mm, oom: remove oom_lock from oom_reaper
[linux/fpc-iii.git] / kernel / cgroup / cgroup.c
blob35cf3d71f8aaf4b7efcdc241953abe2108b58f6a
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <net/sock.h>
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
63 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
64 MAX_CFTYPE_NAME + 2)
65 /* let's not notify more than 100 times per second */
66 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69 * cgroup_mutex is the master lock. Any modification to cgroup or its
70 * hierarchy must be performed while holding it.
72 * css_set_lock protects task->cgroups pointer, the list of css_set
73 * objects, and the chain of tasks off each css_set.
75 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
76 * cgroup.h can use them for lockdep annotations.
78 DEFINE_MUTEX(cgroup_mutex);
79 DEFINE_SPINLOCK(css_set_lock);
81 #ifdef CONFIG_PROVE_RCU
82 EXPORT_SYMBOL_GPL(cgroup_mutex);
83 EXPORT_SYMBOL_GPL(css_set_lock);
84 #endif
87 * Protects cgroup_idr and css_idr so that IDs can be released without
88 * grabbing cgroup_mutex.
90 static DEFINE_SPINLOCK(cgroup_idr_lock);
93 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
94 * against file removal/re-creation across css hiding.
96 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
98 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
100 #define cgroup_assert_mutex_or_rcu_locked() \
101 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
102 !lockdep_is_held(&cgroup_mutex), \
103 "cgroup_mutex or RCU read lock required");
106 * cgroup destruction makes heavy use of work items and there can be a lot
107 * of concurrent destructions. Use a separate workqueue so that cgroup
108 * destruction work items don't end up filling up max_active of system_wq
109 * which may lead to deadlock.
111 static struct workqueue_struct *cgroup_destroy_wq;
113 /* generate an array of cgroup subsystem pointers */
114 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
115 struct cgroup_subsys *cgroup_subsys[] = {
116 #include <linux/cgroup_subsys.h>
118 #undef SUBSYS
120 /* array of cgroup subsystem names */
121 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
122 static const char *cgroup_subsys_name[] = {
123 #include <linux/cgroup_subsys.h>
125 #undef SUBSYS
127 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
128 #define SUBSYS(_x) \
129 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
130 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
131 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
132 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
133 #include <linux/cgroup_subsys.h>
134 #undef SUBSYS
136 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
137 static struct static_key_true *cgroup_subsys_enabled_key[] = {
138 #include <linux/cgroup_subsys.h>
140 #undef SUBSYS
142 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
143 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
144 #include <linux/cgroup_subsys.h>
146 #undef SUBSYS
148 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
151 * The default hierarchy, reserved for the subsystems that are otherwise
152 * unattached - it never has more than a single cgroup, and all tasks are
153 * part of that cgroup.
155 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
156 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
159 * The default hierarchy always exists but is hidden until mounted for the
160 * first time. This is for backward compatibility.
162 static bool cgrp_dfl_visible;
164 /* some controllers are not supported in the default hierarchy */
165 static u16 cgrp_dfl_inhibit_ss_mask;
167 /* some controllers are implicitly enabled on the default hierarchy */
168 static u16 cgrp_dfl_implicit_ss_mask;
170 /* some controllers can be threaded on the default hierarchy */
171 static u16 cgrp_dfl_threaded_ss_mask;
173 /* The list of hierarchy roots */
174 LIST_HEAD(cgroup_roots);
175 static int cgroup_root_count;
177 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
178 static DEFINE_IDR(cgroup_hierarchy_idr);
181 * Assign a monotonically increasing serial number to csses. It guarantees
182 * cgroups with bigger numbers are newer than those with smaller numbers.
183 * Also, as csses are always appended to the parent's ->children list, it
184 * guarantees that sibling csses are always sorted in the ascending serial
185 * number order on the list. Protected by cgroup_mutex.
187 static u64 css_serial_nr_next = 1;
190 * These bitmasks identify subsystems with specific features to avoid
191 * having to do iterative checks repeatedly.
193 static u16 have_fork_callback __read_mostly;
194 static u16 have_exit_callback __read_mostly;
195 static u16 have_free_callback __read_mostly;
196 static u16 have_canfork_callback __read_mostly;
198 /* cgroup namespace for init task */
199 struct cgroup_namespace init_cgroup_ns = {
200 .count = REFCOUNT_INIT(2),
201 .user_ns = &init_user_ns,
202 .ns.ops = &cgroupns_operations,
203 .ns.inum = PROC_CGROUP_INIT_INO,
204 .root_cset = &init_css_set,
207 static struct file_system_type cgroup2_fs_type;
208 static struct cftype cgroup_base_files[];
210 static int cgroup_apply_control(struct cgroup *cgrp);
211 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
212 static void css_task_iter_advance(struct css_task_iter *it);
213 static int cgroup_destroy_locked(struct cgroup *cgrp);
214 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
215 struct cgroup_subsys *ss);
216 static void css_release(struct percpu_ref *ref);
217 static void kill_css(struct cgroup_subsys_state *css);
218 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
219 struct cgroup *cgrp, struct cftype cfts[],
220 bool is_add);
223 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
224 * @ssid: subsys ID of interest
226 * cgroup_subsys_enabled() can only be used with literal subsys names which
227 * is fine for individual subsystems but unsuitable for cgroup core. This
228 * is slower static_key_enabled() based test indexed by @ssid.
230 bool cgroup_ssid_enabled(int ssid)
232 if (CGROUP_SUBSYS_COUNT == 0)
233 return false;
235 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
239 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
240 * @cgrp: the cgroup of interest
242 * The default hierarchy is the v2 interface of cgroup and this function
243 * can be used to test whether a cgroup is on the default hierarchy for
244 * cases where a subsystem should behave differnetly depending on the
245 * interface version.
247 * The set of behaviors which change on the default hierarchy are still
248 * being determined and the mount option is prefixed with __DEVEL__.
250 * List of changed behaviors:
252 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
253 * and "name" are disallowed.
255 * - When mounting an existing superblock, mount options should match.
257 * - Remount is disallowed.
259 * - rename(2) is disallowed.
261 * - "tasks" is removed. Everything should be at process granularity. Use
262 * "cgroup.procs" instead.
264 * - "cgroup.procs" is not sorted. pids will be unique unless they got
265 * recycled inbetween reads.
267 * - "release_agent" and "notify_on_release" are removed. Replacement
268 * notification mechanism will be implemented.
270 * - "cgroup.clone_children" is removed.
272 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
273 * and its descendants contain no task; otherwise, 1. The file also
274 * generates kernfs notification which can be monitored through poll and
275 * [di]notify when the value of the file changes.
277 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
278 * take masks of ancestors with non-empty cpus/mems, instead of being
279 * moved to an ancestor.
281 * - cpuset: a task can be moved into an empty cpuset, and again it takes
282 * masks of ancestors.
284 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285 * is not created.
287 * - blkcg: blk-throttle becomes properly hierarchical.
289 * - debug: disallowed on the default hierarchy.
291 bool cgroup_on_dfl(const struct cgroup *cgrp)
293 return cgrp->root == &cgrp_dfl_root;
296 /* IDR wrappers which synchronize using cgroup_idr_lock */
297 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
298 gfp_t gfp_mask)
300 int ret;
302 idr_preload(gfp_mask);
303 spin_lock_bh(&cgroup_idr_lock);
304 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
305 spin_unlock_bh(&cgroup_idr_lock);
306 idr_preload_end();
307 return ret;
310 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
312 void *ret;
314 spin_lock_bh(&cgroup_idr_lock);
315 ret = idr_replace(idr, ptr, id);
316 spin_unlock_bh(&cgroup_idr_lock);
317 return ret;
320 static void cgroup_idr_remove(struct idr *idr, int id)
322 spin_lock_bh(&cgroup_idr_lock);
323 idr_remove(idr, id);
324 spin_unlock_bh(&cgroup_idr_lock);
327 static bool cgroup_has_tasks(struct cgroup *cgrp)
329 return cgrp->nr_populated_csets;
332 bool cgroup_is_threaded(struct cgroup *cgrp)
334 return cgrp->dom_cgrp != cgrp;
337 /* can @cgrp host both domain and threaded children? */
338 static bool cgroup_is_mixable(struct cgroup *cgrp)
341 * Root isn't under domain level resource control exempting it from
342 * the no-internal-process constraint, so it can serve as a thread
343 * root and a parent of resource domains at the same time.
345 return !cgroup_parent(cgrp);
348 /* can @cgrp become a thread root? should always be true for a thread root */
349 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
351 /* mixables don't care */
352 if (cgroup_is_mixable(cgrp))
353 return true;
355 /* domain roots can't be nested under threaded */
356 if (cgroup_is_threaded(cgrp))
357 return false;
359 /* can only have either domain or threaded children */
360 if (cgrp->nr_populated_domain_children)
361 return false;
363 /* and no domain controllers can be enabled */
364 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
365 return false;
367 return true;
370 /* is @cgrp root of a threaded subtree? */
371 bool cgroup_is_thread_root(struct cgroup *cgrp)
373 /* thread root should be a domain */
374 if (cgroup_is_threaded(cgrp))
375 return false;
377 /* a domain w/ threaded children is a thread root */
378 if (cgrp->nr_threaded_children)
379 return true;
382 * A domain which has tasks and explicit threaded controllers
383 * enabled is a thread root.
385 if (cgroup_has_tasks(cgrp) &&
386 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
387 return true;
389 return false;
392 /* a domain which isn't connected to the root w/o brekage can't be used */
393 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
395 /* the cgroup itself can be a thread root */
396 if (cgroup_is_threaded(cgrp))
397 return false;
399 /* but the ancestors can't be unless mixable */
400 while ((cgrp = cgroup_parent(cgrp))) {
401 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
402 return false;
403 if (cgroup_is_threaded(cgrp))
404 return false;
407 return true;
410 /* subsystems visibly enabled on a cgroup */
411 static u16 cgroup_control(struct cgroup *cgrp)
413 struct cgroup *parent = cgroup_parent(cgrp);
414 u16 root_ss_mask = cgrp->root->subsys_mask;
416 if (parent) {
417 u16 ss_mask = parent->subtree_control;
419 /* threaded cgroups can only have threaded controllers */
420 if (cgroup_is_threaded(cgrp))
421 ss_mask &= cgrp_dfl_threaded_ss_mask;
422 return ss_mask;
425 if (cgroup_on_dfl(cgrp))
426 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
427 cgrp_dfl_implicit_ss_mask);
428 return root_ss_mask;
431 /* subsystems enabled on a cgroup */
432 static u16 cgroup_ss_mask(struct cgroup *cgrp)
434 struct cgroup *parent = cgroup_parent(cgrp);
436 if (parent) {
437 u16 ss_mask = parent->subtree_ss_mask;
439 /* threaded cgroups can only have threaded controllers */
440 if (cgroup_is_threaded(cgrp))
441 ss_mask &= cgrp_dfl_threaded_ss_mask;
442 return ss_mask;
445 return cgrp->root->subsys_mask;
449 * cgroup_css - obtain a cgroup's css for the specified subsystem
450 * @cgrp: the cgroup of interest
451 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
453 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
454 * function must be called either under cgroup_mutex or rcu_read_lock() and
455 * the caller is responsible for pinning the returned css if it wants to
456 * keep accessing it outside the said locks. This function may return
457 * %NULL if @cgrp doesn't have @subsys_id enabled.
459 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
460 struct cgroup_subsys *ss)
462 if (ss)
463 return rcu_dereference_check(cgrp->subsys[ss->id],
464 lockdep_is_held(&cgroup_mutex));
465 else
466 return &cgrp->self;
470 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
471 * @cgrp: the cgroup of interest
472 * @ss: the subsystem of interest
474 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
475 * or is offline, %NULL is returned.
477 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
478 struct cgroup_subsys *ss)
480 struct cgroup_subsys_state *css;
482 rcu_read_lock();
483 css = cgroup_css(cgrp, ss);
484 if (!css || !css_tryget_online(css))
485 css = NULL;
486 rcu_read_unlock();
488 return css;
492 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
493 * @cgrp: the cgroup of interest
494 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
496 * Similar to cgroup_css() but returns the effective css, which is defined
497 * as the matching css of the nearest ancestor including self which has @ss
498 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
499 * function is guaranteed to return non-NULL css.
501 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
502 struct cgroup_subsys *ss)
504 lockdep_assert_held(&cgroup_mutex);
506 if (!ss)
507 return &cgrp->self;
510 * This function is used while updating css associations and thus
511 * can't test the csses directly. Test ss_mask.
513 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
514 cgrp = cgroup_parent(cgrp);
515 if (!cgrp)
516 return NULL;
519 return cgroup_css(cgrp, ss);
523 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
524 * @cgrp: the cgroup of interest
525 * @ss: the subsystem of interest
527 * Find and get the effective css of @cgrp for @ss. The effective css is
528 * defined as the matching css of the nearest ancestor including self which
529 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
530 * the root css is returned, so this function always returns a valid css.
531 * The returned css must be put using css_put().
533 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
534 struct cgroup_subsys *ss)
536 struct cgroup_subsys_state *css;
538 rcu_read_lock();
540 do {
541 css = cgroup_css(cgrp, ss);
543 if (css && css_tryget_online(css))
544 goto out_unlock;
545 cgrp = cgroup_parent(cgrp);
546 } while (cgrp);
548 css = init_css_set.subsys[ss->id];
549 css_get(css);
550 out_unlock:
551 rcu_read_unlock();
552 return css;
555 static void cgroup_get_live(struct cgroup *cgrp)
557 WARN_ON_ONCE(cgroup_is_dead(cgrp));
558 css_get(&cgrp->self);
561 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
563 struct cgroup *cgrp = of->kn->parent->priv;
564 struct cftype *cft = of_cft(of);
567 * This is open and unprotected implementation of cgroup_css().
568 * seq_css() is only called from a kernfs file operation which has
569 * an active reference on the file. Because all the subsystem
570 * files are drained before a css is disassociated with a cgroup,
571 * the matching css from the cgroup's subsys table is guaranteed to
572 * be and stay valid until the enclosing operation is complete.
574 if (cft->ss)
575 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
576 else
577 return &cgrp->self;
579 EXPORT_SYMBOL_GPL(of_css);
582 * for_each_css - iterate all css's of a cgroup
583 * @css: the iteration cursor
584 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
585 * @cgrp: the target cgroup to iterate css's of
587 * Should be called under cgroup_[tree_]mutex.
589 #define for_each_css(css, ssid, cgrp) \
590 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
591 if (!((css) = rcu_dereference_check( \
592 (cgrp)->subsys[(ssid)], \
593 lockdep_is_held(&cgroup_mutex)))) { } \
594 else
597 * for_each_e_css - iterate all effective css's of a cgroup
598 * @css: the iteration cursor
599 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
600 * @cgrp: the target cgroup to iterate css's of
602 * Should be called under cgroup_[tree_]mutex.
604 #define for_each_e_css(css, ssid, cgrp) \
605 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
606 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
608 else
611 * do_each_subsys_mask - filter for_each_subsys with a bitmask
612 * @ss: the iteration cursor
613 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
614 * @ss_mask: the bitmask
616 * The block will only run for cases where the ssid-th bit (1 << ssid) of
617 * @ss_mask is set.
619 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
620 unsigned long __ss_mask = (ss_mask); \
621 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
622 (ssid) = 0; \
623 break; \
625 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
626 (ss) = cgroup_subsys[ssid]; \
629 #define while_each_subsys_mask() \
632 } while (false)
634 /* iterate over child cgrps, lock should be held throughout iteration */
635 #define cgroup_for_each_live_child(child, cgrp) \
636 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
637 if (({ lockdep_assert_held(&cgroup_mutex); \
638 cgroup_is_dead(child); })) \
640 else
642 /* walk live descendants in preorder */
643 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
644 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
645 if (({ lockdep_assert_held(&cgroup_mutex); \
646 (dsct) = (d_css)->cgroup; \
647 cgroup_is_dead(dsct); })) \
649 else
651 /* walk live descendants in postorder */
652 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
653 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
654 if (({ lockdep_assert_held(&cgroup_mutex); \
655 (dsct) = (d_css)->cgroup; \
656 cgroup_is_dead(dsct); })) \
658 else
661 * The default css_set - used by init and its children prior to any
662 * hierarchies being mounted. It contains a pointer to the root state
663 * for each subsystem. Also used to anchor the list of css_sets. Not
664 * reference-counted, to improve performance when child cgroups
665 * haven't been created.
667 struct css_set init_css_set = {
668 .refcount = REFCOUNT_INIT(1),
669 .dom_cset = &init_css_set,
670 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
671 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
672 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
673 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
674 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
675 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
676 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
679 * The following field is re-initialized when this cset gets linked
680 * in cgroup_init(). However, let's initialize the field
681 * statically too so that the default cgroup can be accessed safely
682 * early during boot.
684 .dfl_cgrp = &cgrp_dfl_root.cgrp,
687 static int css_set_count = 1; /* 1 for init_css_set */
689 static bool css_set_threaded(struct css_set *cset)
691 return cset->dom_cset != cset;
695 * css_set_populated - does a css_set contain any tasks?
696 * @cset: target css_set
698 * css_set_populated() should be the same as !!cset->nr_tasks at steady
699 * state. However, css_set_populated() can be called while a task is being
700 * added to or removed from the linked list before the nr_tasks is
701 * properly updated. Hence, we can't just look at ->nr_tasks here.
703 static bool css_set_populated(struct css_set *cset)
705 lockdep_assert_held(&css_set_lock);
707 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
711 * cgroup_update_populated - update the populated count of a cgroup
712 * @cgrp: the target cgroup
713 * @populated: inc or dec populated count
715 * One of the css_sets associated with @cgrp is either getting its first
716 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
717 * count is propagated towards root so that a given cgroup's
718 * nr_populated_children is zero iff none of its descendants contain any
719 * tasks.
721 * @cgrp's interface file "cgroup.populated" is zero if both
722 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
723 * 1 otherwise. When the sum changes from or to zero, userland is notified
724 * that the content of the interface file has changed. This can be used to
725 * detect when @cgrp and its descendants become populated or empty.
727 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
729 struct cgroup *child = NULL;
730 int adj = populated ? 1 : -1;
732 lockdep_assert_held(&css_set_lock);
734 do {
735 bool was_populated = cgroup_is_populated(cgrp);
737 if (!child) {
738 cgrp->nr_populated_csets += adj;
739 } else {
740 if (cgroup_is_threaded(child))
741 cgrp->nr_populated_threaded_children += adj;
742 else
743 cgrp->nr_populated_domain_children += adj;
746 if (was_populated == cgroup_is_populated(cgrp))
747 break;
749 cgroup1_check_for_release(cgrp);
750 cgroup_file_notify(&cgrp->events_file);
752 child = cgrp;
753 cgrp = cgroup_parent(cgrp);
754 } while (cgrp);
758 * css_set_update_populated - update populated state of a css_set
759 * @cset: target css_set
760 * @populated: whether @cset is populated or depopulated
762 * @cset is either getting the first task or losing the last. Update the
763 * populated counters of all associated cgroups accordingly.
765 static void css_set_update_populated(struct css_set *cset, bool populated)
767 struct cgrp_cset_link *link;
769 lockdep_assert_held(&css_set_lock);
771 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
772 cgroup_update_populated(link->cgrp, populated);
776 * css_set_move_task - move a task from one css_set to another
777 * @task: task being moved
778 * @from_cset: css_set @task currently belongs to (may be NULL)
779 * @to_cset: new css_set @task is being moved to (may be NULL)
780 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
782 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
783 * css_set, @from_cset can be NULL. If @task is being disassociated
784 * instead of moved, @to_cset can be NULL.
786 * This function automatically handles populated counter updates and
787 * css_task_iter adjustments but the caller is responsible for managing
788 * @from_cset and @to_cset's reference counts.
