2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
56 #include <asm/irq_regs.h>
58 typedef int (*remote_function_f
)(void *);
60 struct remote_function_call
{
61 struct task_struct
*p
;
62 remote_function_f func
;
67 static void remote_function(void *data
)
69 struct remote_function_call
*tfc
= data
;
70 struct task_struct
*p
= tfc
->p
;
74 if (task_cpu(p
) != smp_processor_id())
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
82 tfc
->ret
= -ESRCH
; /* No such (running) process */
87 tfc
->ret
= tfc
->func(tfc
->info
);
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
104 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
106 struct remote_function_call data
= {
115 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
118 } while (ret
== -EAGAIN
);
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
128 * Calls the function @func on the remote cpu.
130 * returns: @func return value or -ENXIO when the cpu is offline
132 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
134 struct remote_function_call data
= {
138 .ret
= -ENXIO
, /* No such CPU */
141 smp_call_function_single(cpu
, remote_function
, &data
, 1);
146 static inline struct perf_cpu_context
*
147 __get_cpu_context(struct perf_event_context
*ctx
)
149 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
152 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
153 struct perf_event_context
*ctx
)
155 raw_spin_lock(&cpuctx
->ctx
.lock
);
157 raw_spin_lock(&ctx
->lock
);
160 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
161 struct perf_event_context
*ctx
)
164 raw_spin_unlock(&ctx
->lock
);
165 raw_spin_unlock(&cpuctx
->ctx
.lock
);
168 #define TASK_TOMBSTONE ((void *)-1L)
170 static bool is_kernel_event(struct perf_event
*event
)
172 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
176 * On task ctx scheduling...
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
182 * This however results in two special cases:
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
194 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
195 struct perf_event_context
*, void *);
197 struct event_function_struct
{
198 struct perf_event
*event
;
203 static int event_function(void *info
)
205 struct event_function_struct
*efs
= info
;
206 struct perf_event
*event
= efs
->event
;
207 struct perf_event_context
*ctx
= event
->ctx
;
208 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
209 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
212 lockdep_assert_irqs_disabled();
214 perf_ctx_lock(cpuctx
, task_ctx
);
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
220 if (ctx
->task
!= current
) {
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
232 WARN_ON_ONCE(!ctx
->is_active
);
234 * And since we have ctx->is_active, cpuctx->task_ctx must
237 WARN_ON_ONCE(task_ctx
!= ctx
);
239 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
242 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
244 perf_ctx_unlock(cpuctx
, task_ctx
);
249 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
251 struct perf_event_context
*ctx
= event
->ctx
;
252 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
253 struct event_function_struct efs
= {
259 if (!event
->parent
) {
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
265 lockdep_assert_held(&ctx
->mutex
);
269 cpu_function_call(event
->cpu
, event_function
, &efs
);
273 if (task
== TASK_TOMBSTONE
)
277 if (!task_function_call(task
, event_function
, &efs
))
280 raw_spin_lock_irq(&ctx
->lock
);
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
286 if (task
== TASK_TOMBSTONE
) {
287 raw_spin_unlock_irq(&ctx
->lock
);
290 if (ctx
->is_active
) {
291 raw_spin_unlock_irq(&ctx
->lock
);
294 func(event
, NULL
, ctx
, data
);
295 raw_spin_unlock_irq(&ctx
->lock
);
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
302 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
304 struct perf_event_context
*ctx
= event
->ctx
;
305 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
306 struct task_struct
*task
= READ_ONCE(ctx
->task
);
307 struct perf_event_context
*task_ctx
= NULL
;
309 lockdep_assert_irqs_disabled();
312 if (task
== TASK_TOMBSTONE
)
318 perf_ctx_lock(cpuctx
, task_ctx
);
321 if (task
== TASK_TOMBSTONE
)
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
330 if (ctx
->is_active
) {
331 if (WARN_ON_ONCE(task
!= current
))
334 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
338 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
341 func(event
, cpuctx
, ctx
, data
);
343 perf_ctx_unlock(cpuctx
, task_ctx
);
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
352 * branch priv levels that need permission checks
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
359 EVENT_FLEXIBLE
= 0x1,
362 /* see ctx_resched() for details */
364 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
372 static void perf_sched_delayed(struct work_struct
*work
);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
374 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
375 static DEFINE_MUTEX(perf_sched_mutex
);
376 static atomic_t perf_sched_count
;
378 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
380 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
382 static atomic_t nr_mmap_events __read_mostly
;
383 static atomic_t nr_comm_events __read_mostly
;
384 static atomic_t nr_namespaces_events __read_mostly
;
385 static atomic_t nr_task_events __read_mostly
;
386 static atomic_t nr_freq_events __read_mostly
;
387 static atomic_t nr_switch_events __read_mostly
;
389 static LIST_HEAD(pmus
);
390 static DEFINE_MUTEX(pmus_lock
);
391 static struct srcu_struct pmus_srcu
;
392 static cpumask_var_t perf_online_mask
;
395 * perf event paranoia level:
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
398 * 1 - disallow cpu events for unpriv
399 * 2 - disallow kernel profiling for unpriv
401 int sysctl_perf_event_paranoid __read_mostly
= 2;
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
407 * max perf event sample rate
409 #define DEFAULT_MAX_SAMPLE_RATE 100000
410 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
413 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
415 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
416 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
418 static int perf_sample_allowed_ns __read_mostly
=
419 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
421 static void update_perf_cpu_limits(void)
423 u64 tmp
= perf_sample_period_ns
;
425 tmp
*= sysctl_perf_cpu_time_max_percent
;
426 tmp
= div_u64(tmp
, 100);
430 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
433 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
);
435 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
436 void __user
*buffer
, size_t *lenp
,
439 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
445 * If throttling is disabled don't allow the write:
447 if (sysctl_perf_cpu_time_max_percent
== 100 ||
448 sysctl_perf_cpu_time_max_percent
== 0)
451 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
452 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
453 update_perf_cpu_limits();
458 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
460 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
461 void __user
*buffer
, size_t *lenp
,
464 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
469 if (sysctl_perf_cpu_time_max_percent
== 100 ||
470 sysctl_perf_cpu_time_max_percent
== 0) {
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns
, 0);
475 update_perf_cpu_limits();
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64
, running_sample_length
);
490 static u64 __report_avg
;
491 static u64 __report_allowed
;
493 static void perf_duration_warn(struct irq_work
*w
)
495 printk_ratelimited(KERN_INFO
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg
, __report_allowed
,
499 sysctl_perf_event_sample_rate
);
502 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
504 void perf_sample_event_took(u64 sample_len_ns
)
506 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
514 /* Decay the counter by 1 average sample. */
515 running_len
= __this_cpu_read(running_sample_length
);
516 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
517 running_len
+= sample_len_ns
;
518 __this_cpu_write(running_sample_length
, running_len
);
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523 * from having to maintain a count.
525 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
526 if (avg_len
<= max_len
)
529 __report_avg
= avg_len
;
530 __report_allowed
= max_len
;
533 * Compute a throttle threshold 25% below the current duration.
535 avg_len
+= avg_len
/ 4;
536 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
542 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
543 WRITE_ONCE(max_samples_per_tick
, max
);
545 sysctl_perf_event_sample_rate
= max
* HZ
;
546 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
548 if (!irq_work_queue(&perf_duration_work
)) {
549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550 "kernel.perf_event_max_sample_rate to %d\n",
551 __report_avg
, __report_allowed
,
552 sysctl_perf_event_sample_rate
);
556 static atomic64_t perf_event_id
;
558 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
559 enum event_type_t event_type
);
561 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
562 enum event_type_t event_type
,
563 struct task_struct
*task
);
565 static void update_context_time(struct perf_event_context
*ctx
);
566 static u64
perf_event_time(struct perf_event
*event
);
568 void __weak
perf_event_print_debug(void) { }
570 extern __weak
const char *perf_pmu_name(void)
575 static inline u64
perf_clock(void)
577 return local_clock();
580 static inline u64
perf_event_clock(struct perf_event
*event
)
582 return event
->clock();
586 * State based event timekeeping...
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
607 static __always_inline
enum perf_event_state
608 __perf_effective_state(struct perf_event
*event
)
610 struct perf_event
*leader
= event
->group_leader
;
612 if (leader
->state
<= PERF_EVENT_STATE_OFF
)
613 return leader
->state
;
618 static __always_inline
void
619 __perf_update_times(struct perf_event
*event
, u64 now
, u64
*enabled
, u64
*running
)
621 enum perf_event_state state
= __perf_effective_state(event
);
622 u64 delta
= now
- event
->tstamp
;
624 *enabled
= event
->total_time_enabled
;
625 if (state
>= PERF_EVENT_STATE_INACTIVE
)
628 *running
= event
->total_time_running
;
629 if (state
>= PERF_EVENT_STATE_ACTIVE
)
633 static void perf_event_update_time(struct perf_event
*event
)
635 u64 now
= perf_event_time(event
);
637 __perf_update_times(event
, now
, &event
->total_time_enabled
,
638 &event
->total_time_running
);
642 static void perf_event_update_sibling_time(struct perf_event
*leader
)
644 struct perf_event
*sibling
;
646 for_each_sibling_event(sibling
, leader
)
647 perf_event_update_time(sibling
);
651 perf_event_set_state(struct perf_event
*event
, enum perf_event_state state
)
653 if (event
->state
== state
)
656 perf_event_update_time(event
);
658 * If a group leader gets enabled/disabled all its siblings
661 if ((event
->state
< 0) ^ (state
< 0))
662 perf_event_update_sibling_time(event
);
664 WRITE_ONCE(event
->state
, state
);
667 #ifdef CONFIG_CGROUP_PERF
670 perf_cgroup_match(struct perf_event
*event
)
672 struct perf_event_context
*ctx
= event
->ctx
;
673 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
675 /* @event doesn't care about cgroup */
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
689 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
690 event
->cgrp
->css
.cgroup
);
693 static inline void perf_detach_cgroup(struct perf_event
*event
)
695 css_put(&event
->cgrp
->css
);
699 static inline int is_cgroup_event(struct perf_event
*event
)
701 return event
->cgrp
!= NULL
;
704 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
706 struct perf_cgroup_info
*t
;
708 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
712 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
714 struct perf_cgroup_info
*info
;
719 info
= this_cpu_ptr(cgrp
->info
);
721 info
->time
+= now
- info
->timestamp
;
722 info
->timestamp
= now
;
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
727 struct perf_cgroup
*cgrp
= cpuctx
->cgrp
;
728 struct cgroup_subsys_state
*css
;
731 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
732 cgrp
= container_of(css
, struct perf_cgroup
, css
);
733 __update_cgrp_time(cgrp
);
738 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
740 struct perf_cgroup
*cgrp
;
743 * ensure we access cgroup data only when needed and
744 * when we know the cgroup is pinned (css_get)
746 if (!is_cgroup_event(event
))
749 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
751 * Do not update time when cgroup is not active
753 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
754 __update_cgrp_time(event
->cgrp
);
758 perf_cgroup_set_timestamp(struct task_struct
*task
,
759 struct perf_event_context
*ctx
)
761 struct perf_cgroup
*cgrp
;
762 struct perf_cgroup_info
*info
;
763 struct cgroup_subsys_state
*css
;
766 * ctx->lock held by caller
767 * ensure we do not access cgroup data
768 * unless we have the cgroup pinned (css_get)
770 if (!task
|| !ctx
->nr_cgroups
)
773 cgrp
= perf_cgroup_from_task(task
, ctx
);
775 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
776 cgrp
= container_of(css
, struct perf_cgroup
, css
);
777 info
= this_cpu_ptr(cgrp
->info
);
778 info
->timestamp
= ctx
->timestamp
;
782 static DEFINE_PER_CPU(struct list_head
, cgrp_cpuctx_list
);
784 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
788 * reschedule events based on the cgroup constraint of task.
790 * mode SWOUT : schedule out everything
791 * mode SWIN : schedule in based on cgroup for next
793 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
795 struct perf_cpu_context
*cpuctx
;
796 struct list_head
*list
;
800 * Disable interrupts and preemption to avoid this CPU's
801 * cgrp_cpuctx_entry to change under us.
803 local_irq_save(flags
);
805 list
= this_cpu_ptr(&cgrp_cpuctx_list
);
806 list_for_each_entry(cpuctx
, list
, cgrp_cpuctx_entry
) {
807 WARN_ON_ONCE(cpuctx
->ctx
.nr_cgroups
== 0);
809 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
810 perf_pmu_disable(cpuctx
->ctx
.pmu
);
812 if (mode
& PERF_CGROUP_SWOUT
) {
813 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
815 * must not be done before ctxswout due
816 * to event_filter_match() in event_sched_out()
821 if (mode
& PERF_CGROUP_SWIN
) {
822 WARN_ON_ONCE(cpuctx
->cgrp
);
824 * set cgrp before ctxsw in to allow
825 * event_filter_match() to not have to pass
827 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 * because cgorup events are only per-cpu
830 cpuctx
->cgrp
= perf_cgroup_from_task(task
,
832 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
834 perf_pmu_enable(cpuctx
->ctx
.pmu
);
835 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
838 local_irq_restore(flags
);
841 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
842 struct task_struct
*next
)
844 struct perf_cgroup
*cgrp1
;
845 struct perf_cgroup
*cgrp2
= NULL
;
849 * we come here when we know perf_cgroup_events > 0
850 * we do not need to pass the ctx here because we know
851 * we are holding the rcu lock
853 cgrp1
= perf_cgroup_from_task(task
, NULL
);
854 cgrp2
= perf_cgroup_from_task(next
, NULL
);
857 * only schedule out current cgroup events if we know
858 * that we are switching to a different cgroup. Otherwise,
859 * do no touch the cgroup events.
862 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
867 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
868 struct task_struct
*task
)
870 struct perf_cgroup
*cgrp1
;
871 struct perf_cgroup
*cgrp2
= NULL
;
875 * we come here when we know perf_cgroup_events > 0
876 * we do not need to pass the ctx here because we know
877 * we are holding the rcu lock
879 cgrp1
= perf_cgroup_from_task(task
, NULL
);
880 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
883 * only need to schedule in cgroup events if we are changing
884 * cgroup during ctxsw. Cgroup events were not scheduled
885 * out of ctxsw out if that was not the case.
888 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
893 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
894 struct perf_event_attr
*attr
,
895 struct perf_event
*group_leader
)
897 struct perf_cgroup
*cgrp
;
898 struct cgroup_subsys_state
*css
;
899 struct fd f
= fdget(fd
);
905 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
906 &perf_event_cgrp_subsys
);
912 cgrp
= container_of(css
, struct perf_cgroup
, css
);
916 * all events in a group must monitor
917 * the same cgroup because a task belongs
918 * to only one perf cgroup at a time
920 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
921 perf_detach_cgroup(event
);
930 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
932 struct perf_cgroup_info
*t
;
933 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
934 event
->shadow_ctx_time
= now
- t
->timestamp
;
938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939 * cleared when last cgroup event is removed.
942 list_update_cgroup_event(struct perf_event
*event
,
943 struct perf_event_context
*ctx
, bool add
)
945 struct perf_cpu_context
*cpuctx
;
946 struct list_head
*cpuctx_entry
;
948 if (!is_cgroup_event(event
))
952 * Because cgroup events are always per-cpu events,
953 * this will always be called from the right CPU.
955 cpuctx
= __get_cpu_context(ctx
);
958 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 * matching the event's cgroup, we must do this for every new event,
960 * because if the first would mismatch, the second would not try again
961 * and we would leave cpuctx->cgrp unset.
963 if (add
&& !cpuctx
->cgrp
) {
964 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
966 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
970 if (add
&& ctx
->nr_cgroups
++)
972 else if (!add
&& --ctx
->nr_cgroups
)
975 /* no cgroup running */
979 cpuctx_entry
= &cpuctx
->cgrp_cpuctx_entry
;
981 list_add(cpuctx_entry
, this_cpu_ptr(&cgrp_cpuctx_list
));
983 list_del(cpuctx_entry
);
986 #else /* !CONFIG_CGROUP_PERF */
989 perf_cgroup_match(struct perf_event
*event
)
994 static inline void perf_detach_cgroup(struct perf_event
*event
)
997 static inline int is_cgroup_event(struct perf_event
*event
)
1002 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
1010 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
1011 struct task_struct
*next
)
1015 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
1016 struct task_struct
*task
)
1020 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
1021 struct perf_event_attr
*attr
,
1022 struct perf_event
*group_leader
)
1028 perf_cgroup_set_timestamp(struct task_struct
*task
,
1029 struct perf_event_context
*ctx
)
1034 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
1039 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
1043 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
1049 list_update_cgroup_event(struct perf_event
*event
,
1050 struct perf_event_context
*ctx
, bool add
)
1057 * set default to be dependent on timer tick just
1058 * like original code
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 * function must be called with interrupts disabled
1064 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1066 struct perf_cpu_context
*cpuctx
;
1069 lockdep_assert_irqs_disabled();
1071 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1072 rotations
= perf_rotate_context(cpuctx
);
1074 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1076 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1078 cpuctx
->hrtimer_active
= 0;
1079 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1081 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1086 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1087 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1090 /* no multiplexing needed for SW PMU */
1091 if (pmu
->task_ctx_nr
== perf_sw_context
)
1095 * check default is sane, if not set then force to
1096 * default interval (1/tick)
1098 interval
= pmu
->hrtimer_interval_ms
;
1100 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1102 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1104 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1105 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
1106 timer
->function
= perf_mux_hrtimer_handler
;
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1111 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1112 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1113 unsigned long flags
;
1115 /* not for SW PMU */
1116 if (pmu
->task_ctx_nr
== perf_sw_context
)
1119 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1120 if (!cpuctx
->hrtimer_active
) {
1121 cpuctx
->hrtimer_active
= 1;
1122 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1123 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED
);
1125 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1130 void perf_pmu_disable(struct pmu
*pmu
)
1132 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1134 pmu
->pmu_disable(pmu
);
1137 void perf_pmu_enable(struct pmu
*pmu
)
1139 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1141 pmu
->pmu_enable(pmu
);
1144 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148 * perf_event_task_tick() are fully serialized because they're strictly cpu
1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150 * disabled, while perf_event_task_tick is called from IRQ context.
1152 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1154 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1156 lockdep_assert_irqs_disabled();
1158 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1160 list_add(&ctx
->active_ctx_list
, head
);
1163 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1165 lockdep_assert_irqs_disabled();
1167 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1169 list_del_init(&ctx
->active_ctx_list
);
1172 static void get_ctx(struct perf_event_context
*ctx
)
1174 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
1177 static void free_ctx(struct rcu_head
*head
)
1179 struct perf_event_context
*ctx
;
1181 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1182 kfree(ctx
->task_ctx_data
);
1186 static void put_ctx(struct perf_event_context
*ctx
)
1188 if (atomic_dec_and_test(&ctx
->refcount
)) {
1189 if (ctx
->parent_ctx
)
1190 put_ctx(ctx
->parent_ctx
);
1191 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1192 put_task_struct(ctx
->task
);
1193 call_rcu(&ctx
->rcu_head
, free_ctx
);
1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199 * perf_pmu_migrate_context() we need some magic.
1201 * Those places that change perf_event::ctx will hold both
1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 * Lock ordering is by mutex address. There are two other sites where
1205 * perf_event_context::mutex nests and those are:
1207 * - perf_event_exit_task_context() [ child , 0 ]
1208 * perf_event_exit_event()
1209 * put_event() [ parent, 1 ]
1211 * - perf_event_init_context() [ parent, 0 ]
1212 * inherit_task_group()
1215 * perf_event_alloc()
1217 * perf_try_init_event() [ child , 1 ]
1219 * While it appears there is an obvious deadlock here -- the parent and child
1220 * nesting levels are inverted between the two. This is in fact safe because
1221 * life-time rules separate them. That is an exiting task cannot fork, and a
1222 * spawning task cannot (yet) exit.
1224 * But remember that that these are parent<->child context relations, and
1225 * migration does not affect children, therefore these two orderings should not
1228 * The change in perf_event::ctx does not affect children (as claimed above)
1229 * because the sys_perf_event_open() case will install a new event and break
1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231 * concerned with cpuctx and that doesn't have children.
1233 * The places that change perf_event::ctx will issue:
1235 * perf_remove_from_context();
1236 * synchronize_rcu();
1237 * perf_install_in_context();
1239 * to affect the change. The remove_from_context() + synchronize_rcu() should
1240 * quiesce the event, after which we can install it in the new location. This
1241 * means that only external vectors (perf_fops, prctl) can perturb the event
1242 * while in transit. Therefore all such accessors should also acquire
1243 * perf_event_context::mutex to serialize against this.
1245 * However; because event->ctx can change while we're waiting to acquire
1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1251 * task_struct::perf_event_mutex
1252 * perf_event_context::mutex
1253 * perf_event::child_mutex;
1254 * perf_event_context::lock
1255 * perf_event::mmap_mutex
1260 * cpuctx->mutex / perf_event_context::mutex
1262 static struct perf_event_context
*
1263 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1265 struct perf_event_context
*ctx
;
1269 ctx
= READ_ONCE(event
->ctx
);
1270 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
1276 mutex_lock_nested(&ctx
->mutex
, nesting
);
1277 if (event
->ctx
!= ctx
) {
1278 mutex_unlock(&ctx
->mutex
);
1286 static inline struct perf_event_context
*
1287 perf_event_ctx_lock(struct perf_event
*event
)
1289 return perf_event_ctx_lock_nested(event
, 0);
1292 static void perf_event_ctx_unlock(struct perf_event
*event
,
1293 struct perf_event_context
*ctx
)
1295 mutex_unlock(&ctx
->mutex
);
1300 * This must be done under the ctx->lock, such as to serialize against
1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302 * calling scheduler related locks and ctx->lock nests inside those.
1304 static __must_check
struct perf_event_context
*
1305 unclone_ctx(struct perf_event_context
*ctx
)
1307 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1309 lockdep_assert_held(&ctx
->lock
);
1312 ctx
->parent_ctx
= NULL
;
1318 static u32
perf_event_pid_type(struct perf_event
*event
, struct task_struct
*p
,
1323 * only top level events have the pid namespace they were created in
1326 event
= event
->parent
;
1328 nr
= __task_pid_nr_ns(p
, type
, event
->ns
);
1329 /* avoid -1 if it is idle thread or runs in another ns */
1330 if (!nr
&& !pid_alive(p
))
1335 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1337 return perf_event_pid_type(event
, p
, __PIDTYPE_TGID
);
1340 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1342 return perf_event_pid_type(event
, p
, PIDTYPE_PID
);
1346 * If we inherit events we want to return the parent event id
1349 static u64
primary_event_id(struct perf_event
*event
)
1354 id
= event
->parent
->id
;
1360 * Get the perf_event_context for a task and lock it.
1362 * This has to cope with with the fact that until it is locked,
1363 * the context could get moved to another task.
1365 static struct perf_event_context
*
1366 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1368 struct perf_event_context
*ctx
;
1372 * One of the few rules of preemptible RCU is that one cannot do
1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374 * part of the read side critical section was irqs-enabled -- see
1375 * rcu_read_unlock_special().
1377 * Since ctx->lock nests under rq->lock we must ensure the entire read
1378 * side critical section has interrupts disabled.
1380 local_irq_save(*flags
);
1382 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1385 * If this context is a clone of another, it might
1386 * get swapped for another underneath us by
1387 * perf_event_task_sched_out, though the
1388 * rcu_read_lock() protects us from any context
1389 * getting freed. Lock the context and check if it
1390 * got swapped before we could get the lock, and retry
1391 * if so. If we locked the right context, then it
1392 * can't get swapped on us any more.
1394 raw_spin_lock(&ctx
->lock
);
1395 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1396 raw_spin_unlock(&ctx
->lock
);
1398 local_irq_restore(*flags
);
1402 if (ctx
->task
== TASK_TOMBSTONE
||
1403 !atomic_inc_not_zero(&ctx
->refcount
)) {
1404 raw_spin_unlock(&ctx
->lock
);
1407 WARN_ON_ONCE(ctx
->task
!= task
);
1412 local_irq_restore(*flags
);
1417 * Get the context for a task and increment its pin_count so it
1418 * can't get swapped to another task. This also increments its
1419 * reference count so that the context can't get freed.
1421 static struct perf_event_context
*
1422 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1424 struct perf_event_context
*ctx
;
1425 unsigned long flags
;
1427 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1430 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1435 static void perf_unpin_context(struct perf_event_context
*ctx
)
1437 unsigned long flags
;
1439 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1441 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1445 * Update the record of the current time in a context.
1447 static void update_context_time(struct perf_event_context
*ctx
)
1449 u64 now
= perf_clock();
1451 ctx
->time
+= now
- ctx
->timestamp
;
1452 ctx
->timestamp
= now
;
1455 static u64
perf_event_time(struct perf_event
*event
)
1457 struct perf_event_context
*ctx
= event
->ctx
;
1459 if (is_cgroup_event(event
))
1460 return perf_cgroup_event_time(event
);
1462 return ctx
? ctx
->time
: 0;
1465 static enum event_type_t
get_event_type(struct perf_event
*event
)
1467 struct perf_event_context
*ctx
= event
->ctx
;
1468 enum event_type_t event_type
;
1470 lockdep_assert_held(&ctx
->lock
);
1473 * It's 'group type', really, because if our group leader is
1474 * pinned, so are we.
1476 if (event
->group_leader
!= event
)
1477 event
= event
->group_leader
;
1479 event_type
= event
->attr
.pinned
? EVENT_PINNED
: EVENT_FLEXIBLE
;
1481 event_type
|= EVENT_CPU
;
1487 * Helper function to initialize event group nodes.
1489 static void init_event_group(struct perf_event
*event
)
1491 RB_CLEAR_NODE(&event
->group_node
);
1492 event
->group_index
= 0;
1496 * Extract pinned or flexible groups from the context
1497 * based on event attrs bits.
1499 static struct perf_event_groups
*
1500 get_event_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1502 if (event
->attr
.pinned
)
1503 return &ctx
->pinned_groups
;
1505 return &ctx
->flexible_groups
;
1509 * Helper function to initializes perf_event_group trees.
1511 static void perf_event_groups_init(struct perf_event_groups
*groups
)
1513 groups
->tree
= RB_ROOT
;
1518 * Compare function for event groups;
1520 * Implements complex key that first sorts by CPU and then by virtual index
1521 * which provides ordering when rotating groups for the same CPU.
1524 perf_event_groups_less(struct perf_event
*left
, struct perf_event
*right
)
1526 if (left
->cpu
< right
->cpu
)
1528 if (left
->cpu
> right
->cpu
)
1531 if (left
->group_index
< right
->group_index
)
1533 if (left
->group_index
> right
->group_index
)
1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541 * key (see perf_event_groups_less). This places it last inside the CPU
1545 perf_event_groups_insert(struct perf_event_groups
*groups
,
1546 struct perf_event
*event
)
1548 struct perf_event
*node_event
;
1549 struct rb_node
*parent
;
1550 struct rb_node
**node
;
1552 event
->group_index
= ++groups
->index
;
1554 node
= &groups
->tree
.rb_node
;
1559 node_event
= container_of(*node
, struct perf_event
, group_node
);
1561 if (perf_event_groups_less(event
, node_event
))
1562 node
= &parent
->rb_left
;
1564 node
= &parent
->rb_right
;
1567 rb_link_node(&event
->group_node
, parent
, node
);
1568 rb_insert_color(&event
->group_node
, &groups
->tree
);
1572 * Helper function to insert event into the pinned or flexible groups.
1575 add_event_to_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1577 struct perf_event_groups
*groups
;
1579 groups
= get_event_groups(event
, ctx
);
1580 perf_event_groups_insert(groups
, event
);
1584 * Delete a group from a tree.
1587 perf_event_groups_delete(struct perf_event_groups
*groups
,
1588 struct perf_event
*event
)
1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event
->group_node
) ||
1591 RB_EMPTY_ROOT(&groups
->tree
));
1593 rb_erase(&event
->group_node
, &groups
->tree
);
1594 init_event_group(event
);
1598 * Helper function to delete event from its groups.
1601 del_event_from_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1603 struct perf_event_groups
*groups
;
1605 groups
= get_event_groups(event
, ctx
);
1606 perf_event_groups_delete(groups
, event
);
1610 * Get the leftmost event in the @cpu subtree.
1612 static struct perf_event
*
1613 perf_event_groups_first(struct perf_event_groups
*groups
, int cpu
)
1615 struct perf_event
*node_event
= NULL
, *match
= NULL
;
1616 struct rb_node
*node
= groups
->tree
.rb_node
;
1619 node_event
= container_of(node
, struct perf_event
, group_node
);
1621 if (cpu
< node_event
->cpu
) {
1622 node
= node
->rb_left
;
1623 } else if (cpu
> node_event
->cpu
) {
1624 node
= node
->rb_right
;
1627 node
= node
->rb_left
;
1635 * Like rb_entry_next_safe() for the @cpu subtree.
1637 static struct perf_event
*
1638 perf_event_groups_next(struct perf_event
*event
)
1640 struct perf_event
*next
;
1642 next
= rb_entry_safe(rb_next(&event
->group_node
), typeof(*event
), group_node
);
1643 if (next
&& next
->cpu
== event
->cpu
)
1650 * Iterate through the whole groups tree.
1652 #define perf_event_groups_for_each(event, groups) \
1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1654 typeof(*event), group_node); event; \
1655 event = rb_entry_safe(rb_next(&event->group_node), \
1656 typeof(*event), group_node))
1659 * Add an event from the lists for its context.
1660 * Must be called with ctx->mutex and ctx->lock held.
1663 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1665 lockdep_assert_held(&ctx
->lock
);
1667 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1668 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1670 event
->tstamp
= perf_event_time(event
);
1673 * If we're a stand alone event or group leader, we go to the context
1674 * list, group events are kept attached to the group so that
1675 * perf_group_detach can, at all times, locate all siblings.
1677 if (event
->group_leader
== event
) {
1678 event
->group_caps
= event
->event_caps
;
1679 add_event_to_groups(event
, ctx
);
1682 list_update_cgroup_event(event
, ctx
, true);
1684 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1686 if (event
->attr
.inherit_stat
)
1693 * Initialize event state based on the perf_event_attr::disabled.
1695 static inline void perf_event__state_init(struct perf_event
*event
)
1697 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1698 PERF_EVENT_STATE_INACTIVE
;
1701 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1703 int entry
= sizeof(u64
); /* value */
1707 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1708 size
+= sizeof(u64
);
1710 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1711 size
+= sizeof(u64
);
1713 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1714 entry
+= sizeof(u64
);
1716 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1718 size
+= sizeof(u64
);
1722 event
->read_size
= size
;
1725 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1727 struct perf_sample_data
*data
;
1730 if (sample_type
& PERF_SAMPLE_IP
)
1731 size
+= sizeof(data
->ip
);
1733 if (sample_type
& PERF_SAMPLE_ADDR
)
1734 size
+= sizeof(data
->addr
);
1736 if (sample_type
& PERF_SAMPLE_PERIOD
)
1737 size
+= sizeof(data
->period
);
1739 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1740 size
+= sizeof(data
->weight
);
1742 if (sample_type
& PERF_SAMPLE_READ
)
1743 size
+= event
->read_size
;
1745 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1746 size
+= sizeof(data
->data_src
.val
);
1748 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1749 size
+= sizeof(data
->txn
);
1751 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
1752 size
+= sizeof(data
->phys_addr
);
1754 event
->header_size
= size
;
1758 * Called at perf_event creation and when events are attached/detached from a
1761 static void perf_event__header_size(struct perf_event
*event
)
1763 __perf_event_read_size(event
,
1764 event
->group_leader
->nr_siblings
);
1765 __perf_event_header_size(event
, event
->attr
.sample_type
);
1768 static void perf_event__id_header_size(struct perf_event
*event
)
1770 struct perf_sample_data
*data
;
1771 u64 sample_type
= event
->attr
.sample_type
;
1774 if (sample_type
& PERF_SAMPLE_TID
)
1775 size
+= sizeof(data
->tid_entry
);
1777 if (sample_type
& PERF_SAMPLE_TIME
)
1778 size
+= sizeof(data
->time
);
1780 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1781 size
+= sizeof(data
->id
);
1783 if (sample_type
& PERF_SAMPLE_ID
)
1784 size
+= sizeof(data
->id
);
1786 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1787 size
+= sizeof(data
->stream_id
);
1789 if (sample_type
& PERF_SAMPLE_CPU
)
1790 size
+= sizeof(data
->cpu_entry
);
1792 event
->id_header_size
= size
;
1795 static bool perf_event_validate_size(struct perf_event
*event
)
1798 * The values computed here will be over-written when we actually
1801 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1802 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1803 perf_event__id_header_size(event
);
1806 * Sum the lot; should not exceed the 64k limit we have on records.
