MIPS: Declare uasm bbit0 and bbit1 functions.
[linux/fpc-iii.git] / drivers / md / raid1.c
bloba23ffa397ba91b0cd4dc2bb148f50122d72d6beb
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
50 * Number of guaranteed r1bios in case of extreme VM load:
52 #define NR_RAID1_BIOS 256
55 static void unplug_slaves(mddev_t *mddev);
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
60 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
62 struct pool_info *pi = data;
63 r1bio_t *r1_bio;
64 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
66 /* allocate a r1bio with room for raid_disks entries in the bios array */
67 r1_bio = kzalloc(size, gfp_flags);
68 if (!r1_bio && pi->mddev)
69 unplug_slaves(pi->mddev);
71 return r1_bio;
74 static void r1bio_pool_free(void *r1_bio, void *data)
76 kfree(r1_bio);
79 #define RESYNC_BLOCK_SIZE (64*1024)
80 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
81 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
82 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
83 #define RESYNC_WINDOW (2048*1024)
85 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
87 struct pool_info *pi = data;
88 struct page *page;
89 r1bio_t *r1_bio;
90 struct bio *bio;
91 int i, j;
93 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
94 if (!r1_bio) {
95 unplug_slaves(pi->mddev);
96 return NULL;
100 * Allocate bios : 1 for reading, n-1 for writing
102 for (j = pi->raid_disks ; j-- ; ) {
103 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
104 if (!bio)
105 goto out_free_bio;
106 r1_bio->bios[j] = bio;
109 * Allocate RESYNC_PAGES data pages and attach them to
110 * the first bio.
111 * If this is a user-requested check/repair, allocate
112 * RESYNC_PAGES for each bio.
114 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
115 j = pi->raid_disks;
116 else
117 j = 1;
118 while(j--) {
119 bio = r1_bio->bios[j];
120 for (i = 0; i < RESYNC_PAGES; i++) {
121 page = alloc_page(gfp_flags);
122 if (unlikely(!page))
123 goto out_free_pages;
125 bio->bi_io_vec[i].bv_page = page;
126 bio->bi_vcnt = i+1;
129 /* If not user-requests, copy the page pointers to all bios */
130 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
131 for (i=0; i<RESYNC_PAGES ; i++)
132 for (j=1; j<pi->raid_disks; j++)
133 r1_bio->bios[j]->bi_io_vec[i].bv_page =
134 r1_bio->bios[0]->bi_io_vec[i].bv_page;
137 r1_bio->master_bio = NULL;
139 return r1_bio;
141 out_free_pages:
142 for (j=0 ; j < pi->raid_disks; j++)
143 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
144 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
145 j = -1;
146 out_free_bio:
147 while ( ++j < pi->raid_disks )
148 bio_put(r1_bio->bios[j]);
149 r1bio_pool_free(r1_bio, data);
150 return NULL;
153 static void r1buf_pool_free(void *__r1_bio, void *data)
155 struct pool_info *pi = data;
156 int i,j;
157 r1bio_t *r1bio = __r1_bio;
159 for (i = 0; i < RESYNC_PAGES; i++)
160 for (j = pi->raid_disks; j-- ;) {
161 if (j == 0 ||
162 r1bio->bios[j]->bi_io_vec[i].bv_page !=
163 r1bio->bios[0]->bi_io_vec[i].bv_page)
164 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
166 for (i=0 ; i < pi->raid_disks; i++)
167 bio_put(r1bio->bios[i]);
169 r1bio_pool_free(r1bio, data);
172 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
174 int i;
176 for (i = 0; i < conf->raid_disks; i++) {
177 struct bio **bio = r1_bio->bios + i;
178 if (*bio && *bio != IO_BLOCKED)
179 bio_put(*bio);
180 *bio = NULL;
184 static void free_r1bio(r1bio_t *r1_bio)
186 conf_t *conf = r1_bio->mddev->private;
189 * Wake up any possible resync thread that waits for the device
190 * to go idle.
192 allow_barrier(conf);
194 put_all_bios(conf, r1_bio);
195 mempool_free(r1_bio, conf->r1bio_pool);
198 static void put_buf(r1bio_t *r1_bio)
200 conf_t *conf = r1_bio->mddev->private;
201 int i;
203 for (i=0; i<conf->raid_disks; i++) {
204 struct bio *bio = r1_bio->bios[i];
205 if (bio->bi_end_io)
206 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
209 mempool_free(r1_bio, conf->r1buf_pool);
211 lower_barrier(conf);
214 static void reschedule_retry(r1bio_t *r1_bio)
216 unsigned long flags;
217 mddev_t *mddev = r1_bio->mddev;
218 conf_t *conf = mddev->private;
220 spin_lock_irqsave(&conf->device_lock, flags);
221 list_add(&r1_bio->retry_list, &conf->retry_list);
222 conf->nr_queued ++;
223 spin_unlock_irqrestore(&conf->device_lock, flags);
225 wake_up(&conf->wait_barrier);
226 md_wakeup_thread(mddev->thread);
230 * raid_end_bio_io() is called when we have finished servicing a mirrored
231 * operation and are ready to return a success/failure code to the buffer
232 * cache layer.
234 static void raid_end_bio_io(r1bio_t *r1_bio)
236 struct bio *bio = r1_bio->master_bio;
238 /* if nobody has done the final endio yet, do it now */
239 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
240 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
241 (bio_data_dir(bio) == WRITE) ? "write" : "read",
242 (unsigned long long) bio->bi_sector,
243 (unsigned long long) bio->bi_sector +
244 (bio->bi_size >> 9) - 1);
246 bio_endio(bio,
247 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
249 free_r1bio(r1_bio);
253 * Update disk head position estimator based on IRQ completion info.
255 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
257 conf_t *conf = r1_bio->mddev->private;
259 conf->mirrors[disk].head_position =
260 r1_bio->sector + (r1_bio->sectors);
263 static void raid1_end_read_request(struct bio *bio, int error)
265 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
266 r1bio_t *r1_bio = bio->bi_private;
267 int mirror;
268 conf_t *conf = r1_bio->mddev->private;
270 mirror = r1_bio->read_disk;
272 * this branch is our 'one mirror IO has finished' event handler:
274 update_head_pos(mirror, r1_bio);
276 if (uptodate)
277 set_bit(R1BIO_Uptodate, &r1_bio->state);
278 else {
279 /* If all other devices have failed, we want to return
280 * the error upwards rather than fail the last device.
281 * Here we redefine "uptodate" to mean "Don't want to retry"
283 unsigned long flags;
284 spin_lock_irqsave(&conf->device_lock, flags);
285 if (r1_bio->mddev->degraded == conf->raid_disks ||
286 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
287 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
288 uptodate = 1;
289 spin_unlock_irqrestore(&conf->device_lock, flags);
292 if (uptodate)
293 raid_end_bio_io(r1_bio);
294 else {
296 * oops, read error:
298 char b[BDEVNAME_SIZE];
299 if (printk_ratelimit())
300 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
301 mdname(conf->mddev),
302 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
303 reschedule_retry(r1_bio);
306 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
309 static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv,
310 int behind)
312 if (atomic_dec_and_test(&r1_bio->remaining))
314 /* it really is the end of this request */
315 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
316 /* free extra copy of the data pages */
317 int i = vcnt;
318 while (i--)
319 safe_put_page(bv[i].bv_page);
321 /* clear the bitmap if all writes complete successfully */
322 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
323 r1_bio->sectors,
324 !test_bit(R1BIO_Degraded, &r1_bio->state),
325 behind);
326 md_write_end(r1_bio->mddev);
327 raid_end_bio_io(r1_bio);
331 static void raid1_end_write_request(struct bio *bio, int error)
333 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
334 r1bio_t *r1_bio = bio->bi_private;
335 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
336 conf_t *conf = r1_bio->mddev->private;
337 struct bio *to_put = NULL;
340 for (mirror = 0; mirror < conf->raid_disks; mirror++)
341 if (r1_bio->bios[mirror] == bio)
342 break;
345 * 'one mirror IO has finished' event handler:
347 r1_bio->bios[mirror] = NULL;
348 to_put = bio;
349 if (!uptodate) {
350 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
351 /* an I/O failed, we can't clear the bitmap */
352 set_bit(R1BIO_Degraded, &r1_bio->state);
353 } else
355 * Set R1BIO_Uptodate in our master bio, so that we
356 * will return a good error code for to the higher
357 * levels even if IO on some other mirrored buffer
358 * fails.
