x86/unwinder: Handle stack overflows more gracefully
[linux/fpc-iii.git] / arch / mips / cavium-octeon / setup.c
bloba8034d0dcadeb5ce361bfd23dc737a6f48d6f5b4
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2004-2007 Cavium Networks
7 * Copyright (C) 2008, 2009 Wind River Systems
8 * written by Ralf Baechle <ralf@linux-mips.org>
9 */
10 #include <linux/compiler.h>
11 #include <linux/vmalloc.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/console.h>
15 #include <linux/delay.h>
16 #include <linux/export.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/serial.h>
20 #include <linux/smp.h>
21 #include <linux/types.h>
22 #include <linux/string.h> /* for memset */
23 #include <linux/tty.h>
24 #include <linux/time.h>
25 #include <linux/platform_device.h>
26 #include <linux/serial_core.h>
27 #include <linux/serial_8250.h>
28 #include <linux/of_fdt.h>
29 #include <linux/libfdt.h>
30 #include <linux/kexec.h>
32 #include <asm/processor.h>
33 #include <asm/reboot.h>
34 #include <asm/smp-ops.h>
35 #include <asm/irq_cpu.h>
36 #include <asm/mipsregs.h>
37 #include <asm/bootinfo.h>
38 #include <asm/sections.h>
39 #include <asm/time.h>
41 #include <asm/octeon/octeon.h>
42 #include <asm/octeon/pci-octeon.h>
43 #include <asm/octeon/cvmx-rst-defs.h>
46 * TRUE for devices having registers with little-endian byte
47 * order, FALSE for registers with native-endian byte order.
48 * PCI mandates little-endian, USB and SATA are configuraable,
49 * but we chose little-endian for these.
51 const bool octeon_should_swizzle_table[256] = {
52 [0x00] = true, /* bootbus/CF */
53 [0x1b] = true, /* PCI mmio window */
54 [0x1c] = true, /* PCI mmio window */
55 [0x1d] = true, /* PCI mmio window */
56 [0x1e] = true, /* PCI mmio window */
57 [0x68] = true, /* OCTEON III USB */
58 [0x69] = true, /* OCTEON III USB */
59 [0x6c] = true, /* OCTEON III SATA */
60 [0x6f] = true, /* OCTEON II USB */
62 EXPORT_SYMBOL(octeon_should_swizzle_table);
64 #ifdef CONFIG_PCI
65 extern void pci_console_init(const char *arg);
66 #endif
68 static unsigned long long max_memory = ULLONG_MAX;
69 static unsigned long long reserve_low_mem;
71 DEFINE_SEMAPHORE(octeon_bootbus_sem);
72 EXPORT_SYMBOL(octeon_bootbus_sem);
74 struct octeon_boot_descriptor *octeon_boot_desc_ptr;
76 struct cvmx_bootinfo *octeon_bootinfo;
77 EXPORT_SYMBOL(octeon_bootinfo);
79 #ifdef CONFIG_KEXEC
80 #ifdef CONFIG_SMP
82 * Wait for relocation code is prepared and send
83 * secondary CPUs to spin until kernel is relocated.
85 static void octeon_kexec_smp_down(void *ignored)
87 int cpu = smp_processor_id();
89 local_irq_disable();
90 set_cpu_online(cpu, false);
91 while (!atomic_read(&kexec_ready_to_reboot))
92 cpu_relax();
94 asm volatile (
95 " sync \n"
96 " synci ($0) \n");
98 relocated_kexec_smp_wait(NULL);
100 #endif
102 #define OCTEON_DDR0_BASE (0x0ULL)
103 #define OCTEON_DDR0_SIZE (0x010000000ULL)
104 #define OCTEON_DDR1_BASE (0x410000000ULL)
105 #define OCTEON_DDR1_SIZE (0x010000000ULL)
106 #define OCTEON_DDR2_BASE (0x020000000ULL)
107 #define OCTEON_DDR2_SIZE (0x3e0000000ULL)
108 #define OCTEON_MAX_PHY_MEM_SIZE (16*1024*1024*1024ULL)
110 static struct kimage *kimage_ptr;
112 static void kexec_bootmem_init(uint64_t mem_size, uint32_t low_reserved_bytes)
114 int64_t addr;
115 struct cvmx_bootmem_desc *bootmem_desc;
117 bootmem_desc = cvmx_bootmem_get_desc();
119 if (mem_size > OCTEON_MAX_PHY_MEM_SIZE) {
120 mem_size = OCTEON_MAX_PHY_MEM_SIZE;
121 pr_err("Error: requested memory too large,"
122 "truncating to maximum size\n");
125 bootmem_desc->major_version = CVMX_BOOTMEM_DESC_MAJ_VER;
126 bootmem_desc->minor_version = CVMX_BOOTMEM_DESC_MIN_VER;
128 addr = (OCTEON_DDR0_BASE + reserve_low_mem + low_reserved_bytes);
129 bootmem_desc->head_addr = 0;
131 if (mem_size <= OCTEON_DDR0_SIZE) {
132 __cvmx_bootmem_phy_free(addr,
133 mem_size - reserve_low_mem -
134 low_reserved_bytes, 0);
135 return;
138 __cvmx_bootmem_phy_free(addr,
139 OCTEON_DDR0_SIZE - reserve_low_mem -
140 low_reserved_bytes, 0);
142 mem_size -= OCTEON_DDR0_SIZE;
144 if (mem_size > OCTEON_DDR1_SIZE) {
145 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, OCTEON_DDR1_SIZE, 0);
146 __cvmx_bootmem_phy_free(OCTEON_DDR2_BASE,
147 mem_size - OCTEON_DDR1_SIZE, 0);
148 } else
149 __cvmx_bootmem_phy_free(OCTEON_DDR1_BASE, mem_size, 0);
152 static int octeon_kexec_prepare(struct kimage *image)
154 int i;
155 char *bootloader = "kexec";
157 octeon_boot_desc_ptr->argc = 0;
158 for (i = 0; i < image->nr_segments; i++) {
159 if (!strncmp(bootloader, (char *)image->segment[i].buf,
160 strlen(bootloader))) {
162 * convert command line string to array
163 * of parameters (as bootloader does).