1807 * Conservative limit to allow for callchains and other variable fields.
1809 if (event
->read_size
+ event
->header_size
+
1810 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1816 static void perf_group_attach(struct perf_event
*event
)
1818 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1820 lockdep_assert_held(&event
->ctx
->lock
);
1823 * We can have double attach due to group movement in perf_event_open.
1825 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1828 event
->attach_state
|= PERF_ATTACH_GROUP
;
1830 if (group_leader
== event
)
1833 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1835 group_leader
->group_caps
&= event
->event_caps
;
1837 list_add_tail(&event
->sibling_list
, &group_leader
->sibling_list
);
1838 group_leader
->nr_siblings
++;
1840 perf_event__header_size(group_leader
);
1842 for_each_sibling_event(pos
, group_leader
)
1843 perf_event__header_size(pos
);
1847 * Remove an event from the lists for its context.
1848 * Must be called with ctx->mutex and ctx->lock held.
1851 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1853 WARN_ON_ONCE(event
->ctx
!= ctx
);
1854 lockdep_assert_held(&ctx
->lock
);
1857 * We can have double detach due to exit/hot-unplug + close.
1859 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1862 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1864 list_update_cgroup_event(event
, ctx
, false);
1867 if (event
->attr
.inherit_stat
)
1870 list_del_rcu(&event
->event_entry
);
1872 if (event
->group_leader
== event
)
1873 del_event_from_groups(event
, ctx
);
1876 * If event was in error state, then keep it
1877 * that way, otherwise bogus counts will be
1878 * returned on read(). The only way to get out
1879 * of error state is by explicit re-enabling
1882 if (event
->state
> PERF_EVENT_STATE_OFF
)
1883 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
1888 static void perf_group_detach(struct perf_event
*event
)
1890 struct perf_event
*sibling
, *tmp
;
1891 struct perf_event_context
*ctx
= event
->ctx
;
1893 lockdep_assert_held(&ctx
->lock
);
1896 * We can have double detach due to exit/hot-unplug + close.
1898 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
1901 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
1904 * If this is a sibling, remove it from its group.
1906 if (event
->group_leader
!= event
) {
1907 list_del_init(&event
->sibling_list
);
1908 event
->group_leader
->nr_siblings
--;
1913 * If this was a group event with sibling events then
1914 * upgrade the siblings to singleton events by adding them
1915 * to whatever list we are on.
1917 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, sibling_list
) {
1919 sibling
->group_leader
= sibling
;
1920 list_del_init(&sibling
->sibling_list
);
1922 /* Inherit group flags from the previous leader */
1923 sibling
->group_caps
= event
->group_caps
;
1925 if (!RB_EMPTY_NODE(&event
->group_node
)) {
1926 add_event_to_groups(sibling
, event
->ctx
);
1928 if (sibling
->state
== PERF_EVENT_STATE_ACTIVE
) {
1929 struct list_head
*list
= sibling
->attr
.pinned
?
1930 &ctx
->pinned_active
: &ctx
->flexible_active
;
1932 list_add_tail(&sibling
->active_list
, list
);
1936 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
1940 perf_event__header_size(event
->group_leader
);
1942 for_each_sibling_event(tmp
, event
->group_leader
)
1943 perf_event__header_size(tmp
);
1946 static bool is_orphaned_event(struct perf_event
*event
)
1948 return event
->state
== PERF_EVENT_STATE_DEAD
;
1951 static inline int __pmu_filter_match(struct perf_event
*event
)
1953 struct pmu
*pmu
= event
->pmu
;
1954 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
1958 * Check whether we should attempt to schedule an event group based on
1959 * PMU-specific filtering. An event group can consist of HW and SW events,
1960 * potentially with a SW leader, so we must check all the filters, to
1961 * determine whether a group is schedulable:
1963 static inline int pmu_filter_match(struct perf_event
*event
)
1965 struct perf_event
*sibling
;
1967 if (!__pmu_filter_match(event
))
1970 for_each_sibling_event(sibling
, event
) {
1971 if (!__pmu_filter_match(sibling
))
1979 event_filter_match(struct perf_event
*event
)
1981 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
1982 perf_cgroup_match(event
) && pmu_filter_match(event
);
1986 event_sched_out(struct perf_event
*event
,
1987 struct perf_cpu_context
*cpuctx
,
1988 struct perf_event_context
*ctx
)
1990 enum perf_event_state state
= PERF_EVENT_STATE_INACTIVE
;
1992 WARN_ON_ONCE(event
->ctx
!= ctx
);
1993 lockdep_assert_held(&ctx
->lock
);
1995 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 * we can schedule events _OUT_ individually through things like
2001 * __perf_remove_from_context().
2003 list_del_init(&event
->active_list
);
2005 perf_pmu_disable(event
->pmu
);
2007 event
->pmu
->del(event
, 0);
2010 if (event
->pending_disable
) {
2011 event
->pending_disable
= 0;
2012 state
= PERF_EVENT_STATE_OFF
;
2014 perf_event_set_state(event
, state
);
2016 if (!is_software_event(event
))
2017 cpuctx
->active_oncpu
--;
2018 if (!--ctx
->nr_active
)
2019 perf_event_ctx_deactivate(ctx
);
2020 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2022 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
2023 cpuctx
->exclusive
= 0;
2025 perf_pmu_enable(event
->pmu
);
2029 group_sched_out(struct perf_event
*group_event
,
2030 struct perf_cpu_context
*cpuctx
,
2031 struct perf_event_context
*ctx
)
2033 struct perf_event
*event
;
2035 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2038 perf_pmu_disable(ctx
->pmu
);
2040 event_sched_out(group_event
, cpuctx
, ctx
);
2043 * Schedule out siblings (if any):
2045 for_each_sibling_event(event
, group_event
)
2046 event_sched_out(event
, cpuctx
, ctx
);
2048 perf_pmu_enable(ctx
->pmu
);
2050 if (group_event
->attr
.exclusive
)
2051 cpuctx
->exclusive
= 0;
2054 #define DETACH_GROUP 0x01UL
2057 * Cross CPU call to remove a performance event
2059 * We disable the event on the hardware level first. After that we
2060 * remove it from the context list.
2063 __perf_remove_from_context(struct perf_event
*event
,
2064 struct perf_cpu_context
*cpuctx
,
2065 struct perf_event_context
*ctx
,
2068 unsigned long flags
= (unsigned long)info
;
2070 if (ctx
->is_active
& EVENT_TIME
) {
2071 update_context_time(ctx
);
2072 update_cgrp_time_from_cpuctx(cpuctx
);
2075 event_sched_out(event
, cpuctx
, ctx
);
2076 if (flags
& DETACH_GROUP
)
2077 perf_group_detach(event
);
2078 list_del_event(event
, ctx
);
2080 if (!ctx
->nr_events
&& ctx
->is_active
) {
2083 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2084 cpuctx
->task_ctx
= NULL
;
2090 * Remove the event from a task's (or a CPU's) list of events.
2092 * If event->ctx is a cloned context, callers must make sure that
2093 * every task struct that event->ctx->task could possibly point to
2094 * remains valid. This is OK when called from perf_release since
2095 * that only calls us on the top-level context, which can't be a clone.
2096 * When called from perf_event_exit_task, it's OK because the
2097 * context has been detached from its task.
2099 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
2101 struct perf_event_context
*ctx
= event
->ctx
;
2103 lockdep_assert_held(&ctx
->mutex
);
2105 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
2108 * The above event_function_call() can NO-OP when it hits
2109 * TASK_TOMBSTONE. In that case we must already have been detached
2110 * from the context (by perf_event_exit_event()) but the grouping
2111 * might still be in-tact.
2113 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
2114 if ((flags
& DETACH_GROUP
) &&
2115 (event
->attach_state
& PERF_ATTACH_GROUP
)) {
2117 * Since in that case we cannot possibly be scheduled, simply
2120 raw_spin_lock_irq(&ctx
->lock
);
2121 perf_group_detach(event
);
2122 raw_spin_unlock_irq(&ctx
->lock
);
2127 * Cross CPU call to disable a performance event
2129 static void __perf_event_disable(struct perf_event
*event
,
2130 struct perf_cpu_context
*cpuctx
,
2131 struct perf_event_context
*ctx
,
2134 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
2137 if (ctx
->is_active
& EVENT_TIME
) {
2138 update_context_time(ctx
);
2139 update_cgrp_time_from_event(event
);
2142 if (event
== event
->group_leader
)
2143 group_sched_out(event
, cpuctx
, ctx
);
2145 event_sched_out(event
, cpuctx
, ctx
);
2147 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
2155 * remains valid. This condition is satisifed when called through
2156 * perf_event_for_each_child or perf_event_for_each because they
2157 * hold the top-level event's child_mutex, so any descendant that
2158 * goes to exit will block in perf_event_exit_event().
2160 * When called from perf_pending_event it's OK because event->ctx
2161 * is the current context on this CPU and preemption is disabled,
2162 * hence we can't get into perf_event_task_sched_out for this context.
2164 static void _perf_event_disable(struct perf_event
*event
)
2166 struct perf_event_context
*ctx
= event
->ctx
;
2168 raw_spin_lock_irq(&ctx
->lock
);
2169 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
2170 raw_spin_unlock_irq(&ctx
->lock
);
2173 raw_spin_unlock_irq(&ctx
->lock
);
2175 event_function_call(event
, __perf_event_disable
, NULL
);
2178 void perf_event_disable_local(struct perf_event
*event
)
2180 event_function_local(event
, __perf_event_disable
, NULL
);
2184 * Strictly speaking kernel users cannot create groups and therefore this
2185 * interface does not need the perf_event_ctx_lock() magic.
2187 void perf_event_disable(struct perf_event
*event
)
2189 struct perf_event_context
*ctx
;
2191 ctx
= perf_event_ctx_lock(event
);
2192 _perf_event_disable(event
);
2193 perf_event_ctx_unlock(event
, ctx
);
2195 EXPORT_SYMBOL_GPL(perf_event_disable
);
2197 void perf_event_disable_inatomic(struct perf_event
*event
)
2199 event
->pending_disable
= 1;
2200 irq_work_queue(&event
->pending
);
2203 static void perf_set_shadow_time(struct perf_event
*event
,
2204 struct perf_event_context
*ctx
)
2207 * use the correct time source for the time snapshot
2209 * We could get by without this by leveraging the
2210 * fact that to get to this function, the caller
2211 * has most likely already called update_context_time()
2212 * and update_cgrp_time_xx() and thus both timestamp
2213 * are identical (or very close). Given that tstamp is,
2214 * already adjusted for cgroup, we could say that:
2215 * tstamp - ctx->timestamp
2217 * tstamp - cgrp->timestamp.
2219 * Then, in perf_output_read(), the calculation would
2220 * work with no changes because:
2221 * - event is guaranteed scheduled in
2222 * - no scheduled out in between
2223 * - thus the timestamp would be the same
2225 * But this is a bit hairy.
2227 * So instead, we have an explicit cgroup call to remain
2228 * within the time time source all along. We believe it
2229 * is cleaner and simpler to understand.
2231 if (is_cgroup_event(event
))
2232 perf_cgroup_set_shadow_time(event
, event
->tstamp
);
2234 event
->shadow_ctx_time
= event
->tstamp
- ctx
->timestamp
;
2237 #define MAX_INTERRUPTS (~0ULL)
2239 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2240 static void perf_log_itrace_start(struct perf_event
*event
);
2243 event_sched_in(struct perf_event
*event
,
2244 struct perf_cpu_context
*cpuctx
,
2245 struct perf_event_context
*ctx
)
2249 lockdep_assert_held(&ctx
->lock
);
2251 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2254 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2256 * Order event::oncpu write to happen before the ACTIVE state is
2257 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 * ->oncpu if it sees ACTIVE.
2261 perf_event_set_state(event
, PERF_EVENT_STATE_ACTIVE
);
2264 * Unthrottle events, since we scheduled we might have missed several
2265 * ticks already, also for a heavily scheduling task there is little
2266 * guarantee it'll get a tick in a timely manner.
2268 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2269 perf_log_throttle(event
, 1);
2270 event
->hw
.interrupts
= 0;
2273 perf_pmu_disable(event
->pmu
);
2275 perf_set_shadow_time(event
, ctx
);
2277 perf_log_itrace_start(event
);
2279 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2280 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2286 if (!is_software_event(event
))
2287 cpuctx
->active_oncpu
++;
2288 if (!ctx
->nr_active
++)
2289 perf_event_ctx_activate(ctx
);
2290 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2293 if (event
->attr
.exclusive
)
2294 cpuctx
->exclusive
= 1;
2297 perf_pmu_enable(event
->pmu
);
2303 group_sched_in(struct perf_event
*group_event
,
2304 struct perf_cpu_context
*cpuctx
,
2305 struct perf_event_context
*ctx
)
2307 struct perf_event
*event
, *partial_group
= NULL
;
2308 struct pmu
*pmu
= ctx
->pmu
;
2310 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2313 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2315 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2316 pmu
->cancel_txn(pmu
);
2317 perf_mux_hrtimer_restart(cpuctx
);
2322 * Schedule in siblings as one group (if any):
2324 for_each_sibling_event(event
, group_event
) {
2325 if (event_sched_in(event
, cpuctx
, ctx
)) {
2326 partial_group
= event
;
2331 if (!pmu
->commit_txn(pmu
))
2336 * Groups can be scheduled in as one unit only, so undo any
2337 * partial group before returning:
2338 * The events up to the failed event are scheduled out normally.
2340 for_each_sibling_event(event
, group_event
) {
2341 if (event
== partial_group
)
2344 event_sched_out(event
, cpuctx
, ctx
);
2346 event_sched_out(group_event
, cpuctx
, ctx
);
2348 pmu
->cancel_txn(pmu
);
2350 perf_mux_hrtimer_restart(cpuctx
);
2356 * Work out whether we can put this event group on the CPU now.
2358 static int group_can_go_on(struct perf_event
*event
,
2359 struct perf_cpu_context
*cpuctx
,
2363 * Groups consisting entirely of software events can always go on.
2365 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2368 * If an exclusive group is already on, no other hardware
2371 if (cpuctx
->exclusive
)
2374 * If this group is exclusive and there are already
2375 * events on the CPU, it can't go on.
2377 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2380 * Otherwise, try to add it if all previous groups were able
2386 static void add_event_to_ctx(struct perf_event
*event
,
2387 struct perf_event_context
*ctx
)
2389 list_add_event(event
, ctx
);
2390 perf_group_attach(event
);
2393 static void ctx_sched_out(struct perf_event_context
*ctx
,
2394 struct perf_cpu_context
*cpuctx
,
2395 enum event_type_t event_type
);
2397 ctx_sched_in(struct perf_event_context
*ctx
,
2398 struct perf_cpu_context
*cpuctx
,
2399 enum event_type_t event_type
,
2400 struct task_struct
*task
);
2402 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2403 struct perf_event_context
*ctx
,
2404 enum event_type_t event_type
)
2406 if (!cpuctx
->task_ctx
)
2409 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2412 ctx_sched_out(ctx
, cpuctx
, event_type
);
2415 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2416 struct perf_event_context
*ctx
,
2417 struct task_struct
*task
)
2419 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2421 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2422 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2424 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2428 * We want to maintain the following priority of scheduling:
2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430 * - task pinned (EVENT_PINNED)
2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432 * - task flexible (EVENT_FLEXIBLE).
2434 * In order to avoid unscheduling and scheduling back in everything every
2435 * time an event is added, only do it for the groups of equal priority and
2438 * This can be called after a batch operation on task events, in which case
2439 * event_type is a bit mask of the types of events involved. For CPU events,
2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2442 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2443 struct perf_event_context
*task_ctx
,
2444 enum event_type_t event_type
)
2446 enum event_type_t ctx_event_type
;
2447 bool cpu_event
= !!(event_type
& EVENT_CPU
);
2450 * If pinned groups are involved, flexible groups also need to be
2453 if (event_type
& EVENT_PINNED
)
2454 event_type
|= EVENT_FLEXIBLE
;
2456 ctx_event_type
= event_type
& EVENT_ALL
;
2458 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2460 task_ctx_sched_out(cpuctx
, task_ctx
, event_type
);
2463 * Decide which cpu ctx groups to schedule out based on the types
2464 * of events that caused rescheduling:
2465 * - EVENT_CPU: schedule out corresponding groups;
2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 * - otherwise, do nothing more.
2470 cpu_ctx_sched_out(cpuctx
, ctx_event_type
);
2471 else if (ctx_event_type
& EVENT_PINNED
)
2472 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2474 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2475 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2479 * Cross CPU call to install and enable a performance event
2481 * Very similar to remote_function() + event_function() but cannot assume that
2482 * things like ctx->is_active and cpuctx->task_ctx are set.
2484 static int __perf_install_in_context(void *info
)
2486 struct perf_event
*event
= info
;
2487 struct perf_event_context
*ctx
= event
->ctx
;
2488 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2489 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2490 bool reprogram
= true;
2493 raw_spin_lock(&cpuctx
->ctx
.lock
);
2495 raw_spin_lock(&ctx
->lock
);
2498 reprogram
= (ctx
->task
== current
);
2501 * If the task is running, it must be running on this CPU,
2502 * otherwise we cannot reprogram things.
2504 * If its not running, we don't care, ctx->lock will
2505 * serialize against it becoming runnable.
2507 if (task_curr(ctx
->task
) && !reprogram
) {
2512 WARN_ON_ONCE(reprogram
&& cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2513 } else if (task_ctx
) {
2514 raw_spin_lock(&task_ctx
->lock
);
2517 #ifdef CONFIG_CGROUP_PERF
2518 if (is_cgroup_event(event
)) {
2520 * If the current cgroup doesn't match the event's
2521 * cgroup, we should not try to schedule it.
2523 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
2524 reprogram
= cgroup_is_descendant(cgrp
->css
.cgroup
,
2525 event
->cgrp
->css
.cgroup
);
2530 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2531 add_event_to_ctx(event
, ctx
);
2532 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2534 add_event_to_ctx(event
, ctx
);
2538 perf_ctx_unlock(cpuctx
, task_ctx
);
2544 * Attach a performance event to a context.
2546 * Very similar to event_function_call, see comment there.
2549 perf_install_in_context(struct perf_event_context
*ctx
,
2550 struct perf_event
*event
,
2553 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2555 lockdep_assert_held(&ctx
->mutex
);
2557 if (event
->cpu
!= -1)
2561 * Ensures that if we can observe event->ctx, both the event and ctx
2562 * will be 'complete'. See perf_iterate_sb_cpu().
2564 smp_store_release(&event
->ctx
, ctx
);
2567 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2572 * Should not happen, we validate the ctx is still alive before calling.
2574 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2578 * Installing events is tricky because we cannot rely on ctx->is_active
2579 * to be set in case this is the nr_events 0 -> 1 transition.
2581 * Instead we use task_curr(), which tells us if the task is running.
2582 * However, since we use task_curr() outside of rq::lock, we can race
2583 * against the actual state. This means the result can be wrong.
2585 * If we get a false positive, we retry, this is harmless.
2587 * If we get a false negative, things are complicated. If we are after
2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 * value must be correct. If we're before, it doesn't matter since
2590 * perf_event_context_sched_in() will program the counter.
2592 * However, this hinges on the remote context switch having observed
2593 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 * ctx::lock in perf_event_context_sched_in().
2596 * We do this by task_function_call(), if the IPI fails to hit the task
2597 * we know any future context switch of task must see the
2598 * perf_event_ctpx[] store.
2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 * task_cpu() load, such that if the IPI then does not find the task
2604 * running, a future context switch of that task must observe the
2609 if (!task_function_call(task
, __perf_install_in_context
, event
))
2612 raw_spin_lock_irq(&ctx
->lock
);
2614 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2616 * Cannot happen because we already checked above (which also
2617 * cannot happen), and we hold ctx->mutex, which serializes us
2618 * against perf_event_exit_task_context().
2620 raw_spin_unlock_irq(&ctx
->lock
);
2624 * If the task is not running, ctx->lock will avoid it becoming so,
2625 * thus we can safely install the event.
2627 if (task_curr(task
)) {
2628 raw_spin_unlock_irq(&ctx
->lock
);
2631 add_event_to_ctx(event
, ctx
);
2632 raw_spin_unlock_irq(&ctx
->lock
);
2636 * Cross CPU call to enable a performance event
2638 static void __perf_event_enable(struct perf_event
*event
,
2639 struct perf_cpu_context
*cpuctx
,
2640 struct perf_event_context
*ctx
,
2643 struct perf_event
*leader
= event
->group_leader
;
2644 struct perf_event_context
*task_ctx
;
2646 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2647 event
->state
<= PERF_EVENT_STATE_ERROR
)
2651 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2653 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2655 if (!ctx
->is_active
)
2658 if (!event_filter_match(event
)) {
2659 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2664 * If the event is in a group and isn't the group leader,
2665 * then don't put it on unless the group is on.
2667 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2668 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2672 task_ctx
= cpuctx
->task_ctx
;
2674 WARN_ON_ONCE(task_ctx
!= ctx
);
2676 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2682 * If event->ctx is a cloned context, callers must make sure that
2683 * every task struct that event->ctx->task could possibly point to
2684 * remains valid. This condition is satisfied when called through
2685 * perf_event_for_each_child or perf_event_for_each as described
2686 * for perf_event_disable.
2688 static void _perf_event_enable(struct perf_event
*event
)
2690 struct perf_event_context
*ctx
= event
->ctx
;
2692 raw_spin_lock_irq(&ctx
->lock
);
2693 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2694 event
->state
< PERF_EVENT_STATE_ERROR
) {
2695 raw_spin_unlock_irq(&ctx
->lock
);
2700 * If the event is in error state, clear that first.
2702 * That way, if we see the event in error state below, we know that it
2703 * has gone back into error state, as distinct from the task having
2704 * been scheduled away before the cross-call arrived.
2706 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2707 event
->state
= PERF_EVENT_STATE_OFF
;
2708 raw_spin_unlock_irq(&ctx
->lock
);
2710 event_function_call(event
, __perf_event_enable
, NULL
);
2714 * See perf_event_disable();
2716 void perf_event_enable(struct perf_event
*event
)
2718 struct perf_event_context
*ctx
;
2720 ctx
= perf_event_ctx_lock(event
);
2721 _perf_event_enable(event
);
2722 perf_event_ctx_unlock(event
, ctx
);
2724 EXPORT_SYMBOL_GPL(perf_event_enable
);
2726 struct stop_event_data
{
2727 struct perf_event
*event
;
2728 unsigned int restart
;
2731 static int __perf_event_stop(void *info
)
2733 struct stop_event_data
*sd
= info
;
2734 struct perf_event
*event
= sd
->event
;
2736 /* if it's already INACTIVE, do nothing */
2737 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2740 /* matches smp_wmb() in event_sched_in() */
2744 * There is a window with interrupts enabled before we get here,
2745 * so we need to check again lest we try to stop another CPU's event.
2747 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
2750 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2753 * May race with the actual stop (through perf_pmu_output_stop()),
2754 * but it is only used for events with AUX ring buffer, and such
2755 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 * see comments in perf_aux_output_begin().
2758 * Since this is happening on an event-local CPU, no trace is lost
2762 event
->pmu
->start(event
, 0);
2767 static int perf_event_stop(struct perf_event
*event
, int restart
)
2769 struct stop_event_data sd
= {
2776 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2779 /* matches smp_wmb() in event_sched_in() */
2783 * We only want to restart ACTIVE events, so if the event goes
2784 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 * fall through with ret==-ENXIO.
2787 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
2788 __perf_event_stop
, &sd
);
2789 } while (ret
== -EAGAIN
);
2795 * In order to contain the amount of racy and tricky in the address filter
2796 * configuration management, it is a two part process:
2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799 * we update the addresses of corresponding vmas in
2800 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2801 * (p2) when an event is scheduled in (pmu::add), it calls
2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803 * if the generation has changed since the previous call.
2805 * If (p1) happens while the event is active, we restart it to force (p2).
2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2816 void perf_event_addr_filters_sync(struct perf_event
*event
)
2818 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
2820 if (!has_addr_filter(event
))
2823 raw_spin_lock(&ifh
->lock
);
2824 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
2825 event
->pmu
->addr_filters_sync(event
);
2826 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
2828 raw_spin_unlock(&ifh
->lock
);
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
2832 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2835 * not supported on inherited events
2837 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2840 atomic_add(refresh
, &event
->event_limit
);
2841 _perf_event_enable(event
);
2847 * See perf_event_disable()
2849 int perf_event_refresh(struct perf_event
*event
, int refresh
)
2851 struct perf_event_context
*ctx
;
2854 ctx
= perf_event_ctx_lock(event
);
2855 ret
= _perf_event_refresh(event
, refresh
);
2856 perf_event_ctx_unlock(event
, ctx
);
2860 EXPORT_SYMBOL_GPL(perf_event_refresh
);
2862 static int perf_event_modify_breakpoint(struct perf_event
*bp
,
2863 struct perf_event_attr
*attr
)
2867 _perf_event_disable(bp
);
2869 err
= modify_user_hw_breakpoint_check(bp
, attr
, true);
2871 if (!bp
->attr
.disabled
)
2872 _perf_event_enable(bp
);
2877 if (!attr
->disabled
)
2878 _perf_event_enable(bp
);
2882 static int perf_event_modify_attr(struct perf_event
*event
,
2883 struct perf_event_attr
*attr
)
2885 if (event
->attr
.type
!= attr
->type
)
2888 switch (event
->attr
.type
) {
2889 case PERF_TYPE_BREAKPOINT
:
2890 return perf_event_modify_breakpoint(event
, attr
);
2892 /* Place holder for future additions. */
2897 static void ctx_sched_out(struct perf_event_context
*ctx
,
2898 struct perf_cpu_context
*cpuctx
,
2899 enum event_type_t event_type
)
2901 struct perf_event
*event
, *tmp
;
2902 int is_active
= ctx
->is_active
;
2904 lockdep_assert_held(&ctx
->lock
);
2906 if (likely(!ctx
->nr_events
)) {
2908 * See __perf_remove_from_context().
2910 WARN_ON_ONCE(ctx
->is_active
);
2912 WARN_ON_ONCE(cpuctx
->task_ctx
);
2916 ctx
->is_active
&= ~event_type
;
2917 if (!(ctx
->is_active
& EVENT_ALL
))
2921 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2922 if (!ctx
->is_active
)
2923 cpuctx
->task_ctx
= NULL
;
2927 * Always update time if it was set; not only when it changes.
2928 * Otherwise we can 'forget' to update time for any but the last
2929 * context we sched out. For example:
2931 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932 * ctx_sched_out(.event_type = EVENT_PINNED)
2934 * would only update time for the pinned events.
2936 if (is_active
& EVENT_TIME
) {
2937 /* update (and stop) ctx time */
2938 update_context_time(ctx
);
2939 update_cgrp_time_from_cpuctx(cpuctx
);
2942 is_active
^= ctx
->is_active
; /* changed bits */
2944 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
2947 perf_pmu_disable(ctx
->pmu
);
2948 if (is_active
& EVENT_PINNED
) {
2949 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_active
, active_list
)
2950 group_sched_out(event
, cpuctx
, ctx
);
2953 if (is_active
& EVENT_FLEXIBLE
) {
2954 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_active
, active_list
)
2955 group_sched_out(event
, cpuctx
, ctx
);
2957 perf_pmu_enable(ctx
->pmu
);
2961 * Test whether two contexts are equivalent, i.e. whether they have both been
2962 * cloned from the same version of the same context.
2964 * Equivalence is measured using a generation number in the context that is
2965 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966 * and list_del_event().
2968 static int context_equiv(struct perf_event_context
*ctx1
,
2969 struct perf_event_context
*ctx2
)
2971 lockdep_assert_held(&ctx1
->lock
);
2972 lockdep_assert_held(&ctx2
->lock
);
2974 /* Pinning disables the swap optimization */
2975 if (ctx1
->pin_count
|| ctx2
->pin_count
)
2978 /* If ctx1 is the parent of ctx2 */
2979 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
2982 /* If ctx2 is the parent of ctx1 */
2983 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
2987 * If ctx1 and ctx2 have the same parent; we flatten the parent
2988 * hierarchy, see perf_event_init_context().
2990 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
2991 ctx1
->parent_gen
== ctx2
->parent_gen
)
2998 static void __perf_event_sync_stat(struct perf_event
*event
,
2999 struct perf_event
*next_event
)
3003 if (!event
->attr
.inherit_stat
)
3007 * Update the event value, we cannot use perf_event_read()
3008 * because we're in the middle of a context switch and have IRQs
3009 * disabled, which upsets smp_call_function_single(), however
3010 * we know the event must be on the current CPU, therefore we
3011 * don't need to use it.
3013 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3014 event
->pmu
->read(event
);
3016 perf_event_update_time(event
);
3019 * In order to keep per-task stats reliable we need to flip the event
3020 * values when we flip the contexts.
3022 value
= local64_read(&next_event
->count
);
3023 value
= local64_xchg(&event
->count
, value
);
3024 local64_set(&next_event
->count
, value
);
3026 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
3027 swap(event
->total_time_running
, next_event
->total_time_running
);
3030 * Since we swizzled the values, update the user visible data too.
3032 perf_event_update_userpage(event
);
3033 perf_event_update_userpage(next_event
);
3036 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
3037 struct perf_event_context
*next_ctx
)
3039 struct perf_event
*event
, *next_event
;
3044 update_context_time(ctx
);
3046 event
= list_first_entry(&ctx
->event_list
,
3047 struct perf_event
, event_entry
);
3049 next_event
= list_first_entry(&next_ctx
->event_list
,
3050 struct perf_event
, event_entry
);
3052 while (&event
->event_entry
!= &ctx
->event_list
&&
3053 &next_event
->event_entry
!= &next_ctx
->event_list
) {
3055 __perf_event_sync_stat(event
, next_event
);
3057 event
= list_next_entry(event
, event_entry
);
3058 next_event
= list_next_entry(next_event
, event_entry
);
3062 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
3063 struct task_struct
*next
)
3065 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
3066 struct perf_event_context
*next_ctx
;
3067 struct perf_event_context
*parent
, *next_parent
;
3068 struct perf_cpu_context
*cpuctx
;
3074 cpuctx
= __get_cpu_context(ctx
);
3075 if (!cpuctx
->task_ctx
)
3079 next_ctx
= next
->perf_event_ctxp
[ctxn
];
3083 parent
= rcu_dereference(ctx
->parent_ctx
);
3084 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
3086 /* If neither context have a parent context; they cannot be clones. */
3087 if (!parent
&& !next_parent
)
3090 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
3092 * Looks like the two contexts are clones, so we might be
3093 * able to optimize the context switch. We lock both
3094 * contexts and check that they are clones under the
3095 * lock (including re-checking that neither has been
3096 * uncloned in the meantime). It doesn't matter which
3097 * order we take the locks because no other cpu could
3098 * be trying to lock both of these tasks.
3100 raw_spin_lock(&ctx
->lock
);
3101 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
3102 if (context_equiv(ctx
, next_ctx
)) {
3103 WRITE_ONCE(ctx
->task
, next
);
3104 WRITE_ONCE(next_ctx
->task
, task
);
3106 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
3109 * RCU_INIT_POINTER here is safe because we've not
3110 * modified the ctx and the above modification of
3111 * ctx->task and ctx->task_ctx_data are immaterial
3112 * since those values are always verified under
3113 * ctx->lock which we're now holding.
