x86/unwinder: Handle stack overflows more gracefully
[linux/fpc-iii.git] / arch / mips / netlogic / xlp / nlm_hal.c
blob25ee69489e5eb8615a5c5a6fdcf199a1e8fb33d8
1 /*
2 * Copyright 2003-2011 NetLogic Microsystems, Inc. (NetLogic). All rights
3 * reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the NetLogic
9 * license below:
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in
19 * the documentation and/or other materials provided with the
20 * distribution.
22 * THIS SOFTWARE IS PROVIDED BY NETLOGIC ``AS IS'' AND ANY EXPRESS OR
23 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
24 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25 * ARE DISCLAIMED. IN NO EVENT SHALL NETLOGIC OR CONTRIBUTORS BE LIABLE
26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
29 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
30 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
31 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
32 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35 #include <linux/types.h>
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/delay.h>
40 #include <asm/mipsregs.h>
41 #include <asm/time.h>
43 #include <asm/netlogic/common.h>
44 #include <asm/netlogic/haldefs.h>
45 #include <asm/netlogic/xlp-hal/iomap.h>
46 #include <asm/netlogic/xlp-hal/xlp.h>
47 #include <asm/netlogic/xlp-hal/bridge.h>
48 #include <asm/netlogic/xlp-hal/pic.h>
49 #include <asm/netlogic/xlp-hal/sys.h>
51 /* Main initialization */
52 void nlm_node_init(int node)
54 struct nlm_soc_info *nodep;
56 nodep = nlm_get_node(node);
57 if (node == 0)
58 nodep->coremask = 1; /* node 0, boot cpu */
59 nodep->sysbase = nlm_get_sys_regbase(node);
60 nodep->picbase = nlm_get_pic_regbase(node);
61 nodep->ebase = read_c0_ebase() & MIPS_EBASE_BASE;
62 if (cpu_is_xlp9xx())
63 nodep->socbus = xlp9xx_get_socbus(node);
64 else
65 nodep->socbus = 0;
66 spin_lock_init(&nodep->piclock);
69 static int xlp9xx_irq_to_irt(int irq)
71 switch (irq) {
72 case PIC_GPIO_IRQ:
73 return 12;
74 case PIC_I2C_0_IRQ:
75 return 125;
76 case PIC_I2C_1_IRQ:
77 return 126;
78 case PIC_I2C_2_IRQ:
79 return 127;
80 case PIC_I2C_3_IRQ:
81 return 128;
82 case PIC_9XX_XHCI_0_IRQ:
83 return 114;
84 case PIC_9XX_XHCI_1_IRQ:
85 return 115;
86 case PIC_9XX_XHCI_2_IRQ:
87 return 116;
88 case PIC_UART_0_IRQ:
89 return 133;
90 case PIC_UART_1_IRQ:
91 return 134;
92 case PIC_SATA_IRQ:
93 return 143;
94 case PIC_NAND_IRQ:
95 return 151;
96 case PIC_SPI_IRQ:
97 return 152;
98 case PIC_MMC_IRQ:
99 return 153;
100 case PIC_PCIE_LINK_LEGACY_IRQ(0):
101 case PIC_PCIE_LINK_LEGACY_IRQ(1):
102 case PIC_PCIE_LINK_LEGACY_IRQ(2):
103 case PIC_PCIE_LINK_LEGACY_IRQ(3):
104 return 191 + irq - PIC_PCIE_LINK_LEGACY_IRQ_BASE;
106 return -1;
109 static int xlp_irq_to_irt(int irq)
111 uint64_t pcibase;
112 int devoff, irt;
114 devoff = 0;
115 switch (irq) {
116 case PIC_UART_0_IRQ:
117 devoff = XLP_IO_UART0_OFFSET(0);
118 break;
119 case PIC_UART_1_IRQ:
120 devoff = XLP_IO_UART1_OFFSET(0);
121 break;
122 case PIC_MMC_IRQ:
123 devoff = XLP_IO_MMC_OFFSET(0);
124 break;
125 case PIC_I2C_0_IRQ: /* I2C will be fixed up */
126 case PIC_I2C_1_IRQ:
127 case PIC_I2C_2_IRQ:
128 case PIC_I2C_3_IRQ:
129 if (cpu_is_xlpii())
130 devoff = XLP2XX_IO_I2C_OFFSET(0);
131 else
132 devoff = XLP_IO_I2C0_OFFSET(0);
133 break;
134 case PIC_SATA_IRQ:
135 devoff = XLP_IO_SATA_OFFSET(0);
136 break;
137 case PIC_GPIO_IRQ:
138 devoff = XLP_IO_GPIO_OFFSET(0);
139 break;
140 case PIC_NAND_IRQ:
141 devoff = XLP_IO_NAND_OFFSET(0);
142 break;
143 case PIC_SPI_IRQ:
144 devoff = XLP_IO_SPI_OFFSET(0);
145 break;
146 default:
147 if (cpu_is_xlpii()) {
148 switch (irq) {
149 /* XLP2XX has three XHCI USB controller */
150 case PIC_2XX_XHCI_0_IRQ:
151 devoff = XLP2XX_IO_USB_XHCI0_OFFSET(0);