360 * The 'master' represents the composite IO operation
361 * to user-side. So if something waits for IO, then it
362 * will wait for the 'master' bio.
364 set_bit(R1BIO_Uptodate, &r1_bio->state);
366 update_head_pos(mirror, r1_bio);
368 if (behind) {
369 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
370 atomic_dec(&r1_bio->behind_remaining);
373 * In behind mode, we ACK the master bio once the I/O
374 * has safely reached all non-writemostly
375 * disks. Setting the Returned bit ensures that this
376 * gets done only once -- we don't ever want to return
377 * -EIO here, instead we'll wait
379 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
380 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
381 /* Maybe we can return now */
382 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
383 struct bio *mbio = r1_bio->master_bio;
384 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
385 (unsigned long long) mbio->bi_sector,
386 (unsigned long long) mbio->bi_sector +
387 (mbio->bi_size >> 9) - 1);
388 bio_endio(mbio, 0);
392 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
395 * Let's see if all mirrored write operations have finished
396 * already.
398 r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind);
400 if (to_put)
401 bio_put(to_put);
406 * This routine returns the disk from which the requested read should
407 * be done. There is a per-array 'next expected sequential IO' sector
408 * number - if this matches on the next IO then we use the last disk.
409 * There is also a per-disk 'last know head position' sector that is
410 * maintained from IRQ contexts, both the normal and the resync IO
411 * completion handlers update this position correctly. If there is no
412 * perfect sequential match then we pick the disk whose head is closest.
414 * If there are 2 mirrors in the same 2 devices, performance degrades
415 * because position is mirror, not device based.
417 * The rdev for the device selected will have nr_pending incremented.
419 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
421 const sector_t this_sector = r1_bio->sector;
422 const int sectors = r1_bio->sectors;
423 int new_disk = -1;
424 int start_disk;
425 int i;
426 sector_t new_distance, current_distance;
427 mdk_rdev_t *rdev;
428 int choose_first;
430 rcu_read_lock();
432 * Check if we can balance. We can balance on the whole
433 * device if no resync is going on, or below the resync window.
434 * We take the first readable disk when above the resync window.
436 retry:
437 if (conf->mddev->recovery_cp < MaxSector &&
438 (this_sector + sectors >= conf->next_resync)) {
439 choose_first = 1;
440 start_disk = 0;
441 } else {
442 choose_first = 0;
443 start_disk = conf->last_used;
446 /* make sure the disk is operational */
447 for (i = 0 ; i < conf->raid_disks ; i++) {
448 int disk = start_disk + i;
449 if (disk >= conf->raid_disks)
450 disk -= conf->raid_disks;
452 rdev = rcu_dereference(conf->mirrors[disk].rdev);
453 if (r1_bio->bios[disk] == IO_BLOCKED
454 || rdev == NULL
455 || !test_bit(In_sync, &rdev->flags))
456 continue;
458 new_disk = disk;
459 if (!test_bit(WriteMostly, &rdev->flags))
460 break;
463 if (new_disk < 0 || choose_first)
464 goto rb_out;
467 * Don't change to another disk for sequential reads:
469 if (conf->next_seq_sect == this_sector)
470 goto rb_out;
471 if (this_sector == conf->mirrors[new_disk].head_position)
472 goto rb_out;
474 current_distance = abs(this_sector
475 - conf->mirrors[new_disk].head_position);
477 /* look for a better disk - i.e. head is closer */
478 start_disk = new_disk;
479 for (i = 1; i < conf->raid_disks; i++) {
480 int disk = start_disk + 1;
481 if (disk >= conf->raid_disks)
482 disk -= conf->raid_disks;
484 rdev = rcu_dereference(conf->mirrors[disk].rdev);
485 if (r1_bio->bios[disk] == IO_BLOCKED
486 || rdev == NULL
487 || !test_bit(In_sync, &rdev->flags)
488 || test_bit(WriteMostly, &rdev->flags))
489 continue;
491 if (!atomic_read(&rdev->nr_pending)) {
492 new_disk = disk;
493 break;
495 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
496 if (new_distance < current_distance) {
497 current_distance = new_distance;
498 new_disk = disk;
502 rb_out:
503 if (new_disk >= 0) {
504 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
505 if (!rdev)
506 goto retry;
507 atomic_inc(&rdev->nr_pending);
508 if (!test_bit(In_sync, &rdev->flags)) {
509 /* cannot risk returning a device that failed
510 * before we inc'ed nr_pending
512 rdev_dec_pending(rdev, conf->mddev);
513 goto retry;
515 conf->next_seq_sect = this_sector + sectors;
516 conf->last_used = new_disk;
518 rcu_read_unlock();
520 return new_disk;
523 static void unplug_slaves(mddev_t *mddev)
525 conf_t *conf = mddev->private;
526 int i;
528 rcu_read_lock();
529 for (i=0; i<mddev->raid_disks; i++) {
530 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
531 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
532 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
534 atomic_inc(&rdev->nr_pending);
535 rcu_read_unlock();
537 blk_unplug(r_queue);
539 rdev_dec_pending(rdev, mddev);
540 rcu_read_lock();
543 rcu_read_unlock();
546 static void raid1_unplug(struct request_queue *q)
548 mddev_t *mddev = q->queuedata;
550 unplug_slaves(mddev);
551 md_wakeup_thread(mddev->thread);
554 static int raid1_congested(void *data, int bits)
556 mddev_t *mddev = data;
557 conf_t *conf = mddev->private;
558 int i, ret = 0;
560 if (mddev_congested(mddev, bits))
561 return 1;
563 rcu_read_lock();
564 for (i = 0; i < mddev->raid_disks; i++) {
565 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
566 if (rdev && !test_bit(Faulty, &rdev->flags)) {
567 struct request_queue *q = bdev_get_queue(rdev->bdev);
569 /* Note the '|| 1' - when read_balance prefers
570 * non-congested targets, it can be removed
572 if ((bits & (1<<BDI_async_congested)) || 1)
573 ret |= bdi_congested(&q->backing_dev_info, bits);
574 else
575 ret &= bdi_congested(&q->backing_dev_info, bits);
578 rcu_read_unlock();
579 return ret;
583 static int flush_pending_writes(conf_t *conf)
585 /* Any writes that have been queued but are awaiting
586 * bitmap updates get flushed here.
587 * We return 1 if any requests were actually submitted.
589 int rv = 0;
591 spin_lock_irq(&conf->device_lock);
593 if (conf->pending_bio_list.head) {
594 struct bio *bio;
595 bio = bio_list_get(&conf->pending_bio_list);
596 blk_remove_plug(conf->mddev->queue);
597 spin_unlock_irq(&conf->device_lock);
598 /* flush any pending bitmap writes to
599 * disk before proceeding w/ I/O */
600 bitmap_unplug(conf->mddev->bitmap);
602 while (bio) { /* submit pending writes */
603 struct bio *next = bio->bi_next;
604 bio->bi_next = NULL;
605 generic_make_request(bio);
606 bio = next;
608 rv = 1;
609 } else
610 spin_unlock_irq(&conf->device_lock);
611 return rv;
614 /* Barriers....
615 * Sometimes we need to suspend IO while we do something else,
616 * either some resync/recovery, or reconfigure the array.
617 * To do this we raise a 'barrier'.
618 * The 'barrier' is a counter that can be raised multiple times
619 * to count how many activities are happening which preclude
620 * normal IO.
621 * We can only raise the barrier if there is no pending IO.
622 * i.e. if nr_pending == 0.
623 * We choose only to raise the barrier if no-one is waiting for the
624 * barrier to go down. This means that as soon as an IO request
625 * is ready, no other operations which require a barrier will start
626 * until the IO request has had a chance.
628 * So: regular IO calls 'wait_barrier'. When that returns there
629 * is no backgroup IO happening, It must arrange to call
630 * allow_barrier when it has finished its IO.
631 * backgroup IO calls must call raise_barrier. Once that returns
632 * there is no normal IO happeing. It must arrange to call
633 * lower_barrier when the particular background IO completes.