3115 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
3116 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
3120 perf_event_sync_stat(ctx
, next_ctx
);
3122 raw_spin_unlock(&next_ctx
->lock
);
3123 raw_spin_unlock(&ctx
->lock
);
3129 raw_spin_lock(&ctx
->lock
);
3130 task_ctx_sched_out(cpuctx
, ctx
, EVENT_ALL
);
3131 raw_spin_unlock(&ctx
->lock
);
3135 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
3137 void perf_sched_cb_dec(struct pmu
*pmu
)
3139 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3141 this_cpu_dec(perf_sched_cb_usages
);
3143 if (!--cpuctx
->sched_cb_usage
)
3144 list_del(&cpuctx
->sched_cb_entry
);
3148 void perf_sched_cb_inc(struct pmu
*pmu
)
3150 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3152 if (!cpuctx
->sched_cb_usage
++)
3153 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
3155 this_cpu_inc(perf_sched_cb_usages
);
3159 * This function provides the context switch callback to the lower code
3160 * layer. It is invoked ONLY when the context switch callback is enabled.
3162 * This callback is relevant even to per-cpu events; for example multi event
3163 * PEBS requires this to provide PID/TID information. This requires we flush
3164 * all queued PEBS records before we context switch to a new task.
3166 static void perf_pmu_sched_task(struct task_struct
*prev
,
3167 struct task_struct
*next
,
3170 struct perf_cpu_context
*cpuctx
;
3176 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
3177 pmu
= cpuctx
->ctx
.pmu
; /* software PMUs will not have sched_task */
3179 if (WARN_ON_ONCE(!pmu
->sched_task
))
3182 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3183 perf_pmu_disable(pmu
);
3185 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
3187 perf_pmu_enable(pmu
);
3188 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3192 static void perf_event_switch(struct task_struct
*task
,
3193 struct task_struct
*next_prev
, bool sched_in
);
3195 #define for_each_task_context_nr(ctxn) \
3196 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3199 * Called from scheduler to remove the events of the current task,
3200 * with interrupts disabled.
3202 * We stop each event and update the event value in event->count.
3204 * This does not protect us against NMI, but disable()
3205 * sets the disabled bit in the control field of event _before_
3206 * accessing the event control register. If a NMI hits, then it will
3207 * not restart the event.
3209 void __perf_event_task_sched_out(struct task_struct
*task
,
3210 struct task_struct
*next
)
3214 if (__this_cpu_read(perf_sched_cb_usages
))
3215 perf_pmu_sched_task(task
, next
, false);
3217 if (atomic_read(&nr_switch_events
))
3218 perf_event_switch(task
, next
, false);
3220 for_each_task_context_nr(ctxn
)
3221 perf_event_context_sched_out(task
, ctxn
, next
);
3224 * if cgroup events exist on this CPU, then we need
3225 * to check if we have to switch out PMU state.
3226 * cgroup event are system-wide mode only
3228 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3229 perf_cgroup_sched_out(task
, next
);
3233 * Called with IRQs disabled
3235 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
3236 enum event_type_t event_type
)
3238 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
3241 static int visit_groups_merge(struct perf_event_groups
*groups
, int cpu
,
3242 int (*func
)(struct perf_event
*, void *), void *data
)
3244 struct perf_event
**evt
, *evt1
, *evt2
;
3247 evt1
= perf_event_groups_first(groups
, -1);
3248 evt2
= perf_event_groups_first(groups
, cpu
);
3250 while (evt1
|| evt2
) {
3252 if (evt1
->group_index
< evt2
->group_index
)
3262 ret
= func(*evt
, data
);
3266 *evt
= perf_event_groups_next(*evt
);
3272 struct sched_in_data
{
3273 struct perf_event_context
*ctx
;
3274 struct perf_cpu_context
*cpuctx
;
3278 static int pinned_sched_in(struct perf_event
*event
, void *data
)
3280 struct sched_in_data
*sid
= data
;
3282 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3285 if (!event_filter_match(event
))
3288 if (group_can_go_on(event
, sid
->cpuctx
, sid
->can_add_hw
)) {
3289 if (!group_sched_in(event
, sid
->cpuctx
, sid
->ctx
))
3290 list_add_tail(&event
->active_list
, &sid
->ctx
->pinned_active
);
3294 * If this pinned group hasn't been scheduled,
3295 * put it in error state.
3297 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
3298 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
3303 static int flexible_sched_in(struct perf_event
*event
, void *data
)
3305 struct sched_in_data
*sid
= data
;
3307 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3310 if (!event_filter_match(event
))
3313 if (group_can_go_on(event
, sid
->cpuctx
, sid
->can_add_hw
)) {
3314 if (!group_sched_in(event
, sid
->cpuctx
, sid
->ctx
))
3315 list_add_tail(&event
->active_list
, &sid
->ctx
->flexible_active
);
3317 sid
->can_add_hw
= 0;
3324 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
3325 struct perf_cpu_context
*cpuctx
)
3327 struct sched_in_data sid
= {
3333 visit_groups_merge(&ctx
->pinned_groups
,
3335 pinned_sched_in
, &sid
);
3339 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
3340 struct perf_cpu_context
*cpuctx
)
3342 struct sched_in_data sid
= {
3348 visit_groups_merge(&ctx
->flexible_groups
,
3350 flexible_sched_in
, &sid
);
3354 ctx_sched_in(struct perf_event_context
*ctx
,
3355 struct perf_cpu_context
*cpuctx
,
3356 enum event_type_t event_type
,
3357 struct task_struct
*task
)
3359 int is_active
= ctx
->is_active
;
3362 lockdep_assert_held(&ctx
->lock
);
3364 if (likely(!ctx
->nr_events
))
3367 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3370 cpuctx
->task_ctx
= ctx
;
3372 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3375 is_active
^= ctx
->is_active
; /* changed bits */
3377 if (is_active
& EVENT_TIME
) {
3378 /* start ctx time */
3380 ctx
->timestamp
= now
;
3381 perf_cgroup_set_timestamp(task
, ctx
);
3385 * First go through the list and put on any pinned groups
3386 * in order to give them the best chance of going on.
3388 if (is_active
& EVENT_PINNED
)
3389 ctx_pinned_sched_in(ctx
, cpuctx
);
3391 /* Then walk through the lower prio flexible groups */
3392 if (is_active
& EVENT_FLEXIBLE
)
3393 ctx_flexible_sched_in(ctx
, cpuctx
);
3396 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3397 enum event_type_t event_type
,
3398 struct task_struct
*task
)
3400 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3402 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3405 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3406 struct task_struct
*task
)
3408 struct perf_cpu_context
*cpuctx
;
3410 cpuctx
= __get_cpu_context(ctx
);
3411 if (cpuctx
->task_ctx
== ctx
)
3414 perf_ctx_lock(cpuctx
, ctx
);
3416 * We must check ctx->nr_events while holding ctx->lock, such
3417 * that we serialize against perf_install_in_context().
3419 if (!ctx
->nr_events
)
3422 perf_pmu_disable(ctx
->pmu
);
3424 * We want to keep the following priority order:
3425 * cpu pinned (that don't need to move), task pinned,
3426 * cpu flexible, task flexible.
3428 * However, if task's ctx is not carrying any pinned
3429 * events, no need to flip the cpuctx's events around.
3431 if (!RB_EMPTY_ROOT(&ctx
->pinned_groups
.tree
))
3432 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3433 perf_event_sched_in(cpuctx
, ctx
, task
);
3434 perf_pmu_enable(ctx
->pmu
);
3437 perf_ctx_unlock(cpuctx
, ctx
);
3441 * Called from scheduler to add the events of the current task
3442 * with interrupts disabled.
3444 * We restore the event value and then enable it.
3446 * This does not protect us against NMI, but enable()
3447 * sets the enabled bit in the control field of event _before_
3448 * accessing the event control register. If a NMI hits, then it will
3449 * keep the event running.
3451 void __perf_event_task_sched_in(struct task_struct
*prev
,
3452 struct task_struct
*task
)
3454 struct perf_event_context
*ctx
;
3458 * If cgroup events exist on this CPU, then we need to check if we have
3459 * to switch in PMU state; cgroup event are system-wide mode only.
3461 * Since cgroup events are CPU events, we must schedule these in before
3462 * we schedule in the task events.
3464 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3465 perf_cgroup_sched_in(prev
, task
);
3467 for_each_task_context_nr(ctxn
) {
3468 ctx
= task
->perf_event_ctxp
[ctxn
];
3472 perf_event_context_sched_in(ctx
, task
);
3475 if (atomic_read(&nr_switch_events
))
3476 perf_event_switch(task
, prev
, true);
3478 if (__this_cpu_read(perf_sched_cb_usages
))
3479 perf_pmu_sched_task(prev
, task
, true);
3482 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3484 u64 frequency
= event
->attr
.sample_freq
;
3485 u64 sec
= NSEC_PER_SEC
;
3486 u64 divisor
, dividend
;
3488 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3490 count_fls
= fls64(count
);
3491 nsec_fls
= fls64(nsec
);
3492 frequency_fls
= fls64(frequency
);
3496 * We got @count in @nsec, with a target of sample_freq HZ
3497 * the target period becomes:
3500 * period = -------------------
3501 * @nsec * sample_freq
3506 * Reduce accuracy by one bit such that @a and @b converge
3507 * to a similar magnitude.
3509 #define REDUCE_FLS(a, b) \
3511 if (a##_fls > b##_fls) { \
3521 * Reduce accuracy until either term fits in a u64, then proceed with
3522 * the other, so that finally we can do a u64/u64 division.
3524 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3525 REDUCE_FLS(nsec
, frequency
);
3526 REDUCE_FLS(sec
, count
);
3529 if (count_fls
+ sec_fls
> 64) {
3530 divisor
= nsec
* frequency
;
3532 while (count_fls
+ sec_fls
> 64) {
3533 REDUCE_FLS(count
, sec
);
3537 dividend
= count
* sec
;
3539 dividend
= count
* sec
;
3541 while (nsec_fls
+ frequency_fls
> 64) {
3542 REDUCE_FLS(nsec
, frequency
);
3546 divisor
= nsec
* frequency
;
3552 return div64_u64(dividend
, divisor
);
3555 static DEFINE_PER_CPU(int, perf_throttled_count
);
3556 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3558 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3560 struct hw_perf_event
*hwc
= &event
->hw
;
3561 s64 period
, sample_period
;
3564 period
= perf_calculate_period(event
, nsec
, count
);
3566 delta
= (s64
)(period
- hwc
->sample_period
);
3567 delta
= (delta
+ 7) / 8; /* low pass filter */
3569 sample_period
= hwc
->sample_period
+ delta
;
3574 hwc
->sample_period
= sample_period
;
3576 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3578 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3580 local64_set(&hwc
->period_left
, 0);
3583 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3588 * combine freq adjustment with unthrottling to avoid two passes over the
3589 * events. At the same time, make sure, having freq events does not change
3590 * the rate of unthrottling as that would introduce bias.
3592 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3595 struct perf_event
*event
;
3596 struct hw_perf_event
*hwc
;
3597 u64 now
, period
= TICK_NSEC
;
3601 * only need to iterate over all events iff:
3602 * - context have events in frequency mode (needs freq adjust)
3603 * - there are events to unthrottle on this cpu
3605 if (!(ctx
->nr_freq
|| needs_unthr
))
3608 raw_spin_lock(&ctx
->lock
);
3609 perf_pmu_disable(ctx
->pmu
);
3611 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3612 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3615 if (!event_filter_match(event
))
3618 perf_pmu_disable(event
->pmu
);
3622 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3623 hwc
->interrupts
= 0;
3624 perf_log_throttle(event
, 1);
3625 event
->pmu
->start(event
, 0);
3628 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3632 * stop the event and update event->count
3634 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3636 now
= local64_read(&event
->count
);
3637 delta
= now
- hwc
->freq_count_stamp
;
3638 hwc
->freq_count_stamp
= now
;
3642 * reload only if value has changed
3643 * we have stopped the event so tell that
3644 * to perf_adjust_period() to avoid stopping it
3648 perf_adjust_period(event
, period
, delta
, false);
3650 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3652 perf_pmu_enable(event
->pmu
);
3655 perf_pmu_enable(ctx
->pmu
);
3656 raw_spin_unlock(&ctx
->lock
);
3660 * Move @event to the tail of the @ctx's elegible events.
3662 static void rotate_ctx(struct perf_event_context
*ctx
, struct perf_event
*event
)
3665 * Rotate the first entry last of non-pinned groups. Rotation might be
3666 * disabled by the inheritance code.
3668 if (ctx
->rotate_disable
)
3671 perf_event_groups_delete(&ctx
->flexible_groups
, event
);
3672 perf_event_groups_insert(&ctx
->flexible_groups
, event
);
3675 static inline struct perf_event
*
3676 ctx_first_active(struct perf_event_context
*ctx
)
3678 return list_first_entry_or_null(&ctx
->flexible_active
,
3679 struct perf_event
, active_list
);
3682 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3684 struct perf_event
*cpu_event
= NULL
, *task_event
= NULL
;
3685 bool cpu_rotate
= false, task_rotate
= false;
3686 struct perf_event_context
*ctx
= NULL
;
3689 * Since we run this from IRQ context, nobody can install new
3690 * events, thus the event count values are stable.
3693 if (cpuctx
->ctx
.nr_events
) {
3694 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
3698 ctx
= cpuctx
->task_ctx
;
3699 if (ctx
&& ctx
->nr_events
) {
3700 if (ctx
->nr_events
!= ctx
->nr_active
)
3704 if (!(cpu_rotate
|| task_rotate
))
3707 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3708 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3711 task_event
= ctx_first_active(ctx
);
3713 cpu_event
= ctx_first_active(&cpuctx
->ctx
);
3716 * As per the order given at ctx_resched() first 'pop' task flexible
3717 * and then, if needed CPU flexible.
3719 if (task_event
|| (ctx
&& cpu_event
))
3720 ctx_sched_out(ctx
, cpuctx
, EVENT_FLEXIBLE
);
3722 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3725 rotate_ctx(ctx
, task_event
);
3727 rotate_ctx(&cpuctx
->ctx
, cpu_event
);
3729 perf_event_sched_in(cpuctx
, ctx
, current
);
3731 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3732 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3737 void perf_event_task_tick(void)
3739 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3740 struct perf_event_context
*ctx
, *tmp
;
3743 lockdep_assert_irqs_disabled();
3745 __this_cpu_inc(perf_throttled_seq
);
3746 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3747 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3749 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3750 perf_adjust_freq_unthr_context(ctx
, throttled
);
3753 static int event_enable_on_exec(struct perf_event
*event
,
3754 struct perf_event_context
*ctx
)
3756 if (!event
->attr
.enable_on_exec
)
3759 event
->attr
.enable_on_exec
= 0;
3760 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3763 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
3769 * Enable all of a task's events that have been marked enable-on-exec.
3770 * This expects task == current.
3772 static void perf_event_enable_on_exec(int ctxn
)
3774 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3775 enum event_type_t event_type
= 0;
3776 struct perf_cpu_context
*cpuctx
;
3777 struct perf_event
*event
;
3778 unsigned long flags
;
3781 local_irq_save(flags
);
3782 ctx
= current
->perf_event_ctxp
[ctxn
];
3783 if (!ctx
|| !ctx
->nr_events
)
3786 cpuctx
= __get_cpu_context(ctx
);
3787 perf_ctx_lock(cpuctx
, ctx
);
3788 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3789 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3790 enabled
|= event_enable_on_exec(event
, ctx
);
3791 event_type
|= get_event_type(event
);
3795 * Unclone and reschedule this context if we enabled any event.
3798 clone_ctx
= unclone_ctx(ctx
);
3799 ctx_resched(cpuctx
, ctx
, event_type
);
3801 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
3803 perf_ctx_unlock(cpuctx
, ctx
);
3806 local_irq_restore(flags
);
3812 struct perf_read_data
{
3813 struct perf_event
*event
;
3818 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
3820 u16 local_pkg
, event_pkg
;
3822 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
3823 int local_cpu
= smp_processor_id();
3825 event_pkg
= topology_physical_package_id(event_cpu
);
3826 local_pkg
= topology_physical_package_id(local_cpu
);
3828 if (event_pkg
== local_pkg
)
3836 * Cross CPU call to read the hardware event
3838 static void __perf_event_read(void *info
)
3840 struct perf_read_data
*data
= info
;
3841 struct perf_event
*sub
, *event
= data
->event
;
3842 struct perf_event_context
*ctx
= event
->ctx
;
3843 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3844 struct pmu
*pmu
= event
->pmu
;
3847 * If this is a task context, we need to check whether it is
3848 * the current task context of this cpu. If not it has been
3849 * scheduled out before the smp call arrived. In that case
3850 * event->count would have been updated to a recent sample
3851 * when the event was scheduled out.
3853 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
3856 raw_spin_lock(&ctx
->lock
);
3857 if (ctx
->is_active
& EVENT_TIME
) {
3858 update_context_time(ctx
);
3859 update_cgrp_time_from_event(event
);
3862 perf_event_update_time(event
);
3864 perf_event_update_sibling_time(event
);
3866 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3875 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
3879 for_each_sibling_event(sub
, event
) {
3880 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
3882 * Use sibling's PMU rather than @event's since
3883 * sibling could be on different (eg: software) PMU.
3885 sub
->pmu
->read(sub
);
3889 data
->ret
= pmu
->commit_txn(pmu
);
3892 raw_spin_unlock(&ctx
->lock
);
3895 static inline u64
perf_event_count(struct perf_event
*event
)
3897 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
3901 * NMI-safe method to read a local event, that is an event that
3903 * - either for the current task, or for this CPU
3904 * - does not have inherit set, for inherited task events
3905 * will not be local and we cannot read them atomically
3906 * - must not have a pmu::count method
3908 int perf_event_read_local(struct perf_event
*event
, u64
*value
,
3909 u64
*enabled
, u64
*running
)
3911 unsigned long flags
;
3915 * Disabling interrupts avoids all counter scheduling (context
3916 * switches, timer based rotation and IPIs).
3918 local_irq_save(flags
);
3921 * It must not be an event with inherit set, we cannot read
3922 * all child counters from atomic context.
3924 if (event
->attr
.inherit
) {
3929 /* If this is a per-task event, it must be for current */
3930 if ((event
->attach_state
& PERF_ATTACH_TASK
) &&
3931 event
->hw
.target
!= current
) {
3936 /* If this is a per-CPU event, it must be for this CPU */
3937 if (!(event
->attach_state
& PERF_ATTACH_TASK
) &&
3938 event
->cpu
!= smp_processor_id()) {
3944 * If the event is currently on this CPU, its either a per-task event,
3945 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3948 if (event
->oncpu
== smp_processor_id())
3949 event
->pmu
->read(event
);
3951 *value
= local64_read(&event
->count
);
3952 if (enabled
|| running
) {
3953 u64 now
= event
->shadow_ctx_time
+ perf_clock();
3954 u64 __enabled
, __running
;
3956 __perf_update_times(event
, now
, &__enabled
, &__running
);
3958 *enabled
= __enabled
;
3960 *running
= __running
;
3963 local_irq_restore(flags
);
3968 static int perf_event_read(struct perf_event
*event
, bool group
)
3970 enum perf_event_state state
= READ_ONCE(event
->state
);
3971 int event_cpu
, ret
= 0;
3974 * If event is enabled and currently active on a CPU, update the
3975 * value in the event structure:
3978 if (state
== PERF_EVENT_STATE_ACTIVE
) {
3979 struct perf_read_data data
;
3982 * Orders the ->state and ->oncpu loads such that if we see
3983 * ACTIVE we must also see the right ->oncpu.
3985 * Matches the smp_wmb() from event_sched_in().
3989 event_cpu
= READ_ONCE(event
->oncpu
);
3990 if ((unsigned)event_cpu
>= nr_cpu_ids
)
3993 data
= (struct perf_read_data
){
4000 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
4003 * Purposely ignore the smp_call_function_single() return
4006 * If event_cpu isn't a valid CPU it means the event got
4007 * scheduled out and that will have updated the event count.
4009 * Therefore, either way, we'll have an up-to-date event count
4012 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
4016 } else if (state
== PERF_EVENT_STATE_INACTIVE
) {
4017 struct perf_event_context
*ctx
= event
->ctx
;
4018 unsigned long flags
;
4020 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4021 state
= event
->state
;
4022 if (state
!= PERF_EVENT_STATE_INACTIVE
) {
4023 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4028 * May read while context is not active (e.g., thread is
4029 * blocked), in that case we cannot update context time
4031 if (ctx
->is_active
& EVENT_TIME
) {
4032 update_context_time(ctx
);
4033 update_cgrp_time_from_event(event
);
4036 perf_event_update_time(event
);
4038 perf_event_update_sibling_time(event
);
4039 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4046 * Initialize the perf_event context in a task_struct:
4048 static void __perf_event_init_context(struct perf_event_context
*ctx
)
4050 raw_spin_lock_init(&ctx
->lock
);
4051 mutex_init(&ctx
->mutex
);
4052 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
4053 perf_event_groups_init(&ctx
->pinned_groups
);
4054 perf_event_groups_init(&ctx
->flexible_groups
);
4055 INIT_LIST_HEAD(&ctx
->event_list
);
4056 INIT_LIST_HEAD(&ctx
->pinned_active
);
4057 INIT_LIST_HEAD(&ctx
->flexible_active
);
4058 atomic_set(&ctx
->refcount
, 1);
4061 static struct perf_event_context
*
4062 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
4064 struct perf_event_context
*ctx
;
4066 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4070 __perf_event_init_context(ctx
);
4073 get_task_struct(task
);
4080 static struct task_struct
*
4081 find_lively_task_by_vpid(pid_t vpid
)
4083 struct task_struct
*task
;
4089 task
= find_task_by_vpid(vpid
);
4091 get_task_struct(task
);
4095 return ERR_PTR(-ESRCH
);
4101 * Returns a matching context with refcount and pincount.
4103 static struct perf_event_context
*
4104 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
4105 struct perf_event
*event
)
4107 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
4108 struct perf_cpu_context
*cpuctx
;
4109 void *task_ctx_data
= NULL
;
4110 unsigned long flags
;
4112 int cpu
= event
->cpu
;
4115 /* Must be root to operate on a CPU event: */
4116 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
4117 return ERR_PTR(-EACCES
);
4119 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
4128 ctxn
= pmu
->task_ctx_nr
;
4132 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
4133 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
4134 if (!task_ctx_data
) {
4141 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
4143 clone_ctx
= unclone_ctx(ctx
);
4146 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
4147 ctx
->task_ctx_data
= task_ctx_data
;
4148 task_ctx_data
= NULL
;
4150 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4155 ctx
= alloc_perf_context(pmu
, task
);
4160 if (task_ctx_data
) {
4161 ctx
->task_ctx_data
= task_ctx_data
;
4162 task_ctx_data
= NULL
;
4166 mutex_lock(&task
->perf_event_mutex
);
4168 * If it has already passed perf_event_exit_task().
4169 * we must see PF_EXITING, it takes this mutex too.
4171 if (task
->flags
& PF_EXITING
)
4173 else if (task
->perf_event_ctxp
[ctxn
])
4178 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
4180 mutex_unlock(&task
->perf_event_mutex
);
4182 if (unlikely(err
)) {
4191 kfree(task_ctx_data
);
4195 kfree(task_ctx_data
);
4196 return ERR_PTR(err
);
4199 static void perf_event_free_filter(struct perf_event
*event
);
4200 static void perf_event_free_bpf_prog(struct perf_event
*event
);
4202 static void free_event_rcu(struct rcu_head
*head
)
4204 struct perf_event
*event
;
4206 event
= container_of(head
, struct perf_event
, rcu_head
);
4208 put_pid_ns(event
->ns
);
4209 perf_event_free_filter(event
);
4213 static void ring_buffer_attach(struct perf_event
*event
,
4214 struct ring_buffer
*rb
);
4216 static void detach_sb_event(struct perf_event
*event
)
4218 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
4220 raw_spin_lock(&pel
->lock
);
4221 list_del_rcu(&event
->sb_list
);
4222 raw_spin_unlock(&pel
->lock
);
4225 static bool is_sb_event(struct perf_event
*event
)
4227 struct perf_event_attr
*attr
= &event
->attr
;
4232 if (event
->attach_state
& PERF_ATTACH_TASK
)
4235 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
4236 attr
->comm
|| attr
->comm_exec
||
4238 attr
->context_switch
)
4243 static void unaccount_pmu_sb_event(struct perf_event
*event
)
4245 if (is_sb_event(event
))
4246 detach_sb_event(event
);
4249 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
4254 if (is_cgroup_event(event
))
4255 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
4258 #ifdef CONFIG_NO_HZ_FULL
4259 static DEFINE_SPINLOCK(nr_freq_lock
);
4262 static void unaccount_freq_event_nohz(void)
4264 #ifdef CONFIG_NO_HZ_FULL
4265 spin_lock(&nr_freq_lock
);
4266 if (atomic_dec_and_test(&nr_freq_events
))
4267 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
4268 spin_unlock(&nr_freq_lock
);
4272 static void unaccount_freq_event(void)
4274 if (tick_nohz_full_enabled())
4275 unaccount_freq_event_nohz();
4277 atomic_dec(&nr_freq_events
);
4280 static void unaccount_event(struct perf_event
*event
)
4287 if (event
->attach_state
& PERF_ATTACH_TASK
)
4289 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
4290 atomic_dec(&nr_mmap_events
);
4291 if (event
->attr
.comm
)
4292 atomic_dec(&nr_comm_events
);
4293 if (event
->attr
.namespaces
)
4294 atomic_dec(&nr_namespaces_events
);
4295 if (event
->attr
.task
)
4296 atomic_dec(&nr_task_events
);
4297 if (event
->attr
.freq
)
4298 unaccount_freq_event();
4299 if (event
->attr
.context_switch
) {
4301 atomic_dec(&nr_switch_events
);
4303 if (is_cgroup_event(event
))
4305 if (has_branch_stack(event
))
4309 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
4310 schedule_delayed_work(&perf_sched_work
, HZ
);
4313 unaccount_event_cpu(event
, event
->cpu
);
4315 unaccount_pmu_sb_event(event
);
4318 static void perf_sched_delayed(struct work_struct
*work
)
4320 mutex_lock(&perf_sched_mutex
);
4321 if (atomic_dec_and_test(&perf_sched_count
))
4322 static_branch_disable(&perf_sched_events
);
4323 mutex_unlock(&perf_sched_mutex
);
4327 * The following implement mutual exclusion of events on "exclusive" pmus
4328 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329 * at a time, so we disallow creating events that might conflict, namely:
4331 * 1) cpu-wide events in the presence of per-task events,
4332 * 2) per-task events in the presence of cpu-wide events,
4333 * 3) two matching events on the same context.
4335 * The former two cases are handled in the allocation path (perf_event_alloc(),
4336 * _free_event()), the latter -- before the first perf_install_in_context().
4338 static int exclusive_event_init(struct perf_event
*event
)
4340 struct pmu
*pmu
= event
->pmu
;
4342 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4346 * Prevent co-existence of per-task and cpu-wide events on the
4347 * same exclusive pmu.
4349 * Negative pmu::exclusive_cnt means there are cpu-wide
4350 * events on this "exclusive" pmu, positive means there are
4353 * Since this is called in perf_event_alloc() path, event::ctx
4354 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355 * to mean "per-task event", because unlike other attach states it
4356 * never gets cleared.
4358 if (event
->attach_state
& PERF_ATTACH_TASK
) {
4359 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
4362 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
4369 static void exclusive_event_destroy(struct perf_event
*event
)
4371 struct pmu
*pmu
= event
->pmu
;
4373 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4376 /* see comment in exclusive_event_init() */
4377 if (event
->attach_state
& PERF_ATTACH_TASK
)
4378 atomic_dec(&pmu
->exclusive_cnt
);
4380 atomic_inc(&pmu
->exclusive_cnt
);
4383 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
4385 if ((e1
->pmu
== e2
->pmu
) &&
4386 (e1
->cpu
== e2
->cpu
||
4393 /* Called under the same ctx::mutex as perf_install_in_context() */
4394 static bool exclusive_event_installable(struct perf_event
*event
,
4395 struct perf_event_context
*ctx
)
4397 struct perf_event
*iter_event
;
4398 struct pmu
*pmu
= event
->pmu
;
4400 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
))
4403 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
4404 if (exclusive_event_match(iter_event
, event
))
4411 static void perf_addr_filters_splice(struct perf_event
*event
,
4412 struct list_head
*head
);
4414 static void _free_event(struct perf_event
*event
)
4416 irq_work_sync(&event
->pending
);
4418 unaccount_event(event
);
4422 * Can happen when we close an event with re-directed output.
4424 * Since we have a 0 refcount, perf_mmap_close() will skip
4425 * over us; possibly making our ring_buffer_put() the last.
4427 mutex_lock(&event
->mmap_mutex
);
4428 ring_buffer_attach(event
, NULL
);
4429 mutex_unlock(&event
->mmap_mutex
);
4432 if (is_cgroup_event(event
))
4433 perf_detach_cgroup(event
);
4435 if (!event
->parent
) {
4436 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4437 put_callchain_buffers();
4440 perf_event_free_bpf_prog(event
);
4441 perf_addr_filters_splice(event
, NULL
);
4442 kfree(event
->addr_filters_offs
);
4445 event
->destroy(event
);
4448 put_ctx(event
->ctx
);
4450 if (event
->hw
.target
)
4451 put_task_struct(event
->hw
.target
);
4453 exclusive_event_destroy(event
);
4454 module_put(event
->pmu
->module
);
4456 call_rcu(&event
->rcu_head
, free_event_rcu
);
4460 * Used to free events which have a known refcount of 1, such as in error paths
4461 * where the event isn't exposed yet and inherited events.
4463 static void free_event(struct perf_event
*event
)
4465 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4466 "unexpected event refcount: %ld; ptr=%p\n",
4467 atomic_long_read(&event
->refcount
), event
)) {
4468 /* leak to avoid use-after-free */
4476 * Remove user event from the owner task.
4478 static void perf_remove_from_owner(struct perf_event
*event
)
4480 struct task_struct
*owner
;
4484 * Matches the smp_store_release() in perf_event_exit_task(). If we
4485 * observe !owner it means the list deletion is complete and we can
4486 * indeed free this event, otherwise we need to serialize on
4487 * owner->perf_event_mutex.
4489 owner
= READ_ONCE(event
->owner
);
4492 * Since delayed_put_task_struct() also drops the last
4493 * task reference we can safely take a new reference
4494 * while holding the rcu_read_lock().
4496 get_task_struct(owner
);
4502 * If we're here through perf_event_exit_task() we're already
4503 * holding ctx->mutex which would be an inversion wrt. the
4504 * normal lock order.
4506 * However we can safely take this lock because its the child
4509 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4512 * We have to re-check the event->owner field, if it is cleared
4513 * we raced with perf_event_exit_task(), acquiring the mutex
4514 * ensured they're done, and we can proceed with freeing the
4518 list_del_init(&event
->owner_entry
);
4519 smp_store_release(&event
->owner
, NULL
);
4521 mutex_unlock(&owner
->perf_event_mutex
);
4522 put_task_struct(owner
);
4526 static void put_event(struct perf_event
*event
)
4528 if (!atomic_long_dec_and_test(&event
->refcount
))
4535 * Kill an event dead; while event:refcount will preserve the event
4536 * object, it will not preserve its functionality. Once the last 'user'
4537 * gives up the object, we'll destroy the thing.
4539 int perf_event_release_kernel(struct perf_event
*event
)
4541 struct perf_event_context
*ctx
= event
->ctx
;
4542 struct perf_event
*child
, *tmp
;
4543 LIST_HEAD(free_list
);
4546 * If we got here through err_file: fput(event_file); we will not have
4547 * attached to a context yet.