152 break;
153 case PIC_2XX_XHCI_1_IRQ:
154 devoff = XLP2XX_IO_USB_XHCI1_OFFSET(0);
155 break;
156 case PIC_2XX_XHCI_2_IRQ:
157 devoff = XLP2XX_IO_USB_XHCI2_OFFSET(0);
158 break;
160 } else {
161 switch (irq) {
162 case PIC_EHCI_0_IRQ:
163 devoff = XLP_IO_USB_EHCI0_OFFSET(0);
164 break;
165 case PIC_EHCI_1_IRQ:
166 devoff = XLP_IO_USB_EHCI1_OFFSET(0);
167 break;
168 case PIC_OHCI_0_IRQ:
169 devoff = XLP_IO_USB_OHCI0_OFFSET(0);
170 break;
171 case PIC_OHCI_1_IRQ:
172 devoff = XLP_IO_USB_OHCI1_OFFSET(0);
173 break;
174 case PIC_OHCI_2_IRQ:
175 devoff = XLP_IO_USB_OHCI2_OFFSET(0);
176 break;
177 case PIC_OHCI_3_IRQ:
178 devoff = XLP_IO_USB_OHCI3_OFFSET(0);
179 break;
184 if (devoff != 0) {
185 uint32_t val;
187 pcibase = nlm_pcicfg_base(devoff);
188 val = nlm_read_reg(pcibase, XLP_PCI_IRTINFO_REG);
189 if (val == 0xffffffff) {
190 irt = -1;
191 } else {
192 irt = val & 0xffff;
193 /* HW weirdness, I2C IRT entry has to be fixed up */
194 switch (irq) {
195 case PIC_I2C_1_IRQ:
196 irt = irt + 1; break;
197 case PIC_I2C_2_IRQ:
198 irt = irt + 2; break;
199 case PIC_I2C_3_IRQ:
200 irt = irt + 3; break;
203 } else if (irq >= PIC_PCIE_LINK_LEGACY_IRQ(0) &&
204 irq <= PIC_PCIE_LINK_LEGACY_IRQ(3)) {
205 /* HW bug, PCI IRT entries are bad on early silicon, fix */
206 irt = PIC_IRT_PCIE_LINK_INDEX(irq -
207 PIC_PCIE_LINK_LEGACY_IRQ_BASE);
208 } else {
209 irt = -1;
211 return irt;
214 int nlm_irq_to_irt(int irq)
216 /* return -2 for irqs without 1-1 mapping */
217 if (irq >= PIC_PCIE_LINK_MSI_IRQ(0) && irq <= PIC_PCIE_LINK_MSI_IRQ(3))
218 return -2;
219 if (irq >= PIC_PCIE_MSIX_IRQ(0) && irq <= PIC_PCIE_MSIX_IRQ(3))
220 return -2;
222 if (cpu_is_xlp9xx())
223 return xlp9xx_irq_to_irt(irq);
224 else
225 return xlp_irq_to_irt(irq);
228 static unsigned int nlm_xlp2_get_core_frequency(int node, int core)
230 unsigned int pll_post_div, ctrl_val0, ctrl_val1, denom;
231 uint64_t num, sysbase, clockbase;
233 if (cpu_is_xlp9xx()) {
234 clockbase = nlm_get_clock_regbase(node);
235 ctrl_val0 = nlm_read_sys_reg(clockbase,
236 SYS_9XX_CPU_PLL_CTRL0(core));
237 ctrl_val1 = nlm_read_sys_reg(clockbase,
238 SYS_9XX_CPU_PLL_CTRL1(core));
239 } else {
240 sysbase = nlm_get_node(node)->sysbase;
241 ctrl_val0 = nlm_read_sys_reg(sysbase,
242 SYS_CPU_PLL_CTRL0(core));
243 ctrl_val1 = nlm_read_sys_reg(sysbase,
244 SYS_CPU_PLL_CTRL1(core));
247 /* Find PLL post divider value */
248 switch ((ctrl_val0 >> 24) & 0x7) {
249 case 1:
250 pll_post_div = 2;
251 break;
252 case 3:
253 pll_post_div = 4;
254 break;
255 case 7:
256 pll_post_div = 8;
257 break;
258 case 6:
259 pll_post_div = 16;
260 break;
261 case 0:
262 default:
263 pll_post_div = 1;
264 break;
267 num = 1000000ULL * (400 * 3 + 100 * (ctrl_val1 & 0x3f));
268 denom = 3 * pll_post_div;
269 do_div(num, denom);
271 return (unsigned int)num;
274 static unsigned int nlm_xlp_get_core_frequency(int node, int core)
276 unsigned int pll_divf, pll_divr, dfs_div, ext_div;
277 unsigned int rstval, dfsval, denom;
278 uint64_t num, sysbase;
280 sysbase = nlm_get_node(node)->sysbase;
281 rstval = nlm_read_sys_reg(sysbase, SYS_POWER_ON_RESET_CFG);
282 dfsval = nlm_read_sys_reg(sysbase, SYS_CORE_DFS_DIV_VALUE);
283 pll_divf = ((rstval >> 10) & 0x7f) + 1;
284 pll_divr = ((rstval >> 8) & 0x3) + 1;
285 ext_div = ((rstval >> 30) & 0x3) + 1;
286 dfs_div = ((dfsval >> (core * 4)) & 0xf) + 1;
288 num = 800000000ULL * pll_divf;
289 denom = 3 * pll_divr * ext_div * dfs_div;
290 do_div(num, denom);
292 return (unsigned int)num;
295 unsigned int nlm_get_core_frequency(int node, int core)
297 if (cpu_is_xlpii())
298 return nlm_xlp2_get_core_frequency(node, core);
299 else
300 return nlm_xlp_get_core_frequency(node, core);
304 * Calculate PIC frequency from PLL registers.