635 #define RESYNC_DEPTH 32
637 static void raise_barrier(conf_t *conf)
639 spin_lock_irq(&conf->resync_lock);
641 /* Wait until no block IO is waiting */
642 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
643 conf->resync_lock,
644 raid1_unplug(conf->mddev->queue));
646 /* block any new IO from starting */
647 conf->barrier++;
649 /* Now wait for all pending IO to complete */
650 wait_event_lock_irq(conf->wait_barrier,
651 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
652 conf->resync_lock,
653 raid1_unplug(conf->mddev->queue));
655 spin_unlock_irq(&conf->resync_lock);
658 static void lower_barrier(conf_t *conf)
660 unsigned long flags;
661 BUG_ON(conf->barrier <= 0);
662 spin_lock_irqsave(&conf->resync_lock, flags);
663 conf->barrier--;
664 spin_unlock_irqrestore(&conf->resync_lock, flags);
665 wake_up(&conf->wait_barrier);
668 static void wait_barrier(conf_t *conf)
670 spin_lock_irq(&conf->resync_lock);
671 if (conf->barrier) {
672 conf->nr_waiting++;
673 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
674 conf->resync_lock,
675 raid1_unplug(conf->mddev->queue));
676 conf->nr_waiting--;
678 conf->nr_pending++;
679 spin_unlock_irq(&conf->resync_lock);
682 static void allow_barrier(conf_t *conf)
684 unsigned long flags;
685 spin_lock_irqsave(&conf->resync_lock, flags);
686 conf->nr_pending--;
687 spin_unlock_irqrestore(&conf->resync_lock, flags);
688 wake_up(&conf->wait_barrier);
691 static void freeze_array(conf_t *conf)
693 /* stop syncio and normal IO and wait for everything to
694 * go quite.
695 * We increment barrier and nr_waiting, and then
696 * wait until nr_pending match nr_queued+1
697 * This is called in the context of one normal IO request
698 * that has failed. Thus any sync request that might be pending
699 * will be blocked by nr_pending, and we need to wait for
700 * pending IO requests to complete or be queued for re-try.
701 * Thus the number queued (nr_queued) plus this request (1)
702 * must match the number of pending IOs (nr_pending) before
703 * we continue.
705 spin_lock_irq(&conf->resync_lock);
706 conf->barrier++;
707 conf->nr_waiting++;
708 wait_event_lock_irq(conf->wait_barrier,
709 conf->nr_pending == conf->nr_queued+1,
710 conf->resync_lock,
711 ({ flush_pending_writes(conf);
712 raid1_unplug(conf->mddev->queue); }));
713 spin_unlock_irq(&conf->resync_lock);
715 static void unfreeze_array(conf_t *conf)
717 /* reverse the effect of the freeze */
718 spin_lock_irq(&conf->resync_lock);
719 conf->barrier--;
720 conf->nr_waiting--;
721 wake_up(&conf->wait_barrier);
722 spin_unlock_irq(&conf->resync_lock);
726 /* duplicate the data pages for behind I/O
727 * We return a list of bio_vec rather than just page pointers
728 * as it makes freeing easier
730 static struct bio_vec *alloc_behind_pages(struct bio *bio)
732 int i;
733 struct bio_vec *bvec;
734 struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
735 GFP_NOIO);
736 if (unlikely(!pages))
737 goto do_sync_io;
739 bio_for_each_segment(bvec, bio, i) {
740 pages[i].bv_page = alloc_page(GFP_NOIO);
741 if (unlikely(!pages[i].bv_page))
742 goto do_sync_io;
743 memcpy(kmap(pages[i].bv_page) + bvec->bv_offset,
744 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
745 kunmap(pages[i].bv_page);
746 kunmap(bvec->bv_page);
749 return pages;
751 do_sync_io:
752 if (pages)
753 for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++)
754 put_page(pages[i].bv_page);
755 kfree(pages);
756 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
757 return NULL;
760 static int make_request(mddev_t *mddev, struct bio * bio)
762 conf_t *conf = mddev->private;
763 mirror_info_t *mirror;
764 r1bio_t *r1_bio;
765 struct bio *read_bio;
766 int i, targets = 0, disks;
767 struct bitmap *bitmap;
768 unsigned long flags;
769 struct bio_vec *behind_pages = NULL;
770 const int rw = bio_data_dir(bio);
771 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
772 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
773 mdk_rdev_t *blocked_rdev;
776 * Register the new request and wait if the reconstruction
777 * thread has put up a bar for new requests.
778 * Continue immediately if no resync is active currently.
781 md_write_start(mddev, bio); /* wait on superblock update early */
783 if (bio_data_dir(bio) == WRITE &&
784 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
785 bio->bi_sector < mddev->suspend_hi) {
786 /* As the suspend_* range is controlled by
787 * userspace, we want an interruptible
788 * wait.
790 DEFINE_WAIT(w);
791 for (;;) {
792 flush_signals(current);
793 prepare_to_wait(&conf->wait_barrier,
794 &w, TASK_INTERRUPTIBLE);
795 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
796 bio->bi_sector >= mddev->suspend_hi)
797 break;
798 schedule();
800 finish_wait(&conf->wait_barrier, &w);
803 wait_barrier(conf);
805 bitmap = mddev->bitmap;
808 * make_request() can abort the operation when READA is being
809 * used and no empty request is available.
812 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
814 r1_bio->master_bio = bio;
815 r1_bio->sectors = bio->bi_size >> 9;
816 r1_bio->state = 0;
817 r1_bio->mddev = mddev;
818 r1_bio->sector = bio->bi_sector;
820 if (rw == READ) {
822 * read balancing logic:
824 int rdisk = read_balance(conf, r1_bio);
826 if (rdisk < 0) {
827 /* couldn't find anywhere to read from */
828 raid_end_bio_io(r1_bio);
829 return 0;
831 mirror = conf->mirrors + rdisk;
833 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
834 bitmap) {
835 /* Reading from a write-mostly device must
836 * take care not to over-take any writes
837 * that are 'behind'
839 wait_event(bitmap->behind_wait,
840 atomic_read(&bitmap->behind_writes) == 0);
842 r1_bio->read_disk = rdisk;
844 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
846 r1_bio->bios[rdisk] = read_bio;
848 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
849 read_bio->bi_bdev = mirror->rdev->bdev;
850 read_bio->bi_end_io = raid1_end_read_request;
851 read_bio->bi_rw = READ | do_sync;
852 read_bio->bi_private = r1_bio;
854 generic_make_request(read_bio);
855 return 0;
859 * WRITE:
861 /* first select target devices under spinlock and
862 * inc refcount on their rdev. Record them by setting
863 * bios[x] to bio
865 disks = conf->raid_disks;
866 retry_write:
867 blocked_rdev = NULL;
868 rcu_read_lock();
869 for (i = 0; i < disks; i++) {
870 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
871 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
872 atomic_inc(&rdev->nr_pending);
873 blocked_rdev = rdev;
874 break;
876 if (rdev && !test_bit(Faulty, &rdev->flags)) {
877 atomic_inc(&rdev->nr_pending);
878 if (test_bit(Faulty, &rdev->flags)) {
879 rdev_dec_pending(rdev, mddev);
880 r1_bio->bios[i] = NULL;
881 } else {
882 r1_bio->bios[i] = bio;
883 targets++;
885 } else
886 r1_bio->bios[i] = NULL;
888 rcu_read_unlock();
890 if (unlikely(blocked_rdev)) {
891 /* Wait for this device to become unblocked */
892 int j;
894 for (j = 0; j < i; j++)
895 if (r1_bio->bios[j])
896 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
898 allow_barrier(conf);
899 md_wait_for_blocked_rdev(blocked_rdev, mddev);
900 wait_barrier(conf);
901 goto retry_write;
904 BUG_ON(targets == 0); /* we never fail the last device */
906 if (targets < conf->raid_disks) {
907 /* array is degraded, we will not clear the bitmap
908 * on I/O completion (see raid1_end_write_request) */
909 set_bit(R1BIO_Degraded, &r1_bio->state);
912 /* do behind I/O ?