165 int argc = 0, offt;
166 char *str = (char *)image->segment[i].buf;
167 char *ptr = strchr(str, ' ');
168 while (ptr && (OCTEON_ARGV_MAX_ARGS > argc)) {
169 *ptr = '\0';
170 if (ptr[1] != ' ') {
171 offt = (int)(ptr - str + 1);
172 octeon_boot_desc_ptr->argv[argc] =
173 image->segment[i].mem + offt;
174 argc++;
176 ptr = strchr(ptr + 1, ' ');
178 octeon_boot_desc_ptr->argc = argc;
179 break;
184 * Information about segments will be needed during pre-boot memory
185 * initialization.
187 kimage_ptr = image;
188 return 0;
191 static void octeon_generic_shutdown(void)
193 int i;
194 #ifdef CONFIG_SMP
195 int cpu;
196 #endif
197 struct cvmx_bootmem_desc *bootmem_desc;
198 void *named_block_array_ptr;
200 bootmem_desc = cvmx_bootmem_get_desc();
201 named_block_array_ptr =
202 cvmx_phys_to_ptr(bootmem_desc->named_block_array_addr);
204 #ifdef CONFIG_SMP
205 /* disable watchdogs */
206 for_each_online_cpu(cpu)
207 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
208 #else
209 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
210 #endif
211 if (kimage_ptr != kexec_crash_image) {
212 memset(named_block_array_ptr,
213 0x0,
214 CVMX_BOOTMEM_NUM_NAMED_BLOCKS *
215 sizeof(struct cvmx_bootmem_named_block_desc));
217 * Mark all memory (except low 0x100000 bytes) as free.
218 * It is the same thing that bootloader does.
220 kexec_bootmem_init(octeon_bootinfo->dram_size*1024ULL*1024ULL,
221 0x100000);
223 * Allocate all segments to avoid their corruption during boot.
225 for (i = 0; i < kimage_ptr->nr_segments; i++)
226 cvmx_bootmem_alloc_address(
227 kimage_ptr->segment[i].memsz + 2*PAGE_SIZE,
228 kimage_ptr->segment[i].mem - PAGE_SIZE,
229 PAGE_SIZE);
230 } else {
232 * Do not mark all memory as free. Free only named sections
233 * leaving the rest of memory unchanged.
235 struct cvmx_bootmem_named_block_desc *ptr =
236 (struct cvmx_bootmem_named_block_desc *)
237 named_block_array_ptr;
239 for (i = 0; i < bootmem_desc->named_block_num_blocks; i++)
240 if (ptr[i].size)
241 cvmx_bootmem_free_named(ptr[i].name);
243 kexec_args[2] = 1UL; /* running on octeon_main_processor */
244 kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
245 #ifdef CONFIG_SMP
246 secondary_kexec_args[2] = 0UL; /* running on secondary cpu */
247 secondary_kexec_args[3] = (unsigned long)octeon_boot_desc_ptr;
248 #endif
251 static void octeon_shutdown(void)
253 octeon_generic_shutdown();
254 #ifdef CONFIG_SMP
255 smp_call_function(octeon_kexec_smp_down, NULL, 0);
256 smp_wmb();
257 while (num_online_cpus() > 1) {
258 cpu_relax();
259 mdelay(1);
261 #endif
264 static void octeon_crash_shutdown(struct pt_regs *regs)
266 octeon_generic_shutdown();
267 default_machine_crash_shutdown(regs);
270 #ifdef CONFIG_SMP
271 void octeon_crash_smp_send_stop(void)
273 int cpu;
275 /* disable watchdogs */
276 for_each_online_cpu(cpu)
277 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
279 #endif
281 #endif /* CONFIG_KEXEC */
283 #ifdef CONFIG_CAVIUM_RESERVE32
284 uint64_t octeon_reserve32_memory;
285 EXPORT_SYMBOL(octeon_reserve32_memory);
286 #endif
288 #ifdef CONFIG_KEXEC
289 /* crashkernel cmdline parameter is parsed _after_ memory setup
290 * we also parse it here (workaround for EHB5200) */
291 static uint64_t crashk_size, crashk_base;
292 #endif
294 static int octeon_uart;
296 extern asmlinkage void handle_int(void);
299 * Return non zero if we are currently running in the Octeon simulator
301 * Returns
303 int octeon_is_simulation(void)
305 return octeon_bootinfo->board_type == CVMX_BOARD_TYPE_SIM;
307 EXPORT_SYMBOL(octeon_is_simulation);
310 * Return true if Octeon is in PCI Host mode. This means
311 * Linux can control the PCI bus.
313 * Returns Non zero if Octeon in host mode.
315 int octeon_is_pci_host(void)
317 #ifdef CONFIG_PCI
318 return octeon_bootinfo->config_flags & CVMX_BOOTINFO_CFG_FLAG_PCI_HOST;
319 #else
320 return 0;
321 #endif
325 * Get the clock rate of Octeon
327 * Returns Clock rate in HZ
329 uint64_t octeon_get_clock_rate(void)
331 struct cvmx_sysinfo *sysinfo = cvmx_sysinfo_get();
333 return sysinfo->cpu_clock_hz;
335 EXPORT_SYMBOL(octeon_get_clock_rate);
337 static u64 octeon_io_clock_rate;
339 u64 octeon_get_io_clock_rate(void)
341 return octeon_io_clock_rate;
343 EXPORT_SYMBOL(octeon_get_io_clock_rate);
347 * Write to the LCD display connected to the bootbus. This display
348 * exists on most Cavium evaluation boards. If it doesn't exist, then
349 * this function doesn't do anything.
