2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
21 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
);
23 static int __rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
28 else if (!rtc
->ops
->read_time
)
31 memset(tm
, 0, sizeof(struct rtc_time
));
32 err
= rtc
->ops
->read_time(rtc
->dev
.parent
, tm
);
34 dev_dbg(&rtc
->dev
, "read_time: fail to read: %d\n",
39 err
= rtc_valid_tm(tm
);
41 dev_dbg(&rtc
->dev
, "read_time: rtc_time isn't valid\n");
46 int rtc_read_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
50 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
54 err
= __rtc_read_time(rtc
, tm
);
55 mutex_unlock(&rtc
->ops_lock
);
58 EXPORT_SYMBOL_GPL(rtc_read_time
);
60 int rtc_set_time(struct rtc_device
*rtc
, struct rtc_time
*tm
)
64 err
= rtc_valid_tm(tm
);
68 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
74 else if (rtc
->ops
->set_time
)
75 err
= rtc
->ops
->set_time(rtc
->dev
.parent
, tm
);
76 else if (rtc
->ops
->set_mmss64
) {
77 time64_t secs64
= rtc_tm_to_time64(tm
);
79 err
= rtc
->ops
->set_mmss64(rtc
->dev
.parent
, secs64
);
80 } else if (rtc
->ops
->set_mmss
) {
81 time64_t secs64
= rtc_tm_to_time64(tm
);
82 err
= rtc
->ops
->set_mmss(rtc
->dev
.parent
, secs64
);
86 pm_stay_awake(rtc
->dev
.parent
);
87 mutex_unlock(&rtc
->ops_lock
);
88 /* A timer might have just expired */
89 schedule_work(&rtc
->irqwork
);
92 EXPORT_SYMBOL_GPL(rtc_set_time
);
94 static int rtc_read_alarm_internal(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
98 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
102 if (rtc
->ops
== NULL
)
104 else if (!rtc
->ops
->read_alarm
)
107 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
108 err
= rtc
->ops
->read_alarm(rtc
->dev
.parent
, alarm
);
111 mutex_unlock(&rtc
->ops_lock
);
115 int __rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
118 struct rtc_time before
, now
;
120 time64_t t_now
, t_alm
;
121 enum { none
, day
, month
, year
} missing
= none
;
124 /* The lower level RTC driver may return -1 in some fields,
125 * creating invalid alarm->time values, for reasons like:
127 * - The hardware may not be capable of filling them in;
128 * many alarms match only on time-of-day fields, not
129 * day/month/year calendar data.
131 * - Some hardware uses illegal values as "wildcard" match
132 * values, which non-Linux firmware (like a BIOS) may try
133 * to set up as e.g. "alarm 15 minutes after each hour".
134 * Linux uses only oneshot alarms.
136 * When we see that here, we deal with it by using values from
137 * a current RTC timestamp for any missing (-1) values. The
138 * RTC driver prevents "periodic alarm" modes.
140 * But this can be racey, because some fields of the RTC timestamp
141 * may have wrapped in the interval since we read the RTC alarm,
142 * which would lead to us inserting inconsistent values in place
145 * Reading the alarm and timestamp in the reverse sequence
146 * would have the same race condition, and not solve the issue.
148 * So, we must first read the RTC timestamp,
149 * then read the RTC alarm value,
150 * and then read a second RTC timestamp.
152 * If any fields of the second timestamp have changed
153 * when compared with the first timestamp, then we know
154 * our timestamp may be inconsistent with that used by
155 * the low-level rtc_read_alarm_internal() function.
157 * So, when the two timestamps disagree, we just loop and do
158 * the process again to get a fully consistent set of values.
160 * This could all instead be done in the lower level driver,
161 * but since more than one lower level RTC implementation needs it,
162 * then it's probably best best to do it here instead of there..
165 /* Get the "before" timestamp */
166 err
= rtc_read_time(rtc
, &before
);
171 memcpy(&before
, &now
, sizeof(struct rtc_time
));
174 /* get the RTC alarm values, which may be incomplete */
175 err
= rtc_read_alarm_internal(rtc
, alarm
);
179 /* full-function RTCs won't have such missing fields */
180 if (rtc_valid_tm(&alarm
->time
) == 0)
183 /* get the "after" timestamp, to detect wrapped fields */
184 err
= rtc_read_time(rtc
, &now
);
188 /* note that tm_sec is a "don't care" value here: */
189 } while ( before
.tm_min
!= now
.tm_min
190 || before
.tm_hour
!= now
.tm_hour
191 || before
.tm_mon
!= now
.tm_mon
192 || before
.tm_year
!= now
.tm_year
);
194 /* Fill in the missing alarm fields using the timestamp; we
195 * know there's at least one since alarm->time is invalid.
