1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2014 Marvell Technology Group Ltd.
5 * Sebastian Hesselbarth <sebastian.hesselbarth@gmail.com>
6 * Alexandre Belloni <alexandre.belloni@free-electrons.com>
8 #include <linux/clk-provider.h>
10 #include <linux/kernel.h>
12 #include <linux/of_address.h>
13 #include <linux/slab.h>
15 #include "berlin2-avpll.h"
18 * Berlin2 SoCs comprise up to two PLLs called AVPLL built upon a
19 * VCO with 8 channels each, channel 8 is the odd-one-out and does
20 * not provide mul/div.
22 * Unfortunately, its registers are not named but just numbered. To
23 * get in at least some kind of structure, we split each AVPLL into
24 * the VCOs and each channel into separate clock drivers.
26 * Also, here and there the VCO registers are a bit different with
27 * respect to bit shifts. Make sure to add a comment for those.
29 #define NUM_CHANNELS 8
31 #define AVPLL_CTRL(x) ((x) * 0x4)
33 #define VCO_CTRL0 AVPLL_CTRL(0)
34 /* BG2/BG2CDs VCO_B has an additional shift of 4 for its VCO_CTRL0 reg */
35 #define VCO_RESET BIT(0)
36 #define VCO_POWERUP BIT(1)
37 #define VCO_INTERPOL_SHIFT 2
38 #define VCO_INTERPOL_MASK (0xf << VCO_INTERPOL_SHIFT)
39 #define VCO_REG1V45_SEL_SHIFT 6
40 #define VCO_REG1V45_SEL(x) ((x) << VCO_REG1V45_SEL_SHIFT)
41 #define VCO_REG1V45_SEL_1V40 VCO_REG1V45_SEL(0)
42 #define VCO_REG1V45_SEL_1V45 VCO_REG1V45_SEL(1)
43 #define VCO_REG1V45_SEL_1V50 VCO_REG1V45_SEL(2)
44 #define VCO_REG1V45_SEL_1V55 VCO_REG1V45_SEL(3)
45 #define VCO_REG1V45_SEL_MASK VCO_REG1V45_SEL(3)
46 #define VCO_REG0V9_SEL_SHIFT 8
47 #define VCO_REG0V9_SEL_MASK (0xf << VCO_REG0V9_SEL_SHIFT)
48 #define VCO_VTHCAL_SHIFT 12
49 #define VCO_VTHCAL(x) ((x) << VCO_VTHCAL_SHIFT)
50 #define VCO_VTHCAL_0V90 VCO_VTHCAL(0)
51 #define VCO_VTHCAL_0V95 VCO_VTHCAL(1)
52 #define VCO_VTHCAL_1V00 VCO_VTHCAL(2)
53 #define VCO_VTHCAL_1V05 VCO_VTHCAL(3)
54 #define VCO_VTHCAL_MASK VCO_VTHCAL(3)
55 #define VCO_KVCOEXT_SHIFT 14
56 #define VCO_KVCOEXT_MASK (0x3 << VCO_KVCOEXT_SHIFT)
57 #define VCO_KVCOEXT_ENABLE BIT(17)
58 #define VCO_V2IEXT_SHIFT 18
59 #define VCO_V2IEXT_MASK (0xf << VCO_V2IEXT_SHIFT)
60 #define VCO_V2IEXT_ENABLE BIT(22)
61 #define VCO_SPEED_SHIFT 23
62 #define VCO_SPEED(x) ((x) << VCO_SPEED_SHIFT)
63 #define VCO_SPEED_1G08_1G21 VCO_SPEED(0)
64 #define VCO_SPEED_1G21_1G40 VCO_SPEED(1)
65 #define VCO_SPEED_1G40_1G61 VCO_SPEED(2)
66 #define VCO_SPEED_1G61_1G86 VCO_SPEED(3)
67 #define VCO_SPEED_1G86_2G00 VCO_SPEED(4)
68 #define VCO_SPEED_2G00_2G22 VCO_SPEED(5)
69 #define VCO_SPEED_2G22 VCO_SPEED(6)
70 #define VCO_SPEED_MASK VCO_SPEED(0x7)
