3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
23 * Pavel Emelianov <xemul@openvz.org>
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
72 #include <linux/slab.h>
73 #include <linux/spinlock.h>
74 #include <linux/init.h>
75 #include <linux/proc_fs.h>
76 #include <linux/time.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/audit.h>
80 #include <linux/capability.h>
81 #include <linux/seq_file.h>
82 #include <linux/rwsem.h>
83 #include <linux/nsproxy.h>
84 #include <linux/ipc_namespace.h>
85 #include <linux/sched/wake_q.h>
87 #include <linux/uaccess.h>
91 /* One queue for each sleeping process in the system. */
93 struct list_head list
; /* queue of pending operations */
94 struct task_struct
*sleeper
; /* this process */
95 struct sem_undo
*undo
; /* undo structure */
96 int pid
; /* process id of requesting process */
97 int status
; /* completion status of operation */
98 struct sembuf
*sops
; /* array of pending operations */
99 struct sembuf
*blocking
; /* the operation that blocked */
100 int nsops
; /* number of operations */
101 bool alter
; /* does *sops alter the array? */
102 bool dupsop
; /* sops on more than one sem_num */
105 /* Each task has a list of undo requests. They are executed automatically
106 * when the process exits.
109 struct list_head list_proc
; /* per-process list: *
110 * all undos from one process
112 struct rcu_head rcu
; /* rcu struct for sem_undo */
113 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
114 struct list_head list_id
; /* per semaphore array list:
115 * all undos for one array */
116 int semid
; /* semaphore set identifier */
117 short *semadj
; /* array of adjustments */
118 /* one per semaphore */
121 /* sem_undo_list controls shared access to the list of sem_undo structures
122 * that may be shared among all a CLONE_SYSVSEM task group.
124 struct sem_undo_list
{
127 struct list_head list_proc
;
131 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
133 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
135 static int newary(struct ipc_namespace
*, struct ipc_params
*);
136 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
137 #ifdef CONFIG_PROC_FS
138 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
141 #define SEMMSL_FAST 256 /* 512 bytes on stack */
142 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
145 * Switching from the mode suitable for simple ops
146 * to the mode for complex ops is costly. Therefore:
147 * use some hysteresis
149 #define USE_GLOBAL_LOCK_HYSTERESIS 10
153 * a) global sem_lock() for read/write
155 * sem_array.complex_count,
156 * sem_array.pending{_alter,_const},
159 * b) global or semaphore sem_lock() for read/write:
160 * sem_array.sems[i].pending_{const,alter}:
163 * sem_undo_list.list_proc:
164 * * undo_list->lock for write
167 * * global sem_lock() for write
168 * * either local or global sem_lock() for read.
171 * Most ordering is enforced by using spin_lock() and spin_unlock().
172 * The special case is use_global_lock:
173 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
174 * using smp_store_release().
175 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
176 * smp_load_acquire().
177 * Setting it from 0 to non-zero must be ordered with regards to
178 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
179 * is inside a spin_lock() and after a write from 0 to non-zero a
180 * spin_lock()+spin_unlock() is done.
183 #define sc_semmsl sem_ctls[0]
184 #define sc_semmns sem_ctls[1]
185 #define sc_semopm sem_ctls[2]
186 #define sc_semmni sem_ctls[3]
188 void sem_init_ns(struct ipc_namespace
*ns
)
190 ns
->sc_semmsl
= SEMMSL
;
191 ns
->sc_semmns
= SEMMNS
;
192 ns
->sc_semopm
= SEMOPM
;
193 ns
->sc_semmni
= SEMMNI
;
195 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
199 void sem_exit_ns(struct ipc_namespace
*ns
)
201 free_ipcs(ns
, &sem_ids(ns
), freeary
);
202 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
206 void __init
sem_init(void)
208 sem_init_ns(&init_ipc_ns
);
209 ipc_init_proc_interface("sysvipc/sem",
210 " key semid perms nsems uid gid cuid cgid otime ctime\n",
211 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
215 * unmerge_queues - unmerge queues, if possible.
216 * @sma: semaphore array
218 * The function unmerges the wait queues if complex_count is 0.
219 * It must be called prior to dropping the global semaphore array lock.
221 static void unmerge_queues(struct sem_array
*sma
)
223 struct sem_queue
*q
, *tq
;
225 /* complex operations still around? */
226 if (sma
->complex_count
)
229 * We will switch back to simple mode.
230 * Move all pending operation back into the per-semaphore
233 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
235 curr
= &sma
->sems
[q
->sops
[0].sem_num
];
237 list_add_tail(&q
->list
, &curr
->pending_alter
);
239 INIT_LIST_HEAD(&sma
->pending_alter
);
243 * merge_queues - merge single semop queues into global queue
244 * @sma: semaphore array
246 * This function merges all per-semaphore queues into the global queue.
247 * It is necessary to achieve FIFO ordering for the pending single-sop
248 * operations when a multi-semop operation must sleep.
249 * Only the alter operations must be moved, the const operations can stay.
251 static void merge_queues(struct sem_array
*sma
)
254 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
255 struct sem
*sem
= &sma
->sems
[i
];
257 list_splice_init(&sem
->pending_alter
, &sma
->pending_alter
);
261 static void sem_rcu_free(struct rcu_head
*head
)
263 struct kern_ipc_perm
*p
= container_of(head
, struct kern_ipc_perm
, rcu
);
264 struct sem_array
*sma
= container_of(p
, struct sem_array
, sem_perm
);
266 security_sem_free(sma
);
271 * Enter the mode suitable for non-simple operations:
272 * Caller must own sem_perm.lock.
274 static void complexmode_enter(struct sem_array
*sma
)
279 if (sma
->use_global_lock
> 0) {
281 * We are already in global lock mode.
282 * Nothing to do, just reset the
283 * counter until we return to simple mode.
285 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
288 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
290 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
292 spin_lock(&sem
->lock
);
293 spin_unlock(&sem
->lock
);
298 * Try to leave the mode that disallows simple operations:
299 * Caller must own sem_perm.lock.
301 static void complexmode_tryleave(struct sem_array
*sma
)
303 if (sma
->complex_count
) {
304 /* Complex ops are sleeping.
305 * We must stay in complex mode
309 if (sma
->use_global_lock
== 1) {
311 * Immediately after setting use_global_lock to 0,
312 * a simple op can start. Thus: all memory writes
313 * performed by the current operation must be visible
314 * before we set use_global_lock to 0.