913 * Not if there are too many, or cannot allocate memory,
914 * or a reader on WriteMostly is waiting for behind writes
915 * to flush */
916 if (bitmap &&
917 (atomic_read(&bitmap->behind_writes)
918 < mddev->bitmap_info.max_write_behind) &&
919 !waitqueue_active(&bitmap->behind_wait) &&
920 (behind_pages = alloc_behind_pages(bio)) != NULL)
921 set_bit(R1BIO_BehindIO, &r1_bio->state);
923 atomic_set(&r1_bio->remaining, 1);
924 atomic_set(&r1_bio->behind_remaining, 0);
926 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
927 test_bit(R1BIO_BehindIO, &r1_bio->state));
928 for (i = 0; i < disks; i++) {
929 struct bio *mbio;
930 if (!r1_bio->bios[i])
931 continue;
933 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
934 r1_bio->bios[i] = mbio;
936 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
937 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
938 mbio->bi_end_io = raid1_end_write_request;
939 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
940 mbio->bi_private = r1_bio;
942 if (behind_pages) {
943 struct bio_vec *bvec;
944 int j;
946 /* Yes, I really want the '__' version so that
947 * we clear any unused pointer in the io_vec, rather
948 * than leave them unchanged. This is important
949 * because when we come to free the pages, we won't
950 * know the original bi_idx, so we just free
951 * them all
953 __bio_for_each_segment(bvec, mbio, j, 0)
954 bvec->bv_page = behind_pages[j].bv_page;
955 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
956 atomic_inc(&r1_bio->behind_remaining);
959 atomic_inc(&r1_bio->remaining);
960 spin_lock_irqsave(&conf->device_lock, flags);
961 bio_list_add(&conf->pending_bio_list, mbio);
962 blk_plug_device(mddev->queue);
963 spin_unlock_irqrestore(&conf->device_lock, flags);
965 r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL);
966 kfree(behind_pages); /* the behind pages are attached to the bios now */
968 /* In case raid1d snuck in to freeze_array */
969 wake_up(&conf->wait_barrier);
971 if (do_sync)
972 md_wakeup_thread(mddev->thread);
974 return 0;
977 static void status(struct seq_file *seq, mddev_t *mddev)
979 conf_t *conf = mddev->private;
980 int i;
982 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
983 conf->raid_disks - mddev->degraded);
984 rcu_read_lock();
985 for (i = 0; i < conf->raid_disks; i++) {
986 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
987 seq_printf(seq, "%s",
988 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
990 rcu_read_unlock();
991 seq_printf(seq, "]");
995 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
997 char b[BDEVNAME_SIZE];
998 conf_t *conf = mddev->private;
1001 * If it is not operational, then we have already marked it as dead
1002 * else if it is the last working disks, ignore the error, let the
1003 * next level up know.
1004 * else mark the drive as failed
1006 if (test_bit(In_sync, &rdev->flags)
1007 && (conf->raid_disks - mddev->degraded) == 1) {
1009 * Don't fail the drive, act as though we were just a
1010 * normal single drive.
1011 * However don't try a recovery from this drive as
1012 * it is very likely to fail.
1014 mddev->recovery_disabled = 1;
1015 return;
1017 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1018 unsigned long flags;
1019 spin_lock_irqsave(&conf->device_lock, flags);
1020 mddev->degraded++;
1021 set_bit(Faulty, &rdev->flags);
1022 spin_unlock_irqrestore(&conf->device_lock, flags);
1024 * if recovery is running, make sure it aborts.
1026 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1027 } else
1028 set_bit(Faulty, &rdev->flags);
1029 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1030 printk(KERN_ALERT
1031 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1032 "md/raid1:%s: Operation continuing on %d devices.\n",
1033 mdname(mddev), bdevname(rdev->bdev, b),
1034 mdname(mddev), conf->raid_disks - mddev->degraded);
1037 static void print_conf(conf_t *conf)
1039 int i;
1041 printk(KERN_DEBUG "RAID1 conf printout:\n");
1042 if (!conf) {
1043 printk(KERN_DEBUG "(!conf)\n");
1044 return;
1046 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1047 conf->raid_disks);
1049 rcu_read_lock();
1050 for (i = 0; i < conf->raid_disks; i++) {
1051 char b[BDEVNAME_SIZE];
1052 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1053 if (rdev)
1054 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1055 i, !test_bit(In_sync, &rdev->flags),
1056 !test_bit(Faulty, &rdev->flags),
1057 bdevname(rdev->bdev,b));
1059 rcu_read_unlock();
1062 static void close_sync(conf_t *conf)
1064 wait_barrier(conf);
1065 allow_barrier(conf);
1067 mempool_destroy(conf->r1buf_pool);
1068 conf->r1buf_pool = NULL;
1071 static int raid1_spare_active(mddev_t *mddev)
1073 int i;
1074 conf_t *conf = mddev->private;
1075 int count = 0;
1076 unsigned long flags;
1079 * Find all failed disks within the RAID1 configuration
1080 * and mark them readable.
1081 * Called under mddev lock, so rcu protection not needed.
1083 for (i = 0; i < conf->raid_disks; i++) {
1084 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1085 if (rdev
1086 && !test_bit(Faulty, &rdev->flags)
1087 && !test_and_set_bit(In_sync, &rdev->flags)) {
1088 count++;
1089 sysfs_notify_dirent(rdev->sysfs_state);
1092 spin_lock_irqsave(&conf->device_lock, flags);
1093 mddev->degraded -= count;
1094 spin_unlock_irqrestore(&conf->device_lock, flags);
1096 print_conf(conf);
1097 return count;
1101 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1103 conf_t *conf = mddev->private;
1104 int err = -EEXIST;
1105 int mirror = 0;
1106 mirror_info_t *p;
1107 int first = 0;
1108 int last = mddev->raid_disks - 1;
1110 if (rdev->raid_disk >= 0)
1111 first = last = rdev->raid_disk;
1113 for (mirror = first; mirror <= last; mirror++)
1114 if ( !(p=conf->mirrors+mirror)->rdev) {
1116 disk_stack_limits(mddev->gendisk, rdev->bdev,
1117 rdev->data_offset << 9);
1118 /* as we don't honour merge_bvec_fn, we must
1119 * never risk violating it, so limit
1120 * ->max_segments to one lying with a single
1121 * page, as a one page request is never in
1122 * violation.
1124 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1125 blk_queue_max_segments(mddev->queue, 1);
1126 blk_queue_segment_boundary(mddev->queue,
1127 PAGE_CACHE_SIZE - 1);
1130 p->head_position = 0;
1131 rdev->raid_disk = mirror;
1132 err = 0;
1133 /* As all devices are equivalent, we don't need a full recovery
1134 * if this was recently any drive of the array
1136 if (rdev->saved_raid_disk < 0)
1137 conf->fullsync = 1;
1138 rcu_assign_pointer(p->rdev, rdev);
1139 break;
1141 md_integrity_add_rdev(rdev, mddev);
1142 print_conf(conf);
1143 return err;
1146 static int raid1_remove_disk(mddev_t *mddev, int number)
1148 conf_t *conf = mddev->private;
1149 int err = 0;
1150 mdk_rdev_t *rdev;
1151 mirror_info_t *p = conf->mirrors+ number;
1153 print_conf(conf);
1154 rdev = p->rdev;
1155 if (rdev) {
1156 if (test_bit(In_sync, &rdev->flags) ||
1157 atomic_read(&rdev->nr_pending)) {
1158 err = -EBUSY;
1159 goto abort;
1161 /* Only remove non-faulty devices if recovery
1162 * is not possible.
1164 if (!test_bit(Faulty, &rdev->flags) &&
1165 !mddev->recovery_disabled &&
1166 mddev->degraded < conf->raid_disks) {
1167 err = -EBUSY;
1168 goto abort;
1170 p->rdev = NULL;
1171 synchronize_rcu();
1172 if (atomic_read(&rdev->nr_pending)) {
1173 /* lost the race, try later */
1174 err = -EBUSY;
1175 p->rdev = rdev;
1176 goto abort;
1178 md_integrity_register(mddev);
1180 abort:
1182 print_conf(conf);
1183 return err;
1187 static void end_sync_read(struct bio *bio, int error)
1189 r1bio_t *r1_bio = bio->bi_private;
1190 int i;
1192 for (i=r1_bio->mddev->raid_disks; i--; )
1193 if (r1_bio->bios[i] == bio)
1194 break;
1195 BUG_ON(i < 0);
1196 update_head_pos(i, r1_bio);
1198 * we have read a block, now it needs to be re-written,
1199 * or re-read if the read failed.
