574 struct cftype
*cfts
;
1576 if (!(css
->flags
& CSS_VISIBLE
))
1579 css
->flags
&= ~CSS_VISIBLE
;
1582 if (cgroup_on_dfl(cgrp
))
1583 cfts
= cgroup_base_files
;
1585 cfts
= cgroup1_base_files
;
1587 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1589 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1590 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1595 * css_populate_dir - create subsys files in a cgroup directory
1598 * On failure, no file is added.
1600 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1602 struct cgroup
*cgrp
= css
->cgroup
;
1603 struct cftype
*cfts
, *failed_cfts
;
1606 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1610 if (cgroup_on_dfl(cgrp
))
1611 cfts
= cgroup_base_files
;
1613 cfts
= cgroup1_base_files
;
1615 ret
= cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1619 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1620 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1628 css
->flags
|= CSS_VISIBLE
;
1632 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1633 if (cfts
== failed_cfts
)
1635 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1640 int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1642 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1643 struct cgroup_subsys
*ss
;
1646 lockdep_assert_held(&cgroup_mutex
);
1648 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1650 * If @ss has non-root csses attached to it, can't move.
1651 * If @ss is an implicit controller, it is exempt from this
1652 * rule and can be stolen.
1654 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1655 !ss
->implicit_on_dfl
)
1658 /* can't move between two non-dummy roots either */
1659 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1661 } while_each_subsys_mask();
1663 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1664 struct cgroup_root
*src_root
= ss
->root
;
1665 struct cgroup
*scgrp
= &src_root
->cgrp
;
1666 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1667 struct css_set
*cset
;
1669 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1671 /* disable from the source */
1672 src_root
->subsys_mask
&= ~(1 << ssid
);
1673 WARN_ON(cgroup_apply_control(scgrp
));
1674 cgroup_finalize_control(scgrp
, 0);
1677 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1678 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1679 ss
->root
= dst_root
;
1680 css
->cgroup
= dcgrp
;
1682 spin_lock_irq(&css_set_lock
);
1683 hash_for_each(css_set_table
, i
, cset
, hlist
)
1684 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1685 &dcgrp
->e_csets
[ss
->id
]);
1686 spin_unlock_irq(&css_set_lock
);
1688 /* default hierarchy doesn't enable controllers by default */
1689 dst_root
->subsys_mask
|= 1 << ssid
;
1690 if (dst_root
== &cgrp_dfl_root
) {
1691 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1693 dcgrp
->subtree_control
|= 1 << ssid
;
1694 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1697 ret
= cgroup_apply_control(dcgrp
);
1699 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1704 } while_each_subsys_mask();
1706 kernfs_activate(dcgrp
->kn
);
1710 int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1711 struct kernfs_root
*kf_root
)
1715 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1716 struct cgroup
*ns_cgroup
;
1718 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1722 spin_lock_irq(&css_set_lock
);
1723 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1724 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1725 spin_unlock_irq(&css_set_lock
);
1727 if (len
>= PATH_MAX
)
1730 seq_escape(sf
, buf
, " \t\n\\");
1737 static int parse_cgroup_root_flags(char *data
, unsigned int *root_flags
)
1746 while ((token
= strsep(&data
, ",")) != NULL
) {
1747 if (!strcmp(token
, "nsdelegate")) {
1748 *root_flags
|= CGRP_ROOT_NS_DELEGATE
;
1752 pr_err("cgroup2: unknown option \"%s\"\n", token
);
1759 static void apply_cgroup_root_flags(unsigned int root_flags
)
1761 if (current
->nsproxy
->cgroup_ns
== &init_cgroup_ns
) {
1762 if (root_flags
& CGRP_ROOT_NS_DELEGATE
)
1763 cgrp_dfl_root
.flags
|= CGRP_ROOT_NS_DELEGATE
;
1765 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_NS_DELEGATE
;
1769 static int cgroup_show_options(struct seq_file
*seq
, struct kernfs_root
*kf_root
)
1771 if (cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
)
1772 seq_puts(seq
, ",nsdelegate");
1776 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1778 unsigned int root_flags
;
1781 ret
= parse_cgroup_root_flags(data
, &root_flags
);
1785 apply_cgroup_root_flags(root_flags
);
1790 * To reduce the fork() overhead for systems that are not actually using
1791 * their cgroups capability, we don't maintain the lists running through
1792 * each css_set to its tasks until we see the list actually used - in other
1793 * words after the first mount.
1795 static bool use_task_css_set_links __read_mostly
;
1797 static void cgroup_enable_task_cg_lists(void)
1799 struct task_struct
*p
, *g
;
1802 * We need tasklist_lock because RCU is not safe against
1803 * while_each_thread(). Besides, a forking task that has passed
1804 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1805 * is not guaranteed to have its child immediately visible in the
1806 * tasklist if we walk through it with RCU.
1808 read_lock(&tasklist_lock
);
1809 spin_lock_irq(&css_set_lock
);
1811 if (use_task_css_set_links
)
1814 use_task_css_set_links
= true;
1816 do_each_thread(g
, p
) {
1817 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1818 task_css_set(p
) != &init_css_set
);
1821 * We should check if the process is exiting, otherwise
1822 * it will race with cgroup_exit() in that the list
1823 * entry won't be deleted though the process has exited.
1824 * Do it while holding siglock so that we don't end up
1825 * racing against cgroup_exit().
1827 * Interrupts were already disabled while acquiring
1828 * the css_set_lock, so we do not need to disable it
1829 * again when acquiring the sighand->siglock here.
1831 spin_lock(&p
->sighand
->siglock
);
1832 if (!(p
->flags
& PF_EXITING
)) {
1833 struct css_set
*cset
= task_css_set(p
);
1835 if (!css_set_populated(cset
))
1836 css_set_update_populated(cset
, true);
1837 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1841 spin_unlock(&p
->sighand
->siglock
);
1842 } while_each_thread(g
, p
);
1844 spin_unlock_irq(&css_set_lock
);
1845 read_unlock(&tasklist_lock
);
1848 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1850 struct cgroup_subsys
*ss
;
1853 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1854 INIT_LIST_HEAD(&cgrp
->self
.children
);
1855 INIT_LIST_HEAD(&cgrp
->cset_links
);
1856 INIT_LIST_HEAD(&cgrp
->pidlists
);
1857 mutex_init(&cgrp
->pidlist_mutex
);
1858 cgrp
->self
.cgroup
= cgrp
;
1859 cgrp
->self
.flags
|= CSS_ONLINE
;
1860 cgrp
->dom_cgrp
= cgrp
;
1861 cgrp
->max_descendants
= INT_MAX
;
1862 cgrp
->max_depth
= INT_MAX
;
1863 INIT_LIST_HEAD(&cgrp
->rstat_css_list
);
1864 prev_cputime_init(&cgrp
->prev_cputime
);
1866 for_each_subsys(ss
, ssid
)
1867 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1869 init_waitqueue_head(&cgrp
->offline_waitq
);
1870 INIT_WORK(&cgrp
->release_agent_work
, cgroup1_release_agent
);
1873 void init_cgroup_root(struct cgroup_root
*root
, struct cgroup_sb_opts
*opts
)
1875 struct cgroup
*cgrp
= &root
->cgrp
;
1877 INIT_LIST_HEAD(&root
->root_list
);
1878 atomic_set(&root
->nr_cgrps
, 1);
1880 init_cgroup_housekeeping(cgrp
);
1881 idr_init(&root
->cgroup_idr
);
1883 root
->flags
= opts
->flags
;
1884 if (opts
->release_agent
)
1885 strscpy(root
->release_agent_path
, opts
->release_agent
, PATH_MAX
);
1887 strscpy(root
->name
, opts
->name
, MAX_CGROUP_ROOT_NAMELEN
);
1888 if (opts
->cpuset_clone_children
)
1889 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1892 int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
, int ref_flags
)
1894 LIST_HEAD(tmp_links
);
1895 struct cgroup
*root_cgrp
= &root
->cgrp
;
1896 struct kernfs_syscall_ops
*kf_sops
;
1897 struct css_set
*cset
;
1900 lockdep_assert_held(&cgroup_mutex
);
1902 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1905 root_cgrp
->id
= ret
;
1906 root_cgrp
->ancestor_ids
[0] = ret
;
1908 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
,
1909 ref_flags
, GFP_KERNEL
);
1914 * We're accessing css_set_count without locking css_set_lock here,
1915 * but that's OK - it can only be increased by someone holding
1916 * cgroup_lock, and that's us. Later rebinding may disable
1917 * controllers on the default hierarchy and thus create new csets,
1918 * which can't be more than the existing ones. Allocate 2x.
1920 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
1924 ret
= cgroup_init_root_id(root
);
1928 kf_sops
= root
== &cgrp_dfl_root
?
1929 &cgroup_kf_syscall_ops
: &cgroup1_kf_syscall_ops
;
1931 root
->kf_root
= kernfs_create_root(kf_sops
,
1932 KERNFS_ROOT_CREATE_DEACTIVATED
|
1933 KERNFS_ROOT_SUPPORT_EXPORTOP
,
1935 if (IS_ERR(root
->kf_root
)) {
1936 ret
= PTR_ERR(root
->kf_root
);
1939 root_cgrp
->kn
= root
->kf_root
->kn
;
1941 ret
= css_populate_dir(&root_cgrp
->self
);
1945 ret
= rebind_subsystems(root
, ss_mask
);
1949 ret
= cgroup_bpf_inherit(root_cgrp
);
1952 trace_cgroup_setup_root(root
);
1955 * There must be no failure case after here, since rebinding takes
1956 * care of subsystems' refcounts, which are explicitly dropped in
1957 * the failure exit path.
1959 list_add(&root
->root_list
, &cgroup_roots
);
1960 cgroup_root_count
++;
1963 * Link the root cgroup in this hierarchy into all the css_set
1966 spin_lock_irq(&css_set_lock
);
1967 hash_for_each(css_set_table
, i
, cset
, hlist
) {
1968 link_css_set(&tmp_links
, cset
, root_cgrp
);
1969 if (css_set_populated(cset
))
1970 cgroup_update_populated(root_cgrp
, true);
1972 spin_unlock_irq(&css_set_lock
);
1974 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1975 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1977 kernfs_activate(root_cgrp
->kn
);
1982 kernfs_destroy_root(root
->kf_root
);
1983 root
->kf_root
= NULL
;
1985 cgroup_exit_root_id(root
);
1987 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
1989 free_cgrp_cset_links(&tmp_links
);
1993 struct dentry
*cgroup_do_mount(struct file_system_type
*fs_type
, int flags
,
1994 struct cgroup_root
*root
, unsigned long magic
,
1995 struct cgroup_namespace
*ns
)
1997 struct dentry
*dentry
;
2000 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
, magic
, &new_sb
);
2003 * In non-init cgroup namespace, instead of root cgroup's dentry,
2004 * we return the dentry corresponding to the cgroupns->root_cgrp.
2006 if (!IS_ERR(dentry
) && ns
!= &init_cgroup_ns
) {
2007 struct dentry
*nsdentry
;
2008 struct cgroup
*cgrp
;
2010 mutex_lock(&cgroup_mutex
);
2011 spin_lock_irq(&css_set_lock
);
2013 cgrp
= cset_cgroup_from_root(ns
->root_cset
, root
);
2015 spin_unlock_irq(&css_set_lock
);
2016 mutex_unlock(&cgroup_mutex
);
2018 nsdentry
= kernfs_node_dentry(cgrp
->kn
, dentry
->d_sb
);
2023 if (IS_ERR(dentry
) || !new_sb
)
2024 cgroup_put(&root
->cgrp
);
2029 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
2030 int flags
, const char *unused_dev_name
,
2033 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
2034 struct dentry
*dentry
;
2039 /* Check if the caller has permission to mount. */
2040 if (!ns_capable(ns
->user_ns
, CAP_SYS_ADMIN
)) {
2042 return ERR_PTR(-EPERM
);
2046 * The first time anyone tries to mount a cgroup, enable the list
2047 * linking each css_set to its tasks and fix up all existing tasks.
2049 if (!use_task_css_set_links
)
2050 cgroup_enable_task_cg_lists();
2052 if (fs_type
== &cgroup2_fs_type
) {
2053 unsigned int root_flags
;
2055 ret
= parse_cgroup_root_flags(data
, &root_flags
);
2058 return ERR_PTR(ret
);
2061 cgrp_dfl_visible
= true;
2062 cgroup_get_live(&cgrp_dfl_root
.cgrp
);
2064 dentry
= cgroup_do_mount(&cgroup2_fs_type
, flags
, &cgrp_dfl_root
,
2065 CGROUP2_SUPER_MAGIC
, ns
);
2066 if (!IS_ERR(dentry
))
2067 apply_cgroup_root_flags(root_flags
);
2069 dentry
= cgroup1_mount(&cgroup_fs_type
, flags
, data
,
2070 CGROUP_SUPER_MAGIC
, ns
);
2077 static void cgroup_kill_sb(struct super_block
*sb
)
2079 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2080 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2083 * If @root doesn't have any mounts or children, start killing it.
2084 * This prevents new mounts by disabling percpu_ref_tryget_live().
2085 * cgroup_mount() may wait for @root's release.
2087 * And don't kill the default root.