4550 WARN_ON_ONCE(event
->attach_state
&
4551 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4555 if (!is_kernel_event(event
))
4556 perf_remove_from_owner(event
);
4558 ctx
= perf_event_ctx_lock(event
);
4559 WARN_ON_ONCE(ctx
->parent_ctx
);
4560 perf_remove_from_context(event
, DETACH_GROUP
);
4562 raw_spin_lock_irq(&ctx
->lock
);
4564 * Mark this event as STATE_DEAD, there is no external reference to it
4567 * Anybody acquiring event->child_mutex after the below loop _must_
4568 * also see this, most importantly inherit_event() which will avoid
4569 * placing more children on the list.
4571 * Thus this guarantees that we will in fact observe and kill _ALL_
4574 event
->state
= PERF_EVENT_STATE_DEAD
;
4575 raw_spin_unlock_irq(&ctx
->lock
);
4577 perf_event_ctx_unlock(event
, ctx
);
4580 mutex_lock(&event
->child_mutex
);
4581 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4584 * Cannot change, child events are not migrated, see the
4585 * comment with perf_event_ctx_lock_nested().
4587 ctx
= READ_ONCE(child
->ctx
);
4589 * Since child_mutex nests inside ctx::mutex, we must jump
4590 * through hoops. We start by grabbing a reference on the ctx.
4592 * Since the event cannot get freed while we hold the
4593 * child_mutex, the context must also exist and have a !0
4599 * Now that we have a ctx ref, we can drop child_mutex, and
4600 * acquire ctx::mutex without fear of it going away. Then we
4601 * can re-acquire child_mutex.
4603 mutex_unlock(&event
->child_mutex
);
4604 mutex_lock(&ctx
->mutex
);
4605 mutex_lock(&event
->child_mutex
);
4608 * Now that we hold ctx::mutex and child_mutex, revalidate our
4609 * state, if child is still the first entry, it didn't get freed
4610 * and we can continue doing so.
4612 tmp
= list_first_entry_or_null(&event
->child_list
,
4613 struct perf_event
, child_list
);
4615 perf_remove_from_context(child
, DETACH_GROUP
);
4616 list_move(&child
->child_list
, &free_list
);
4618 * This matches the refcount bump in inherit_event();
4619 * this can't be the last reference.
4624 mutex_unlock(&event
->child_mutex
);
4625 mutex_unlock(&ctx
->mutex
);
4629 mutex_unlock(&event
->child_mutex
);
4631 list_for_each_entry_safe(child
, tmp
, &free_list
, child_list
) {
4632 list_del(&child
->child_list
);
4637 put_event(event
); /* Must be the 'last' reference */
4640 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
4643 * Called when the last reference to the file is gone.
4645 static int perf_release(struct inode
*inode
, struct file
*file
)
4647 perf_event_release_kernel(file
->private_data
);
4651 static u64
__perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4653 struct perf_event
*child
;
4659 mutex_lock(&event
->child_mutex
);
4661 (void)perf_event_read(event
, false);
4662 total
+= perf_event_count(event
);
4664 *enabled
+= event
->total_time_enabled
+
4665 atomic64_read(&event
->child_total_time_enabled
);
4666 *running
+= event
->total_time_running
+
4667 atomic64_read(&event
->child_total_time_running
);
4669 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4670 (void)perf_event_read(child
, false);
4671 total
+= perf_event_count(child
);
4672 *enabled
+= child
->total_time_enabled
;
4673 *running
+= child
->total_time_running
;
4675 mutex_unlock(&event
->child_mutex
);
4680 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4682 struct perf_event_context
*ctx
;
4685 ctx
= perf_event_ctx_lock(event
);
4686 count
= __perf_event_read_value(event
, enabled
, running
);
4687 perf_event_ctx_unlock(event
, ctx
);
4691 EXPORT_SYMBOL_GPL(perf_event_read_value
);
4693 static int __perf_read_group_add(struct perf_event
*leader
,
4694 u64 read_format
, u64
*values
)
4696 struct perf_event_context
*ctx
= leader
->ctx
;
4697 struct perf_event
*sub
;
4698 unsigned long flags
;
4699 int n
= 1; /* skip @nr */
4702 ret
= perf_event_read(leader
, true);
4706 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4709 * Since we co-schedule groups, {enabled,running} times of siblings
4710 * will be identical to those of the leader, so we only publish one
4713 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4714 values
[n
++] += leader
->total_time_enabled
+
4715 atomic64_read(&leader
->child_total_time_enabled
);
4718 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4719 values
[n
++] += leader
->total_time_running
+
4720 atomic64_read(&leader
->child_total_time_running
);
4724 * Write {count,id} tuples for every sibling.
4726 values
[n
++] += perf_event_count(leader
);
4727 if (read_format
& PERF_FORMAT_ID
)
4728 values
[n
++] = primary_event_id(leader
);
4730 for_each_sibling_event(sub
, leader
) {
4731 values
[n
++] += perf_event_count(sub
);
4732 if (read_format
& PERF_FORMAT_ID
)
4733 values
[n
++] = primary_event_id(sub
);
4736 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4740 static int perf_read_group(struct perf_event
*event
,
4741 u64 read_format
, char __user
*buf
)
4743 struct perf_event
*leader
= event
->group_leader
, *child
;
4744 struct perf_event_context
*ctx
= leader
->ctx
;
4748 lockdep_assert_held(&ctx
->mutex
);
4750 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4754 values
[0] = 1 + leader
->nr_siblings
;
4757 * By locking the child_mutex of the leader we effectively
4758 * lock the child list of all siblings.. XXX explain how.
4760 mutex_lock(&leader
->child_mutex
);
4762 ret
= __perf_read_group_add(leader
, read_format
, values
);
4766 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4767 ret
= __perf_read_group_add(child
, read_format
, values
);
4772 mutex_unlock(&leader
->child_mutex
);
4774 ret
= event
->read_size
;
4775 if (copy_to_user(buf
, values
, event
->read_size
))
4780 mutex_unlock(&leader
->child_mutex
);
4786 static int perf_read_one(struct perf_event
*event
,
4787 u64 read_format
, char __user
*buf
)
4789 u64 enabled
, running
;
4793 values
[n
++] = __perf_event_read_value(event
, &enabled
, &running
);
4794 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4795 values
[n
++] = enabled
;
4796 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4797 values
[n
++] = running
;
4798 if (read_format
& PERF_FORMAT_ID
)
4799 values
[n
++] = primary_event_id(event
);
4801 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4804 return n
* sizeof(u64
);
4807 static bool is_event_hup(struct perf_event
*event
)
4811 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4814 mutex_lock(&event
->child_mutex
);
4815 no_children
= list_empty(&event
->child_list
);
4816 mutex_unlock(&event
->child_mutex
);
4821 * Read the performance event - simple non blocking version for now
4824 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
4826 u64 read_format
= event
->attr
.read_format
;
4830 * Return end-of-file for a read on an event that is in
4831 * error state (i.e. because it was pinned but it couldn't be
4832 * scheduled on to the CPU at some point).
4834 if (event
->state
== PERF_EVENT_STATE_ERROR
)
4837 if (count
< event
->read_size
)
4840 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4841 if (read_format
& PERF_FORMAT_GROUP
)
4842 ret
= perf_read_group(event
, read_format
, buf
);
4844 ret
= perf_read_one(event
, read_format
, buf
);
4850 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
4852 struct perf_event
*event
= file
->private_data
;
4853 struct perf_event_context
*ctx
;
4856 ctx
= perf_event_ctx_lock(event
);
4857 ret
= __perf_read(event
, buf
, count
);
4858 perf_event_ctx_unlock(event
, ctx
);
4863 static __poll_t
perf_poll(struct file
*file
, poll_table
*wait
)
4865 struct perf_event
*event
= file
->private_data
;
4866 struct ring_buffer
*rb
;
4867 __poll_t events
= EPOLLHUP
;
4869 poll_wait(file
, &event
->waitq
, wait
);
4871 if (is_event_hup(event
))
4875 * Pin the event->rb by taking event->mmap_mutex; otherwise
4876 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4878 mutex_lock(&event
->mmap_mutex
);
4881 events
= atomic_xchg(&rb
->poll
, 0);
4882 mutex_unlock(&event
->mmap_mutex
);
4886 static void _perf_event_reset(struct perf_event
*event
)
4888 (void)perf_event_read(event
, false);
4889 local64_set(&event
->count
, 0);
4890 perf_event_update_userpage(event
);
4894 * Holding the top-level event's child_mutex means that any
4895 * descendant process that has inherited this event will block
4896 * in perf_event_exit_event() if it goes to exit, thus satisfying the
4897 * task existence requirements of perf_event_enable/disable.
4899 static void perf_event_for_each_child(struct perf_event
*event
,
4900 void (*func
)(struct perf_event
*))
4902 struct perf_event
*child
;
4904 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
4906 mutex_lock(&event
->child_mutex
);
4908 list_for_each_entry(child
, &event
->child_list
, child_list
)
4910 mutex_unlock(&event
->child_mutex
);
4913 static void perf_event_for_each(struct perf_event
*event
,
4914 void (*func
)(struct perf_event
*))
4916 struct perf_event_context
*ctx
= event
->ctx
;
4917 struct perf_event
*sibling
;
4919 lockdep_assert_held(&ctx
->mutex
);
4921 event
= event
->group_leader
;
4923 perf_event_for_each_child(event
, func
);
4924 for_each_sibling_event(sibling
, event
)
4925 perf_event_for_each_child(sibling
, func
);
4928 static void __perf_event_period(struct perf_event
*event
,
4929 struct perf_cpu_context
*cpuctx
,
4930 struct perf_event_context
*ctx
,
4933 u64 value
= *((u64
*)info
);
4936 if (event
->attr
.freq
) {
4937 event
->attr
.sample_freq
= value
;
4939 event
->attr
.sample_period
= value
;
4940 event
->hw
.sample_period
= value
;
4943 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
4945 perf_pmu_disable(ctx
->pmu
);
4947 * We could be throttled; unthrottle now to avoid the tick
4948 * trying to unthrottle while we already re-started the event.
4950 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
4951 event
->hw
.interrupts
= 0;
4952 perf_log_throttle(event
, 1);
4954 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
4957 local64_set(&event
->hw
.period_left
, 0);
4960 event
->pmu
->start(event
, PERF_EF_RELOAD
);
4961 perf_pmu_enable(ctx
->pmu
);
4965 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
4969 if (!is_sampling_event(event
))
4972 if (copy_from_user(&value
, arg
, sizeof(value
)))
4978 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
4981 event_function_call(event
, __perf_event_period
, &value
);
4986 static const struct file_operations perf_fops
;
4988 static inline int perf_fget_light(int fd
, struct fd
*p
)
4990 struct fd f
= fdget(fd
);
4994 if (f
.file
->f_op
!= &perf_fops
) {
5002 static int perf_event_set_output(struct perf_event
*event
,
5003 struct perf_event
*output_event
);
5004 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
5005 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
5006 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5007 struct perf_event_attr
*attr
);
5009 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
5011 void (*func
)(struct perf_event
*);
5015 case PERF_EVENT_IOC_ENABLE
:
5016 func
= _perf_event_enable
;
5018 case PERF_EVENT_IOC_DISABLE
:
5019 func
= _perf_event_disable
;
5021 case PERF_EVENT_IOC_RESET
:
5022 func
= _perf_event_reset
;
5025 case PERF_EVENT_IOC_REFRESH
:
5026 return _perf_event_refresh(event
, arg
);
5028 case PERF_EVENT_IOC_PERIOD
:
5029 return perf_event_period(event
, (u64 __user
*)arg
);
5031 case PERF_EVENT_IOC_ID
:
5033 u64 id
= primary_event_id(event
);
5035 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
5040 case PERF_EVENT_IOC_SET_OUTPUT
:
5044 struct perf_event
*output_event
;
5046 ret
= perf_fget_light(arg
, &output
);
5049 output_event
= output
.file
->private_data
;
5050 ret
= perf_event_set_output(event
, output_event
);
5053 ret
= perf_event_set_output(event
, NULL
);
5058 case PERF_EVENT_IOC_SET_FILTER
:
5059 return perf_event_set_filter(event
, (void __user
*)arg
);
5061 case PERF_EVENT_IOC_SET_BPF
:
5062 return perf_event_set_bpf_prog(event
, arg
);
5064 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
5065 struct ring_buffer
*rb
;
5068 rb
= rcu_dereference(event
->rb
);
5069 if (!rb
|| !rb
->nr_pages
) {
5073 rb_toggle_paused(rb
, !!arg
);
5078 case PERF_EVENT_IOC_QUERY_BPF
:
5079 return perf_event_query_prog_array(event
, (void __user
*)arg
);
5081 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES
: {
5082 struct perf_event_attr new_attr
;
5083 int err
= perf_copy_attr((struct perf_event_attr __user
*)arg
,
5089 return perf_event_modify_attr(event
, &new_attr
);
5095 if (flags
& PERF_IOC_FLAG_GROUP
)
5096 perf_event_for_each(event
, func
);
5098 perf_event_for_each_child(event
, func
);
5103 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5105 struct perf_event
*event
= file
->private_data
;
5106 struct perf_event_context
*ctx
;
5109 ctx
= perf_event_ctx_lock(event
);
5110 ret
= _perf_ioctl(event
, cmd
, arg
);
5111 perf_event_ctx_unlock(event
, ctx
);
5116 #ifdef CONFIG_COMPAT
5117 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
5120 switch (_IOC_NR(cmd
)) {
5121 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
5122 case _IOC_NR(PERF_EVENT_IOC_ID
):
5123 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF
):
5124 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES
):
5125 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5126 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
5127 cmd
&= ~IOCSIZE_MASK
;
5128 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
5132 return perf_ioctl(file
, cmd
, arg
);
5135 # define perf_compat_ioctl NULL
5138 int perf_event_task_enable(void)
5140 struct perf_event_context
*ctx
;
5141 struct perf_event
*event
;
5143 mutex_lock(¤t
->perf_event_mutex
);
5144 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5145 ctx
= perf_event_ctx_lock(event
);
5146 perf_event_for_each_child(event
, _perf_event_enable
);
5147 perf_event_ctx_unlock(event
, ctx
);
5149 mutex_unlock(¤t
->perf_event_mutex
);
5154 int perf_event_task_disable(void)
5156 struct perf_event_context
*ctx
;
5157 struct perf_event
*event
;
5159 mutex_lock(¤t
->perf_event_mutex
);
5160 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5161 ctx
= perf_event_ctx_lock(event
);
5162 perf_event_for_each_child(event
, _perf_event_disable
);
5163 perf_event_ctx_unlock(event
, ctx
);
5165 mutex_unlock(¤t
->perf_event_mutex
);
5170 static int perf_event_index(struct perf_event
*event
)
5172 if (event
->hw
.state
& PERF_HES_STOPPED
)
5175 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5178 return event
->pmu
->event_idx(event
);
5181 static void calc_timer_values(struct perf_event
*event
,
5188 *now
= perf_clock();
5189 ctx_time
= event
->shadow_ctx_time
+ *now
;
5190 __perf_update_times(event
, ctx_time
, enabled
, running
);
5193 static void perf_event_init_userpage(struct perf_event
*event
)
5195 struct perf_event_mmap_page
*userpg
;
5196 struct ring_buffer
*rb
;
5199 rb
= rcu_dereference(event
->rb
);
5203 userpg
= rb
->user_page
;
5205 /* Allow new userspace to detect that bit 0 is deprecated */
5206 userpg
->cap_bit0_is_deprecated
= 1;
5207 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
5208 userpg
->data_offset
= PAGE_SIZE
;
5209 userpg
->data_size
= perf_data_size(rb
);
5215 void __weak
arch_perf_update_userpage(
5216 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
5221 * Callers need to ensure there can be no nesting of this function, otherwise
5222 * the seqlock logic goes bad. We can not serialize this because the arch
5223 * code calls this from NMI context.
5225 void perf_event_update_userpage(struct perf_event
*event
)
5227 struct perf_event_mmap_page
*userpg
;
5228 struct ring_buffer
*rb
;
5229 u64 enabled
, running
, now
;
5232 rb
= rcu_dereference(event
->rb
);
5237 * compute total_time_enabled, total_time_running
5238 * based on snapshot values taken when the event
5239 * was last scheduled in.
5241 * we cannot simply called update_context_time()
5242 * because of locking issue as we can be called in
5245 calc_timer_values(event
, &now
, &enabled
, &running
);
5247 userpg
= rb
->user_page
;
5249 * Disable preemption to guarantee consistent time stamps are stored to
5255 userpg
->index
= perf_event_index(event
);
5256 userpg
->offset
= perf_event_count(event
);
5258 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
5260 userpg
->time_enabled
= enabled
+
5261 atomic64_read(&event
->child_total_time_enabled
);
5263 userpg
->time_running
= running
+
5264 atomic64_read(&event
->child_total_time_running
);
5266 arch_perf_update_userpage(event
, userpg
, now
);
5274 EXPORT_SYMBOL_GPL(perf_event_update_userpage
);
5276 static vm_fault_t
perf_mmap_fault(struct vm_fault
*vmf
)
5278 struct perf_event
*event
= vmf
->vma
->vm_file
->private_data
;
5279 struct ring_buffer
*rb
;
5280 vm_fault_t ret
= VM_FAULT_SIGBUS
;
5282 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
5283 if (vmf
->pgoff
== 0)
5289 rb
= rcu_dereference(event
->rb
);
5293 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
5296 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
5300 get_page(vmf
->page
);
5301 vmf
->page
->mapping
= vmf
->vma
->vm_file
->f_mapping
;
5302 vmf
->page
->index
= vmf
->pgoff
;
5311 static void ring_buffer_attach(struct perf_event
*event
,
5312 struct ring_buffer
*rb
)
5314 struct ring_buffer
*old_rb
= NULL
;
5315 unsigned long flags
;
5319 * Should be impossible, we set this when removing
5320 * event->rb_entry and wait/clear when adding event->rb_entry.
5322 WARN_ON_ONCE(event
->rcu_pending
);
5325 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
5326 list_del_rcu(&event
->rb_entry
);
5327 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
5329 event
->rcu_batches
= get_state_synchronize_rcu();
5330 event
->rcu_pending
= 1;
5334 if (event
->rcu_pending
) {
5335 cond_synchronize_rcu(event
->rcu_batches
);
5336 event
->rcu_pending
= 0;
5339 spin_lock_irqsave(&rb
->event_lock
, flags
);
5340 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
5341 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
5345 * Avoid racing with perf_mmap_close(AUX): stop the event
5346 * before swizzling the event::rb pointer; if it's getting
5347 * unmapped, its aux_mmap_count will be 0 and it won't
5348 * restart. See the comment in __perf_pmu_output_stop().
5350 * Data will inevitably be lost when set_output is done in
5351 * mid-air, but then again, whoever does it like this is
5352 * not in for the data anyway.
5355 perf_event_stop(event
, 0);
5357 rcu_assign_pointer(event
->rb
, rb
);
5360 ring_buffer_put(old_rb
);
5362 * Since we detached before setting the new rb, so that we
5363 * could attach the new rb, we could have missed a wakeup.
5366 wake_up_all(&event
->waitq
);
5370 static void ring_buffer_wakeup(struct perf_event
*event
)
5372 struct ring_buffer
*rb
;
5375 rb
= rcu_dereference(event
->rb
);
5377 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
5378 wake_up_all(&event
->waitq
);
5383 struct ring_buffer
*ring_buffer_get(struct perf_event
*event
)
5385 struct ring_buffer
*rb
;
5388 rb
= rcu_dereference(event
->rb
);
5390 if (!atomic_inc_not_zero(&rb
->refcount
))
5398 void ring_buffer_put(struct ring_buffer
*rb
)
5400 if (!atomic_dec_and_test(&rb
->refcount
))
5403 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
5405 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
5408 static void perf_mmap_open(struct vm_area_struct
*vma
)
5410 struct perf_event
*event
= vma
->vm_file
->private_data
;
5412 atomic_inc(&event
->mmap_count
);
5413 atomic_inc(&event
->rb
->mmap_count
);
5416 atomic_inc(&event
->rb
->aux_mmap_count
);
5418 if (event
->pmu
->event_mapped
)
5419 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
5422 static void perf_pmu_output_stop(struct perf_event
*event
);
5425 * A buffer can be mmap()ed multiple times; either directly through the same
5426 * event, or through other events by use of perf_event_set_output().
5428 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5429 * the buffer here, where we still have a VM context. This means we need
5430 * to detach all events redirecting to us.
5432 static void perf_mmap_close(struct vm_area_struct
*vma
)
5434 struct perf_event
*event
= vma
->vm_file
->private_data
;
5436 struct ring_buffer
*rb
= ring_buffer_get(event
);
5437 struct user_struct
*mmap_user
= rb
->mmap_user
;
5438 int mmap_locked
= rb
->mmap_locked
;
5439 unsigned long size
= perf_data_size(rb
);
5441 if (event
->pmu
->event_unmapped
)
5442 event
->pmu
->event_unmapped(event
, vma
->vm_mm
);
5445 * rb->aux_mmap_count will always drop before rb->mmap_count and
5446 * event->mmap_count, so it is ok to use event->mmap_mutex to
5447 * serialize with perf_mmap here.
5449 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
5450 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
5452 * Stop all AUX events that are writing to this buffer,
5453 * so that we can free its AUX pages and corresponding PMU
5454 * data. Note that after rb::aux_mmap_count dropped to zero,
5455 * they won't start any more (see perf_aux_output_begin()).
5457 perf_pmu_output_stop(event
);
5459 /* now it's safe to free the pages */
5460 atomic_long_sub(rb
->aux_nr_pages
, &mmap_user
->locked_vm
);
5461 vma
->vm_mm
->pinned_vm
-= rb
->aux_mmap_locked
;
5463 /* this has to be the last one */
5465 WARN_ON_ONCE(atomic_read(&rb
->aux_refcount
));
5467 mutex_unlock(&event
->mmap_mutex
);
5470 atomic_dec(&rb
->mmap_count
);
5472 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5475 ring_buffer_attach(event
, NULL
);
5476 mutex_unlock(&event
->mmap_mutex
);
5478 /* If there's still other mmap()s of this buffer, we're done. */
5479 if (atomic_read(&rb
->mmap_count
))
5483 * No other mmap()s, detach from all other events that might redirect
5484 * into the now unreachable buffer. Somewhat complicated by the
5485 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5489 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5490 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5492 * This event is en-route to free_event() which will
5493 * detach it and remove it from the list.
5499 mutex_lock(&event
->mmap_mutex
);
5501 * Check we didn't race with perf_event_set_output() which can
5502 * swizzle the rb from under us while we were waiting to
5503 * acquire mmap_mutex.
5505 * If we find a different rb; ignore this event, a next
5506 * iteration will no longer find it on the list. We have to
5507 * still restart the iteration to make sure we're not now
5508 * iterating the wrong list.
5510 if (event
->rb
== rb
)
5511 ring_buffer_attach(event
, NULL
);
5513 mutex_unlock(&event
->mmap_mutex
);
5517 * Restart the iteration; either we're on the wrong list or
5518 * destroyed its integrity by doing a deletion.
5525 * It could be there's still a few 0-ref events on the list; they'll
5526 * get cleaned up by free_event() -- they'll also still have their
5527 * ref on the rb and will free it whenever they are done with it.
5529 * Aside from that, this buffer is 'fully' detached and unmapped,
5530 * undo the VM accounting.
5533 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &mmap_user
->locked_vm
);
5534 vma
->vm_mm
->pinned_vm
-= mmap_locked
;
5535 free_uid(mmap_user
);
5538 ring_buffer_put(rb
); /* could be last */
5541 static const struct vm_operations_struct perf_mmap_vmops
= {
5542 .open
= perf_mmap_open
,
5543 .close
= perf_mmap_close
, /* non mergable */
5544 .fault
= perf_mmap_fault
,
5545 .page_mkwrite
= perf_mmap_fault
,
5548 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5550 struct perf_event
*event
= file
->private_data
;
5551 unsigned long user_locked
, user_lock_limit
;
5552 struct user_struct
*user
= current_user();
5553 unsigned long locked
, lock_limit
;
5554 struct ring_buffer
*rb
= NULL
;
5555 unsigned long vma_size
;
5556 unsigned long nr_pages
;
5557 long user_extra
= 0, extra
= 0;
5558 int ret
= 0, flags
= 0;
5561 * Don't allow mmap() of inherited per-task counters. This would
5562 * create a performance issue due to all children writing to the
5565 if (event
->cpu
== -1 && event
->attr
.inherit
)
5568 if (!(vma
->vm_flags
& VM_SHARED
))
5571 vma_size
= vma
->vm_end
- vma
->vm_start
;
5573 if (vma
->vm_pgoff
== 0) {
5574 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
5577 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5578 * mapped, all subsequent mappings should have the same size
5579 * and offset. Must be above the normal perf buffer.
5581 u64 aux_offset
, aux_size
;
5586 nr_pages
= vma_size
/ PAGE_SIZE
;
5588 mutex_lock(&event
->mmap_mutex
);
5595 aux_offset
= READ_ONCE(rb
->user_page
->aux_offset
);
5596 aux_size
= READ_ONCE(rb
->user_page
->aux_size
);
5598 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
5601 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
5604 /* already mapped with a different offset */
5605 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
5608 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
5611 /* already mapped with a different size */
5612 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
5615 if (!is_power_of_2(nr_pages
))
5618 if (!atomic_inc_not_zero(&rb
->mmap_count
))
5621 if (rb_has_aux(rb
)) {
5622 atomic_inc(&rb
->aux_mmap_count
);
5627 atomic_set(&rb
->aux_mmap_count
, 1);
5628 user_extra
= nr_pages
;
5634 * If we have rb pages ensure they're a power-of-two number, so we
5635 * can do bitmasks instead of modulo.
5637 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
5640 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
5643 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5645 mutex_lock(&event
->mmap_mutex
);
5647 if (event
->rb
->nr_pages
!= nr_pages
) {
5652 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
5654 * Raced against perf_mmap_close() through
5655 * perf_event_set_output(). Try again, hope for better
5658 mutex_unlock(&event
->mmap_mutex
);
5665 user_extra
= nr_pages
+ 1;
5668 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
5671 * Increase the limit linearly with more CPUs:
5673 user_lock_limit
*= num_online_cpus();
5675 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
5677 if (user_locked
> user_lock_limit
)
5678 extra
= user_locked
- user_lock_limit
;
5680 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
5681 lock_limit
>>= PAGE_SHIFT
;
5682 locked
= vma
->vm_mm
->pinned_vm
+ extra
;
5684 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
5685 !capable(CAP_IPC_LOCK
)) {
5690 WARN_ON(!rb
&& event
->rb
);
5692 if (vma
->vm_flags
& VM_WRITE
)
5693 flags
|= RING_BUFFER_WRITABLE
;
5696 rb
= rb_alloc(nr_pages
,
5697 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
5705 atomic_set(&rb
->mmap_count
, 1);
5706 rb
->mmap_user
= get_current_user();
5707 rb
->mmap_locked
= extra
;
5709 ring_buffer_attach(event
, rb
);
5711 perf_event_init_userpage(event
);
5712 perf_event_update_userpage(event
);
5714 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
5715 event
->attr
.aux_watermark
, flags
);
5717 rb
->aux_mmap_locked
= extra
;
5722 atomic_long_add(user_extra
, &user
->locked_vm
);
5723 vma
->vm_mm
->pinned_vm
+= extra
;
5725 atomic_inc(&event
->mmap_count
);
5727 atomic_dec(&rb
->mmap_count
);
5730 mutex_unlock(&event
->mmap_mutex
);
5733 * Since pinned accounting is per vm we cannot allow fork() to copy our
5736 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
5737 vma
->vm_ops
= &perf_mmap_vmops
;
5739 if (event
->pmu
->event_mapped
)
5740 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
5745 static int perf_fasync(int fd
, struct file
*filp
, int on
)
5747 struct inode
*inode
= file_inode(filp
);
5748 struct perf_event
*event
= filp
->private_data
;
5752 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
5753 inode_unlock(inode
);
5761 static const struct file_operations perf_fops
= {
5762 .llseek
= no_llseek
,
5763 .release
= perf_release
,
5766 .unlocked_ioctl
= perf_ioctl
,
5767 .compat_ioctl
= perf_compat_ioctl
,
5769 .fasync
= perf_fasync
,
5775 * If there's data, ensure we set the poll() state and publish everything
5776 * to user-space before waking everybody up.
5779 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
5781 /* only the parent has fasync state */
5783 event
= event
->parent
;
5784 return &event
->fasync
;
5787 void perf_event_wakeup(struct perf_event
*event
)
5789 ring_buffer_wakeup(event
);
5791 if (event
->pending_kill
) {
5792 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
5793 event
->pending_kill
= 0;
5797 static void perf_pending_event(struct irq_work
*entry
)
5799 struct perf_event
*event
= container_of(entry
,
5800 struct perf_event
, pending
);
5803 rctx
= perf_swevent_get_recursion_context();
5805 * If we 'fail' here, that's OK, it means recursion is already disabled
5806 * and we won't recurse 'further'.
5809 if (event
->pending_disable
) {
5810 event
->pending_disable
= 0;
5811 perf_event_disable_local(event
);
5814 if (event
->pending_wakeup
) {
5815 event
->pending_wakeup
= 0;
5816 perf_event_wakeup(event
);
5820 perf_swevent_put_recursion_context(rctx
);
5824 * We assume there is only KVM supporting the callbacks.
5825 * Later on, we might change it to a list if there is
5826 * another virtualization implementation supporting the callbacks.
5828 struct perf_guest_info_callbacks
*perf_guest_cbs
;
5830 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5832 perf_guest_cbs
= cbs
;
5835 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
5837 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
5839 perf_guest_cbs
= NULL
;
5842 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
5845 perf_output_sample_regs(struct perf_output_handle
*handle
,
5846 struct pt_regs
*regs
, u64 mask
)
5849 DECLARE_BITMAP(_mask
, 64);
5851 bitmap_from_u64(_mask
, mask
);
5852 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
5855 val
= perf_reg_value(regs
, bit
);
5856 perf_output_put(handle
, val
);
5860 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
5861 struct pt_regs
*regs
,
5862 struct pt_regs
*regs_user_copy
)
5864 if (user_mode(regs
)) {
5865 regs_user
->abi
= perf_reg_abi(current
);
5866 regs_user
->regs
= regs
;
5867 } else if (current
->mm
) {
5868 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
5870 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
5871 regs_user
->regs
= NULL
;
5875 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
5876 struct pt_regs
*regs
)
5878 regs_intr
->regs
= regs
;
5879 regs_intr
->abi
= perf_reg_abi(current
);
5884 * Get remaining task size from user stack pointer.
5886 * It'd be better to take stack vma map and limit this more
5887 * precisly, but there's no way to get it safely under interrupt,
5888 * so using TASK_SIZE as limit.
5890 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
5892 unsigned long addr
= perf_user_stack_pointer(regs
);
5894 if (!addr
|| addr
>= TASK_SIZE
)
5897 return TASK_SIZE
- addr
;
5901 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
5902 struct pt_regs
*regs
)
5906 /* No regs, no stack pointer, no dump. */
5911 * Check if we fit in with the requested stack size into the:
5913 * If we don't, we limit the size to the TASK_SIZE.
5915 * - remaining sample size
5916 * If we don't, we customize the stack size to
5917 * fit in to the remaining sample size.
5920 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
5921 stack_size
= min(stack_size
, (u16
) task_size
);
5923 /* Current header size plus static size and dynamic size. */
5924 header_size
+= 2 * sizeof(u64
);
5926 /* Do we fit in with the current stack dump size? */
5927 if ((u16
) (header_size
+ stack_size
) < header_size
) {
5929 * If we overflow the maximum size for the sample,
5930 * we customize the stack dump size to fit in.