71 #define VCO_CLKDET_ENABLE BIT(26)
72 #define VCO_CTRL1 AVPLL_CTRL(1)
73 #define VCO_REFDIV_SHIFT 0
74 #define VCO_REFDIV(x) ((x) << VCO_REFDIV_SHIFT)
75 #define VCO_REFDIV_1 VCO_REFDIV(0)
76 #define VCO_REFDIV_2 VCO_REFDIV(1)
77 #define VCO_REFDIV_4 VCO_REFDIV(2)
78 #define VCO_REFDIV_3 VCO_REFDIV(3)
79 #define VCO_REFDIV_MASK VCO_REFDIV(0x3f)
80 #define VCO_FBDIV_SHIFT 6
81 #define VCO_FBDIV(x) ((x) << VCO_FBDIV_SHIFT)
82 #define VCO_FBDIV_MASK VCO_FBDIV(0xff)
83 #define VCO_ICP_SHIFT 14
84 /* PLL Charge Pump Current = 10uA * (x + 1) */
85 #define VCO_ICP(x) ((x) << VCO_ICP_SHIFT)
86 #define VCO_ICP_MASK VCO_ICP(0xf)
87 #define VCO_LOAD_CAP BIT(18)
88 #define VCO_CALIBRATION_START BIT(19)
89 #define VCO_FREQOFFSETn(x) AVPLL_CTRL(3 + (x))
90 #define VCO_FREQOFFSET_MASK 0x7ffff
91 #define VCO_CTRL10 AVPLL_CTRL(10)
92 #define VCO_POWERUP_CH1 BIT(20)
93 #define VCO_CTRL11 AVPLL_CTRL(11)
94 #define VCO_CTRL12 AVPLL_CTRL(12)
95 #define VCO_CTRL13 AVPLL_CTRL(13)
96 #define VCO_CTRL14 AVPLL_CTRL(14)
97 #define VCO_CTRL15 AVPLL_CTRL(15)
98 #define VCO_SYNC1n(x) AVPLL_CTRL(15 + (x))
99 #define VCO_SYNC1_MASK 0x1ffff
100 #define VCO_SYNC2n(x) AVPLL_CTRL(23 + (x))
101 #define VCO_SYNC2_MASK 0x1ffff
102 #define VCO_CTRL30 AVPLL_CTRL(30)
103 #define VCO_DPLL_CH1_ENABLE BIT(17)
105 struct berlin2_avpll_vco
{
111 #define to_avpll_vco(hw) container_of(hw, struct berlin2_avpll_vco, hw)
113 static int berlin2_avpll_vco_is_enabled(struct clk_hw
*hw
)
115 struct berlin2_avpll_vco
*vco
= to_avpll_vco(hw
);
118 reg
= readl_relaxed(vco
->base
+ VCO_CTRL0
);
119 if (vco
->flags
& BERLIN2_AVPLL_BIT_QUIRK
)
122 return !!(reg
& VCO_POWERUP
);
125 static int berlin2_avpll_vco_enable(struct clk_hw
*hw
)
127 struct berlin2_avpll_vco
*vco
= to_avpll_vco(hw
);
130 reg
= readl_relaxed(vco
->base
+ VCO_CTRL0
);
131 if (vco
->flags
& BERLIN2_AVPLL_BIT_QUIRK
)
132 reg
|= VCO_POWERUP
<< 4;
135 writel_relaxed(reg
, vco
->base
+ VCO_CTRL0
);
140 static void berlin2_avpll_vco_disable(struct clk_hw
*hw
)
142 struct berlin2_avpll_vco
*vco
= to_avpll_vco(hw
);
145 reg
= readl_relaxed(vco
->base
+ VCO_CTRL0
);
146 if (vco
->flags
& BERLIN2_AVPLL_BIT_QUIRK
)
147 reg
&= ~(VCO_POWERUP
<< 4);
150 writel_relaxed(reg
, vco
->base
+ VCO_CTRL0
);
153 static u8 vco_refdiv
[] = { 1, 2, 4, 3 };
156 berlin2_avpll_vco_recalc_rate(struct clk_hw
*hw
, unsigned long parent_rate
)
158 struct berlin2_avpll_vco
*vco
= to_avpll_vco(hw
);
159 u32 reg
, refdiv
, fbdiv
;
160 u64 freq
= parent_rate
;
162 /* AVPLL VCO frequency: Fvco = (Fref / refdiv) * fbdiv */
163 reg
= readl_relaxed(vco
->base
+ VCO_CTRL1