2089 if (!list_empty(&root
->cgrp
.self
.children
) ||
2090 root
== &cgrp_dfl_root
)
2091 cgroup_put(&root
->cgrp
);
2093 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2098 struct file_system_type cgroup_fs_type
= {
2100 .mount
= cgroup_mount
,
2101 .kill_sb
= cgroup_kill_sb
,
2102 .fs_flags
= FS_USERNS_MOUNT
,
2105 static struct file_system_type cgroup2_fs_type
= {
2107 .mount
= cgroup_mount
,
2108 .kill_sb
= cgroup_kill_sb
,
2109 .fs_flags
= FS_USERNS_MOUNT
,
2112 int cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2113 struct cgroup_namespace
*ns
)
2115 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2117 return kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2120 int cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2121 struct cgroup_namespace
*ns
)
2125 mutex_lock(&cgroup_mutex
);
2126 spin_lock_irq(&css_set_lock
);
2128 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2130 spin_unlock_irq(&css_set_lock
);
2131 mutex_unlock(&cgroup_mutex
);
2135 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2138 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2139 * @task: target task
2140 * @buf: the buffer to write the path into
2141 * @buflen: the length of the buffer
2143 * Determine @task's cgroup on the first (the one with the lowest non-zero
2144 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2145 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2146 * cgroup controller callbacks.
2148 * Return value is the same as kernfs_path().
2150 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2152 struct cgroup_root
*root
;
2153 struct cgroup
*cgrp
;
2154 int hierarchy_id
= 1;
2157 mutex_lock(&cgroup_mutex
);
2158 spin_lock_irq(&css_set_lock
);
2160 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2163 cgrp
= task_cgroup_from_root(task
, root
);
2164 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2166 /* if no hierarchy exists, everyone is in "/" */
2167 ret
= strlcpy(buf
, "/", buflen
);
2170 spin_unlock_irq(&css_set_lock
);
2171 mutex_unlock(&cgroup_mutex
);
2174 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2177 * cgroup_migrate_add_task - add a migration target task to a migration context
2178 * @task: target task
2179 * @mgctx: target migration context
2181 * Add @task, which is a migration target, to @mgctx->tset. This function
2182 * becomes noop if @task doesn't need to be migrated. @task's css_set
2183 * should have been added as a migration source and @task->cg_list will be
2184 * moved from the css_set's tasks list to mg_tasks one.
2186 static void cgroup_migrate_add_task(struct task_struct
*task
,
2187 struct cgroup_mgctx
*mgctx
)
2189 struct css_set
*cset
;
2191 lockdep_assert_held(&css_set_lock
);
2193 /* @task either already exited or can't exit until the end */
2194 if (task
->flags
& PF_EXITING
)
2197 /* leave @task alone if post_fork() hasn't linked it yet */
2198 if (list_empty(&task
->cg_list
))
2201 cset
= task_css_set(task
);
2202 if (!cset
->mg_src_cgrp
)
2205 mgctx
->tset
.nr_tasks
++;
2207 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2208 if (list_empty(&cset
->mg_node
))
2209 list_add_tail(&cset
->mg_node
,
2210 &mgctx
->tset
.src_csets
);
2211 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2212 list_add_tail(&cset
->mg_dst_cset
->mg_node
,
2213 &mgctx
->tset
.dst_csets
);
2217 * cgroup_taskset_first - reset taskset and return the first task
2218 * @tset: taskset of interest
2219 * @dst_cssp: output variable for the destination css
2221 * @tset iteration is initialized and the first task is returned.
2223 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2224 struct cgroup_subsys_state
**dst_cssp
)
2226 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2227 tset
->cur_task
= NULL
;
2229 return cgroup_taskset_next(tset
, dst_cssp
);
2233 * cgroup_taskset_next - iterate to the next task in taskset
2234 * @tset: taskset of interest
2235 * @dst_cssp: output variable for the destination css
2237 * Return the next task in @tset. Iteration must have been initialized
2238 * with cgroup_taskset_first().
2240 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2241 struct cgroup_subsys_state
**dst_cssp
)
2243 struct css_set
*cset
= tset
->cur_cset
;
2244 struct task_struct
*task
= tset
->cur_task
;
2246 while (&cset
->mg_node
!= tset
->csets
) {
2248 task
= list_first_entry(&cset
->mg_tasks
,
2249 struct task_struct
, cg_list
);
2251 task
= list_next_entry(task
, cg_list
);
2253 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2254 tset
->cur_cset
= cset
;
2255 tset
->cur_task
= task
;
2258 * This function may be called both before and
2259 * after cgroup_taskset_migrate(). The two cases
2260 * can be distinguished by looking at whether @cset
2261 * has its ->mg_dst_cset set.
2263 if (cset
->mg_dst_cset
)
2264 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2266 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2271 cset
= list_next_entry(cset
, mg_node
);
2279 * cgroup_taskset_migrate - migrate a taskset
2280 * @mgctx: migration context
2282 * Migrate tasks in @mgctx as setup by migration preparation functions.
2283 * This function fails iff one of the ->can_attach callbacks fails and
2284 * guarantees that either all or none of the tasks in @mgctx are migrated.
2285 * @mgctx is consumed regardless of success.
2287 static int cgroup_migrate_execute(struct cgroup_mgctx
*mgctx
)
2289 struct cgroup_taskset
*tset
= &mgctx
->tset
;
2290 struct cgroup_subsys
*ss
;
2291 struct task_struct
*task
, *tmp_task
;
2292 struct css_set
*cset
, *tmp_cset
;
2293 int ssid
, failed_ssid
, ret
;
2295 /* check that we can legitimately attach to the cgroup */
2296 if (tset
->nr_tasks
) {
2297 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2298 if (ss
->can_attach
) {
2300 ret
= ss
->can_attach(tset
);
2303 goto out_cancel_attach
;
2306 } while_each_subsys_mask();
2310 * Now that we're guaranteed success, proceed to move all tasks to
2311 * the new cgroup. There are no failure cases after here, so this
2312 * is the commit point.
2314 spin_lock_irq(&css_set_lock
);
2315 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2316 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2317 struct css_set
*from_cset
= task_css_set(task
);
2318 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2320 get_css_set(to_cset
);
2321 to_cset
->nr_tasks
++;
2322 css_set_move_task(task
, from_cset
, to_cset
, true);
2323 put_css_set_locked(from_cset
);
2324 from_cset
->nr_tasks
--;
2327 spin_unlock_irq(&css_set_lock
);
2330 * Migration is committed, all target tasks are now on dst_csets.
2331 * Nothing is sensitive to fork() after this point. Notify
2332 * controllers that migration is complete.
2334 tset
->csets
= &tset
->dst_csets
;
2336 if (tset
->nr_tasks
) {
2337 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2342 } while_each_subsys_mask();
2346 goto out_release_tset
;
2349 if (tset
->nr_tasks
) {
2350 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2351 if (ssid
== failed_ssid
)
2353 if (ss
->cancel_attach
) {
2355 ss
->cancel_attach(tset
);
2357 } while_each_subsys_mask();
2360 spin_lock_irq(&css_set_lock
);
2361 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2362 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2363 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2364 list_del_init(&cset
->mg_node
);
2366 spin_unlock_irq(&css_set_lock
);
2369 * Re-initialize the cgroup_taskset structure in case it is reused
2370 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2374 tset
->csets
= &tset
->src_csets
;
2379 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2380 * @dst_cgrp: destination cgroup to test
2382 * On the default hierarchy, except for the mixable, (possible) thread root
2383 * and threaded cgroups, subtree_control must be zero for migration
2384 * destination cgroups with tasks so that child cgroups don't compete
2387 int cgroup_migrate_vet_dst(struct cgroup
*dst_cgrp
)
2389 /* v1 doesn't have any restriction */
2390 if (!cgroup_on_dfl(dst_cgrp
))
2393 /* verify @dst_cgrp can host resources */
2394 if (!cgroup_is_valid_domain(dst_cgrp
->dom_cgrp
))
2397 /* mixables don't care */
2398 if (cgroup_is_mixable(dst_cgrp
))
2402 * If @dst_cgrp is already or can become a thread root or is
2403 * threaded, it doesn't matter.
2405 if (cgroup_can_be_thread_root(dst_cgrp
) || cgroup_is_threaded(dst_cgrp
))
2408 /* apply no-internal-process constraint */
2409 if (dst_cgrp
->subtree_control
)
2416 * cgroup_migrate_finish - cleanup after attach
2417 * @mgctx: migration context
2419 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2420 * those functions for details.
2422 void cgroup_migrate_finish(struct cgroup_mgctx
*mgctx
)
2424 LIST_HEAD(preloaded
);
2425 struct css_set
*cset
, *tmp_cset
;
2427 lockdep_assert_held(&cgroup_mutex
);
2429 spin_lock_irq(&css_set_lock
);
2431 list_splice_tail_init(&mgctx
->preloaded_src_csets
, &preloaded
);
2432 list_splice_tail_init(&mgctx
->preloaded_dst_csets
, &preloaded
);
2434 list_for_each_entry_safe(cset
, tmp_cset
, &preloaded
, mg_preload_node
) {
2435 cset
->mg_src_cgrp
= NULL
;
2436 cset
->mg_dst_cgrp
= NULL
;
2437 cset
->mg_dst_cset
= NULL
;
2438 list_del_init(&cset
->mg_preload_node
);
2439 put_css_set_locked(cset
);
2442 spin_unlock_irq(&css_set_lock
);
2446 * cgroup_migrate_add_src - add a migration source css_set
2447 * @src_cset: the source css_set to add
2448 * @dst_cgrp: the destination cgroup
2449 * @mgctx: migration context
2451 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2452 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2453 * up by cgroup_migrate_finish().
2455 * This function may be called without holding cgroup_threadgroup_rwsem
2456 * even if the target is a process. Threads may be created and destroyed
2457 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2458 * into play and the preloaded css_sets are guaranteed to cover all
2461 void cgroup_migrate_add_src(struct css_set
*src_cset
,
2462 struct cgroup
*dst_cgrp
,
2463 struct cgroup_mgctx
*mgctx
)
2465 struct cgroup
*src_cgrp
;
2467 lockdep_assert_held(&cgroup_mutex
);
2468 lockdep_assert_held(&css_set_lock
);
2471 * If ->dead, @src_set is associated with one or more dead cgroups
2472 * and doesn't contain any migratable tasks. Ignore it early so
2473 * that the rest of migration path doesn't get confused by it.
2478 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2480 if (!list_empty(&src_cset
->mg_preload_node
))
2483 WARN_ON(src_cset
->mg_src_cgrp
);
2484 WARN_ON(src_cset
->mg_dst_cgrp
);
2485 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2486 WARN_ON(!list_empty(&src_cset
->mg_node
));
2488 src_cset
->mg_src_cgrp
= src_cgrp
;
2489 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2490 get_css_set(src_cset
);
2491 list_add_tail(&src_cset
->mg_preload_node
, &mgctx
->preloaded_src_csets
);
2495 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2496 * @mgctx: migration context
2498 * Tasks are about to be moved and all the source css_sets have been
2499 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2500 * pins all destination css_sets, links each to its source, and append them
2501 * to @mgctx->preloaded_dst_csets.
2503 * This function must be called after cgroup_migrate_add_src() has been
2504 * called on each migration source css_set. After migration is performed
2505 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2508 int cgroup_migrate_prepare_dst(struct cgroup_mgctx
*mgctx
)
2510 struct css_set
*src_cset
, *tmp_cset
;
2512 lockdep_assert_held(&cgroup_mutex
);
2514 /* look up the dst cset for each src cset and link it to src */
2515 list_for_each_entry_safe(src_cset
, tmp_cset
, &mgctx
->preloaded_src_csets
,
2517 struct css_set
*dst_cset
;
2518 struct cgroup_subsys
*ss
;
2521 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2525 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2528 * If src cset equals dst, it's noop. Drop the src.
2529 * cgroup_migrate() will skip the cset too. Note that we
2530 * can't handle src == dst as some nodes are used by both.
2532 if (src_cset
== dst_cset
) {
2533 src_cset
->mg_src_cgrp
= NULL
;
2534 src_cset
->mg_dst_cgrp
= NULL
;
2535 list_del_init(&src_cset
->mg_preload_node
);
2536 put_css_set(src_cset
);
2537 put_css_set(dst_cset
);
2541 src_cset
->mg_dst_cset
= dst_cset
;
2543 if (list_empty(&dst_cset
->mg_preload_node
))
2544 list_add_tail(&dst_cset
->mg_preload_node
,
2545 &mgctx
->preloaded_dst_csets
);
2547 put_css_set(dst_cset
);
2549 for_each_subsys(ss
, ssid
)
2550 if (src_cset
->subsys
[ssid
] != dst_cset
->subsys
[ssid
])
2551 mgctx
->ss_mask
|= 1 << ssid
;
2556 cgroup_migrate_finish(mgctx
);
2561 * cgroup_migrate - migrate a process or task to a cgroup
2562 * @leader: the leader of the process or the task to migrate
2563 * @threadgroup: whether @leader points to the whole process or a single task
2564 * @mgctx: migration context
2566 * Migrate a process or task denoted by @leader. If migrating a process,
2567 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2568 * responsible for invoking cgroup_migrate_add_src() and
2569 * cgroup_migrate_prepare_dst() on the targets before invoking this
2570 * function and following up with cgroup_migrate_finish().
2572 * As long as a controller's ->can_attach() doesn't fail, this function is
2573 * guaranteed to succeed. This means that, excluding ->can_attach()
2574 * failure, when migrating multiple targets, the success or failure can be
2575 * decided for all targets by invoking group_migrate_prepare_dst() before
2576 * actually starting migrating.
2578 int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2579 struct cgroup_mgctx
*mgctx
)
2581 struct task_struct
*task
;
2584 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2585 * already PF_EXITING could be freed from underneath us unless we
2586 * take an rcu_read_lock.
2588 spin_lock_irq(&css_set_lock
);
2592 cgroup_migrate_add_task(task
, mgctx
);
2595 } while_each_thread(leader
, task
);
2597 spin_unlock_irq(&css_set_lock
);
2599 return cgroup_migrate_execute(mgctx
);
2603 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2604 * @dst_cgrp: the cgroup to attach to
2605 * @leader: the task or the leader of the threadgroup to be attached
2606 * @threadgroup: attach the whole threadgroup?
