2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
5 #include <linux/list.h>
6 #include <linux/init.h>
8 #include <linux/seq_file.h>
9 #include <linux/sysctl.h>
10 #include <linux/highmem.h>
11 #include <linux/mmu_notifier.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/compiler.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/sched/signal.h>
22 #include <linux/rmap.h>
23 #include <linux/string_helpers.h>
24 #include <linux/swap.h>
25 #include <linux/swapops.h>
26 #include <linux/jhash.h>
29 #include <asm/pgtable.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include <linux/userfaultfd_k.h>
39 int hugepages_treat_as_movable
;
41 int hugetlb_max_hstate __read_mostly
;
42 unsigned int default_hstate_idx
;
43 struct hstate hstates
[HUGE_MAX_HSTATE
];
45 * Minimum page order among possible hugepage sizes, set to a proper value
48 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
50 __initdata
LIST_HEAD(huge_boot_pages
);
52 /* for command line parsing */
53 static struct hstate
* __initdata parsed_hstate
;
54 static unsigned long __initdata default_hstate_max_huge_pages
;
55 static unsigned long __initdata default_hstate_size
;
56 static bool __initdata parsed_valid_hugepagesz
= true;
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
62 DEFINE_SPINLOCK(hugetlb_lock
);
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 static int num_fault_mutexes
;
69 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
71 /* Forward declaration */
72 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
74 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
76 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
78 spin_unlock(&spool
->lock
);
80 /* If no pages are used, and no other handles to the subpool
81 * remain, give up any reservations mased on minimum size and
84 if (spool
->min_hpages
!= -1)
85 hugetlb_acct_memory(spool
->hstate
,
91 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
94 struct hugepage_subpool
*spool
;
96 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
100 spin_lock_init(&spool
->lock
);
102 spool
->max_hpages
= max_hpages
;
104 spool
->min_hpages
= min_hpages
;
106 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
110 spool
->rsv_hpages
= min_hpages
;
115 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
117 spin_lock(&spool
->lock
);
118 BUG_ON(!spool
->count
);
120 unlock_or_release_subpool(spool
);
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
131 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
139 spin_lock(&spool
->lock
);
141 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
142 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
143 spool
->used_hpages
+= delta
;
150 /* minimum size accounting */
151 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
152 if (delta
> spool
->rsv_hpages
) {
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
157 ret
= delta
- spool
->rsv_hpages
;
158 spool
->rsv_hpages
= 0;
160 ret
= 0; /* reserves already accounted for */
161 spool
->rsv_hpages
-= delta
;
166 spin_unlock(&spool
->lock
);
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
176 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
184 spin_lock(&spool
->lock
);
186 if (spool
->max_hpages
!= -1) /* maximum size accounting */
187 spool
->used_hpages
-= delta
;
189 /* minimum size accounting */
190 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
191 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
194 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
196 spool
->rsv_hpages
+= delta
;
197 if (spool
->rsv_hpages
> spool
->min_hpages
)
198 spool
->rsv_hpages
= spool
->min_hpages
;
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
205 unlock_or_release_subpool(spool
);
210 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
212 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
215 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
217 return subpool_inode(file_inode(vma
->vm_file
));
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
240 struct list_head link
;
246 * Add the huge page range represented by [f, t) to the reserve
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
259 static long region_add(struct resv_map
*resv
, long f
, long t
)
261 struct list_head
*head
= &resv
->regions
;
262 struct file_region
*rg
, *nrg
, *trg
;
265 spin_lock(&resv
->lock
);
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg
, head
, link
)
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
277 if (&rg
->link
== head
|| t
< rg
->from
) {
278 VM_BUG_ON(resv
->region_cache_count
<= 0);
280 resv
->region_cache_count
--;
281 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
,
283 list_del(&nrg
->link
);
287 list_add(&nrg
->link
, rg
->link
.prev
);
293 /* Round our left edge to the current segment if it encloses us. */
297 /* Check for and consume any regions we now overlap with. */
299 list_for_each_entry_safe(rg