197 if (alarm
->time
.tm_sec
== -1)
198 alarm
->time
.tm_sec
= now
.tm_sec
;
199 if (alarm
->time
.tm_min
== -1)
200 alarm
->time
.tm_min
= now
.tm_min
;
201 if (alarm
->time
.tm_hour
== -1)
202 alarm
->time
.tm_hour
= now
.tm_hour
;
204 /* For simplicity, only support date rollover for now */
205 if (alarm
->time
.tm_mday
< 1 || alarm
->time
.tm_mday
> 31) {
206 alarm
->time
.tm_mday
= now
.tm_mday
;
209 if ((unsigned)alarm
->time
.tm_mon
>= 12) {
210 alarm
->time
.tm_mon
= now
.tm_mon
;
214 if (alarm
->time
.tm_year
== -1) {
215 alarm
->time
.tm_year
= now
.tm_year
;
220 /* with luck, no rollover is needed */
221 t_now
= rtc_tm_to_time64(&now
);
222 t_alm
= rtc_tm_to_time64(&alarm
->time
);
228 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
229 * that will trigger at 5am will do so at 5am Tuesday, which
230 * could also be in the next month or year. This is a common
231 * case, especially for PCs.
234 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "day");
235 t_alm
+= 24 * 60 * 60;
236 rtc_time64_to_tm(t_alm
, &alarm
->time
);
239 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
240 * be next month. An alarm matching on the 30th, 29th, or 28th
241 * may end up in the month after that! Many newer PCs support
242 * this type of alarm.
245 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "month");
247 if (alarm
->time
.tm_mon
< 11)
248 alarm
->time
.tm_mon
++;
250 alarm
->time
.tm_mon
= 0;
251 alarm
->time
.tm_year
++;
253 days
= rtc_month_days(alarm
->time
.tm_mon
,
254 alarm
->time
.tm_year
);
255 } while (days
< alarm
->time
.tm_mday
);
258 /* Year rollover ... easy except for leap years! */
260 dev_dbg(&rtc
->dev
, "alarm rollover: %s\n", "year");
262 alarm
->time
.tm_year
++;
263 } while (!is_leap_year(alarm
->time
.tm_year
+ 1900)
264 && rtc_valid_tm(&alarm
->time
) != 0);
268 dev_warn(&rtc
->dev
, "alarm rollover not handled\n");
272 err
= rtc_valid_tm(&alarm
->time
);
275 dev_warn(&rtc
->dev
, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
276 alarm
->time
.tm_year
+ 1900, alarm
->time
.tm_mon
+ 1,
277 alarm
->time
.tm_mday
, alarm
->time
.tm_hour
, alarm
->time
.tm_min
,
284 int rtc_read_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
288 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
291 if (rtc
->ops
== NULL
)
293 else if (!rtc
->ops
->read_alarm
)
296 memset(alarm
, 0, sizeof(struct rtc_wkalrm
));
297 alarm
->enabled
= rtc
->aie_timer
.enabled
;
298 alarm
->time
= rtc_ktime_to_tm(rtc
->aie_timer
.node
.expires
);
300 mutex_unlock(&rtc
->ops_lock
);
304 EXPORT_SYMBOL_GPL(rtc_read_alarm
);
306 static int __rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
309 time64_t now
, scheduled
;
312 err
= rtc_valid_tm(&alarm
->time
);
315 scheduled
= rtc_tm_to_time64(&alarm
->time
);
317 /* Make sure we're not setting alarms in the past */
318 err
= __rtc_read_time(rtc
, &tm
);
321 now
= rtc_tm_to_time64(&tm
);
322 if (scheduled
<= now
)
325 * XXX - We just checked to make sure the alarm time is not
326 * in the past, but there is still a race window where if
327 * the is alarm set for the next second and the second ticks
328 * over right here, before we set the alarm.