316 smp_store_release(&sma
->use_global_lock
, 0);
318 sma
->use_global_lock
--;
322 #define SEM_GLOBAL_LOCK (-1)
324 * If the request contains only one semaphore operation, and there are
325 * no complex transactions pending, lock only the semaphore involved.
326 * Otherwise, lock the entire semaphore array, since we either have
327 * multiple semaphores in our own semops, or we need to look at
328 * semaphores from other pending complex operations.
330 static inline int sem_lock(struct sem_array
*sma
, struct sembuf
*sops
,
336 /* Complex operation - acquire a full lock */
337 ipc_lock_object(&sma
->sem_perm
);
339 /* Prevent parallel simple ops */
340 complexmode_enter(sma
);
341 return SEM_GLOBAL_LOCK
;
345 * Only one semaphore affected - try to optimize locking.
346 * Optimized locking is possible if no complex operation
347 * is either enqueued or processed right now.
349 * Both facts are tracked by use_global_mode.
351 sem
= &sma
->sems
[sops
->sem_num
];
354 * Initial check for use_global_lock. Just an optimization,
355 * no locking, no memory barrier.
357 if (!sma
->use_global_lock
) {
359 * It appears that no complex operation is around.
360 * Acquire the per-semaphore lock.
362 spin_lock(&sem
->lock
);
364 /* pairs with smp_store_release() */
365 if (!smp_load_acquire(&sma
->use_global_lock
)) {
366 /* fast path successful! */
367 return sops
->sem_num
;
369 spin_unlock(&sem
->lock
);
372 /* slow path: acquire the full lock */
373 ipc_lock_object(&sma
->sem_perm
);
375 if (sma
->use_global_lock
== 0) {
377 * The use_global_lock mode ended while we waited for
378 * sma->sem_perm.lock. Thus we must switch to locking
380 * Unlike in the fast path, there is no need to recheck
381 * sma->use_global_lock after we have acquired sem->lock:
382 * We own sma->sem_perm.lock, thus use_global_lock cannot
385 spin_lock(&sem
->lock
);
387 ipc_unlock_object(&sma
->sem_perm
);
388 return sops
->sem_num
;
391 * Not a false alarm, thus continue to use the global lock
392 * mode. No need for complexmode_enter(), this was done by
393 * the caller that has set use_global_mode to non-zero.
395 return SEM_GLOBAL_LOCK
;
399 static inline void sem_unlock(struct sem_array
*sma
, int locknum
)
401 if (locknum
== SEM_GLOBAL_LOCK
) {
403 complexmode_tryleave(sma
);
404 ipc_unlock_object(&sma
->sem_perm
);
406 struct sem
*sem
= &sma
->sems
[locknum
];
407 spin_unlock(&sem
->lock
);
412 * sem_lock_(check_) routines are called in the paths where the rwsem
415 * The caller holds the RCU read lock.
417 static inline struct sem_array
*sem_obtain_object(struct ipc_namespace
*ns
, int id
)
419 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_idr(&sem_ids(ns
), id
);
422 return ERR_CAST(ipcp
);
424 return container_of(ipcp
, struct sem_array
, sem_perm
);
427 static inline struct sem_array
*sem_obtain_object_check(struct ipc_namespace
*ns
,
430 struct kern_ipc_perm
*ipcp
= ipc_obtain_object_check(&sem_ids(ns
), id
);
433 return ERR_CAST(ipcp
);
435 return container_of(ipcp
, struct sem_array
, sem_perm
);
438 static inline void sem_lock_and_putref(struct sem_array
*sma
)
440 sem_lock(sma
, NULL
, -1);
441 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
444 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
446 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
449 static struct sem_array
*sem_alloc(size_t nsems
)
451 struct sem_array
*sma
;
454 if (nsems
> (INT_MAX
- sizeof(*sma
)) / sizeof(sma
->sems
[0]))
457 size
= sizeof(*sma
) + nsems
* sizeof(sma
->sems
[0]);
458 sma
= kvmalloc(size
, GFP_KERNEL
);
462 memset(sma
, 0, size
);
468 * newary - Create a new semaphore set
470 * @params: ptr to the structure that contains key, semflg and nsems
472 * Called with sem_ids.rwsem held (as a writer)
474 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
477 struct sem_array
*sma
;
478 key_t key
= params
->key
;
479 int nsems
= params
->u
.nsems
;
480 int semflg
= params
->flg
;
485 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
488 sma
= sem_alloc(nsems
);
492 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
493 sma
->sem_perm
.key
= key
;
495 sma
->sem_perm
.security
= NULL
;
496 retval
= security_sem_alloc(sma
);
502 for (i
= 0; i
< nsems
; i
++) {
503 INIT_LIST_HEAD(&sma
->sems
[i
].pending_alter
);
504 INIT_LIST_HEAD(&sma
->sems
[i
].pending_const
);
505 spin_lock_init(&sma
->sems
[i
].lock
);
508 sma
->complex_count
= 0;
509 sma
->use_global_lock
= USE_GLOBAL_LOCK_HYSTERESIS
;
510 INIT_LIST_HEAD(&sma
->pending_alter
);
511 INIT_LIST_HEAD(&sma
->pending_const
);
512 INIT_LIST_HEAD(&sma
->list_id
);
513 sma
->sem_nsems
= nsems
;
514 sma
->sem_ctime
= get_seconds();
516 retval
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
518 call_rcu(&sma
->sem_perm
.rcu
, sem_rcu_free
);
521 ns
->used_sems
+= nsems
;
526 return sma
->sem_perm
.id
;
531 * Called with sem_ids.rwsem and ipcp locked.
533 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
535 struct sem_array
*sma
;
537 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
538 return security_sem_associate(sma
, semflg
);
542 * Called with sem_ids.rwsem and ipcp locked.
544 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
545 struct ipc_params
*params
)
547 struct sem_array
*sma
;
549 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
550 if (params
->u
.nsems
> sma
->sem_nsems
)
556 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
558 struct ipc_namespace
*ns
;
559 static const struct ipc_ops sem_ops
= {
561 .associate
= sem_security
,
562 .more_checks
= sem_more_checks
,
564 struct ipc_params sem_params
;
566 ns
= current
->nsproxy
->ipc_ns
;
568 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
571 sem_params
.key
= key
;
572 sem_params
.flg
= semflg
;
573 sem_params
.u
.nsems
= nsems
;
575 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
579 * perform_atomic_semop[_slow] - Attempt to perform semaphore
580 * operations on a given array.