2608 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2610 int cgroup_attach_task(struct cgroup
*dst_cgrp
, struct task_struct
*leader
,
2613 DEFINE_CGROUP_MGCTX(mgctx
);
2614 struct task_struct
*task
;
2617 ret
= cgroup_migrate_vet_dst(dst_cgrp
);
2621 /* look up all src csets */
2622 spin_lock_irq(&css_set_lock
);
2626 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
, &mgctx
);
2629 } while_each_thread(leader
, task
);
2631 spin_unlock_irq(&css_set_lock
);
2633 /* prepare dst csets and commit */
2634 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2636 ret
= cgroup_migrate(leader
, threadgroup
, &mgctx
);
2638 cgroup_migrate_finish(&mgctx
);
2641 trace_cgroup_attach_task(dst_cgrp
, leader
, threadgroup
);
2646 struct task_struct
*cgroup_procs_write_start(char *buf
, bool threadgroup
)
2647 __acquires(&cgroup_threadgroup_rwsem
)
2649 struct task_struct
*tsk
;
2652 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2653 return ERR_PTR(-EINVAL
);
2655 percpu_down_write(&cgroup_threadgroup_rwsem
);
2659 tsk
= find_task_by_vpid(pid
);
2661 tsk
= ERR_PTR(-ESRCH
);
2662 goto out_unlock_threadgroup
;
2669 tsk
= tsk
->group_leader
;
2672 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2673 * If userland migrates such a kthread to a non-root cgroup, it can
2674 * become trapped in a cpuset, or RT kthread may be born in a
2675 * cgroup with no rt_runtime allocated. Just say no.
2677 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2678 tsk
= ERR_PTR(-EINVAL
);
2679 goto out_unlock_threadgroup
;
2682 get_task_struct(tsk
);
2683 goto out_unlock_rcu
;
2685 out_unlock_threadgroup
:
2686 percpu_up_write(&cgroup_threadgroup_rwsem
);
2692 void cgroup_procs_write_finish(struct task_struct
*task
)
2693 __releases(&cgroup_threadgroup_rwsem
)
2695 struct cgroup_subsys
*ss
;
2698 /* release reference from cgroup_procs_write_start() */
2699 put_task_struct(task
);
2701 percpu_up_write(&cgroup_threadgroup_rwsem
);
2702 for_each_subsys(ss
, ssid
)
2703 if (ss
->post_attach
)
2707 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
2709 struct cgroup_subsys
*ss
;
2710 bool printed
= false;
2713 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
2716 seq_printf(seq
, "%s", ss
->name
);
2718 } while_each_subsys_mask();
2720 seq_putc(seq
, '\n');
2723 /* show controllers which are enabled from the parent */
2724 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2726 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2728 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
2732 /* show controllers which are enabled for a given cgroup's children */
2733 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2735 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2737 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2742 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2743 * @cgrp: root of the subtree to update csses for
2745 * @cgrp's control masks have changed and its subtree's css associations
2746 * need to be updated accordingly. This function looks up all css_sets
2747 * which are attached to the subtree, creates the matching updated css_sets
2748 * and migrates the tasks to the new ones.
2750 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2752 DEFINE_CGROUP_MGCTX(mgctx
);
2753 struct cgroup_subsys_state
*d_css
;
2754 struct cgroup
*dsct
;
2755 struct css_set
*src_cset
;
2758 lockdep_assert_held(&cgroup_mutex
);
2760 percpu_down_write(&cgroup_threadgroup_rwsem
);
2762 /* look up all csses currently attached to @cgrp's subtree */
2763 spin_lock_irq(&css_set_lock
);
2764 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2765 struct cgrp_cset_link
*link
;
2767 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
2768 cgroup_migrate_add_src(link
->cset
, dsct
, &mgctx
);
2770 spin_unlock_irq(&css_set_lock
);
2772 /* NULL dst indicates self on default hierarchy */
2773 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2777 spin_lock_irq(&css_set_lock
);
2778 list_for_each_entry(src_cset
, &mgctx
.preloaded_src_csets
, mg_preload_node
) {
2779 struct task_struct
*task
, *ntask
;
2781 /* all tasks in src_csets need to be migrated */
2782 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2783 cgroup_migrate_add_task(task
, &mgctx
);
2785 spin_unlock_irq(&css_set_lock
);
2787 ret
= cgroup_migrate_execute(&mgctx
);
2789 cgroup_migrate_finish(&mgctx
);
2790 percpu_up_write(&cgroup_threadgroup_rwsem
);
2795 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2796 * @cgrp: root of the target subtree
2798 * Because css offlining is asynchronous, userland may try to re-enable a
2799 * controller while the previous css is still around. This function grabs
2800 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2802 void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
2803 __acquires(&cgroup_mutex
)
2805 struct cgroup
*dsct
;
2806 struct cgroup_subsys_state
*d_css
;
2807 struct cgroup_subsys
*ss
;
2811 mutex_lock(&cgroup_mutex
);
2813 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2814 for_each_subsys(ss
, ssid
) {
2815 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2818 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
2821 cgroup_get_live(dsct
);
2822 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
2823 TASK_UNINTERRUPTIBLE
);
2825 mutex_unlock(&cgroup_mutex
);
2827 finish_wait(&dsct
->offline_waitq
, &wait
);
2836 * cgroup_save_control - save control masks of a subtree
2837 * @cgrp: root of the target subtree
2839 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2840 * prefixed fields for @cgrp's subtree including @cgrp itself.
2842 static void cgroup_save_control(struct cgroup
*cgrp
)
2844 struct cgroup
*dsct
;
2845 struct cgroup_subsys_state
*d_css
;
2847 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2848 dsct
->old_subtree_control
= dsct
->subtree_control
;
2849 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
2854 * cgroup_propagate_control - refresh control masks of a subtree
2855 * @cgrp: root of the target subtree
2857 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2858 * ->subtree_control and propagate controller availability through the
2859 * subtree so that descendants don't have unavailable controllers enabled.
2861 static void cgroup_propagate_control(struct cgroup
*cgrp
)
2863 struct cgroup
*dsct
;
2864 struct cgroup_subsys_state
*d_css
;
2866 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2867 dsct
->subtree_control
&= cgroup_control(dsct
);
2868 dsct
->subtree_ss_mask
=
2869 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
2870 cgroup_ss_mask(dsct
));
2875 * cgroup_restore_control - restore control masks of a subtree
2876 * @cgrp: root of the target subtree
2878 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2879 * prefixed fields for @cgrp's subtree including @cgrp itself.
2881 static void cgroup_restore_control(struct cgroup
*cgrp
)
2883 struct cgroup
*dsct
;
2884 struct cgroup_subsys_state
*d_css
;
2886 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2887 dsct
->subtree_control
= dsct
->old_subtree_control
;
2888 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
2892 static bool css_visible(struct cgroup_subsys_state
*css
)
2894 struct cgroup_subsys
*ss
= css
->ss
;
2895 struct cgroup
*cgrp
= css
->cgroup
;
2897 if (cgroup_control(cgrp
) & (1 << ss
->id
))
2899 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
2901 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
2905 * cgroup_apply_control_enable - enable or show csses according to control
2906 * @cgrp: root of the target subtree
2908 * Walk @cgrp's subtree and create new csses or make the existing ones
2909 * visible. A css is created invisible if it's being implicitly enabled
2910 * through dependency. An invisible css is made visible when the userland
2911 * explicitly enables it.
2913 * Returns 0 on success, -errno on failure. On failure, csses which have
2914 * been processed already aren't cleaned up. The caller is responsible for
2915 * cleaning up with cgroup_apply_control_disable().
2917 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
2919 struct cgroup
*dsct
;
2920 struct cgroup_subsys_state
*d_css
;
2921 struct cgroup_subsys
*ss
;
2924 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2925 for_each_subsys(ss
, ssid
) {
2926 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2928 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
2930 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
2934 css
= css_create(dsct
, ss
);
2936 return PTR_ERR(css
);
2939 if (css_visible(css
)) {
2940 ret
= css_populate_dir(css
);
2951 * cgroup_apply_control_disable - kill or hide csses according to control
2952 * @cgrp: root of the target subtree
2954 * Walk @cgrp's subtree and kill and hide csses so that they match
2955 * cgroup_ss_mask() and cgroup_visible_mask().
2957 * A css is hidden when the userland requests it to be disabled while other
2958 * subsystems are still depending on it. The css must not actively control
2959 * resources and be in the vanilla state if it's made visible again later.
2960 * Controllers which may be depended upon should provide ->css_reset() for
2963 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
2965 struct cgroup
*dsct
;
2966 struct cgroup_subsys_state
*d_css
;
2967 struct cgroup_subsys
*ss
;
2970 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2971 for_each_subsys(ss
, ssid
) {
2972 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2974 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
2980 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
2982 } else if (!css_visible(css
)) {
2992 * cgroup_apply_control - apply control mask updates to the subtree
2993 * @cgrp: root of the target subtree
2995 * subsystems can be enabled and disabled in a subtree using the following
2998 * 1. Call cgroup_save_control() to stash the current state.
2999 * 2. Update ->subtree_control masks in the subtree as desired.
3000 * 3. Call cgroup_apply_control() to apply the changes.
3001 * 4. Optionally perform other related operations.
3002 * 5. Call cgroup_finalize_control() to finish up.
3004 * This function implements step 3 and propagates the mask changes
3005 * throughout @cgrp's subtree, updates csses accordingly and perform
3006 * process migrations.
3008 static int cgroup_apply_control(struct cgroup
*cgrp
)
3012 cgroup_propagate_control(cgrp
);
3014 ret
= cgroup_apply_control_enable(cgrp
);
3019 * At this point, cgroup_e_css() results reflect the new csses
3020 * making the following cgroup_update_dfl_csses() properly update
3021 * css associations of all tasks in the subtree.
3023 ret
= cgroup_update_dfl_csses(cgrp
);
3031 * cgroup_finalize_control - finalize control mask update
3032 * @cgrp: root of the target subtree
3033 * @ret: the result of the update
3035 * Finalize control mask update. See cgroup_apply_control() for more info.
3037 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3040 cgroup_restore_control(cgrp
);
3041 cgroup_propagate_control(cgrp
);
3044 cgroup_apply_control_disable(cgrp
);
3047 static int cgroup_vet_subtree_control_enable(struct cgroup
*cgrp
, u16 enable
)
3049 u16 domain_enable
= enable
& ~cgrp_dfl_threaded_ss_mask
;
3051 /* if nothing is getting enabled, nothing to worry about */
3055 /* can @cgrp host any resources? */
3056 if (!cgroup_is_valid_domain(cgrp
->dom_cgrp
))
3059 /* mixables don't care */
3060 if (cgroup_is_mixable(cgrp
))
3063 if (domain_enable
) {
3064 /* can't enable domain controllers inside a thread subtree */
3065 if (cgroup_is_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3069 * Threaded controllers can handle internal competitions
3070 * and are always allowed inside a (prospective) thread
3073 if (cgroup_can_be_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3078 * Controllers can't be enabled for a cgroup with tasks to avoid
3079 * child cgroups competing against tasks.
3081 if (cgroup_has_tasks(cgrp
))
3087 /* change the enabled child controllers for a cgroup in the default hierarchy */
3088 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3089 char *buf
, size_t nbytes
,
3092 u16 enable
= 0, disable
= 0;
3093 struct cgroup
*cgrp
, *child
;
3094 struct cgroup_subsys
*ss
;
3099 * Parse input - space separated list of subsystem names prefixed
3100 * with either + or -.
3102 buf
= strstrip(buf
);
3103 while ((tok
= strsep(&buf
, " "))) {
3106 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3107 if (!cgroup_ssid_enabled(ssid
) ||
3108 strcmp(tok
+ 1, ss
->name
))
3112 enable
|= 1 << ssid
;
3113 disable
&= ~(1 << ssid
);
3114 } else if (*tok
== '-') {
3115 disable
|= 1 << ssid
;
3116 enable
&= ~(1 << ssid
);
3121 } while_each_subsys_mask();
3122 if (ssid
== CGROUP_SUBSYS_COUNT
)
3126 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3130 for_each_subsys(ss
, ssid
) {
3131 if (enable
& (1 << ssid
)) {
3132 if (cgrp
->subtree_control
& (1 << ssid
)) {
3133 enable
&= ~(1 << ssid
);
3137 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3141 } else if (disable
& (1 << ssid
)) {
3142 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3143 disable
&= ~(1 << ssid
);
3147 /* a child has it enabled? */
3148 cgroup_for_each_live_child(child
, cgrp
) {
3149 if (child
->subtree_control
& (1 << ssid
)) {
3157 if (!enable
&& !disable
) {
3162 ret
= cgroup_vet_subtree_control_enable(cgrp
, enable
);
3166 /* save and update control masks and prepare csses */
3167 cgroup_save_control(cgrp
);
3169 cgrp
->subtree_control
|= enable
;
3170 cgrp
->subtree_control
&= ~disable
;
3172 ret
= cgroup_apply_control(cgrp
);
3173 cgroup_finalize_control(cgrp
, ret
);
3177 kernfs_activate(cgrp
->kn
);
3179 cgroup_kn_unlock(of
->kn
);
3180 return ret
?: nbytes
;
3184 * cgroup_enable_threaded - make @cgrp threaded
3185 * @cgrp: the target cgroup
3187 * Called when "threaded" is written to the cgroup.type interface file and
3188 * tries to make @cgrp threaded and join the parent's resource domain.