5932 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
5933 stack_size
= round_up(stack_size
, sizeof(u64
));
5940 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
5941 struct pt_regs
*regs
)
5943 /* Case of a kernel thread, nothing to dump */
5946 perf_output_put(handle
, size
);
5955 * - the size requested by user or the best one we can fit
5956 * in to the sample max size
5958 * - user stack dump data
5960 * - the actual dumped size
5964 perf_output_put(handle
, dump_size
);
5967 sp
= perf_user_stack_pointer(regs
);
5968 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
5969 dyn_size
= dump_size
- rem
;
5971 perf_output_skip(handle
, rem
);
5974 perf_output_put(handle
, dyn_size
);
5978 static void __perf_event_header__init_id(struct perf_event_header
*header
,
5979 struct perf_sample_data
*data
,
5980 struct perf_event
*event
)
5982 u64 sample_type
= event
->attr
.sample_type
;
5984 data
->type
= sample_type
;
5985 header
->size
+= event
->id_header_size
;
5987 if (sample_type
& PERF_SAMPLE_TID
) {
5988 /* namespace issues */
5989 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
5990 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
5993 if (sample_type
& PERF_SAMPLE_TIME
)
5994 data
->time
= perf_event_clock(event
);
5996 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
5997 data
->id
= primary_event_id(event
);
5999 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6000 data
->stream_id
= event
->id
;
6002 if (sample_type
& PERF_SAMPLE_CPU
) {
6003 data
->cpu_entry
.cpu
= raw_smp_processor_id();
6004 data
->cpu_entry
.reserved
= 0;
6008 void perf_event_header__init_id(struct perf_event_header
*header
,
6009 struct perf_sample_data
*data
,
6010 struct perf_event
*event
)
6012 if (event
->attr
.sample_id_all
)
6013 __perf_event_header__init_id(header
, data
, event
);
6016 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
6017 struct perf_sample_data
*data
)
6019 u64 sample_type
= data
->type
;
6021 if (sample_type
& PERF_SAMPLE_TID
)
6022 perf_output_put(handle
, data
->tid_entry
);
6024 if (sample_type
& PERF_SAMPLE_TIME
)
6025 perf_output_put(handle
, data
->time
);
6027 if (sample_type
& PERF_SAMPLE_ID
)
6028 perf_output_put(handle
, data
->id
);
6030 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6031 perf_output_put(handle
, data
->stream_id
);
6033 if (sample_type
& PERF_SAMPLE_CPU
)
6034 perf_output_put(handle
, data
->cpu_entry
);
6036 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6037 perf_output_put(handle
, data
->id
);
6040 void perf_event__output_id_sample(struct perf_event
*event
,
6041 struct perf_output_handle
*handle
,
6042 struct perf_sample_data
*sample
)
6044 if (event
->attr
.sample_id_all
)
6045 __perf_event__output_id_sample(handle
, sample
);
6048 static void perf_output_read_one(struct perf_output_handle
*handle
,
6049 struct perf_event
*event
,
6050 u64 enabled
, u64 running
)
6052 u64 read_format
= event
->attr
.read_format
;
6056 values
[n
++] = perf_event_count(event
);
6057 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
6058 values
[n
++] = enabled
+
6059 atomic64_read(&event
->child_total_time_enabled
);
6061 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
6062 values
[n
++] = running
+
6063 atomic64_read(&event
->child_total_time_running
);
6065 if (read_format
& PERF_FORMAT_ID
)
6066 values
[n
++] = primary_event_id(event
);
6068 __output_copy(handle
, values
, n
* sizeof(u64
));
6071 static void perf_output_read_group(struct perf_output_handle
*handle
,
6072 struct perf_event
*event
,
6073 u64 enabled
, u64 running
)
6075 struct perf_event
*leader
= event
->group_leader
, *sub
;
6076 u64 read_format
= event
->attr
.read_format
;
6080 values
[n
++] = 1 + leader
->nr_siblings
;
6082 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
6083 values
[n
++] = enabled
;
6085 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
6086 values
[n
++] = running
;
6088 if ((leader
!= event
) &&
6089 (leader
->state
== PERF_EVENT_STATE_ACTIVE
))
6090 leader
->pmu
->read(leader
);
6092 values
[n
++] = perf_event_count(leader
);
6093 if (read_format
& PERF_FORMAT_ID
)
6094 values
[n
++] = primary_event_id(leader
);
6096 __output_copy(handle
, values
, n
* sizeof(u64
));
6098 for_each_sibling_event(sub
, leader
) {
6101 if ((sub
!= event
) &&
6102 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
6103 sub
->pmu
->read(sub
);
6105 values
[n
++] = perf_event_count(sub
);
6106 if (read_format
& PERF_FORMAT_ID
)
6107 values
[n
++] = primary_event_id(sub
);
6109 __output_copy(handle
, values
, n
* sizeof(u64
));
6113 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6114 PERF_FORMAT_TOTAL_TIME_RUNNING)
6117 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6119 * The problem is that its both hard and excessively expensive to iterate the
6120 * child list, not to mention that its impossible to IPI the children running
6121 * on another CPU, from interrupt/NMI context.
6123 static void perf_output_read(struct perf_output_handle
*handle
,
6124 struct perf_event
*event
)
6126 u64 enabled
= 0, running
= 0, now
;
6127 u64 read_format
= event
->attr
.read_format
;
6130 * compute total_time_enabled, total_time_running
6131 * based on snapshot values taken when the event
6132 * was last scheduled in.
6134 * we cannot simply called update_context_time()
6135 * because of locking issue as we are called in
6138 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
6139 calc_timer_values(event
, &now
, &enabled
, &running
);
6141 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
6142 perf_output_read_group(handle
, event
, enabled
, running
);
6144 perf_output_read_one(handle
, event
, enabled
, running
);
6147 void perf_output_sample(struct perf_output_handle
*handle
,
6148 struct perf_event_header
*header
,
6149 struct perf_sample_data
*data
,
6150 struct perf_event
*event
)
6152 u64 sample_type
= data
->type
;
6154 perf_output_put(handle
, *header
);
6156 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6157 perf_output_put(handle
, data
->id
);
6159 if (sample_type
& PERF_SAMPLE_IP
)
6160 perf_output_put(handle
, data
->ip
);
6162 if (sample_type
& PERF_SAMPLE_TID
)
6163 perf_output_put(handle
, data
->tid_entry
);
6165 if (sample_type
& PERF_SAMPLE_TIME
)
6166 perf_output_put(handle
, data
->time
);
6168 if (sample_type
& PERF_SAMPLE_ADDR
)
6169 perf_output_put(handle
, data
->addr
);
6171 if (sample_type
& PERF_SAMPLE_ID
)
6172 perf_output_put(handle
, data
->id
);
6174 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6175 perf_output_put(handle
, data
->stream_id
);
6177 if (sample_type
& PERF_SAMPLE_CPU
)
6178 perf_output_put(handle
, data
->cpu_entry
);
6180 if (sample_type
& PERF_SAMPLE_PERIOD
)
6181 perf_output_put(handle
, data
->period
);
6183 if (sample_type
& PERF_SAMPLE_READ
)
6184 perf_output_read(handle
, event
);
6186 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6189 size
+= data
->callchain
->nr
;
6190 size
*= sizeof(u64
);
6191 __output_copy(handle
, data
->callchain
, size
);
6194 if (sample_type
& PERF_SAMPLE_RAW
) {
6195 struct perf_raw_record
*raw
= data
->raw
;
6198 struct perf_raw_frag
*frag
= &raw
->frag
;
6200 perf_output_put(handle
, raw
->size
);
6203 __output_custom(handle
, frag
->copy
,
6204 frag
->data
, frag
->size
);
6206 __output_copy(handle
, frag
->data
,
6209 if (perf_raw_frag_last(frag
))
6214 __output_skip(handle
, NULL
, frag
->pad
);
6220 .size
= sizeof(u32
),
6223 perf_output_put(handle
, raw
);
6227 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6228 if (data
->br_stack
) {
6231 size
= data
->br_stack
->nr
6232 * sizeof(struct perf_branch_entry
);
6234 perf_output_put(handle
, data
->br_stack
->nr
);
6235 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
6238 * we always store at least the value of nr
6241 perf_output_put(handle
, nr
);
6245 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6246 u64 abi
= data
->regs_user
.abi
;
6249 * If there are no regs to dump, notice it through
6250 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6252 perf_output_put(handle
, abi
);
6255 u64 mask
= event
->attr
.sample_regs_user
;
6256 perf_output_sample_regs(handle
,
6257 data
->regs_user
.regs
,
6262 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6263 perf_output_sample_ustack(handle
,
6264 data
->stack_user_size
,
6265 data
->regs_user
.regs
);
6268 if (sample_type
& PERF_SAMPLE_WEIGHT
)
6269 perf_output_put(handle
, data
->weight
);
6271 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
6272 perf_output_put(handle
, data
->data_src
.val
);
6274 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
6275 perf_output_put(handle
, data
->txn
);
6277 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6278 u64 abi
= data
->regs_intr
.abi
;
6280 * If there are no regs to dump, notice it through
6281 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6283 perf_output_put(handle
, abi
);
6286 u64 mask
= event
->attr
.sample_regs_intr
;
6288 perf_output_sample_regs(handle
,
6289 data
->regs_intr
.regs
,
6294 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
6295 perf_output_put(handle
, data
->phys_addr
);
6297 if (!event
->attr
.watermark
) {
6298 int wakeup_events
= event
->attr
.wakeup_events
;
6300 if (wakeup_events
) {
6301 struct ring_buffer
*rb
= handle
->rb
;
6302 int events
= local_inc_return(&rb
->events
);
6304 if (events
>= wakeup_events
) {
6305 local_sub(wakeup_events
, &rb
->events
);
6306 local_inc(&rb
->wakeup
);
6312 static u64
perf_virt_to_phys(u64 virt
)
6315 struct page
*p
= NULL
;
6320 if (virt
>= TASK_SIZE
) {
6321 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6322 if (virt_addr_valid((void *)(uintptr_t)virt
) &&
6323 !(virt
>= VMALLOC_START
&& virt
< VMALLOC_END
))
6324 phys_addr
= (u64
)virt_to_phys((void *)(uintptr_t)virt
);
6327 * Walking the pages tables for user address.
6328 * Interrupts are disabled, so it prevents any tear down
6329 * of the page tables.
6330 * Try IRQ-safe __get_user_pages_fast first.
6331 * If failed, leave phys_addr as 0.
6333 if ((current
->mm
!= NULL
) &&
6334 (__get_user_pages_fast(virt
, 1, 0, &p
) == 1))
6335 phys_addr
= page_to_phys(p
) + virt
% PAGE_SIZE
;
6344 static struct perf_callchain_entry __empty_callchain
= { .nr
= 0, };
6346 struct perf_callchain_entry
*
6347 perf_callchain(struct perf_event
*event
, struct pt_regs
*regs
)
6349 bool kernel
= !event
->attr
.exclude_callchain_kernel
;
6350 bool user
= !event
->attr
.exclude_callchain_user
;
6351 /* Disallow cross-task user callchains. */
6352 bool crosstask
= event
->ctx
->task
&& event
->ctx
->task
!= current
;
6353 const u32 max_stack
= event
->attr
.sample_max_stack
;
6354 struct perf_callchain_entry
*callchain
;
6356 if (!kernel
&& !user
)
6357 return &__empty_callchain
;
6359 callchain
= get_perf_callchain(regs
, 0, kernel
, user
,
6360 max_stack
, crosstask
, true);
6361 return callchain
?: &__empty_callchain
;
6364 void perf_prepare_sample(struct perf_event_header
*header
,
6365 struct perf_sample_data
*data
,
6366 struct perf_event
*event
,
6367 struct pt_regs
*regs
)
6369 u64 sample_type
= event
->attr
.sample_type
;
6371 header
->type
= PERF_RECORD_SAMPLE
;
6372 header
->size
= sizeof(*header
) + event
->header_size
;
6375 header
->misc
|= perf_misc_flags(regs
);
6377 __perf_event_header__init_id(header
, data
, event
);
6379 if (sample_type
& PERF_SAMPLE_IP
)
6380 data
->ip
= perf_instruction_pointer(regs
);
6382 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6385 if (!(sample_type
& __PERF_SAMPLE_CALLCHAIN_EARLY
))
6386 data
->callchain
= perf_callchain(event
, regs
);
6388 size
+= data
->callchain
->nr
;
6390 header
->size
+= size
* sizeof(u64
);
6393 if (sample_type
& PERF_SAMPLE_RAW
) {
6394 struct perf_raw_record
*raw
= data
->raw
;
6398 struct perf_raw_frag
*frag
= &raw
->frag
;
6403 if (perf_raw_frag_last(frag
))
6408 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
6409 raw
->size
= size
- sizeof(u32
);
6410 frag
->pad
= raw
->size
- sum
;
6415 header
->size
+= size
;
6418 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6419 int size
= sizeof(u64
); /* nr */
6420 if (data
->br_stack
) {
6421 size
+= data
->br_stack
->nr
6422 * sizeof(struct perf_branch_entry
);
6424 header
->size
+= size
;
6427 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
6428 perf_sample_regs_user(&data
->regs_user
, regs
,
6429 &data
->regs_user_copy
);
6431 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6432 /* regs dump ABI info */
6433 int size
= sizeof(u64
);
6435 if (data
->regs_user
.regs
) {
6436 u64 mask
= event
->attr
.sample_regs_user
;
6437 size
+= hweight64(mask
) * sizeof(u64
);
6440 header
->size
+= size
;
6443 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6445 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6446 * processed as the last one or have additional check added
6447 * in case new sample type is added, because we could eat
6448 * up the rest of the sample size.
6450 u16 stack_size
= event
->attr
.sample_stack_user
;
6451 u16 size
= sizeof(u64
);
6453 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
6454 data
->regs_user
.regs
);
6457 * If there is something to dump, add space for the dump
6458 * itself and for the field that tells the dynamic size,
6459 * which is how many have been actually dumped.
6462 size
+= sizeof(u64
) + stack_size
;
6464 data
->stack_user_size
= stack_size
;
6465 header
->size
+= size
;
6468 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6469 /* regs dump ABI info */
6470 int size
= sizeof(u64
);
6472 perf_sample_regs_intr(&data
->regs_intr
, regs
);
6474 if (data
->regs_intr
.regs
) {
6475 u64 mask
= event
->attr
.sample_regs_intr
;
6477 size
+= hweight64(mask
) * sizeof(u64
);
6480 header
->size
+= size
;
6483 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
6484 data
->phys_addr
= perf_virt_to_phys(data
->addr
);
6487 static __always_inline
void
6488 __perf_event_output(struct perf_event
*event
,
6489 struct perf_sample_data
*data
,
6490 struct pt_regs
*regs
,
6491 int (*output_begin
)(struct perf_output_handle
*,
6492 struct perf_event
*,
6495 struct perf_output_handle handle
;
6496 struct perf_event_header header
;
6498 /* protect the callchain buffers */
6501 perf_prepare_sample(&header
, data
, event
, regs
);
6503 if (output_begin(&handle
, event
, header
.size
))
6506 perf_output_sample(&handle
, &header
, data
, event
);
6508 perf_output_end(&handle
);
6515 perf_event_output_forward(struct perf_event
*event
,
6516 struct perf_sample_data
*data
,
6517 struct pt_regs
*regs
)
6519 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
6523 perf_event_output_backward(struct perf_event
*event
,
6524 struct perf_sample_data
*data
,
6525 struct pt_regs
*regs
)
6527 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
6531 perf_event_output(struct perf_event
*event
,
6532 struct perf_sample_data
*data
,
6533 struct pt_regs
*regs
)
6535 __perf_event_output(event
, data
, regs
, perf_output_begin
);
6542 struct perf_read_event
{
6543 struct perf_event_header header
;
6550 perf_event_read_event(struct perf_event
*event
,
6551 struct task_struct
*task
)
6553 struct perf_output_handle handle
;
6554 struct perf_sample_data sample
;
6555 struct perf_read_event read_event
= {
6557 .type
= PERF_RECORD_READ
,
6559 .size
= sizeof(read_event
) + event
->read_size
,
6561 .pid
= perf_event_pid(event
, task
),
6562 .tid
= perf_event_tid(event
, task
),
6566 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
6567 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
6571 perf_output_put(&handle
, read_event
);
6572 perf_output_read(&handle
, event
);
6573 perf_event__output_id_sample(event
, &handle
, &sample
);
6575 perf_output_end(&handle
);
6578 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
6581 perf_iterate_ctx(struct perf_event_context
*ctx
,
6582 perf_iterate_f output
,
6583 void *data
, bool all
)
6585 struct perf_event
*event
;
6587 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
6589 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6591 if (!event_filter_match(event
))
6595 output(event
, data
);
6599 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
6601 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
6602 struct perf_event
*event
;
6604 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
6606 * Skip events that are not fully formed yet; ensure that
6607 * if we observe event->ctx, both event and ctx will be
6608 * complete enough. See perf_install_in_context().
6610 if (!smp_load_acquire(&event
->ctx
))
6613 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
6615 if (!event_filter_match(event
))
6617 output(event
, data
);
6622 * Iterate all events that need to receive side-band events.
6624 * For new callers; ensure that account_pmu_sb_event() includes
6625 * your event, otherwise it might not get delivered.
6628 perf_iterate_sb(perf_iterate_f output
, void *data
,
6629 struct perf_event_context
*task_ctx
)
6631 struct perf_event_context
*ctx
;
6638 * If we have task_ctx != NULL we only notify the task context itself.
6639 * The task_ctx is set only for EXIT events before releasing task
6643 perf_iterate_ctx(task_ctx
, output
, data
, false);
6647 perf_iterate_sb_cpu(output
, data
);
6649 for_each_task_context_nr(ctxn
) {
6650 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
6652 perf_iterate_ctx(ctx
, output
, data
, false);
6660 * Clear all file-based filters at exec, they'll have to be
6661 * re-instated when/if these objects are mmapped again.
6663 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
6665 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
6666 struct perf_addr_filter
*filter
;
6667 unsigned int restart
= 0, count
= 0;
6668 unsigned long flags
;
6670 if (!has_addr_filter(event
))
6673 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
6674 list_for_each_entry(filter
, &ifh
->list
, entry
) {
6675 if (filter
->path
.dentry
) {
6676 event
->addr_filters_offs
[count
] = 0;
6684 event
->addr_filters_gen
++;
6685 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
6688 perf_event_stop(event
, 1);
6691 void perf_event_exec(void)
6693 struct perf_event_context
*ctx
;
6697 for_each_task_context_nr(ctxn
) {
6698 ctx
= current
->perf_event_ctxp
[ctxn
];
6702 perf_event_enable_on_exec(ctxn
);
6704 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
6710 struct remote_output
{
6711 struct ring_buffer
*rb
;
6715 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
6717 struct perf_event
*parent
= event
->parent
;
6718 struct remote_output
*ro
= data
;
6719 struct ring_buffer
*rb
= ro
->rb
;
6720 struct stop_event_data sd
= {
6724 if (!has_aux(event
))
6731 * In case of inheritance, it will be the parent that links to the
6732 * ring-buffer, but it will be the child that's actually using it.
6734 * We are using event::rb to determine if the event should be stopped,
6735 * however this may race with ring_buffer_attach() (through set_output),
6736 * which will make us skip the event that actually needs to be stopped.
6737 * So ring_buffer_attach() has to stop an aux event before re-assigning
6740 if (rcu_dereference(parent
->rb
) == rb
)
6741 ro
->err
= __perf_event_stop(&sd
);
6744 static int __perf_pmu_output_stop(void *info
)
6746 struct perf_event
*event
= info
;
6747 struct pmu
*pmu
= event
->pmu
;
6748 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6749 struct remote_output ro
= {
6754 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
6755 if (cpuctx
->task_ctx
)
6756 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
6763 static void perf_pmu_output_stop(struct perf_event
*event
)
6765 struct perf_event
*iter
;
6770 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
6772 * For per-CPU events, we need to make sure that neither they
6773 * nor their children are running; for cpu==-1 events it's
6774 * sufficient to stop the event itself if it's active, since
6775 * it can't have children.
6779 cpu
= READ_ONCE(iter
->oncpu
);
6784 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
6785 if (err
== -EAGAIN
) {
6794 * task tracking -- fork/exit
6796 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6799 struct perf_task_event
{
6800 struct task_struct
*task
;
6801 struct perf_event_context
*task_ctx
;
6804 struct perf_event_header header
;
6814 static int perf_event_task_match(struct perf_event
*event
)
6816 return event
->attr
.comm
|| event
->attr
.mmap
||
6817 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
6821 static void perf_event_task_output(struct perf_event
*event
,
6824 struct perf_task_event
*task_event
= data
;
6825 struct perf_output_handle handle
;
6826 struct perf_sample_data sample
;
6827 struct task_struct
*task
= task_event
->task
;
6828 int ret
, size
= task_event
->event_id
.header
.size
;
6830 if (!perf_event_task_match(event
))
6833 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
6835 ret
= perf_output_begin(&handle
, event
,
6836 task_event
->event_id
.header
.size
);
6840 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
6841 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
6843 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
6844 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
6846 task_event
->event_id
.time
= perf_event_clock(event
);
6848 perf_output_put(&handle
, task_event
->event_id
);
6850 perf_event__output_id_sample(event
, &handle
, &sample
);
6852 perf_output_end(&handle
);
6854 task_event
->event_id
.header
.size
= size
;
6857 static void perf_event_task(struct task_struct
*task
,
6858 struct perf_event_context
*task_ctx
,
6861 struct perf_task_event task_event
;
6863 if (!atomic_read(&nr_comm_events
) &&
6864 !atomic_read(&nr_mmap_events
) &&
6865 !atomic_read(&nr_task_events
))
6868 task_event
= (struct perf_task_event
){
6870 .task_ctx
= task_ctx
,
6873 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
6875 .size
= sizeof(task_event
.event_id
),
6885 perf_iterate_sb(perf_event_task_output
,
6890 void perf_event_fork(struct task_struct
*task
)
6892 perf_event_task(task
, NULL
, 1);
6893 perf_event_namespaces(task
);
6900 struct perf_comm_event
{
6901 struct task_struct
*task
;
6906 struct perf_event_header header
;
6913 static int perf_event_comm_match(struct perf_event
*event
)
6915 return event
->attr
.comm
;
6918 static void perf_event_comm_output(struct perf_event
*event
,
6921 struct perf_comm_event
*comm_event
= data
;
6922 struct perf_output_handle handle
;
6923 struct perf_sample_data sample
;
6924 int size
= comm_event
->event_id
.header
.size
;
6927 if (!perf_event_comm_match(event
))
6930 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
6931 ret
= perf_output_begin(&handle
, event
,
6932 comm_event
->event_id
.header
.size
);
6937 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
6938 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
6940 perf_output_put(&handle
, comm_event
->event_id
);
6941 __output_copy(&handle
, comm_event
->comm
,
6942 comm_event
->comm_size
);
6944 perf_event__output_id_sample(event
, &handle
, &sample
);
6946 perf_output_end(&handle
);
6948 comm_event
->event_id
.header
.size
= size
;
6951 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
6953 char comm
[TASK_COMM_LEN
];
6956 memset(comm
, 0, sizeof(comm
));
6957 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
6958 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
6960 comm_event
->comm
= comm
;
6961 comm_event
->comm_size
= size
;
6963 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
6965 perf_iterate_sb(perf_event_comm_output
,
6970 void perf_event_comm(struct task_struct
*task
, bool exec
)
6972 struct perf_comm_event comm_event
;
6974 if (!atomic_read(&nr_comm_events
))
6977 comm_event
= (struct perf_comm_event
){
6983 .type
= PERF_RECORD_COMM
,
6984 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
6992 perf_event_comm_event(&comm_event
);
6996 * namespaces tracking
6999 struct perf_namespaces_event
{
7000 struct task_struct
*task
;
7003 struct perf_event_header header
;
7008 struct perf_ns_link_info link_info
[NR_NAMESPACES
];
7012 static int perf_event_namespaces_match(struct perf_event
*event
)
7014 return event
->attr
.namespaces
;
7017 static void perf_event_namespaces_output(struct perf_event
*event
,
7020 struct perf_namespaces_event
*namespaces_event
= data
;
7021 struct perf_output_handle handle
;
7022 struct perf_sample_data sample
;
7023 u16 header_size
= namespaces_event
->event_id
.header
.size
;
7026 if (!perf_event_namespaces_match(event
))
7029 perf_event_header__init_id(&namespaces_event
->event_id
.header
,
7031 ret
= perf_output_begin(&handle
, event
,
7032 namespaces_event
->event_id
.header
.size
);
7036 namespaces_event
->event_id
.pid
= perf_event_pid(event
,
7037 namespaces_event
->task
);
7038 namespaces_event
->event_id
.tid
= perf_event_tid(event
,
7039 namespaces_event
->task
);
7041 perf_output_put(&handle
, namespaces_event
->event_id
);
7043 perf_event__output_id_sample(event
, &handle
, &sample
);
7045 perf_output_end(&handle
);
7047 namespaces_event
->event_id
.header
.size
= header_size
;
7050 static void perf_fill_ns_link_info(struct perf_ns_link_info
*ns_link_info
,
7051 struct task_struct
*task
,
7052 const struct proc_ns_operations
*ns_ops
)
7054 struct path ns_path
;
7055 struct inode
*ns_inode
;
7058 error
= ns_get_path(&ns_path
, task
, ns_ops
);
7060 ns_inode
= ns_path
.dentry
->d_inode
;
7061 ns_link_info
->dev
= new_encode_dev(ns_inode
->i_sb
->s_dev
);
7062 ns_link_info
->ino
= ns_inode
->i_ino
;
7067 void perf_event_namespaces(struct task_struct
*task
)
7069 struct perf_namespaces_event namespaces_event
;
7070 struct perf_ns_link_info
*ns_link_info
;
7072 if (!atomic_read(&nr_namespaces_events
))
7075 namespaces_event
= (struct perf_namespaces_event
){
7079 .type
= PERF_RECORD_NAMESPACES
,
7081 .size
= sizeof(namespaces_event
.event_id
),
7085 .nr_namespaces
= NR_NAMESPACES
,
7086 /* .link_info[NR_NAMESPACES] */
7090 ns_link_info
= namespaces_event
.event_id
.link_info
;
7092 perf_fill_ns_link_info(&ns_link_info
[MNT_NS_INDEX
],
7093 task
, &mntns_operations
);
7095 #ifdef CONFIG_USER_NS
7096 perf_fill_ns_link_info(&ns_link_info
[USER_NS_INDEX
],
7097 task
, &userns_operations
);
7099 #ifdef CONFIG_NET_NS
7100 perf_fill_ns_link_info(&ns_link_info
[NET_NS_INDEX
],
7101 task
, &netns_operations
);
7103 #ifdef CONFIG_UTS_NS
7104 perf_fill_ns_link_info(&ns_link_info
[UTS_NS_INDEX
],
7105 task
, &utsns_operations
);
7107 #ifdef CONFIG_IPC_NS
7108 perf_fill_ns_link_info(&ns_link_info
[IPC_NS_INDEX
],
7109 task
, &ipcns_operations
);
7111 #ifdef CONFIG_PID_NS
7112 perf_fill_ns_link_info(&ns_link_info
[PID_NS_INDEX
],
7113 task
, &pidns_operations
);
7115 #ifdef CONFIG_CGROUPS
7116 perf_fill_ns_link_info(&ns_link_info
[CGROUP_NS_INDEX
],
7117 task
, &cgroupns_operations
);
7120 perf_iterate_sb(perf_event_namespaces_output
,
7129 struct perf_mmap_event
{
7130 struct vm_area_struct
*vma
;
7132 const char *file_name
;
7140 struct perf_event_header header
;
7150 static int perf_event_mmap_match(struct perf_event
*event
,
7153 struct perf_mmap_event
*mmap_event
= data
;
7154 struct vm_area_struct
*vma
= mmap_event
->vma
;
7155 int executable
= vma
->vm_flags
& VM_EXEC
;
7157 return (!executable
&& event
->attr
.mmap_data
) ||
7158 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
7161 static void perf_event_mmap_output(struct perf_event
*event
,
7164 struct perf_mmap_event
*mmap_event
= data
;
7165 struct perf_output_handle handle
;
7166 struct perf_sample_data sample
;
7167 int size
= mmap_event
->event_id
.header
.size
;
7170 if (!perf_event_mmap_match(event
, data
))
7173 if (event
->attr
.mmap2
) {
7174 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
7175 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
7176 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
7177 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
7178 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
7179 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
7180 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
7183 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
7184 ret
= perf_output_begin(&handle
, event
,
7185 mmap_event
->event_id
.header
.size
);
7189 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
7190 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
7192 perf_output_put(&handle
, mmap_event
->event_id
);
7194 if (event
->attr
.mmap2
) {
7195 perf_output_put(&handle
, mmap_event
->maj
);
7196 perf_output_put(&handle
, mmap_event
->min
);
7197 perf_output_put(&handle
, mmap_event
->ino
);
7198 perf_output_put(&handle
, mmap_event
->ino_generation
);
7199 perf_output_put(&handle
, mmap_event
->prot
);
7200 perf_output_put(&handle
, mmap_event
->flags
);
7203 __output_copy(&handle
, mmap_event
->file_name
,
7204 mmap_event
->file_size
);
7206 perf_event__output_id_sample(event
, &handle
, &sample
);
7208 perf_output_end(&handle
);
7210 mmap_event
->event_id
.header
.size
= size
;
7213 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
7215 struct vm_area_struct
*vma
= mmap_event
->vma
;
7216 struct file
*file
= vma
->vm_file
;
7217 int maj
= 0, min
= 0;
7218 u64 ino
= 0, gen
= 0;
7219 u32 prot
= 0, flags
= 0;
7225 if (vma
->vm_flags
& VM_READ
)
7227 if (vma
->vm_flags
& VM_WRITE
)
7229 if (vma
->vm_flags
& VM_EXEC
)
7232 if (vma
->vm_flags
& VM_MAYSHARE
)
7235 flags
= MAP_PRIVATE
;
7237 if (vma
->vm_flags
& VM_DENYWRITE
)
7238 flags
|= MAP_DENYWRITE
;
7239 if (vma
->vm_flags
& VM_MAYEXEC
)
7240 flags
|= MAP_EXECUTABLE
;
7241 if (vma
->vm_flags
& VM_LOCKED
)
7242 flags
|= MAP_LOCKED
;
7243 if (vma
->vm_flags
& VM_HUGETLB
)
7244 flags
|= MAP_HUGETLB
;
7247 struct inode
*inode
;
7250 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
7256 * d_path() works from the end of the rb backwards, so we
7257 * need to add enough zero bytes after the string to handle
7258 * the 64bit alignment we do later.
7260 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
7265 inode
= file_inode(vma
->vm_file
);
7266 dev
= inode
->i_sb
->s_dev
;
7268 gen
= inode
->i_generation
;
7274 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
7275 name
= (char *) vma
->vm_ops
->name(vma
);
7280 name
= (char *)arch_vma_name(vma
);
7284 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
7285 vma
->vm_end
>= vma
->vm_mm
->brk
) {
7289 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
7290 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
7300 strlcpy(tmp
, name
, sizeof(tmp
));
7304 * Since our buffer works in 8 byte units we need to align our string
7305 * size to a multiple of 8. However, we must guarantee the tail end is
7306 * zero'd out to avoid leaking random bits to userspace.
7308 size
= strlen(name
)+1;
7309 while (!IS_ALIGNED(size
, sizeof(u64
)))
7310 name
[size
++] = '\0';
7312 mmap_event
->file_name
= name
;
7313 mmap_event
->file_size
= size
;
7314 mmap_event
->maj
= maj
;
7315 mmap_event
->min
= min
;
7316 mmap_event
->ino
= ino
;
7317 mmap_event
->ino_generation
= gen
;
7318 mmap_event
->prot
= prot
;
7319 mmap_event
->flags
= flags
;
7321 if (!(vma
->vm_flags
& VM_EXEC
))
7322 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
7324 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
7326 perf_iterate_sb(perf_event_mmap_output
,
7334 * Check whether inode and address range match filter criteria.