790 static void css_set_move_task(struct task_struct *task,
791 struct css_set *from_cset, struct css_set *to_cset,
792 bool use_mg_tasks)
794 lockdep_assert_held(&css_set_lock);
796 if (to_cset && !css_set_populated(to_cset))
797 css_set_update_populated(to_cset, true);
799 if (from_cset) {
800 struct css_task_iter *it, *pos;
802 WARN_ON_ONCE(list_empty(&task->cg_list));
805 * @task is leaving, advance task iterators which are
806 * pointing to it so that they can resume at the next
807 * position. Advancing an iterator might remove it from
808 * the list, use safe walk. See css_task_iter_advance*()
809 * for details.
811 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
812 iters_node)
813 if (it->task_pos == &task->cg_list)
814 css_task_iter_advance(it);
816 list_del_init(&task->cg_list);
817 if (!css_set_populated(from_cset))
818 css_set_update_populated(from_cset, false);
819 } else {
820 WARN_ON_ONCE(!list_empty(&task->cg_list));
823 if (to_cset) {
825 * We are synchronized through cgroup_threadgroup_rwsem
826 * against PF_EXITING setting such that we can't race
827 * against cgroup_exit() changing the css_set to
828 * init_css_set and dropping the old one.
830 WARN_ON_ONCE(task->flags & PF_EXITING);
832 rcu_assign_pointer(task->cgroups, to_cset);
833 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
834 &to_cset->tasks);
839 * hash table for cgroup groups. This improves the performance to find
840 * an existing css_set. This hash doesn't (currently) take into
841 * account cgroups in empty hierarchies.
843 #define CSS_SET_HASH_BITS 7
844 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
846 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
848 unsigned long key = 0UL;
849 struct cgroup_subsys *ss;
850 int i;
852 for_each_subsys(ss, i)
853 key += (unsigned long)css[i];
854 key = (key >> 16) ^ key;
856 return key;
859 void put_css_set_locked(struct css_set *cset)
861 struct cgrp_cset_link *link, *tmp_link;
862 struct cgroup_subsys *ss;
863 int ssid;
865 lockdep_assert_held(&css_set_lock);
867 if (!refcount_dec_and_test(&cset->refcount))
868 return;
870 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
872 /* This css_set is dead. unlink it and release cgroup and css refs */
873 for_each_subsys(ss, ssid) {
874 list_del(&cset->e_cset_node[ssid]);
875 css_put(cset->subsys[ssid]);
877 hash_del(&cset->hlist);
878 css_set_count--;
880 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
881 list_del(&link->cset_link);
882 list_del(&link->cgrp_link);
883 if (cgroup_parent(link->cgrp))
884 cgroup_put(link->cgrp);
885 kfree(link);
888 if (css_set_threaded(cset)) {
889 list_del(&cset->threaded_csets_node);
890 put_css_set_locked(cset->dom_cset);
893 kfree_rcu(cset, rcu_head);
897 * compare_css_sets - helper function for find_existing_css_set().
898 * @cset: candidate css_set being tested
899 * @old_cset: existing css_set for a task
900 * @new_cgrp: cgroup that's being entered by the task
901 * @template: desired set of css pointers in css_set (pre-calculated)
903 * Returns true if "cset" matches "old_cset" except for the hierarchy
904 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
906 static bool compare_css_sets(struct css_set *cset,
907 struct css_set *old_cset,
908 struct cgroup *new_cgrp,
909 struct cgroup_subsys_state *template[])
911 struct cgroup *new_dfl_cgrp;
912 struct list_head *l1, *l2;
915 * On the default hierarchy, there can be csets which are
916 * associated with the same set of cgroups but different csses.
917 * Let's first ensure that csses match.
919 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
920 return false;
923 /* @cset's domain should match the default cgroup's */
924 if (cgroup_on_dfl(new_cgrp))
925 new_dfl_cgrp = new_cgrp;
926 else
927 new_dfl_cgrp = old_cset->dfl_cgrp;
929 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
930 return false;
933 * Compare cgroup pointers in order to distinguish between
934 * different cgroups in hierarchies. As different cgroups may
935 * share the same effective css, this comparison is always
936 * necessary.
938 l1 = &cset->cgrp_links;
939 l2 = &old_cset->cgrp_links;
940 while (1) {
941 struct cgrp_cset_link *link1, *link2;
942 struct cgroup *cgrp1, *cgrp2;
944 l1 = l1->next;
945 l2 = l2->next;
946 /* See if we reached the end - both lists are equal length. */
947 if (l1 == &cset->cgrp_links) {
948 BUG_ON(l2 != &old_cset->cgrp_links);
949 break;
950 } else {
951 BUG_ON(l2 == &old_cset->cgrp_links);
953 /* Locate the cgroups associated with these links. */
954 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
955 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
956 cgrp1 = link1->cgrp;
957 cgrp2 = link2->cgrp;
958 /* Hierarchies should be linked in the same order. */
959 BUG_ON(cgrp1->root != cgrp2->root);
962 * If this hierarchy is the hierarchy of the cgroup
963 * that's changing, then we need to check that this
964 * css_set points to the new cgroup; if it's any other
965 * hierarchy, then this css_set should point to the
966 * same cgroup as the old css_set.
968 if (cgrp1->root == new_cgrp->root) {
969 if (cgrp1 != new_cgrp)
970 return false;
971 } else {
972 if (cgrp1 != cgrp2)
973 return false;
976 return true;
980 * find_existing_css_set - init css array and find the matching css_set
981 * @old_cset: the css_set that we're using before the cgroup transition
982 * @cgrp: the cgroup that we're moving into
983 * @template: out param for the new set of csses, should be clear on entry
985 static struct css_set *find_existing_css_set(struct css_set *old_cset,
986 struct cgroup *cgrp,
987 struct cgroup_subsys_state *template[])
989 struct cgroup_root *root = cgrp->root;
990 struct cgroup_subsys *ss;
991 struct css_set *cset;
992 unsigned long key;
993 int i;
996 * Build the set of subsystem state objects that we want to see in the
997 * new css_set. while subsystems can change globally, the entries here
998 * won't change, so no need for locking.
1000 for_each_subsys(ss, i) {
1001 if (root->subsys_mask & (1UL << i)) {
1003 * @ss is in this hierarchy, so we want the
1004 * effective css from @cgrp.
1006 template[i] = cgroup_e_css(cgrp, ss);
1007 } else {
1009 * @ss is not in this hierarchy, so we don't want
1010 * to change the css.
1012 template[i] = old_cset->subsys[i];
1016 key = css_set_hash(template);
1017 hash_for_each_possible(css_set_table, cset, hlist, key) {
1018 if (!compare_css_sets(cset, old_cset, cgrp, template))
1019 continue;
1021 /* This css_set matches what we need */
1022 return cset;
1025 /* No existing cgroup group matched */
1026 return NULL;
1029 static void free_cgrp_cset_links(struct list_head *links_to_free)
1031 struct cgrp_cset_link *link, *tmp_link;
1033 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1034 list_del(&link->cset_link);
1035 kfree(link);
1040 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1041 * @count: the number of links to allocate
1042 * @tmp_links: list_head the allocated links are put on
1044 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1045 * through ->cset_link. Returns 0 on success or -errno.
1047 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1049 struct cgrp_cset_link *link;
1050 int i;
1052 INIT_LIST_HEAD(tmp_links);
1054 for (i = 0; i < count; i++) {
1055 link = kzalloc(sizeof(*link), GFP_KERNEL);
1056 if (!link) {
1057 free_cgrp_cset_links(tmp_links);
1058 return -ENOMEM;
1060 list_add(&link->cset_link, tmp_links);
1062 return 0;
1066 * link_css_set - a helper function to link a css_set to a cgroup
1067 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1068 * @cset: the css_set to be linked
1069 * @cgrp: the destination cgroup
1071 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1072 struct cgroup *cgrp)
1074 struct cgrp_cset_link *link;
1076 BUG_ON(list_empty(tmp_links));
1078 if (cgroup_on_dfl(cgrp))
1079 cset->dfl_cgrp = cgrp;
1081 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1082 link->cset = cset;
1083 link->cgrp = cgrp;
1086 * Always add links to the tail of the lists so that the lists are
1087 * in choronological order.
1089 list_move_tail(&link->cset_link, &cgrp->cset_links);
1090 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1092 if (cgroup_parent(cgrp))
1093 cgroup_get_live(cgrp);
1097 * find_css_set - return a new css_set with one cgroup updated
1098 * @old_cset: the baseline css_set
1099 * @cgrp: the cgroup to be updated
1101 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1102 * substituted into the appropriate hierarchy.
1104 static struct css_set *find_css_set(struct css_set *old_cset,
1105 struct cgroup *cgrp)
1107 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1108 struct css_set *cset;
1109 struct list_head tmp_links;
1110 struct cgrp_cset_link *link;
1111 struct cgroup_subsys *ss;
1112 unsigned long key;
1113 int ssid;
1115 lockdep_assert_held(&cgroup_mutex);
1117 /* First see if we already have a cgroup group that matches
1118 * the desired set */
1119 spin_lock_irq(&css_set_lock);
1120 cset = find_existing_css_set(old_cset, cgrp, template);
1121 if (cset)
1122 get_css_set(cset);
1123 spin_unlock_irq(&css_set_lock);
1125 if (cset)
1126 return cset;
1128 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1129 if (!cset)
1130 return NULL;
1132 /* Allocate all the cgrp_cset_link objects that we'll need */
1133 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1134 kfree(cset);
1135 return NULL;
1138 refcount_set(&cset->refcount, 1);
1139 cset->dom_cset = cset;
1140 INIT_LIST_HEAD(&cset->tasks);
1141 INIT_LIST_HEAD(&cset->mg_tasks);
1142 INIT_LIST_HEAD(&cset->task_iters);
1143 INIT_LIST_HEAD(&cset->threaded_csets);
1144 INIT_HLIST_NODE(&cset->hlist);
1145 INIT_LIST_HEAD(&cset->cgrp_links);
1146 INIT_LIST_HEAD(&cset->mg_preload_node);
1147 INIT_LIST_HEAD(&cset->mg_node);
1149 /* Copy the set of subsystem state objects generated in
1150 * find_existing_css_set() */
1151 memcpy(cset->subsys, template, sizeof(cset->subsys));
1153 spin_lock_irq(&css_set_lock);
1154 /* Add reference counts and links from the new css_set. */
1155 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1156 struct cgroup *c = link->cgrp;
1158 if (c->root == cgrp->root)
1159 c = cgrp;
1160 link_css_set(&tmp_links, cset, c);
1163 BUG_ON(!list_empty(&tmp_links));
1165 css_set_count++;
1167 /* Add @cset to the hash table */
1168 key = css_set_hash(cset->subsys);
1169 hash_add(css_set_table, &cset->hlist, key);
1171 for_each_subsys(ss, ssid) {
1172 struct cgroup_subsys_state *css = cset->subsys[ssid];
1174 list_add_tail(&cset->e_cset_node[ssid],
1175 &css->cgroup->e_csets[ssid]);
1176 css_get(css);
1179 spin_unlock_irq(&css_set_lock);
1182 * If @cset should be threaded, look up the matching dom_cset and
1183 * link them up. We first fully initialize @cset then look for the
1184 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1185 * to stay empty until we return.
1187 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1188 struct css_set *dcset;
1190 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1191 if (!dcset) {
1192 put_css_set(cset);
1193 return NULL;
1196 spin_lock_irq(&css_set_lock);
1197 cset->dom_cset = dcset;
1198 list_add_tail(&cset->threaded_csets_node,
1199 &dcset->threaded_csets);
1200 spin_unlock_irq(&css_set_lock);
1203 return cset;
1206 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1208 struct cgroup *root_cgrp = kf_root->kn->priv;
1210 return root_cgrp->root;
1213 static int cgroup_init_root_id(struct cgroup_root *root)
1215 int id;
1217 lockdep_assert_held(&cgroup_mutex);
1219 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1220 if (id < 0)
1221 return id;
1223 root->hierarchy_id = id;
1224 return 0;
1227 static void cgroup_exit_root_id(struct cgroup_root *root)
1229 lockdep_assert_held(&cgroup_mutex);
1231 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1234 void cgroup_free_root(struct cgroup_root *root)
1236 if (root) {
1237 idr_destroy(&root->cgroup_idr);
1238 kfree(root);
1242 static void cgroup_destroy_root(struct cgroup_root *root)
1244 struct cgroup *cgrp = &root->cgrp;
1245 struct cgrp_cset_link *link, *tmp_link;
1247 trace_cgroup_destroy_root(root);
1249 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1251 BUG_ON(atomic_read(&root->nr_cgrps));
1252 BUG_ON(!list_empty(&cgrp->self.children));
1254 /* Rebind all subsystems back to the default hierarchy */
1255 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1258 * Release all the links from cset_links to this hierarchy's
1259 * root cgroup
1261 spin_lock_irq(&css_set_lock);
1263 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1264 list_del(&link->cset_link);
1265 list_del(&link->cgrp_link);
1266 kfree(link);
1269 spin_unlock_irq(&css_set_lock);
1271 if (!list_empty(&root->root_list)) {
1272 list_del(&root->root_list);
1273 cgroup_root_count--;
1276 cgroup_exit_root_id(root);
1278 mutex_unlock(&cgroup_mutex);
1280 kernfs_destroy_root(root->kf_root);
1281 cgroup_free_root(root);
1285 * look up cgroup associated with current task's cgroup namespace on the
1286 * specified hierarchy
1288 static struct cgroup *
1289 current_cgns_cgroup_from_root(struct cgroup_root *root)
1291 struct cgroup *res = NULL;
1292 struct css_set *cset;
1294 lockdep_assert_held(&css_set_lock);
1296 rcu_read_lock();
1298 cset = current->nsproxy->cgroup_ns->root_cset;
1299 if (cset == &init_css_set) {
1300 res = &root->cgrp;
1301 } else {
1302 struct cgrp_cset_link *link;
1304 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1305 struct cgroup *c = link->cgrp;
1307 if (c->root == root) {
1308 res = c;
1309 break;
1313 rcu_read_unlock();
1315 BUG_ON(!res);
1316 return res;
1319 /* look up cgroup associated with given css_set on the specified hierarchy */
1320 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1321 struct cgroup_root *root)
1323 struct cgroup *res = NULL;
1325 lockdep_assert_held(&cgroup_mutex);
1326 lockdep_assert_held(&css_set_lock);
1328 if (cset == &init_css_set) {
1329 res = &root->cgrp;
1330 } else if (root == &cgrp_dfl_root) {
1331 res = cset->dfl_cgrp;
1332 } else {
1333 struct cgrp_cset_link *link;
1335 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1336 struct cgroup *c = link->cgrp;
1338 if (c->root == root) {
1339 res = c;
1340 break;
1345 BUG_ON(!res);
1346 return res;
1350 * Return the cgroup for "task" from the given hierarchy. Must be
1351 * called with cgroup_mutex and css_set_lock held.
1353 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1354 struct cgroup_root *root)
1357 * No need to lock the task - since we hold cgroup_mutex the
1358 * task can't change groups, so the only thing that can happen
1359 * is that it exits and its css is set back to init_css_set.
1361 return cset_cgroup_from_root(task_css_set(task), root);
1365 * A task must hold cgroup_mutex to modify cgroups.
1367 * Any task can increment and decrement the count field without lock.
1368 * So in general, code holding cgroup_mutex can't rely on the count
1369 * field not changing. However, if the count goes to zero, then only
1370 * cgroup_attach_task() can increment it again. Because a count of zero
1371 * means that no tasks are currently attached, therefore there is no
1372 * way a task attached to that cgroup can fork (the other way to
1373 * increment the count). So code holding cgroup_mutex can safely
1374 * assume that if the count is zero, it will stay zero. Similarly, if
1375 * a task holds cgroup_mutex on a cgroup with zero count, it
1376 * knows that the cgroup won't be removed, as cgroup_rmdir()
1377 * needs that mutex.
1379 * A cgroup can only be deleted if both its 'count' of using tasks
1380 * is zero, and its list of 'children' cgroups is empty. Since all
1381 * tasks in the system use _some_ cgroup, and since there is always at
1382 * least one task in the system (init, pid == 1), therefore, root cgroup
1383 * always has either children cgroups and/or using tasks. So we don't
1384 * need a special hack to ensure that root cgroup cannot be deleted.
1386 * P.S. One more locking exception. RCU is used to guard the
1387 * update of a tasks cgroup pointer by cgroup_attach_task()
1390 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1392 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1393 char *buf)
1395 struct cgroup_subsys *ss = cft->ss;
1397 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1398 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1399 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1400 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1401 cft->name);
1402 else
1403 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1404 return buf;
1408 * cgroup_file_mode - deduce file mode of a control file
1409 * @cft: the control file in question
1411 * S_IRUGO for read, S_IWUSR for write.
1413 static umode_t cgroup_file_mode(const struct cftype *cft)
1415 umode_t mode = 0;
1417 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1418 mode |= S_IRUGO;
1420 if (cft->write_u64 || cft->write_s64 || cft->write) {
1421 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1422 mode |= S_IWUGO;
1423 else
1424 mode |= S_IWUSR;
1427 return mode;
1431 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1432 * @subtree_control: the new subtree_control mask to consider
1433 * @this_ss_mask: available subsystems
1435 * On the default hierarchy, a subsystem may request other subsystems to be
1436 * enabled together through its ->depends_on mask. In such cases, more
1437 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1439 * This function calculates which subsystems need to be enabled if
1440 * @subtree_control is to be applied while restricted to @this_ss_mask.
1442 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1444 u16 cur_ss_mask = subtree_control;
1445 struct cgroup_subsys *ss;
1446 int ssid;
1448 lockdep_assert_held(&cgroup_mutex);
1450 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1452 while (true) {
1453 u16 new_ss_mask = cur_ss_mask;
1455 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1456 new_ss_mask |= ss->depends_on;
1457 } while_each_subsys_mask();
1460 * Mask out subsystems which aren't available. This can
1461 * happen only if some depended-upon subsystems were bound
1462 * to non-default hierarchies.
1464 new_ss_mask &= this_ss_mask;
1466 if (new_ss_mask == cur_ss_mask)
1467 break;
1468 cur_ss_mask = new_ss_mask;
1471 return cur_ss_mask;
1475 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1476 * @kn: the kernfs_node being serviced
1478 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1479 * the method finishes if locking succeeded. Note that once this function
1480 * returns the cgroup returned by cgroup_kn_lock_live() may become
1481 * inaccessible any time. If the caller intends to continue to access the
1482 * cgroup, it should pin it before invoking this function.
1484 void cgroup_kn_unlock(struct kernfs_node *kn)
1486 struct cgroup *cgrp;
1488 if (kernfs_type(kn) == KERNFS_DIR)
1489 cgrp = kn->priv;
1490 else
1491 cgrp = kn->parent->priv;
1493 mutex_unlock(&cgroup_mutex);
1495 kernfs_unbreak_active_protection(kn);
1496 cgroup_put(cgrp);
1500 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1501 * @kn: the kernfs_node being serviced
1502 * @drain_offline: perform offline draining on the cgroup
1504 * This helper is to be used by a cgroup kernfs method currently servicing
1505 * @kn. It breaks the active protection, performs cgroup locking and
1506 * verifies that the associated cgroup is alive. Returns the cgroup if
1507 * alive; otherwise, %NULL. A successful return should be undone by a
1508 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1509 * cgroup is drained of offlining csses before return.
1511 * Any cgroup kernfs method implementation which requires locking the
1512 * associated cgroup should use this helper. It avoids nesting cgroup
1513 * locking under kernfs active protection and allows all kernfs operations
1514 * including self-removal.
1516 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1518 struct cgroup *cgrp;
1520 if (kernfs_type(kn) == KERNFS_DIR)
1521 cgrp = kn->priv;
1522 else
1523 cgrp = kn->parent->priv;
1526 * We're gonna grab cgroup_mutex which nests outside kernfs
1527 * active_ref. cgroup liveliness check alone provides enough
1528 * protection against removal. Ensure @cgrp stays accessible and
1529 * break the active_ref protection.