3189 * This function is never called on the root cgroup as cgroup.type doesn't
3192 static int cgroup_enable_threaded(struct cgroup
*cgrp
)
3194 struct cgroup
*parent
= cgroup_parent(cgrp
);
3195 struct cgroup
*dom_cgrp
= parent
->dom_cgrp
;
3198 lockdep_assert_held(&cgroup_mutex
);
3200 /* noop if already threaded */
3201 if (cgroup_is_threaded(cgrp
))
3205 * If @cgroup is populated or has domain controllers enabled, it
3206 * can't be switched. While the below cgroup_can_be_thread_root()
3207 * test can catch the same conditions, that's only when @parent is
3208 * not mixable, so let's check it explicitly.
3210 if (cgroup_is_populated(cgrp
) ||
3211 cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
3214 /* we're joining the parent's domain, ensure its validity */
3215 if (!cgroup_is_valid_domain(dom_cgrp
) ||
3216 !cgroup_can_be_thread_root(dom_cgrp
))
3220 * The following shouldn't cause actual migrations and should
3223 cgroup_save_control(cgrp
);
3225 cgrp
->dom_cgrp
= dom_cgrp
;
3226 ret
= cgroup_apply_control(cgrp
);
3228 parent
->nr_threaded_children
++;
3230 cgrp
->dom_cgrp
= cgrp
;
3232 cgroup_finalize_control(cgrp
, ret
);
3236 static int cgroup_type_show(struct seq_file
*seq
, void *v
)
3238 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3240 if (cgroup_is_threaded(cgrp
))
3241 seq_puts(seq
, "threaded\n");
3242 else if (!cgroup_is_valid_domain(cgrp
))
3243 seq_puts(seq
, "domain invalid\n");
3244 else if (cgroup_is_thread_root(cgrp
))
3245 seq_puts(seq
, "domain threaded\n");
3247 seq_puts(seq
, "domain\n");
3252 static ssize_t
cgroup_type_write(struct kernfs_open_file
*of
, char *buf
,
3253 size_t nbytes
, loff_t off
)
3255 struct cgroup
*cgrp
;
3258 /* only switching to threaded mode is supported */
3259 if (strcmp(strstrip(buf
), "threaded"))
3262 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3266 /* threaded can only be enabled */
3267 ret
= cgroup_enable_threaded(cgrp
);
3269 cgroup_kn_unlock(of
->kn
);
3270 return ret
?: nbytes
;
3273 static int cgroup_max_descendants_show(struct seq_file
*seq
, void *v
)
3275 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3276 int descendants
= READ_ONCE(cgrp
->max_descendants
);
3278 if (descendants
== INT_MAX
)
3279 seq_puts(seq
, "max\n");
3281 seq_printf(seq
, "%d\n", descendants
);
3286 static ssize_t
cgroup_max_descendants_write(struct kernfs_open_file
*of
,
3287 char *buf
, size_t nbytes
, loff_t off
)
3289 struct cgroup
*cgrp
;
3293 buf
= strstrip(buf
);
3294 if (!strcmp(buf
, "max")) {
3295 descendants
= INT_MAX
;
3297 ret
= kstrtoint(buf
, 0, &descendants
);
3302 if (descendants
< 0)
3305 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3309 cgrp
->max_descendants
= descendants
;
3311 cgroup_kn_unlock(of
->kn
);
3316 static int cgroup_max_depth_show(struct seq_file
*seq
, void *v
)
3318 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3319 int depth
= READ_ONCE(cgrp
->max_depth
);
3321 if (depth
== INT_MAX
)
3322 seq_puts(seq
, "max\n");
3324 seq_printf(seq
, "%d\n", depth
);
3329 static ssize_t
cgroup_max_depth_write(struct kernfs_open_file
*of
,
3330 char *buf
, size_t nbytes
, loff_t off
)
3332 struct cgroup
*cgrp
;
3336 buf
= strstrip(buf
);
3337 if (!strcmp(buf
, "max")) {
3340 ret
= kstrtoint(buf
, 0, &depth
);
3348 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3352 cgrp
->max_depth
= depth
;
3354 cgroup_kn_unlock(of
->kn
);
3359 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3361 seq_printf(seq
, "populated %d\n",
3362 cgroup_is_populated(seq_css(seq
)->cgroup
));
3366 static int cgroup_stat_show(struct seq_file
*seq
, void *v
)
3368 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3370 seq_printf(seq
, "nr_descendants %d\n",
3371 cgroup
->nr_descendants
);
3372 seq_printf(seq
, "nr_dying_descendants %d\n",
3373 cgroup
->nr_dying_descendants
);
3378 static int __maybe_unused
cgroup_extra_stat_show(struct seq_file
*seq
,
3379 struct cgroup
*cgrp
, int ssid
)
3381 struct cgroup_subsys
*ss
= cgroup_subsys
[ssid
];
3382 struct cgroup_subsys_state
*css
;
3385 if (!ss
->css_extra_stat_show
)
3388 css
= cgroup_tryget_css(cgrp
, ss
);
3392 ret
= ss
->css_extra_stat_show(seq
, css
);
3397 static int cpu_stat_show(struct seq_file
*seq
, void *v
)
3399 struct cgroup __maybe_unused
*cgrp
= seq_css(seq
)->cgroup
;
3402 cgroup_base_stat_cputime_show(seq
);
3403 #ifdef CONFIG_CGROUP_SCHED
3404 ret
= cgroup_extra_stat_show(seq
, cgrp
, cpu_cgrp_id
);
3409 static int cgroup_file_open(struct kernfs_open_file
*of
)
3411 struct cftype
*cft
= of
->kn
->priv
;
3414 return cft
->open(of
);
3418 static void cgroup_file_release(struct kernfs_open_file
*of
)
3420 struct cftype
*cft
= of
->kn
->priv
;
3426 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3427 size_t nbytes
, loff_t off
)
3429 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
3430 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3431 struct cftype
*cft
= of
->kn
->priv
;
3432 struct cgroup_subsys_state
*css
;
3436 * If namespaces are delegation boundaries, disallow writes to
3437 * files in an non-init namespace root from inside the namespace
3438 * except for the files explicitly marked delegatable -
3439 * cgroup.procs and cgroup.subtree_control.
3441 if ((cgrp
->root
->flags
& CGRP_ROOT_NS_DELEGATE
) &&
3442 !(cft
->flags
& CFTYPE_NS_DELEGATABLE
) &&
3443 ns
!= &init_cgroup_ns
&& ns
->root_cset
->dfl_cgrp
== cgrp
)
3447 return cft
->write(of
, buf
, nbytes
, off
);
3450 * kernfs guarantees that a file isn't deleted with operations in
3451 * flight, which means that the matching css is and stays alive and
3452 * doesn't need to be pinned. The RCU locking is not necessary
3453 * either. It's just for the convenience of using cgroup_css().
3456 css
= cgroup_css(cgrp
, cft
->ss
);
3459 if (cft
->write_u64
) {
3460 unsigned long long v
;
3461 ret
= kstrtoull(buf
, 0, &v
);
3463 ret
= cft
->write_u64(css
, cft
, v
);
3464 } else if (cft
->write_s64
) {
3466 ret
= kstrtoll(buf
, 0, &v
);
3468 ret
= cft
->write_s64(css
, cft
, v
);
3473 return ret
?: nbytes
;
3476 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3478 return seq_cft(seq
)->seq_start(seq
, ppos
);
3481 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3483 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3486 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3488 if (seq_cft(seq
)->seq_stop
)
3489 seq_cft(seq
)->seq_stop(seq
, v
);
3492 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3494 struct cftype
*cft
= seq_cft(m
);
3495 struct cgroup_subsys_state
*css
= seq_css(m
);
3498 return cft
->seq_show(m
, arg
);
3501 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3502 else if (cft
->read_s64
)
3503 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3509 static struct kernfs_ops cgroup_kf_single_ops
= {
3510 .atomic_write_len
= PAGE_SIZE
,
3511 .open
= cgroup_file_open
,
3512 .release
= cgroup_file_release
,
3513 .write
= cgroup_file_write
,
3514 .seq_show
= cgroup_seqfile_show
,
3517 static struct kernfs_ops cgroup_kf_ops
= {
3518 .atomic_write_len
= PAGE_SIZE
,
3519 .open
= cgroup_file_open
,
3520 .release
= cgroup_file_release
,
3521 .write
= cgroup_file_write
,
3522 .seq_start
= cgroup_seqfile_start
,
3523 .seq_next
= cgroup_seqfile_next
,
3524 .seq_stop
= cgroup_seqfile_stop
,
3525 .seq_show
= cgroup_seqfile_show
,
3528 /* set uid and gid of cgroup dirs and files to that of the creator */
3529 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3531 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3532 .ia_uid
= current_fsuid(),
3533 .ia_gid
= current_fsgid(), };
3535 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3536 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3539 return kernfs_setattr(kn
, &iattr
);
3542 static void cgroup_file_notify_timer(struct timer_list
*timer
)
3544 cgroup_file_notify(container_of(timer
, struct cgroup_file
,
3548 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3551 char name
[CGROUP_FILE_NAME_MAX
];
3552 struct kernfs_node
*kn
;
3553 struct lock_class_key
*key
= NULL
;
3556 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3557 key
= &cft
->lockdep_key
;
3559 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3560 cgroup_file_mode(cft
),
3561 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
3562 0, cft
->kf_ops
, cft
,
3567 ret
= cgroup_kn_set_ugid(kn
);
3573 if (cft
->file_offset
) {
3574 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3576 timer_setup(&cfile
->notify_timer
, cgroup_file_notify_timer
, 0);
3578 spin_lock_irq(&cgroup_file_kn_lock
);
3580 spin_unlock_irq(&cgroup_file_kn_lock
);
3587 * cgroup_addrm_files - add or remove files to a cgroup directory
3588 * @css: the target css
3589 * @cgrp: the target cgroup (usually css->cgroup)
3590 * @cfts: array of cftypes to be added
3591 * @is_add: whether to add or remove
3593 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3594 * For removals, this function never fails.
3596 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3597 struct cgroup
*cgrp
, struct cftype cfts
[],
3600 struct cftype
*cft
, *cft_end
= NULL
;
3603 lockdep_assert_held(&cgroup_mutex
);
3606 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3607 /* does cft->flags tell us to skip this file on @cgrp? */
3608 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3610 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3612 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3614 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3618 ret
= cgroup_add_file(css
, cgrp
, cft
);
3620 pr_warn("%s: failed to add %s, err=%d\n",
3621 __func__
, cft
->name
, ret
);
3627 cgroup_rm_file(cgrp
, cft
);
3633 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3635 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3636 struct cgroup
*root
= &ss
->root
->cgrp
;
3637 struct cgroup_subsys_state
*css
;
3640 lockdep_assert_held(&cgroup_mutex
);
3642 /* add/rm files for all cgroups created before */
3643 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3644 struct cgroup
*cgrp
= css
->cgroup
;
3646 if (!(css
->flags
& CSS_VISIBLE
))
3649 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3655 kernfs_activate(root
->kn
);
3659 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3663 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3664 /* free copy for custom atomic_write_len, see init_cftypes() */
3665 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3670 /* revert flags set by cgroup core while adding @cfts */
3671 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3675 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3679 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3680 struct kernfs_ops
*kf_ops
;
3682 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3685 kf_ops
= &cgroup_kf_ops
;
3687 kf_ops
= &cgroup_kf_single_ops
;
3690 * Ugh... if @cft wants a custom max_write_len, we need to
3691 * make a copy of kf_ops to set its atomic_write_len.
3693 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3694 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3696 cgroup_exit_cftypes(cfts
);
3699 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3702 cft
->kf_ops
= kf_ops
;
3709 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3711 lockdep_assert_held(&cgroup_mutex
);
3713 if (!cfts
|| !cfts
[0].ss
)
3716 list_del(&cfts
->node
);
3717 cgroup_apply_cftypes(cfts
, false);
3718 cgroup_exit_cftypes(cfts
);
3723 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3724 * @cfts: zero-length name terminated array of cftypes
3726 * Unregister @cfts. Files described by @cfts are removed from all
3727 * existing cgroups and all future cgroups won't have them either. This
3728 * function can be called anytime whether @cfts' subsys is attached or not.
3730 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3733 int cgroup_rm_cftypes(struct cftype
*cfts
)
3737 mutex_lock(&cgroup_mutex
);
3738 ret
= cgroup_rm_cftypes_locked(cfts
);
3739 mutex_unlock(&cgroup_mutex
);
3744 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3745 * @ss: target cgroup subsystem
3746 * @cfts: zero-length name terminated array of cftypes
3748 * Register @cfts to @ss. Files described by @cfts are created for all
3749 * existing cgroups to which @ss is attached and all future cgroups will
3750 * have them too. This function can be called anytime whether @ss is
3753 * Returns 0 on successful registration, -errno on failure. Note that this
3754 * function currently returns 0 as long as @cfts registration is successful
3755 * even if some file creation attempts on existing cgroups fail.
3757 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3761 if (!cgroup_ssid_enabled(ss
->id
))
3764 if (!cfts
|| cfts
[0].name
[0] == '\0')
3767 ret
= cgroup_init_cftypes(ss
, cfts
);
3771 mutex_lock(&cgroup_mutex
);
3773 list_add_tail(&cfts
->node
, &ss
->cfts
);
3774 ret
= cgroup_apply_cftypes(cfts
, true);
3776 cgroup_rm_cftypes_locked(cfts
);
3778 mutex_unlock(&cgroup_mutex
);
3783 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3784 * @ss: target cgroup subsystem
3785 * @cfts: zero-length name terminated array of cftypes
3787 * Similar to cgroup_add_cftypes() but the added files are only used for
3788 * the default hierarchy.
3790 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3794 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3795 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3796 return cgroup_add_cftypes(ss
, cfts
);
3800 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3801 * @ss: target cgroup subsystem
3802 * @cfts: zero-length name terminated array of cftypes
3804 * Similar to cgroup_add_cftypes() but the added files are only used for
3805 * the legacy hierarchies.