);
164 refdiv
= (reg
& VCO_REFDIV_MASK
) >> VCO_REFDIV_SHIFT
;
165 refdiv
= vco_refdiv
[refdiv
];
166 fbdiv
= (reg
& VCO_FBDIV_MASK
) >> VCO_FBDIV_SHIFT
;
168 do_div(freq
, refdiv
);
170 return (unsigned long)freq
;
173 static const struct clk_ops berlin2_avpll_vco_ops
= {
174 .is_enabled
= berlin2_avpll_vco_is_enabled
,
175 .enable
= berlin2_avpll_vco_enable
,
176 .disable
= berlin2_avpll_vco_disable
,
177 .recalc_rate
= berlin2_avpll_vco_recalc_rate
,
180 int __init
berlin2_avpll_vco_register(void __iomem
*base
,
181 const char *name
, const char *parent_name
,
182 u8 vco_flags
, unsigned long flags
)
184 struct berlin2_avpll_vco
*vco
;
185 struct clk_init_data init
;
187 vco
= kzalloc(sizeof(*vco
), GFP_KERNEL
);
192 vco
->flags
= vco_flags
;
193 vco
->hw
.init
= &init
;
195 init
.ops
= &berlin2_avpll_vco_ops
;
196 init
.parent_names
= &parent_name
;
197 init
.num_parents
= 1;
200 return clk_hw_register(NULL
, &vco
->hw
);
203 struct berlin2_avpll_channel
{
210 #define to_avpll_channel(hw) container_of(hw, struct berlin2_avpll_channel, hw)
212 static int berlin2_avpll_channel_is_enabled(struct clk_hw
*hw
)
214 struct berlin2_avpll_channel
*ch
= to_avpll_channel(hw
);
220 reg
= readl_relaxed(ch
->base
+ VCO_CTRL10
);
221 reg
&= VCO_POWERUP_CH1
<< ch
->index
;
226 static int berlin2_avpll_channel_enable(struct clk_hw
*hw
)
228 struct berlin2_avpll_channel
*ch
= to_avpll_channel(hw
);
231 reg
= readl_relaxed(ch
->base
+ VCO_CTRL10
);
232 reg
|= VCO_POWERUP_CH1
<< ch
->index
;
233 writel_relaxed(reg
, ch
->base
+ VCO_CTRL10
);
238 static void berlin2_avpll_channel_disable(struct clk_hw
*hw
)
240 struct berlin2_avpll_channel
*ch
= to_avpll_channel(hw
);
243 reg
= readl_relaxed(ch
->base
+ VCO_CTRL10
);
244 reg
&= ~(VCO_POWERUP_CH1
<< ch
->index
);
245 writel_relaxed(reg
, ch
->base
+ VCO_CTRL10
);
248 static const u8 div_hdmi
[] = { 1, 2, 4, 6 };
249 static const u8 div_av1
[] = { 1, 2, 5, 5 };
252 berlin2_avpll_channel_recalc_rate(struct clk_hw
*hw
, unsigned long parent_rate
)
254 struct berlin2_avpll_channel
*ch
= to_avpll_channel(hw
);
255 u32 reg
, div_av2
, div_av3
, divider
= 1;
256 u64 freq
= parent_rate
;
258 reg
= readl_relaxed(ch
->base
+ VCO_CTRL30
);
259 if ((reg
& (VCO_DPLL_CH1_ENABLE
<< ch
->index
)) == 0)
263 * Fch = (Fref * sync2) /
264 * (sync1 * div_hdmi * div_av1 * div_av2 * div_av3)
267 reg
= readl_relaxed(ch
->base
+ VCO_SYNC1n(ch
->index
));
268 /* BG2/BG2CDs SYNC1 reg on AVPLL_B channel 1 is shifted by 4 */
269 if (ch
->flags
& BERLIN2_AVPLL_BIT_QUIRK
&& ch
->index
== 0)
271 divider
= reg
& VCO_SYNC1_MASK
;
273 reg