351 * @s: String to write
353 void octeon_write_lcd(const char *s)
355 if (octeon_bootinfo->led_display_base_addr) {
356 void __iomem *lcd_address =
357 ioremap_nocache(octeon_bootinfo->led_display_base_addr,
359 int i;
360 for (i = 0; i < 8; i++, s++) {
361 if (*s)
362 iowrite8(*s, lcd_address + i);
363 else
364 iowrite8(' ', lcd_address + i);
366 iounmap(lcd_address);
371 * Return the console uart passed by the bootloader
373 * Returns uart (0 or 1)
375 int octeon_get_boot_uart(void)
377 return (octeon_boot_desc_ptr->flags & OCTEON_BL_FLAG_CONSOLE_UART1) ?
378 1 : 0;
382 * Get the coremask Linux was booted on.
384 * Returns Core mask
386 int octeon_get_boot_coremask(void)
388 return octeon_boot_desc_ptr->core_mask;
392 * Check the hardware BIST results for a CPU
394 void octeon_check_cpu_bist(void)
396 const int coreid = cvmx_get_core_num();
397 unsigned long long mask;
398 unsigned long long bist_val;
400 /* Check BIST results for COP0 registers */
401 mask = 0x1f00000000ull;
402 bist_val = read_octeon_c0_icacheerr();
403 if (bist_val & mask)
404 pr_err("Core%d BIST Failure: CacheErr(icache) = 0x%llx\n",
405 coreid, bist_val);
407 bist_val = read_octeon_c0_dcacheerr();
408 if (bist_val & 1)
409 pr_err("Core%d L1 Dcache parity error: "
410 "CacheErr(dcache) = 0x%llx\n",
411 coreid, bist_val);
413 mask = 0xfc00000000000000ull;
414 bist_val = read_c0_cvmmemctl();
415 if (bist_val & mask)
416 pr_err("Core%d BIST Failure: COP0_CVM_MEM_CTL = 0x%llx\n",
417 coreid, bist_val);
419 write_octeon_c0_dcacheerr(0);
423 * Reboot Octeon
425 * @command: Command to pass to the bootloader. Currently ignored.
427 static void octeon_restart(char *command)
429 /* Disable all watchdogs before soft reset. They don't get cleared */
430 #ifdef CONFIG_SMP
431 int cpu;
432 for_each_online_cpu(cpu)
433 cvmx_write_csr(CVMX_CIU_WDOGX(cpu_logical_map(cpu)), 0);
434 #else
435 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
436 #endif
438 mb();
439 while (1)
440 if (OCTEON_IS_OCTEON3())
441 cvmx_write_csr(CVMX_RST_SOFT_RST, 1);
442 else
443 cvmx_write_csr(CVMX_CIU_SOFT_RST, 1);
448 * Permanently stop a core.
450 * @arg: Ignored.
452 static void octeon_kill_core(void *arg)
454 if (octeon_is_simulation())
455 /* A break instruction causes the simulator stop a core */
456 asm volatile ("break" ::: "memory");
458 local_irq_disable();
459 /* Disable watchdog on this core. */
460 cvmx_write_csr(CVMX_CIU_WDOGX(cvmx_get_core_num()), 0);
461 /* Spin in a low power mode. */
462 while (true)
463 asm volatile ("wait" ::: "memory");
468 * Halt the system
470 static void octeon_halt(void)
472 smp_call_function(octeon_kill_core, NULL, 0);
474 switch (octeon_bootinfo->board_type) {
475 case CVMX_BOARD_TYPE_NAO38:
476 /* Driving a 1 to GPIO 12 shuts off this board */
477 cvmx_write_csr(CVMX_GPIO_BIT_CFGX(12), 1);
478 cvmx_write_csr(CVMX_GPIO_TX_SET, 0x1000);
479 break;
480 default:
481 octeon_write_lcd("PowerOff");
482 break;
485 octeon_kill_core(NULL);
488 static char __read_mostly octeon_system_type[80];
490 static void __init init_octeon_system_type(void)
492 char const *board_type;
494 board_type = cvmx_board_type_to_string(octeon_bootinfo->board_type);
495 if (board_type == NULL) {
496 struct device_node *root;
497 int ret;
499 root = of_find_node_by_path("/");
500 ret = of_property_read_string(root, "model", &board_type);
501 of_node_put(root);
502 if (ret)
503 board_type = "Unsupported Board";
506 snprintf(octeon_system_type, sizeof(octeon_system_type), "%s (%s)",
507 board_type, octeon_model_get_string(read_c0_prid()));
511 * Return a string representing the system type
513 * Returns
515 const char *octeon_board_type_string(void)
517 return octeon_system_type;
520 const char *get_system_type(void)
521 __attribute__ ((alias("octeon_board_type_string")));
523 void octeon_user_io_init(void)
525 union octeon_cvmemctl cvmmemctl;
527 /* Get the current settings for CP0_CVMMEMCTL_REG */
528 cvmmemctl.u64 = read_c0_cvmmemctl();
529 /* R/W If set, marked write-buffer entries time out the same
530 * as as other entries; if clear, marked write-buffer entries
531 * use the maximum timeout. */
532 cvmmemctl.s.dismarkwblongto = 1;
533 /* R/W If set, a merged store does not clear the write-buffer
534 * entry timeout state. */
535 cvmmemctl.s.dismrgclrwbto = 0;
536 /* R/W Two bits that are the MSBs of the resultant CVMSEG LM
537 * word location for an IOBDMA. The other 8 bits come from the
538 * SCRADDR field of the IOBDMA. */