3807 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3811 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3812 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3813 return cgroup_add_cftypes(ss
, cfts
);
3817 * cgroup_file_notify - generate a file modified event for a cgroup_file
3818 * @cfile: target cgroup_file
3820 * @cfile must have been obtained by setting cftype->file_offset.
3822 void cgroup_file_notify(struct cgroup_file
*cfile
)
3824 unsigned long flags
;
3826 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
3828 unsigned long last
= cfile
->notified_at
;
3829 unsigned long next
= last
+ CGROUP_FILE_NOTIFY_MIN_INTV
;
3831 if (time_in_range(jiffies
, last
, next
)) {
3832 timer_reduce(&cfile
->notify_timer
, next
);
3834 kernfs_notify(cfile
->kn
);
3835 cfile
->notified_at
= jiffies
;
3838 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
3842 * css_next_child - find the next child of a given css
3843 * @pos: the current position (%NULL to initiate traversal)
3844 * @parent: css whose children to walk
3846 * This function returns the next child of @parent and should be called
3847 * under either cgroup_mutex or RCU read lock. The only requirement is
3848 * that @parent and @pos are accessible. The next sibling is guaranteed to
3849 * be returned regardless of their states.
3851 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3852 * css which finished ->css_online() is guaranteed to be visible in the
3853 * future iterations and will stay visible until the last reference is put.
3854 * A css which hasn't finished ->css_online() or already finished
3855 * ->css_offline() may show up during traversal. It's each subsystem's
3856 * responsibility to synchronize against on/offlining.
3858 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3859 struct cgroup_subsys_state
*parent
)
3861 struct cgroup_subsys_state
*next
;
3863 cgroup_assert_mutex_or_rcu_locked();
3866 * @pos could already have been unlinked from the sibling list.
3867 * Once a cgroup is removed, its ->sibling.next is no longer
3868 * updated when its next sibling changes. CSS_RELEASED is set when
3869 * @pos is taken off list, at which time its next pointer is valid,
3870 * and, as releases are serialized, the one pointed to by the next
3871 * pointer is guaranteed to not have started release yet. This
3872 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3873 * critical section, the one pointed to by its next pointer is
3874 * guaranteed to not have finished its RCU grace period even if we
3875 * have dropped rcu_read_lock() inbetween iterations.
3877 * If @pos has CSS_RELEASED set, its next pointer can't be
3878 * dereferenced; however, as each css is given a monotonically
3879 * increasing unique serial number and always appended to the
3880 * sibling list, the next one can be found by walking the parent's
3881 * children until the first css with higher serial number than
3882 * @pos's. While this path can be slower, it happens iff iteration
3883 * races against release and the race window is very small.
3886 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3887 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3888 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3890 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3891 if (next
->serial_nr
> pos
->serial_nr
)
3896 * @next, if not pointing to the head, can be dereferenced and is
3899 if (&next
->sibling
!= &parent
->children
)
3905 * css_next_descendant_pre - find the next descendant for pre-order walk
3906 * @pos: the current position (%NULL to initiate traversal)
3907 * @root: css whose descendants to walk
3909 * To be used by css_for_each_descendant_pre(). Find the next descendant
3910 * to visit for pre-order traversal of @root's descendants. @root is
3911 * included in the iteration and the first node to be visited.
3913 * While this function requires cgroup_mutex or RCU read locking, it
3914 * doesn't require the whole traversal to be contained in a single critical
3915 * section. This function will return the correct next descendant as long
3916 * as both @pos and @root are accessible and @pos is a descendant of @root.
3918 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3919 * css which finished ->css_online() is guaranteed to be visible in the
3920 * future iterations and will stay visible until the last reference is put.
3921 * A css which hasn't finished ->css_online() or already finished
3922 * ->css_offline() may show up during traversal. It's each subsystem's
3923 * responsibility to synchronize against on/offlining.
3925 struct cgroup_subsys_state
*
3926 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3927 struct cgroup_subsys_state
*root
)
3929 struct cgroup_subsys_state
*next
;
3931 cgroup_assert_mutex_or_rcu_locked();
3933 /* if first iteration, visit @root */
3937 /* visit the first child if exists */
3938 next
= css_next_child(NULL
, pos
);
3942 /* no child, visit my or the closest ancestor's next sibling */
3943 while (pos
!= root
) {
3944 next
= css_next_child(pos
, pos
->parent
);
3954 * css_rightmost_descendant - return the rightmost descendant of a css
3955 * @pos: css of interest
3957 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3958 * is returned. This can be used during pre-order traversal to skip
3961 * While this function requires cgroup_mutex or RCU read locking, it
3962 * doesn't require the whole traversal to be contained in a single critical
3963 * section. This function will return the correct rightmost descendant as
3964 * long as @pos is accessible.
3966 struct cgroup_subsys_state
*
3967 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3969 struct cgroup_subsys_state
*last
, *tmp
;
3971 cgroup_assert_mutex_or_rcu_locked();
3975 /* ->prev isn't RCU safe, walk ->next till the end */
3977 css_for_each_child(tmp
, last
)
3984 static struct cgroup_subsys_state
*
3985 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3987 struct cgroup_subsys_state
*last
;
3991 pos
= css_next_child(NULL
, pos
);
3998 * css_next_descendant_post - find the next descendant for post-order walk
3999 * @pos: the current position (%NULL to initiate traversal)
4000 * @root: css whose descendants to walk
4002 * To be used by css_for_each_descendant_post(). Find the next descendant
4003 * to visit for post-order traversal of @root's descendants. @root is
4004 * included in the iteration and the last node to be visited.
4006 * While this function requires cgroup_mutex or RCU read locking, it
4007 * doesn't require the whole traversal to be contained in a single critical
4008 * section. This function will return the correct next descendant as long
4009 * as both @pos and @cgroup are accessible and @pos is a descendant of
4012 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4013 * css which finished ->css_online() is guaranteed to be visible in the
4014 * future iterations and will stay visible until the last reference is put.
4015 * A css which hasn't finished ->css_online() or already finished
4016 * ->css_offline() may show up during traversal. It's each subsystem's
4017 * responsibility to synchronize against on/offlining.
4019 struct cgroup_subsys_state
*
4020 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
4021 struct cgroup_subsys_state
*root
)
4023 struct cgroup_subsys_state
*next
;
4025 cgroup_assert_mutex_or_rcu_locked();
4027 /* if first iteration, visit leftmost descendant which may be @root */
4029 return css_leftmost_descendant(root
);
4031 /* if we visited @root, we're done */
4035 /* if there's an unvisited sibling, visit its leftmost descendant */
4036 next
= css_next_child(pos
, pos
->parent
);
4038 return css_leftmost_descendant(next
);
4040 /* no sibling left, visit parent */
4045 * css_has_online_children - does a css have online children
4046 * @css: the target css
4048 * Returns %true if @css has any online children; otherwise, %false. This
4049 * function can be called from any context but the caller is responsible
4050 * for synchronizing against on/offlining as necessary.
4052 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4054 struct cgroup_subsys_state
*child
;
4058 css_for_each_child(child
, css
) {
4059 if (child
->flags
& CSS_ONLINE
) {
4068 static struct css_set
*css_task_iter_next_css_set(struct css_task_iter
*it
)
4070 struct list_head
*l
;
4071 struct cgrp_cset_link
*link
;
4072 struct css_set
*cset
;
4074 lockdep_assert_held(&css_set_lock
);
4076 /* find the next threaded cset */
4077 if (it
->tcset_pos
) {
4078 l
= it
->tcset_pos
->next
;
4080 if (l
!= it
->tcset_head
) {
4082 return container_of(l
, struct css_set
,
4083 threaded_csets_node
);
4086 it
->tcset_pos
= NULL
;
4089 /* find the next cset */
4092 if (l
== it
->cset_head
) {
4093 it
->cset_pos
= NULL
;
4098 cset
= container_of(l
, struct css_set
, e_cset_node
[it
->ss
->id
]);
4100 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4106 /* initialize threaded css_set walking */
4107 if (it
->flags
& CSS_TASK_ITER_THREADED
) {
4109 put_css_set_locked(it
->cur_dcset
);
4110 it
->cur_dcset
= cset
;
4113 it
->tcset_head
= &cset
->threaded_csets
;
4114 it
->tcset_pos
= &cset
->threaded_csets
;
4121 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4122 * @it: the iterator to advance
4124 * Advance @it to the next css_set to walk.
4126 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4128 struct css_set
*cset
;
4130 lockdep_assert_held(&css_set_lock
);
4132 /* Advance to the next non-empty css_set */
4134 cset
= css_task_iter_next_css_set(it
);
4136 it
->task_pos
= NULL
;
4139 } while (!css_set_populated(cset
));
4141 if (!list_empty(&cset
->tasks
))
4142 it
->task_pos
= cset
->tasks
.next
;
4144 it
->task_pos
= cset
->mg_tasks
.next
;
4146 it
->tasks_head
= &cset
->tasks
;
4147 it
->mg_tasks_head
= &cset
->mg_tasks
;
4150 * We don't keep css_sets locked across iteration steps and thus
4151 * need to take steps to ensure that iteration can be resumed after
4152 * the lock is re-acquired. Iteration is performed at two levels -
4153 * css_sets and tasks in them.
4155 * Once created, a css_set never leaves its cgroup lists, so a
4156 * pinned css_set is guaranteed to stay put and we can resume
4157 * iteration afterwards.
4159 * Tasks may leave @cset across iteration steps. This is resolved
4160 * by registering each iterator with the css_set currently being
4161 * walked and making css_set_move_task() advance iterators whose
4162 * next task is leaving.
4165 list_del(&it
->iters_node
);
4166 put_css_set_locked(it
->cur_cset
);
4169 it
->cur_cset
= cset
;
4170 list_add(&it
->iters_node
, &cset
->task_iters
);
4173 static void css_task_iter_advance(struct css_task_iter
*it
)
4175 struct list_head
*next
;
4177 lockdep_assert_held(&css_set_lock
);
4180 * Advance iterator to find next entry. cset->tasks is consumed
4181 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4184 next
= it
->task_pos
->next
;
4186 if (next
== it
->tasks_head
)
4187 next
= it
->mg_tasks_head
->next
;
4189 if (next
== it
->mg_tasks_head
)
4190 css_task_iter_advance_css_set(it
);
4192 it
->task_pos
= next
;
4194 /* if PROCS, skip over tasks which aren't group leaders */
4195 if ((it
->flags
& CSS_TASK_ITER_PROCS
) && it
->task_pos
&&
4196 !thread_group_leader(list_entry(it
->task_pos
, struct task_struct
,
4202 * css_task_iter_start - initiate task iteration
4203 * @css: the css to walk tasks of
4204 * @flags: CSS_TASK_ITER_* flags
4205 * @it: the task iterator to use
4207 * Initiate iteration through the tasks of @css. The caller can call
4208 * css_task_iter_next() to walk through the tasks until the function
4209 * returns NULL. On completion of iteration, css_task_iter_end() must be
4212 void css_task_iter_start(struct cgroup_subsys_state
*css
, unsigned int flags
,
4213 struct css_task_iter
*it
)
4215 /* no one should try to iterate before mounting cgroups */
4216 WARN_ON_ONCE(!use_task_css_set_links
);
4218 memset(it
, 0, sizeof(*it
));
4220 spin_lock_irq(&css_set_lock
);
4226 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4228 it
->cset_pos
= &css
->cgroup
->cset_links
;
4230 it
->cset_head
= it
->cset_pos
;
4232 css_task_iter_advance_css_set(it
);
4234 spin_unlock_irq(&css_set_lock
);
4238 * css_task_iter_next - return the next task for the iterator
4239 * @it: the task iterator being iterated
4241 * The "next" function for task iteration. @it should have been
4242 * initialized via css_task_iter_start(). Returns NULL when the iteration
4245 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4248 put_task_struct(it
->cur_task
);
4249 it
->cur_task
= NULL
;
4252 spin_lock_irq(&css_set_lock
);
4255 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4257 get_task_struct(it
->cur_task
);
4258 css_task_iter_advance(it
);
4261 spin_unlock_irq(&css_set_lock
);
4263 return it
->cur_task
;
4267 * css_task_iter_end - finish task iteration
4268 * @it: the task iterator to finish
4270 * Finish task iteration started by css_task_iter_start().
4272 void css_task_iter_end(struct css_task_iter
*it
)
4275 spin_lock_irq(&css_set_lock
);
4276 list_del(&it
->iters_node
);
4277 put_css_set_locked(it
->cur_cset
);
4278 spin_unlock_irq(&css_set_lock
);
4282 put_css_set(it
->cur_dcset
);
4285 put_task_struct(it
->cur_task
);
4288 static void cgroup_procs_release(struct kernfs_open_file
*of
)
4291 css_task_iter_end(of
->priv
);
4296 static void *cgroup_procs_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4298 struct kernfs_open_file
*of
= s
->private;
4299 struct css_task_iter
*it
= of
->priv
;
4301 return css_task_iter_next(it
);
4304 static void *__cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
,
4305 unsigned int iter_flags
)
4307 struct kernfs_open_file
*of
= s
->private;
4308 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4309 struct css_task_iter
*it
= of
->priv
;
4312 * When a seq_file is seeked, it's always traversed sequentially
4313 * from position 0, so we can simply keep iterating on !0 *pos.
4316 if (WARN_ON_ONCE((*pos
)++))
4317 return ERR_PTR(-EINVAL
);
4319 it
= kzalloc(sizeof(*it
), GFP_KERNEL
);
4321 return ERR_PTR(-ENOMEM
);
4323 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4324 } else if (!(*pos
)++) {
4325 css_task_iter_end(it
);
4326 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4329 return cgroup_procs_next(s
, NULL
, NULL
);
4332 static void *cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
)
4334 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4337 * All processes of a threaded subtree belong to the domain cgroup
4338 * of the subtree. Only threads can be distributed across the
4339 * subtree. Reject reads on cgroup.procs in the subtree proper.