1531 if (!cgroup_tryget(cgrp))
1532 return NULL;
1533 kernfs_break_active_protection(kn);
1535 if (drain_offline)
1536 cgroup_lock_and_drain_offline(cgrp);
1537 else
1538 mutex_lock(&cgroup_mutex);
1540 if (!cgroup_is_dead(cgrp))
1541 return cgrp;
1543 cgroup_kn_unlock(kn);
1544 return NULL;
1547 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1549 char name[CGROUP_FILE_NAME_MAX];
1551 lockdep_assert_held(&cgroup_mutex);
1553 if (cft->file_offset) {
1554 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1555 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1557 spin_lock_irq(&cgroup_file_kn_lock);
1558 cfile->kn = NULL;
1559 spin_unlock_irq(&cgroup_file_kn_lock);
1561 del_timer_sync(&cfile->notify_timer);
1564 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1568 * css_clear_dir - remove subsys files in a cgroup directory
1569 * @css: taget css
1571 static void css_clear_dir(struct cgroup_subsys_state *css)
1573 struct cgroup *cgrp = css->cgroup;
1574 struct cftype *cfts;
1576 if (!(css->flags & CSS_VISIBLE))
1577 return;
1579 css->flags &= ~CSS_VISIBLE;
1581 if (!css->ss) {
1582 if (cgroup_on_dfl(cgrp))
1583 cfts = cgroup_base_files;
1584 else
1585 cfts = cgroup1_base_files;
1587 cgroup_addrm_files(css, cgrp, cfts, false);
1588 } else {
1589 list_for_each_entry(cfts, &css->ss->cfts, node)
1590 cgroup_addrm_files(css, cgrp, cfts, false);
1595 * css_populate_dir - create subsys files in a cgroup directory
1596 * @css: target css
1598 * On failure, no file is added.
1600 static int css_populate_dir(struct cgroup_subsys_state *css)
1602 struct cgroup *cgrp = css->cgroup;
1603 struct cftype *cfts, *failed_cfts;
1604 int ret;
1606 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1607 return 0;
1609 if (!css->ss) {
1610 if (cgroup_on_dfl(cgrp))
1611 cfts = cgroup_base_files;
1612 else
1613 cfts = cgroup1_base_files;
1615 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1616 if (ret < 0)
1617 return ret;
1618 } else {
1619 list_for_each_entry(cfts, &css->ss->cfts, node) {
1620 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1621 if (ret < 0) {
1622 failed_cfts = cfts;
1623 goto err;
1628 css->flags |= CSS_VISIBLE;
1630 return 0;
1631 err:
1632 list_for_each_entry(cfts, &css->ss->cfts, node) {
1633 if (cfts == failed_cfts)
1634 break;
1635 cgroup_addrm_files(css, cgrp, cfts, false);
1637 return ret;
1640 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1642 struct cgroup *dcgrp = &dst_root->cgrp;
1643 struct cgroup_subsys *ss;
1644 int ssid, i, ret;
1646 lockdep_assert_held(&cgroup_mutex);
1648 do_each_subsys_mask(ss, ssid, ss_mask) {
1650 * If @ss has non-root csses attached to it, can't move.
1651 * If @ss is an implicit controller, it is exempt from this
1652 * rule and can be stolen.
1654 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1655 !ss->implicit_on_dfl)
1656 return -EBUSY;
1658 /* can't move between two non-dummy roots either */
1659 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1660 return -EBUSY;
1661 } while_each_subsys_mask();
1663 do_each_subsys_mask(ss, ssid, ss_mask) {
1664 struct cgroup_root *src_root = ss->root;
1665 struct cgroup *scgrp = &src_root->cgrp;
1666 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1667 struct css_set *cset;
1669 WARN_ON(!css || cgroup_css(dcgrp, ss));
1671 /* disable from the source */
1672 src_root->subsys_mask &= ~(1 << ssid);
1673 WARN_ON(cgroup_apply_control(scgrp));
1674 cgroup_finalize_control(scgrp, 0);
1676 /* rebind */
1677 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1678 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1679 ss->root = dst_root;
1680 css->cgroup = dcgrp;
1682 spin_lock_irq(&css_set_lock);
1683 hash_for_each(css_set_table, i, cset, hlist)
1684 list_move_tail(&cset->e_cset_node[ss->id],
1685 &dcgrp->e_csets[ss->id]);
1686 spin_unlock_irq(&css_set_lock);
1688 /* default hierarchy doesn't enable controllers by default */
1689 dst_root->subsys_mask |= 1 << ssid;
1690 if (dst_root == &cgrp_dfl_root) {
1691 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1692 } else {
1693 dcgrp->subtree_control |= 1 << ssid;
1694 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1697 ret = cgroup_apply_control(dcgrp);
1698 if (ret)
1699 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1700 ss->name, ret);
1702 if (ss->bind)
1703 ss->bind(css);
1704 } while_each_subsys_mask();
1706 kernfs_activate(dcgrp->kn);
1707 return 0;
1710 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1711 struct kernfs_root *kf_root)
1713 int len = 0;
1714 char *buf = NULL;
1715 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1716 struct cgroup *ns_cgroup;
1718 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1719 if (!buf)
1720 return -ENOMEM;
1722 spin_lock_irq(&css_set_lock);
1723 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1724 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1725 spin_unlock_irq(&css_set_lock);
1727 if (len >= PATH_MAX)
1728 len = -ERANGE;
1729 else if (len > 0) {
1730 seq_escape(sf, buf, " \t\n\\");
1731 len = 0;
1733 kfree(buf);
1734 return len;
1737 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1739 char *token;
1741 *root_flags = 0;
1743 if (!data)
1744 return 0;
1746 while ((token = strsep(&data, ",")) != NULL) {
1747 if (!strcmp(token, "nsdelegate")) {
1748 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1749 continue;
1752 pr_err("cgroup2: unknown option \"%s\"\n", token);
1753 return -EINVAL;
1756 return 0;
1759 static void apply_cgroup_root_flags(unsigned int root_flags)
1761 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1762 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1763 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1764 else
1765 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1769 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1771 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1772 seq_puts(seq, ",nsdelegate");
1773 return 0;
1776 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1778 unsigned int root_flags;
1779 int ret;
1781 ret = parse_cgroup_root_flags(data, &root_flags);
1782 if (ret)
1783 return ret;
1785 apply_cgroup_root_flags(root_flags);
1786 return 0;
1790 * To reduce the fork() overhead for systems that are not actually using
1791 * their cgroups capability, we don't maintain the lists running through
1792 * each css_set to its tasks until we see the list actually used - in other
1793 * words after the first mount.
1795 static bool use_task_css_set_links __read_mostly;
1797 static void cgroup_enable_task_cg_lists(void)
1799 struct task_struct *p, *g;
1802 * We need tasklist_lock because RCU is not safe against
1803 * while_each_thread(). Besides, a forking task that has passed
1804 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1805 * is not guaranteed to have its child immediately visible in the
1806 * tasklist if we walk through it with RCU.
1808 read_lock(&tasklist_lock);
1809 spin_lock_irq(&css_set_lock);
1811 if (use_task_css_set_links)
1812 goto out_unlock;
1814 use_task_css_set_links = true;
1816 do_each_thread(g, p) {
1817 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1818 task_css_set(p) != &init_css_set);
1821 * We should check if the process is exiting, otherwise
1822 * it will race with cgroup_exit() in that the list
1823 * entry won't be deleted though the process has exited.
1824 * Do it while holding siglock so that we don't end up
1825 * racing against cgroup_exit().
1827 * Interrupts were already disabled while acquiring
1828 * the css_set_lock, so we do not need to disable it
1829 * again when acquiring the sighand->siglock here.
1831 spin_lock(&p->sighand->siglock);
1832 if (!(p->flags & PF_EXITING)) {
1833 struct css_set *cset = task_css_set(p);
1835 if (!css_set_populated(cset))
1836 css_set_update_populated(cset, true);
1837 list_add_tail(&p->cg_list, &cset->tasks);
1838 get_css_set(cset);
1839 cset->nr_tasks++;
1841 spin_unlock(&p->sighand->siglock);
1842 } while_each_thread(g, p);
1843 out_unlock:
1844 spin_unlock_irq(&css_set_lock);
1845 read_unlock(&tasklist_lock);
1848 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1850 struct cgroup_subsys *ss;
1851 int ssid;
1853 INIT_LIST_HEAD(&cgrp->self.sibling);
1854 INIT_LIST_HEAD(&cgrp->self.children);
1855 INIT_LIST_HEAD(&cgrp->cset_links);
1856 INIT_LIST_HEAD(&cgrp->pidlists);
1857 mutex_init(&cgrp->pidlist_mutex);
1858 cgrp->self.cgroup = cgrp;
1859 cgrp->self.flags |= CSS_ONLINE;
1860 cgrp->dom_cgrp = cgrp;
1861 cgrp->max_descendants = INT_MAX;
1862 cgrp->max_depth = INT_MAX;
1863 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1864 prev_cputime_init(&cgrp->prev_cputime);
1866 for_each_subsys(ss, ssid)
1867 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1869 init_waitqueue_head(&cgrp->offline_waitq);
1870 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1873 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1875 struct cgroup *cgrp = &root->cgrp;
1877 INIT_LIST_HEAD(&root->root_list);
1878 atomic_set(&root->nr_cgrps, 1);
1879 cgrp->root = root;
1880 init_cgroup_housekeeping(cgrp);
1881 idr_init(&root->cgroup_idr);
1883 root->flags = opts->flags;
1884 if (opts->release_agent)
1885 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1886 if (opts->name)
1887 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1888 if (opts->cpuset_clone_children)
1889 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1892 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1894 LIST_HEAD(tmp_links);
1895 struct cgroup *root_cgrp = &root->cgrp;
1896 struct kernfs_syscall_ops *kf_sops;
1897 struct css_set *cset;
1898 int i, ret;
1900 lockdep_assert_held(&cgroup_mutex);
1902 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1903 if (ret < 0)
1904 goto out;
1905 root_cgrp->id = ret;
1906 root_cgrp->ancestor_ids[0] = ret;
1908 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1909 ref_flags, GFP_KERNEL);
1910 if (ret)
1911 goto out;
1914 * We're accessing css_set_count without locking css_set_lock here,
1915 * but that's OK - it can only be increased by someone holding
1916 * cgroup_lock, and that's us. Later rebinding may disable
1917 * controllers on the default hierarchy and thus create new csets,
1918 * which can't be more than the existing ones. Allocate 2x.
1920 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1921 if (ret)
1922 goto cancel_ref;
1924 ret = cgroup_init_root_id(root);
1925 if (ret)
1926 goto cancel_ref;
1928 kf_sops = root == &cgrp_dfl_root ?
1929 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1931 root->kf_root = kernfs_create_root(kf_sops,
1932 KERNFS_ROOT_CREATE_DEACTIVATED |
1933 KERNFS_ROOT_SUPPORT_EXPORTOP,
1934 root_cgrp);
1935 if (IS_ERR(root->kf_root)) {
1936 ret = PTR_ERR(root->kf_root);
1937 goto exit_root_id;
1939 root_cgrp->kn = root->kf_root->kn;
1941 ret = css_populate_dir(&root_cgrp->self);
1942 if (ret)
1943 goto destroy_root;
1945 ret = rebind_subsystems(root, ss_mask);
1946 if (ret)
1947 goto destroy_root;
1949 ret = cgroup_bpf_inherit(root_cgrp);
1950 WARN_ON_ONCE(ret);
1952 trace_cgroup_setup_root(root);
1955 * There must be no failure case after here, since rebinding takes
1956 * care of subsystems' refcounts, which are explicitly dropped in
1957 * the failure exit path.
1959 list_add(&root->root_list, &cgroup_roots);
1960 cgroup_root_count++;
1963 * Link the root cgroup in this hierarchy into all the css_set
1964 * objects.
1966 spin_lock_irq(&css_set_lock);
1967 hash_for_each(css_set_table, i, cset, hlist) {
1968 link_css_set(&tmp_links, cset, root_cgrp);
1969 if (css_set_populated(cset))
1970 cgroup_update_populated(root_cgrp, true);
1972 spin_unlock_irq(&css_set_lock);
1974 BUG_ON(!list_empty(&root_cgrp->self.children));
1975 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1977 kernfs_activate(root_cgrp->kn);
1978 ret = 0;
1979 goto out;
1981 destroy_root:
1982 kernfs_destroy_root(root->kf_root);
1983 root->kf_root = NULL;
1984 exit_root_id:
1985 cgroup_exit_root_id(root);
1986 cancel_ref:
1987 percpu_ref_exit(&root_cgrp->self.refcnt);
1988 out:
1989 free_cgrp_cset_links(&tmp_links);
1990 return ret;
1993 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1994 struct cgroup_root *root, unsigned long magic,
1995 struct cgroup_namespace *ns)
1997 struct dentry *dentry;
1998 bool new_sb;
2000 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2003 * In non-init cgroup namespace, instead of root cgroup's dentry,
2004 * we return the dentry corresponding to the cgroupns->root_cgrp.
2006 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2007 struct dentry *nsdentry;
2008 struct cgroup *cgrp;
2010 mutex_lock(&cgroup_mutex);
2011 spin_lock_irq(&css_set_lock);
2013 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2015 spin_unlock_irq(&css_set_lock);
2016 mutex_unlock(&cgroup_mutex);
2018 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2019 dput(dentry);
2020 dentry = nsdentry;
2023 if (IS_ERR(dentry) || !new_sb)
2024 cgroup_put(&root->cgrp);
2026 return dentry;
2029 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2030 int flags, const char *unused_dev_name,
2031 void *data)
2033 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2034 struct dentry *dentry;
2035 int ret;
2037 get_cgroup_ns(ns);
2039 /* Check if the caller has permission to mount. */
2040 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2041 put_cgroup_ns(ns);
2042 return ERR_PTR(-EPERM);
2046 * The first time anyone tries to mount a cgroup, enable the list
2047 * linking each css_set to its tasks and fix up all existing tasks.
2049 if (!use_task_css_set_links)
2050 cgroup_enable_task_cg_lists();
2052 if (fs_type == &cgroup2_fs_type) {
2053 unsigned int root_flags;
2055 ret = parse_cgroup_root_flags(data, &root_flags);
2056 if (ret) {
2057 put_cgroup_ns(ns);
2058 return ERR_PTR(ret);
2061 cgrp_dfl_visible = true;
2062 cgroup_get_live(&cgrp_dfl_root.cgrp);
2064 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2065 CGROUP2_SUPER_MAGIC, ns);
2066 if (!IS_ERR(dentry))
2067 apply_cgroup_root_flags(root_flags);
2068 } else {
2069 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2070 CGROUP_SUPER_MAGIC, ns);
2073 put_cgroup_ns(ns);
2074 return dentry;
2077 static void cgroup_kill_sb(struct super_block *sb)
2079 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2080 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2083 * If @root doesn't have any mounts or children, start killing it.
2084 * This prevents new mounts by disabling percpu_ref_tryget_live().
2085 * cgroup_mount() may wait for @root's release.
2087 * And don't kill the default root.
2089 if (!list_empty(&root->cgrp.self.children) ||
2090 root == &cgrp_dfl_root)
2091 cgroup_put(&root->cgrp);
2092 else
2093 percpu_ref_kill(&root->cgrp.self.refcnt);
2095 kernfs_kill_sb(sb);
2098 struct file_system_type cgroup_fs_type = {
2099 .name = "cgroup",
2100 .mount = cgroup_mount,
2101 .kill_sb = cgroup_kill_sb,
2102 .fs_flags = FS_USERNS_MOUNT,
2105 static struct file_system_type cgroup2_fs_type = {
2106 .name = "cgroup2",
2107 .mount = cgroup_mount,
2108 .kill_sb = cgroup_kill_sb,
2109 .fs_flags = FS_USERNS_MOUNT,
2112 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2113 struct cgroup_namespace *ns)
2115 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2117 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2120 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2121 struct cgroup_namespace *ns)
2123 int ret;
2125 mutex_lock(&cgroup_mutex);
2126 spin_lock_irq(&css_set_lock);
2128 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2130 spin_unlock_irq(&css_set_lock);
2131 mutex_unlock(&cgroup_mutex);
2133 return ret;
2135 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2138 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2139 * @task: target task
2140 * @buf: the buffer to write the path into
2141 * @buflen: the length of the buffer
2143 * Determine @task's cgroup on the first (the one with the lowest non-zero
2144 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2145 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2146 * cgroup controller callbacks.
2148 * Return value is the same as kernfs_path().
2150 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2152 struct cgroup_root *root;
2153 struct cgroup *cgrp;
2154 int hierarchy_id = 1;
2155 int ret;
2157 mutex_lock(&cgroup_mutex);
2158 spin_lock_irq(&css_set_lock);
2160 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2162 if (root) {
2163 cgrp = task_cgroup_from_root(task, root);
2164 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2165 } else {
2166 /* if no hierarchy exists, everyone is in "/" */
2167 ret = strlcpy(buf, "/", buflen);
2170 spin_unlock_irq(&css_set_lock);
2171 mutex_unlock(&cgroup_mutex);
2172 return ret;
2174 EXPORT_SYMBOL_GPL(task_cgroup_path);
2177 * cgroup_migrate_add_task - add a migration target task to a migration context
2178 * @task: target task
2179 * @mgctx: target migration context
2181 * Add @task, which is a migration target, to @mgctx->tset. This function
2182 * becomes noop if @task doesn't need to be migrated. @task's css_set
2183 * should have been added as a migration source and @task->cg_list will be
2184 * moved from the css_set's tasks list to mg_tasks one.
2186 static void cgroup_migrate_add_task(struct task_struct *task,
2187 struct cgroup_mgctx *mgctx)
2189 struct css_set *cset;
2191 lockdep_assert_held(&css_set_lock);
2193 /* @task either already exited or can't exit until the end */
2194 if (task->flags & PF_EXITING)
2195 return;
2197 /* leave @task alone if post_fork() hasn't linked it yet */
2198 if (list_empty(&task->cg_list))
2199 return;
2201 cset = task_css_set(task);
2202 if (!cset->mg_src_cgrp)
2203 return;
2205 mgctx->tset.nr_tasks++;
2207 list_move_tail(&task->cg_list, &cset->mg_tasks);
2208 if (list_empty(&cset->mg_node))
2209 list_add_tail(&cset->mg_node,
2210 &mgctx->tset.src_csets);
2211 if (list_empty(&cset->mg_dst_cset->mg_node))
2212 list_add_tail(&cset->mg_dst_cset->mg_node,
2213 &mgctx->tset.dst_csets);
2217 * cgroup_taskset_first - reset taskset and return the first task
2218 * @tset: taskset of interest
2219 * @dst_cssp: output variable for the destination css
2221 * @tset iteration is initialized and the first task is returned.
2223 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2224 struct cgroup_subsys_state **dst_cssp)
2226 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2227 tset->cur_task = NULL;
2229 return cgroup_taskset_next(tset, dst_cssp);
2233 * cgroup_taskset_next - iterate to the next task in taskset
2234 * @tset: taskset of interest
2235 * @dst_cssp: output variable for the destination css
2237 * Return the next task in @tset. Iteration must have been initialized
2238 * with cgroup_taskset_first().
2240 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2241 struct cgroup_subsys_state **dst_cssp)
2243 struct css_set *cset = tset->cur_cset;
2244 struct task_struct *task = tset->cur_task;
2246 while (&cset->mg_node != tset->csets) {
2247 if (!task)
2248 task = list_first_entry(&cset->mg_tasks,
2249 struct task_struct, cg_list);
2250 else
2251 task = list_next_entry(task, cg_list);
2253 if (&task->cg_list != &cset->mg_tasks) {
2254 tset->cur_cset = cset;
2255 tset->cur_task = task;
2258 * This function may be called both before and
2259 * after cgroup_taskset_migrate(). The two cases
2260 * can be distinguished by looking at whether @cset
2261 * has its ->mg_dst_cset set.