581 * @sma: semaphore array
582 * @q: struct sem_queue that describes the operation
584 * Caller blocking are as follows, based the value
585 * indicated by the semaphore operation (sem_op):
587 * (1) >0 never blocks.
588 * (2) 0 (wait-for-zero operation): semval is non-zero.
589 * (3) <0 attempting to decrement semval to a value smaller than zero.
591 * Returns 0 if the operation was possible.
592 * Returns 1 if the operation is impossible, the caller must sleep.
593 * Returns <0 for error codes.
595 static int perform_atomic_semop_slow(struct sem_array
*sma
, struct sem_queue
*q
)
597 int result
, sem_op
, nsops
, pid
;
607 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
608 curr
= &sma
->sems
[sop
->sem_num
];
609 sem_op
= sop
->sem_op
;
610 result
= curr
->semval
;
612 if (!sem_op
&& result
)
621 if (sop
->sem_flg
& SEM_UNDO
) {
622 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
623 /* Exceeding the undo range is an error. */
624 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
626 un
->semadj
[sop
->sem_num
] = undo
;
629 curr
->semval
= result
;
634 while (sop
>= sops
) {
635 sma
->sems
[sop
->sem_num
].sempid
= pid
;
648 if (sop
->sem_flg
& IPC_NOWAIT
)
655 while (sop
>= sops
) {
656 sem_op
= sop
->sem_op
;
657 sma
->sems
[sop
->sem_num
].semval
-= sem_op
;
658 if (sop
->sem_flg
& SEM_UNDO
)
659 un
->semadj
[sop
->sem_num
] += sem_op
;
666 static int perform_atomic_semop(struct sem_array
*sma
, struct sem_queue
*q
)
668 int result
, sem_op
, nsops
;
678 if (unlikely(q
->dupsop
))
679 return perform_atomic_semop_slow(sma
, q
);
682 * We scan the semaphore set twice, first to ensure that the entire
683 * operation can succeed, therefore avoiding any pointless writes
684 * to shared memory and having to undo such changes in order to block
685 * until the operations can go through.
687 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
688 curr
= &sma
->sems
[sop
->sem_num
];
689 sem_op
= sop
->sem_op
;
690 result
= curr
->semval
;
692 if (!sem_op
&& result
)
693 goto would_block
; /* wait-for-zero */
702 if (sop
->sem_flg
& SEM_UNDO
) {
703 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
705 /* Exceeding the undo range is an error. */
706 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
711 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
712 curr
= &sma
->sems
[sop
->sem_num
];
713 sem_op
= sop
->sem_op
;
714 result
= curr
->semval
;
716 if (sop
->sem_flg
& SEM_UNDO
) {
717 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
719 un
->semadj
[sop
->sem_num
] = undo
;
721 curr
->semval
+= sem_op
;
722 curr
->sempid
= q
->pid
;
729 return sop
->sem_flg
& IPC_NOWAIT
? -EAGAIN
: 1;
732 static inline void wake_up_sem_queue_prepare(struct sem_queue
*q
, int error
,
733 struct wake_q_head
*wake_q
)
735 wake_q_add(wake_q
, q
->sleeper
);
737 * Rely on the above implicit barrier, such that we can
738 * ensure that we hold reference to the task before setting
739 * q->status. Otherwise we could race with do_exit if the
740 * task is awoken by an external event before calling
743 WRITE_ONCE(q
->status
, error
);
746 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
750 sma
->complex_count
--;
753 /** check_restart(sma, q)
754 * @sma: semaphore array
755 * @q: the operation that just completed
757 * update_queue is O(N^2) when it restarts scanning the whole queue of
758 * waiting operations. Therefore this function checks if the restart is
759 * really necessary. It is called after a previously waiting operation
760 * modified the array.
761 * Note that wait-for-zero operations are handled without restart.
763 static inline int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
765 /* pending complex alter operations are too difficult to analyse */
766 if (!list_empty(&sma
->pending_alter
))
769 /* we were a sleeping complex operation. Too difficult */
773 /* It is impossible that someone waits for the new value:
774 * - complex operations always restart.
775 * - wait-for-zero are handled seperately.
776 * - q is a previously sleeping simple operation that
777 * altered the array. It must be a decrement, because
778 * simple increments never sleep.
779 * - If there are older (higher priority) decrements
780 * in the queue, then they have observed the original
781 * semval value and couldn't proceed. The operation
782 * decremented to value - thus they won't proceed either.
788 * wake_const_ops - wake up non-alter tasks
789 * @sma: semaphore array.
790 * @semnum: semaphore that was modified.
791 * @wake_q: lockless wake-queue head.
793 * wake_const_ops must be called after a semaphore in a semaphore array
794 * was set to 0. If complex const operations are pending, wake_const_ops must
795 * be called with semnum = -1, as well as with the number of each modified
797 * The tasks that must be woken up are added to @wake_q. The return code
798 * is stored in q->pid.
799 * The function returns 1 if at least one operation was completed successfully.
801 static int wake_const_ops(struct sem_array
*sma
, int semnum
,
802 struct wake_q_head
*wake_q
)
804 struct sem_queue
*q
, *tmp
;
805 struct list_head
*pending_list
;
806 int semop_completed
= 0;
809 pending_list
= &sma
->pending_const
;
811 pending_list
= &sma
->sems
[semnum
].pending_const
;
813 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
814 int error
= perform_atomic_semop(sma
, q
);
818 /* operation completed, remove from queue & wakeup */
819 unlink_queue(sma
, q
);
821 wake_up_sem_queue_prepare(q
, error
, wake_q
);
826 return semop_completed
;
830 * do_smart_wakeup_zero - wakeup all wait for zero tasks
831 * @sma: semaphore array
832 * @sops: operations that were performed
833 * @nsops: number of operations
834 * @wake_q: lockless wake-queue head
836 * Checks all required queue for wait-for-zero operations, based
837 * on the actual changes that were performed on the semaphore array.
838 * The function returns 1 if at least one operation was completed successfully.
840 static int do_smart_wakeup_zero(struct sem_array
*sma
, struct sembuf
*sops
,
841 int nsops
, struct wake_q_head
*wake_q
)
844 int semop_completed
= 0;
847 /* first: the per-semaphore queues, if known */
849 for (i
= 0; i
< nsops
; i
++) {
850 int num
= sops
[i
].sem_num
;
852 if (sma
->sems
[num
].semval
== 0) {
854 semop_completed
|= wake_const_ops(sma
, num
, wake_q
);
859 * No sops means modified semaphores not known.