539 cvmmemctl.s.iobdmascrmsb = 0;
540 /* R/W If set, SYNCWS and SYNCS only order marked stores; if
541 * clear, SYNCWS and SYNCS only order unmarked
542 * stores. SYNCWSMARKED has no effect when DISSYNCWS is
543 * set. */
544 cvmmemctl.s.syncwsmarked = 0;
545 /* R/W If set, SYNCWS acts as SYNCW and SYNCS acts as SYNC. */
546 cvmmemctl.s.dissyncws = 0;
547 /* R/W If set, no stall happens on write buffer full. */
548 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2))
549 cvmmemctl.s.diswbfst = 1;
550 else
551 cvmmemctl.s.diswbfst = 0;
552 /* R/W If set (and SX set), supervisor-level loads/stores can
553 * use XKPHYS addresses with <48>==0 */
554 cvmmemctl.s.xkmemenas = 0;
556 /* R/W If set (and UX set), user-level loads/stores can use
557 * XKPHYS addresses with VA<48>==0 */
558 cvmmemctl.s.xkmemenau = 0;
560 /* R/W If set (and SX set), supervisor-level loads/stores can
561 * use XKPHYS addresses with VA<48>==1 */
562 cvmmemctl.s.xkioenas = 0;
564 /* R/W If set (and UX set), user-level loads/stores can use
565 * XKPHYS addresses with VA<48>==1 */
566 cvmmemctl.s.xkioenau = 0;
568 /* R/W If set, all stores act as SYNCW (NOMERGE must be set
569 * when this is set) RW, reset to 0. */
570 cvmmemctl.s.allsyncw = 0;
572 /* R/W If set, no stores merge, and all stores reach the
573 * coherent bus in order. */
574 cvmmemctl.s.nomerge = 0;
575 /* R/W Selects the bit in the counter used for DID time-outs 0
576 * = 231, 1 = 230, 2 = 229, 3 = 214. Actual time-out is
577 * between 1x and 2x this interval. For example, with
578 * DIDTTO=3, expiration interval is between 16K and 32K. */
579 cvmmemctl.s.didtto = 0;
580 /* R/W If set, the (mem) CSR clock never turns off. */
581 cvmmemctl.s.csrckalwys = 0;
582 /* R/W If set, mclk never turns off. */
583 cvmmemctl.s.mclkalwys = 0;
584 /* R/W Selects the bit in the counter used for write buffer
585 * flush time-outs (WBFLT+11) is the bit position in an
586 * internal counter used to determine expiration. The write
587 * buffer expires between 1x and 2x this interval. For
588 * example, with WBFLT = 0, a write buffer expires between 2K
589 * and 4K cycles after the write buffer entry is allocated. */
590 cvmmemctl.s.wbfltime = 0;
591 /* R/W If set, do not put Istream in the L2 cache. */
592 cvmmemctl.s.istrnol2 = 0;
595 * R/W The write buffer threshold. As per erratum Core-14752
596 * for CN63XX, a sc/scd might fail if the write buffer is
597 * full. Lowering WBTHRESH greatly lowers the chances of the
598 * write buffer ever being full and triggering the erratum.
600 if (OCTEON_IS_MODEL(OCTEON_CN63XX_PASS1_X))
601 cvmmemctl.s.wbthresh = 4;
602 else
603 cvmmemctl.s.wbthresh = 10;
605 /* R/W If set, CVMSEG is available for loads/stores in
606 * kernel/debug mode. */
607 #if CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
608 cvmmemctl.s.cvmsegenak = 1;
609 #else
610 cvmmemctl.s.cvmsegenak = 0;
611 #endif
612 /* R/W If set, CVMSEG is available for loads/stores in
613 * supervisor mode. */
614 cvmmemctl.s.cvmsegenas = 0;
615 /* R/W If set, CVMSEG is available for loads/stores in user
616 * mode. */
617 cvmmemctl.s.cvmsegenau = 0;
619 write_c0_cvmmemctl(cvmmemctl.u64);
621 /* Setup of CVMSEG is done in kernel-entry-init.h */
622 if (smp_processor_id() == 0)
623 pr_notice("CVMSEG size: %d cache lines (%d bytes)\n",
624 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE,
625 CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128);
627 if (octeon_has_feature(OCTEON_FEATURE_FAU)) {
628 union cvmx_iob_fau_timeout fau_timeout;
630 /* Set a default for the hardware timeouts */
631 fau_timeout.u64 = 0;
632 fau_timeout.s.tout_val = 0xfff;
633 /* Disable tagwait FAU timeout */
634 fau_timeout.s.tout_enb = 0;
635 cvmx_write_csr(CVMX_IOB_FAU_TIMEOUT, fau_timeout.u64);
638 if ((!OCTEON_IS_MODEL(OCTEON_CN68XX) &&
639 !OCTEON_IS_MODEL(OCTEON_CN7XXX)) ||
640 OCTEON_IS_MODEL(OCTEON_CN70XX)) {
641 union cvmx_pow_nw_tim nm_tim;
643 nm_tim.u64 = 0;
644 /* 4096 cycles */
645 nm_tim.s.nw_tim = 3;
646 cvmx_write_csr(CVMX_POW_NW_TIM, nm_tim.u64);
649 write_octeon_c0_icacheerr(0);
650 write_c0_derraddr1(0);
654 * Early entry point for arch setup
656 void __init prom_init(void)
658 struct cvmx_sysinfo *sysinfo;
659 const char *arg;
660 char *p;
661 int i;
662 u64 t;
663 int argc;
664 #ifdef CONFIG_CAVIUM_RESERVE32
665 int64_t addr = -1;
666 #endif
668 * The bootloader passes a pointer to the boot descriptor in
669 * $a3, this is available as fw_arg3.