333 else if (!rtc
->ops
->set_alarm
)
336 err
= rtc
->ops
->set_alarm(rtc
->dev
.parent
, alarm
);
341 int rtc_set_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
345 err
= rtc_valid_tm(&alarm
->time
);
349 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
352 if (rtc
->aie_timer
.enabled
)
353 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
355 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
356 rtc
->aie_timer
.period
= ktime_set(0, 0);
358 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
360 mutex_unlock(&rtc
->ops_lock
);
363 EXPORT_SYMBOL_GPL(rtc_set_alarm
);
365 /* Called once per device from rtc_device_register */
366 int rtc_initialize_alarm(struct rtc_device
*rtc
, struct rtc_wkalrm
*alarm
)
371 err
= rtc_valid_tm(&alarm
->time
);
375 err
= rtc_read_time(rtc
, &now
);
379 err
= mutex_lock_interruptible(&rtc
->ops_lock
);
383 rtc
->aie_timer
.node
.expires
= rtc_tm_to_ktime(alarm
->time
);
384 rtc
->aie_timer
.period
= ktime_set(0, 0);
386 /* Alarm has to be enabled & in the futrure for us to enqueue it */
387 if (alarm
->enabled
&& (rtc_tm_to_ktime(now
).tv64
<
388 rtc
->aie_timer
.node
.expires
.tv64
)) {
390 rtc
->aie_timer
.enabled
= 1;
391 timerqueue_add(&rtc
->timerqueue
, &rtc
->aie_timer
.node
);
393 mutex_unlock(&rtc
->ops_lock
);
396 EXPORT_SYMBOL_GPL(rtc_initialize_alarm
);
400 int rtc_alarm_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
402 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
406 if (rtc
->aie_timer
.enabled
!= enabled
) {
408 err
= rtc_timer_enqueue(rtc
, &rtc
->aie_timer
);
410 rtc_timer_remove(rtc
, &rtc
->aie_timer
);
417 else if (!rtc
->ops
->alarm_irq_enable
)
420 err
= rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, enabled
);
422 mutex_unlock(&rtc
->ops_lock
);
425 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable
);
427 int rtc_update_irq_enable(struct rtc_device
*rtc
, unsigned int enabled
)
429 int err
= mutex_lock_interruptible(&rtc
->ops_lock
);
433 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
434 if (enabled
== 0 && rtc
->uie_irq_active
) {
435 mutex_unlock(&rtc
->ops_lock
);
436 return rtc_dev_update_irq_enable_emul(rtc
, 0);
439 /* make sure we're changing state */
440 if (rtc
->uie_rtctimer
.enabled
== enabled
)
443 if (rtc
->uie_unsupported
) {
452 __rtc_read_time(rtc
, &tm
);
453 onesec
= ktime_set(1, 0);
454 now
= rtc_tm_to_ktime(tm
);
455 rtc
->uie_rtctimer
.node
.expires
= ktime_add(now
, onesec
);
456 rtc
->uie_rtctimer
.period
= ktime_set(1, 0);
457 err
= rtc_timer_enqueue(rtc
, &rtc
->uie_rtctimer
);
459 rtc_timer_remove(rtc
, &rtc
->uie_rtctimer
);
462 mutex_unlock(&rtc
->ops_lock
);
463 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
465 * Enable emulation if the driver did not provide
466 * the update_irq_enable function pointer or if returned
467 * -EINVAL to signal that it has been configured without
468 * interrupts or that are not available at the moment.
471 err
= rtc_dev_update_irq_enable_emul(rtc
, enabled
);
476 EXPORT_SYMBOL_GPL(rtc_update_irq_enable
);
480 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
481 * @rtc: pointer to the rtc device
483 * This function is called when an AIE, UIE or PIE mode interrupt
484 * has occurred (or been emulated).
486 * Triggers the registered irq_task function callback.
488 void rtc_handle_legacy_irq(struct rtc_device
*rtc
, int num
, int mode
)
492 /* mark one irq of the appropriate mode */
493 spin_lock_irqsave(&rtc
->irq_lock
, flags
);
494 rtc
->irq_data
= (rtc
->irq_data
+ (num
<< 8)) | (RTC_IRQF
|mode
);
495 spin_unlock_irqrestore(&rtc
->irq_lock
, flags
);
497 /* call the task func */
498 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
500 rtc
->irq_task
->func(rtc
->irq_task
->private_data
);
501 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
503 wake_up_interruptible(&rtc
->irq_queue
);
504 kill_fasync(&rtc
->async_queue
, SIGIO
, POLL_IN
);
509 * rtc_aie_update_irq - AIE mode rtctimer hook
510 * @private: pointer to the rtc_device
512 * This functions is called when the aie_timer expires.