305 * freq_out = (ref_freq/2 * (6 + ctrl2[7:0]) + ctrl2[20:8]/2^13) /
306 * ((2^ctrl0[7:5]) * Table(ctrl0[26:24]))
308 static unsigned int nlm_xlp2_get_pic_frequency(int node)
310 u32 ctrl_val0, ctrl_val2, vco_post_div, pll_post_div, cpu_xlp9xx;
311 u32 mdiv, fdiv, pll_out_freq_den, reg_select, ref_div, pic_div;
312 u64 sysbase, pll_out_freq_num, ref_clk_select, clockbase, ref_clk;
314 sysbase = nlm_get_node(node)->sysbase;
315 clockbase = nlm_get_clock_regbase(node);
316 cpu_xlp9xx = cpu_is_xlp9xx();
318 /* Find ref_clk_base */
319 if (cpu_xlp9xx)
320 ref_clk_select = (nlm_read_sys_reg(sysbase,
321 SYS_9XX_POWER_ON_RESET_CFG) >> 18) & 0x3;
322 else
323 ref_clk_select = (nlm_read_sys_reg(sysbase,
324 SYS_POWER_ON_RESET_CFG) >> 18) & 0x3;
325 switch (ref_clk_select) {
326 case 0:
327 ref_clk = 200000000ULL;
328 ref_div = 3;
329 break;
330 case 1:
331 ref_clk = 100000000ULL;
332 ref_div = 1;
333 break;
334 case 2:
335 ref_clk = 125000000ULL;
336 ref_div = 1;
337 break;
338 case 3:
339 ref_clk = 400000000ULL;
340 ref_div = 3;
341 break;
344 /* Find the clock source PLL device for PIC */
345 if (cpu_xlp9xx) {
346 reg_select = nlm_read_sys_reg(clockbase,
347 SYS_9XX_CLK_DEV_SEL_REG) & 0x3;
348 switch (reg_select) {
349 case 0:
350 ctrl_val0 = nlm_read_sys_reg(clockbase,
351 SYS_9XX_PLL_CTRL0);
352 ctrl_val2 = nlm_read_sys_reg(clockbase,
353 SYS_9XX_PLL_CTRL2);
354 break;
355 case 1:
356 ctrl_val0 = nlm_read_sys_reg(clockbase,
357 SYS_9XX_PLL_CTRL0_DEVX(0));
358 ctrl_val2 = nlm_read_sys_reg(clockbase,
359 SYS_9XX_PLL_CTRL2_DEVX(0));
360 break;
361 case 2:
362 ctrl_val0 = nlm_read_sys_reg(clockbase,
363 SYS_9XX_PLL_CTRL0_DEVX(1));
364 ctrl_val2 = nlm_read_sys_reg(clockbase,
365 SYS_9XX_PLL_CTRL2_DEVX(1));
366 break;
367 case 3:
368 ctrl_val0 = nlm_read_sys_reg(clockbase,
369 SYS_9XX_PLL_CTRL0_DEVX(2));
370 ctrl_val2 = nlm_read_sys_reg(clockbase,
371 SYS_9XX_PLL_CTRL2_DEVX(2));
372 break;
374 } else {
375 reg_select = (nlm_read_sys_reg(sysbase,
376 SYS_CLK_DEV_SEL_REG) >> 22) & 0x3;
377 switch (reg_select) {
378 case 0:
379 ctrl_val0 = nlm_read_sys_reg(sysbase,
380 SYS_PLL_CTRL0);
381 ctrl_val2 = nlm_read_sys_reg(sysbase,
382 SYS_PLL_CTRL2);
383 break;
384 case 1:
385 ctrl_val0 = nlm_read_sys_reg(sysbase,
386 SYS_PLL_CTRL0_DEVX(0));
387 ctrl_val2 = nlm_read_sys_reg(sysbase,
388 SYS_PLL_CTRL2_DEVX(0));
389 break;
390 case 2:
391 ctrl_val0 = nlm_read_sys_reg(sysbase,
392 SYS_PLL_CTRL0_DEVX(1));
393 ctrl_val2 = nlm_read_sys_reg(sysbase,
394 SYS_PLL_CTRL2_DEVX(1));
395 break;
396 case 3:
397 ctrl_val0 = nlm_read_sys_reg(sysbase,
398 SYS_PLL_CTRL0_DEVX(2));
399 ctrl_val2 = nlm_read_sys_reg(sysbase,