671 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
672 octeon_bootinfo =
673 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
674 cvmx_bootmem_init(cvmx_phys_to_ptr(octeon_bootinfo->phy_mem_desc_addr));
676 sysinfo = cvmx_sysinfo_get();
677 memset(sysinfo, 0, sizeof(*sysinfo));
678 sysinfo->system_dram_size = octeon_bootinfo->dram_size << 20;
679 sysinfo->phy_mem_desc_addr = (u64)phys_to_virt(octeon_bootinfo->phy_mem_desc_addr);
681 if ((octeon_bootinfo->major_version > 1) ||
682 (octeon_bootinfo->major_version == 1 &&
683 octeon_bootinfo->minor_version >= 4))
684 cvmx_coremask_copy(&sysinfo->core_mask,
685 &octeon_bootinfo->ext_core_mask);
686 else
687 cvmx_coremask_set64(&sysinfo->core_mask,
688 octeon_bootinfo->core_mask);
690 /* Some broken u-boot pass garbage in upper bits, clear them out */
691 if (!OCTEON_IS_MODEL(OCTEON_CN78XX))
692 for (i = 512; i < 1024; i++)
693 cvmx_coremask_clear_core(&sysinfo->core_mask, i);
695 sysinfo->exception_base_addr = octeon_bootinfo->exception_base_addr;
696 sysinfo->cpu_clock_hz = octeon_bootinfo->eclock_hz;
697 sysinfo->dram_data_rate_hz = octeon_bootinfo->dclock_hz * 2;
698 sysinfo->board_type = octeon_bootinfo->board_type;
699 sysinfo->board_rev_major = octeon_bootinfo->board_rev_major;
700 sysinfo->board_rev_minor = octeon_bootinfo->board_rev_minor;
701 memcpy(sysinfo->mac_addr_base, octeon_bootinfo->mac_addr_base,
702 sizeof(sysinfo->mac_addr_base));
703 sysinfo->mac_addr_count = octeon_bootinfo->mac_addr_count;
704 memcpy(sysinfo->board_serial_number,
705 octeon_bootinfo->board_serial_number,
706 sizeof(sysinfo->board_serial_number));
707 sysinfo->compact_flash_common_base_addr =
708 octeon_bootinfo->compact_flash_common_base_addr;
709 sysinfo->compact_flash_attribute_base_addr =
710 octeon_bootinfo->compact_flash_attribute_base_addr;
711 sysinfo->led_display_base_addr = octeon_bootinfo->led_display_base_addr;
712 sysinfo->dfa_ref_clock_hz = octeon_bootinfo->dfa_ref_clock_hz;
713 sysinfo->bootloader_config_flags = octeon_bootinfo->config_flags;
715 if (OCTEON_IS_OCTEON2()) {
716 /* I/O clock runs at a different rate than the CPU. */
717 union cvmx_mio_rst_boot rst_boot;
718 rst_boot.u64 = cvmx_read_csr(CVMX_MIO_RST_BOOT);
719 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
720 } else if (OCTEON_IS_OCTEON3()) {
721 /* I/O clock runs at a different rate than the CPU. */
722 union cvmx_rst_boot rst_boot;
723 rst_boot.u64 = cvmx_read_csr(CVMX_RST_BOOT);
724 octeon_io_clock_rate = 50000000 * rst_boot.s.pnr_mul;
725 } else {
726 octeon_io_clock_rate = sysinfo->cpu_clock_hz;
729 t = read_c0_cvmctl();
730 if ((t & (1ull << 27)) == 0) {
732 * Setup the multiplier save/restore code if
733 * CvmCtl[NOMUL] clear.
735 void *save;
736 void *save_end;
737 void *restore;
738 void *restore_end;
739 int save_len;
740 int restore_len;
741 int save_max = (char *)octeon_mult_save_end -
742 (char *)octeon_mult_save;
743 int restore_max = (char *)octeon_mult_restore_end -
744 (char *)octeon_mult_restore;
745 if (current_cpu_data.cputype == CPU_CAVIUM_OCTEON3) {
746 save = octeon_mult_save3;
747 save_end = octeon_mult_save3_end;
748 restore = octeon_mult_restore3;
749 restore_end = octeon_mult_restore3_end;
750 } else {
751 save = octeon_mult_save2;
752 save_end = octeon_mult_save2_end;
753 restore = octeon_mult_restore2;
754 restore_end = octeon_mult_restore2_end;
756 save_len = (char *)save_end - (char *)save;
757 restore_len = (char *)restore_end - (char *)restore;
758 if (!WARN_ON(save_len > save_max ||
759 restore_len > restore_max)) {
760 memcpy(octeon_mult_save, save, save_len);
761 memcpy(octeon_mult_restore, restore, restore_len);
766 * Only enable the LED controller if we're running on a CN38XX, CN58XX,
767 * or CN56XX. The CN30XX and CN31XX don't have an LED controller.
769 if (!octeon_is_simulation() &&
770 octeon_has_feature(OCTEON_FEATURE_LED_CONTROLLER)) {
771 cvmx_write_csr(CVMX_LED_EN, 0);
772 cvmx_write_csr(CVMX_LED_PRT, 0);
773 cvmx_write_csr(CVMX_LED_DBG, 0);
774 cvmx_write_csr(CVMX_LED_PRT_FMT, 0);
775 cvmx_write_csr(CVMX_LED_UDD_CNTX(0), 32);
776 cvmx_write_csr(CVMX_LED_UDD_CNTX(1), 32);
777 cvmx_write_csr(CVMX_LED_UDD_DATX(0), 0);
778 cvmx_write_csr(CVMX_LED_UDD_DATX(1), 0);
779 cvmx_write_csr(CVMX_LED_EN, 1);
781 #ifdef CONFIG_CAVIUM_RESERVE32
783 * We need to temporarily allocate all memory in the reserve32
784 * region. This makes sure the kernel doesn't allocate this
785 * memory when it is getting memory from the
786 * bootloader. Later, after the memory allocations are
787 * complete, the reserve32 will be freed.