514 void rtc_aie_update_irq(void *private)
516 struct rtc_device
*rtc
= (struct rtc_device
*)private;
517 rtc_handle_legacy_irq(rtc
, 1, RTC_AF
);
522 * rtc_uie_update_irq - UIE mode rtctimer hook
523 * @private: pointer to the rtc_device
525 * This functions is called when the uie_timer expires.
527 void rtc_uie_update_irq(void *private)
529 struct rtc_device
*rtc
= (struct rtc_device
*)private;
530 rtc_handle_legacy_irq(rtc
, 1, RTC_UF
);
535 * rtc_pie_update_irq - PIE mode hrtimer hook
536 * @timer: pointer to the pie mode hrtimer
538 * This function is used to emulate PIE mode interrupts
539 * using an hrtimer. This function is called when the periodic
542 enum hrtimer_restart
rtc_pie_update_irq(struct hrtimer
*timer
)
544 struct rtc_device
*rtc
;
547 rtc
= container_of(timer
, struct rtc_device
, pie_timer
);
549 period
= ktime_set(0, NSEC_PER_SEC
/rtc
->irq_freq
);
550 count
= hrtimer_forward_now(timer
, period
);
552 rtc_handle_legacy_irq(rtc
, count
, RTC_PF
);
554 return HRTIMER_RESTART
;
558 * rtc_update_irq - Triggered when a RTC interrupt occurs.
559 * @rtc: the rtc device
560 * @num: how many irqs are being reported (usually one)
561 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
564 void rtc_update_irq(struct rtc_device
*rtc
,
565 unsigned long num
, unsigned long events
)
567 if (IS_ERR_OR_NULL(rtc
))
570 pm_stay_awake(rtc
->dev
.parent
);
571 schedule_work(&rtc
->irqwork
);
573 EXPORT_SYMBOL_GPL(rtc_update_irq
);
575 static int __rtc_match(struct device
*dev
, const void *data
)
577 const char *name
= data
;
579 if (strcmp(dev_name(dev
), name
) == 0)
584 struct rtc_device
*rtc_class_open(const char *name
)
587 struct rtc_device
*rtc
= NULL
;
589 dev
= class_find_device(rtc_class
, NULL
, name
, __rtc_match
);
591 rtc
= to_rtc_device(dev
);
594 if (!try_module_get(rtc
->owner
)) {
602 EXPORT_SYMBOL_GPL(rtc_class_open
);
604 void rtc_class_close(struct rtc_device
*rtc
)
606 module_put(rtc
->owner
);
607 put_device(&rtc
->dev
);
609 EXPORT_SYMBOL_GPL(rtc_class_close
);
611 int rtc_irq_register(struct rtc_device
*rtc
, struct rtc_task
*task
)
615 if (task
== NULL
|| task
->func
== NULL
)
618 /* Cannot register while the char dev is in use */
619 if (test_and_set_bit_lock(RTC_DEV_BUSY
, &rtc
->flags
))
622 spin_lock_irq(&rtc
->irq_task_lock
);
623 if (rtc
->irq_task
== NULL
) {
624 rtc
->irq_task
= task
;
627 spin_unlock_irq(&rtc
->irq_task_lock
);
629 clear_bit_unlock(RTC_DEV_BUSY
, &rtc
->flags
);
633 EXPORT_SYMBOL_GPL(rtc_irq_register
);
635 void rtc_irq_unregister(struct rtc_device
*rtc
, struct rtc_task
*task
)
637 spin_lock_irq(&rtc
->irq_task_lock
);
638 if (rtc
->irq_task
== task
)
639 rtc
->irq_task
= NULL
;
640 spin_unlock_irq(&rtc
->irq_task_lock
);
642 EXPORT_SYMBOL_GPL(rtc_irq_unregister
);
644 static int rtc_update_hrtimer(struct rtc_device
*rtc
, int enabled
)
647 * We always cancel the timer here first, because otherwise
648 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
649 * when we manage to start the timer before the callback
650 * returns HRTIMER_RESTART.
652 * We cannot use hrtimer_cancel() here as a running callback
653 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
654 * would spin forever.