2263 if (cset->mg_dst_cset)
2264 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2265 else
2266 *dst_cssp = cset->subsys[tset->ssid];
2268 return task;
2271 cset = list_next_entry(cset, mg_node);
2272 task = NULL;
2275 return NULL;
2279 * cgroup_taskset_migrate - migrate a taskset
2280 * @mgctx: migration context
2282 * Migrate tasks in @mgctx as setup by migration preparation functions.
2283 * This function fails iff one of the ->can_attach callbacks fails and
2284 * guarantees that either all or none of the tasks in @mgctx are migrated.
2285 * @mgctx is consumed regardless of success.
2287 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2289 struct cgroup_taskset *tset = &mgctx->tset;
2290 struct cgroup_subsys *ss;
2291 struct task_struct *task, *tmp_task;
2292 struct css_set *cset, *tmp_cset;
2293 int ssid, failed_ssid, ret;
2295 /* check that we can legitimately attach to the cgroup */
2296 if (tset->nr_tasks) {
2297 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2298 if (ss->can_attach) {
2299 tset->ssid = ssid;
2300 ret = ss->can_attach(tset);
2301 if (ret) {
2302 failed_ssid = ssid;
2303 goto out_cancel_attach;
2306 } while_each_subsys_mask();
2310 * Now that we're guaranteed success, proceed to move all tasks to
2311 * the new cgroup. There are no failure cases after here, so this
2312 * is the commit point.
2314 spin_lock_irq(&css_set_lock);
2315 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2316 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2317 struct css_set *from_cset = task_css_set(task);
2318 struct css_set *to_cset = cset->mg_dst_cset;
2320 get_css_set(to_cset);
2321 to_cset->nr_tasks++;
2322 css_set_move_task(task, from_cset, to_cset, true);
2323 put_css_set_locked(from_cset);
2324 from_cset->nr_tasks--;
2327 spin_unlock_irq(&css_set_lock);
2330 * Migration is committed, all target tasks are now on dst_csets.
2331 * Nothing is sensitive to fork() after this point. Notify
2332 * controllers that migration is complete.
2334 tset->csets = &tset->dst_csets;
2336 if (tset->nr_tasks) {
2337 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2338 if (ss->attach) {
2339 tset->ssid = ssid;
2340 ss->attach(tset);
2342 } while_each_subsys_mask();
2345 ret = 0;
2346 goto out_release_tset;
2348 out_cancel_attach:
2349 if (tset->nr_tasks) {
2350 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2351 if (ssid == failed_ssid)
2352 break;
2353 if (ss->cancel_attach) {
2354 tset->ssid = ssid;
2355 ss->cancel_attach(tset);
2357 } while_each_subsys_mask();
2359 out_release_tset:
2360 spin_lock_irq(&css_set_lock);
2361 list_splice_init(&tset->dst_csets, &tset->src_csets);
2362 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2363 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2364 list_del_init(&cset->mg_node);
2366 spin_unlock_irq(&css_set_lock);
2369 * Re-initialize the cgroup_taskset structure in case it is reused
2370 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2371 * iteration.
2373 tset->nr_tasks = 0;
2374 tset->csets = &tset->src_csets;
2375 return ret;
2379 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2380 * @dst_cgrp: destination cgroup to test
2382 * On the default hierarchy, except for the mixable, (possible) thread root
2383 * and threaded cgroups, subtree_control must be zero for migration
2384 * destination cgroups with tasks so that child cgroups don't compete
2385 * against tasks.
2387 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2389 /* v1 doesn't have any restriction */
2390 if (!cgroup_on_dfl(dst_cgrp))
2391 return 0;
2393 /* verify @dst_cgrp can host resources */
2394 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2395 return -EOPNOTSUPP;
2397 /* mixables don't care */
2398 if (cgroup_is_mixable(dst_cgrp))
2399 return 0;
2402 * If @dst_cgrp is already or can become a thread root or is
2403 * threaded, it doesn't matter.
2405 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2406 return 0;
2408 /* apply no-internal-process constraint */
2409 if (dst_cgrp->subtree_control)
2410 return -EBUSY;
2412 return 0;
2416 * cgroup_migrate_finish - cleanup after attach
2417 * @mgctx: migration context
2419 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2420 * those functions for details.
2422 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2424 LIST_HEAD(preloaded);
2425 struct css_set *cset, *tmp_cset;
2427 lockdep_assert_held(&cgroup_mutex);
2429 spin_lock_irq(&css_set_lock);
2431 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2432 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2434 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2435 cset->mg_src_cgrp = NULL;
2436 cset->mg_dst_cgrp = NULL;
2437 cset->mg_dst_cset = NULL;
2438 list_del_init(&cset->mg_preload_node);
2439 put_css_set_locked(cset);
2442 spin_unlock_irq(&css_set_lock);
2446 * cgroup_migrate_add_src - add a migration source css_set
2447 * @src_cset: the source css_set to add
2448 * @dst_cgrp: the destination cgroup
2449 * @mgctx: migration context
2451 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2452 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2453 * up by cgroup_migrate_finish().
2455 * This function may be called without holding cgroup_threadgroup_rwsem
2456 * even if the target is a process. Threads may be created and destroyed
2457 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2458 * into play and the preloaded css_sets are guaranteed to cover all
2459 * migrations.
2461 void cgroup_migrate_add_src(struct css_set *src_cset,
2462 struct cgroup *dst_cgrp,
2463 struct cgroup_mgctx *mgctx)
2465 struct cgroup *src_cgrp;
2467 lockdep_assert_held(&cgroup_mutex);
2468 lockdep_assert_held(&css_set_lock);
2471 * If ->dead, @src_set is associated with one or more dead cgroups
2472 * and doesn't contain any migratable tasks. Ignore it early so
2473 * that the rest of migration path doesn't get confused by it.
2475 if (src_cset->dead)
2476 return;
2478 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2480 if (!list_empty(&src_cset->mg_preload_node))
2481 return;
2483 WARN_ON(src_cset->mg_src_cgrp);
2484 WARN_ON(src_cset->mg_dst_cgrp);
2485 WARN_ON(!list_empty(&src_cset->mg_tasks));
2486 WARN_ON(!list_empty(&src_cset->mg_node));
2488 src_cset->mg_src_cgrp = src_cgrp;
2489 src_cset->mg_dst_cgrp = dst_cgrp;
2490 get_css_set(src_cset);
2491 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2495 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2496 * @mgctx: migration context
2498 * Tasks are about to be moved and all the source css_sets have been
2499 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2500 * pins all destination css_sets, links each to its source, and append them
2501 * to @mgctx->preloaded_dst_csets.
2503 * This function must be called after cgroup_migrate_add_src() has been
2504 * called on each migration source css_set. After migration is performed
2505 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2506 * @mgctx.
2508 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2510 struct css_set *src_cset, *tmp_cset;
2512 lockdep_assert_held(&cgroup_mutex);
2514 /* look up the dst cset for each src cset and link it to src */
2515 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2516 mg_preload_node) {
2517 struct css_set *dst_cset;
2518 struct cgroup_subsys *ss;
2519 int ssid;
2521 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2522 if (!dst_cset)
2523 goto err;
2525 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2528 * If src cset equals dst, it's noop. Drop the src.
2529 * cgroup_migrate() will skip the cset too. Note that we
2530 * can't handle src == dst as some nodes are used by both.
2532 if (src_cset == dst_cset) {
2533 src_cset->mg_src_cgrp = NULL;
2534 src_cset->mg_dst_cgrp = NULL;
2535 list_del_init(&src_cset->mg_preload_node);
2536 put_css_set(src_cset);
2537 put_css_set(dst_cset);
2538 continue;
2541 src_cset->mg_dst_cset = dst_cset;
2543 if (list_empty(&dst_cset->mg_preload_node))
2544 list_add_tail(&dst_cset->mg_preload_node,
2545 &mgctx->preloaded_dst_csets);
2546 else
2547 put_css_set(dst_cset);
2549 for_each_subsys(ss, ssid)
2550 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2551 mgctx->ss_mask |= 1 << ssid;
2554 return 0;
2555 err:
2556 cgroup_migrate_finish(mgctx);
2557 return -ENOMEM;
2561 * cgroup_migrate - migrate a process or task to a cgroup
2562 * @leader: the leader of the process or the task to migrate
2563 * @threadgroup: whether @leader points to the whole process or a single task
2564 * @mgctx: migration context
2566 * Migrate a process or task denoted by @leader. If migrating a process,
2567 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2568 * responsible for invoking cgroup_migrate_add_src() and
2569 * cgroup_migrate_prepare_dst() on the targets before invoking this
2570 * function and following up with cgroup_migrate_finish().
2572 * As long as a controller's ->can_attach() doesn't fail, this function is
2573 * guaranteed to succeed. This means that, excluding ->can_attach()
2574 * failure, when migrating multiple targets, the success or failure can be
2575 * decided for all targets by invoking group_migrate_prepare_dst() before
2576 * actually starting migrating.
2578 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2579 struct cgroup_mgctx *mgctx)
2581 struct task_struct *task;
2584 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2585 * already PF_EXITING could be freed from underneath us unless we
2586 * take an rcu_read_lock.
2588 spin_lock_irq(&css_set_lock);
2589 rcu_read_lock();
2590 task = leader;
2591 do {
2592 cgroup_migrate_add_task(task, mgctx);
2593 if (!threadgroup)
2594 break;
2595 } while_each_thread(leader, task);
2596 rcu_read_unlock();
2597 spin_unlock_irq(&css_set_lock);
2599 return cgroup_migrate_execute(mgctx);
2603 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2604 * @dst_cgrp: the cgroup to attach to
2605 * @leader: the task or the leader of the threadgroup to be attached
2606 * @threadgroup: attach the whole threadgroup?
2608 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2610 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2611 bool threadgroup)
2613 DEFINE_CGROUP_MGCTX(mgctx);
2614 struct task_struct *task;
2615 int ret;
2617 ret = cgroup_migrate_vet_dst(dst_cgrp);
2618 if (ret)
2619 return ret;
2621 /* look up all src csets */
2622 spin_lock_irq(&css_set_lock);
2623 rcu_read_lock();
2624 task = leader;
2625 do {
2626 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2627 if (!threadgroup)
2628 break;
2629 } while_each_thread(leader, task);
2630 rcu_read_unlock();
2631 spin_unlock_irq(&css_set_lock);
2633 /* prepare dst csets and commit */
2634 ret = cgroup_migrate_prepare_dst(&mgctx);
2635 if (!ret)
2636 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2638 cgroup_migrate_finish(&mgctx);
2640 if (!ret)
2641 trace_cgroup_attach_task(dst_cgrp, leader, threadgroup);
2643 return ret;
2646 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2647 __acquires(&cgroup_threadgroup_rwsem)
2649 struct task_struct *tsk;
2650 pid_t pid;
2652 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2653 return ERR_PTR(-EINVAL);
2655 percpu_down_write(&cgroup_threadgroup_rwsem);
2657 rcu_read_lock();
2658 if (pid) {
2659 tsk = find_task_by_vpid(pid);
2660 if (!tsk) {
2661 tsk = ERR_PTR(-ESRCH);
2662 goto out_unlock_threadgroup;
2664 } else {
2665 tsk = current;
2668 if (threadgroup)
2669 tsk = tsk->group_leader;
2672 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2673 * If userland migrates such a kthread to a non-root cgroup, it can
2674 * become trapped in a cpuset, or RT kthread may be born in a
2675 * cgroup with no rt_runtime allocated. Just say no.
2677 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2678 tsk = ERR_PTR(-EINVAL);
2679 goto out_unlock_threadgroup;
2682 get_task_struct(tsk);
2683 goto out_unlock_rcu;
2685 out_unlock_threadgroup:
2686 percpu_up_write(&cgroup_threadgroup_rwsem);
2687 out_unlock_rcu:
2688 rcu_read_unlock();
2689 return tsk;
2692 void cgroup_procs_write_finish(struct task_struct *task)
2693 __releases(&cgroup_threadgroup_rwsem)
2695 struct cgroup_subsys *ss;
2696 int ssid;
2698 /* release reference from cgroup_procs_write_start() */
2699 put_task_struct(task);
2701 percpu_up_write(&cgroup_threadgroup_rwsem);
2702 for_each_subsys(ss, ssid)
2703 if (ss->post_attach)
2704 ss->post_attach();
2707 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2709 struct cgroup_subsys *ss;
2710 bool printed = false;
2711 int ssid;
2713 do_each_subsys_mask(ss, ssid, ss_mask) {
2714 if (printed)
2715 seq_putc(seq, ' ');
2716 seq_printf(seq, "%s", ss->name);
2717 printed = true;
2718 } while_each_subsys_mask();
2719 if (printed)
2720 seq_putc(seq, '\n');
2723 /* show controllers which are enabled from the parent */
2724 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2726 struct cgroup *cgrp = seq_css(seq)->cgroup;
2728 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2729 return 0;
2732 /* show controllers which are enabled for a given cgroup's children */
2733 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2735 struct cgroup *cgrp = seq_css(seq)->cgroup;
2737 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2738 return 0;
2742 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2743 * @cgrp: root of the subtree to update csses for
2745 * @cgrp's control masks have changed and its subtree's css associations
2746 * need to be updated accordingly. This function looks up all css_sets
2747 * which are attached to the subtree, creates the matching updated css_sets
2748 * and migrates the tasks to the new ones.
2750 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2752 DEFINE_CGROUP_MGCTX(mgctx);
2753 struct cgroup_subsys_state *d_css;
2754 struct cgroup *dsct;
2755 struct css_set *src_cset;
2756 int ret;
2758 lockdep_assert_held(&cgroup_mutex);
2760 percpu_down_write(&cgroup_threadgroup_rwsem);
2762 /* look up all csses currently attached to @cgrp's subtree */
2763 spin_lock_irq(&css_set_lock);
2764 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2765 struct cgrp_cset_link *link;
2767 list_for_each_entry(link, &dsct->cset_links, cset_link)
2768 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2770 spin_unlock_irq(&css_set_lock);
2772 /* NULL dst indicates self on default hierarchy */
2773 ret = cgroup_migrate_prepare_dst(&mgctx);
2774 if (ret)
2775 goto out_finish;
2777 spin_lock_irq(&css_set_lock);
2778 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2779 struct task_struct *task, *ntask;
2781 /* all tasks in src_csets need to be migrated */
2782 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2783 cgroup_migrate_add_task(task, &mgctx);
2785 spin_unlock_irq(&css_set_lock);
2787 ret = cgroup_migrate_execute(&mgctx);
2788 out_finish:
2789 cgroup_migrate_finish(&mgctx);
2790 percpu_up_write(&cgroup_threadgroup_rwsem);
2791 return ret;
2795 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2796 * @cgrp: root of the target subtree
2798 * Because css offlining is asynchronous, userland may try to re-enable a
2799 * controller while the previous css is still around. This function grabs
2800 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2802 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2803 __acquires(&cgroup_mutex)
2805 struct cgroup *dsct;
2806 struct cgroup_subsys_state *d_css;
2807 struct cgroup_subsys *ss;
2808 int ssid;
2810 restart:
2811 mutex_lock(&cgroup_mutex);
2813 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2814 for_each_subsys(ss, ssid) {
2815 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2816 DEFINE_WAIT(wait);
2818 if (!css || !percpu_ref_is_dying(&css->refcnt))
2819 continue;
2821 cgroup_get_live(dsct);
2822 prepare_to_wait(&dsct->offline_waitq, &wait,
2823 TASK_UNINTERRUPTIBLE);
2825 mutex_unlock(&cgroup_mutex);
2826 schedule();
2827 finish_wait(&dsct->offline_waitq, &wait);
2829 cgroup_put(dsct);
2830 goto restart;
2836 * cgroup_save_control - save control masks of a subtree
2837 * @cgrp: root of the target subtree
2839 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2840 * prefixed fields for @cgrp's subtree including @cgrp itself.
2842 static void cgroup_save_control(struct cgroup *cgrp)
2844 struct cgroup *dsct;
2845 struct cgroup_subsys_state *d_css;
2847 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2848 dsct->old_subtree_control = dsct->subtree_control;
2849 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2854 * cgroup_propagate_control - refresh control masks of a subtree
2855 * @cgrp: root of the target subtree
2857 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2858 * ->subtree_control and propagate controller availability through the
2859 * subtree so that descendants don't have unavailable controllers enabled.
2861 static void cgroup_propagate_control(struct cgroup *cgrp)
2863 struct cgroup *dsct;
2864 struct cgroup_subsys_state *d_css;
2866 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2867 dsct->subtree_control &= cgroup_control(dsct);
2868 dsct->subtree_ss_mask =
2869 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2870 cgroup_ss_mask(dsct));
2875 * cgroup_restore_control - restore control masks of a subtree
2876 * @cgrp: root of the target subtree
2878 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2879 * prefixed fields for @cgrp's subtree including @cgrp itself.
2881 static void cgroup_restore_control(struct cgroup *cgrp)
2883 struct cgroup *dsct;
2884 struct cgroup_subsys_state *d_css;
2886 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2887 dsct->subtree_control = dsct->old_subtree_control;
2888 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2892 static bool css_visible(struct cgroup_subsys_state *css)
2894 struct cgroup_subsys *ss = css->ss;
2895 struct cgroup *cgrp = css->cgroup;
2897 if (cgroup_control(cgrp) & (1 << ss->id))
2898 return true;
2899 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2900 return false;
2901 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2905 * cgroup_apply_control_enable - enable or show csses according to control
2906 * @cgrp: root of the target subtree
2908 * Walk @cgrp's subtree and create new csses or make the existing ones
2909 * visible. A css is created invisible if it's being implicitly enabled
2910 * through dependency. An invisible css is made visible when the userland
2911 * explicitly enables it.
2913 * Returns 0 on success, -errno on failure. On failure, csses which have
2914 * been processed already aren't cleaned up. The caller is responsible for
2915 * cleaning up with cgroup_apply_control_disable().
2917 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2919 struct cgroup *dsct;
2920 struct cgroup_subsys_state *d_css;
2921 struct cgroup_subsys *ss;
2922 int ssid, ret;
2924 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2925 for_each_subsys(ss, ssid) {
2926 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2928 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2930 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2931 continue;
2933 if (!css) {
2934 css = css_create(dsct, ss);
2935 if (IS_ERR(css))
2936 return PTR_ERR(css);
2939 if (css_visible(css)) {
2940 ret = css_populate_dir(css);
2941 if (ret)
2942 return ret;
2947 return 0;
2951 * cgroup_apply_control_disable - kill or hide csses according to control
2952 * @cgrp: root of the target subtree
2954 * Walk @cgrp's subtree and kill and hide csses so that they match
2955 * cgroup_ss_mask() and cgroup_visible_mask().
2957 * A css is hidden when the userland requests it to be disabled while other
2958 * subsystems are still depending on it. The css must not actively control
2959 * resources and be in the vanilla state if it's made visible again later.
2960 * Controllers which may be depended upon should provide ->css_reset() for
2961 * this purpose.
2963 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2965 struct cgroup *dsct;
2966 struct cgroup_subsys_state *d_css;
2967 struct cgroup_subsys *ss;
2968 int ssid;
2970 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2971 for_each_subsys(ss, ssid) {
2972 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2974 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2976 if (!css)
2977 continue;
2979 if (css->parent &&
2980 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2981 kill_css(css);
2982 } else if (!css_visible(css)) {
2983 css_clear_dir(css);
2984 if (ss->css_reset)
2985 ss->css_reset(css);
2992 * cgroup_apply_control - apply control mask updates to the subtree
2993 * @cgrp: root of the target subtree
2995 * subsystems can be enabled and disabled in a subtree using the following
2996 * steps.
2998 * 1. Call cgroup_save_control() to stash the current state.
2999 * 2. Update ->subtree_control masks in the subtree as desired.
3000 * 3. Call cgroup_apply_control() to apply the changes.
3001 * 4. Optionally perform other related operations.
3002 * 5. Call cgroup_finalize_control() to finish up.