1200 * We don't do much here, just schedule handling by raid1d
1202 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1203 set_bit(R1BIO_Uptodate, &r1_bio->state);
1205 if (atomic_dec_and_test(&r1_bio->remaining))
1206 reschedule_retry(r1_bio);
1209 static void end_sync_write(struct bio *bio, int error)
1211 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1212 r1bio_t *r1_bio = bio->bi_private;
1213 mddev_t *mddev = r1_bio->mddev;
1214 conf_t *conf = mddev->private;
1215 int i;
1216 int mirror=0;
1218 for (i = 0; i < conf->raid_disks; i++)
1219 if (r1_bio->bios[i] == bio) {
1220 mirror = i;
1221 break;
1223 if (!uptodate) {
1224 sector_t sync_blocks = 0;
1225 sector_t s = r1_bio->sector;
1226 long sectors_to_go = r1_bio->sectors;
1227 /* make sure these bits doesn't get cleared. */
1228 do {
1229 bitmap_end_sync(mddev->bitmap, s,
1230 &sync_blocks, 1);
1231 s += sync_blocks;
1232 sectors_to_go -= sync_blocks;
1233 } while (sectors_to_go > 0);
1234 md_error(mddev, conf->mirrors[mirror].rdev);
1237 update_head_pos(mirror, r1_bio);
1239 if (atomic_dec_and_test(&r1_bio->remaining)) {
1240 sector_t s = r1_bio->sectors;
1241 put_buf(r1_bio);
1242 md_done_sync(mddev, s, uptodate);
1246 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1248 conf_t *conf = mddev->private;
1249 int i;
1250 int disks = conf->raid_disks;
1251 struct bio *bio, *wbio;
1253 bio = r1_bio->bios[r1_bio->read_disk];
1256 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1257 /* We have read all readable devices. If we haven't
1258 * got the block, then there is no hope left.
1259 * If we have, then we want to do a comparison
1260 * and skip the write if everything is the same.
1261 * If any blocks failed to read, then we need to
1262 * attempt an over-write
1264 int primary;
1265 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1266 for (i=0; i<mddev->raid_disks; i++)
1267 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1268 md_error(mddev, conf->mirrors[i].rdev);
1270 md_done_sync(mddev, r1_bio->sectors, 1);
1271 put_buf(r1_bio);
1272 return;
1274 for (primary=0; primary<mddev->raid_disks; primary++)
1275 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1276 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1277 r1_bio->bios[primary]->bi_end_io = NULL;
1278 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1279 break;
1281 r1_bio->read_disk = primary;
1282 for (i=0; i<mddev->raid_disks; i++)
1283 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1284 int j;
1285 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1286 struct bio *pbio = r1_bio->bios[primary];
1287 struct bio *sbio = r1_bio->bios[i];
1289 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1290 for (j = vcnt; j-- ; ) {
1291 struct page *p, *s;
1292 p = pbio->bi_io_vec[j].bv_page;
1293 s = sbio->bi_io_vec[j].bv_page;
1294 if (memcmp(page_address(p),
1295 page_address(s),
1296 PAGE_SIZE))
1297 break;
1299 } else
1300 j = 0;
1301 if (j >= 0)
1302 mddev->resync_mismatches += r1_bio->sectors;
1303 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1304 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1305 sbio->bi_end_io = NULL;
1306 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1307 } else {
1308 /* fixup the bio for reuse */
1309 int size;
1310 sbio->bi_vcnt = vcnt;
1311 sbio->bi_size = r1_bio->sectors << 9;
1312 sbio->bi_idx = 0;
1313 sbio->bi_phys_segments = 0;
1314 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1315 sbio->bi_flags |= 1 << BIO_UPTODATE;
1316 sbio->bi_next = NULL;
1317 sbio->bi_sector = r1_bio->sector +
1318 conf->mirrors[i].rdev->data_offset;
1319 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1320 size = sbio->bi_size;
1321 for (j = 0; j < vcnt ; j++) {
1322 struct bio_vec *bi;
1323 bi = &sbio->bi_io_vec[j];
1324 bi->bv_offset = 0;
1325 if (size > PAGE_SIZE)
1326 bi->bv_len = PAGE_SIZE;
1327 else
1328 bi->bv_len = size;
1329 size -= PAGE_SIZE;
1330 memcpy(page_address(bi->bv_page),
1331 page_address(pbio->bi_io_vec[j].bv_page),
1332 PAGE_SIZE);
1338 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1339 /* ouch - failed to read all of that.
1340 * Try some synchronous reads of other devices to get
1341 * good data, much like with normal read errors. Only
1342 * read into the pages we already have so we don't
1343 * need to re-issue the read request.
1344 * We don't need to freeze the array, because being in an
1345 * active sync request, there is no normal IO, and
1346 * no overlapping syncs.
1348 sector_t sect = r1_bio->sector;
1349 int sectors = r1_bio->sectors;
1350 int idx = 0;
1352 while(sectors) {
1353 int s = sectors;
1354 int d = r1_bio->read_disk;
1355 int success = 0;
1356 mdk_rdev_t *rdev;
1358 if (s > (PAGE_SIZE>>9))
1359 s = PAGE_SIZE >> 9;
1360 do {
1361 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1362 /* No rcu protection needed here devices
1363 * can only be removed when no resync is
1364 * active, and resync is currently active
1366 rdev = conf->mirrors[d].rdev;
1367 if (sync_page_io(rdev,
1368 sect,
1369 s<<9,
1370 bio->bi_io_vec[idx].bv_page,
1371 READ, false)) {
1372 success = 1;
1373 break;
1376 d++;
1377 if (d == conf->raid_disks)
1378 d = 0;
1379 } while (!success && d != r1_bio->read_disk);
1381 if (success) {
1382 int start = d;
1383 /* write it back and re-read */
1384 set_bit(R1BIO_Uptodate, &r1_bio->state);
1385 while (d != r1_bio->read_disk) {
1386 if (d == 0)
1387 d = conf->raid_disks;
1388 d--;
1389 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1390 continue;
1391 rdev = conf->mirrors[d].rdev;
1392 atomic_add(s, &rdev->corrected_errors);
1393 if (sync_page_io(rdev,
1394 sect,
1395 s<<9,
1396 bio->bi_io_vec[idx].bv_page,
1397 WRITE, false) == 0)
1398 md_error(mddev, rdev);
1400 d = start;
1401 while (d != r1_bio->read_disk) {
1402 if (d == 0)
1403 d = conf->raid_disks;
1404 d--;
1405 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1406 continue;
1407 rdev = conf->mirrors[d].rdev;
1408 if (sync_page_io(rdev,
1409 sect,
1410 s<<9,
1411 bio->bi_io_vec[idx].bv_page,
1412 READ, false) == 0)
1413 md_error(mddev, rdev);
1415 } else {
1416 char b[BDEVNAME_SIZE];
1417 /* Cannot read from anywhere, array is toast */
1418 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1419 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1420 " for block %llu\n",
1421 mdname(mddev),
1422 bdevname(bio->bi_bdev, b),
1423 (unsigned long long)r1_bio->sector);
1424 md_done_sync(mddev, r1_bio->sectors, 0);
1425 put_buf(r1_bio);
1426 return;
1428 sectors -= s;
1429 sect += s;
1430 idx ++;
1435 * schedule writes
1437 atomic_set(&r1_bio->remaining, 1);
1438 for (i = 0; i < disks ; i++) {
1439 wbio = r1_bio->bios[i];
1440 if (wbio->bi_end_io == NULL ||
1441 (wbio->bi_end_io == end_sync_read &&
1442 (i == r1_bio->read_disk ||
1443 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1444 continue;
1446 wbio->bi_rw = WRITE;
1447 wbio->bi_end_io = end_sync_write;
1448 atomic_inc(&r1_bio->remaining);
1449 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1451 generic_make_request(wbio);
1454 if (atomic_dec_and_test(&r1_bio->remaining)) {
1455 /* if we're here, all write(s) have completed, so clean up */
1456 md_done_sync(mddev, r1_bio->sectors, 1);
1457 put_buf(r1_bio);
1462 * This is a kernel thread which:
1464 * 1. Retries failed read operations on working mirrors.
1465 * 2. Updates the raid superblock when problems encounter.
1466 * 3. Performs writes following reads for array syncronising.
1469 static void fix_read_error(conf_t *conf, int read_disk,
1470 sector_t sect, int sectors)
1472 mddev_t *mddev = conf->mddev;
1473 while(sectors) {
1474 int s = sectors;
1475 int d = read_disk;
1476 int success = 0;
1477 int start;
1478 mdk_rdev_t *rdev;
1480 if (s > (PAGE_SIZE>>9))
1481 s = PAGE_SIZE >> 9;
1483 do {
1484 /* Note: no rcu protection needed here
1485 * as this is synchronous in the raid1d thread
1486 * which is the thread that might remove
1487 * a device. If raid1d ever becomes multi-threaded....