4340 * They're always empty anyway.
4342 if (cgroup_is_threaded(cgrp
))
4343 return ERR_PTR(-EOPNOTSUPP
);
4345 return __cgroup_procs_start(s
, pos
, CSS_TASK_ITER_PROCS
|
4346 CSS_TASK_ITER_THREADED
);
4349 static int cgroup_procs_show(struct seq_file
*s
, void *v
)
4351 seq_printf(s
, "%d\n", task_pid_vnr(v
));
4355 static int cgroup_procs_write_permission(struct cgroup
*src_cgrp
,
4356 struct cgroup
*dst_cgrp
,
4357 struct super_block
*sb
)
4359 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
4360 struct cgroup
*com_cgrp
= src_cgrp
;
4361 struct inode
*inode
;
4364 lockdep_assert_held(&cgroup_mutex
);
4366 /* find the common ancestor */
4367 while (!cgroup_is_descendant(dst_cgrp
, com_cgrp
))
4368 com_cgrp
= cgroup_parent(com_cgrp
);
4370 /* %current should be authorized to migrate to the common ancestor */
4371 inode
= kernfs_get_inode(sb
, com_cgrp
->procs_file
.kn
);
4375 ret
= inode_permission(inode
, MAY_WRITE
);
4381 * If namespaces are delegation boundaries, %current must be able
4382 * to see both source and destination cgroups from its namespace.
4384 if ((cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
) &&
4385 (!cgroup_is_descendant(src_cgrp
, ns
->root_cset
->dfl_cgrp
) ||
4386 !cgroup_is_descendant(dst_cgrp
, ns
->root_cset
->dfl_cgrp
)))
4392 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
4393 char *buf
, size_t nbytes
, loff_t off
)
4395 struct cgroup
*src_cgrp
, *dst_cgrp
;
4396 struct task_struct
*task
;
4399 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4403 task
= cgroup_procs_write_start(buf
, true);
4404 ret
= PTR_ERR_OR_ZERO(task
);
4408 /* find the source cgroup */
4409 spin_lock_irq(&css_set_lock
);
4410 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4411 spin_unlock_irq(&css_set_lock
);
4413 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4414 of
->file
->f_path
.dentry
->d_sb
);
4418 ret
= cgroup_attach_task(dst_cgrp
, task
, true);
4421 cgroup_procs_write_finish(task
);
4423 cgroup_kn_unlock(of
->kn
);
4425 return ret
?: nbytes
;
4428 static void *cgroup_threads_start(struct seq_file
*s
, loff_t
*pos
)
4430 return __cgroup_procs_start(s
, pos
, 0);
4433 static ssize_t
cgroup_threads_write(struct kernfs_open_file
*of
,
4434 char *buf
, size_t nbytes
, loff_t off
)
4436 struct cgroup
*src_cgrp
, *dst_cgrp
;
4437 struct task_struct
*task
;
4440 buf
= strstrip(buf
);
4442 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4446 task
= cgroup_procs_write_start(buf
, false);
4447 ret
= PTR_ERR_OR_ZERO(task
);
4451 /* find the source cgroup */
4452 spin_lock_irq(&css_set_lock
);
4453 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4454 spin_unlock_irq(&css_set_lock
);
4456 /* thread migrations follow the cgroup.procs delegation rule */
4457 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4458 of
->file
->f_path
.dentry
->d_sb
);
4462 /* and must be contained in the same domain */
4464 if (src_cgrp
->dom_cgrp
!= dst_cgrp
->dom_cgrp
)
4467 ret
= cgroup_attach_task(dst_cgrp
, task
, false);
4470 cgroup_procs_write_finish(task
);
4472 cgroup_kn_unlock(of
->kn
);
4474 return ret
?: nbytes
;
4477 /* cgroup core interface files for the default hierarchy */
4478 static struct cftype cgroup_base_files
[] = {
4480 .name
= "cgroup.type",
4481 .flags
= CFTYPE_NOT_ON_ROOT
,
4482 .seq_show
= cgroup_type_show
,
4483 .write
= cgroup_type_write
,
4486 .name
= "cgroup.procs",
4487 .flags
= CFTYPE_NS_DELEGATABLE
,
4488 .file_offset
= offsetof(struct cgroup
, procs_file
),
4489 .release
= cgroup_procs_release
,
4490 .seq_start
= cgroup_procs_start
,
4491 .seq_next
= cgroup_procs_next
,
4492 .seq_show
= cgroup_procs_show
,
4493 .write
= cgroup_procs_write
,
4496 .name
= "cgroup.threads",
4497 .flags
= CFTYPE_NS_DELEGATABLE
,
4498 .release
= cgroup_procs_release
,
4499 .seq_start
= cgroup_threads_start
,
4500 .seq_next
= cgroup_procs_next
,
4501 .seq_show
= cgroup_procs_show
,
4502 .write
= cgroup_threads_write
,
4505 .name
= "cgroup.controllers",
4506 .seq_show
= cgroup_controllers_show
,
4509 .name
= "cgroup.subtree_control",
4510 .flags
= CFTYPE_NS_DELEGATABLE
,
4511 .seq_show
= cgroup_subtree_control_show
,
4512 .write
= cgroup_subtree_control_write
,
4515 .name
= "cgroup.events",
4516 .flags
= CFTYPE_NOT_ON_ROOT
,
4517 .file_offset
= offsetof(struct cgroup
, events_file
),
4518 .seq_show
= cgroup_events_show
,
4521 .name
= "cgroup.max.descendants",
4522 .seq_show
= cgroup_max_descendants_show
,
4523 .write
= cgroup_max_descendants_write
,
4526 .name
= "cgroup.max.depth",
4527 .seq_show
= cgroup_max_depth_show
,
4528 .write
= cgroup_max_depth_write
,
4531 .name
= "cgroup.stat",
4532 .seq_show
= cgroup_stat_show
,
4536 .flags
= CFTYPE_NOT_ON_ROOT
,
4537 .seq_show
= cpu_stat_show
,
4543 * css destruction is four-stage process.
4545 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4546 * Implemented in kill_css().
4548 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4549 * and thus css_tryget_online() is guaranteed to fail, the css can be
4550 * offlined by invoking offline_css(). After offlining, the base ref is
4551 * put. Implemented in css_killed_work_fn().
4553 * 3. When the percpu_ref reaches zero, the only possible remaining
4554 * accessors are inside RCU read sections. css_release() schedules the
4557 * 4. After the grace period, the css can be freed. Implemented in
4558 * css_free_work_fn().
4560 * It is actually hairier because both step 2 and 4 require process context
4561 * and thus involve punting to css->destroy_work adding two additional
4562 * steps to the already complex sequence.
4564 static void css_free_rwork_fn(struct work_struct
*work
)
4566 struct cgroup_subsys_state
*css
= container_of(to_rcu_work(work
),
4567 struct cgroup_subsys_state
, destroy_rwork
);
4568 struct cgroup_subsys
*ss
= css
->ss
;
4569 struct cgroup
*cgrp
= css
->cgroup
;
4571 percpu_ref_exit(&css
->refcnt
);
4575 struct cgroup_subsys_state
*parent
= css
->parent
;
4579 cgroup_idr_remove(&ss
->css_idr
, id
);
4585 /* cgroup free path */
4586 atomic_dec(&cgrp
->root
->nr_cgrps
);
4587 cgroup1_pidlist_destroy_all(cgrp
);
4588 cancel_work_sync(&cgrp
->release_agent_work
);
4590 if (cgroup_parent(cgrp
)) {
4592 * We get a ref to the parent, and put the ref when
4593 * this cgroup is being freed, so it's guaranteed
4594 * that the parent won't be destroyed before its
4597 cgroup_put(cgroup_parent(cgrp
));
4598 kernfs_put(cgrp
->kn
);
4599 if (cgroup_on_dfl(cgrp
))
4600 cgroup_rstat_exit(cgrp
);
4604 * This is root cgroup's refcnt reaching zero,
4605 * which indicates that the root should be
4608 cgroup_destroy_root(cgrp
->root
);
4613 static void css_release_work_fn(struct work_struct
*work
)
4615 struct cgroup_subsys_state
*css
=
4616 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4617 struct cgroup_subsys
*ss
= css
->ss
;
4618 struct cgroup
*cgrp
= css
->cgroup
;
4620 mutex_lock(&cgroup_mutex
);
4622 css
->flags
|= CSS_RELEASED
;
4623 list_del_rcu(&css
->sibling
);
4626 /* css release path */
4627 if (!list_empty(&css
->rstat_css_node
)) {
4628 cgroup_rstat_flush(cgrp
);
4629 list_del_rcu(&css
->rstat_css_node
);
4632 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4633 if (ss
->css_released
)
4634 ss
->css_released(css
);
4636 struct cgroup
*tcgrp
;
4638 /* cgroup release path */
4639 trace_cgroup_release(cgrp
);
4641 if (cgroup_on_dfl(cgrp
))
4642 cgroup_rstat_flush(cgrp
);
4644 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
;
4645 tcgrp
= cgroup_parent(tcgrp
))
4646 tcgrp
->nr_dying_descendants
--;
4648 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4652 * There are two control paths which try to determine
4653 * cgroup from dentry without going through kernfs -
4654 * cgroupstats_build() and css_tryget_online_from_dir().
4655 * Those are supported by RCU protecting clearing of
4656 * cgrp->kn->priv backpointer.
4659 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
4662 cgroup_bpf_put(cgrp
);
4665 mutex_unlock(&cgroup_mutex
);
4667 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
4668 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
4671 static void css_release(struct percpu_ref
*ref
)
4673 struct cgroup_subsys_state
*css
=
4674 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4676 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4677 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4680 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4681 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4683 lockdep_assert_held(&cgroup_mutex
);
4685 cgroup_get_live(cgrp
);
4687 memset(css
, 0, sizeof(*css
));
4691 INIT_LIST_HEAD(&css
->sibling
);
4692 INIT_LIST_HEAD(&css
->children
);
4693 INIT_LIST_HEAD(&css
->rstat_css_node
);
4694 css
->serial_nr
= css_serial_nr_next
++;
4695 atomic_set(&css
->online_cnt
, 0);
4697 if (cgroup_parent(cgrp
)) {
4698 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4699 css_get(css
->parent
);
4702 if (cgroup_on_dfl(cgrp
) && ss
->css_rstat_flush
)
4703 list_add_rcu(&css
->rstat_css_node
, &cgrp
->rstat_css_list
);
4705 BUG_ON(cgroup_css(cgrp
, ss
));
4708 /* invoke ->css_online() on a new CSS and mark it online if successful */
4709 static int online_css(struct cgroup_subsys_state
*css
)
4711 struct cgroup_subsys
*ss
= css
->ss
;
4714 lockdep_assert_held(&cgroup_mutex
);
4717 ret
= ss
->css_online(css
);
4719 css
->flags
|= CSS_ONLINE
;
4720 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4722 atomic_inc(&css
->online_cnt
);
4724 atomic_inc(&css
->parent
->online_cnt
);
4729 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4730 static void offline_css(struct cgroup_subsys_state
*css
)
4732 struct cgroup_subsys
*ss
= css
->ss
;
4734 lockdep_assert_held(&cgroup_mutex
);
4736 if (!(css
->flags
& CSS_ONLINE
))
4739 if (ss
->css_offline
)
4740 ss
->css_offline(css
);
4742 css
->flags
&= ~CSS_ONLINE
;
4743 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4745 wake_up_all(&css
->cgroup
->offline_waitq
);
4749 * css_create - create a cgroup_subsys_state
4750 * @cgrp: the cgroup new css will be associated with
4751 * @ss: the subsys of new css
4753 * Create a new css associated with @cgrp - @ss pair. On success, the new
4754 * css is online and installed in @cgrp. This function doesn't create the
4755 * interface files. Returns 0 on success, -errno on failure.
4757 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
4758 struct cgroup_subsys
*ss
)
4760 struct cgroup
*parent
= cgroup_parent(cgrp
);
4761 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4762 struct cgroup_subsys_state
*css
;
4765 lockdep_assert_held(&cgroup_mutex
);
4767 css
= ss
->css_alloc(parent_css
);
4769 css
= ERR_PTR(-ENOMEM
);
4773 init_and_link_css(css
, ss
, cgrp
);
4775 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4779 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
4784 /* @css is ready to be brought online now, make it visible */
4785 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4786 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4788 err
= online_css(css
);
4792 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4793 cgroup_parent(parent
)) {
4794 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4795 current
->comm
, current
->pid
, ss
->name
);
4796 if (!strcmp(ss
->name
, "memory"))
4797 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4798 ss
->warned_broken_hierarchy
= true;
4804 list_del_rcu(&css
->sibling
);
4806 list_del_rcu(&css
->rstat_css_node
);
4807 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
4808 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
4809 return ERR_PTR(err
);
4813 * The returned cgroup is fully initialized including its control mask, but
4814 * it isn't associated with its kernfs_node and doesn't have the control
4817 static struct cgroup
*cgroup_create(struct cgroup
*parent
)
4819 struct cgroup_root
*root
= parent
->root
;
4820 struct cgroup
*cgrp
, *tcgrp
;
4821 int level
= parent
->level
+ 1;
4824 /* allocate the cgroup and its ID, 0 is reserved for the root */
4825 cgrp
= kzalloc(struct_size(cgrp
, ancestor_ids
, (level
+ 1)),
4828 return ERR_PTR(-ENOMEM
);
4830 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4834 if (cgroup_on_dfl(parent
)) {
4835 ret
= cgroup_rstat_init(cgrp
);
4837 goto out_cancel_ref
;
4841 * Temporarily set the pointer to NULL, so idr_find() won't return
4842 * a half-baked cgroup.