= readl_relaxed(ch
->base
+ VCO_SYNC2n(ch
->index
));
274 freq
*= reg
& VCO_SYNC2_MASK
;
276 /* Channel 8 has no dividers */
281 * HDMI divider start at VCO_CTRL11, bit 7; MSB is enable, lower 2 bit
284 reg
= readl_relaxed(ch
->base
+ VCO_CTRL11
) >> 7;
285 reg
= (reg
>> (ch
->index
* 3));
287 divider
*= div_hdmi
[reg
& 0x3];
290 * AV1 divider start at VCO_CTRL11, bit 28; MSB is enable, lower 2 bit
293 if (ch
->index
== 0) {
294 reg
= readl_relaxed(ch
->base
+ VCO_CTRL11
);
297 reg
= readl_relaxed(ch
->base
+ VCO_CTRL12
);
298 reg
>>= (ch
->index
-1) * 3;
301 divider
*= div_av1
[reg
& 0x3];
304 * AV2 divider start at VCO_CTRL12, bit 18; each 7 bits wide,
305 * zero is not a valid value.
308 reg
= readl_relaxed(ch
->base
+ VCO_CTRL12
);
309 reg
>>= 18 + (ch
->index
* 7);
310 } else if (ch
->index
< 7) {
311 reg
= readl_relaxed(ch
->base
+ VCO_CTRL13
);
312 reg
>>= (ch
->index
- 2) * 7;
314 reg
= readl_relaxed(ch
->base
+ VCO_CTRL14
);
316 div_av2
= reg
& 0x7f;
321 * AV3 divider start at VCO_CTRL14, bit 7; each 4 bits wide.
322 * AV2/AV3 form a fractional divider, where only specfic values for AV3
323 * are allowed. AV3 != 0 divides by AV2/2, AV3=0 is bypass.
326 reg
= readl_relaxed(ch
->base
+ VCO_CTRL14
);
327 reg
>>= 7 + (ch
->index
* 4);
329 reg
= readl_relaxed(ch
->base
+ VCO_CTRL15
);
332 if (div_av2
&& div_av3
)
336 do_div(freq
, divider
);
337 return (unsigned long)freq
;
340 static const struct clk_ops berlin2_avpll_channel_ops
= {
341 .is_enabled
= berlin2_avpll_channel_is_enabled
,
342 .enable
= berlin2_avpll_channel_enable
,
343 .disable
= berlin2_avpll_channel_disable
,
344 .recalc_rate
= berlin2_avpll_channel_recalc_rate
,
348 * Another nice quirk:
349 * On some production SoCs, AVPLL channels are scrambled with respect
350 * to the channel numbering in the registers but still referenced by
351 * their original channel numbers. We deal with it by having a flag
352 * and a translation table for the index.
354 static const u8 quirk_index
[] __initconst
= { 0, 6, 5, 4, 3, 2, 1, 7 };
356 int __init
berlin2_avpll_channel_register(void __iomem
*base
,
357 const char *name
, u8 index
, const char *parent_name
,
358 u8 ch_flags
, unsigned long flags
)
360 struct berlin2_avpll_channel
*ch
;
361 struct clk_init_data init
;
363 ch
= kzalloc(sizeof(*ch
), GFP_KERNEL
);
368 if (ch_flags
& BERLIN2_AVPLL_SCRAMBLE_QUIRK
)
369 ch
->index
= quirk_index
[index
];
373 ch
->flags
= ch_flags
;
376 init
.ops
= &berlin2_avpll_channel_ops
;
377 init
.parent_names
= &parent_name
;
378 init
.num_parents
= 1;
381 return clk_hw_register(NULL
, &ch
->hw
);