860 * Assume all were changed.
862 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
863 if (sma
->sems
[i
].semval
== 0) {
865 semop_completed
|= wake_const_ops(sma
, i
, wake_q
);
870 * If one of the modified semaphores got 0,
871 * then check the global queue, too.
874 semop_completed
|= wake_const_ops(sma
, -1, wake_q
);
876 return semop_completed
;
881 * update_queue - look for tasks that can be completed.
882 * @sma: semaphore array.
883 * @semnum: semaphore that was modified.
884 * @wake_q: lockless wake-queue head.
886 * update_queue must be called after a semaphore in a semaphore array
887 * was modified. If multiple semaphores were modified, update_queue must
888 * be called with semnum = -1, as well as with the number of each modified
890 * The tasks that must be woken up are added to @wake_q. The return code
891 * is stored in q->pid.
892 * The function internally checks if const operations can now succeed.
894 * The function return 1 if at least one semop was completed successfully.
896 static int update_queue(struct sem_array
*sma
, int semnum
, struct wake_q_head
*wake_q
)
898 struct sem_queue
*q
, *tmp
;
899 struct list_head
*pending_list
;
900 int semop_completed
= 0;
903 pending_list
= &sma
->pending_alter
;
905 pending_list
= &sma
->sems
[semnum
].pending_alter
;
908 list_for_each_entry_safe(q
, tmp
, pending_list
, list
) {
911 /* If we are scanning the single sop, per-semaphore list of
912 * one semaphore and that semaphore is 0, then it is not
913 * necessary to scan further: simple increments
914 * that affect only one entry succeed immediately and cannot
915 * be in the per semaphore pending queue, and decrements
916 * cannot be successful if the value is already 0.
918 if (semnum
!= -1 && sma
->sems
[semnum
].semval
== 0)
921 error
= perform_atomic_semop(sma
, q
);
923 /* Does q->sleeper still need to sleep? */
927 unlink_queue(sma
, q
);
933 do_smart_wakeup_zero(sma
, q
->sops
, q
->nsops
, wake_q
);
934 restart
= check_restart(sma
, q
);
937 wake_up_sem_queue_prepare(q
, error
, wake_q
);
941 return semop_completed
;
945 * set_semotime - set sem_otime
946 * @sma: semaphore array
947 * @sops: operations that modified the array, may be NULL
949 * sem_otime is replicated to avoid cache line trashing.
950 * This function sets one instance to the current time.
952 static void set_semotime(struct sem_array
*sma
, struct sembuf
*sops
)
955 sma
->sems
[0].sem_otime
= get_seconds();
957 sma
->sems
[sops
[0].sem_num
].sem_otime
=
963 * do_smart_update - optimized update_queue
964 * @sma: semaphore array
965 * @sops: operations that were performed
966 * @nsops: number of operations
967 * @otime: force setting otime
968 * @wake_q: lockless wake-queue head
970 * do_smart_update() does the required calls to update_queue and wakeup_zero,
971 * based on the actual changes that were performed on the semaphore array.
972 * Note that the function does not do the actual wake-up: the caller is
973 * responsible for calling wake_up_q().
974 * It is safe to perform this call after dropping all locks.
976 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
977 int otime
, struct wake_q_head
*wake_q
)
981 otime
|= do_smart_wakeup_zero(sma
, sops
, nsops
, wake_q
);
983 if (!list_empty(&sma
->pending_alter
)) {
984 /* semaphore array uses the global queue - just process it. */
985 otime
|= update_queue(sma
, -1, wake_q
);
989 * No sops, thus the modified semaphores are not
992 for (i
= 0; i
< sma
->sem_nsems
; i
++)
993 otime
|= update_queue(sma
, i
, wake_q
);
996 * Check the semaphores that were increased:
997 * - No complex ops, thus all sleeping ops are
999 * - if we decreased the value, then any sleeping
1000 * semaphore ops wont be able to run: If the
1001 * previous value was too small, then the new
1002 * value will be too small, too.
1004 for (i
= 0; i
< nsops
; i
++) {
1005 if (sops
[i
].sem_op
> 0) {
1006 otime
|= update_queue(sma
,
1007 sops
[i
].sem_num
, wake_q
);
1013 set_semotime(sma
, sops
);
1017 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1019 static int check_qop(struct sem_array
*sma
, int semnum
, struct sem_queue
*q
,
1022 struct sembuf
*sop
= q
->blocking
;
1025 * Linux always (since 0.99.10) reported a task as sleeping on all
1026 * semaphores. This violates SUS, therefore it was changed to the
1027 * standard compliant behavior.
1028 * Give the administrators a chance to notice that an application
1029 * might misbehave because it relies on the Linux behavior.
1031 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1032 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1033 current
->comm
, task_pid_nr(current
));
1035 if (sop
->sem_num
!= semnum
)
1038 if (count_zero
&& sop
->sem_op
== 0)
1040 if (!count_zero
&& sop
->sem_op
< 0)
1046 /* The following counts are associated to each semaphore:
1047 * semncnt number of tasks waiting on semval being nonzero
1048 * semzcnt number of tasks waiting on semval being zero
1050 * Per definition, a task waits only on the semaphore of the first semop
1051 * that cannot proceed, even if additional operation would block, too.
1053 static int count_semcnt(struct sem_array
*sma
, ushort semnum
,
1056 struct list_head
*l
;
1057 struct sem_queue
*q
;
1061 /* First: check the simple operations. They are easy to evaluate */
1063 l
= &sma
->sems
[semnum
].pending_const
;
1065 l
= &sma
->sems
[semnum
].pending_alter
;
1067 list_for_each_entry(q
, l
, list
) {
1068 /* all task on a per-semaphore list sleep on exactly
1074 /* Then: check the complex operations. */
1075 list_for_each_entry(q
, &sma
->pending_alter
, list
) {
1076 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1079 list_for_each_entry(q
, &sma
->pending_const
, list
) {
1080 semcnt
+= check_qop(sma
, semnum
, q
, count_zero
);
1086 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1087 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1088 * remains locked on exit.