4844 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
4850 init_cgroup_housekeeping(cgrp
);
4852 cgrp
->self
.parent
= &parent
->self
;
4854 cgrp
->level
= level
;
4855 ret
= cgroup_bpf_inherit(cgrp
);
4859 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
4860 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
4863 tcgrp
->nr_descendants
++;
4866 if (notify_on_release(parent
))
4867 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4869 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4870 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4872 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4874 /* allocation complete, commit to creation */
4875 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4876 atomic_inc(&root
->nr_cgrps
);
4877 cgroup_get_live(parent
);
4880 * @cgrp is now fully operational. If something fails after this
4881 * point, it'll be released via the normal destruction path.
4883 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4886 * On the default hierarchy, a child doesn't automatically inherit
4887 * subtree_control from the parent. Each is configured manually.
4889 if (!cgroup_on_dfl(cgrp
))
4890 cgrp
->subtree_control
= cgroup_control(cgrp
);
4892 cgroup_propagate_control(cgrp
);
4897 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4899 if (cgroup_on_dfl(parent
))
4900 cgroup_rstat_exit(cgrp
);
4902 percpu_ref_exit(&cgrp
->self
.refcnt
);
4905 return ERR_PTR(ret
);
4908 static bool cgroup_check_hierarchy_limits(struct cgroup
*parent
)
4910 struct cgroup
*cgroup
;
4914 lockdep_assert_held(&cgroup_mutex
);
4916 for (cgroup
= parent
; cgroup
; cgroup
= cgroup_parent(cgroup
)) {
4917 if (cgroup
->nr_descendants
>= cgroup
->max_descendants
)
4920 if (level
> cgroup
->max_depth
)
4931 int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
, umode_t mode
)
4933 struct cgroup
*parent
, *cgrp
;
4934 struct kernfs_node
*kn
;
4937 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4938 if (strchr(name
, '\n'))
4941 parent
= cgroup_kn_lock_live(parent_kn
, false);
4945 if (!cgroup_check_hierarchy_limits(parent
)) {
4950 cgrp
= cgroup_create(parent
);
4952 ret
= PTR_ERR(cgrp
);
4956 /* create the directory */
4957 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4965 * This extra ref will be put in cgroup_free_fn() and guarantees
4966 * that @cgrp->kn is always accessible.
4970 ret
= cgroup_kn_set_ugid(kn
);
4974 ret
= css_populate_dir(&cgrp
->self
);
4978 ret
= cgroup_apply_control_enable(cgrp
);
4982 trace_cgroup_mkdir(cgrp
);
4984 /* let's create and online css's */
4985 kernfs_activate(kn
);
4991 cgroup_destroy_locked(cgrp
);
4993 cgroup_kn_unlock(parent_kn
);
4998 * This is called when the refcnt of a css is confirmed to be killed.
4999 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5000 * initate destruction and put the css ref from kill_css().
5002 static void css_killed_work_fn(struct work_struct
*work
)
5004 struct cgroup_subsys_state
*css
=
5005 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5007 mutex_lock(&cgroup_mutex
);
5012 /* @css can't go away while we're holding cgroup_mutex */
5014 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5016 mutex_unlock(&cgroup_mutex
);
5019 /* css kill confirmation processing requires process context, bounce */
5020 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5022 struct cgroup_subsys_state
*css
=
5023 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5025 if (atomic_dec_and_test(&css
->online_cnt
)) {
5026 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5027 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5032 * kill_css - destroy a css
5033 * @css: css to destroy
5035 * This function initiates destruction of @css by removing cgroup interface
5036 * files and putting its base reference. ->css_offline() will be invoked
5037 * asynchronously once css_tryget_online() is guaranteed to fail and when
5038 * the reference count reaches zero, @css will be released.
5040 static void kill_css(struct cgroup_subsys_state
*css
)
5042 lockdep_assert_held(&cgroup_mutex
);
5044 if (css
->flags
& CSS_DYING
)
5047 css
->flags
|= CSS_DYING
;
5050 * This must happen before css is disassociated with its cgroup.
5051 * See seq_css() for details.
5056 * Killing would put the base ref, but we need to keep it alive
5057 * until after ->css_offline().
5062 * cgroup core guarantees that, by the time ->css_offline() is
5063 * invoked, no new css reference will be given out via
5064 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5065 * proceed to offlining css's because percpu_ref_kill() doesn't
5066 * guarantee that the ref is seen as killed on all CPUs on return.
5068 * Use percpu_ref_kill_and_confirm() to get notifications as each
5069 * css is confirmed to be seen as killed on all CPUs.
5071 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5075 * cgroup_destroy_locked - the first stage of cgroup destruction
5076 * @cgrp: cgroup to be destroyed
5078 * css's make use of percpu refcnts whose killing latency shouldn't be
5079 * exposed to userland and are RCU protected. Also, cgroup core needs to
5080 * guarantee that css_tryget_online() won't succeed by the time
5081 * ->css_offline() is invoked. To satisfy all the requirements,
5082 * destruction is implemented in the following two steps.
5084 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5085 * userland visible parts and start killing the percpu refcnts of
5086 * css's. Set up so that the next stage will be kicked off once all
5087 * the percpu refcnts are confirmed to be killed.
5089 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5090 * rest of destruction. Once all cgroup references are gone, the
5091 * cgroup is RCU-freed.
5093 * This function implements s1. After this step, @cgrp is gone as far as
5094 * the userland is concerned and a new cgroup with the same name may be
5095 * created. As cgroup doesn't care about the names internally, this
5096 * doesn't cause any problem.
5098 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5099 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5101 struct cgroup
*tcgrp
, *parent
= cgroup_parent(cgrp
);
5102 struct cgroup_subsys_state
*css
;
5103 struct cgrp_cset_link
*link
;
5106 lockdep_assert_held(&cgroup_mutex
);
5109 * Only migration can raise populated from zero and we're already
5110 * holding cgroup_mutex.
5112 if (cgroup_is_populated(cgrp
))
5116 * Make sure there's no live children. We can't test emptiness of
5117 * ->self.children as dead children linger on it while being
5118 * drained; otherwise, "rmdir parent/child parent" may fail.
5120 if (css_has_online_children(&cgrp
->self
))
5124 * Mark @cgrp and the associated csets dead. The former prevents
5125 * further task migration and child creation by disabling
5126 * cgroup_lock_live_group(). The latter makes the csets ignored by
5127 * the migration path.
5129 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5131 spin_lock_irq(&css_set_lock
);
5132 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5133 link
->cset
->dead
= true;
5134 spin_unlock_irq(&css_set_lock
);
5136 /* initiate massacre of all css's */
5137 for_each_css(css
, ssid
, cgrp
)
5140 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5141 css_clear_dir(&cgrp
->self
);
5142 kernfs_remove(cgrp
->kn
);
5144 if (parent
&& cgroup_is_threaded(cgrp
))
5145 parent
->nr_threaded_children
--;
5147 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5148 tcgrp
->nr_descendants
--;
5149 tcgrp
->nr_dying_descendants
++;
5152 cgroup1_check_for_release(parent
);
5154 /* put the base reference */
5155 percpu_ref_kill(&cgrp
->self
.refcnt
);
5160 int cgroup_rmdir(struct kernfs_node
*kn
)
5162 struct cgroup
*cgrp
;
5165 cgrp
= cgroup_kn_lock_live(kn
, false);
5169 ret
= cgroup_destroy_locked(cgrp
);
5172 trace_cgroup_rmdir(cgrp
);
5174 cgroup_kn_unlock(kn
);
5178 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5179 .show_options
= cgroup_show_options
,
5180 .remount_fs
= cgroup_remount
,
5181 .mkdir
= cgroup_mkdir
,
5182 .rmdir
= cgroup_rmdir
,
5183 .show_path
= cgroup_show_path
,
5186 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5188 struct cgroup_subsys_state
*css
;
5190 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5192 mutex_lock(&cgroup_mutex
);
5194 idr_init(&ss
->css_idr
);
5195 INIT_LIST_HEAD(&ss
->cfts
);
5197 /* Create the root cgroup state for this subsystem */
5198 ss
->root
= &cgrp_dfl_root
;
5199 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5200 /* We don't handle early failures gracefully */
5201 BUG_ON(IS_ERR(css
));
5202 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5205 * Root csses are never destroyed and we can't initialize
5206 * percpu_ref during early init. Disable refcnting.
5208 css
->flags
|= CSS_NO_REF
;
5211 /* allocation can't be done safely during early init */
5214 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5215 BUG_ON(css
->id
< 0);
5218 /* Update the init_css_set to contain a subsys
5219 * pointer to this state - since the subsystem is
5220 * newly registered, all tasks and hence the
5221 * init_css_set is in the subsystem's root cgroup. */
5222 init_css_set
.subsys
[ss
->id
] = css
;
5224 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5225 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5226 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5227 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5229 /* At system boot, before all subsystems have been
5230 * registered, no tasks have been forked, so we don't
5231 * need to invoke fork callbacks here. */
5232 BUG_ON(!list_empty(&init_task
.tasks
));
5234 BUG_ON(online_css(css
));
5236 mutex_unlock(&cgroup_mutex
);
5240 * cgroup_init_early - cgroup initialization at system boot
5242 * Initialize cgroups at system boot, and initialize any
5243 * subsystems that request early init.
5245 int __init
cgroup_init_early(void)
5247 static struct cgroup_sb_opts __initdata opts
;
5248 struct cgroup_subsys
*ss
;
5251 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5252 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5254 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5256 for_each_subsys(ss
, i
) {
5257 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5258 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5259 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5261 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5262 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5265 ss
->name
= cgroup_subsys_name
[i
];
5266 if (!ss
->legacy_name
)
5267 ss
->legacy_name
= cgroup_subsys_name
[i
];
5270 cgroup_init_subsys(ss
, true);
5275 static u16 cgroup_disable_mask __initdata
;
5278 * cgroup_init - cgroup initialization
5280 * Register cgroup filesystem and /proc file, and initialize
5281 * any subsystems that didn't request early init.
5283 int __init
cgroup_init(void)
5285 struct cgroup_subsys
*ss
;
5288 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5289 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5290 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_base_files
));
5291 BUG_ON(cgroup_init_cftypes(NULL
, cgroup1_base_files
));
5293 cgroup_rstat_boot();
5296 * The latency of the synchronize_sched() is too high for cgroups,
5297 * avoid it at the cost of forcing all readers into the slow path.
5299 rcu_sync_enter_start(&cgroup_threadgroup_rwsem
.rss
);
5301 get_user_ns(init_cgroup_ns
.user_ns
);
5303 mutex_lock(&cgroup_mutex
);
5306 * Add init_css_set to the hash table so that dfl_root can link to
5309 hash_add(css_set_table
, &init_css_set
.hlist
,
5310 css_set_hash(init_css_set
.subsys
));
5312 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0, 0));
5314 mutex_unlock(&cgroup_mutex
);
5316 for_each_subsys(ss
, ssid
) {
5317 if (ss
->early_init
) {
5318 struct cgroup_subsys_state
*css
=
5319 init_css_set
.subsys
[ss
->id
];
5321 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5323 BUG_ON(css
->id
< 0);
5325 cgroup_init_subsys(ss
, false);
5328 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5329 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5332 * Setting dfl_root subsys_mask needs to consider the
5333 * disabled flag and cftype registration needs kmalloc,
5334 * both of which aren't available during early_init.
5336 if (cgroup_disable_mask
& (1 << ssid
)) {
5337 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5338 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5343 if (cgroup1_ssid_disabled(ssid
))
5344 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5347 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5349 /* implicit controllers must be threaded too */
5350 WARN_ON(ss
->implicit_on_dfl
&& !ss
->threaded
);
5352 if (ss
->implicit_on_dfl
)
5353 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5354 else if (!ss
->dfl_cftypes
)
5355 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5358 cgrp_dfl_threaded_ss_mask
|= 1 << ss
->id
;
5360 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5361 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5363 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5364 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5368 ss
->bind(init_css_set
.subsys
[ssid
]);
5370 mutex_lock(&cgroup_mutex
);
5371 css_populate_dir(init_css_set
.subsys
[ssid
]);
5372 mutex_unlock(&cgroup_mutex
);
5375 /* init_css_set.subsys[] has been updated, re-hash */
5376 hash_del(&init_css_set
.hlist
);
5377 hash_add(css_set_table
, &init_css_set
.hlist
,
5378 css_set_hash(init_css_set
.subsys
));
5380 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5381 WARN_ON(register_filesystem(&cgroup_fs_type
));
5382 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5383 WARN_ON(!proc_create_single("cgroups", 0, NULL
, proc_cgroupstats_show
));
5388 static int __init
cgroup_wq_init(void)
5391 * There isn't much point in executing destruction path in
5392 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5393 * Use 1 for @max_active.
5395 * We would prefer to do this in cgroup_init() above, but that
5396 * is called before init_workqueues(): so leave this until after.
5398 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5399 BUG_ON(!cgroup_destroy_wq
);
5402 core_initcall(cgroup_wq_init
);
5404 void cgroup_path_from_kernfs_id(const union kernfs_node_id
*id
,
5405 char *buf
, size_t buflen
)
5407 struct kernfs_node
*kn
;
5409 kn
= kernfs_get_node_by_id(cgrp_dfl_root
.kf_root
, id
);
5412 kernfs_path(kn
, buf
, buflen
);
5417 * proc_cgroup_show()
5418 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5419 * - Used for /proc/<pid>/cgroup.