1489 rdev = conf->mirrors[d].rdev;
1490 if (rdev &&
1491 test_bit(In_sync, &rdev->flags) &&
1492 sync_page_io(rdev, sect, s<<9,
1493 conf->tmppage, READ, false))
1494 success = 1;
1495 else {
1496 d++;
1497 if (d == conf->raid_disks)
1498 d = 0;
1500 } while (!success && d != read_disk);
1502 if (!success) {
1503 /* Cannot read from anywhere -- bye bye array */
1504 md_error(mddev, conf->mirrors[read_disk].rdev);
1505 break;
1507 /* write it back and re-read */
1508 start = d;
1509 while (d != read_disk) {
1510 if (d==0)
1511 d = conf->raid_disks;
1512 d--;
1513 rdev = conf->mirrors[d].rdev;
1514 if (rdev &&
1515 test_bit(In_sync, &rdev->flags)) {
1516 if (sync_page_io(rdev, sect, s<<9,
1517 conf->tmppage, WRITE, false)
1518 == 0)
1519 /* Well, this device is dead */
1520 md_error(mddev, rdev);
1523 d = start;
1524 while (d != read_disk) {
1525 char b[BDEVNAME_SIZE];
1526 if (d==0)
1527 d = conf->raid_disks;
1528 d--;
1529 rdev = conf->mirrors[d].rdev;
1530 if (rdev &&
1531 test_bit(In_sync, &rdev->flags)) {
1532 if (sync_page_io(rdev, sect, s<<9,
1533 conf->tmppage, READ, false)
1534 == 0)
1535 /* Well, this device is dead */
1536 md_error(mddev, rdev);
1537 else {
1538 atomic_add(s, &rdev->corrected_errors);
1539 printk(KERN_INFO
1540 "md/raid1:%s: read error corrected "
1541 "(%d sectors at %llu on %s)\n",
1542 mdname(mddev), s,
1543 (unsigned long long)(sect +
1544 rdev->data_offset),
1545 bdevname(rdev->bdev, b));
1549 sectors -= s;
1550 sect += s;
1554 static void raid1d(mddev_t *mddev)
1556 r1bio_t *r1_bio;
1557 struct bio *bio;
1558 unsigned long flags;
1559 conf_t *conf = mddev->private;
1560 struct list_head *head = &conf->retry_list;
1561 int unplug=0;
1562 mdk_rdev_t *rdev;
1564 md_check_recovery(mddev);
1566 for (;;) {
1567 char b[BDEVNAME_SIZE];
1569 unplug += flush_pending_writes(conf);
1571 spin_lock_irqsave(&conf->device_lock, flags);
1572 if (list_empty(head)) {
1573 spin_unlock_irqrestore(&conf->device_lock, flags);
1574 break;
1576 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1577 list_del(head->prev);
1578 conf->nr_queued--;
1579 spin_unlock_irqrestore(&conf->device_lock, flags);
1581 mddev = r1_bio->mddev;
1582 conf = mddev->private;
1583 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1584 sync_request_write(mddev, r1_bio);
1585 unplug = 1;
1586 } else {
1587 int disk;
1589 /* we got a read error. Maybe the drive is bad. Maybe just
1590 * the block and we can fix it.
1591 * We freeze all other IO, and try reading the block from
1592 * other devices. When we find one, we re-write
1593 * and check it that fixes the read error.
1594 * This is all done synchronously while the array is
1595 * frozen
1597 if (mddev->ro == 0) {
1598 freeze_array(conf);
1599 fix_read_error(conf, r1_bio->read_disk,
1600 r1_bio->sector,
1601 r1_bio->sectors);
1602 unfreeze_array(conf);
1603 } else
1604 md_error(mddev,
1605 conf->mirrors[r1_bio->read_disk].rdev);
1607 bio = r1_bio->bios[r1_bio->read_disk];
1608 if ((disk=read_balance(conf, r1_bio)) == -1) {
1609 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1610 " read error for block %llu\n",
1611 mdname(mddev),
1612 bdevname(bio->bi_bdev,b),
1613 (unsigned long long)r1_bio->sector);
1614 raid_end_bio_io(r1_bio);
1615 } else {
1616 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1617 r1_bio->bios[r1_bio->read_disk] =
1618 mddev->ro ? IO_BLOCKED : NULL;
1619 r1_bio->read_disk = disk;
1620 bio_put(bio);
1621 bio = bio_clone_mddev(r1_bio->master_bio,
1622 GFP_NOIO, mddev);
1623 r1_bio->bios[r1_bio->read_disk] = bio;
1624 rdev = conf->mirrors[disk].rdev;
1625 if (printk_ratelimit())
1626 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1627 " other mirror: %s\n",
1628 mdname(mddev),
1629 (unsigned long long)r1_bio->sector,
1630 bdevname(rdev->bdev,b));
1631 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1632 bio->bi_bdev = rdev->bdev;
1633 bio->bi_end_io = raid1_end_read_request;
1634 bio->bi_rw = READ | do_sync;
1635 bio->bi_private = r1_bio;
1636 unplug = 1;
1637 generic_make_request(bio);
1640 cond_resched();
1642 if (unplug)
1643 unplug_slaves(mddev);
1647 static int init_resync(conf_t *conf)
1649 int buffs;
1651 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1652 BUG_ON(conf->r1buf_pool);
1653 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1654 conf->poolinfo);
1655 if (!conf->r1buf_pool)
1656 return -ENOMEM;
1657 conf->next_resync = 0;
1658 return 0;
1662 * perform a "sync" on one "block"
1664 * We need to make sure that no normal I/O request - particularly write
1665 * requests - conflict with active sync requests.
1667 * This is achieved by tracking pending requests and a 'barrier' concept
1668 * that can be installed to exclude normal IO requests.
1671 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1673 conf_t *conf = mddev->private;
1674 r1bio_t *r1_bio;
1675 struct bio *bio;
1676 sector_t max_sector, nr_sectors;
1677 int disk = -1;
1678 int i;
1679 int wonly = -1;
1680 int write_targets = 0, read_targets = 0;
1681 sector_t sync_blocks;
1682 int still_degraded = 0;
1684 if (!conf->r1buf_pool)
1685 if (init_resync(conf))
1686 return 0;
1688 max_sector = mddev->dev_sectors;
1689 if (sector_nr >= max_sector) {
1690 /* If we aborted, we need to abort the
1691 * sync on the 'current' bitmap chunk (there will
1692 * only be one in raid1 resync.
1693 * We can find the current addess in mddev->curr_resync
1695 if (mddev->curr_resync < max_sector) /* aborted */
1696 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1697 &sync_blocks, 1);
1698 else /* completed sync */
1699 conf->fullsync = 0;
1701 bitmap_close_sync(mddev->bitmap);
1702 close_sync(conf);
1703 return 0;
1706 if (mddev->bitmap == NULL &&
1707 mddev->recovery_cp == MaxSector &&
1708 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1709 conf->fullsync == 0) {
1710 *skipped = 1;
1711 return max_sector - sector_nr;
1713 /* before building a request, check if we can skip these blocks..
1714 * This call the bitmap_start_sync doesn't actually record anything
1716 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1717 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1718 /* We can skip this block, and probably several more */
1719 *skipped = 1;
1720 return sync_blocks;
1723 * If there is non-resync activity waiting for a turn,
1724 * and resync is going fast enough,
1725 * then let it though before starting on this new sync request.
1727 if (!go_faster && conf->nr_waiting)
1728 msleep_interruptible(1000);
1730 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1731 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1732 raise_barrier(conf);
1734 conf->next_resync = sector_nr;
1736 rcu_read_lock();
1738 * If we get a correctably read error during resync or recovery,
1739 * we might want to read from a different device. So we
1740 * flag all drives that could conceivably be read from for READ,
1741 * and any others (which will be non-In_sync devices) for WRITE.
1742 * If a read fails, we try reading from something else for which READ
1743 * is OK.