1090 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
1092 struct sem_undo
*un
, *tu
;
1093 struct sem_queue
*q
, *tq
;
1094 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1096 DEFINE_WAKE_Q(wake_q
);
1098 /* Free the existing undo structures for this semaphore set. */
1099 ipc_assert_locked_object(&sma
->sem_perm
);
1100 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
1101 list_del(&un
->list_id
);
1102 spin_lock(&un
->ulp
->lock
);
1104 list_del_rcu(&un
->list_proc
);
1105 spin_unlock(&un
->ulp
->lock
);
1109 /* Wake up all pending processes and let them fail with EIDRM. */
1110 list_for_each_entry_safe(q
, tq
, &sma
->pending_const
, list
) {
1111 unlink_queue(sma
, q
);
1112 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1115 list_for_each_entry_safe(q
, tq
, &sma
->pending_alter
, list
) {
1116 unlink_queue(sma
, q
);
1117 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1119 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1120 struct sem
*sem
= &sma
->sems
[i
];
1121 list_for_each_entry_safe(q
, tq
, &sem
->pending_const
, list
) {
1122 unlink_queue(sma
, q
);
1123 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1125 list_for_each_entry_safe(q
, tq
, &sem
->pending_alter
, list
) {
1126 unlink_queue(sma
, q
);
1127 wake_up_sem_queue_prepare(q
, -EIDRM
, &wake_q
);
1131 /* Remove the semaphore set from the IDR */
1133 sem_unlock(sma
, -1);
1137 ns
->used_sems
-= sma
->sem_nsems
;
1138 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1141 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
1145 return copy_to_user(buf
, in
, sizeof(*in
));
1148 struct semid_ds out
;
1150 memset(&out
, 0, sizeof(out
));
1152 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
1154 out
.sem_otime
= in
->sem_otime
;
1155 out
.sem_ctime
= in
->sem_ctime
;
1156 out
.sem_nsems
= in
->sem_nsems
;
1158 return copy_to_user(buf
, &out
, sizeof(out
));
1165 static time_t get_semotime(struct sem_array
*sma
)
1170 res
= sma
->sems
[0].sem_otime
;
1171 for (i
= 1; i
< sma
->sem_nsems
; i
++) {
1172 time_t to
= sma
->sems
[i
].sem_otime
;
1180 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
1181 int cmd
, int version
, void __user
*p
)
1184 struct sem_array
*sma
;
1190 struct seminfo seminfo
;
1193 err
= security_sem_semctl(NULL
, cmd
);
1197 memset(&seminfo
, 0, sizeof(seminfo
));
1198 seminfo
.semmni
= ns
->sc_semmni
;
1199 seminfo
.semmns
= ns
->sc_semmns
;
1200 seminfo
.semmsl
= ns
->sc_semmsl
;
1201 seminfo
.semopm
= ns
->sc_semopm
;
1202 seminfo
.semvmx
= SEMVMX
;
1203 seminfo
.semmnu
= SEMMNU
;
1204 seminfo
.semmap
= SEMMAP
;
1205 seminfo
.semume
= SEMUME
;
1206 down_read(&sem_ids(ns
).rwsem
);
1207 if (cmd
== SEM_INFO
) {
1208 seminfo
.semusz
= sem_ids(ns
).in_use
;
1209 seminfo
.semaem
= ns
->used_sems
;
1211 seminfo
.semusz
= SEMUSZ
;
1212 seminfo
.semaem
= SEMAEM
;
1214 max_id
= ipc_get_maxid(&sem_ids(ns
));
1215 up_read(&sem_ids(ns
).rwsem
);
1216 if (copy_to_user(p
, &seminfo
, sizeof(struct seminfo
)))
1218 return (max_id
< 0) ? 0 : max_id
;
1223 struct semid64_ds tbuf
;
1226 memset(&tbuf
, 0, sizeof(tbuf
));
1229 if (cmd
== SEM_STAT
) {
1230 sma
= sem_obtain_object(ns
, semid
);
1235 id
= sma
->sem_perm
.id
;
1237 sma
= sem_obtain_object_check(ns
, semid
);
1245 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
1248 err
= security_sem_semctl(sma
, cmd
);
1252 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
1253 tbuf
.sem_otime
= get_semotime(sma
);
1254 tbuf
.sem_ctime
= sma
->sem_ctime
;
1255 tbuf
.sem_nsems
= sma
->sem_nsems
;
1257 if (copy_semid_to_user(p
, &tbuf
, version
))
1269 static int semctl_setval(struct ipc_namespace
*ns
, int semid
, int semnum
,
1272 struct sem_undo
*un
;
1273 struct sem_array
*sma
;
1276 DEFINE_WAKE_Q(wake_q
);
1278 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1279 /* big-endian 64bit */
1282 /* 32bit or little-endian 64bit */
1286 if (val
> SEMVMX
|| val
< 0)
1290 sma
= sem_obtain_object_check(ns
, semid
);
1293 return PTR_ERR(sma
);
1296 if (semnum
< 0 || semnum
>= sma
->sem_nsems
) {
1302 if (ipcperms(ns
, &sma
->sem_perm
, S_IWUGO
)) {
1307 err
= security_sem_semctl(sma
, SETVAL
);
1313 sem_lock(sma
, NULL
, -1);
1315 if (!ipc_valid_object(&sma
->sem_perm
)) {
1316 sem_unlock(sma
, -1);
1321 curr
= &sma
->sems
[semnum
];
1323 ipc_assert_locked_object(&sma
->sem_perm
);
1324 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1325 un
->semadj
[semnum
] = 0;
1328 curr
->sempid
= task_tgid_vnr(current
);
1329 sma
->sem_ctime
= get_seconds();
1330 /* maybe some queued-up processes were waiting for this */
1331 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1332 sem_unlock(sma
, -1);
1338 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
1339 int cmd
, void __user
*p
)
1341 struct sem_array
*sma
;
1344 ushort fast_sem_io
[SEMMSL_FAST
];
1345 ushort
*sem_io
= fast_sem_io
;
1346 DEFINE_WAKE_Q(wake_q
);
1349 sma
= sem_obtain_object_check(ns
, semid
);
1352 return PTR_ERR(sma
);
1355 nsems
= sma
->sem_nsems
;
1358 if (ipcperms(ns
, &sma
->sem_perm
, cmd
== SETALL
? S_IWUGO
: S_IRUGO
))
1359 goto out_rcu_wakeup
;
1361 err
= security_sem_semctl(sma
, cmd
);
1363 goto out_rcu_wakeup
;
1369 ushort __user
*array
= p
;
1372 sem_lock(sma
, NULL
, -1);
1373 if (!ipc_valid_object(&sma
->sem_perm
)) {
1377 if (nsems
> SEMMSL_FAST
) {
1378 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1382 sem_unlock(sma
, -1);