7336 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
7337 struct file
*file
, unsigned long offset
,
7340 /* d_inode(NULL) won't be equal to any mapped user-space file */
7341 if (!filter
->path
.dentry
)
7344 if (d_inode(filter
->path
.dentry
) != file_inode(file
))
7347 if (filter
->offset
> offset
+ size
)
7350 if (filter
->offset
+ filter
->size
< offset
)
7356 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
7358 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
7359 struct vm_area_struct
*vma
= data
;
7360 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
, flags
;
7361 struct file
*file
= vma
->vm_file
;
7362 struct perf_addr_filter
*filter
;
7363 unsigned int restart
= 0, count
= 0;
7365 if (!has_addr_filter(event
))
7371 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
7372 list_for_each_entry(filter
, &ifh
->list
, entry
) {
7373 if (perf_addr_filter_match(filter
, file
, off
,
7374 vma
->vm_end
- vma
->vm_start
)) {
7375 event
->addr_filters_offs
[count
] = vma
->vm_start
;
7383 event
->addr_filters_gen
++;
7384 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
7387 perf_event_stop(event
, 1);
7391 * Adjust all task's events' filters to the new vma
7393 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
7395 struct perf_event_context
*ctx
;
7399 * Data tracing isn't supported yet and as such there is no need
7400 * to keep track of anything that isn't related to executable code:
7402 if (!(vma
->vm_flags
& VM_EXEC
))
7406 for_each_task_context_nr(ctxn
) {
7407 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
7411 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
7416 void perf_event_mmap(struct vm_area_struct
*vma
)
7418 struct perf_mmap_event mmap_event
;
7420 if (!atomic_read(&nr_mmap_events
))
7423 mmap_event
= (struct perf_mmap_event
){
7429 .type
= PERF_RECORD_MMAP
,
7430 .misc
= PERF_RECORD_MISC_USER
,
7435 .start
= vma
->vm_start
,
7436 .len
= vma
->vm_end
- vma
->vm_start
,
7437 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
7439 /* .maj (attr_mmap2 only) */
7440 /* .min (attr_mmap2 only) */
7441 /* .ino (attr_mmap2 only) */
7442 /* .ino_generation (attr_mmap2 only) */
7443 /* .prot (attr_mmap2 only) */
7444 /* .flags (attr_mmap2 only) */
7447 perf_addr_filters_adjust(vma
);
7448 perf_event_mmap_event(&mmap_event
);
7451 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
7452 unsigned long size
, u64 flags
)
7454 struct perf_output_handle handle
;
7455 struct perf_sample_data sample
;
7456 struct perf_aux_event
{
7457 struct perf_event_header header
;
7463 .type
= PERF_RECORD_AUX
,
7465 .size
= sizeof(rec
),
7473 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7474 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7479 perf_output_put(&handle
, rec
);
7480 perf_event__output_id_sample(event
, &handle
, &sample
);
7482 perf_output_end(&handle
);
7486 * Lost/dropped samples logging
7488 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
7490 struct perf_output_handle handle
;
7491 struct perf_sample_data sample
;
7495 struct perf_event_header header
;
7497 } lost_samples_event
= {
7499 .type
= PERF_RECORD_LOST_SAMPLES
,
7501 .size
= sizeof(lost_samples_event
),
7506 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
7508 ret
= perf_output_begin(&handle
, event
,
7509 lost_samples_event
.header
.size
);
7513 perf_output_put(&handle
, lost_samples_event
);
7514 perf_event__output_id_sample(event
, &handle
, &sample
);
7515 perf_output_end(&handle
);
7519 * context_switch tracking
7522 struct perf_switch_event
{
7523 struct task_struct
*task
;
7524 struct task_struct
*next_prev
;
7527 struct perf_event_header header
;
7533 static int perf_event_switch_match(struct perf_event
*event
)
7535 return event
->attr
.context_switch
;
7538 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
7540 struct perf_switch_event
*se
= data
;
7541 struct perf_output_handle handle
;
7542 struct perf_sample_data sample
;
7545 if (!perf_event_switch_match(event
))
7548 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7549 if (event
->ctx
->task
) {
7550 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
7551 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
7553 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
7554 se
->event_id
.header
.size
= sizeof(se
->event_id
);
7555 se
->event_id
.next_prev_pid
=
7556 perf_event_pid(event
, se
->next_prev
);
7557 se
->event_id
.next_prev_tid
=
7558 perf_event_tid(event
, se
->next_prev
);
7561 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
7563 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
7567 if (event
->ctx
->task
)
7568 perf_output_put(&handle
, se
->event_id
.header
);
7570 perf_output_put(&handle
, se
->event_id
);
7572 perf_event__output_id_sample(event
, &handle
, &sample
);
7574 perf_output_end(&handle
);
7577 static void perf_event_switch(struct task_struct
*task
,
7578 struct task_struct
*next_prev
, bool sched_in
)
7580 struct perf_switch_event switch_event
;
7582 /* N.B. caller checks nr_switch_events != 0 */
7584 switch_event
= (struct perf_switch_event
){
7586 .next_prev
= next_prev
,
7590 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
7593 /* .next_prev_pid */
7594 /* .next_prev_tid */
7598 if (!sched_in
&& task
->state
== TASK_RUNNING
)
7599 switch_event
.event_id
.header
.misc
|=
7600 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT
;
7602 perf_iterate_sb(perf_event_switch_output
,
7608 * IRQ throttle logging
7611 static void perf_log_throttle(struct perf_event
*event
, int enable
)
7613 struct perf_output_handle handle
;
7614 struct perf_sample_data sample
;
7618 struct perf_event_header header
;
7622 } throttle_event
= {
7624 .type
= PERF_RECORD_THROTTLE
,
7626 .size
= sizeof(throttle_event
),
7628 .time
= perf_event_clock(event
),
7629 .id
= primary_event_id(event
),
7630 .stream_id
= event
->id
,
7634 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
7636 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
7638 ret
= perf_output_begin(&handle
, event
,
7639 throttle_event
.header
.size
);
7643 perf_output_put(&handle
, throttle_event
);
7644 perf_event__output_id_sample(event
, &handle
, &sample
);
7645 perf_output_end(&handle
);
7648 void perf_event_itrace_started(struct perf_event
*event
)
7650 event
->attach_state
|= PERF_ATTACH_ITRACE
;
7653 static void perf_log_itrace_start(struct perf_event
*event
)
7655 struct perf_output_handle handle
;
7656 struct perf_sample_data sample
;
7657 struct perf_aux_event
{
7658 struct perf_event_header header
;
7665 event
= event
->parent
;
7667 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
7668 event
->attach_state
& PERF_ATTACH_ITRACE
)
7671 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
7672 rec
.header
.misc
= 0;
7673 rec
.header
.size
= sizeof(rec
);
7674 rec
.pid
= perf_event_pid(event
, current
);
7675 rec
.tid
= perf_event_tid(event
, current
);
7677 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7678 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7683 perf_output_put(&handle
, rec
);
7684 perf_event__output_id_sample(event
, &handle
, &sample
);
7686 perf_output_end(&handle
);
7690 __perf_event_account_interrupt(struct perf_event
*event
, int throttle
)
7692 struct hw_perf_event
*hwc
= &event
->hw
;
7696 seq
= __this_cpu_read(perf_throttled_seq
);
7697 if (seq
!= hwc
->interrupts_seq
) {
7698 hwc
->interrupts_seq
= seq
;
7699 hwc
->interrupts
= 1;
7702 if (unlikely(throttle
7703 && hwc
->interrupts
>= max_samples_per_tick
)) {
7704 __this_cpu_inc(perf_throttled_count
);
7705 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
7706 hwc
->interrupts
= MAX_INTERRUPTS
;
7707 perf_log_throttle(event
, 0);
7712 if (event
->attr
.freq
) {
7713 u64 now
= perf_clock();
7714 s64 delta
= now
- hwc
->freq_time_stamp
;
7716 hwc
->freq_time_stamp
= now
;
7718 if (delta
> 0 && delta
< 2*TICK_NSEC
)
7719 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
7725 int perf_event_account_interrupt(struct perf_event
*event
)
7727 return __perf_event_account_interrupt(event
, 1);
7731 * Generic event overflow handling, sampling.
7734 static int __perf_event_overflow(struct perf_event
*event
,
7735 int throttle
, struct perf_sample_data
*data
,
7736 struct pt_regs
*regs
)
7738 int events
= atomic_read(&event
->event_limit
);
7742 * Non-sampling counters might still use the PMI to fold short
7743 * hardware counters, ignore those.
7745 if (unlikely(!is_sampling_event(event
)))
7748 ret
= __perf_event_account_interrupt(event
, throttle
);
7751 * XXX event_limit might not quite work as expected on inherited
7755 event
->pending_kill
= POLL_IN
;
7756 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
7758 event
->pending_kill
= POLL_HUP
;
7760 perf_event_disable_inatomic(event
);
7763 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
7765 if (*perf_event_fasync(event
) && event
->pending_kill
) {
7766 event
->pending_wakeup
= 1;
7767 irq_work_queue(&event
->pending
);
7773 int perf_event_overflow(struct perf_event
*event
,
7774 struct perf_sample_data
*data
,
7775 struct pt_regs
*regs
)
7777 return __perf_event_overflow(event
, 1, data
, regs
);
7781 * Generic software event infrastructure
7784 struct swevent_htable
{
7785 struct swevent_hlist
*swevent_hlist
;
7786 struct mutex hlist_mutex
;
7789 /* Recursion avoidance in each contexts */
7790 int recursion
[PERF_NR_CONTEXTS
];
7793 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
7796 * We directly increment event->count and keep a second value in
7797 * event->hw.period_left to count intervals. This period event
7798 * is kept in the range [-sample_period, 0] so that we can use the
7802 u64
perf_swevent_set_period(struct perf_event
*event
)
7804 struct hw_perf_event
*hwc
= &event
->hw
;
7805 u64 period
= hwc
->last_period
;
7809 hwc
->last_period
= hwc
->sample_period
;
7812 old
= val
= local64_read(&hwc
->period_left
);
7816 nr
= div64_u64(period
+ val
, period
);
7817 offset
= nr
* period
;
7819 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
7825 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
7826 struct perf_sample_data
*data
,
7827 struct pt_regs
*regs
)
7829 struct hw_perf_event
*hwc
= &event
->hw
;
7833 overflow
= perf_swevent_set_period(event
);
7835 if (hwc
->interrupts
== MAX_INTERRUPTS
)
7838 for (; overflow
; overflow
--) {
7839 if (__perf_event_overflow(event
, throttle
,
7842 * We inhibit the overflow from happening when
7843 * hwc->interrupts == MAX_INTERRUPTS.
7851 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
7852 struct perf_sample_data
*data
,
7853 struct pt_regs
*regs
)
7855 struct hw_perf_event
*hwc
= &event
->hw
;
7857 local64_add(nr
, &event
->count
);
7862 if (!is_sampling_event(event
))
7865 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
7867 return perf_swevent_overflow(event
, 1, data
, regs
);
7869 data
->period
= event
->hw
.last_period
;
7871 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
7872 return perf_swevent_overflow(event
, 1, data
, regs
);
7874 if (local64_add_negative(nr
, &hwc
->period_left
))
7877 perf_swevent_overflow(event
, 0, data
, regs
);
7880 static int perf_exclude_event(struct perf_event
*event
,
7881 struct pt_regs
*regs
)
7883 if (event
->hw
.state
& PERF_HES_STOPPED
)
7887 if (event
->attr
.exclude_user
&& user_mode(regs
))
7890 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
7897 static int perf_swevent_match(struct perf_event
*event
,
7898 enum perf_type_id type
,
7900 struct perf_sample_data
*data
,
7901 struct pt_regs
*regs
)
7903 if (event
->attr
.type
!= type
)
7906 if (event
->attr
.config
!= event_id
)
7909 if (perf_exclude_event(event
, regs
))
7915 static inline u64
swevent_hash(u64 type
, u32 event_id
)
7917 u64 val
= event_id
| (type
<< 32);
7919 return hash_64(val
, SWEVENT_HLIST_BITS
);
7922 static inline struct hlist_head
*
7923 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
7925 u64 hash
= swevent_hash(type
, event_id
);
7927 return &hlist
->heads
[hash
];
7930 /* For the read side: events when they trigger */
7931 static inline struct hlist_head
*
7932 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
7934 struct swevent_hlist
*hlist
;
7936 hlist
= rcu_dereference(swhash
->swevent_hlist
);
7940 return __find_swevent_head(hlist
, type
, event_id
);
7943 /* For the event head insertion and removal in the hlist */
7944 static inline struct hlist_head
*
7945 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
7947 struct swevent_hlist
*hlist
;
7948 u32 event_id
= event
->attr
.config
;
7949 u64 type
= event
->attr
.type
;
7952 * Event scheduling is always serialized against hlist allocation
7953 * and release. Which makes the protected version suitable here.
7954 * The context lock guarantees that.
7956 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
7957 lockdep_is_held(&event
->ctx
->lock
));
7961 return __find_swevent_head(hlist
, type
, event_id
);
7964 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
7966 struct perf_sample_data
*data
,
7967 struct pt_regs
*regs
)
7969 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7970 struct perf_event
*event
;
7971 struct hlist_head
*head
;
7974 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
7978 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
7979 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
7980 perf_swevent_event(event
, nr
, data
, regs
);
7986 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
7988 int perf_swevent_get_recursion_context(void)
7990 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
7992 return get_recursion_context(swhash
->recursion
);
7994 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
7996 void perf_swevent_put_recursion_context(int rctx
)
7998 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8000 put_recursion_context(swhash
->recursion
, rctx
);
8003 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
8005 struct perf_sample_data data
;
8007 if (WARN_ON_ONCE(!regs
))
8010 perf_sample_data_init(&data
, addr
, 0);
8011 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
8014 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
8018 preempt_disable_notrace();
8019 rctx
= perf_swevent_get_recursion_context();
8020 if (unlikely(rctx
< 0))
8023 ___perf_sw_event(event_id
, nr
, regs
, addr
);
8025 perf_swevent_put_recursion_context(rctx
);
8027 preempt_enable_notrace();
8030 static void perf_swevent_read(struct perf_event
*event
)
8034 static int perf_swevent_add(struct perf_event
*event
, int flags
)
8036 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8037 struct hw_perf_event
*hwc
= &event
->hw
;
8038 struct hlist_head
*head
;
8040 if (is_sampling_event(event
)) {
8041 hwc
->last_period
= hwc
->sample_period
;
8042 perf_swevent_set_period(event
);
8045 hwc
->state
= !(flags
& PERF_EF_START
);
8047 head
= find_swevent_head(swhash
, event
);
8048 if (WARN_ON_ONCE(!head
))
8051 hlist_add_head_rcu(&event
->hlist_entry
, head
);
8052 perf_event_update_userpage(event
);
8057 static void perf_swevent_del(struct perf_event
*event
, int flags
)
8059 hlist_del_rcu(&event
->hlist_entry
);
8062 static void perf_swevent_start(struct perf_event
*event
, int flags
)
8064 event
->hw
.state
= 0;
8067 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
8069 event
->hw
.state
= PERF_HES_STOPPED
;
8072 /* Deref the hlist from the update side */
8073 static inline struct swevent_hlist
*
8074 swevent_hlist_deref(struct swevent_htable
*swhash
)
8076 return rcu_dereference_protected(swhash
->swevent_hlist
,
8077 lockdep_is_held(&swhash
->hlist_mutex
));
8080 static void swevent_hlist_release(struct swevent_htable
*swhash
)
8082 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
8087 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
8088 kfree_rcu(hlist
, rcu_head
);
8091 static void swevent_hlist_put_cpu(int cpu
)
8093 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8095 mutex_lock(&swhash
->hlist_mutex
);
8097 if (!--swhash
->hlist_refcount
)
8098 swevent_hlist_release(swhash
);
8100 mutex_unlock(&swhash
->hlist_mutex
);
8103 static void swevent_hlist_put(void)
8107 for_each_possible_cpu(cpu
)
8108 swevent_hlist_put_cpu(cpu
);
8111 static int swevent_hlist_get_cpu(int cpu
)
8113 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8116 mutex_lock(&swhash
->hlist_mutex
);
8117 if (!swevent_hlist_deref(swhash
) &&
8118 cpumask_test_cpu(cpu
, perf_online_mask
)) {
8119 struct swevent_hlist
*hlist
;
8121 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
8126 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
8128 swhash
->hlist_refcount
++;
8130 mutex_unlock(&swhash
->hlist_mutex
);
8135 static int swevent_hlist_get(void)
8137 int err
, cpu
, failed_cpu
;
8139 mutex_lock(&pmus_lock
);
8140 for_each_possible_cpu(cpu
) {
8141 err
= swevent_hlist_get_cpu(cpu
);
8147 mutex_unlock(&pmus_lock
);
8150 for_each_possible_cpu(cpu
) {
8151 if (cpu
== failed_cpu
)
8153 swevent_hlist_put_cpu(cpu
);
8155 mutex_unlock(&pmus_lock
);
8159 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
8161 static void sw_perf_event_destroy(struct perf_event
*event
)
8163 u64 event_id
= event
->attr
.config
;
8165 WARN_ON(event
->parent
);
8167 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
8168 swevent_hlist_put();
8171 static int perf_swevent_init(struct perf_event
*event
)
8173 u64 event_id
= event
->attr
.config
;
8175 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8179 * no branch sampling for software events
8181 if (has_branch_stack(event
))
8185 case PERF_COUNT_SW_CPU_CLOCK
:
8186 case PERF_COUNT_SW_TASK_CLOCK
:
8193 if (event_id
>= PERF_COUNT_SW_MAX
)
8196 if (!event
->parent
) {
8199 err
= swevent_hlist_get();
8203 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
8204 event
->destroy
= sw_perf_event_destroy
;
8210 static struct pmu perf_swevent
= {
8211 .task_ctx_nr
= perf_sw_context
,
8213 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8215 .event_init
= perf_swevent_init
,
8216 .add
= perf_swevent_add
,
8217 .del
= perf_swevent_del
,
8218 .start
= perf_swevent_start
,
8219 .stop
= perf_swevent_stop
,
8220 .read
= perf_swevent_read
,
8223 #ifdef CONFIG_EVENT_TRACING
8225 static int perf_tp_filter_match(struct perf_event
*event
,
8226 struct perf_sample_data
*data
)
8228 void *record
= data
->raw
->frag
.data
;
8230 /* only top level events have filters set */
8232 event
= event
->parent
;
8234 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
8239 static int perf_tp_event_match(struct perf_event
*event
,
8240 struct perf_sample_data
*data
,
8241 struct pt_regs
*regs
)
8243 if (event
->hw
.state
& PERF_HES_STOPPED
)
8246 * All tracepoints are from kernel-space.
8248 if (event
->attr
.exclude_kernel
)
8251 if (!perf_tp_filter_match(event
, data
))
8257 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
8258 struct trace_event_call
*call
, u64 count
,
8259 struct pt_regs
*regs
, struct hlist_head
*head
,
8260 struct task_struct
*task
)
8262 if (bpf_prog_array_valid(call
)) {
8263 *(struct pt_regs
**)raw_data
= regs
;
8264 if (!trace_call_bpf(call
, raw_data
) || hlist_empty(head
)) {
8265 perf_swevent_put_recursion_context(rctx
);
8269 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
8272 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
8274 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
8275 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
8276 struct task_struct
*task
)
8278 struct perf_sample_data data
;
8279 struct perf_event
*event
;
8281 struct perf_raw_record raw
= {
8288 perf_sample_data_init(&data
, 0, 0);
8291 perf_trace_buf_update(record
, event_type
);
8293 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
8294 if (perf_tp_event_match(event
, &data
, regs
))
8295 perf_swevent_event(event
, count
, &data
, regs
);
8299 * If we got specified a target task, also iterate its context and
8300 * deliver this event there too.
8302 if (task
&& task
!= current
) {
8303 struct perf_event_context
*ctx
;
8304 struct trace_entry
*entry
= record
;
8307 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
8311 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
8312 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
8314 if (event
->attr
.config
!= entry
->type
)
8316 if (perf_tp_event_match(event
, &data
, regs
))
8317 perf_swevent_event(event
, count
, &data
, regs
);
8323 perf_swevent_put_recursion_context(rctx
);
8325 EXPORT_SYMBOL_GPL(perf_tp_event
);
8327 static void tp_perf_event_destroy(struct perf_event
*event
)
8329 perf_trace_destroy(event
);
8332 static int perf_tp_event_init(struct perf_event
*event
)
8336 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
8340 * no branch sampling for tracepoint events
8342 if (has_branch_stack(event
))
8345 err
= perf_trace_init(event
);
8349 event
->destroy
= tp_perf_event_destroy
;
8354 static struct pmu perf_tracepoint
= {
8355 .task_ctx_nr
= perf_sw_context
,
8357 .event_init
= perf_tp_event_init
,
8358 .add
= perf_trace_add
,
8359 .del
= perf_trace_del
,
8360 .start
= perf_swevent_start
,
8361 .stop
= perf_swevent_stop
,
8362 .read
= perf_swevent_read
,
8365 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8367 * Flags in config, used by dynamic PMU kprobe and uprobe
8368 * The flags should match following PMU_FORMAT_ATTR().
8370 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8371 * if not set, create kprobe/uprobe
8373 enum perf_probe_config
{
8374 PERF_PROBE_CONFIG_IS_RETPROBE
= 1U << 0, /* [k,u]retprobe */
8377 PMU_FORMAT_ATTR(retprobe
, "config:0");
8379 static struct attribute
*probe_attrs
[] = {
8380 &format_attr_retprobe
.attr
,
8384 static struct attribute_group probe_format_group
= {
8386 .attrs
= probe_attrs
,
8389 static const struct attribute_group
*probe_attr_groups
[] = {
8390 &probe_format_group
,
8395 #ifdef CONFIG_KPROBE_EVENTS
8396 static int perf_kprobe_event_init(struct perf_event
*event
);
8397 static struct pmu perf_kprobe
= {
8398 .task_ctx_nr
= perf_sw_context
,
8399 .event_init
= perf_kprobe_event_init
,
8400 .add
= perf_trace_add
,
8401 .del
= perf_trace_del
,
8402 .start
= perf_swevent_start
,
8403 .stop
= perf_swevent_stop
,
8404 .read
= perf_swevent_read
,
8405 .attr_groups
= probe_attr_groups
,
8408 static int perf_kprobe_event_init(struct perf_event
*event
)
8413 if (event
->attr
.type
!= perf_kprobe
.type
)
8416 if (!capable(CAP_SYS_ADMIN
))
8420 * no branch sampling for probe events
8422 if (has_branch_stack(event
))
8425 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
8426 err
= perf_kprobe_init(event
, is_retprobe
);
8430 event
->destroy
= perf_kprobe_destroy
;
8434 #endif /* CONFIG_KPROBE_EVENTS */
8436 #ifdef CONFIG_UPROBE_EVENTS
8437 static int perf_uprobe_event_init(struct perf_event
*event
);
8438 static struct pmu perf_uprobe
= {
8439 .task_ctx_nr
= perf_sw_context
,
8440 .event_init
= perf_uprobe_event_init
,
8441 .add
= perf_trace_add
,
8442 .del
= perf_trace_del
,
8443 .start
= perf_swevent_start
,
8444 .stop
= perf_swevent_stop
,
8445 .read
= perf_swevent_read
,
8446 .attr_groups
= probe_attr_groups
,
8449 static int perf_uprobe_event_init(struct perf_event
*event
)
8454 if (event
->attr
.type
!= perf_uprobe
.type
)
8457 if (!capable(CAP_SYS_ADMIN
))
8461 * no branch sampling for probe events
8463 if (has_branch_stack(event
))
8466 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
8467 err
= perf_uprobe_init(event
, is_retprobe
);
8471 event
->destroy
= perf_uprobe_destroy
;
8475 #endif /* CONFIG_UPROBE_EVENTS */
8477 static inline void perf_tp_register(void)
8479 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
8480 #ifdef CONFIG_KPROBE_EVENTS
8481 perf_pmu_register(&perf_kprobe
, "kprobe", -1);
8483 #ifdef CONFIG_UPROBE_EVENTS
8484 perf_pmu_register(&perf_uprobe
, "uprobe", -1);
8488 static void perf_event_free_filter(struct perf_event
*event
)
8490 ftrace_profile_free_filter(event
);
8493 #ifdef CONFIG_BPF_SYSCALL
8494 static void bpf_overflow_handler(struct perf_event
*event
,
8495 struct perf_sample_data
*data
,
8496 struct pt_regs
*regs
)
8498 struct bpf_perf_event_data_kern ctx
= {
8504 ctx
.regs
= perf_arch_bpf_user_pt_regs(regs
);
8506 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
8509 ret
= BPF_PROG_RUN(event
->prog
, &ctx
);
8512 __this_cpu_dec(bpf_prog_active
);
8517 event
->orig_overflow_handler(event
, data
, regs
);
8520 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
8522 struct bpf_prog
*prog
;
8524 if (event
->overflow_handler_context
)
8525 /* hw breakpoint or kernel counter */
8531 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
8533 return PTR_ERR(prog
);
8536 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
8537 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
8541 static void perf_event_free_bpf_handler(struct perf_event
*event
)
8543 struct bpf_prog
*prog
= event
->prog
;
8548 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
8553 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
8557 static void perf_event_free_bpf_handler(struct perf_event
*event
)
8563 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8564 * with perf_event_open()
8566 static inline bool perf_event_is_tracing(struct perf_event
*event
)
8568 if (event
->pmu
== &perf_tracepoint
)
8570 #ifdef CONFIG_KPROBE_EVENTS
8571 if (event
->pmu
== &perf_kprobe
)
8574 #ifdef CONFIG_UPROBE_EVENTS
8575 if (event
->pmu
== &perf_uprobe
)
8581 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
8583 bool is_kprobe
, is_tracepoint
, is_syscall_tp
;
8584 struct bpf_prog
*prog
;
8587 if (!perf_event_is_tracing(event
))
8588 return perf_event_set_bpf_handler(event
, prog_fd
);
8590 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
8591 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
8592 is_syscall_tp
= is_syscall_trace_event(event
->tp_event
);
8593 if (!is_kprobe
&& !is_tracepoint
&& !is_syscall_tp
)
8594 /* bpf programs can only be attached to u/kprobe or tracepoint */
8597 prog
= bpf_prog_get(prog_fd
);
8599 return PTR_ERR(prog
);
8601 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
8602 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
) ||
8603 (is_syscall_tp
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
8604 /* valid fd, but invalid bpf program type */
8609 /* Kprobe override only works for kprobes, not uprobes. */
8610 if (prog
->kprobe_override
&&
8611 !(event
->tp_event
->flags
& TRACE_EVENT_FL_KPROBE
)) {
8616 if (is_tracepoint
|| is_syscall_tp
) {
8617 int off
= trace_event_get_offsets(event
->tp_event
);
8619 if (prog
->aux
->max_ctx_offset
> off
) {
8625 ret
= perf_event_attach_bpf_prog(event
, prog
);
8631 static void perf_event_free_bpf_prog(struct perf_event
*event
)
8633 if (!perf_event_is_tracing(event
)) {
8634 perf_event_free_bpf_handler(event
);
8637 perf_event_detach_bpf_prog(event
);
8642 static inline void perf_tp_register(void)
8646 static void perf_event_free_filter(struct perf_event
*event
)
8650 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
8655 static void perf_event_free_bpf_prog(struct perf_event
*event
)
8658 #endif /* CONFIG_EVENT_TRACING */
8660 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8661 void perf_bp_event(struct perf_event
*bp
, void *data
)
8663 struct perf_sample_data sample
;
8664 struct pt_regs
*regs
= data
;
8666 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
8668 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
8669 perf_swevent_event(bp
, 1, &sample
, regs
);
8674 * Allocate a new address filter
8676 static struct perf_addr_filter
*
8677 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
8679 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
8680 struct perf_addr_filter
*filter
;
8682 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
8686 INIT_LIST_HEAD(&filter
->entry
);
8687 list_add_tail(&filter
->entry
, filters
);
8692 static void free_filters_list(struct list_head
*filters
)
8694 struct perf_addr_filter
*filter
, *iter
;
8696 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
8697 path_put(&filter
->path
);
8698 list_del(&filter
->entry
);
8704 * Free existing address filters and optionally install new ones
8706 static void perf_addr_filters_splice(struct perf_event
*event
,
8707 struct list_head
*head
)
8709 unsigned long flags
;
8712 if (!has_addr_filter(event
))
8715 /* don't bother with children, they don't have their own filters */
8719 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
8721 list_splice_init(&event
->addr_filters
.list
, &list
);
8723 list_splice(head
, &event
->addr_filters
.list
);
8725 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
8727 free_filters_list(&list
);
8731 * Scan through mm's vmas and see if one of them matches the
8732 * @filter; if so, adjust filter's address range.
8733 * Called with mm::mmap_sem down for reading.
8735 static unsigned long perf_addr_filter_apply(struct perf_addr_filter
*filter
,
8736 struct mm_struct
*mm
)
8738 struct vm_area_struct
*vma
;
8740 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
8741 struct file
*file
= vma
->vm_file
;
8742 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
8743 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
8748 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
8751 return vma
->vm_start
;
8758 * Update event's address range filters based on the
8759 * task's existing mappings, if any.
8761 static void perf_event_addr_filters_apply(struct perf_event
*event
)
8763 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
8764 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
8765 struct perf_addr_filter
*filter
;
8766 struct mm_struct
*mm
= NULL
;
8767 unsigned int count
= 0;
8768 unsigned long flags
;
8771 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8772 * will stop on the parent's child_mutex that our caller is also holding
8774 if (task
== TASK_TOMBSTONE
)
8777 if (!ifh
->nr_file_filters
)
8780 mm
= get_task_mm(event
->ctx
->task
);
8784 down_read(&mm
->mmap_sem
);
8786 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
8787 list_for_each_entry(filter
, &ifh
->list
, entry
) {
8788 event
->addr_filters_offs
[count
] = 0;
8791 * Adjust base offset if the filter is associated to a binary
8792 * that needs to be mapped:
8794 if (filter
->path
.dentry
)
8795 event
->addr_filters_offs
[count
] =
8796 perf_addr_filter_apply(filter
, mm
);
8801 event
->addr_filters_gen
++;
8802 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
8804 up_read(&mm
->mmap_sem
);
8809 perf_event_stop(event
, 1);
8813 * Address range filtering: limiting the data to certain
8814 * instruction address ranges. Filters are ioctl()ed to us from
8815 * userspace as ascii strings.
8817 * Filter string format:
8820 * where ACTION is one of the
8821 * * "filter": limit the trace to this region
8822 * * "start": start tracing from this address
8823 * * "stop": stop tracing at this address/region;
8825 * * for kernel addresses: <start address>[/<size>]
8826 * * for object files: <start address>[/<size>]@</path/to/object/file>
8828 * if <size> is not specified or is zero, the range is treated as a single
8829 * address; not valid for ACTION=="filter".
8843 IF_STATE_ACTION
= 0,
8848 static const match_table_t if_tokens
= {
8849 { IF_ACT_FILTER
, "filter" },
8850 { IF_ACT_START
, "start" },
8851 { IF_ACT_STOP
, "stop" },
8852 { IF_SRC_FILE
, "%u/%u@%s" },
8853 { IF_SRC_KERNEL
, "%u/%u" },
8854 { IF_SRC_FILEADDR
, "%u@%s" },
8855 { IF_SRC_KERNELADDR
, "%u" },
8856 { IF_ACT_NONE
, NULL
},
8860 * Address filter string parser
8863 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
8864 struct list_head
*filters
)
8866 struct perf_addr_filter
*filter
= NULL
;
8867 char *start
, *orig
, *filename
= NULL
;
8868 substring_t args
[MAX_OPT_ARGS
];
8869 int state
= IF_STATE_ACTION
, token
;
8870 unsigned int kernel
= 0;
8873 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
8877 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
8878 static const enum perf_addr_filter_action_t actions
[] = {
8879 [IF_ACT_FILTER
] = PERF_ADDR_FILTER_ACTION_FILTER
,
8880 [IF_ACT_START
] = PERF_ADDR_FILTER_ACTION_START
,
8881 [IF_ACT_STOP
] = PERF_ADDR_FILTER_ACTION_STOP
,
8888 /* filter definition begins */
8889 if (state
== IF_STATE_ACTION
) {
8890 filter
= perf_addr_filter_new(event
, filters
);
8895 token
= match_token(start
, if_tokens
, args
);
8900 if (state
!= IF_STATE_ACTION
)
8903 filter
->action
= actions
[token
];
8904 state
= IF_STATE_SOURCE
;
8907 case IF_SRC_KERNELADDR
:
8911 case IF_SRC_FILEADDR
:
8913 if (state
!= IF_STATE_SOURCE
)
8917 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
8921 if (token
== IF_SRC_KERNEL
|| token
== IF_SRC_FILE
) {
8923 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
8928 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
8929 int fpos
= token
== IF_SRC_FILE
? 2 : 1;
8931 filename
= match_strdup(&args
[fpos
]);
8938 state
= IF_STATE_END
;
8946 * Filter definition is fully parsed, validate and install it.