, trg
, rg
->link
.prev
, link
) {
300 if (&rg
->link
== head
)
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
315 add
-= (rg
->to
- rg
->from
);
321 add
+= (nrg
->from
- f
); /* Added to beginning of region */
323 add
+= t
- nrg
->to
; /* Added to end of region */
327 resv
->adds_in_progress
--;
328 spin_unlock(&resv
->lock
);
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
355 static long region_chg(struct resv_map
*resv
, long f
, long t
)
357 struct list_head
*head
= &resv
->regions
;
358 struct file_region
*rg
, *nrg
= NULL
;
362 spin_lock(&resv
->lock
);
364 resv
->adds_in_progress
++;
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
370 if (resv
->adds_in_progress
> resv
->region_cache_count
) {
371 struct file_region
*trg
;
373 VM_BUG_ON(resv
->adds_in_progress
- resv
->region_cache_count
> 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv
->adds_in_progress
--;
376 spin_unlock(&resv
->lock
);
378 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
384 spin_lock(&resv
->lock
);
385 list_add(&trg
->link
, &resv
->region_cache
);
386 resv
->region_cache_count
++;
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg
, head
, link
)
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg
->link
== head
|| t
< rg
->from
) {
400 resv
->adds_in_progress
--;
401 spin_unlock(&resv
->lock
);
402 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
408 INIT_LIST_HEAD(&nrg
->link
);
412 list_add(&nrg
->link
, rg
->link
.prev
);
417 /* Round our left edge to the current segment if it encloses us. */
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg
, rg
->link
.prev
, link
) {
424 if (&rg
->link
== head
)
429 /* We overlap with this area, if it extends further than
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
436 chg
-= rg
->to
- rg
->from
;
440 spin_unlock(&resv
->lock
);
441 /* We already know we raced and no longer need the new region */
445 spin_unlock(&resv
->lock
);
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
460 static void region_abort(struct resv_map
*resv
, long f
, long t
)
462 spin_lock(&resv
->lock
);
463 VM_BUG_ON(!resv
->region_cache_count
);
464 resv
->adds_in_progress
--;
465 spin_unlock(&resv
->lock
);
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
482 static long region_del(struct resv_map
*resv
, long f
, long t
)
484 struct list_head
*head
= &resv
->regions
;
485 struct file_region
*rg
, *trg
;
486 struct file_region
*nrg
= NULL
;
490 spin_lock(&resv
->lock
);
491 list_for_each_entry_safe(rg
, trg
, head
, link
) {
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
499 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
505 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
511 resv
->region_cache_count
> resv
->adds_in_progress
) {
512 nrg
= list_first_entry(&resv
->region_cache
,
515 list_del(&nrg
->link
);
516 resv
->region_cache_count
--;
520 spin_unlock(&resv
->lock
);
521 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
529 /* New entry for end of split region */
532 INIT_LIST_HEAD(&nrg
->link
);
534 /* Original entry is trimmed */
537 list_add(&nrg
->link
, &rg
->link
);
542 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
543 del
+= rg
->to
- rg
->from
;
549 if (f
<= rg
->from
) { /* Trim beginning of region */
552 } else { /* Trim end of region */
558 spin_unlock(&resv
->lock
);
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
572 void hugetlb_fix_reserve_counts(struct inode
*inode
)
574 struct hugepage_subpool
*spool
= subpool_inode(inode
);
577 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
579 struct hstate
*h
= hstate_inode(inode
);
581 hugetlb_acct_memory(h
, 1);
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
589 static long region_count(struct resv_map
*resv
, long f
, long t
)
591 struct list_head
*head
= &resv
->regions
;
592 struct file_region
*rg
;
595 spin_lock(&resv
->lock
);
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg
, head
, link
) {
606 seg_from
= max(rg
->from
, f
);
607 seg_to
= min(rg
->to
, t
);
609 chg
+= seg_to
- seg_from
;
611 spin_unlock(&resv
->lock
);
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
620 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
621 struct vm_area_struct
*vma
, unsigned long address
)
623 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
624 (vma
->vm_pgoff
>> huge_page_order(h
));
627 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
628 unsigned long address
)
630 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
632 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
638 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
640 struct hstate
*hstate
;
642 if (!is_vm_hugetlb_page(vma
))
645 hstate
= hstate_vma(vma
);
647 return 1UL << huge_page_shift(hstate
);
649 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
654 * architectures where it differs, an architecture-specific version of this
655 * function is required.