1384 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1386 if (sem_io
== NULL
) {
1387 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1392 sem_lock_and_putref(sma
);
1393 if (!ipc_valid_object(&sma
->sem_perm
)) {
1398 for (i
= 0; i
< sma
->sem_nsems
; i
++)
1399 sem_io
[i
] = sma
->sems
[i
].semval
;
1400 sem_unlock(sma
, -1);
1403 if (copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
1410 struct sem_undo
*un
;
1412 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1414 goto out_rcu_wakeup
;
1418 if (nsems
> SEMMSL_FAST
) {
1419 sem_io
= kvmalloc_array(nsems
, sizeof(ushort
),
1421 if (sem_io
== NULL
) {
1422 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1427 if (copy_from_user(sem_io
, p
, nsems
*sizeof(ushort
))) {
1428 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1433 for (i
= 0; i
< nsems
; i
++) {
1434 if (sem_io
[i
] > SEMVMX
) {
1435 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1441 sem_lock_and_putref(sma
);
1442 if (!ipc_valid_object(&sma
->sem_perm
)) {
1447 for (i
= 0; i
< nsems
; i
++) {
1448 sma
->sems
[i
].semval
= sem_io
[i
];
1449 sma
->sems
[i
].sempid
= task_tgid_vnr(current
);
1452 ipc_assert_locked_object(&sma
->sem_perm
);
1453 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
1454 for (i
= 0; i
< nsems
; i
++)
1457 sma
->sem_ctime
= get_seconds();
1458 /* maybe some queued-up processes were waiting for this */
1459 do_smart_update(sma
, NULL
, 0, 0, &wake_q
);
1463 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1466 if (semnum
< 0 || semnum
>= nsems
)
1467 goto out_rcu_wakeup
;
1469 sem_lock(sma
, NULL
, -1);
1470 if (!ipc_valid_object(&sma
->sem_perm
)) {
1474 curr
= &sma
->sems
[semnum
];
1484 err
= count_semcnt(sma
, semnum
, 0);
1487 err
= count_semcnt(sma
, semnum
, 1);
1492 sem_unlock(sma
, -1);
1497 if (sem_io
!= fast_sem_io
)
1502 static inline unsigned long
1503 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1507 if (copy_from_user(out
, buf
, sizeof(*out
)))
1512 struct semid_ds tbuf_old
;
1514 if (copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1517 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1518 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1519 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1529 * This function handles some semctl commands which require the rwsem
1530 * to be held in write mode.
1531 * NOTE: no locks must be held, the rwsem is taken inside this function.
1533 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1534 int cmd
, int version
, void __user
*p
)
1536 struct sem_array
*sma
;
1538 struct semid64_ds semid64
;
1539 struct kern_ipc_perm
*ipcp
;
1541 if (cmd
== IPC_SET
) {
1542 if (copy_semid_from_user(&semid64
, p
, version
))
1546 down_write(&sem_ids(ns
).rwsem
);
1549 ipcp
= ipcctl_pre_down_nolock(ns
, &sem_ids(ns
), semid
, cmd
,
1550 &semid64
.sem_perm
, 0);
1552 err
= PTR_ERR(ipcp
);
1556 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1558 err
= security_sem_semctl(sma
, cmd
);
1564 sem_lock(sma
, NULL
, -1);
1565 /* freeary unlocks the ipc object and rcu */
1569 sem_lock(sma
, NULL
, -1);
1570 err
= ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1573 sma
->sem_ctime
= get_seconds();
1581 sem_unlock(sma
, -1);
1585 up_write(&sem_ids(ns
).rwsem
);
1589 SYSCALL_DEFINE4(semctl
, int, semid
, int, semnum
, int, cmd
, unsigned long, arg
)
1592 struct ipc_namespace
*ns
;
1593 void __user
*p
= (void __user
*)arg
;
1598 version
= ipc_parse_version(&cmd
);
1599 ns
= current
->nsproxy
->ipc_ns
;
1606 return semctl_nolock(ns
, semid
, cmd
, version
, p
);
1613 return semctl_main(ns
, semid
, semnum
, cmd
, p
);
1615 return semctl_setval(ns
, semid
, semnum
, arg
);
1618 return semctl_down(ns
, semid
, cmd
, version
, p
);
1624 /* If the task doesn't already have a undo_list, then allocate one
1625 * here. We guarantee there is only one thread using this undo list,
1626 * and current is THE ONE
1628 * If this allocation and assignment succeeds, but later
1629 * portions of this code fail, there is no need to free the sem_undo_list.
1630 * Just let it stay associated with the task, and it'll be freed later
1633 * This can block, so callers must hold no locks.
1635 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1637 struct sem_undo_list
*undo_list
;
1639 undo_list
= current
->sysvsem
.undo_list
;
1641 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1642 if (undo_list
== NULL
)
1644 spin_lock_init(&undo_list
->lock
);
1645 atomic_set(&undo_list
->refcnt
, 1);
1646 INIT_LIST_HEAD(&undo_list
->list_proc
);
1648 current
->sysvsem
.undo_list
= undo_list
;
1650 *undo_listp
= undo_list
;
1654 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1656 struct sem_undo
*un
;
1658 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1659 if (un
->semid
== semid
)
1665 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1667 struct sem_undo
*un
;
1669 assert_spin_locked(&ulp
->lock
);
1671 un
= __lookup_undo(ulp
, semid
);
1673 list_del_rcu(&un
->list_proc
);
1674 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1680 * find_alloc_undo - lookup (and if not present create) undo array
1682 * @semid: semaphore array id
1684 * The function looks up (and if not present creates) the undo structure.
1685 * The size of the undo structure depends on the size of the semaphore
1686 * array, thus the alloc path is not that straightforward.
1687 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1688 * performs a rcu_read_lock().