3004 * This function implements step 3 and propagates the mask changes
3005 * throughout @cgrp's subtree, updates csses accordingly and perform
3006 * process migrations.
3008 static int cgroup_apply_control(struct cgroup *cgrp)
3010 int ret;
3012 cgroup_propagate_control(cgrp);
3014 ret = cgroup_apply_control_enable(cgrp);
3015 if (ret)
3016 return ret;
3019 * At this point, cgroup_e_css() results reflect the new csses
3020 * making the following cgroup_update_dfl_csses() properly update
3021 * css associations of all tasks in the subtree.
3023 ret = cgroup_update_dfl_csses(cgrp);
3024 if (ret)
3025 return ret;
3027 return 0;
3031 * cgroup_finalize_control - finalize control mask update
3032 * @cgrp: root of the target subtree
3033 * @ret: the result of the update
3035 * Finalize control mask update. See cgroup_apply_control() for more info.
3037 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3039 if (ret) {
3040 cgroup_restore_control(cgrp);
3041 cgroup_propagate_control(cgrp);
3044 cgroup_apply_control_disable(cgrp);
3047 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3049 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3051 /* if nothing is getting enabled, nothing to worry about */
3052 if (!enable)
3053 return 0;
3055 /* can @cgrp host any resources? */
3056 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3057 return -EOPNOTSUPP;
3059 /* mixables don't care */
3060 if (cgroup_is_mixable(cgrp))
3061 return 0;
3063 if (domain_enable) {
3064 /* can't enable domain controllers inside a thread subtree */
3065 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3066 return -EOPNOTSUPP;
3067 } else {
3069 * Threaded controllers can handle internal competitions
3070 * and are always allowed inside a (prospective) thread
3071 * subtree.
3073 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3074 return 0;
3078 * Controllers can't be enabled for a cgroup with tasks to avoid
3079 * child cgroups competing against tasks.
3081 if (cgroup_has_tasks(cgrp))
3082 return -EBUSY;
3084 return 0;
3087 /* change the enabled child controllers for a cgroup in the default hierarchy */
3088 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3089 char *buf, size_t nbytes,
3090 loff_t off)
3092 u16 enable = 0, disable = 0;
3093 struct cgroup *cgrp, *child;
3094 struct cgroup_subsys *ss;
3095 char *tok;
3096 int ssid, ret;
3099 * Parse input - space separated list of subsystem names prefixed
3100 * with either + or -.
3102 buf = strstrip(buf);
3103 while ((tok = strsep(&buf, " "))) {
3104 if (tok[0] == '\0')
3105 continue;
3106 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3107 if (!cgroup_ssid_enabled(ssid) ||
3108 strcmp(tok + 1, ss->name))
3109 continue;
3111 if (*tok == '+') {
3112 enable |= 1 << ssid;
3113 disable &= ~(1 << ssid);
3114 } else if (*tok == '-') {
3115 disable |= 1 << ssid;
3116 enable &= ~(1 << ssid);
3117 } else {
3118 return -EINVAL;
3120 break;
3121 } while_each_subsys_mask();
3122 if (ssid == CGROUP_SUBSYS_COUNT)
3123 return -EINVAL;
3126 cgrp = cgroup_kn_lock_live(of->kn, true);
3127 if (!cgrp)
3128 return -ENODEV;
3130 for_each_subsys(ss, ssid) {
3131 if (enable & (1 << ssid)) {
3132 if (cgrp->subtree_control & (1 << ssid)) {
3133 enable &= ~(1 << ssid);
3134 continue;
3137 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3138 ret = -ENOENT;
3139 goto out_unlock;
3141 } else if (disable & (1 << ssid)) {
3142 if (!(cgrp->subtree_control & (1 << ssid))) {
3143 disable &= ~(1 << ssid);
3144 continue;
3147 /* a child has it enabled? */
3148 cgroup_for_each_live_child(child, cgrp) {
3149 if (child->subtree_control & (1 << ssid)) {
3150 ret = -EBUSY;
3151 goto out_unlock;
3157 if (!enable && !disable) {
3158 ret = 0;
3159 goto out_unlock;
3162 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3163 if (ret)
3164 goto out_unlock;
3166 /* save and update control masks and prepare csses */
3167 cgroup_save_control(cgrp);
3169 cgrp->subtree_control |= enable;
3170 cgrp->subtree_control &= ~disable;
3172 ret = cgroup_apply_control(cgrp);
3173 cgroup_finalize_control(cgrp, ret);
3174 if (ret)
3175 goto out_unlock;
3177 kernfs_activate(cgrp->kn);
3178 out_unlock:
3179 cgroup_kn_unlock(of->kn);
3180 return ret ?: nbytes;
3184 * cgroup_enable_threaded - make @cgrp threaded
3185 * @cgrp: the target cgroup
3187 * Called when "threaded" is written to the cgroup.type interface file and
3188 * tries to make @cgrp threaded and join the parent's resource domain.
3189 * This function is never called on the root cgroup as cgroup.type doesn't
3190 * exist on it.
3192 static int cgroup_enable_threaded(struct cgroup *cgrp)
3194 struct cgroup *parent = cgroup_parent(cgrp);
3195 struct cgroup *dom_cgrp = parent->dom_cgrp;
3196 int ret;
3198 lockdep_assert_held(&cgroup_mutex);
3200 /* noop if already threaded */
3201 if (cgroup_is_threaded(cgrp))
3202 return 0;
3205 * If @cgroup is populated or has domain controllers enabled, it
3206 * can't be switched. While the below cgroup_can_be_thread_root()
3207 * test can catch the same conditions, that's only when @parent is
3208 * not mixable, so let's check it explicitly.
3210 if (cgroup_is_populated(cgrp) ||
3211 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3212 return -EOPNOTSUPP;
3214 /* we're joining the parent's domain, ensure its validity */
3215 if (!cgroup_is_valid_domain(dom_cgrp) ||
3216 !cgroup_can_be_thread_root(dom_cgrp))
3217 return -EOPNOTSUPP;
3220 * The following shouldn't cause actual migrations and should
3221 * always succeed.
3223 cgroup_save_control(cgrp);
3225 cgrp->dom_cgrp = dom_cgrp;
3226 ret = cgroup_apply_control(cgrp);
3227 if (!ret)
3228 parent->nr_threaded_children++;
3229 else
3230 cgrp->dom_cgrp = cgrp;
3232 cgroup_finalize_control(cgrp, ret);
3233 return ret;
3236 static int cgroup_type_show(struct seq_file *seq, void *v)
3238 struct cgroup *cgrp = seq_css(seq)->cgroup;
3240 if (cgroup_is_threaded(cgrp))
3241 seq_puts(seq, "threaded\n");
3242 else if (!cgroup_is_valid_domain(cgrp))
3243 seq_puts(seq, "domain invalid\n");
3244 else if (cgroup_is_thread_root(cgrp))
3245 seq_puts(seq, "domain threaded\n");
3246 else
3247 seq_puts(seq, "domain\n");
3249 return 0;
3252 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3253 size_t nbytes, loff_t off)
3255 struct cgroup *cgrp;
3256 int ret;
3258 /* only switching to threaded mode is supported */
3259 if (strcmp(strstrip(buf), "threaded"))
3260 return -EINVAL;
3262 cgrp = cgroup_kn_lock_live(of->kn, false);
3263 if (!cgrp)
3264 return -ENOENT;
3266 /* threaded can only be enabled */
3267 ret = cgroup_enable_threaded(cgrp);
3269 cgroup_kn_unlock(of->kn);
3270 return ret ?: nbytes;
3273 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3275 struct cgroup *cgrp = seq_css(seq)->cgroup;
3276 int descendants = READ_ONCE(cgrp->max_descendants);
3278 if (descendants == INT_MAX)
3279 seq_puts(seq, "max\n");
3280 else
3281 seq_printf(seq, "%d\n", descendants);
3283 return 0;
3286 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3287 char *buf, size_t nbytes, loff_t off)
3289 struct cgroup *cgrp;
3290 int descendants;
3291 ssize_t ret;
3293 buf = strstrip(buf);
3294 if (!strcmp(buf, "max")) {
3295 descendants = INT_MAX;
3296 } else {
3297 ret = kstrtoint(buf, 0, &descendants);
3298 if (ret)
3299 return ret;
3302 if (descendants < 0)
3303 return -ERANGE;
3305 cgrp = cgroup_kn_lock_live(of->kn, false);
3306 if (!cgrp)
3307 return -ENOENT;
3309 cgrp->max_descendants = descendants;
3311 cgroup_kn_unlock(of->kn);
3313 return nbytes;
3316 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3318 struct cgroup *cgrp = seq_css(seq)->cgroup;
3319 int depth = READ_ONCE(cgrp->max_depth);
3321 if (depth == INT_MAX)
3322 seq_puts(seq, "max\n");
3323 else
3324 seq_printf(seq, "%d\n", depth);
3326 return 0;
3329 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3330 char *buf, size_t nbytes, loff_t off)
3332 struct cgroup *cgrp;
3333 ssize_t ret;
3334 int depth;
3336 buf = strstrip(buf);
3337 if (!strcmp(buf, "max")) {
3338 depth = INT_MAX;
3339 } else {
3340 ret = kstrtoint(buf, 0, &depth);
3341 if (ret)
3342 return ret;
3345 if (depth < 0)
3346 return -ERANGE;
3348 cgrp = cgroup_kn_lock_live(of->kn, false);
3349 if (!cgrp)
3350 return -ENOENT;
3352 cgrp->max_depth = depth;
3354 cgroup_kn_unlock(of->kn);
3356 return nbytes;
3359 static int cgroup_events_show(struct seq_file *seq, void *v)
3361 seq_printf(seq, "populated %d\n",
3362 cgroup_is_populated(seq_css(seq)->cgroup));
3363 return 0;
3366 static int cgroup_stat_show(struct seq_file *seq, void *v)
3368 struct cgroup *cgroup = seq_css(seq)->cgroup;
3370 seq_printf(seq, "nr_descendants %d\n",
3371 cgroup->nr_descendants);
3372 seq_printf(seq, "nr_dying_descendants %d\n",
3373 cgroup->nr_dying_descendants);
3375 return 0;
3378 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3379 struct cgroup *cgrp, int ssid)
3381 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3382 struct cgroup_subsys_state *css;
3383 int ret;
3385 if (!ss->css_extra_stat_show)
3386 return 0;
3388 css = cgroup_tryget_css(cgrp, ss);
3389 if (!css)
3390 return 0;
3392 ret = ss->css_extra_stat_show(seq, css);
3393 css_put(css);
3394 return ret;
3397 static int cpu_stat_show(struct seq_file *seq, void *v)
3399 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3400 int ret = 0;
3402 cgroup_base_stat_cputime_show(seq);
3403 #ifdef CONFIG_CGROUP_SCHED
3404 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3405 #endif
3406 return ret;
3409 static int cgroup_file_open(struct kernfs_open_file *of)
3411 struct cftype *cft = of->kn->priv;
3413 if (cft->open)
3414 return cft->open(of);
3415 return 0;
3418 static void cgroup_file_release(struct kernfs_open_file *of)
3420 struct cftype *cft = of->kn->priv;
3422 if (cft->release)
3423 cft->release(of);
3426 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3427 size_t nbytes, loff_t off)
3429 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3430 struct cgroup *cgrp = of->kn->parent->priv;
3431 struct cftype *cft = of->kn->priv;
3432 struct cgroup_subsys_state *css;
3433 int ret;
3436 * If namespaces are delegation boundaries, disallow writes to
3437 * files in an non-init namespace root from inside the namespace
3438 * except for the files explicitly marked delegatable -
3439 * cgroup.procs and cgroup.subtree_control.
3441 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3442 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3443 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3444 return -EPERM;
3446 if (cft->write)
3447 return cft->write(of, buf, nbytes, off);
3450 * kernfs guarantees that a file isn't deleted with operations in
3451 * flight, which means that the matching css is and stays alive and
3452 * doesn't need to be pinned. The RCU locking is not necessary
3453 * either. It's just for the convenience of using cgroup_css().
3455 rcu_read_lock();
3456 css = cgroup_css(cgrp, cft->ss);
3457 rcu_read_unlock();
3459 if (cft->write_u64) {
3460 unsigned long long v;
3461 ret = kstrtoull(buf, 0, &v);
3462 if (!ret)
3463 ret = cft->write_u64(css, cft, v);
3464 } else if (cft->write_s64) {
3465 long long v;
3466 ret = kstrtoll(buf, 0, &v);
3467 if (!ret)
3468 ret = cft->write_s64(css, cft, v);
3469 } else {
3470 ret = -EINVAL;
3473 return ret ?: nbytes;
3476 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3478 return seq_cft(seq)->seq_start(seq, ppos);
3481 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3483 return seq_cft(seq)->seq_next(seq, v, ppos);
3486 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3488 if (seq_cft(seq)->seq_stop)
3489 seq_cft(seq)->seq_stop(seq, v);
3492 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3494 struct cftype *cft = seq_cft(m);
3495 struct cgroup_subsys_state *css = seq_css(m);
3497 if (cft->seq_show)
3498 return cft->seq_show(m, arg);
3500 if (cft->read_u64)
3501 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3502 else if (cft->read_s64)
3503 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3504 else
3505 return -EINVAL;
3506 return 0;
3509 static struct kernfs_ops cgroup_kf_single_ops = {
3510 .atomic_write_len = PAGE_SIZE,
3511 .open = cgroup_file_open,
3512 .release = cgroup_file_release,
3513 .write = cgroup_file_write,
3514 .seq_show = cgroup_seqfile_show,
3517 static struct kernfs_ops cgroup_kf_ops = {
3518 .atomic_write_len = PAGE_SIZE,
3519 .open = cgroup_file_open,
3520 .release = cgroup_file_release,
3521 .write = cgroup_file_write,
3522 .seq_start = cgroup_seqfile_start,
3523 .seq_next = cgroup_seqfile_next,
3524 .seq_stop = cgroup_seqfile_stop,
3525 .seq_show = cgroup_seqfile_show,
3528 /* set uid and gid of cgroup dirs and files to that of the creator */
3529 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3531 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3532 .ia_uid = current_fsuid(),
3533 .ia_gid = current_fsgid(), };
3535 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3536 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3537 return 0;
3539 return kernfs_setattr(kn, &iattr);
3542 static void cgroup_file_notify_timer(struct timer_list *timer)
3544 cgroup_file_notify(container_of(timer, struct cgroup_file,
3545 notify_timer));
3548 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3549 struct cftype *cft)
3551 char name[CGROUP_FILE_NAME_MAX];
3552 struct kernfs_node *kn;
3553 struct lock_class_key *key = NULL;
3554 int ret;
3556 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3557 key = &cft->lockdep_key;
3558 #endif
3559 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3560 cgroup_file_mode(cft),
3561 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3562 0, cft->kf_ops, cft,
3563 NULL, key);
3564 if (IS_ERR(kn))
3565 return PTR_ERR(kn);
3567 ret = cgroup_kn_set_ugid(kn);
3568 if (ret) {
3569 kernfs_remove(kn);
3570 return ret;
3573 if (cft->file_offset) {
3574 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3576 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3578 spin_lock_irq(&cgroup_file_kn_lock);
3579 cfile->kn = kn;
3580 spin_unlock_irq(&cgroup_file_kn_lock);
3583 return 0;
3587 * cgroup_addrm_files - add or remove files to a cgroup directory
3588 * @css: the target css
3589 * @cgrp: the target cgroup (usually css->cgroup)
3590 * @cfts: array of cftypes to be added
3591 * @is_add: whether to add or remove
3593 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3594 * For removals, this function never fails.
3596 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3597 struct cgroup *cgrp, struct cftype cfts[],
3598 bool is_add)
3600 struct cftype *cft, *cft_end = NULL;
3601 int ret = 0;
3603 lockdep_assert_held(&cgroup_mutex);
3605 restart:
3606 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3607 /* does cft->flags tell us to skip this file on @cgrp? */
3608 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3609 continue;
3610 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3611 continue;
3612 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3613 continue;
3614 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3615 continue;
3617 if (is_add) {
3618 ret = cgroup_add_file(css, cgrp, cft);
3619 if (ret) {
3620 pr_warn("%s: failed to add %s, err=%d\n",
3621 __func__, cft->name, ret);
3622 cft_end = cft;
3623 is_add = false;
3624 goto restart;
3626 } else {
3627 cgroup_rm_file(cgrp, cft);
3630 return ret;
3633 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3635 struct cgroup_subsys *ss = cfts[0].ss;
3636 struct cgroup *root = &ss->root->cgrp;
3637 struct cgroup_subsys_state *css;
3638 int ret = 0;
3640 lockdep_assert_held(&cgroup_mutex);
3642 /* add/rm files for all cgroups created before */
3643 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3644 struct cgroup *cgrp = css->cgroup;
3646 if (!(css->flags & CSS_VISIBLE))
3647 continue;
3649 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3650 if (ret)
3651 break;
3654 if (is_add && !ret)
3655 kernfs_activate(root->kn);
3656 return ret;
3659 static void cgroup_exit_cftypes(struct cftype *cfts)
3661 struct cftype *cft;
3663 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3664 /* free copy for custom atomic_write_len, see init_cftypes() */
3665 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3666 kfree(cft->kf_ops);
3667 cft->kf_ops = NULL;
3668 cft->ss = NULL;
3670 /* revert flags set by cgroup core while adding @cfts */
3671 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3675 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3677 struct cftype *cft;
3679 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3680 struct kernfs_ops *kf_ops;
3682 WARN_ON(cft->ss || cft->kf_ops);
3684 if (cft->seq_start)
3685 kf_ops = &cgroup_kf_ops;
3686 else
3687 kf_ops = &cgroup_kf_single_ops;
3690 * Ugh... if @cft wants a custom max_write_len, we need to
3691 * make a copy of kf_ops to set its atomic_write_len.
3693 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3694 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3695 if (!kf_ops) {
3696 cgroup_exit_cftypes(cfts);
3697 return -ENOMEM;
3699 kf_ops->atomic_write_len = cft->max_write_len;
3702 cft->kf_ops = kf_ops;
3703 cft->ss = ss;
3706 return 0;
3709 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3711 lockdep_assert_held(&cgroup_mutex);
3713 if (!cfts || !cfts[0].ss)
3714 return -ENOENT;
3716 list_del(&cfts->node);
3717 cgroup_apply_cftypes(cfts, false);
3718 cgroup_exit_cftypes(cfts);
3719 return 0;
3723 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3724 * @cfts: zero-length name terminated array of cftypes
3726 * Unregister @cfts. Files described by @cfts are removed from all
3727 * existing cgroups and all future cgroups won't have them either. This
3728 * function can be called anytime whether @cfts' subsys is attached or not.
3730 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3731 * registered.
3733 int cgroup_rm_cftypes(struct cftype *cfts)
3735 int ret;
3737 mutex_lock(&cgroup_mutex);
3738 ret = cgroup_rm_cftypes_locked(cfts);
3739 mutex_unlock(&cgroup_mutex);
3740 return ret;
3744 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3745 * @ss: target cgroup subsystem
3746 * @cfts: zero-length name terminated array of cftypes
3748 * Register @cfts to @ss. Files described by @cfts are created for all
3749 * existing cgroups to which @ss is attached and all future cgroups will
3750 * have them too. This function can be called anytime whether @ss is
3751 * attached or not.
3753 * Returns 0 on successful registration, -errno on failure. Note that this
3754 * function currently returns 0 as long as @cfts registration is successful
3755 * even if some file creation attempts on existing cgroups fail.
3757 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3759 int ret;
3761 if (!cgroup_ssid_enabled(ss->id))
3762 return 0;
3764 if (!cfts || cfts[0].name[0] == '\0')
3765 return 0;
3767 ret = cgroup_init_cftypes(ss, cfts);
3768 if (ret)
3769 return ret;
3771 mutex_lock(&cgroup_mutex);
3773 list_add_tail(&cfts->node, &ss->cfts);
3774 ret = cgroup_apply_cftypes(cfts, true);
3775 if (ret)
3776 cgroup_rm_cftypes_locked(cfts);
3778 mutex_unlock(&cgroup_mutex);
3779 return ret;
3783 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3784 * @ss: target cgroup subsystem
3785 * @cfts: zero-length name terminated array of cftypes
3787 * Similar to cgroup_add_cftypes() but the added files are only used for
3788 * the default hierarchy.