789 * Allocate memory for RESERVED32 aligned on 2MB boundary. This
790 * is in case we later use hugetlb entries with it.
792 addr = cvmx_bootmem_phy_named_block_alloc(CONFIG_CAVIUM_RESERVE32 << 20,
793 0, 0, 2 << 20,
794 "CAVIUM_RESERVE32", 0);
795 if (addr < 0)
796 pr_err("Failed to allocate CAVIUM_RESERVE32 memory area\n");
797 else
798 octeon_reserve32_memory = addr;
799 #endif
801 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2
802 if (cvmx_read_csr(CVMX_L2D_FUS3) & (3ull << 34)) {
803 pr_info("Skipping L2 locking due to reduced L2 cache size\n");
804 } else {
805 uint32_t __maybe_unused ebase = read_c0_ebase() & 0x3ffff000;
806 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_TLB
807 /* TLB refill */
808 cvmx_l2c_lock_mem_region(ebase, 0x100);
809 #endif
810 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_EXCEPTION
811 /* General exception */
812 cvmx_l2c_lock_mem_region(ebase + 0x180, 0x80);
813 #endif
814 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_LOW_LEVEL_INTERRUPT
815 /* Interrupt handler */
816 cvmx_l2c_lock_mem_region(ebase + 0x200, 0x80);
817 #endif
818 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_INTERRUPT
819 cvmx_l2c_lock_mem_region(__pa_symbol(handle_int), 0x100);
820 cvmx_l2c_lock_mem_region(__pa_symbol(plat_irq_dispatch), 0x80);
821 #endif
822 #ifdef CONFIG_CAVIUM_OCTEON_LOCK_L2_MEMCPY
823 cvmx_l2c_lock_mem_region(__pa_symbol(memcpy), 0x480);
824 #endif
826 #endif
828 octeon_check_cpu_bist();
830 octeon_uart = octeon_get_boot_uart();
832 #ifdef CONFIG_SMP
833 octeon_write_lcd("LinuxSMP");
834 #else
835 octeon_write_lcd("Linux");
836 #endif
838 octeon_setup_delays();
841 * BIST should always be enabled when doing a soft reset. L2
842 * Cache locking for instance is not cleared unless BIST is
843 * enabled. Unfortunately due to a chip errata G-200 for
844 * Cn38XX and CN31XX, BIST msut be disabled on these parts.
846 if (OCTEON_IS_MODEL(OCTEON_CN38XX_PASS2) ||
847 OCTEON_IS_MODEL(OCTEON_CN31XX))
848 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 0);
849 else
850 cvmx_write_csr(CVMX_CIU_SOFT_BIST, 1);
852 /* Default to 64MB in the simulator to speed things up */
853 if (octeon_is_simulation())
854 max_memory = 64ull << 20;
856 arg = strstr(arcs_cmdline, "mem=");
857 if (arg) {
858 max_memory = memparse(arg + 4, &p);
859 if (max_memory == 0)
860 max_memory = 32ull << 30;
861 if (*p == '@')
862 reserve_low_mem = memparse(p + 1, &p);
865 arcs_cmdline[0] = 0;
866 argc = octeon_boot_desc_ptr->argc;
867 for (i = 0; i < argc; i++) {
868 const char *arg =
869 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
870 if ((strncmp(arg, "MEM=", 4) == 0) ||
871 (strncmp(arg, "mem=", 4) == 0)) {
872 max_memory = memparse(arg + 4, &p);
873 if (max_memory == 0)
874 max_memory = 32ull << 30;
875 if (*p == '@')
876 reserve_low_mem = memparse(p + 1, &p);
877 #ifdef CONFIG_KEXEC
878 } else if (strncmp(arg, "crashkernel=", 12) == 0) {
879 crashk_size = memparse(arg+12, &p);
880 if (*p == '@')
881 crashk_base = memparse(p+1, &p);
882 strcat(arcs_cmdline, " ");
883 strcat(arcs_cmdline, arg);
885 * To do: switch parsing to new style, something like:
886 * parse_crashkernel(arg, sysinfo->system_dram_size,
887 * &crashk_size, &crashk_base);
889 #endif
890 } else if (strlen(arcs_cmdline) + strlen(arg) + 1 <
891 sizeof(arcs_cmdline) - 1) {
892 strcat(arcs_cmdline, " ");
893 strcat(arcs_cmdline, arg);
897 if (strstr(arcs_cmdline, "console=") == NULL) {
898 if (octeon_uart == 1)
899 strcat(arcs_cmdline, " console=ttyS1,115200");
900 else
901 strcat(arcs_cmdline, " console=ttyS0,115200");
904 mips_hpt_frequency = octeon_get_clock_rate();
906 octeon_init_cvmcount();
908 _machine_restart = octeon_restart;
909 _machine_halt = octeon_halt;
911 #ifdef CONFIG_KEXEC
912 _machine_kexec_shutdown = octeon_shutdown;
913 _machine_crash_shutdown = octeon_crash_shutdown;
914 _machine_kexec_prepare = octeon_kexec_prepare;
915 #ifdef CONFIG_SMP
916 _crash_smp_send_stop = octeon_crash_smp_send_stop;
917 #endif
918 #endif
920 octeon_user_io_init();
921 octeon_setup_smp();
924 /* Exclude a single page from the regions obtained in plat_mem_setup. */
925 #ifndef CONFIG_CRASH_DUMP
926 static __init void memory_exclude_page(u64 addr, u64 *mem, u64 *size)
928 if (addr > *mem && addr < *mem + *size) {
929 u64 inc = addr - *mem;
930 add_memory_region(*mem, inc, BOOT_MEM_RAM);
931 *mem += inc;
932 *size -= inc;
935 if (addr == *mem && *size > PAGE_SIZE) {
936 *mem += PAGE_SIZE;
937 *size -= PAGE_SIZE;
940 #endif /* CONFIG_CRASH_DUMP */
942 void __init fw_init_cmdline(void)
944 int i;
946 octeon_boot_desc_ptr = (struct octeon_boot_descriptor *)fw_arg3;
947 for (i = 0; i < octeon_boot_desc_ptr->argc; i++) {
948 const char *arg =
949 cvmx_phys_to_ptr(octeon_boot_desc_ptr->argv[i]);
950 if (strlen(arcs_cmdline) + strlen(arg) + 1 <
951 sizeof(arcs_cmdline) - 1) {
952 strcat(arcs_cmdline, " ");
953 strcat(arcs_cmdline, arg);
958 void __init *plat_get_fdt(void)
960 octeon_bootinfo =
961 cvmx_phys_to_ptr(octeon_boot_desc_ptr->cvmx_desc_vaddr);
962 return phys_to_virt(octeon_bootinfo->fdt_addr);
965 void __init plat_mem_setup(void)
967 uint64_t mem_alloc_size;
968 uint64_t total;
969 uint64_t crashk_end;
970 #ifndef CONFIG_CRASH_DUMP
971 int64_t memory;
972 uint64_t kernel_start;
973 uint64_t kernel_size;
974 #endif
976 total = 0;
977 crashk_end = 0;
980 * The Mips memory init uses the first memory location for
981 * some memory vectors. When SPARSEMEM is in use, it doesn't
982 * verify that the size is big enough for the final
983 * vectors. Making the smallest chuck 4MB seems to be enough
984 * to consistently work.