5421 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5422 struct pid
*pid
, struct task_struct
*tsk
)
5426 struct cgroup_root
*root
;
5429 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5433 mutex_lock(&cgroup_mutex
);
5434 spin_lock_irq(&css_set_lock
);
5436 for_each_root(root
) {
5437 struct cgroup_subsys
*ss
;
5438 struct cgroup
*cgrp
;
5439 int ssid
, count
= 0;
5441 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5444 seq_printf(m
, "%d:", root
->hierarchy_id
);
5445 if (root
!= &cgrp_dfl_root
)
5446 for_each_subsys(ss
, ssid
)
5447 if (root
->subsys_mask
& (1 << ssid
))
5448 seq_printf(m
, "%s%s", count
++ ? "," : "",
5450 if (strlen(root
->name
))
5451 seq_printf(m
, "%sname=%s", count
? "," : "",
5455 cgrp
= task_cgroup_from_root(tsk
, root
);
5458 * On traditional hierarchies, all zombie tasks show up as
5459 * belonging to the root cgroup. On the default hierarchy,
5460 * while a zombie doesn't show up in "cgroup.procs" and
5461 * thus can't be migrated, its /proc/PID/cgroup keeps
5462 * reporting the cgroup it belonged to before exiting. If
5463 * the cgroup is removed before the zombie is reaped,
5464 * " (deleted)" is appended to the cgroup path.
5466 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5467 retval
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5468 current
->nsproxy
->cgroup_ns
);
5469 if (retval
>= PATH_MAX
)
5470 retval
= -ENAMETOOLONG
;
5479 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5480 seq_puts(m
, " (deleted)\n");
5487 spin_unlock_irq(&css_set_lock
);
5488 mutex_unlock(&cgroup_mutex
);
5495 * cgroup_fork - initialize cgroup related fields during copy_process()
5496 * @child: pointer to task_struct of forking parent process.
5498 * A task is associated with the init_css_set until cgroup_post_fork()
5499 * attaches it to the parent's css_set. Empty cg_list indicates that
5500 * @child isn't holding reference to its css_set.
5502 void cgroup_fork(struct task_struct
*child
)
5504 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5505 INIT_LIST_HEAD(&child
->cg_list
);
5509 * cgroup_can_fork - called on a new task before the process is exposed
5510 * @child: the task in question.
5512 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5513 * returns an error, the fork aborts with that error code. This allows for
5514 * a cgroup subsystem to conditionally allow or deny new forks.
5516 int cgroup_can_fork(struct task_struct
*child
)
5518 struct cgroup_subsys
*ss
;
5521 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
5522 ret
= ss
->can_fork(child
);
5525 } while_each_subsys_mask();
5530 for_each_subsys(ss
, j
) {
5533 if (ss
->cancel_fork
)
5534 ss
->cancel_fork(child
);
5541 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5542 * @child: the task in question
5544 * This calls the cancel_fork() callbacks if a fork failed *after*
5545 * cgroup_can_fork() succeded.
5547 void cgroup_cancel_fork(struct task_struct
*child
)
5549 struct cgroup_subsys
*ss
;
5552 for_each_subsys(ss
, i
)
5553 if (ss
->cancel_fork
)
5554 ss
->cancel_fork(child
);
5558 * cgroup_post_fork - called on a new task after adding it to the task list
5559 * @child: the task in question
5561 * Adds the task to the list running through its css_set if necessary and
5562 * call the subsystem fork() callbacks. Has to be after the task is
5563 * visible on the task list in case we race with the first call to
5564 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5567 void cgroup_post_fork(struct task_struct
*child
)
5569 struct cgroup_subsys
*ss
;
5573 * This may race against cgroup_enable_task_cg_lists(). As that
5574 * function sets use_task_css_set_links before grabbing
5575 * tasklist_lock and we just went through tasklist_lock to add
5576 * @child, it's guaranteed that either we see the set
5577 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5578 * @child during its iteration.
5580 * If we won the race, @child is associated with %current's
5581 * css_set. Grabbing css_set_lock guarantees both that the
5582 * association is stable, and, on completion of the parent's
5583 * migration, @child is visible in the source of migration or
5584 * already in the destination cgroup. This guarantee is necessary
5585 * when implementing operations which need to migrate all tasks of
5586 * a cgroup to another.
5588 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5589 * will remain in init_css_set. This is safe because all tasks are
5590 * in the init_css_set before cg_links is enabled and there's no
5591 * operation which transfers all tasks out of init_css_set.
5593 if (use_task_css_set_links
) {
5594 struct css_set
*cset
;
5596 spin_lock_irq(&css_set_lock
);
5597 cset
= task_css_set(current
);
5598 if (list_empty(&child
->cg_list
)) {
5601 css_set_move_task(child
, NULL
, cset
, false);
5603 spin_unlock_irq(&css_set_lock
);
5607 * Call ss->fork(). This must happen after @child is linked on
5608 * css_set; otherwise, @child might change state between ->fork()
5609 * and addition to css_set.
5611 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
5613 } while_each_subsys_mask();
5617 * cgroup_exit - detach cgroup from exiting task
5618 * @tsk: pointer to task_struct of exiting process
5620 * Description: Detach cgroup from @tsk and release it.
5622 * Note that cgroups marked notify_on_release force every task in
5623 * them to take the global cgroup_mutex mutex when exiting.
5624 * This could impact scaling on very large systems. Be reluctant to
5625 * use notify_on_release cgroups where very high task exit scaling
5626 * is required on large systems.
5628 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5629 * call cgroup_exit() while the task is still competent to handle
5630 * notify_on_release(), then leave the task attached to the root cgroup in
5631 * each hierarchy for the remainder of its exit. No need to bother with
5632 * init_css_set refcnting. init_css_set never goes away and we can't race
5633 * with migration path - PF_EXITING is visible to migration path.
5635 void cgroup_exit(struct task_struct
*tsk
)
5637 struct cgroup_subsys
*ss
;
5638 struct css_set
*cset
;
5642 * Unlink from @tsk from its css_set. As migration path can't race
5643 * with us, we can check css_set and cg_list without synchronization.
5645 cset
= task_css_set(tsk
);
5647 if (!list_empty(&tsk
->cg_list
)) {
5648 spin_lock_irq(&css_set_lock
);
5649 css_set_move_task(tsk
, cset
, NULL
, false);
5651 spin_unlock_irq(&css_set_lock
);
5656 /* see cgroup_post_fork() for details */
5657 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
5659 } while_each_subsys_mask();
5662 void cgroup_free(struct task_struct
*task
)
5664 struct css_set
*cset
= task_css_set(task
);
5665 struct cgroup_subsys
*ss
;
5668 do_each_subsys_mask(ss
, ssid
, have_free_callback
) {
5670 } while_each_subsys_mask();
5675 static int __init
cgroup_disable(char *str
)
5677 struct cgroup_subsys
*ss
;
5681 while ((token
= strsep(&str
, ",")) != NULL
) {
5685 for_each_subsys(ss
, i
) {
5686 if (strcmp(token
, ss
->name
) &&
5687 strcmp(token
, ss
->legacy_name
))
5689 cgroup_disable_mask
|= 1 << i
;
5694 __setup("cgroup_disable=", cgroup_disable
);
5697 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5698 * @dentry: directory dentry of interest
5699 * @ss: subsystem of interest
5701 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5702 * to get the corresponding css and return it. If such css doesn't exist
5703 * or can't be pinned, an ERR_PTR value is returned.
5705 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5706 struct cgroup_subsys
*ss
)
5708 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5709 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
5710 struct cgroup_subsys_state
*css
= NULL
;
5711 struct cgroup
*cgrp
;
5713 /* is @dentry a cgroup dir? */
5714 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
5715 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
5716 return ERR_PTR(-EBADF
);
5721 * This path doesn't originate from kernfs and @kn could already
5722 * have been or be removed at any point. @kn->priv is RCU
5723 * protected for this access. See css_release_work_fn() for details.
5725 cgrp
= rcu_dereference(*(void __rcu __force
**)&kn
->priv
);
5727 css
= cgroup_css(cgrp
, ss
);
5729 if (!css
|| !css_tryget_online(css
))
5730 css
= ERR_PTR(-ENOENT
);
5737 * css_from_id - lookup css by id
5738 * @id: the cgroup id
5739 * @ss: cgroup subsys to be looked into
5741 * Returns the css if there's valid one with @id, otherwise returns NULL.
5742 * Should be called under rcu_read_lock().
5744 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5746 WARN_ON_ONCE(!rcu_read_lock_held());
5747 return idr_find(&ss
->css_idr
, id
);
5751 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5752 * @path: path on the default hierarchy
5754 * Find the cgroup at @path on the default hierarchy, increment its
5755 * reference count and return it. Returns pointer to the found cgroup on
5756 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5757 * if @path points to a non-directory.
5759 struct cgroup
*cgroup_get_from_path(const char *path
)
5761 struct kernfs_node
*kn
;
5762 struct cgroup
*cgrp
;
5764 mutex_lock(&cgroup_mutex
);
5766 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
5768 if (kernfs_type(kn
) == KERNFS_DIR
) {
5770 cgroup_get_live(cgrp
);
5772 cgrp
= ERR_PTR(-ENOTDIR
);
5776 cgrp
= ERR_PTR(-ENOENT
);
5779 mutex_unlock(&cgroup_mutex
);
5782 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
5785 * cgroup_get_from_fd - get a cgroup pointer from a fd
5786 * @fd: fd obtained by open(cgroup2_dir)
5788 * Find the cgroup from a fd which should be obtained
5789 * by opening a cgroup directory. Returns a pointer to the
5790 * cgroup on success. ERR_PTR is returned if the cgroup
5793 struct cgroup
*cgroup_get_from_fd(int fd
)
5795 struct cgroup_subsys_state
*css
;
5796 struct cgroup
*cgrp
;
5801 return ERR_PTR(-EBADF
);
5803 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
5806 return ERR_CAST(css
);
5809 if (!cgroup_on_dfl(cgrp
)) {
5811 return ERR_PTR(-EBADF
);
5816 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
5819 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5820 * definition in cgroup-defs.h.
5822 #ifdef CONFIG_SOCK_CGROUP_DATA
5824 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5826 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
5827 static bool cgroup_sk_alloc_disabled __read_mostly
;
5829 void cgroup_sk_alloc_disable(void)
5831 if (cgroup_sk_alloc_disabled
)
5833 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5834 cgroup_sk_alloc_disabled
= true;
5839 #define cgroup_sk_alloc_disabled false
5843 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
5845 if (cgroup_sk_alloc_disabled
)
5848 /* Socket clone path */
5851 * We might be cloning a socket which is left in an empty
5852 * cgroup and the cgroup might have already been rmdir'd.
5853 * Don't use cgroup_get_live().
5855 cgroup_get(sock_cgroup_ptr(skcd
));
5862 struct css_set
*cset
;
5864 cset
= task_css_set(current
);
5865 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
5866 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
5875 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
5877 cgroup_put(sock_cgroup_ptr(skcd
));
5880 #endif /* CONFIG_SOCK_CGROUP_DATA */
5882 #ifdef CONFIG_CGROUP_BPF
5883 int cgroup_bpf_attach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
5884 enum bpf_attach_type type
, u32 flags
)
5888 mutex_lock(&cgroup_mutex
);
5889 ret
= __cgroup_bpf_attach(cgrp
, prog
, type
, flags
);
5890 mutex_unlock(&cgroup_mutex
);
5893 int cgroup_bpf_detach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
5894 enum bpf_attach_type type
, u32 flags
)
5898 mutex_lock(&cgroup_mutex
);
5899 ret
= __cgroup_bpf_detach(cgrp
, prog
, type
, flags
);
5900 mutex_unlock(&cgroup_mutex
);
5903 int cgroup_bpf_query(struct cgroup
*cgrp
, const union bpf_attr
*attr
,
5904 union bpf_attr __user
*uattr
)
5908 mutex_lock(&cgroup_mutex
);
5909 ret
= __cgroup_bpf_query(cgrp
, attr
, uattr
);
5910 mutex_unlock(&cgroup_mutex
);
5913 #endif /* CONFIG_CGROUP_BPF */
5916 static ssize_t
show_delegatable_files(struct cftype
*files
, char *buf
,
5917 ssize_t size
, const char *prefix
)
5922 for (cft
= files
; cft
&& cft
->name
[0] != '\0'; cft
++) {
5923 if (!(cft
->flags
& CFTYPE_NS_DELEGATABLE
))
5927 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s.", prefix
);
5929 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s\n", cft
->name
);
5931 if (unlikely(ret
>= size
)) {
5940 static ssize_t
delegate_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
5943 struct cgroup_subsys
*ss
;
5947 ret
= show_delegatable_files(cgroup_base_files
, buf
, PAGE_SIZE
- ret
,
5950 for_each_subsys(ss
, ssid
)
5951 ret
+= show_delegatable_files(ss
->dfl_cftypes
, buf
+ ret
,
5953 cgroup_subsys_name
[ssid
]);
5957 static struct kobj_attribute cgroup_delegate_attr
= __ATTR_RO(delegate
);
5959 static ssize_t
features_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
5962 return snprintf(buf
, PAGE_SIZE
, "nsdelegate\n");
5964 static struct kobj_attribute cgroup_features_attr
= __ATTR_RO(features
);
5966 static struct attribute
*cgroup_sysfs_attrs
[] = {
5967 &cgroup_delegate_attr
.attr
,
5968 &cgroup_features_attr
.attr
,
5972 static const struct attribute_group cgroup_sysfs_attr_group
= {
5973 .attrs
= cgroup_sysfs_attrs
,
5977 static int __init
cgroup_sysfs_init(void)
5979 return sysfs_create_group(kernel_kobj
, &cgroup_sysfs_attr_group
);
5981 subsys_initcall(cgroup_sysfs_init
);
5982 #endif /* CONFIG_SYSFS */