3790 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3792 struct cftype *cft;
3794 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3795 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3796 return cgroup_add_cftypes(ss, cfts);
3800 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3801 * @ss: target cgroup subsystem
3802 * @cfts: zero-length name terminated array of cftypes
3804 * Similar to cgroup_add_cftypes() but the added files are only used for
3805 * the legacy hierarchies.
3807 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3809 struct cftype *cft;
3811 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3812 cft->flags |= __CFTYPE_NOT_ON_DFL;
3813 return cgroup_add_cftypes(ss, cfts);
3817 * cgroup_file_notify - generate a file modified event for a cgroup_file
3818 * @cfile: target cgroup_file
3820 * @cfile must have been obtained by setting cftype->file_offset.
3822 void cgroup_file_notify(struct cgroup_file *cfile)
3824 unsigned long flags;
3826 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3827 if (cfile->kn) {
3828 unsigned long last = cfile->notified_at;
3829 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3831 if (time_in_range(jiffies, last, next)) {
3832 timer_reduce(&cfile->notify_timer, next);
3833 } else {
3834 kernfs_notify(cfile->kn);
3835 cfile->notified_at = jiffies;
3838 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3842 * css_next_child - find the next child of a given css
3843 * @pos: the current position (%NULL to initiate traversal)
3844 * @parent: css whose children to walk
3846 * This function returns the next child of @parent and should be called
3847 * under either cgroup_mutex or RCU read lock. The only requirement is
3848 * that @parent and @pos are accessible. The next sibling is guaranteed to
3849 * be returned regardless of their states.
3851 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3852 * css which finished ->css_online() is guaranteed to be visible in the
3853 * future iterations and will stay visible until the last reference is put.
3854 * A css which hasn't finished ->css_online() or already finished
3855 * ->css_offline() may show up during traversal. It's each subsystem's
3856 * responsibility to synchronize against on/offlining.
3858 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3859 struct cgroup_subsys_state *parent)
3861 struct cgroup_subsys_state *next;
3863 cgroup_assert_mutex_or_rcu_locked();
3866 * @pos could already have been unlinked from the sibling list.
3867 * Once a cgroup is removed, its ->sibling.next is no longer
3868 * updated when its next sibling changes. CSS_RELEASED is set when
3869 * @pos is taken off list, at which time its next pointer is valid,
3870 * and, as releases are serialized, the one pointed to by the next
3871 * pointer is guaranteed to not have started release yet. This
3872 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3873 * critical section, the one pointed to by its next pointer is
3874 * guaranteed to not have finished its RCU grace period even if we
3875 * have dropped rcu_read_lock() inbetween iterations.
3877 * If @pos has CSS_RELEASED set, its next pointer can't be
3878 * dereferenced; however, as each css is given a monotonically
3879 * increasing unique serial number and always appended to the
3880 * sibling list, the next one can be found by walking the parent's
3881 * children until the first css with higher serial number than
3882 * @pos's. While this path can be slower, it happens iff iteration
3883 * races against release and the race window is very small.
3885 if (!pos) {
3886 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3887 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3888 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3889 } else {
3890 list_for_each_entry_rcu(next, &parent->children, sibling)
3891 if (next->serial_nr > pos->serial_nr)
3892 break;
3896 * @next, if not pointing to the head, can be dereferenced and is
3897 * the next sibling.
3899 if (&next->sibling != &parent->children)
3900 return next;
3901 return NULL;
3905 * css_next_descendant_pre - find the next descendant for pre-order walk
3906 * @pos: the current position (%NULL to initiate traversal)
3907 * @root: css whose descendants to walk
3909 * To be used by css_for_each_descendant_pre(). Find the next descendant
3910 * to visit for pre-order traversal of @root's descendants. @root is
3911 * included in the iteration and the first node to be visited.
3913 * While this function requires cgroup_mutex or RCU read locking, it
3914 * doesn't require the whole traversal to be contained in a single critical
3915 * section. This function will return the correct next descendant as long
3916 * as both @pos and @root are accessible and @pos is a descendant of @root.
3918 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3919 * css which finished ->css_online() is guaranteed to be visible in the
3920 * future iterations and will stay visible until the last reference is put.
3921 * A css which hasn't finished ->css_online() or already finished
3922 * ->css_offline() may show up during traversal. It's each subsystem's
3923 * responsibility to synchronize against on/offlining.
3925 struct cgroup_subsys_state *
3926 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3927 struct cgroup_subsys_state *root)
3929 struct cgroup_subsys_state *next;
3931 cgroup_assert_mutex_or_rcu_locked();
3933 /* if first iteration, visit @root */
3934 if (!pos)
3935 return root;
3937 /* visit the first child if exists */
3938 next = css_next_child(NULL, pos);
3939 if (next)
3940 return next;
3942 /* no child, visit my or the closest ancestor's next sibling */
3943 while (pos != root) {
3944 next = css_next_child(pos, pos->parent);
3945 if (next)
3946 return next;
3947 pos = pos->parent;
3950 return NULL;
3954 * css_rightmost_descendant - return the rightmost descendant of a css
3955 * @pos: css of interest
3957 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3958 * is returned. This can be used during pre-order traversal to skip
3959 * subtree of @pos.
3961 * While this function requires cgroup_mutex or RCU read locking, it
3962 * doesn't require the whole traversal to be contained in a single critical
3963 * section. This function will return the correct rightmost descendant as
3964 * long as @pos is accessible.
3966 struct cgroup_subsys_state *
3967 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3969 struct cgroup_subsys_state *last, *tmp;
3971 cgroup_assert_mutex_or_rcu_locked();
3973 do {
3974 last = pos;
3975 /* ->prev isn't RCU safe, walk ->next till the end */
3976 pos = NULL;
3977 css_for_each_child(tmp, last)
3978 pos = tmp;
3979 } while (pos);
3981 return last;
3984 static struct cgroup_subsys_state *
3985 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3987 struct cgroup_subsys_state *last;
3989 do {
3990 last = pos;
3991 pos = css_next_child(NULL, pos);
3992 } while (pos);
3994 return last;
3998 * css_next_descendant_post - find the next descendant for post-order walk
3999 * @pos: the current position (%NULL to initiate traversal)
4000 * @root: css whose descendants to walk
4002 * To be used by css_for_each_descendant_post(). Find the next descendant
4003 * to visit for post-order traversal of @root's descendants. @root is
4004 * included in the iteration and the last node to be visited.
4006 * While this function requires cgroup_mutex or RCU read locking, it
4007 * doesn't require the whole traversal to be contained in a single critical
4008 * section. This function will return the correct next descendant as long
4009 * as both @pos and @cgroup are accessible and @pos is a descendant of
4010 * @cgroup.
4012 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4013 * css which finished ->css_online() is guaranteed to be visible in the
4014 * future iterations and will stay visible until the last reference is put.
4015 * A css which hasn't finished ->css_online() or already finished
4016 * ->css_offline() may show up during traversal. It's each subsystem's
4017 * responsibility to synchronize against on/offlining.
4019 struct cgroup_subsys_state *
4020 css_next_descendant_post(struct cgroup_subsys_state *pos,
4021 struct cgroup_subsys_state *root)
4023 struct cgroup_subsys_state *next;
4025 cgroup_assert_mutex_or_rcu_locked();
4027 /* if first iteration, visit leftmost descendant which may be @root */
4028 if (!pos)
4029 return css_leftmost_descendant(root);
4031 /* if we visited @root, we're done */
4032 if (pos == root)
4033 return NULL;
4035 /* if there's an unvisited sibling, visit its leftmost descendant */
4036 next = css_next_child(pos, pos->parent);
4037 if (next)
4038 return css_leftmost_descendant(next);
4040 /* no sibling left, visit parent */
4041 return pos->parent;
4045 * css_has_online_children - does a css have online children
4046 * @css: the target css
4048 * Returns %true if @css has any online children; otherwise, %false. This
4049 * function can be called from any context but the caller is responsible
4050 * for synchronizing against on/offlining as necessary.
4052 bool css_has_online_children(struct cgroup_subsys_state *css)
4054 struct cgroup_subsys_state *child;
4055 bool ret = false;
4057 rcu_read_lock();
4058 css_for_each_child(child, css) {
4059 if (child->flags & CSS_ONLINE) {
4060 ret = true;
4061 break;
4064 rcu_read_unlock();
4065 return ret;
4068 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4070 struct list_head *l;
4071 struct cgrp_cset_link *link;
4072 struct css_set *cset;
4074 lockdep_assert_held(&css_set_lock);
4076 /* find the next threaded cset */
4077 if (it->tcset_pos) {
4078 l = it->tcset_pos->next;
4080 if (l != it->tcset_head) {
4081 it->tcset_pos = l;
4082 return container_of(l, struct css_set,
4083 threaded_csets_node);
4086 it->tcset_pos = NULL;
4089 /* find the next cset */
4090 l = it->cset_pos;
4091 l = l->next;
4092 if (l == it->cset_head) {
4093 it->cset_pos = NULL;
4094 return NULL;
4097 if (it->ss) {
4098 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4099 } else {
4100 link = list_entry(l, struct cgrp_cset_link, cset_link);
4101 cset = link->cset;
4104 it->cset_pos = l;
4106 /* initialize threaded css_set walking */
4107 if (it->flags & CSS_TASK_ITER_THREADED) {
4108 if (it->cur_dcset)
4109 put_css_set_locked(it->cur_dcset);
4110 it->cur_dcset = cset;
4111 get_css_set(cset);
4113 it->tcset_head = &cset->threaded_csets;
4114 it->tcset_pos = &cset->threaded_csets;
4117 return cset;
4121 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4122 * @it: the iterator to advance
4124 * Advance @it to the next css_set to walk.
4126 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4128 struct css_set *cset;
4130 lockdep_assert_held(&css_set_lock);
4132 /* Advance to the next non-empty css_set */
4133 do {
4134 cset = css_task_iter_next_css_set(it);
4135 if (!cset) {
4136 it->task_pos = NULL;
4137 return;
4139 } while (!css_set_populated(cset));
4141 if (!list_empty(&cset->tasks))
4142 it->task_pos = cset->tasks.next;
4143 else
4144 it->task_pos = cset->mg_tasks.next;
4146 it->tasks_head = &cset->tasks;
4147 it->mg_tasks_head = &cset->mg_tasks;
4150 * We don't keep css_sets locked across iteration steps and thus
4151 * need to take steps to ensure that iteration can be resumed after
4152 * the lock is re-acquired. Iteration is performed at two levels -
4153 * css_sets and tasks in them.
4155 * Once created, a css_set never leaves its cgroup lists, so a
4156 * pinned css_set is guaranteed to stay put and we can resume
4157 * iteration afterwards.
4159 * Tasks may leave @cset across iteration steps. This is resolved
4160 * by registering each iterator with the css_set currently being
4161 * walked and making css_set_move_task() advance iterators whose
4162 * next task is leaving.
4164 if (it->cur_cset) {
4165 list_del(&it->iters_node);
4166 put_css_set_locked(it->cur_cset);
4168 get_css_set(cset);
4169 it->cur_cset = cset;
4170 list_add(&it->iters_node, &cset->task_iters);
4173 static void css_task_iter_advance(struct css_task_iter *it)
4175 struct list_head *next;
4177 lockdep_assert_held(&css_set_lock);
4178 repeat:
4180 * Advance iterator to find next entry. cset->tasks is consumed
4181 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4182 * next cset.
4184 next = it->task_pos->next;
4186 if (next == it->tasks_head)
4187 next = it->mg_tasks_head->next;
4189 if (next == it->mg_tasks_head)
4190 css_task_iter_advance_css_set(it);
4191 else
4192 it->task_pos = next;
4194 /* if PROCS, skip over tasks which aren't group leaders */
4195 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4196 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4197 cg_list)))
4198 goto repeat;
4202 * css_task_iter_start - initiate task iteration
4203 * @css: the css to walk tasks of
4204 * @flags: CSS_TASK_ITER_* flags
4205 * @it: the task iterator to use
4207 * Initiate iteration through the tasks of @css. The caller can call
4208 * css_task_iter_next() to walk through the tasks until the function
4209 * returns NULL. On completion of iteration, css_task_iter_end() must be
4210 * called.
4212 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4213 struct css_task_iter *it)
4215 /* no one should try to iterate before mounting cgroups */
4216 WARN_ON_ONCE(!use_task_css_set_links);
4218 memset(it, 0, sizeof(*it));
4220 spin_lock_irq(&css_set_lock);
4222 it->ss = css->ss;
4223 it->flags = flags;
4225 if (it->ss)
4226 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4227 else
4228 it->cset_pos = &css->cgroup->cset_links;
4230 it->cset_head = it->cset_pos;
4232 css_task_iter_advance_css_set(it);
4234 spin_unlock_irq(&css_set_lock);
4238 * css_task_iter_next - return the next task for the iterator
4239 * @it: the task iterator being iterated
4241 * The "next" function for task iteration. @it should have been
4242 * initialized via css_task_iter_start(). Returns NULL when the iteration
4243 * reaches the end.
4245 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4247 if (it->cur_task) {
4248 put_task_struct(it->cur_task);
4249 it->cur_task = NULL;
4252 spin_lock_irq(&css_set_lock);
4254 if (it->task_pos) {
4255 it->cur_task = list_entry(it->task_pos, struct task_struct,
4256 cg_list);
4257 get_task_struct(it->cur_task);
4258 css_task_iter_advance(it);
4261 spin_unlock_irq(&css_set_lock);
4263 return it->cur_task;
4267 * css_task_iter_end - finish task iteration
4268 * @it: the task iterator to finish
4270 * Finish task iteration started by css_task_iter_start().
4272 void css_task_iter_end(struct css_task_iter *it)
4274 if (it->cur_cset) {
4275 spin_lock_irq(&css_set_lock);
4276 list_del(&it->iters_node);
4277 put_css_set_locked(it->cur_cset);
4278 spin_unlock_irq(&css_set_lock);
4281 if (it->cur_dcset)
4282 put_css_set(it->cur_dcset);
4284 if (it->cur_task)
4285 put_task_struct(it->cur_task);
4288 static void cgroup_procs_release(struct kernfs_open_file *of)
4290 if (of->priv) {
4291 css_task_iter_end(of->priv);
4292 kfree(of->priv);
4296 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4298 struct kernfs_open_file *of = s->private;
4299 struct css_task_iter *it = of->priv;
4301 return css_task_iter_next(it);
4304 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4305 unsigned int iter_flags)
4307 struct kernfs_open_file *of = s->private;
4308 struct cgroup *cgrp = seq_css(s)->cgroup;
4309 struct css_task_iter *it = of->priv;
4312 * When a seq_file is seeked, it's always traversed sequentially
4313 * from position 0, so we can simply keep iterating on !0 *pos.
4315 if (!it) {
4316 if (WARN_ON_ONCE((*pos)++))
4317 return ERR_PTR(-EINVAL);
4319 it = kzalloc(sizeof(*it), GFP_KERNEL);
4320 if (!it)
4321 return ERR_PTR(-ENOMEM);
4322 of->priv = it;
4323 css_task_iter_start(&cgrp->self, iter_flags, it);
4324 } else if (!(*pos)++) {
4325 css_task_iter_end(it);
4326 css_task_iter_start(&cgrp->self, iter_flags, it);
4329 return cgroup_procs_next(s, NULL, NULL);
4332 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4334 struct cgroup *cgrp = seq_css(s)->cgroup;
4337 * All processes of a threaded subtree belong to the domain cgroup
4338 * of the subtree. Only threads can be distributed across the
4339 * subtree. Reject reads on cgroup.procs in the subtree proper.
4340 * They're always empty anyway.
4342 if (cgroup_is_threaded(cgrp))
4343 return ERR_PTR(-EOPNOTSUPP);
4345 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4346 CSS_TASK_ITER_THREADED);
4349 static int cgroup_procs_show(struct seq_file *s, void *v)
4351 seq_printf(s, "%d\n", task_pid_vnr(v));
4352 return 0;
4355 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4356 struct cgroup *dst_cgrp,
4357 struct super_block *sb)
4359 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4360 struct cgroup *com_cgrp = src_cgrp;
4361 struct inode *inode;
4362 int ret;
4364 lockdep_assert_held(&cgroup_mutex);
4366 /* find the common ancestor */
4367 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4368 com_cgrp = cgroup_parent(com_cgrp);
4370 /* %current should be authorized to migrate to the common ancestor */
4371 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4372 if (!inode)
4373 return -ENOMEM;
4375 ret = inode_permission(inode, MAY_WRITE);
4376 iput(inode);
4377 if (ret)
4378 return ret;
4381 * If namespaces are delegation boundaries, %current must be able
4382 * to see both source and destination cgroups from its namespace.
4384 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4385 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4386 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4387 return -ENOENT;
4389 return 0;
4392 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4393 char *buf, size_t nbytes, loff_t off)
4395 struct cgroup *src_cgrp, *dst_cgrp;
4396 struct task_struct *task;
4397 ssize_t ret;
4399 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4400 if (!dst_cgrp)
4401 return -ENODEV;
4403 task = cgroup_procs_write_start(buf, true);
4404 ret = PTR_ERR_OR_ZERO(task);
4405 if (ret)
4406 goto out_unlock;
4408 /* find the source cgroup */
4409 spin_lock_irq(&css_set_lock);
4410 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4411 spin_unlock_irq(&css_set_lock);
4413 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4414 of->file->f_path.dentry->d_sb);
4415 if (ret)
4416 goto out_finish;
4418 ret = cgroup_attach_task(dst_cgrp, task, true);
4420 out_finish:
4421 cgroup_procs_write_finish(task);
4422 out_unlock:
4423 cgroup_kn_unlock(of->kn);
4425 return ret ?: nbytes;
4428 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4430 return __cgroup_procs_start(s, pos, 0);
4433 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4434 char *buf, size_t nbytes, loff_t off)
4436 struct cgroup *src_cgrp, *dst_cgrp;
4437 struct task_struct *task;
4438 ssize_t ret;
4440 buf = strstrip(buf);
4442 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4443 if (!dst_cgrp)
4444 return -ENODEV;
4446 task = cgroup_procs_write_start(buf, false);
4447 ret = PTR_ERR_OR_ZERO(task);
4448 if (ret)
4449 goto out_unlock;
4451 /* find the source cgroup */
4452 spin_lock_irq(&css_set_lock);
4453 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4454 spin_unlock_irq(&css_set_lock);
4456 /* thread migrations follow the cgroup.procs delegation rule */
4457 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4458 of->file->f_path.dentry->d_sb);
4459 if (ret)
4460 goto out_finish;
4462 /* and must be contained in the same domain */
4463 ret = -EOPNOTSUPP;
4464 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4465 goto out_finish;
4467 ret = cgroup_attach_task(dst_cgrp, task, false);
4469 out_finish:
4470 cgroup_procs_write_finish(task);
4471 out_unlock:
4472 cgroup_kn_unlock(of->kn);
4474 return ret ?: nbytes;
4477 /* cgroup core interface files for the default hierarchy */
4478 static struct cftype cgroup_base_files[] = {
4480 .name = "cgroup.type",
4481 .flags = CFTYPE_NOT_ON_ROOT,
4482 .seq_show = cgroup_type_show,
4483 .write = cgroup_type_write,
4486 .name = "cgroup.procs",
4487 .flags = CFTYPE_NS_DELEGATABLE,
4488 .file_offset = offsetof(struct cgroup, procs_file),
4489 .release = cgroup_procs_release,
4490 .seq_start = cgroup_procs_start,
4491 .seq_next = cgroup_procs_next,
4492 .seq_show = cgroup_procs_show,
4493 .write = cgroup_procs_write,
4496 .name = "cgroup.threads",
4497 .flags = CFTYPE_NS_DELEGATABLE,
4498 .release = cgroup_procs_release,
4499 .seq_start = cgroup_threads_start,
4500 .seq_next = cgroup_procs_next,
4501 .seq_show = cgroup_procs_show,
4502 .write = cgroup_threads_write,
4505 .name = "cgroup.controllers",
4506 .seq_show = cgroup_controllers_show,
4509 .name = "cgroup.subtree_control",
4510 .flags = CFTYPE_NS_DELEGATABLE,
4511 .seq_show = cgroup_subtree_control_show,
4512 .write = cgroup_subtree_control_write,
4515 .name = "cgroup.events",
4516 .flags = CFTYPE_NOT_ON_ROOT,
4517 .file_offset = offsetof(struct cgroup, events_file),
4518 .seq_show = cgroup_events_show,
4521 .name = "cgroup.max.descendants",
4522 .seq_show = cgroup_max_descendants_show,
4523 .write = cgroup_max_descendants_write,
4526 .name = "cgroup.max.depth",
4527 .seq_show = cgroup_max_depth_show,
4528 .write = cgroup_max_depth_write,
4531 .name = "cgroup.stat",
4532 .seq_show = cgroup_stat_show,
4535 .name = "cpu.stat",
4536 .flags = CFTYPE_NOT_ON_ROOT,
4537 .seq_show = cpu_stat_show,
4539 { } /* terminate */
4543 * css destruction is four-stage process.