986 mem_alloc_size = 4 << 20;
987 if (mem_alloc_size > max_memory)
988 mem_alloc_size = max_memory;
990 /* Crashkernel ignores bootmem list. It relies on mem=X@Y option */
991 #ifdef CONFIG_CRASH_DUMP
992 add_memory_region(reserve_low_mem, max_memory, BOOT_MEM_RAM);
993 total += max_memory;
994 #else
995 #ifdef CONFIG_KEXEC
996 if (crashk_size > 0) {
997 add_memory_region(crashk_base, crashk_size, BOOT_MEM_RAM);
998 crashk_end = crashk_base + crashk_size;
1000 #endif
1002 * When allocating memory, we want incrementing addresses from
1003 * bootmem_alloc so the code in add_memory_region can merge
1004 * regions next to each other.
1006 cvmx_bootmem_lock();
1007 while ((boot_mem_map.nr_map < BOOT_MEM_MAP_MAX)
1008 && (total < max_memory)) {
1009 memory = cvmx_bootmem_phy_alloc(mem_alloc_size,
1010 __pa_symbol(&_end), -1,
1011 0x100000,
1012 CVMX_BOOTMEM_FLAG_NO_LOCKING);
1013 if (memory >= 0) {
1014 u64 size = mem_alloc_size;
1015 #ifdef CONFIG_KEXEC
1016 uint64_t end;
1017 #endif
1020 * exclude a page at the beginning and end of
1021 * the 256MB PCIe 'hole' so the kernel will not
1022 * try to allocate multi-page buffers that
1023 * span the discontinuity.
1025 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE,
1026 &memory, &size);
1027 memory_exclude_page(CVMX_PCIE_BAR1_PHYS_BASE +
1028 CVMX_PCIE_BAR1_PHYS_SIZE,
1029 &memory, &size);
1030 #ifdef CONFIG_KEXEC
1031 end = memory + mem_alloc_size;
1034 * This function automatically merges address regions
1035 * next to each other if they are received in
1036 * incrementing order
1038 if (memory < crashk_base && end > crashk_end) {
1039 /* region is fully in */
1040 add_memory_region(memory,
1041 crashk_base - memory,
1042 BOOT_MEM_RAM);
1043 total += crashk_base - memory;
1044 add_memory_region(crashk_end,
1045 end - crashk_end,
1046 BOOT_MEM_RAM);
1047 total += end - crashk_end;
1048 continue;
1051 if (memory >= crashk_base && end <= crashk_end)
1053 * Entire memory region is within the new
1054 * kernel's memory, ignore it.
1056 continue;
1058 if (memory > crashk_base && memory < crashk_end &&
1059 end > crashk_end) {
1061 * Overlap with the beginning of the region,
1062 * reserve the beginning.
1064 mem_alloc_size -= crashk_end - memory;
1065 memory = crashk_end;
1066 } else if (memory < crashk_base && end > crashk_base &&
1067 end < crashk_end)
1069 * Overlap with the beginning of the region,
1070 * chop of end.
1072 mem_alloc_size -= end - crashk_base;
1073 #endif
1074 add_memory_region(memory, mem_alloc_size, BOOT_MEM_RAM);
1075 total += mem_alloc_size;
1076 /* Recovering mem_alloc_size */
1077 mem_alloc_size = 4 << 20;
1078 } else {
1079 break;
1082 cvmx_bootmem_unlock();
1083 /* Add the memory region for the kernel. */
1084 kernel_start = (unsigned long) _text;
1085 kernel_size = _end - _text;
1087 /* Adjust for physical offset. */
1088 kernel_start &= ~0xffffffff80000000ULL;
1089 add_memory_region(kernel_start, kernel_size, BOOT_MEM_RAM);
1090 #endif /* CONFIG_CRASH_DUMP */
1092 #ifdef CONFIG_CAVIUM_RESERVE32
1094 * Now that we've allocated the kernel memory it is safe to
1095 * free the reserved region. We free it here so that builtin
1096 * drivers can use the memory.
1098 if (octeon_reserve32_memory)
1099 cvmx_bootmem_free_named("CAVIUM_RESERVE32");
1100 #endif /* CONFIG_CAVIUM_RESERVE32 */
1102 if (total == 0)
1103 panic("Unable to allocate memory from "
1104 "cvmx_bootmem_phy_alloc");
1108 * Emit one character to the boot UART. Exported for use by the
1109 * watchdog timer.