1690 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1692 struct sem_array
*sma
;
1693 struct sem_undo_list
*ulp
;
1694 struct sem_undo
*un
, *new;
1697 error
= get_undo_list(&ulp
);
1699 return ERR_PTR(error
);
1702 spin_lock(&ulp
->lock
);
1703 un
= lookup_undo(ulp
, semid
);
1704 spin_unlock(&ulp
->lock
);
1705 if (likely(un
!= NULL
))
1708 /* no undo structure around - allocate one. */
1709 /* step 1: figure out the size of the semaphore array */
1710 sma
= sem_obtain_object_check(ns
, semid
);
1713 return ERR_CAST(sma
);
1716 nsems
= sma
->sem_nsems
;
1717 if (!ipc_rcu_getref(&sma
->sem_perm
)) {
1719 un
= ERR_PTR(-EIDRM
);
1724 /* step 2: allocate new undo structure */
1725 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1727 ipc_rcu_putref(&sma
->sem_perm
, sem_rcu_free
);
1728 return ERR_PTR(-ENOMEM
);
1731 /* step 3: Acquire the lock on semaphore array */
1733 sem_lock_and_putref(sma
);
1734 if (!ipc_valid_object(&sma
->sem_perm
)) {
1735 sem_unlock(sma
, -1);
1738 un
= ERR_PTR(-EIDRM
);
1741 spin_lock(&ulp
->lock
);
1744 * step 4: check for races: did someone else allocate the undo struct?
1746 un
= lookup_undo(ulp
, semid
);
1751 /* step 5: initialize & link new undo structure */
1752 new->semadj
= (short *) &new[1];
1755 assert_spin_locked(&ulp
->lock
);
1756 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1757 ipc_assert_locked_object(&sma
->sem_perm
);
1758 list_add(&new->list_id
, &sma
->list_id
);
1762 spin_unlock(&ulp
->lock
);
1763 sem_unlock(sma
, -1);
1768 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1769 unsigned, nsops
, const struct timespec __user
*, timeout
)
1771 int error
= -EINVAL
;
1772 struct sem_array
*sma
;
1773 struct sembuf fast_sops
[SEMOPM_FAST
];
1774 struct sembuf
*sops
= fast_sops
, *sop
;
1775 struct sem_undo
*un
;
1777 bool undos
= false, alter
= false, dupsop
= false;
1778 struct sem_queue queue
;
1779 unsigned long dup
= 0, jiffies_left
= 0;
1780 struct ipc_namespace
*ns
;
1782 ns
= current
->nsproxy
->ipc_ns
;
1784 if (nsops
< 1 || semid
< 0)
1786 if (nsops
> ns
->sc_semopm
)
1788 if (nsops
> SEMOPM_FAST
) {
1789 sops
= kmalloc(sizeof(*sops
)*nsops
, GFP_KERNEL
);
1794 if (copy_from_user(sops
, tsops
, nsops
* sizeof(*tsops
))) {
1800 struct timespec _timeout
;
1801 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1805 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1806 _timeout
.tv_nsec
>= 1000000000L) {
1810 jiffies_left
= timespec_to_jiffies(&_timeout
);
1814 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1815 unsigned long mask
= 1ULL << ((sop
->sem_num
) % BITS_PER_LONG
);
1817 if (sop
->sem_num
>= max
)
1819 if (sop
->sem_flg
& SEM_UNDO
)
1823 * There was a previous alter access that appears
1824 * to have accessed the same semaphore, thus use
1825 * the dupsop logic. "appears", because the detection
1826 * can only check % BITS_PER_LONG.
1830 if (sop
->sem_op
!= 0) {
1837 /* On success, find_alloc_undo takes the rcu_read_lock */
1838 un
= find_alloc_undo(ns
, semid
);
1840 error
= PTR_ERR(un
);
1848 sma
= sem_obtain_object_check(ns
, semid
);
1851 error
= PTR_ERR(sma
);
1856 if (max
>= sma
->sem_nsems
) {
1862 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
)) {
1867 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1874 locknum
= sem_lock(sma
, sops
, nsops
);
1876 * We eventually might perform the following check in a lockless
1877 * fashion, considering ipc_valid_object() locking constraints.
1878 * If nsops == 1 and there is no contention for sem_perm.lock, then
1879 * only a per-semaphore lock is held and it's OK to proceed with the
1880 * check below. More details on the fine grained locking scheme
1881 * entangled here and why it's RMID race safe on comments at sem_lock()
1883 if (!ipc_valid_object(&sma
->sem_perm
))
1884 goto out_unlock_free
;
1886 * semid identifiers are not unique - find_alloc_undo may have
1887 * allocated an undo structure, it was invalidated by an RMID
1888 * and now a new array with received the same id. Check and fail.
1889 * This case can be detected checking un->semid. The existence of
1890 * "un" itself is guaranteed by rcu.
1892 if (un
&& un
->semid
== -1)
1893 goto out_unlock_free
;
1896 queue
.nsops
= nsops
;
1898 queue
.pid
= task_tgid_vnr(current
);
1899 queue
.alter
= alter
;
1900 queue
.dupsop
= dupsop
;
1902 error
= perform_atomic_semop(sma
, &queue
);
1903 if (error
== 0) { /* non-blocking succesfull path */
1904 DEFINE_WAKE_Q(wake_q
);
1907 * If the operation was successful, then do
1908 * the required updates.
1911 do_smart_update(sma
, sops
, nsops
, 1, &wake_q
);
1913 set_semotime(sma
, sops
);
1915 sem_unlock(sma
, locknum
);
1921 if (error
< 0) /* non-blocking error path */
1922 goto out_unlock_free
;
1925 * We need to sleep on this operation, so we put the current
1926 * task into the pending queue and go to sleep.
1930 curr
= &sma
->sems
[sops
->sem_num
];
1933 if (sma
->complex_count
) {
1934 list_add_tail(&queue
.list
,
1935 &sma
->pending_alter
);
1938 list_add_tail(&queue
.list
,
1939 &curr
->pending_alter
);
1942 list_add_tail(&queue
.list
, &curr
->pending_const
);
1945 if (!sma
->complex_count
)
1949 list_add_tail(&queue
.list
, &sma
->pending_alter
);
1951 list_add_tail(&queue
.list
, &sma
->pending_const
);
1953 sma
->complex_count
++;
1957 queue
.status
= -EINTR
;
1958 queue
.sleeper
= current
;
1960 __set_current_state(TASK_INTERRUPTIBLE
);
1961 sem_unlock(sma
, locknum
);
1965 jiffies_left
= schedule_timeout(jiffies_left
);
1970 * fastpath: the semop has completed, either successfully or
1971 * not, from the syscall pov, is quite irrelevant to us at this
1972 * point; we're done.