4545 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4546 * Implemented in kill_css().
4548 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4549 * and thus css_tryget_online() is guaranteed to fail, the css can be
4550 * offlined by invoking offline_css(). After offlining, the base ref is
4551 * put. Implemented in css_killed_work_fn().
4553 * 3. When the percpu_ref reaches zero, the only possible remaining
4554 * accessors are inside RCU read sections. css_release() schedules the
4555 * RCU callback.
4557 * 4. After the grace period, the css can be freed. Implemented in
4558 * css_free_work_fn().
4560 * It is actually hairier because both step 2 and 4 require process context
4561 * and thus involve punting to css->destroy_work adding two additional
4562 * steps to the already complex sequence.
4564 static void css_free_rwork_fn(struct work_struct *work)
4566 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4567 struct cgroup_subsys_state, destroy_rwork);
4568 struct cgroup_subsys *ss = css->ss;
4569 struct cgroup *cgrp = css->cgroup;
4571 percpu_ref_exit(&css->refcnt);
4573 if (ss) {
4574 /* css free path */
4575 struct cgroup_subsys_state *parent = css->parent;
4576 int id = css->id;
4578 ss->css_free(css);
4579 cgroup_idr_remove(&ss->css_idr, id);
4580 cgroup_put(cgrp);
4582 if (parent)
4583 css_put(parent);
4584 } else {
4585 /* cgroup free path */
4586 atomic_dec(&cgrp->root->nr_cgrps);
4587 cgroup1_pidlist_destroy_all(cgrp);
4588 cancel_work_sync(&cgrp->release_agent_work);
4590 if (cgroup_parent(cgrp)) {
4592 * We get a ref to the parent, and put the ref when
4593 * this cgroup is being freed, so it's guaranteed
4594 * that the parent won't be destroyed before its
4595 * children.
4597 cgroup_put(cgroup_parent(cgrp));
4598 kernfs_put(cgrp->kn);
4599 if (cgroup_on_dfl(cgrp))
4600 cgroup_rstat_exit(cgrp);
4601 kfree(cgrp);
4602 } else {
4604 * This is root cgroup's refcnt reaching zero,
4605 * which indicates that the root should be
4606 * released.
4608 cgroup_destroy_root(cgrp->root);
4613 static void css_release_work_fn(struct work_struct *work)
4615 struct cgroup_subsys_state *css =
4616 container_of(work, struct cgroup_subsys_state, destroy_work);
4617 struct cgroup_subsys *ss = css->ss;
4618 struct cgroup *cgrp = css->cgroup;
4620 mutex_lock(&cgroup_mutex);
4622 css->flags |= CSS_RELEASED;
4623 list_del_rcu(&css->sibling);
4625 if (ss) {
4626 /* css release path */
4627 if (!list_empty(&css->rstat_css_node)) {
4628 cgroup_rstat_flush(cgrp);
4629 list_del_rcu(&css->rstat_css_node);
4632 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4633 if (ss->css_released)
4634 ss->css_released(css);
4635 } else {
4636 struct cgroup *tcgrp;
4638 /* cgroup release path */
4639 trace_cgroup_release(cgrp);
4641 if (cgroup_on_dfl(cgrp))
4642 cgroup_rstat_flush(cgrp);
4644 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4645 tcgrp = cgroup_parent(tcgrp))
4646 tcgrp->nr_dying_descendants--;
4648 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4649 cgrp->id = -1;
4652 * There are two control paths which try to determine
4653 * cgroup from dentry without going through kernfs -
4654 * cgroupstats_build() and css_tryget_online_from_dir().
4655 * Those are supported by RCU protecting clearing of
4656 * cgrp->kn->priv backpointer.
4658 if (cgrp->kn)
4659 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4660 NULL);
4662 cgroup_bpf_put(cgrp);
4665 mutex_unlock(&cgroup_mutex);
4667 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4668 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4671 static void css_release(struct percpu_ref *ref)
4673 struct cgroup_subsys_state *css =
4674 container_of(ref, struct cgroup_subsys_state, refcnt);
4676 INIT_WORK(&css->destroy_work, css_release_work_fn);
4677 queue_work(cgroup_destroy_wq, &css->destroy_work);
4680 static void init_and_link_css(struct cgroup_subsys_state *css,
4681 struct cgroup_subsys *ss, struct cgroup *cgrp)
4683 lockdep_assert_held(&cgroup_mutex);
4685 cgroup_get_live(cgrp);
4687 memset(css, 0, sizeof(*css));
4688 css->cgroup = cgrp;
4689 css->ss = ss;
4690 css->id = -1;
4691 INIT_LIST_HEAD(&css->sibling);
4692 INIT_LIST_HEAD(&css->children);
4693 INIT_LIST_HEAD(&css->rstat_css_node);
4694 css->serial_nr = css_serial_nr_next++;
4695 atomic_set(&css->online_cnt, 0);
4697 if (cgroup_parent(cgrp)) {
4698 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4699 css_get(css->parent);
4702 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4703 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4705 BUG_ON(cgroup_css(cgrp, ss));
4708 /* invoke ->css_online() on a new CSS and mark it online if successful */
4709 static int online_css(struct cgroup_subsys_state *css)
4711 struct cgroup_subsys *ss = css->ss;
4712 int ret = 0;
4714 lockdep_assert_held(&cgroup_mutex);
4716 if (ss->css_online)
4717 ret = ss->css_online(css);
4718 if (!ret) {
4719 css->flags |= CSS_ONLINE;
4720 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4722 atomic_inc(&css->online_cnt);
4723 if (css->parent)
4724 atomic_inc(&css->parent->online_cnt);
4726 return ret;
4729 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4730 static void offline_css(struct cgroup_subsys_state *css)
4732 struct cgroup_subsys *ss = css->ss;
4734 lockdep_assert_held(&cgroup_mutex);
4736 if (!(css->flags & CSS_ONLINE))
4737 return;
4739 if (ss->css_offline)
4740 ss->css_offline(css);
4742 css->flags &= ~CSS_ONLINE;
4743 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4745 wake_up_all(&css->cgroup->offline_waitq);
4749 * css_create - create a cgroup_subsys_state
4750 * @cgrp: the cgroup new css will be associated with
4751 * @ss: the subsys of new css
4753 * Create a new css associated with @cgrp - @ss pair. On success, the new
4754 * css is online and installed in @cgrp. This function doesn't create the
4755 * interface files. Returns 0 on success, -errno on failure.
4757 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4758 struct cgroup_subsys *ss)
4760 struct cgroup *parent = cgroup_parent(cgrp);
4761 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4762 struct cgroup_subsys_state *css;
4763 int err;
4765 lockdep_assert_held(&cgroup_mutex);
4767 css = ss->css_alloc(parent_css);
4768 if (!css)
4769 css = ERR_PTR(-ENOMEM);
4770 if (IS_ERR(css))
4771 return css;
4773 init_and_link_css(css, ss, cgrp);
4775 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4776 if (err)
4777 goto err_free_css;
4779 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4780 if (err < 0)
4781 goto err_free_css;
4782 css->id = err;
4784 /* @css is ready to be brought online now, make it visible */
4785 list_add_tail_rcu(&css->sibling, &parent_css->children);
4786 cgroup_idr_replace(&ss->css_idr, css, css->id);
4788 err = online_css(css);
4789 if (err)
4790 goto err_list_del;
4792 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4793 cgroup_parent(parent)) {
4794 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4795 current->comm, current->pid, ss->name);
4796 if (!strcmp(ss->name, "memory"))
4797 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4798 ss->warned_broken_hierarchy = true;
4801 return css;
4803 err_list_del:
4804 list_del_rcu(&css->sibling);
4805 err_free_css:
4806 list_del_rcu(&css->rstat_css_node);
4807 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4808 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4809 return ERR_PTR(err);
4813 * The returned cgroup is fully initialized including its control mask, but
4814 * it isn't associated with its kernfs_node and doesn't have the control
4815 * mask applied.
4817 static struct cgroup *cgroup_create(struct cgroup *parent)
4819 struct cgroup_root *root = parent->root;
4820 struct cgroup *cgrp, *tcgrp;
4821 int level = parent->level + 1;
4822 int ret;
4824 /* allocate the cgroup and its ID, 0 is reserved for the root */
4825 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4826 GFP_KERNEL);
4827 if (!cgrp)
4828 return ERR_PTR(-ENOMEM);
4830 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4831 if (ret)
4832 goto out_free_cgrp;
4834 if (cgroup_on_dfl(parent)) {
4835 ret = cgroup_rstat_init(cgrp);
4836 if (ret)
4837 goto out_cancel_ref;
4841 * Temporarily set the pointer to NULL, so idr_find() won't return
4842 * a half-baked cgroup.
4844 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4845 if (cgrp->id < 0) {
4846 ret = -ENOMEM;
4847 goto out_stat_exit;
4850 init_cgroup_housekeeping(cgrp);
4852 cgrp->self.parent = &parent->self;
4853 cgrp->root = root;
4854 cgrp->level = level;
4855 ret = cgroup_bpf_inherit(cgrp);
4856 if (ret)
4857 goto out_idr_free;
4859 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4860 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4862 if (tcgrp != cgrp)
4863 tcgrp->nr_descendants++;
4866 if (notify_on_release(parent))
4867 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4869 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4870 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4872 cgrp->self.serial_nr = css_serial_nr_next++;
4874 /* allocation complete, commit to creation */
4875 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4876 atomic_inc(&root->nr_cgrps);
4877 cgroup_get_live(parent);
4880 * @cgrp is now fully operational. If something fails after this
4881 * point, it'll be released via the normal destruction path.
4883 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4886 * On the default hierarchy, a child doesn't automatically inherit
4887 * subtree_control from the parent. Each is configured manually.
4889 if (!cgroup_on_dfl(cgrp))
4890 cgrp->subtree_control = cgroup_control(cgrp);
4892 cgroup_propagate_control(cgrp);
4894 return cgrp;
4896 out_idr_free:
4897 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4898 out_stat_exit:
4899 if (cgroup_on_dfl(parent))
4900 cgroup_rstat_exit(cgrp);
4901 out_cancel_ref:
4902 percpu_ref_exit(&cgrp->self.refcnt);
4903 out_free_cgrp:
4904 kfree(cgrp);
4905 return ERR_PTR(ret);
4908 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4910 struct cgroup *cgroup;
4911 int ret = false;
4912 int level = 1;
4914 lockdep_assert_held(&cgroup_mutex);
4916 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4917 if (cgroup->nr_descendants >= cgroup->max_descendants)
4918 goto fail;
4920 if (level > cgroup->max_depth)
4921 goto fail;
4923 level++;
4926 ret = true;
4927 fail:
4928 return ret;
4931 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4933 struct cgroup *parent, *cgrp;
4934 struct kernfs_node *kn;
4935 int ret;
4937 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4938 if (strchr(name, '\n'))
4939 return -EINVAL;
4941 parent = cgroup_kn_lock_live(parent_kn, false);
4942 if (!parent)
4943 return -ENODEV;
4945 if (!cgroup_check_hierarchy_limits(parent)) {
4946 ret = -EAGAIN;
4947 goto out_unlock;
4950 cgrp = cgroup_create(parent);
4951 if (IS_ERR(cgrp)) {
4952 ret = PTR_ERR(cgrp);
4953 goto out_unlock;
4956 /* create the directory */
4957 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4958 if (IS_ERR(kn)) {
4959 ret = PTR_ERR(kn);
4960 goto out_destroy;
4962 cgrp->kn = kn;
4965 * This extra ref will be put in cgroup_free_fn() and guarantees
4966 * that @cgrp->kn is always accessible.
4968 kernfs_get(kn);
4970 ret = cgroup_kn_set_ugid(kn);
4971 if (ret)
4972 goto out_destroy;
4974 ret = css_populate_dir(&cgrp->self);
4975 if (ret)
4976 goto out_destroy;
4978 ret = cgroup_apply_control_enable(cgrp);
4979 if (ret)
4980 goto out_destroy;
4982 trace_cgroup_mkdir(cgrp);
4984 /* let's create and online css's */
4985 kernfs_activate(kn);
4987 ret = 0;
4988 goto out_unlock;
4990 out_destroy:
4991 cgroup_destroy_locked(cgrp);
4992 out_unlock:
4993 cgroup_kn_unlock(parent_kn);
4994 return ret;
4998 * This is called when the refcnt of a css is confirmed to be killed.
4999 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5000 * initate destruction and put the css ref from kill_css().
5002 static void css_killed_work_fn(struct work_struct *work)
5004 struct cgroup_subsys_state *css =
5005 container_of(work, struct cgroup_subsys_state, destroy_work);
5007 mutex_lock(&cgroup_mutex);
5009 do {
5010 offline_css(css);
5011 css_put(css);
5012 /* @css can't go away while we're holding cgroup_mutex */
5013 css = css->parent;
5014 } while (css && atomic_dec_and_test(&css->online_cnt));
5016 mutex_unlock(&cgroup_mutex);
5019 /* css kill confirmation processing requires process context, bounce */
5020 static void css_killed_ref_fn(struct percpu_ref *ref)
5022 struct cgroup_subsys_state *css =
5023 container_of(ref, struct cgroup_subsys_state, refcnt);
5025 if (atomic_dec_and_test(&css->online_cnt)) {
5026 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5027 queue_work(cgroup_destroy_wq, &css->destroy_work);
5032 * kill_css - destroy a css
5033 * @css: css to destroy
5035 * This function initiates destruction of @css by removing cgroup interface
5036 * files and putting its base reference. ->css_offline() will be invoked
5037 * asynchronously once css_tryget_online() is guaranteed to fail and when
5038 * the reference count reaches zero, @css will be released.
5040 static void kill_css(struct cgroup_subsys_state *css)
5042 lockdep_assert_held(&cgroup_mutex);
5044 if (css->flags & CSS_DYING)
5045 return;
5047 css->flags |= CSS_DYING;
5050 * This must happen before css is disassociated with its cgroup.
5051 * See seq_css() for details.
5053 css_clear_dir(css);
5056 * Killing would put the base ref, but we need to keep it alive
5057 * until after ->css_offline().
5059 css_get(css);
5062 * cgroup core guarantees that, by the time ->css_offline() is
5063 * invoked, no new css reference will be given out via
5064 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5065 * proceed to offlining css's because percpu_ref_kill() doesn't
5066 * guarantee that the ref is seen as killed on all CPUs on return.
5068 * Use percpu_ref_kill_and_confirm() to get notifications as each
5069 * css is confirmed to be seen as killed on all CPUs.
5071 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5075 * cgroup_destroy_locked - the first stage of cgroup destruction
5076 * @cgrp: cgroup to be destroyed
5078 * css's make use of percpu refcnts whose killing latency shouldn't be
5079 * exposed to userland and are RCU protected. Also, cgroup core needs to
5080 * guarantee that css_tryget_online() won't succeed by the time
5081 * ->css_offline() is invoked. To satisfy all the requirements,
5082 * destruction is implemented in the following two steps.
5084 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5085 * userland visible parts and start killing the percpu refcnts of
5086 * css's. Set up so that the next stage will be kicked off once all
5087 * the percpu refcnts are confirmed to be killed.
5089 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5090 * rest of destruction. Once all cgroup references are gone, the
5091 * cgroup is RCU-freed.
5093 * This function implements s1. After this step, @cgrp is gone as far as
5094 * the userland is concerned and a new cgroup with the same name may be
5095 * created. As cgroup doesn't care about the names internally, this
5096 * doesn't cause any problem.
5098 static int cgroup_destroy_locked(struct cgroup *cgrp)
5099 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5101 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5102 struct cgroup_subsys_state *css;
5103 struct cgrp_cset_link *link;
5104 int ssid;
5106 lockdep_assert_held(&cgroup_mutex);
5109 * Only migration can raise populated from zero and we're already
5110 * holding cgroup_mutex.
5112 if (cgroup_is_populated(cgrp))
5113 return -EBUSY;
5116 * Make sure there's no live children. We can't test emptiness of
5117 * ->self.children as dead children linger on it while being
5118 * drained; otherwise, "rmdir parent/child parent" may fail.
5120 if (css_has_online_children(&cgrp->self))
5121 return -EBUSY;
5124 * Mark @cgrp and the associated csets dead. The former prevents
5125 * further task migration and child creation by disabling
5126 * cgroup_lock_live_group(). The latter makes the csets ignored by
5127 * the migration path.
5129 cgrp->self.flags &= ~CSS_ONLINE;
5131 spin_lock_irq(&css_set_lock);
5132 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5133 link->cset->dead = true;
5134 spin_unlock_irq(&css_set_lock);
5136 /* initiate massacre of all css's */
5137 for_each_css(css, ssid, cgrp)
5138 kill_css(css);
5140 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5141 css_clear_dir(&cgrp->self);
5142 kernfs_remove(cgrp->kn);
5144 if (parent && cgroup_is_threaded(cgrp))
5145 parent->nr_threaded_children--;
5147 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5148 tcgrp->nr_descendants--;
5149 tcgrp->nr_dying_descendants++;
5152 cgroup1_check_for_release(parent);
5154 /* put the base reference */
5155 percpu_ref_kill(&cgrp->self.refcnt);
5157 return 0;
5160 int cgroup_rmdir(struct kernfs_node *kn)
5162 struct cgroup *cgrp;
5163 int ret = 0;
5165 cgrp = cgroup_kn_lock_live(kn, false);
5166 if (!cgrp)
5167 return 0;
5169 ret = cgroup_destroy_locked(cgrp);
5171 if (!ret)
5172 trace_cgroup_rmdir(cgrp);
5174 cgroup_kn_unlock(kn);
5175 return ret;
5178 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5179 .show_options = cgroup_show_options,
5180 .remount_fs = cgroup_remount,
5181 .mkdir = cgroup_mkdir,
5182 .rmdir = cgroup_rmdir,
5183 .show_path = cgroup_show_path,
5186 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5188 struct cgroup_subsys_state *css;
5190 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5192 mutex_lock(&cgroup_mutex);
5194 idr_init(&ss->css_idr);
5195 INIT_LIST_HEAD(&ss->cfts);
5197 /* Create the root cgroup state for this subsystem */
5198 ss->root = &cgrp_dfl_root;
5199 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5200 /* We don't handle early failures gracefully */
5201 BUG_ON(IS_ERR(css));
5202 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5205 * Root csses are never destroyed and we can't initialize
5206 * percpu_ref during early init. Disable refcnting.