1746 r1_bio->mddev = mddev;
1747 r1_bio->sector = sector_nr;
1748 r1_bio->state = 0;
1749 set_bit(R1BIO_IsSync, &r1_bio->state);
1751 for (i=0; i < conf->raid_disks; i++) {
1752 mdk_rdev_t *rdev;
1753 bio = r1_bio->bios[i];
1755 /* take from bio_init */
1756 bio->bi_next = NULL;
1757 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1758 bio->bi_flags |= 1 << BIO_UPTODATE;
1759 bio->bi_comp_cpu = -1;
1760 bio->bi_rw = READ;
1761 bio->bi_vcnt = 0;
1762 bio->bi_idx = 0;
1763 bio->bi_phys_segments = 0;
1764 bio->bi_size = 0;
1765 bio->bi_end_io = NULL;
1766 bio->bi_private = NULL;
1768 rdev = rcu_dereference(conf->mirrors[i].rdev);
1769 if (rdev == NULL ||
1770 test_bit(Faulty, &rdev->flags)) {
1771 still_degraded = 1;
1772 continue;
1773 } else if (!test_bit(In_sync, &rdev->flags)) {
1774 bio->bi_rw = WRITE;
1775 bio->bi_end_io = end_sync_write;
1776 write_targets ++;
1777 } else {
1778 /* may need to read from here */
1779 bio->bi_rw = READ;
1780 bio->bi_end_io = end_sync_read;
1781 if (test_bit(WriteMostly, &rdev->flags)) {
1782 if (wonly < 0)
1783 wonly = i;
1784 } else {
1785 if (disk < 0)
1786 disk = i;
1788 read_targets++;
1790 atomic_inc(&rdev->nr_pending);
1791 bio->bi_sector = sector_nr + rdev->data_offset;
1792 bio->bi_bdev = rdev->bdev;
1793 bio->bi_private = r1_bio;
1795 rcu_read_unlock();
1796 if (disk < 0)
1797 disk = wonly;
1798 r1_bio->read_disk = disk;
1800 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1801 /* extra read targets are also write targets */
1802 write_targets += read_targets-1;
1804 if (write_targets == 0 || read_targets == 0) {
1805 /* There is nowhere to write, so all non-sync
1806 * drives must be failed - so we are finished
1808 sector_t rv = max_sector - sector_nr;
1809 *skipped = 1;
1810 put_buf(r1_bio);
1811 return rv;
1814 if (max_sector > mddev->resync_max)
1815 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1816 nr_sectors = 0;
1817 sync_blocks = 0;
1818 do {
1819 struct page *page;
1820 int len = PAGE_SIZE;
1821 if (sector_nr + (len>>9) > max_sector)
1822 len = (max_sector - sector_nr) << 9;
1823 if (len == 0)
1824 break;
1825 if (sync_blocks == 0) {
1826 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1827 &sync_blocks, still_degraded) &&
1828 !conf->fullsync &&
1829 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1830 break;
1831 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1832 if ((len >> 9) > sync_blocks)
1833 len = sync_blocks<<9;
1836 for (i=0 ; i < conf->raid_disks; i++) {
1837 bio = r1_bio->bios[i];
1838 if (bio->bi_end_io) {
1839 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1840 if (bio_add_page(bio, page, len, 0) == 0) {
1841 /* stop here */
1842 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1843 while (i > 0) {
1844 i--;
1845 bio = r1_bio->bios[i];
1846 if (bio->bi_end_io==NULL)
1847 continue;
1848 /* remove last page from this bio */
1849 bio->bi_vcnt--;
1850 bio->bi_size -= len;
1851 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1853 goto bio_full;
1857 nr_sectors += len>>9;
1858 sector_nr += len>>9;
1859 sync_blocks -= (len>>9);
1860 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1861 bio_full:
1862 r1_bio->sectors = nr_sectors;
1864 /* For a user-requested sync, we read all readable devices and do a
1865 * compare
1867 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1868 atomic_set(&r1_bio->remaining, read_targets);
1869 for (i=0; i<conf->raid_disks; i++) {
1870 bio = r1_bio->bios[i];
1871 if (bio->bi_end_io == end_sync_read) {
1872 md_sync_acct(bio->bi_bdev, nr_sectors);
1873 generic_make_request(bio);
1876 } else {
1877 atomic_set(&r1_bio->remaining, 1);
1878 bio = r1_bio->bios[r1_bio->read_disk];
1879 md_sync_acct(bio->bi_bdev, nr_sectors);
1880 generic_make_request(bio);
1883 return nr_sectors;
1886 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1888 if (sectors)
1889 return sectors;
1891 return mddev->dev_sectors;
1894 static conf_t *setup_conf(mddev_t *mddev)
1896 conf_t *conf;
1897 int i;
1898 mirror_info_t *disk;
1899 mdk_rdev_t *rdev;
1900 int err = -ENOMEM;
1902 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1903 if (!conf)
1904 goto abort;
1906 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1907 GFP_KERNEL);
1908 if (!conf->mirrors)
1909 goto abort;
1911 conf->tmppage = alloc_page(GFP_KERNEL);
1912 if (!conf->tmppage)
1913 goto abort;
1915 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1916 if (!conf->poolinfo)
1917 goto abort;
1918 conf->poolinfo->raid_disks = mddev->raid_disks;
1919 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1920 r1bio_pool_free,
1921 conf->poolinfo);
1922 if (!conf->r1bio_pool)
1923 goto abort;
1925 conf->poolinfo->mddev = mddev;
1927 spin_lock_init(&conf->device_lock);
1928 list_for_each_entry(rdev, &mddev->disks, same_set) {
1929 int disk_idx = rdev->raid_disk;
1930 if (disk_idx >= mddev->raid_disks
1931 || disk_idx < 0)
1932 continue;
1933 disk = conf->mirrors + disk_idx;
1935 disk->rdev = rdev;
1937 disk->head_position = 0;
1939 conf->raid_disks = mddev->raid_disks;
1940 conf->mddev = mddev;
1941 INIT_LIST_HEAD(&conf->retry_list);
1943 spin_lock_init(&conf->resync_lock);
1944 init_waitqueue_head(&conf->wait_barrier);
1946 bio_list_init(&conf->pending_bio_list);
1948 conf->last_used = -1;
1949 for (i = 0; i < conf->raid_disks; i++) {
1951 disk = conf->mirrors + i;
1953 if (!disk->rdev ||
1954 !test_bit(In_sync, &disk->rdev->flags)) {
1955 disk->head_position = 0;
1956 if (disk->rdev)
1957 conf->fullsync = 1;
1958 } else if (conf->last_used < 0)
1960 * The first working device is used as a
1961 * starting point to read balancing.
1963 conf->last_used = i;
1966 err = -EIO;
1967 if (conf->last_used < 0) {
1968 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1969 mdname(mddev));
1970 goto abort;
1972 err = -ENOMEM;
1973 conf->thread = md_register_thread(raid1d, mddev, NULL);
1974 if (!conf->thread) {
1975 printk(KERN_ERR
1976 "md/raid1:%s: couldn't allocate thread\n",
1977 mdname(mddev));
1978 goto abort;
1981 return conf;
1983 abort:
1984 if (conf) {
1985 if (conf->r1bio_pool)
1986 mempool_destroy(conf->r1bio_pool);
1987 kfree(conf->mirrors);
1988 safe_put_page(conf->tmppage);
1989 kfree(conf->poolinfo);
1990 kfree(conf);
1992 return ERR_PTR(err);
1995 static int run(mddev_t *mddev)
1997 conf_t *conf;
1998 int i;
1999 mdk_rdev_t *rdev;
2001 if (mddev->level != 1) {
2002 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2003 mdname(mddev), mddev->level);
2004 return -EIO;
2006 if (mddev->reshape_position != MaxSector) {
2007 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2008 mdname(mddev));
2009 return -EIO;
2012 * copy the already verified devices into our private RAID1
2013 * bookkeeping area. [whatever we allocate in run(),
2014 * should be freed in stop()]
2016 if (mddev->private == NULL)
2017 conf = setup_conf(mddev);
2018 else
2019 conf = mddev->private;
2021 if (IS_ERR(conf))
2022 return PTR_ERR(conf);
2024 mddev->queue->queue_lock = &conf->device_lock;
2025 list_for_each_entry(rdev, &mddev->disks, same_set) {
2026 disk_stack_limits(mddev->gendisk, rdev->bdev,
2027 rdev->data_offset << 9);
2028 /* as we don't honour merge_bvec_fn, we must never risk
2029 * violating it, so limit ->max_segments to 1 lying within
2030 * a single page, as a one page request is never in violation.