1974 * We _do_ care, nonetheless, about being awoken by a signal or
1975 * spuriously. The queue.status is checked again in the
1976 * slowpath (aka after taking sem_lock), such that we can detect
1977 * scenarios where we were awakened externally, during the
1978 * window between wake_q_add() and wake_up_q().
1980 error
= READ_ONCE(queue
.status
);
1981 if (error
!= -EINTR
) {
1983 * User space could assume that semop() is a memory
1984 * barrier: Without the mb(), the cpu could
1985 * speculatively read in userspace stale data that was
1986 * overwritten by the previous owner of the semaphore.
1993 locknum
= sem_lock(sma
, sops
, nsops
);
1995 if (!ipc_valid_object(&sma
->sem_perm
))
1996 goto out_unlock_free
;
1998 error
= READ_ONCE(queue
.status
);
2001 * If queue.status != -EINTR we are woken up by another process.
2002 * Leave without unlink_queue(), but with sem_unlock().
2004 if (error
!= -EINTR
)
2005 goto out_unlock_free
;
2008 * If an interrupt occurred we have to clean up the queue.
2010 if (timeout
&& jiffies_left
== 0)
2012 } while (error
== -EINTR
&& !signal_pending(current
)); /* spurious */
2014 unlink_queue(sma
, &queue
);
2017 sem_unlock(sma
, locknum
);
2020 if (sops
!= fast_sops
)
2025 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
2028 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
2031 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2032 * parent and child tasks.
2035 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
2037 struct sem_undo_list
*undo_list
;
2040 if (clone_flags
& CLONE_SYSVSEM
) {
2041 error
= get_undo_list(&undo_list
);
2044 atomic_inc(&undo_list
->refcnt
);
2045 tsk
->sysvsem
.undo_list
= undo_list
;
2047 tsk
->sysvsem
.undo_list
= NULL
;
2053 * add semadj values to semaphores, free undo structures.
2054 * undo structures are not freed when semaphore arrays are destroyed
2055 * so some of them may be out of date.
2056 * IMPLEMENTATION NOTE: There is some confusion over whether the
2057 * set of adjustments that needs to be done should be done in an atomic
2058 * manner or not. That is, if we are attempting to decrement the semval
2059 * should we queue up and wait until we can do so legally?
2060 * The original implementation attempted to do this (queue and wait).
2061 * The current implementation does not do so. The POSIX standard
2062 * and SVID should be consulted to determine what behavior is mandated.
2064 void exit_sem(struct task_struct
*tsk
)
2066 struct sem_undo_list
*ulp
;
2068 ulp
= tsk
->sysvsem
.undo_list
;
2071 tsk
->sysvsem
.undo_list
= NULL
;
2073 if (!atomic_dec_and_test(&ulp
->refcnt
))
2077 struct sem_array
*sma
;
2078 struct sem_undo
*un
;
2080 DEFINE_WAKE_Q(wake_q
);
2085 un
= list_entry_rcu(ulp
->list_proc
.next
,
2086 struct sem_undo
, list_proc
);
2087 if (&un
->list_proc
== &ulp
->list_proc
) {
2089 * We must wait for freeary() before freeing this ulp,
2090 * in case we raced with last sem_undo. There is a small
2091 * possibility where we exit while freeary() didn't
2092 * finish unlocking sem_undo_list.
2094 spin_unlock_wait(&ulp
->lock
);
2098 spin_lock(&ulp
->lock
);
2100 spin_unlock(&ulp
->lock
);
2102 /* exit_sem raced with IPC_RMID, nothing to do */
2108 sma
= sem_obtain_object_check(tsk
->nsproxy
->ipc_ns
, semid
);
2109 /* exit_sem raced with IPC_RMID, nothing to do */
2115 sem_lock(sma
, NULL
, -1);
2116 /* exit_sem raced with IPC_RMID, nothing to do */
2117 if (!ipc_valid_object(&sma
->sem_perm
)) {
2118 sem_unlock(sma
, -1);
2122 un
= __lookup_undo(ulp
, semid
);
2124 /* exit_sem raced with IPC_RMID+semget() that created
2125 * exactly the same semid. Nothing to do.
2127 sem_unlock(sma
, -1);
2132 /* remove un from the linked lists */
2133 ipc_assert_locked_object(&sma
->sem_perm
);
2134 list_del(&un
->list_id
);
2136 /* we are the last process using this ulp, acquiring ulp->lock
2137 * isn't required. Besides that, we are also protected against
2138 * IPC_RMID as we hold sma->sem_perm lock now
2140 list_del_rcu(&un
->list_proc
);
2142 /* perform adjustments registered in un */
2143 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
2144 struct sem
*semaphore
= &sma
->sems
[i
];
2145 if (un
->semadj
[i
]) {
2146 semaphore
->semval
+= un
->semadj
[i
];
2148 * Range checks of the new semaphore value,
2149 * not defined by sus:
2150 * - Some unices ignore the undo entirely
2151 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2152 * - some cap the value (e.g. FreeBSD caps
2153 * at 0, but doesn't enforce SEMVMX)
2155 * Linux caps the semaphore value, both at 0
2158 * Manfred <manfred@colorfullife.com>
2160 if (semaphore
->semval
< 0)
2161 semaphore
->semval
= 0;
2162 if (semaphore
->semval
> SEMVMX
)
2163 semaphore
->semval
= SEMVMX
;
2164 semaphore
->sempid
= task_tgid_vnr(current
);
2167 /* maybe some queued-up processes were waiting for this */
2168 do_smart_update(sma
, NULL
, 0, 1, &wake_q
);
2169 sem_unlock(sma
, -1);
2178 #ifdef CONFIG_PROC_FS
2179 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
2181 struct user_namespace
*user_ns
= seq_user_ns(s
);
2182 struct kern_ipc_perm
*ipcp
= it
;
2183 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
2187 * The proc interface isn't aware of sem_lock(), it calls
2188 * ipc_lock_object() directly (in sysvipc_find_ipc).
2189 * In order to stay compatible with sem_lock(), we must
2190 * enter / leave complex_mode.
2192 complexmode_enter(sma
);
2194 sem_otime
= get_semotime(sma
);
2197 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2202 from_kuid_munged(user_ns
, sma
->sem_perm
.uid
),
2203 from_kgid_munged(user_ns
, sma
->sem_perm
.gid
),
2204 from_kuid_munged(user_ns
, sma
->sem_perm
.cuid
),
2205 from_kgid_munged(user_ns
, sma
->sem_perm
.cgid
),
2209 complexmode_tryleave(sma
);