1111 int prom_putchar(char c)
1113 uint64_t lsrval;
1115 /* Spin until there is room */
1116 do {
1117 lsrval = cvmx_read_csr(CVMX_MIO_UARTX_LSR(octeon_uart));
1118 } while ((lsrval & 0x20) == 0);
1120 /* Write the byte */
1121 cvmx_write_csr(CVMX_MIO_UARTX_THR(octeon_uart), c & 0xffull);
1122 return 1;
1124 EXPORT_SYMBOL(prom_putchar);
1126 void __init prom_free_prom_memory(void)
1128 if (CAVIUM_OCTEON_DCACHE_PREFETCH_WAR) {
1129 /* Check for presence of Core-14449 fix. */
1130 u32 insn;
1131 u32 *foo;
1133 foo = &insn;
1135 asm volatile("# before" : : : "memory");
1136 prefetch(foo);
1137 asm volatile(
1138 ".set push\n\t"
1139 ".set noreorder\n\t"
1140 "bal 1f\n\t"
1141 "nop\n"
1142 "1:\tlw %0,-12($31)\n\t"
1143 ".set pop\n\t"
1144 : "=r" (insn) : : "$31", "memory");
1146 if ((insn >> 26) != 0x33)
1147 panic("No PREF instruction at Core-14449 probe point.");
1149 if (((insn >> 16) & 0x1f) != 28)
1150 panic("OCTEON II DCache prefetch workaround not in place (%04x).\n"
1151 "Please build kernel with proper options (CONFIG_CAVIUM_CN63XXP1).",
1152 insn);
1156 void __init octeon_fill_mac_addresses(void);
1157 int octeon_prune_device_tree(void);
1159 extern const char __appended_dtb;
1160 extern const char __dtb_octeon_3xxx_begin;
1161 extern const char __dtb_octeon_68xx_begin;
1162 void __init device_tree_init(void)
1164 const void *fdt;
1165 bool do_prune;
1166 bool fill_mac;
1168 #ifdef CONFIG_MIPS_ELF_APPENDED_DTB
1169 if (!fdt_check_header(&__appended_dtb)) {
1170 fdt = &__appended_dtb;
1171 do_prune = false;
1172 fill_mac = true;
1173 pr_info("Using appended Device Tree.\n");
1174 } else
1175 #endif
1176 if (octeon_bootinfo->minor_version >= 3 && octeon_bootinfo->fdt_addr) {
1177 fdt = phys_to_virt(octeon_bootinfo->fdt_addr);
1178 if (fdt_check_header(fdt))
1179 panic("Corrupt Device Tree passed to kernel.");
1180 do_prune = false;
1181 fill_mac = false;
1182 pr_info("Using passed Device Tree.\n");
1183 } else if (OCTEON_IS_MODEL(OCTEON_CN68XX)) {
1184 fdt = &__dtb_octeon_68xx_begin;
1185 do_prune = true;
1186 fill_mac = true;
1187 } else {
1188 fdt = &__dtb_octeon_3xxx_begin;
1189 do_prune = true;
1190 fill_mac = true;
1193 initial_boot_params = (void *)fdt;
1195 if (do_prune) {
1196 octeon_prune_device_tree();
1197 pr_info("Using internal Device Tree.\n");
1199 if (fill_mac)
1200 octeon_fill_mac_addresses();
1201 unflatten_and_copy_device_tree();
1202 init_octeon_system_type();
1205 static int __initdata disable_octeon_edac_p;
1207 static int __init disable_octeon_edac(char *str)
1209 disable_octeon_edac_p = 1;
1210 return 0;
1212 early_param("disable_octeon_edac", disable_octeon_edac);
1214 static char *edac_device_names[] = {
1215 "octeon_l2c_edac",
1216 "octeon_pc_edac",
1219 static int __init edac_devinit(void)
1221 struct platform_device *dev;
1222 int i, err = 0;
1223 int num_lmc;
1224 char *name;
1226 if (disable_octeon_edac_p)
1227 return 0;
1229 for (i = 0; i < ARRAY_SIZE(edac_device_names); i++) {
1230 name = edac_device_names[i];
1231 dev = platform_device_register_simple(name, -1, NULL, 0);
1232 if (IS_ERR(dev)) {
1233 pr_err("Registration of %s failed!\n", name);
1234 err = PTR_ERR(dev);
1238 num_lmc = OCTEON_IS_MODEL(OCTEON_CN68XX) ? 4 :
1239 (OCTEON_IS_MODEL(OCTEON_CN56XX) ? 2 : 1);
1240 for (i = 0; i < num_lmc; i++) {
1241 dev = platform_device_register_simple("octeon_lmc_edac",
1242 i, NULL, 0);
1243 if (IS_ERR(dev)) {
1244 pr_err("Registration of octeon_lmc_edac %d failed!\n", i);
1245 err = PTR_ERR(dev);
1249 return err;
1251 device_initcall(edac_devinit);
1253 static void __initdata *octeon_dummy_iospace;
1255 static int __init octeon_no_pci_init(void)
1258 * Initially assume there is no PCI. The PCI/PCIe platform code will
1259 * later re-initialize these to correct values if they are present.
1261 octeon_dummy_iospace = vzalloc(IO_SPACE_LIMIT);
1262 set_io_port_base((unsigned long)octeon_dummy_iospace);
1263 ioport_resource.start = MAX_RESOURCE;
1264 ioport_resource.end = 0;
1265 return 0;
1267 core_initcall(octeon_no_pci_init);
1269 static int __init octeon_no_pci_release(void)
1272 * Release the allocated memory if a real IO space is there.
1274 if ((unsigned long)octeon_dummy_iospace != mips_io_port_base)
1275 vfree(octeon_dummy_iospace);
1276 return 0;
1278 late_initcall(octeon_no_pci_release);