8947 * Make sure that it doesn't contradict itself or the event's
8950 if (state
== IF_STATE_END
) {
8952 if (kernel
&& event
->attr
.exclude_kernel
)
8956 * ACTION "filter" must have a non-zero length region
8959 if (filter
->action
== PERF_ADDR_FILTER_ACTION_FILTER
&&
8968 * For now, we only support file-based filters
8969 * in per-task events; doing so for CPU-wide
8970 * events requires additional context switching
8971 * trickery, since same object code will be
8972 * mapped at different virtual addresses in
8973 * different processes.
8976 if (!event
->ctx
->task
)
8977 goto fail_free_name
;
8979 /* look up the path and grab its inode */
8980 ret
= kern_path(filename
, LOOKUP_FOLLOW
,
8983 goto fail_free_name
;
8989 if (!filter
->path
.dentry
||
8990 !S_ISREG(d_inode(filter
->path
.dentry
)
8994 event
->addr_filters
.nr_file_filters
++;
8997 /* ready to consume more filters */
8998 state
= IF_STATE_ACTION
;
9003 if (state
!= IF_STATE_ACTION
)
9013 free_filters_list(filters
);
9020 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
9026 * Since this is called in perf_ioctl() path, we're already holding
9029 lockdep_assert_held(&event
->ctx
->mutex
);
9031 if (WARN_ON_ONCE(event
->parent
))
9034 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
9036 goto fail_clear_files
;
9038 ret
= event
->pmu
->addr_filters_validate(&filters
);
9040 goto fail_free_filters
;
9042 /* remove existing filters, if any */
9043 perf_addr_filters_splice(event
, &filters
);
9045 /* install new filters */
9046 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
9051 free_filters_list(&filters
);
9054 event
->addr_filters
.nr_file_filters
= 0;
9059 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
9064 filter_str
= strndup_user(arg
, PAGE_SIZE
);
9065 if (IS_ERR(filter_str
))
9066 return PTR_ERR(filter_str
);
9068 #ifdef CONFIG_EVENT_TRACING
9069 if (perf_event_is_tracing(event
)) {
9070 struct perf_event_context
*ctx
= event
->ctx
;
9073 * Beware, here be dragons!!
9075 * the tracepoint muck will deadlock against ctx->mutex, but
9076 * the tracepoint stuff does not actually need it. So
9077 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9078 * already have a reference on ctx.
9080 * This can result in event getting moved to a different ctx,
9081 * but that does not affect the tracepoint state.
9083 mutex_unlock(&ctx
->mutex
);
9084 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
9085 mutex_lock(&ctx
->mutex
);
9088 if (has_addr_filter(event
))
9089 ret
= perf_event_set_addr_filter(event
, filter_str
);
9096 * hrtimer based swevent callback
9099 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
9101 enum hrtimer_restart ret
= HRTIMER_RESTART
;
9102 struct perf_sample_data data
;
9103 struct pt_regs
*regs
;
9104 struct perf_event
*event
;
9107 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
9109 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
9110 return HRTIMER_NORESTART
;
9112 event
->pmu
->read(event
);
9114 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
9115 regs
= get_irq_regs();
9117 if (regs
&& !perf_exclude_event(event
, regs
)) {
9118 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
9119 if (__perf_event_overflow(event
, 1, &data
, regs
))
9120 ret
= HRTIMER_NORESTART
;
9123 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
9124 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
9129 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
9131 struct hw_perf_event
*hwc
= &event
->hw
;
9134 if (!is_sampling_event(event
))
9137 period
= local64_read(&hwc
->period_left
);
9142 local64_set(&hwc
->period_left
, 0);
9144 period
= max_t(u64
, 10000, hwc
->sample_period
);
9146 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
9147 HRTIMER_MODE_REL_PINNED
);
9150 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
9152 struct hw_perf_event
*hwc
= &event
->hw
;
9154 if (is_sampling_event(event
)) {
9155 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
9156 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
9158 hrtimer_cancel(&hwc
->hrtimer
);
9162 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
9164 struct hw_perf_event
*hwc
= &event
->hw
;
9166 if (!is_sampling_event(event
))
9169 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
9170 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
9173 * Since hrtimers have a fixed rate, we can do a static freq->period
9174 * mapping and avoid the whole period adjust feedback stuff.
9176 if (event
->attr
.freq
) {
9177 long freq
= event
->attr
.sample_freq
;
9179 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
9180 hwc
->sample_period
= event
->attr
.sample_period
;
9181 local64_set(&hwc
->period_left
, hwc
->sample_period
);
9182 hwc
->last_period
= hwc
->sample_period
;
9183 event
->attr
.freq
= 0;
9188 * Software event: cpu wall time clock
9191 static void cpu_clock_event_update(struct perf_event
*event
)
9196 now
= local_clock();
9197 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
9198 local64_add(now
- prev
, &event
->count
);
9201 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
9203 local64_set(&event
->hw
.prev_count
, local_clock());
9204 perf_swevent_start_hrtimer(event
);
9207 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
9209 perf_swevent_cancel_hrtimer(event
);
9210 cpu_clock_event_update(event
);
9213 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
9215 if (flags
& PERF_EF_START
)
9216 cpu_clock_event_start(event
, flags
);
9217 perf_event_update_userpage(event
);
9222 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
9224 cpu_clock_event_stop(event
, flags
);
9227 static void cpu_clock_event_read(struct perf_event
*event
)
9229 cpu_clock_event_update(event
);
9232 static int cpu_clock_event_init(struct perf_event
*event
)
9234 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
9237 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
9241 * no branch sampling for software events
9243 if (has_branch_stack(event
))
9246 perf_swevent_init_hrtimer(event
);
9251 static struct pmu perf_cpu_clock
= {
9252 .task_ctx_nr
= perf_sw_context
,
9254 .capabilities
= PERF_PMU_CAP_NO_NMI
,
9256 .event_init
= cpu_clock_event_init
,
9257 .add
= cpu_clock_event_add
,
9258 .del
= cpu_clock_event_del
,
9259 .start
= cpu_clock_event_start
,
9260 .stop
= cpu_clock_event_stop
,
9261 .read
= cpu_clock_event_read
,
9265 * Software event: task time clock
9268 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
9273 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
9275 local64_add(delta
, &event
->count
);
9278 static void task_clock_event_start(struct perf_event
*event
, int flags
)
9280 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
9281 perf_swevent_start_hrtimer(event
);
9284 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
9286 perf_swevent_cancel_hrtimer(event
);
9287 task_clock_event_update(event
, event
->ctx
->time
);
9290 static int task_clock_event_add(struct perf_event
*event
, int flags
)
9292 if (flags
& PERF_EF_START
)
9293 task_clock_event_start(event
, flags
);
9294 perf_event_update_userpage(event
);
9299 static void task_clock_event_del(struct perf_event
*event
, int flags
)
9301 task_clock_event_stop(event
, PERF_EF_UPDATE
);
9304 static void task_clock_event_read(struct perf_event
*event
)
9306 u64 now
= perf_clock();
9307 u64 delta
= now
- event
->ctx
->timestamp
;
9308 u64 time
= event
->ctx
->time
+ delta
;
9310 task_clock_event_update(event
, time
);
9313 static int task_clock_event_init(struct perf_event
*event
)
9315 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
9318 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
9322 * no branch sampling for software events
9324 if (has_branch_stack(event
))
9327 perf_swevent_init_hrtimer(event
);
9332 static struct pmu perf_task_clock
= {
9333 .task_ctx_nr
= perf_sw_context
,
9335 .capabilities
= PERF_PMU_CAP_NO_NMI
,
9337 .event_init
= task_clock_event_init
,
9338 .add
= task_clock_event_add
,
9339 .del
= task_clock_event_del
,
9340 .start
= task_clock_event_start
,
9341 .stop
= task_clock_event_stop
,
9342 .read
= task_clock_event_read
,
9345 static void perf_pmu_nop_void(struct pmu
*pmu
)
9349 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
9353 static int perf_pmu_nop_int(struct pmu
*pmu
)
9358 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
9360 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
9362 __this_cpu_write(nop_txn_flags
, flags
);
9364 if (flags
& ~PERF_PMU_TXN_ADD
)
9367 perf_pmu_disable(pmu
);
9370 static int perf_pmu_commit_txn(struct pmu
*pmu
)
9372 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
9374 __this_cpu_write(nop_txn_flags
, 0);
9376 if (flags
& ~PERF_PMU_TXN_ADD
)
9379 perf_pmu_enable(pmu
);
9383 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
9385 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
9387 __this_cpu_write(nop_txn_flags
, 0);
9389 if (flags
& ~PERF_PMU_TXN_ADD
)
9392 perf_pmu_enable(pmu
);
9395 static int perf_event_idx_default(struct perf_event
*event
)
9401 * Ensures all contexts with the same task_ctx_nr have the same
9402 * pmu_cpu_context too.
9404 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
9411 list_for_each_entry(pmu
, &pmus
, entry
) {
9412 if (pmu
->task_ctx_nr
== ctxn
)
9413 return pmu
->pmu_cpu_context
;
9419 static void free_pmu_context(struct pmu
*pmu
)
9422 * Static contexts such as perf_sw_context have a global lifetime
9423 * and may be shared between different PMUs. Avoid freeing them
9424 * when a single PMU is going away.
9426 if (pmu
->task_ctx_nr
> perf_invalid_context
)
9429 mutex_lock(&pmus_lock
);
9430 free_percpu(pmu
->pmu_cpu_context
);
9431 mutex_unlock(&pmus_lock
);
9435 * Let userspace know that this PMU supports address range filtering:
9437 static ssize_t
nr_addr_filters_show(struct device
*dev
,
9438 struct device_attribute
*attr
,
9441 struct pmu
*pmu
= dev_get_drvdata(dev
);
9443 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
9445 DEVICE_ATTR_RO(nr_addr_filters
);
9447 static struct idr pmu_idr
;
9450 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
9452 struct pmu
*pmu
= dev_get_drvdata(dev
);
9454 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
9456 static DEVICE_ATTR_RO(type
);
9459 perf_event_mux_interval_ms_show(struct device
*dev
,
9460 struct device_attribute
*attr
,
9463 struct pmu
*pmu
= dev_get_drvdata(dev
);
9465 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
9468 static DEFINE_MUTEX(mux_interval_mutex
);
9471 perf_event_mux_interval_ms_store(struct device
*dev
,
9472 struct device_attribute
*attr
,
9473 const char *buf
, size_t count
)
9475 struct pmu
*pmu
= dev_get_drvdata(dev
);
9476 int timer
, cpu
, ret
;
9478 ret
= kstrtoint(buf
, 0, &timer
);
9485 /* same value, noting to do */
9486 if (timer
== pmu
->hrtimer_interval_ms
)
9489 mutex_lock(&mux_interval_mutex
);
9490 pmu
->hrtimer_interval_ms
= timer
;
9492 /* update all cpuctx for this PMU */
9494 for_each_online_cpu(cpu
) {
9495 struct perf_cpu_context
*cpuctx
;
9496 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
9497 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
9499 cpu_function_call(cpu
,
9500 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
9503 mutex_unlock(&mux_interval_mutex
);
9507 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
9509 static struct attribute
*pmu_dev_attrs
[] = {
9510 &dev_attr_type
.attr
,
9511 &dev_attr_perf_event_mux_interval_ms
.attr
,
9514 ATTRIBUTE_GROUPS(pmu_dev
);
9516 static int pmu_bus_running
;
9517 static struct bus_type pmu_bus
= {
9518 .name
= "event_source",
9519 .dev_groups
= pmu_dev_groups
,
9522 static void pmu_dev_release(struct device
*dev
)
9527 static int pmu_dev_alloc(struct pmu
*pmu
)
9531 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
9535 pmu
->dev
->groups
= pmu
->attr_groups
;
9536 device_initialize(pmu
->dev
);
9537 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
9541 dev_set_drvdata(pmu
->dev
, pmu
);
9542 pmu
->dev
->bus
= &pmu_bus
;
9543 pmu
->dev
->release
= pmu_dev_release
;
9544 ret
= device_add(pmu
->dev
);
9548 /* For PMUs with address filters, throw in an extra attribute: */
9549 if (pmu
->nr_addr_filters
)
9550 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
9559 device_del(pmu
->dev
);
9562 put_device(pmu
->dev
);
9566 static struct lock_class_key cpuctx_mutex
;
9567 static struct lock_class_key cpuctx_lock
;
9569 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
9573 mutex_lock(&pmus_lock
);
9575 pmu
->pmu_disable_count
= alloc_percpu(int);
9576 if (!pmu
->pmu_disable_count
)
9585 type
= idr_alloc(&pmu_idr
, pmu
, PERF_TYPE_MAX
, 0, GFP_KERNEL
);
9593 if (pmu_bus_running
) {
9594 ret
= pmu_dev_alloc(pmu
);
9600 if (pmu
->task_ctx_nr
== perf_hw_context
) {
9601 static int hw_context_taken
= 0;
9604 * Other than systems with heterogeneous CPUs, it never makes
9605 * sense for two PMUs to share perf_hw_context. PMUs which are
9606 * uncore must use perf_invalid_context.
9608 if (WARN_ON_ONCE(hw_context_taken
&&
9609 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
9610 pmu
->task_ctx_nr
= perf_invalid_context
;
9612 hw_context_taken
= 1;
9615 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
9616 if (pmu
->pmu_cpu_context
)
9617 goto got_cpu_context
;
9620 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
9621 if (!pmu
->pmu_cpu_context
)
9624 for_each_possible_cpu(cpu
) {
9625 struct perf_cpu_context
*cpuctx
;
9627 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
9628 __perf_event_init_context(&cpuctx
->ctx
);
9629 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
9630 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
9631 cpuctx
->ctx
.pmu
= pmu
;
9632 cpuctx
->online
= cpumask_test_cpu(cpu
, perf_online_mask
);
9634 __perf_mux_hrtimer_init(cpuctx
, cpu
);
9638 if (!pmu
->start_txn
) {
9639 if (pmu
->pmu_enable
) {
9641 * If we have pmu_enable/pmu_disable calls, install
9642 * transaction stubs that use that to try and batch
9643 * hardware accesses.
9645 pmu
->start_txn
= perf_pmu_start_txn
;
9646 pmu
->commit_txn
= perf_pmu_commit_txn
;
9647 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
9649 pmu
->start_txn
= perf_pmu_nop_txn
;
9650 pmu
->commit_txn
= perf_pmu_nop_int
;
9651 pmu
->cancel_txn
= perf_pmu_nop_void
;
9655 if (!pmu
->pmu_enable
) {
9656 pmu
->pmu_enable
= perf_pmu_nop_void
;
9657 pmu
->pmu_disable
= perf_pmu_nop_void
;
9660 if (!pmu
->event_idx
)
9661 pmu
->event_idx
= perf_event_idx_default
;
9663 list_add_rcu(&pmu
->entry
, &pmus
);
9664 atomic_set(&pmu
->exclusive_cnt
, 0);
9667 mutex_unlock(&pmus_lock
);
9672 device_del(pmu
->dev
);
9673 put_device(pmu
->dev
);
9676 if (pmu
->type
>= PERF_TYPE_MAX
)
9677 idr_remove(&pmu_idr
, pmu
->type
);
9680 free_percpu(pmu
->pmu_disable_count
);
9683 EXPORT_SYMBOL_GPL(perf_pmu_register
);
9685 void perf_pmu_unregister(struct pmu
*pmu
)
9689 mutex_lock(&pmus_lock
);
9690 remove_device
= pmu_bus_running
;
9691 list_del_rcu(&pmu
->entry
);
9692 mutex_unlock(&pmus_lock
);
9695 * We dereference the pmu list under both SRCU and regular RCU, so
9696 * synchronize against both of those.
9698 synchronize_srcu(&pmus_srcu
);
9701 free_percpu(pmu
->pmu_disable_count
);
9702 if (pmu
->type
>= PERF_TYPE_MAX
)
9703 idr_remove(&pmu_idr
, pmu
->type
);
9704 if (remove_device
) {
9705 if (pmu
->nr_addr_filters
)
9706 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
9707 device_del(pmu
->dev
);
9708 put_device(pmu
->dev
);
9710 free_pmu_context(pmu
);
9712 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
9714 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
9716 struct perf_event_context
*ctx
= NULL
;
9719 if (!try_module_get(pmu
->module
))
9723 * A number of pmu->event_init() methods iterate the sibling_list to,
9724 * for example, validate if the group fits on the PMU. Therefore,
9725 * if this is a sibling event, acquire the ctx->mutex to protect
9728 if (event
->group_leader
!= event
&& pmu
->task_ctx_nr
!= perf_sw_context
) {
9730 * This ctx->mutex can nest when we're called through
9731 * inheritance. See the perf_event_ctx_lock_nested() comment.
9733 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
9734 SINGLE_DEPTH_NESTING
);
9739 ret
= pmu
->event_init(event
);
9742 perf_event_ctx_unlock(event
->group_leader
, ctx
);
9745 module_put(pmu
->module
);
9750 static struct pmu
*perf_init_event(struct perf_event
*event
)
9756 idx
= srcu_read_lock(&pmus_srcu
);
9758 /* Try parent's PMU first: */
9759 if (event
->parent
&& event
->parent
->pmu
) {
9760 pmu
= event
->parent
->pmu
;
9761 ret
= perf_try_init_event(pmu
, event
);
9767 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
9770 ret
= perf_try_init_event(pmu
, event
);
9776 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
9777 ret
= perf_try_init_event(pmu
, event
);
9781 if (ret
!= -ENOENT
) {
9786 pmu
= ERR_PTR(-ENOENT
);
9788 srcu_read_unlock(&pmus_srcu
, idx
);
9793 static void attach_sb_event(struct perf_event
*event
)
9795 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
9797 raw_spin_lock(&pel
->lock
);
9798 list_add_rcu(&event
->sb_list
, &pel
->list
);
9799 raw_spin_unlock(&pel
->lock
);
9803 * We keep a list of all !task (and therefore per-cpu) events
9804 * that need to receive side-band records.
9806 * This avoids having to scan all the various PMU per-cpu contexts
9809 static void account_pmu_sb_event(struct perf_event
*event
)
9811 if (is_sb_event(event
))
9812 attach_sb_event(event
);
9815 static void account_event_cpu(struct perf_event
*event
, int cpu
)
9820 if (is_cgroup_event(event
))
9821 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
9824 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9825 static void account_freq_event_nohz(void)
9827 #ifdef CONFIG_NO_HZ_FULL
9828 /* Lock so we don't race with concurrent unaccount */
9829 spin_lock(&nr_freq_lock
);
9830 if (atomic_inc_return(&nr_freq_events
) == 1)
9831 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
9832 spin_unlock(&nr_freq_lock
);
9836 static void account_freq_event(void)
9838 if (tick_nohz_full_enabled())
9839 account_freq_event_nohz();
9841 atomic_inc(&nr_freq_events
);
9845 static void account_event(struct perf_event
*event
)
9852 if (event
->attach_state
& PERF_ATTACH_TASK
)
9854 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
9855 atomic_inc(&nr_mmap_events
);
9856 if (event
->attr
.comm
)
9857 atomic_inc(&nr_comm_events
);
9858 if (event
->attr
.namespaces
)
9859 atomic_inc(&nr_namespaces_events
);
9860 if (event
->attr
.task
)
9861 atomic_inc(&nr_task_events
);
9862 if (event
->attr
.freq
)
9863 account_freq_event();
9864 if (event
->attr
.context_switch
) {
9865 atomic_inc(&nr_switch_events
);
9868 if (has_branch_stack(event
))
9870 if (is_cgroup_event(event
))
9875 * We need the mutex here because static_branch_enable()
9876 * must complete *before* the perf_sched_count increment
9879 if (atomic_inc_not_zero(&perf_sched_count
))
9882 mutex_lock(&perf_sched_mutex
);
9883 if (!atomic_read(&perf_sched_count
)) {
9884 static_branch_enable(&perf_sched_events
);
9886 * Guarantee that all CPUs observe they key change and
9887 * call the perf scheduling hooks before proceeding to
9888 * install events that need them.
9890 synchronize_sched();
9893 * Now that we have waited for the sync_sched(), allow further
9894 * increments to by-pass the mutex.
9896 atomic_inc(&perf_sched_count
);
9897 mutex_unlock(&perf_sched_mutex
);
9901 account_event_cpu(event
, event
->cpu
);
9903 account_pmu_sb_event(event
);
9907 * Allocate and initialize an event structure
9909 static struct perf_event
*
9910 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
9911 struct task_struct
*task
,
9912 struct perf_event
*group_leader
,
9913 struct perf_event
*parent_event
,
9914 perf_overflow_handler_t overflow_handler
,
9915 void *context
, int cgroup_fd
)
9918 struct perf_event
*event
;
9919 struct hw_perf_event
*hwc
;
9922 if ((unsigned)cpu
>= nr_cpu_ids
) {
9923 if (!task
|| cpu
!= -1)
9924 return ERR_PTR(-EINVAL
);
9927 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
9929 return ERR_PTR(-ENOMEM
);
9932 * Single events are their own group leaders, with an
9933 * empty sibling list:
9936 group_leader
= event
;
9938 mutex_init(&event
->child_mutex
);
9939 INIT_LIST_HEAD(&event
->child_list
);
9941 INIT_LIST_HEAD(&event
->event_entry
);
9942 INIT_LIST_HEAD(&event
->sibling_list
);
9943 INIT_LIST_HEAD(&event
->active_list
);
9944 init_event_group(event
);
9945 INIT_LIST_HEAD(&event
->rb_entry
);
9946 INIT_LIST_HEAD(&event
->active_entry
);
9947 INIT_LIST_HEAD(&event
->addr_filters
.list
);
9948 INIT_HLIST_NODE(&event
->hlist_entry
);
9951 init_waitqueue_head(&event
->waitq
);
9952 init_irq_work(&event
->pending
, perf_pending_event
);
9954 mutex_init(&event
->mmap_mutex
);
9955 raw_spin_lock_init(&event
->addr_filters
.lock
);
9957 atomic_long_set(&event
->refcount
, 1);
9959 event
->attr
= *attr
;
9960 event
->group_leader
= group_leader
;
9964 event
->parent
= parent_event
;
9966 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
9967 event
->id
= atomic64_inc_return(&perf_event_id
);
9969 event
->state
= PERF_EVENT_STATE_INACTIVE
;
9972 event
->attach_state
= PERF_ATTACH_TASK
;
9974 * XXX pmu::event_init needs to know what task to account to
9975 * and we cannot use the ctx information because we need the
9976 * pmu before we get a ctx.
9978 get_task_struct(task
);
9979 event
->hw
.target
= task
;
9982 event
->clock
= &local_clock
;
9984 event
->clock
= parent_event
->clock
;
9986 if (!overflow_handler
&& parent_event
) {
9987 overflow_handler
= parent_event
->overflow_handler
;
9988 context
= parent_event
->overflow_handler_context
;
9989 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9990 if (overflow_handler
== bpf_overflow_handler
) {
9991 struct bpf_prog
*prog
= bpf_prog_inc(parent_event
->prog
);
9994 err
= PTR_ERR(prog
);
9998 event
->orig_overflow_handler
=
9999 parent_event
->orig_overflow_handler
;
10004 if (overflow_handler
) {
10005 event
->overflow_handler
= overflow_handler
;
10006 event
->overflow_handler_context
= context
;
10007 } else if (is_write_backward(event
)){
10008 event
->overflow_handler
= perf_event_output_backward
;
10009 event
->overflow_handler_context
= NULL
;
10011 event
->overflow_handler
= perf_event_output_forward
;
10012 event
->overflow_handler_context
= NULL
;
10015 perf_event__state_init(event
);
10020 hwc
->sample_period
= attr
->sample_period
;
10021 if (attr
->freq
&& attr
->sample_freq
)
10022 hwc
->sample_period
= 1;
10023 hwc
->last_period
= hwc
->sample_period
;
10025 local64_set(&hwc
->period_left
, hwc
->sample_period
);
10028 * We currently do not support PERF_SAMPLE_READ on inherited events.
10029 * See perf_output_read().
10031 if (attr
->inherit
&& (attr
->sample_type
& PERF_SAMPLE_READ
))
10034 if (!has_branch_stack(event
))
10035 event
->attr
.branch_sample_type
= 0;
10037 if (cgroup_fd
!= -1) {
10038 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
10043 pmu
= perf_init_event(event
);
10045 err
= PTR_ERR(pmu
);
10049 err
= exclusive_event_init(event
);
10053 if (has_addr_filter(event
)) {
10054 event
->addr_filters_offs
= kcalloc(pmu
->nr_addr_filters
,
10055 sizeof(unsigned long),
10057 if (!event
->addr_filters_offs
) {
10062 /* force hw sync on the address filters */
10063 event
->addr_filters_gen
= 1;
10066 if (!event
->parent
) {
10067 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
10068 err
= get_callchain_buffers(attr
->sample_max_stack
);
10070 goto err_addr_filters
;
10074 /* symmetric to unaccount_event() in _free_event() */
10075 account_event(event
);
10080 kfree(event
->addr_filters_offs
);
10083 exclusive_event_destroy(event
);
10086 if (event
->destroy
)
10087 event
->destroy(event
);
10088 module_put(pmu
->module
);
10090 if (is_cgroup_event(event
))
10091 perf_detach_cgroup(event
);
10093 put_pid_ns(event
->ns
);
10094 if (event
->hw
.target
)
10095 put_task_struct(event
->hw
.target
);
10098 return ERR_PTR(err
);
10101 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
10102 struct perf_event_attr
*attr
)
10107 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
10111 * zero the full structure, so that a short copy will be nice.
10113 memset(attr
, 0, sizeof(*attr
));
10115 ret
= get_user(size
, &uattr
->size
);
10119 if (size
> PAGE_SIZE
) /* silly large */
10122 if (!size
) /* abi compat */
10123 size
= PERF_ATTR_SIZE_VER0
;
10125 if (size
< PERF_ATTR_SIZE_VER0
)
10129 * If we're handed a bigger struct than we know of,
10130 * ensure all the unknown bits are 0 - i.e. new
10131 * user-space does not rely on any kernel feature
10132 * extensions we dont know about yet.
10134 if (size
> sizeof(*attr
)) {
10135 unsigned char __user
*addr
;
10136 unsigned char __user
*end
;
10139 addr
= (void __user
*)uattr
+ sizeof(*attr
);
10140 end
= (void __user
*)uattr
+ size
;
10142 for (; addr
< end
; addr
++) {
10143 ret
= get_user(val
, addr
);
10149 size
= sizeof(*attr
);
10152 ret
= copy_from_user(attr
, uattr
, size
);
10158 if (attr
->__reserved_1
)
10161 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
10164 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
10167 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
10168 u64 mask
= attr
->branch_sample_type
;
10170 /* only using defined bits */
10171 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
10174 /* at least one branch bit must be set */
10175 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
10178 /* propagate priv level, when not set for branch */
10179 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
10181 /* exclude_kernel checked on syscall entry */
10182 if (!attr
->exclude_kernel
)
10183 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
10185 if (!attr
->exclude_user
)
10186 mask
|= PERF_SAMPLE_BRANCH_USER
;
10188 if (!attr
->exclude_hv
)
10189 mask
|= PERF_SAMPLE_BRANCH_HV
;
10191 * adjust user setting (for HW filter setup)
10193 attr
->branch_sample_type
= mask
;
10195 /* privileged levels capture (kernel, hv): check permissions */
10196 if ((mask
& PERF_SAMPLE_BRANCH_PERM_PLM
)
10197 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
10201 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
10202 ret
= perf_reg_validate(attr
->sample_regs_user
);
10207 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
10208 if (!arch_perf_have_user_stack_dump())
10212 * We have __u32 type for the size, but so far
10213 * we can only use __u16 as maximum due to the
10214 * __u16 sample size limit.
10216 if (attr
->sample_stack_user
>= USHRT_MAX
)
10218 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
10222 if (!attr
->sample_max_stack
)
10223 attr
->sample_max_stack
= sysctl_perf_event_max_stack
;
10225 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
10226 ret
= perf_reg_validate(attr
->sample_regs_intr
);
10231 put_user(sizeof(*attr
), &uattr
->size
);
10237 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
10239 struct ring_buffer
*rb
= NULL
;
10245 /* don't allow circular references */
10246 if (event
== output_event
)
10250 * Don't allow cross-cpu buffers
10252 if (output_event
->cpu
!= event
->cpu
)
10256 * If its not a per-cpu rb, it must be the same task.
10258 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
10262 * Mixing clocks in the same buffer is trouble you don't need.
10264 if (output_event
->clock
!= event
->clock
)
10268 * Either writing ring buffer from beginning or from end.
10269 * Mixing is not allowed.
10271 if (is_write_backward(output_event
) != is_write_backward(event
))
10275 * If both events generate aux data, they must be on the same PMU
10277 if (has_aux(event
) && has_aux(output_event
) &&
10278 event
->pmu
!= output_event
->pmu
)
10282 mutex_lock(&event
->mmap_mutex
);
10283 /* Can't redirect output if we've got an active mmap() */
10284 if (atomic_read(&event
->mmap_count
))
10287 if (output_event
) {
10288 /* get the rb we want to redirect to */
10289 rb
= ring_buffer_get(output_event
);
10294 ring_buffer_attach(event
, rb
);
10298 mutex_unlock(&event
->mmap_mutex
);
10304 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
10310 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
10313 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
10315 bool nmi_safe
= false;
10318 case CLOCK_MONOTONIC
:
10319 event
->clock
= &ktime_get_mono_fast_ns
;
10323 case CLOCK_MONOTONIC_RAW
:
10324 event
->clock
= &ktime_get_raw_fast_ns
;
10328 case CLOCK_REALTIME
:
10329 event
->clock
= &ktime_get_real_ns
;
10332 case CLOCK_BOOTTIME
:
10333 event
->clock
= &ktime_get_boot_ns
;
10337 event
->clock
= &ktime_get_tai_ns
;
10344 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
10351 * Variation on perf_event_ctx_lock_nested(), except we take two context
10354 static struct perf_event_context
*
10355 __perf_event_ctx_lock_double(struct perf_event
*group_leader
,
10356 struct perf_event_context
*ctx
)
10358 struct perf_event_context
*gctx
;
10362 gctx
= READ_ONCE(group_leader
->ctx
);
10363 if (!atomic_inc_not_zero(&gctx
->refcount
)) {
10369 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
10371 if (group_leader
->ctx
!= gctx
) {
10372 mutex_unlock(&ctx
->mutex
);
10373 mutex_unlock(&gctx
->mutex
);
10382 * sys_perf_event_open - open a performance event, associate it to a task/cpu
10384 * @attr_uptr: event_id type attributes for monitoring/sampling
10387 * @group_fd: group leader event fd
10389 SYSCALL_DEFINE5(perf_event_open
,
10390 struct perf_event_attr __user
*, attr_uptr
,
10391 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
10393 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
10394 struct perf_event
*event
, *sibling
;
10395 struct perf_event_attr attr
;
10396 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
10397 struct file
*event_file
= NULL
;
10398 struct fd group
= {NULL
, 0};
10399 struct task_struct
*task
= NULL
;
10402 int move_group
= 0;
10404 int f_flags
= O_RDWR
;
10405 int cgroup_fd
= -1;
10407 /* for future expandability... */
10408 if (flags
& ~PERF_FLAG_ALL
)
10411 err
= perf_copy_attr(attr_uptr
, &attr
);
10415 if (!attr
.exclude_kernel
) {
10416 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
10420 if (attr
.namespaces
) {
10421 if (!capable(CAP_SYS_ADMIN
))
10426 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
10429 if (attr
.sample_period
& (1ULL << 63))
10433 /* Only privileged users can get physical addresses */
10434 if ((attr
.sample_type
& PERF_SAMPLE_PHYS_ADDR
) &&
10435 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
10439 * In cgroup mode, the pid argument is used to pass the fd
10440 * opened to the cgroup directory in cgroupfs. The cpu argument
10441 * designates the cpu on which to monitor threads from that
10444 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
10447 if (flags
& PERF_FLAG_FD_CLOEXEC
)
10448 f_flags
|= O_CLOEXEC
;
10450 event_fd
= get_unused_fd_flags(f_flags
);
10454 if (group_fd
!= -1) {
10455 err
= perf_fget_light(group_fd
, &group
);
10458 group_leader
= group
.file
->private_data
;
10459 if (flags
& PERF_FLAG_FD_OUTPUT
)
10460 output_event
= group_leader
;
10461 if (flags
& PERF_FLAG_FD_NO_GROUP
)
10462 group_leader
= NULL
;
10465 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
10466 task
= find_lively_task_by_vpid(pid
);
10467 if (IS_ERR(task
)) {
10468 err
= PTR_ERR(task
);
10473 if (task
&& group_leader
&&
10474 group_leader
->attr
.inherit
!= attr
.inherit
) {
10480 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
10485 * Reuse ptrace permission checks for now.