2032 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2033 blk_queue_max_segments(mddev->queue, 1);
2034 blk_queue_segment_boundary(mddev->queue,
2035 PAGE_CACHE_SIZE - 1);
2039 mddev->degraded = 0;
2040 for (i=0; i < conf->raid_disks; i++)
2041 if (conf->mirrors[i].rdev == NULL ||
2042 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2043 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2044 mddev->degraded++;
2046 if (conf->raid_disks - mddev->degraded == 1)
2047 mddev->recovery_cp = MaxSector;
2049 if (mddev->recovery_cp != MaxSector)
2050 printk(KERN_NOTICE "md/raid1:%s: not clean"
2051 " -- starting background reconstruction\n",
2052 mdname(mddev));
2053 printk(KERN_INFO
2054 "md/raid1:%s: active with %d out of %d mirrors\n",
2055 mdname(mddev), mddev->raid_disks - mddev->degraded,
2056 mddev->raid_disks);
2059 * Ok, everything is just fine now
2061 mddev->thread = conf->thread;
2062 conf->thread = NULL;
2063 mddev->private = conf;
2065 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2067 mddev->queue->unplug_fn = raid1_unplug;
2068 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2069 mddev->queue->backing_dev_info.congested_data = mddev;
2070 md_integrity_register(mddev);
2071 return 0;
2074 static int stop(mddev_t *mddev)
2076 conf_t *conf = mddev->private;
2077 struct bitmap *bitmap = mddev->bitmap;
2079 /* wait for behind writes to complete */
2080 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2081 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2082 mdname(mddev));
2083 /* need to kick something here to make sure I/O goes? */
2084 wait_event(bitmap->behind_wait,
2085 atomic_read(&bitmap->behind_writes) == 0);
2088 raise_barrier(conf);
2089 lower_barrier(conf);
2091 md_unregister_thread(mddev->thread);
2092 mddev->thread = NULL;
2093 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2094 if (conf->r1bio_pool)
2095 mempool_destroy(conf->r1bio_pool);
2096 kfree(conf->mirrors);
2097 kfree(conf->poolinfo);
2098 kfree(conf);
2099 mddev->private = NULL;
2100 return 0;
2103 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2105 /* no resync is happening, and there is enough space
2106 * on all devices, so we can resize.
2107 * We need to make sure resync covers any new space.
2108 * If the array is shrinking we should possibly wait until
2109 * any io in the removed space completes, but it hardly seems
2110 * worth it.
2112 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2113 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2114 return -EINVAL;
2115 set_capacity(mddev->gendisk, mddev->array_sectors);
2116 revalidate_disk(mddev->gendisk);
2117 if (sectors > mddev->dev_sectors &&
2118 mddev->recovery_cp == MaxSector) {
2119 mddev->recovery_cp = mddev->dev_sectors;
2120 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2122 mddev->dev_sectors = sectors;
2123 mddev->resync_max_sectors = sectors;
2124 return 0;
2127 static int raid1_reshape(mddev_t *mddev)
2129 /* We need to:
2130 * 1/ resize the r1bio_pool
2131 * 2/ resize conf->mirrors
2133 * We allocate a new r1bio_pool if we can.
2134 * Then raise a device barrier and wait until all IO stops.
2135 * Then resize conf->mirrors and swap in the new r1bio pool.
2137 * At the same time, we "pack" the devices so that all the missing
2138 * devices have the higher raid_disk numbers.
2140 mempool_t *newpool, *oldpool;
2141 struct pool_info *newpoolinfo;
2142 mirror_info_t *newmirrors;
2143 conf_t *conf = mddev->private;
2144 int cnt, raid_disks;
2145 unsigned long flags;
2146 int d, d2, err;
2148 /* Cannot change chunk_size, layout, or level */
2149 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2150 mddev->layout != mddev->new_layout ||
2151 mddev->level != mddev->new_level) {
2152 mddev->new_chunk_sectors = mddev->chunk_sectors;
2153 mddev->new_layout = mddev->layout;
2154 mddev->new_level = mddev->level;
2155 return -EINVAL;
2158 err = md_allow_write(mddev);
2159 if (err)
2160 return err;
2162 raid_disks = mddev->raid_disks + mddev->delta_disks;
2164 if (raid_disks < conf->raid_disks) {
2165 cnt=0;
2166 for (d= 0; d < conf->raid_disks; d++)
2167 if (conf->mirrors[d].rdev)
2168 cnt++;
2169 if (cnt > raid_disks)
2170 return -EBUSY;
2173 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2174 if (!newpoolinfo)
2175 return -ENOMEM;
2176 newpoolinfo->mddev = mddev;
2177 newpoolinfo->raid_disks = raid_disks;
2179 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2180 r1bio_pool_free, newpoolinfo);
2181 if (!newpool) {
2182 kfree(newpoolinfo);
2183 return -ENOMEM;
2185 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2186 if (!newmirrors) {
2187 kfree(newpoolinfo);
2188 mempool_destroy(newpool);
2189 return -ENOMEM;
2192 raise_barrier(conf);
2194 /* ok, everything is stopped */
2195 oldpool = conf->r1bio_pool;
2196 conf->r1bio_pool = newpool;
2198 for (d = d2 = 0; d < conf->raid_disks; d++) {
2199 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2200 if (rdev && rdev->raid_disk != d2) {
2201 char nm[20];
2202 sprintf(nm, "rd%d", rdev->raid_disk);
2203 sysfs_remove_link(&mddev->kobj, nm);
2204 rdev->raid_disk = d2;
2205 sprintf(nm, "rd%d", rdev->raid_disk);
2206 sysfs_remove_link(&mddev->kobj, nm);
2207 if (sysfs_create_link(&mddev->kobj,
2208 &rdev->kobj, nm))
2209 printk(KERN_WARNING
2210 "md/raid1:%s: cannot register "
2211 "%s\n",
2212 mdname(mddev), nm);
2214 if (rdev)
2215 newmirrors[d2++].rdev = rdev;
2217 kfree(conf->mirrors);
2218 conf->mirrors = newmirrors;
2219 kfree(conf->poolinfo);
2220 conf->poolinfo = newpoolinfo;
2222 spin_lock_irqsave(&conf->device_lock, flags);
2223 mddev->degraded += (raid_disks - conf->raid_disks);
2224 spin_unlock_irqrestore(&conf->device_lock, flags);
2225 conf->raid_disks = mddev->raid_disks = raid_disks;
2226 mddev->delta_disks = 0;
2228 conf->last_used = 0; /* just make sure it is in-range */
2229 lower_barrier(conf);
2231 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2232 md_wakeup_thread(mddev->thread);
2234 mempool_destroy(oldpool);
2235 return 0;
2238 static void raid1_quiesce(mddev_t *mddev, int state)
2240 conf_t *conf = mddev->private;
2242 switch(state) {
2243 case 2: /* wake for suspend */
2244 wake_up(&conf->wait_barrier);
2245 break;
2246 case 1:
2247 raise_barrier(conf);
2248 break;
2249 case 0:
2250 lower_barrier(conf);
2251 break;
2255 static void *raid1_takeover(mddev_t *mddev)
2257 /* raid1 can take over:
2258 * raid5 with 2 devices, any layout or chunk size
2260 if (mddev->level == 5 && mddev->raid_disks == 2) {
2261 conf_t *conf;
2262 mddev->new_level = 1;
2263 mddev->new_layout = 0;
2264 mddev->new_chunk_sectors = 0;
2265 conf = setup_conf(mddev);
2266 if (!IS_ERR(conf))
2267 conf->barrier = 1;
2268 return conf;
2270 return ERR_PTR(-EINVAL);
2273 static struct mdk_personality raid1_personality =
2275 .name = "raid1",
2276 .level = 1,
2277 .owner = THIS_MODULE,
2278 .make_request = make_request,
2279 .run = run,
2280 .stop = stop,
2281 .status = status,
2282 .error_handler = error,
2283 .hot_add_disk = raid1_add_disk,
2284 .hot_remove_disk= raid1_remove_disk,
2285 .spare_active = raid1_spare_active,
2286 .sync_request = sync_request,
2287 .resize = raid1_resize,
2288 .size = raid1_size,
2289 .check_reshape = raid1_reshape,
2290 .quiesce = raid1_quiesce,
2291 .takeover = raid1_takeover,
2294 static int __init raid_init(void)
2296 return register_md_personality(&raid1_personality);
2299 static void raid_exit(void)
2301 unregister_md_personality(&raid1_personality);
2304 module_init(raid_init);
2305 module_exit(raid_exit);
2306 MODULE_LICENSE("GPL");
2307 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2308 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2309 MODULE_ALIAS("md-raid1");
2310 MODULE_ALIAS("md-level-1");