400 SYS_PLL_CTRL2_DEVX(2));
401 break;
405 vco_post_div = (ctrl_val0 >> 5) & 0x7;
406 pll_post_div = (ctrl_val0 >> 24) & 0x7;
407 mdiv = ctrl_val2 & 0xff;
408 fdiv = (ctrl_val2 >> 8) & 0x1fff;
410 /* Find PLL post divider value */
411 switch (pll_post_div) {
412 case 1:
413 pll_post_div = 2;
414 break;
415 case 3:
416 pll_post_div = 4;
417 break;
418 case 7:
419 pll_post_div = 8;
420 break;
421 case 6:
422 pll_post_div = 16;
423 break;
424 case 0:
425 default:
426 pll_post_div = 1;
427 break;
430 fdiv = fdiv/(1 << 13);
431 pll_out_freq_num = ((ref_clk >> 1) * (6 + mdiv)) + fdiv;
432 pll_out_freq_den = (1 << vco_post_div) * pll_post_div * ref_div;
434 if (pll_out_freq_den > 0)
435 do_div(pll_out_freq_num, pll_out_freq_den);
437 /* PIC post divider, which happens after PLL */
438 if (cpu_xlp9xx)
439 pic_div = nlm_read_sys_reg(clockbase,
440 SYS_9XX_CLK_DEV_DIV_REG) & 0x3;
441 else
442 pic_div = (nlm_read_sys_reg(sysbase,
443 SYS_CLK_DEV_DIV_REG) >> 22) & 0x3;
444 do_div(pll_out_freq_num, 1 << pic_div);
446 return pll_out_freq_num;
449 unsigned int nlm_get_pic_frequency(int node)
451 if (cpu_is_xlpii())
452 return nlm_xlp2_get_pic_frequency(node);
453 else
454 return 133333333;
457 unsigned int nlm_get_cpu_frequency(void)
459 return nlm_get_core_frequency(0, 0);
463 * Fills upto 8 pairs of entries containing the DRAM map of a node
464 * if node < 0, get dram map for all nodes
466 int nlm_get_dram_map(int node, uint64_t *dram_map, int nentries)
468 uint64_t bridgebase, base, lim;
469 uint32_t val;
470 unsigned int barreg, limreg, xlatreg;
471 int i, n, rv;
473 /* Look only at mapping on Node 0, we don't handle crazy configs */
474 bridgebase = nlm_get_bridge_regbase(0);
475 rv = 0;
476 for (i = 0; i < 8; i++) {
477 if (rv + 1 >= nentries)
478 break;
479 if (cpu_is_xlp9xx()) {
480 barreg = BRIDGE_9XX_DRAM_BAR(i);
481 limreg = BRIDGE_9XX_DRAM_LIMIT(i);
482 xlatreg = BRIDGE_9XX_DRAM_NODE_TRANSLN(i);
483 } else {
484 barreg = BRIDGE_DRAM_BAR(i);
485 limreg = BRIDGE_DRAM_LIMIT(i);
486 xlatreg = BRIDGE_DRAM_NODE_TRANSLN(i);
488 if (node >= 0) {
489 /* node specified, get node mapping of BAR */
490 val = nlm_read_bridge_reg(bridgebase, xlatreg);
491 n = (val >> 1) & 0x3;
492 if (n != node)
493 continue;
495 val = nlm_read_bridge_reg(bridgebase, barreg);
496 val = (val >> 12) & 0xfffff;
497 base = (uint64_t) val << 20;
498 val = nlm_read_bridge_reg(bridgebase, limreg);
499 val = (val >> 12) & 0xfffff;
500 if (val == 0) /* BAR not used */
501 continue;
502 lim = ((uint64_t)val + 1) << 20;
503 dram_map[rv] = base;
504 dram_map[rv + 1] = lim;
505 rv += 2;
507 return rv;