5208 css->flags |= CSS_NO_REF;
5210 if (early) {
5211 /* allocation can't be done safely during early init */
5212 css->id = 1;
5213 } else {
5214 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5215 BUG_ON(css->id < 0);
5218 /* Update the init_css_set to contain a subsys
5219 * pointer to this state - since the subsystem is
5220 * newly registered, all tasks and hence the
5221 * init_css_set is in the subsystem's root cgroup. */
5222 init_css_set.subsys[ss->id] = css;
5224 have_fork_callback |= (bool)ss->fork << ss->id;
5225 have_exit_callback |= (bool)ss->exit << ss->id;
5226 have_free_callback |= (bool)ss->free << ss->id;
5227 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5229 /* At system boot, before all subsystems have been
5230 * registered, no tasks have been forked, so we don't
5231 * need to invoke fork callbacks here. */
5232 BUG_ON(!list_empty(&init_task.tasks));
5234 BUG_ON(online_css(css));
5236 mutex_unlock(&cgroup_mutex);
5240 * cgroup_init_early - cgroup initialization at system boot
5242 * Initialize cgroups at system boot, and initialize any
5243 * subsystems that request early init.
5245 int __init cgroup_init_early(void)
5247 static struct cgroup_sb_opts __initdata opts;
5248 struct cgroup_subsys *ss;
5249 int i;
5251 init_cgroup_root(&cgrp_dfl_root, &opts);
5252 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5254 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5256 for_each_subsys(ss, i) {
5257 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5258 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5259 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5260 ss->id, ss->name);
5261 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5262 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5264 ss->id = i;
5265 ss->name = cgroup_subsys_name[i];
5266 if (!ss->legacy_name)
5267 ss->legacy_name = cgroup_subsys_name[i];
5269 if (ss->early_init)
5270 cgroup_init_subsys(ss, true);
5272 return 0;
5275 static u16 cgroup_disable_mask __initdata;
5278 * cgroup_init - cgroup initialization
5280 * Register cgroup filesystem and /proc file, and initialize
5281 * any subsystems that didn't request early init.
5283 int __init cgroup_init(void)
5285 struct cgroup_subsys *ss;
5286 int ssid;
5288 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5289 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5290 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5291 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5293 cgroup_rstat_boot();
5296 * The latency of the synchronize_sched() is too high for cgroups,
5297 * avoid it at the cost of forcing all readers into the slow path.
5299 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5301 get_user_ns(init_cgroup_ns.user_ns);
5303 mutex_lock(&cgroup_mutex);
5306 * Add init_css_set to the hash table so that dfl_root can link to
5307 * it during init.
5309 hash_add(css_set_table, &init_css_set.hlist,
5310 css_set_hash(init_css_set.subsys));
5312 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5314 mutex_unlock(&cgroup_mutex);
5316 for_each_subsys(ss, ssid) {
5317 if (ss->early_init) {
5318 struct cgroup_subsys_state *css =
5319 init_css_set.subsys[ss->id];
5321 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5322 GFP_KERNEL);
5323 BUG_ON(css->id < 0);
5324 } else {
5325 cgroup_init_subsys(ss, false);
5328 list_add_tail(&init_css_set.e_cset_node[ssid],
5329 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5332 * Setting dfl_root subsys_mask needs to consider the
5333 * disabled flag and cftype registration needs kmalloc,
5334 * both of which aren't available during early_init.
5336 if (cgroup_disable_mask & (1 << ssid)) {
5337 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5338 printk(KERN_INFO "Disabling %s control group subsystem\n",
5339 ss->name);
5340 continue;
5343 if (cgroup1_ssid_disabled(ssid))
5344 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5345 ss->name);
5347 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5349 /* implicit controllers must be threaded too */
5350 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5352 if (ss->implicit_on_dfl)
5353 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5354 else if (!ss->dfl_cftypes)
5355 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5357 if (ss->threaded)
5358 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5360 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5361 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5362 } else {
5363 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5364 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5367 if (ss->bind)
5368 ss->bind(init_css_set.subsys[ssid]);
5370 mutex_lock(&cgroup_mutex);
5371 css_populate_dir(init_css_set.subsys[ssid]);
5372 mutex_unlock(&cgroup_mutex);
5375 /* init_css_set.subsys[] has been updated, re-hash */
5376 hash_del(&init_css_set.hlist);
5377 hash_add(css_set_table, &init_css_set.hlist,
5378 css_set_hash(init_css_set.subsys));
5380 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5381 WARN_ON(register_filesystem(&cgroup_fs_type));
5382 WARN_ON(register_filesystem(&cgroup2_fs_type));
5383 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5385 return 0;
5388 static int __init cgroup_wq_init(void)
5391 * There isn't much point in executing destruction path in
5392 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5393 * Use 1 for @max_active.
5395 * We would prefer to do this in cgroup_init() above, but that
5396 * is called before init_workqueues(): so leave this until after.
5398 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5399 BUG_ON(!cgroup_destroy_wq);
5400 return 0;
5402 core_initcall(cgroup_wq_init);
5404 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5405 char *buf, size_t buflen)
5407 struct kernfs_node *kn;
5409 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5410 if (!kn)
5411 return;
5412 kernfs_path(kn, buf, buflen);
5413 kernfs_put(kn);
5417 * proc_cgroup_show()
5418 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5419 * - Used for /proc/<pid>/cgroup.
5421 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5422 struct pid *pid, struct task_struct *tsk)
5424 char *buf;
5425 int retval;
5426 struct cgroup_root *root;
5428 retval = -ENOMEM;
5429 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5430 if (!buf)
5431 goto out;
5433 mutex_lock(&cgroup_mutex);
5434 spin_lock_irq(&css_set_lock);
5436 for_each_root(root) {
5437 struct cgroup_subsys *ss;
5438 struct cgroup *cgrp;
5439 int ssid, count = 0;
5441 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5442 continue;
5444 seq_printf(m, "%d:", root->hierarchy_id);
5445 if (root != &cgrp_dfl_root)
5446 for_each_subsys(ss, ssid)
5447 if (root->subsys_mask & (1 << ssid))
5448 seq_printf(m, "%s%s", count++ ? "," : "",
5449 ss->legacy_name);
5450 if (strlen(root->name))
5451 seq_printf(m, "%sname=%s", count ? "," : "",
5452 root->name);
5453 seq_putc(m, ':');
5455 cgrp = task_cgroup_from_root(tsk, root);
5458 * On traditional hierarchies, all zombie tasks show up as
5459 * belonging to the root cgroup. On the default hierarchy,
5460 * while a zombie doesn't show up in "cgroup.procs" and
5461 * thus can't be migrated, its /proc/PID/cgroup keeps
5462 * reporting the cgroup it belonged to before exiting. If
5463 * the cgroup is removed before the zombie is reaped,
5464 * " (deleted)" is appended to the cgroup path.
5466 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5467 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5468 current->nsproxy->cgroup_ns);
5469 if (retval >= PATH_MAX)
5470 retval = -ENAMETOOLONG;
5471 if (retval < 0)
5472 goto out_unlock;
5474 seq_puts(m, buf);
5475 } else {
5476 seq_puts(m, "/");
5479 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5480 seq_puts(m, " (deleted)\n");
5481 else
5482 seq_putc(m, '\n');
5485 retval = 0;
5486 out_unlock:
5487 spin_unlock_irq(&css_set_lock);
5488 mutex_unlock(&cgroup_mutex);
5489 kfree(buf);
5490 out:
5491 return retval;
5495 * cgroup_fork - initialize cgroup related fields during copy_process()
5496 * @child: pointer to task_struct of forking parent process.
5498 * A task is associated with the init_css_set until cgroup_post_fork()
5499 * attaches it to the parent's css_set. Empty cg_list indicates that
5500 * @child isn't holding reference to its css_set.
5502 void cgroup_fork(struct task_struct *child)
5504 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5505 INIT_LIST_HEAD(&child->cg_list);
5509 * cgroup_can_fork - called on a new task before the process is exposed
5510 * @child: the task in question.
5512 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5513 * returns an error, the fork aborts with that error code. This allows for
5514 * a cgroup subsystem to conditionally allow or deny new forks.
5516 int cgroup_can_fork(struct task_struct *child)
5518 struct cgroup_subsys *ss;
5519 int i, j, ret;
5521 do_each_subsys_mask(ss, i, have_canfork_callback) {
5522 ret = ss->can_fork(child);
5523 if (ret)
5524 goto out_revert;
5525 } while_each_subsys_mask();
5527 return 0;
5529 out_revert:
5530 for_each_subsys(ss, j) {
5531 if (j >= i)
5532 break;
5533 if (ss->cancel_fork)
5534 ss->cancel_fork(child);
5537 return ret;
5541 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5542 * @child: the task in question
5544 * This calls the cancel_fork() callbacks if a fork failed *after*
5545 * cgroup_can_fork() succeded.
5547 void cgroup_cancel_fork(struct task_struct *child)
5549 struct cgroup_subsys *ss;
5550 int i;
5552 for_each_subsys(ss, i)
5553 if (ss->cancel_fork)
5554 ss->cancel_fork(child);
5558 * cgroup_post_fork - called on a new task after adding it to the task list
5559 * @child: the task in question
5561 * Adds the task to the list running through its css_set if necessary and
5562 * call the subsystem fork() callbacks. Has to be after the task is
5563 * visible on the task list in case we race with the first call to
5564 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5565 * list.
5567 void cgroup_post_fork(struct task_struct *child)
5569 struct cgroup_subsys *ss;
5570 int i;
5573 * This may race against cgroup_enable_task_cg_lists(). As that
5574 * function sets use_task_css_set_links before grabbing
5575 * tasklist_lock and we just went through tasklist_lock to add
5576 * @child, it's guaranteed that either we see the set
5577 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5578 * @child during its iteration.
5580 * If we won the race, @child is associated with %current's
5581 * css_set. Grabbing css_set_lock guarantees both that the
5582 * association is stable, and, on completion of the parent's
5583 * migration, @child is visible in the source of migration or
5584 * already in the destination cgroup. This guarantee is necessary
5585 * when implementing operations which need to migrate all tasks of
5586 * a cgroup to another.
5588 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5589 * will remain in init_css_set. This is safe because all tasks are
5590 * in the init_css_set before cg_links is enabled and there's no
5591 * operation which transfers all tasks out of init_css_set.
5593 if (use_task_css_set_links) {
5594 struct css_set *cset;
5596 spin_lock_irq(&css_set_lock);
5597 cset = task_css_set(current);
5598 if (list_empty(&child->cg_list)) {
5599 get_css_set(cset);
5600 cset->nr_tasks++;
5601 css_set_move_task(child, NULL, cset, false);
5603 spin_unlock_irq(&css_set_lock);
5607 * Call ss->fork(). This must happen after @child is linked on
5608 * css_set; otherwise, @child might change state between ->fork()
5609 * and addition to css_set.
5611 do_each_subsys_mask(ss, i, have_fork_callback) {
5612 ss->fork(child);
5613 } while_each_subsys_mask();
5617 * cgroup_exit - detach cgroup from exiting task
5618 * @tsk: pointer to task_struct of exiting process
5620 * Description: Detach cgroup from @tsk and release it.
5622 * Note that cgroups marked notify_on_release force every task in
5623 * them to take the global cgroup_mutex mutex when exiting.
5624 * This could impact scaling on very large systems. Be reluctant to
5625 * use notify_on_release cgroups where very high task exit scaling
5626 * is required on large systems.
5628 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5629 * call cgroup_exit() while the task is still competent to handle
5630 * notify_on_release(), then leave the task attached to the root cgroup in
5631 * each hierarchy for the remainder of its exit. No need to bother with
5632 * init_css_set refcnting. init_css_set never goes away and we can't race
5633 * with migration path - PF_EXITING is visible to migration path.
5635 void cgroup_exit(struct task_struct *tsk)
5637 struct cgroup_subsys *ss;
5638 struct css_set *cset;
5639 int i;
5642 * Unlink from @tsk from its css_set. As migration path can't race
5643 * with us, we can check css_set and cg_list without synchronization.
5645 cset = task_css_set(tsk);
5647 if (!list_empty(&tsk->cg_list)) {
5648 spin_lock_irq(&css_set_lock);
5649 css_set_move_task(tsk, cset, NULL, false);
5650 cset->nr_tasks--;
5651 spin_unlock_irq(&css_set_lock);
5652 } else {
5653 get_css_set(cset);
5656 /* see cgroup_post_fork() for details */
5657 do_each_subsys_mask(ss, i, have_exit_callback) {
5658 ss->exit(tsk);
5659 } while_each_subsys_mask();
5662 void cgroup_free(struct task_struct *task)
5664 struct css_set *cset = task_css_set(task);
5665 struct cgroup_subsys *ss;
5666 int ssid;
5668 do_each_subsys_mask(ss, ssid, have_free_callback) {
5669 ss->free(task);
5670 } while_each_subsys_mask();
5672 put_css_set(cset);
5675 static int __init cgroup_disable(char *str)
5677 struct cgroup_subsys *ss;
5678 char *token;
5679 int i;
5681 while ((token = strsep(&str, ",")) != NULL) {
5682 if (!*token)
5683 continue;
5685 for_each_subsys(ss, i) {
5686 if (strcmp(token, ss->name) &&
5687 strcmp(token, ss->legacy_name))
5688 continue;
5689 cgroup_disable_mask |= 1 << i;
5692 return 1;
5694 __setup("cgroup_disable=", cgroup_disable);
5697 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5698 * @dentry: directory dentry of interest
5699 * @ss: subsystem of interest
5701 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5702 * to get the corresponding css and return it. If such css doesn't exist
5703 * or can't be pinned, an ERR_PTR value is returned.
5705 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5706 struct cgroup_subsys *ss)
5708 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5709 struct file_system_type *s_type = dentry->d_sb->s_type;
5710 struct cgroup_subsys_state *css = NULL;
5711 struct cgroup *cgrp;
5713 /* is @dentry a cgroup dir? */
5714 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5715 !kn || kernfs_type(kn) != KERNFS_DIR)
5716 return ERR_PTR(-EBADF);
5718 rcu_read_lock();
5721 * This path doesn't originate from kernfs and @kn could already
5722 * have been or be removed at any point. @kn->priv is RCU
5723 * protected for this access. See css_release_work_fn() for details.
5725 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5726 if (cgrp)
5727 css = cgroup_css(cgrp, ss);
5729 if (!css || !css_tryget_online(css))
5730 css = ERR_PTR(-ENOENT);
5732 rcu_read_unlock();
5733 return css;
5737 * css_from_id - lookup css by id
5738 * @id: the cgroup id
5739 * @ss: cgroup subsys to be looked into
5741 * Returns the css if there's valid one with @id, otherwise returns NULL.
5742 * Should be called under rcu_read_lock().
5744 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5746 WARN_ON_ONCE(!rcu_read_lock_held());
5747 return idr_find(&ss->css_idr, id);
5751 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5752 * @path: path on the default hierarchy
5754 * Find the cgroup at @path on the default hierarchy, increment its
5755 * reference count and return it. Returns pointer to the found cgroup on
5756 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5757 * if @path points to a non-directory.
5759 struct cgroup *cgroup_get_from_path(const char *path)
5761 struct kernfs_node *kn;
5762 struct cgroup *cgrp;
5764 mutex_lock(&cgroup_mutex);
5766 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5767 if (kn) {
5768 if (kernfs_type(kn) == KERNFS_DIR) {
5769 cgrp = kn->priv;
5770 cgroup_get_live(cgrp);
5771 } else {
5772 cgrp = ERR_PTR(-ENOTDIR);
5774 kernfs_put(kn);
5775 } else {
5776 cgrp = ERR_PTR(-ENOENT);
5779 mutex_unlock(&cgroup_mutex);
5780 return cgrp;
5782 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5785 * cgroup_get_from_fd - get a cgroup pointer from a fd
5786 * @fd: fd obtained by open(cgroup2_dir)
5788 * Find the cgroup from a fd which should be obtained
5789 * by opening a cgroup directory. Returns a pointer to the
5790 * cgroup on success. ERR_PTR is returned if the cgroup
5791 * cannot be found.
5793 struct cgroup *cgroup_get_from_fd(int fd)
5795 struct cgroup_subsys_state *css;
5796 struct cgroup *cgrp;
5797 struct file *f;
5799 f = fget_raw(fd);
5800 if (!f)
5801 return ERR_PTR(-EBADF);
5803 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5804 fput(f);
5805 if (IS_ERR(css))
5806 return ERR_CAST(css);
5808 cgrp = css->cgroup;
5809 if (!cgroup_on_dfl(cgrp)) {
5810 cgroup_put(cgrp);
5811 return ERR_PTR(-EBADF);
5814 return cgrp;
5816 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5819 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5820 * definition in cgroup-defs.h.
5822 #ifdef CONFIG_SOCK_CGROUP_DATA
5824 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5826 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5827 static bool cgroup_sk_alloc_disabled __read_mostly;
5829 void cgroup_sk_alloc_disable(void)
5831 if (cgroup_sk_alloc_disabled)
5832 return;
5833 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5834 cgroup_sk_alloc_disabled = true;
5837 #else
5839 #define cgroup_sk_alloc_disabled false
5841 #endif
5843 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5845 if (cgroup_sk_alloc_disabled)
5846 return;
5848 /* Socket clone path */
5849 if (skcd->val) {
5851 * We might be cloning a socket which is left in an empty
5852 * cgroup and the cgroup might have already been rmdir'd.
5853 * Don't use cgroup_get_live().
5855 cgroup_get(sock_cgroup_ptr(skcd));
5856 return;
5859 rcu_read_lock();
5861 while (true) {
5862 struct css_set *cset;
5864 cset = task_css_set(current);
5865 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5866 skcd->val = (unsigned long)cset->dfl_cgrp;
5867 break;
5869 cpu_relax();
5872 rcu_read_unlock();
5875 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5877 cgroup_put(sock_cgroup_ptr(skcd));
5880 #endif /* CONFIG_SOCK_CGROUP_DATA */
5882 #ifdef CONFIG_CGROUP_BPF
5883 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5884 enum bpf_attach_type type, u32 flags)
5886 int ret;
5888 mutex_lock(&cgroup_mutex);
5889 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5890 mutex_unlock(&cgroup_mutex);
5891 return ret;
5893 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5894 enum bpf_attach_type type, u32 flags)
5896 int ret;
5898 mutex_lock(&cgroup_mutex);
5899 ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5900 mutex_unlock(&cgroup_mutex);
5901 return ret;
5903 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5904 union bpf_attr __user *uattr)
5906 int ret;
5908 mutex_lock(&cgroup_mutex);
5909 ret = __cgroup_bpf_query(cgrp, attr, uattr);
5910 mutex_unlock(&cgroup_mutex);
5911 return ret;
5913 #endif /* CONFIG_CGROUP_BPF */
5915 #ifdef CONFIG_SYSFS
5916 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5917 ssize_t size, const char *prefix)
5919 struct cftype *cft;
5920 ssize_t ret = 0;
5922 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5923 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5924 continue;
5926 if (prefix)
5927 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5929 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5931 if (unlikely(ret >= size)) {
5932 WARN_ON(1);
5933 break;
5937 return ret;
5940 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5941 char *buf)
5943 struct cgroup_subsys *ss;
5944 int ssid;
5945 ssize_t ret = 0;
5947 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5948 NULL);
5950 for_each_subsys(ss, ssid)
5951 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5952 PAGE_SIZE - ret,
5953 cgroup_subsys_name[ssid]);
5955 return ret;
5957 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5959 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5960 char *buf)
5962 return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5964 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5966 static struct attribute *cgroup_sysfs_attrs[] = {
5967 &cgroup_delegate_attr.attr,
5968 &cgroup_features_attr.attr,
5969 NULL,
5972 static const struct attribute_group cgroup_sysfs_attr_group = {
5973 .attrs = cgroup_sysfs_attrs,
5974 .name = "cgroup",
5977 static int __init cgroup_sysfs_init(void)
5979 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5981 subsys_initcall(cgroup_sysfs_init);
5982 #endif /* CONFIG_SYSFS */