656 if (hrtimer_try_to_cancel(&rtc
->pie_timer
) < 0)
660 ktime_t period
= ktime_set(0, NSEC_PER_SEC
/ rtc
->irq_freq
);
662 hrtimer_start(&rtc
->pie_timer
, period
, HRTIMER_MODE_REL
);
668 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
669 * @rtc: the rtc device
670 * @task: currently registered with rtc_irq_register()
671 * @enabled: true to enable periodic IRQs
674 * Note that rtc_irq_set_freq() should previously have been used to
675 * specify the desired frequency of periodic IRQ task->func() callbacks.
677 int rtc_irq_set_state(struct rtc_device
*rtc
, struct rtc_task
*task
, int enabled
)
683 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
684 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
686 else if (rtc
->irq_task
!= task
)
689 if (rtc_update_hrtimer(rtc
, enabled
) < 0) {
690 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
694 rtc
->pie_enabled
= enabled
;
696 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
699 EXPORT_SYMBOL_GPL(rtc_irq_set_state
);
702 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
703 * @rtc: the rtc device
704 * @task: currently registered with rtc_irq_register()
705 * @freq: positive frequency with which task->func() will be called
708 * Note that rtc_irq_set_state() is used to enable or disable the
711 int rtc_irq_set_freq(struct rtc_device
*rtc
, struct rtc_task
*task
, int freq
)
716 if (freq
<= 0 || freq
> RTC_MAX_FREQ
)
719 spin_lock_irqsave(&rtc
->irq_task_lock
, flags
);
720 if (rtc
->irq_task
!= NULL
&& task
== NULL
)
722 else if (rtc
->irq_task
!= task
)
725 rtc
->irq_freq
= freq
;
726 if (rtc
->pie_enabled
&& rtc_update_hrtimer(rtc
, 1) < 0) {
727 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
732 spin_unlock_irqrestore(&rtc
->irq_task_lock
, flags
);
735 EXPORT_SYMBOL_GPL(rtc_irq_set_freq
);
738 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
740 * @timer timer being added.
742 * Enqueues a timer onto the rtc devices timerqueue and sets
743 * the next alarm event appropriately.
745 * Sets the enabled bit on the added timer.
747 * Must hold ops_lock for proper serialization of timerqueue
749 static int rtc_timer_enqueue(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
752 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
753 if (&timer
->node
== timerqueue_getnext(&rtc
->timerqueue
)) {
754 struct rtc_wkalrm alarm
;
756 alarm
.time
= rtc_ktime_to_tm(timer
->node
.expires
);
758 err
= __rtc_set_alarm(rtc
, &alarm
);
760 pm_stay_awake(rtc
->dev
.parent
);
761 schedule_work(&rtc
->irqwork
);
763 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
771 static void rtc_alarm_disable(struct rtc_device
*rtc
)
773 if (!rtc
->ops
|| !rtc
->ops
->alarm_irq_enable
)
776 rtc
->ops
->alarm_irq_enable(rtc
->dev
.parent
, false);
780 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
782 * @timer timer being removed.
784 * Removes a timer onto the rtc devices timerqueue and sets
785 * the next alarm event appropriately.
787 * Clears the enabled bit on the removed timer.
789 * Must hold ops_lock for proper serialization of timerqueue
791 static void rtc_timer_remove(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
793 struct timerqueue_node
*next
= timerqueue_getnext(&rtc
->timerqueue
);
794 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
796 if (next
== &timer
->node
) {
797 struct rtc_wkalrm alarm
;
799 next
= timerqueue_getnext(&rtc
->timerqueue
);
801 rtc_alarm_disable(rtc
);
804 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
806 err
= __rtc_set_alarm(rtc
, &alarm
);
808 pm_stay_awake(rtc
->dev
.parent
);
809 schedule_work(&rtc
->irqwork
);
815 * rtc_timer_do_work - Expires rtc timers
817 * @timer timer being removed.
819 * Expires rtc timers. Reprograms next alarm event if needed.
820 * Called via worktask.