10487 * We must hold cred_guard_mutex across this and any potential
10488 * perf_install_in_context() call for this new event to
10489 * serialize against exec() altering our credentials (and the
10490 * perf_event_exit_task() that could imply).
10493 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
10497 if (flags
& PERF_FLAG_PID_CGROUP
)
10500 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
10501 NULL
, NULL
, cgroup_fd
);
10502 if (IS_ERR(event
)) {
10503 err
= PTR_ERR(event
);
10507 if (is_sampling_event(event
)) {
10508 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
10515 * Special case software events and allow them to be part of
10516 * any hardware group.
10520 if (attr
.use_clockid
) {
10521 err
= perf_event_set_clock(event
, attr
.clockid
);
10526 if (pmu
->task_ctx_nr
== perf_sw_context
)
10527 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
10529 if (group_leader
) {
10530 if (is_software_event(event
) &&
10531 !in_software_context(group_leader
)) {
10533 * If the event is a sw event, but the group_leader
10534 * is on hw context.
10536 * Allow the addition of software events to hw
10537 * groups, this is safe because software events
10538 * never fail to schedule.
10540 pmu
= group_leader
->ctx
->pmu
;
10541 } else if (!is_software_event(event
) &&
10542 is_software_event(group_leader
) &&
10543 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
10545 * In case the group is a pure software group, and we
10546 * try to add a hardware event, move the whole group to
10547 * the hardware context.
10554 * Get the target context (task or percpu):
10556 ctx
= find_get_context(pmu
, task
, event
);
10558 err
= PTR_ERR(ctx
);
10562 if ((pmu
->capabilities
& PERF_PMU_CAP_EXCLUSIVE
) && group_leader
) {
10568 * Look up the group leader (we will attach this event to it):
10570 if (group_leader
) {
10574 * Do not allow a recursive hierarchy (this new sibling
10575 * becoming part of another group-sibling):
10577 if (group_leader
->group_leader
!= group_leader
)
10580 /* All events in a group should have the same clock */
10581 if (group_leader
->clock
!= event
->clock
)
10585 * Make sure we're both events for the same CPU;
10586 * grouping events for different CPUs is broken; since
10587 * you can never concurrently schedule them anyhow.
10589 if (group_leader
->cpu
!= event
->cpu
)
10593 * Make sure we're both on the same task, or both
10596 if (group_leader
->ctx
->task
!= ctx
->task
)
10600 * Do not allow to attach to a group in a different task
10601 * or CPU context. If we're moving SW events, we'll fix
10602 * this up later, so allow that.
10604 if (!move_group
&& group_leader
->ctx
!= ctx
)
10608 * Only a group leader can be exclusive or pinned
10610 if (attr
.exclusive
|| attr
.pinned
)
10614 if (output_event
) {
10615 err
= perf_event_set_output(event
, output_event
);
10620 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
10622 if (IS_ERR(event_file
)) {
10623 err
= PTR_ERR(event_file
);
10629 gctx
= __perf_event_ctx_lock_double(group_leader
, ctx
);
10631 if (gctx
->task
== TASK_TOMBSTONE
) {
10637 * Check if we raced against another sys_perf_event_open() call
10638 * moving the software group underneath us.
10640 if (!(group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
10642 * If someone moved the group out from under us, check
10643 * if this new event wound up on the same ctx, if so
10644 * its the regular !move_group case, otherwise fail.
10650 perf_event_ctx_unlock(group_leader
, gctx
);
10655 mutex_lock(&ctx
->mutex
);
10658 if (ctx
->task
== TASK_TOMBSTONE
) {
10663 if (!perf_event_validate_size(event
)) {
10670 * Check if the @cpu we're creating an event for is online.
10672 * We use the perf_cpu_context::ctx::mutex to serialize against
10673 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10675 struct perf_cpu_context
*cpuctx
=
10676 container_of(ctx
, struct perf_cpu_context
, ctx
);
10678 if (!cpuctx
->online
) {
10686 * Must be under the same ctx::mutex as perf_install_in_context(),
10687 * because we need to serialize with concurrent event creation.
10689 if (!exclusive_event_installable(event
, ctx
)) {
10690 /* exclusive and group stuff are assumed mutually exclusive */
10691 WARN_ON_ONCE(move_group
);
10697 WARN_ON_ONCE(ctx
->parent_ctx
);
10700 * This is the point on no return; we cannot fail hereafter. This is
10701 * where we start modifying current state.
10706 * See perf_event_ctx_lock() for comments on the details
10707 * of swizzling perf_event::ctx.
10709 perf_remove_from_context(group_leader
, 0);
10712 for_each_sibling_event(sibling
, group_leader
) {
10713 perf_remove_from_context(sibling
, 0);
10718 * Wait for everybody to stop referencing the events through
10719 * the old lists, before installing it on new lists.
10724 * Install the group siblings before the group leader.
10726 * Because a group leader will try and install the entire group
10727 * (through the sibling list, which is still in-tact), we can
10728 * end up with siblings installed in the wrong context.
10730 * By installing siblings first we NO-OP because they're not
10731 * reachable through the group lists.
10733 for_each_sibling_event(sibling
, group_leader
) {
10734 perf_event__state_init(sibling
);
10735 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
10740 * Removing from the context ends up with disabled
10741 * event. What we want here is event in the initial
10742 * startup state, ready to be add into new context.
10744 perf_event__state_init(group_leader
);
10745 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
10750 * Precalculate sample_data sizes; do while holding ctx::mutex such
10751 * that we're serialized against further additions and before
10752 * perf_install_in_context() which is the point the event is active and
10753 * can use these values.
10755 perf_event__header_size(event
);
10756 perf_event__id_header_size(event
);
10758 event
->owner
= current
;
10760 perf_install_in_context(ctx
, event
, event
->cpu
);
10761 perf_unpin_context(ctx
);
10764 perf_event_ctx_unlock(group_leader
, gctx
);
10765 mutex_unlock(&ctx
->mutex
);
10768 mutex_unlock(&task
->signal
->cred_guard_mutex
);
10769 put_task_struct(task
);
10772 mutex_lock(¤t
->perf_event_mutex
);
10773 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
10774 mutex_unlock(¤t
->perf_event_mutex
);
10777 * Drop the reference on the group_event after placing the
10778 * new event on the sibling_list. This ensures destruction
10779 * of the group leader will find the pointer to itself in
10780 * perf_group_detach().
10783 fd_install(event_fd
, event_file
);
10788 perf_event_ctx_unlock(group_leader
, gctx
);
10789 mutex_unlock(&ctx
->mutex
);
10793 perf_unpin_context(ctx
);
10797 * If event_file is set, the fput() above will have called ->release()
10798 * and that will take care of freeing the event.
10804 mutex_unlock(&task
->signal
->cred_guard_mutex
);
10807 put_task_struct(task
);
10811 put_unused_fd(event_fd
);
10816 * perf_event_create_kernel_counter
10818 * @attr: attributes of the counter to create
10819 * @cpu: cpu in which the counter is bound
10820 * @task: task to profile (NULL for percpu)
10822 struct perf_event
*
10823 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
10824 struct task_struct
*task
,
10825 perf_overflow_handler_t overflow_handler
,
10828 struct perf_event_context
*ctx
;
10829 struct perf_event
*event
;
10833 * Get the target context (task or percpu):
10836 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
10837 overflow_handler
, context
, -1);
10838 if (IS_ERR(event
)) {
10839 err
= PTR_ERR(event
);
10843 /* Mark owner so we could distinguish it from user events. */
10844 event
->owner
= TASK_TOMBSTONE
;
10846 ctx
= find_get_context(event
->pmu
, task
, event
);
10848 err
= PTR_ERR(ctx
);
10852 WARN_ON_ONCE(ctx
->parent_ctx
);
10853 mutex_lock(&ctx
->mutex
);
10854 if (ctx
->task
== TASK_TOMBSTONE
) {
10861 * Check if the @cpu we're creating an event for is online.
10863 * We use the perf_cpu_context::ctx::mutex to serialize against
10864 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10866 struct perf_cpu_context
*cpuctx
=
10867 container_of(ctx
, struct perf_cpu_context
, ctx
);
10868 if (!cpuctx
->online
) {
10874 if (!exclusive_event_installable(event
, ctx
)) {
10879 perf_install_in_context(ctx
, event
, cpu
);
10880 perf_unpin_context(ctx
);
10881 mutex_unlock(&ctx
->mutex
);
10886 mutex_unlock(&ctx
->mutex
);
10887 perf_unpin_context(ctx
);
10892 return ERR_PTR(err
);
10894 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
10896 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
10898 struct perf_event_context
*src_ctx
;
10899 struct perf_event_context
*dst_ctx
;
10900 struct perf_event
*event
, *tmp
;
10903 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
10904 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
10907 * See perf_event_ctx_lock() for comments on the details
10908 * of swizzling perf_event::ctx.
10910 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
10911 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
10913 perf_remove_from_context(event
, 0);
10914 unaccount_event_cpu(event
, src_cpu
);
10916 list_add(&event
->migrate_entry
, &events
);
10920 * Wait for the events to quiesce before re-instating them.
10925 * Re-instate events in 2 passes.
10927 * Skip over group leaders and only install siblings on this first
10928 * pass, siblings will not get enabled without a leader, however a
10929 * leader will enable its siblings, even if those are still on the old
10932 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10933 if (event
->group_leader
== event
)
10936 list_del(&event
->migrate_entry
);
10937 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10938 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10939 account_event_cpu(event
, dst_cpu
);
10940 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10945 * Once all the siblings are setup properly, install the group leaders
10948 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
10949 list_del(&event
->migrate_entry
);
10950 if (event
->state
>= PERF_EVENT_STATE_OFF
)
10951 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10952 account_event_cpu(event
, dst_cpu
);
10953 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
10956 mutex_unlock(&dst_ctx
->mutex
);
10957 mutex_unlock(&src_ctx
->mutex
);
10959 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
10961 static void sync_child_event(struct perf_event
*child_event
,
10962 struct task_struct
*child
)
10964 struct perf_event
*parent_event
= child_event
->parent
;
10967 if (child_event
->attr
.inherit_stat
)
10968 perf_event_read_event(child_event
, child
);
10970 child_val
= perf_event_count(child_event
);
10973 * Add back the child's count to the parent's count:
10975 atomic64_add(child_val
, &parent_event
->child_count
);
10976 atomic64_add(child_event
->total_time_enabled
,
10977 &parent_event
->child_total_time_enabled
);
10978 atomic64_add(child_event
->total_time_running
,
10979 &parent_event
->child_total_time_running
);
10983 perf_event_exit_event(struct perf_event
*child_event
,
10984 struct perf_event_context
*child_ctx
,
10985 struct task_struct
*child
)
10987 struct perf_event
*parent_event
= child_event
->parent
;
10990 * Do not destroy the 'original' grouping; because of the context
10991 * switch optimization the original events could've ended up in a
10992 * random child task.
10994 * If we were to destroy the original group, all group related
10995 * operations would cease to function properly after this random
10998 * Do destroy all inherited groups, we don't care about those
10999 * and being thorough is better.
11001 raw_spin_lock_irq(&child_ctx
->lock
);
11002 WARN_ON_ONCE(child_ctx
->is_active
);
11005 perf_group_detach(child_event
);
11006 list_del_event(child_event
, child_ctx
);
11007 perf_event_set_state(child_event
, PERF_EVENT_STATE_EXIT
); /* is_event_hup() */
11008 raw_spin_unlock_irq(&child_ctx
->lock
);
11011 * Parent events are governed by their filedesc, retain them.
11013 if (!parent_event
) {
11014 perf_event_wakeup(child_event
);
11018 * Child events can be cleaned up.
11021 sync_child_event(child_event
, child
);
11024 * Remove this event from the parent's list
11026 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
11027 mutex_lock(&parent_event
->child_mutex
);
11028 list_del_init(&child_event
->child_list
);
11029 mutex_unlock(&parent_event
->child_mutex
);
11032 * Kick perf_poll() for is_event_hup().
11034 perf_event_wakeup(parent_event
);
11035 free_event(child_event
);
11036 put_event(parent_event
);
11039 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
11041 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
11042 struct perf_event
*child_event
, *next
;
11044 WARN_ON_ONCE(child
!= current
);
11046 child_ctx
= perf_pin_task_context(child
, ctxn
);
11051 * In order to reduce the amount of tricky in ctx tear-down, we hold
11052 * ctx::mutex over the entire thing. This serializes against almost
11053 * everything that wants to access the ctx.
11055 * The exception is sys_perf_event_open() /
11056 * perf_event_create_kernel_count() which does find_get_context()
11057 * without ctx::mutex (it cannot because of the move_group double mutex
11058 * lock thing). See the comments in perf_install_in_context().
11060 mutex_lock(&child_ctx
->mutex
);
11063 * In a single ctx::lock section, de-schedule the events and detach the
11064 * context from the task such that we cannot ever get it scheduled back
11067 raw_spin_lock_irq(&child_ctx
->lock
);
11068 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
, EVENT_ALL
);
11071 * Now that the context is inactive, destroy the task <-> ctx relation
11072 * and mark the context dead.
11074 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
11075 put_ctx(child_ctx
); /* cannot be last */
11076 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
11077 put_task_struct(current
); /* cannot be last */
11079 clone_ctx
= unclone_ctx(child_ctx
);
11080 raw_spin_unlock_irq(&child_ctx
->lock
);
11083 put_ctx(clone_ctx
);
11086 * Report the task dead after unscheduling the events so that we
11087 * won't get any samples after PERF_RECORD_EXIT. We can however still
11088 * get a few PERF_RECORD_READ events.
11090 perf_event_task(child
, child_ctx
, 0);
11092 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
11093 perf_event_exit_event(child_event
, child_ctx
, child
);
11095 mutex_unlock(&child_ctx
->mutex
);
11097 put_ctx(child_ctx
);
11101 * When a child task exits, feed back event values to parent events.
11103 * Can be called with cred_guard_mutex held when called from
11104 * install_exec_creds().
11106 void perf_event_exit_task(struct task_struct
*child
)
11108 struct perf_event
*event
, *tmp
;
11111 mutex_lock(&child
->perf_event_mutex
);
11112 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
11114 list_del_init(&event
->owner_entry
);
11117 * Ensure the list deletion is visible before we clear
11118 * the owner, closes a race against perf_release() where
11119 * we need to serialize on the owner->perf_event_mutex.
11121 smp_store_release(&event
->owner
, NULL
);
11123 mutex_unlock(&child
->perf_event_mutex
);
11125 for_each_task_context_nr(ctxn
)
11126 perf_event_exit_task_context(child
, ctxn
);
11129 * The perf_event_exit_task_context calls perf_event_task
11130 * with child's task_ctx, which generates EXIT events for
11131 * child contexts and sets child->perf_event_ctxp[] to NULL.
11132 * At this point we need to send EXIT events to cpu contexts.
11134 perf_event_task(child
, NULL
, 0);
11137 static void perf_free_event(struct perf_event
*event
,
11138 struct perf_event_context
*ctx
)
11140 struct perf_event
*parent
= event
->parent
;
11142 if (WARN_ON_ONCE(!parent
))
11145 mutex_lock(&parent
->child_mutex
);
11146 list_del_init(&event
->child_list
);
11147 mutex_unlock(&parent
->child_mutex
);
11151 raw_spin_lock_irq(&ctx
->lock
);
11152 perf_group_detach(event
);
11153 list_del_event(event
, ctx
);
11154 raw_spin_unlock_irq(&ctx
->lock
);
11159 * Free an unexposed, unused context as created by inheritance by
11160 * perf_event_init_task below, used by fork() in case of fail.
11162 * Not all locks are strictly required, but take them anyway to be nice and
11163 * help out with the lockdep assertions.
11165 void perf_event_free_task(struct task_struct
*task
)
11167 struct perf_event_context
*ctx
;
11168 struct perf_event
*event
, *tmp
;
11171 for_each_task_context_nr(ctxn
) {
11172 ctx
= task
->perf_event_ctxp
[ctxn
];
11176 mutex_lock(&ctx
->mutex
);
11177 raw_spin_lock_irq(&ctx
->lock
);
11179 * Destroy the task <-> ctx relation and mark the context dead.
11181 * This is important because even though the task hasn't been
11182 * exposed yet the context has been (through child_list).
11184 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], NULL
);
11185 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
11186 put_task_struct(task
); /* cannot be last */
11187 raw_spin_unlock_irq(&ctx
->lock
);
11189 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
)
11190 perf_free_event(event
, ctx
);
11192 mutex_unlock(&ctx
->mutex
);
11197 void perf_event_delayed_put(struct task_struct
*task
)
11201 for_each_task_context_nr(ctxn
)
11202 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
11205 struct file
*perf_event_get(unsigned int fd
)
11209 file
= fget_raw(fd
);
11211 return ERR_PTR(-EBADF
);
11213 if (file
->f_op
!= &perf_fops
) {
11215 return ERR_PTR(-EBADF
);
11221 const struct perf_event
*perf_get_event(struct file
*file
)
11223 if (file
->f_op
!= &perf_fops
)
11224 return ERR_PTR(-EINVAL
);
11226 return file
->private_data
;
11229 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
11232 return ERR_PTR(-EINVAL
);
11234 return &event
->attr
;
11238 * Inherit an event from parent task to child task.
11241 * - valid pointer on success
11242 * - NULL for orphaned events
11243 * - IS_ERR() on error
11245 static struct perf_event
*
11246 inherit_event(struct perf_event
*parent_event
,
11247 struct task_struct
*parent
,
11248 struct perf_event_context
*parent_ctx
,
11249 struct task_struct
*child
,
11250 struct perf_event
*group_leader
,
11251 struct perf_event_context
*child_ctx
)
11253 enum perf_event_state parent_state
= parent_event
->state
;
11254 struct perf_event
*child_event
;
11255 unsigned long flags
;
11258 * Instead of creating recursive hierarchies of events,
11259 * we link inherited events back to the original parent,
11260 * which has a filp for sure, which we use as the reference
11263 if (parent_event
->parent
)
11264 parent_event
= parent_event
->parent
;
11266 child_event
= perf_event_alloc(&parent_event
->attr
,
11269 group_leader
, parent_event
,
11271 if (IS_ERR(child_event
))
11272 return child_event
;
11275 if ((child_event
->attach_state
& PERF_ATTACH_TASK_DATA
) &&
11276 !child_ctx
->task_ctx_data
) {
11277 struct pmu
*pmu
= child_event
->pmu
;
11279 child_ctx
->task_ctx_data
= kzalloc(pmu
->task_ctx_size
,
11281 if (!child_ctx
->task_ctx_data
) {
11282 free_event(child_event
);
11288 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11289 * must be under the same lock in order to serialize against
11290 * perf_event_release_kernel(), such that either we must observe
11291 * is_orphaned_event() or they will observe us on the child_list.
11293 mutex_lock(&parent_event
->child_mutex
);
11294 if (is_orphaned_event(parent_event
) ||
11295 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
11296 mutex_unlock(&parent_event
->child_mutex
);
11297 /* task_ctx_data is freed with child_ctx */
11298 free_event(child_event
);
11302 get_ctx(child_ctx
);
11305 * Make the child state follow the state of the parent event,
11306 * not its attr.disabled bit. We hold the parent's mutex,
11307 * so we won't race with perf_event_{en, dis}able_family.
11309 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
11310 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
11312 child_event
->state
= PERF_EVENT_STATE_OFF
;
11314 if (parent_event
->attr
.freq
) {
11315 u64 sample_period
= parent_event
->hw
.sample_period
;
11316 struct hw_perf_event
*hwc
= &child_event
->hw
;
11318 hwc
->sample_period
= sample_period
;
11319 hwc
->last_period
= sample_period
;
11321 local64_set(&hwc
->period_left
, sample_period
);
11324 child_event
->ctx
= child_ctx
;
11325 child_event
->overflow_handler
= parent_event
->overflow_handler
;
11326 child_event
->overflow_handler_context
11327 = parent_event
->overflow_handler_context
;
11330 * Precalculate sample_data sizes
11332 perf_event__header_size(child_event
);
11333 perf_event__id_header_size(child_event
);
11336 * Link it up in the child's context:
11338 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
11339 add_event_to_ctx(child_event
, child_ctx
);
11340 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
11343 * Link this into the parent event's child list
11345 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
11346 mutex_unlock(&parent_event
->child_mutex
);
11348 return child_event
;
11352 * Inherits an event group.
11354 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11355 * This matches with perf_event_release_kernel() removing all child events.
11361 static int inherit_group(struct perf_event
*parent_event
,
11362 struct task_struct
*parent
,
11363 struct perf_event_context
*parent_ctx
,
11364 struct task_struct
*child
,
11365 struct perf_event_context
*child_ctx
)
11367 struct perf_event
*leader
;
11368 struct perf_event
*sub
;
11369 struct perf_event
*child_ctr
;
11371 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
11372 child
, NULL
, child_ctx
);
11373 if (IS_ERR(leader
))
11374 return PTR_ERR(leader
);
11376 * @leader can be NULL here because of is_orphaned_event(). In this
11377 * case inherit_event() will create individual events, similar to what
11378 * perf_group_detach() would do anyway.
11380 for_each_sibling_event(sub
, parent_event
) {
11381 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
11382 child
, leader
, child_ctx
);
11383 if (IS_ERR(child_ctr
))
11384 return PTR_ERR(child_ctr
);
11390 * Creates the child task context and tries to inherit the event-group.
11392 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11393 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11394 * consistent with perf_event_release_kernel() removing all child events.
11401 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
11402 struct perf_event_context
*parent_ctx
,
11403 struct task_struct
*child
, int ctxn
,
11404 int *inherited_all
)
11407 struct perf_event_context
*child_ctx
;
11409 if (!event
->attr
.inherit
) {
11410 *inherited_all
= 0;
11414 child_ctx
= child
->perf_event_ctxp
[ctxn
];
11417 * This is executed from the parent task context, so
11418 * inherit events that have been marked for cloning.
11419 * First allocate and initialize a context for the
11422 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
11426 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
11429 ret
= inherit_group(event
, parent
, parent_ctx
,
11433 *inherited_all
= 0;
11439 * Initialize the perf_event context in task_struct
11441 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
11443 struct perf_event_context
*child_ctx
, *parent_ctx
;
11444 struct perf_event_context
*cloned_ctx
;
11445 struct perf_event
*event
;
11446 struct task_struct
*parent
= current
;
11447 int inherited_all
= 1;
11448 unsigned long flags
;
11451 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
11455 * If the parent's context is a clone, pin it so it won't get
11456 * swapped under us.
11458 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
11463 * No need to check if parent_ctx != NULL here; since we saw
11464 * it non-NULL earlier, the only reason for it to become NULL
11465 * is if we exit, and since we're currently in the middle of
11466 * a fork we can't be exiting at the same time.
11470 * Lock the parent list. No need to lock the child - not PID
11471 * hashed yet and not running, so nobody can access it.
11473 mutex_lock(&parent_ctx
->mutex
);
11476 * We dont have to disable NMIs - we are only looking at
11477 * the list, not manipulating it:
11479 perf_event_groups_for_each(event
, &parent_ctx
->pinned_groups
) {
11480 ret
= inherit_task_group(event
, parent
, parent_ctx
,
11481 child
, ctxn
, &inherited_all
);
11487 * We can't hold ctx->lock when iterating the ->flexible_group list due
11488 * to allocations, but we need to prevent rotation because
11489 * rotate_ctx() will change the list from interrupt context.
11491 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
11492 parent_ctx
->rotate_disable
= 1;
11493 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
11495 perf_event_groups_for_each(event
, &parent_ctx
->flexible_groups
) {
11496 ret
= inherit_task_group(event
, parent
, parent_ctx
,
11497 child
, ctxn
, &inherited_all
);
11502 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
11503 parent_ctx
->rotate_disable
= 0;
11505 child_ctx
= child
->perf_event_ctxp
[ctxn
];
11507 if (child_ctx
&& inherited_all
) {
11509 * Mark the child context as a clone of the parent
11510 * context, or of whatever the parent is a clone of.
11512 * Note that if the parent is a clone, the holding of
11513 * parent_ctx->lock avoids it from being uncloned.
11515 cloned_ctx
= parent_ctx
->parent_ctx
;
11517 child_ctx
->parent_ctx
= cloned_ctx
;
11518 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
11520 child_ctx
->parent_ctx
= parent_ctx
;
11521 child_ctx
->parent_gen
= parent_ctx
->generation
;
11523 get_ctx(child_ctx
->parent_ctx
);
11526 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
11528 mutex_unlock(&parent_ctx
->mutex
);
11530 perf_unpin_context(parent_ctx
);
11531 put_ctx(parent_ctx
);
11537 * Initialize the perf_event context in task_struct
11539 int perf_event_init_task(struct task_struct
*child
)
11543 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
11544 mutex_init(&child
->perf_event_mutex
);
11545 INIT_LIST_HEAD(&child
->perf_event_list
);
11547 for_each_task_context_nr(ctxn
) {
11548 ret
= perf_event_init_context(child
, ctxn
);
11550 perf_event_free_task(child
);
11558 static void __init
perf_event_init_all_cpus(void)
11560 struct swevent_htable
*swhash
;
11563 zalloc_cpumask_var(&perf_online_mask
, GFP_KERNEL
);
11565 for_each_possible_cpu(cpu
) {
11566 swhash
= &per_cpu(swevent_htable
, cpu
);
11567 mutex_init(&swhash
->hlist_mutex
);
11568 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
11570 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
11571 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
11573 #ifdef CONFIG_CGROUP_PERF
11574 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list
, cpu
));
11576 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
11580 void perf_swevent_init_cpu(unsigned int cpu
)
11582 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
11584 mutex_lock(&swhash
->hlist_mutex
);
11585 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
11586 struct swevent_hlist
*hlist
;
11588 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
11590 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
11592 mutex_unlock(&swhash
->hlist_mutex
);
11595 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11596 static void __perf_event_exit_context(void *__info
)
11598 struct perf_event_context
*ctx
= __info
;
11599 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
11600 struct perf_event
*event
;
11602 raw_spin_lock(&ctx
->lock
);
11603 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
11604 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
11605 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
11606 raw_spin_unlock(&ctx
->lock
);
11609 static void perf_event_exit_cpu_context(int cpu
)
11611 struct perf_cpu_context
*cpuctx
;
11612 struct perf_event_context
*ctx
;
11615 mutex_lock(&pmus_lock
);
11616 list_for_each_entry(pmu
, &pmus
, entry
) {
11617 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
11618 ctx
= &cpuctx
->ctx
;
11620 mutex_lock(&ctx
->mutex
);
11621 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
11622 cpuctx
->online
= 0;
11623 mutex_unlock(&ctx
->mutex
);
11625 cpumask_clear_cpu(cpu
, perf_online_mask
);
11626 mutex_unlock(&pmus_lock
);
11630 static void perf_event_exit_cpu_context(int cpu
) { }
11634 int perf_event_init_cpu(unsigned int cpu
)
11636 struct perf_cpu_context
*cpuctx
;
11637 struct perf_event_context
*ctx
;
11640 perf_swevent_init_cpu(cpu
);
11642 mutex_lock(&pmus_lock
);
11643 cpumask_set_cpu(cpu
, perf_online_mask
);
11644 list_for_each_entry(pmu
, &pmus
, entry
) {
11645 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
11646 ctx
= &cpuctx
->ctx
;
11648 mutex_lock(&ctx
->mutex
);
11649 cpuctx
->online
= 1;
11650 mutex_unlock(&ctx
->mutex
);
11652 mutex_unlock(&pmus_lock
);
11657 int perf_event_exit_cpu(unsigned int cpu
)
11659 perf_event_exit_cpu_context(cpu
);
11664 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
11668 for_each_online_cpu(cpu
)
11669 perf_event_exit_cpu(cpu
);
11675 * Run the perf reboot notifier at the very last possible moment so that
11676 * the generic watchdog code runs as long as possible.
11678 static struct notifier_block perf_reboot_notifier
= {
11679 .notifier_call
= perf_reboot
,
11680 .priority
= INT_MIN
,
11683 void __init
perf_event_init(void)
11687 idr_init(&pmu_idr
);
11689 perf_event_init_all_cpus();
11690 init_srcu_struct(&pmus_srcu
);
11691 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
11692 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
11693 perf_pmu_register(&perf_task_clock
, NULL
, -1);
11694 perf_tp_register();
11695 perf_event_init_cpu(smp_processor_id());
11696 register_reboot_notifier(&perf_reboot_notifier
);
11698 ret
= init_hw_breakpoint();
11699 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
11702 * Build time assertion that we keep the data_head at the intended
11703 * location. IOW, validation we got the __reserved[] size right.
11705 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
11709 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
11712 struct perf_pmu_events_attr
*pmu_attr
=
11713 container_of(attr
, struct perf_pmu_events_attr
, attr
);
11715 if (pmu_attr
->event_str
)
11716 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
11720 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
11722 static int __init
perf_event_sysfs_init(void)
11727 mutex_lock(&pmus_lock
);
11729 ret
= bus_register(&pmu_bus
);
11733 list_for_each_entry(pmu
, &pmus
, entry
) {
11734 if (!pmu
->name
|| pmu
->type
< 0)
11737 ret
= pmu_dev_alloc(pmu
);
11738 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
11740 pmu_bus_running
= 1;
11744 mutex_unlock(&pmus_lock
);
11748 device_initcall(perf_event_sysfs_init
);
11750 #ifdef CONFIG_CGROUP_PERF
11751 static struct cgroup_subsys_state
*
11752 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
11754 struct perf_cgroup
*jc
;
11756 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
11758 return ERR_PTR(-ENOMEM
);
11760 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
11763 return ERR_PTR(-ENOMEM
);
11769 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
11771 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
11773 free_percpu(jc
->info
);
11777 static int __perf_cgroup_move(void *info
)
11779 struct task_struct
*task
= info
;
11781 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
11786 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
11788 struct task_struct
*task
;
11789 struct cgroup_subsys_state
*css
;
11791 cgroup_taskset_for_each(task
, css
, tset
)
11792 task_function_call(task
, __perf_cgroup_move
, task
);
11795 struct cgroup_subsys perf_event_cgrp_subsys
= {
11796 .css_alloc
= perf_cgroup_css_alloc
,
11797 .css_free
= perf_cgroup_css_free
,
11798 .attach
= perf_cgroup_attach
,
11800 * Implicitly enable on dfl hierarchy so that perf events can
11801 * always be filtered by cgroup2 path as long as perf_event
11802 * controller is not mounted on a legacy hierarchy.
11804 .implicit_on_dfl
= true,
11807 #endif /* CONFIG_CGROUP_PERF */