822 * Serializes access to timerqueue via ops_lock mutex
824 void rtc_timer_do_work(struct work_struct
*work
)
826 struct rtc_timer
*timer
;
827 struct timerqueue_node
*next
;
831 struct rtc_device
*rtc
=
832 container_of(work
, struct rtc_device
, irqwork
);
834 mutex_lock(&rtc
->ops_lock
);
836 __rtc_read_time(rtc
, &tm
);
837 now
= rtc_tm_to_ktime(tm
);
838 while ((next
= timerqueue_getnext(&rtc
->timerqueue
))) {
839 if (next
->expires
.tv64
> now
.tv64
)
843 timer
= container_of(next
, struct rtc_timer
, node
);
844 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
846 if (timer
->task
.func
)
847 timer
->task
.func(timer
->task
.private_data
);
849 /* Re-add/fwd periodic timers */
850 if (ktime_to_ns(timer
->period
)) {
851 timer
->node
.expires
= ktime_add(timer
->node
.expires
,
854 timerqueue_add(&rtc
->timerqueue
, &timer
->node
);
860 struct rtc_wkalrm alarm
;
864 alarm
.time
= rtc_ktime_to_tm(next
->expires
);
867 err
= __rtc_set_alarm(rtc
, &alarm
);
874 timer
= container_of(next
, struct rtc_timer
, node
);
875 timerqueue_del(&rtc
->timerqueue
, &timer
->node
);
877 dev_err(&rtc
->dev
, "__rtc_set_alarm: err=%d\n", err
);
881 rtc_alarm_disable(rtc
);
883 pm_relax(rtc
->dev
.parent
);
884 mutex_unlock(&rtc
->ops_lock
);
888 /* rtc_timer_init - Initializes an rtc_timer
889 * @timer: timer to be intiialized
890 * @f: function pointer to be called when timer fires
891 * @data: private data passed to function pointer
893 * Kernel interface to initializing an rtc_timer.
895 void rtc_timer_init(struct rtc_timer
*timer
, void (*f
)(void *p
), void *data
)
897 timerqueue_init(&timer
->node
);
899 timer
->task
.func
= f
;
900 timer
->task
.private_data
= data
;
903 /* rtc_timer_start - Sets an rtc_timer to fire in the future
904 * @ rtc: rtc device to be used
905 * @ timer: timer being set
906 * @ expires: time at which to expire the timer
907 * @ period: period that the timer will recur
909 * Kernel interface to set an rtc_timer
911 int rtc_timer_start(struct rtc_device
*rtc
, struct rtc_timer
*timer
,
912 ktime_t expires
, ktime_t period
)
915 mutex_lock(&rtc
->ops_lock
);
917 rtc_timer_remove(rtc
, timer
);
919 timer
->node
.expires
= expires
;
920 timer
->period
= period
;
922 ret
= rtc_timer_enqueue(rtc
, timer
);
924 mutex_unlock(&rtc
->ops_lock
);
928 /* rtc_timer_cancel - Stops an rtc_timer
929 * @ rtc: rtc device to be used
930 * @ timer: timer being set
932 * Kernel interface to cancel an rtc_timer
934 void rtc_timer_cancel(struct rtc_device
*rtc
, struct rtc_timer
*timer
)
936 mutex_lock(&rtc
->ops_lock
);
938 rtc_timer_remove(rtc
, timer
);
939 mutex_unlock(&rtc
->ops_lock
);
943 * rtc_read_offset - Read the amount of rtc offset in parts per billion
944 * @ rtc: rtc device to be used
945 * @ offset: the offset in parts per billion
947 * see below for details.
949 * Kernel interface to read rtc clock offset
950 * Returns 0 on success, or a negative number on error.
951 * If read_offset() is not implemented for the rtc, return -EINVAL
953 int rtc_read_offset(struct rtc_device
*rtc
, long *offset
)
960 if (!rtc
->ops
->read_offset
)
963 mutex_lock(&rtc
->ops_lock
);
964 ret
= rtc
->ops
->read_offset(rtc
->dev
.parent
, offset
);
965 mutex_unlock(&rtc
->ops_lock
);
970 * rtc_set_offset - Adjusts the duration of the average second
971 * @ rtc: rtc device to be used
972 * @ offset: the offset in parts per billion
974 * Some rtc's allow an adjustment to the average duration of a second
975 * to compensate for differences in the actual clock rate due to temperature,
976 * the crystal, capacitor, etc.
978 * Kernel interface to adjust an rtc clock offset.
979 * Return 0 on success, or a negative number on error.
980 * If the rtc offset is not setable (or not implemented), return -EINVAL
982 int rtc_set_offset(struct rtc_device
*rtc
, long offset
)
989 if (!rtc
->ops
->set_offset
)
992 mutex_lock(&rtc
->ops_lock
);
993 ret
= rtc
->ops
->set_offset(rtc
->dev
.parent
, offset
);
994 mutex_unlock(&rtc
->ops_lock
);