657 #ifndef vma_mmu_pagesize
658 unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
660 return vma_kernel_pagesize(vma
);
665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
666 * bits of the reservation map pointer, which are always clear due to
669 #define HPAGE_RESV_OWNER (1UL << 0)
670 #define HPAGE_RESV_UNMAPPED (1UL << 1)
671 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
674 * These helpers are used to track how many pages are reserved for
675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676 * is guaranteed to have their future faults succeed.
678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679 * the reserve counters are updated with the hugetlb_lock held. It is safe
680 * to reset the VMA at fork() time as it is not in use yet and there is no
681 * chance of the global counters getting corrupted as a result of the values.
683 * The private mapping reservation is represented in a subtly different
684 * manner to a shared mapping. A shared mapping has a region map associated
685 * with the underlying file, this region map represents the backing file
686 * pages which have ever had a reservation assigned which this persists even
687 * after the page is instantiated. A private mapping has a region map
688 * associated with the original mmap which is attached to all VMAs which
689 * reference it, this region map represents those offsets which have consumed
690 * reservation ie. where pages have been instantiated.
692 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
694 return (unsigned long)vma
->vm_private_data
;
697 static void set_vma_private_data(struct vm_area_struct
*vma
,
700 vma
->vm_private_data
= (void *)value
;
703 struct resv_map
*resv_map_alloc(void)
705 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
706 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
708 if (!resv_map
|| !rg
) {
714 kref_init(&resv_map
->refs
);
715 spin_lock_init(&resv_map
->lock
);
716 INIT_LIST_HEAD(&resv_map
->regions
);
718 resv_map
->adds_in_progress
= 0;
720 INIT_LIST_HEAD(&resv_map
->region_cache
);
721 list_add(&rg
->link
, &resv_map
->region_cache
);
722 resv_map
->region_cache_count
= 1;
727 void resv_map_release(struct kref
*ref
)
729 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
730 struct list_head
*head
= &resv_map
->region_cache
;
731 struct file_region
*rg
, *trg
;
733 /* Clear out any active regions before we release the map. */
734 region_del(resv_map
, 0, LONG_MAX
);
736 /* ... and any entries left in the cache */
737 list_for_each_entry_safe(rg
, trg
, head
, link
) {
742 VM_BUG_ON(resv_map
->adds_in_progress
);
747 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
749 return inode
->i_mapping
->private_data
;
752 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
755 if (vma
->vm_flags
& VM_MAYSHARE
) {
756 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
757 struct inode
*inode
= mapping
->host
;
759 return inode_resv_map(inode
);
762 return (struct resv_map
*)(get_vma_private_data(vma
) &
767 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
770 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
772 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
773 HPAGE_RESV_MASK
) | (unsigned long)map
);
776 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
779 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
781 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
784 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
788 return (get_vma_private_data(vma
) & flag
) != 0;
791 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
792 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
795 if (!(vma
->vm_flags
& VM_MAYSHARE
))
796 vma
->vm_private_data
= (void *)0;
799 /* Returns true if the VMA has associated reserve pages */
800 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
802 if (vma
->vm_flags
& VM_NORESERVE
) {
804 * This address is already reserved by other process(chg == 0),
805 * so, we should decrement reserved count. Without decrementing,
806 * reserve count remains after releasing inode, because this
807 * allocated page will go into page cache and is regarded as
808 * coming from reserved pool in releasing step. Currently, we
809 * don't have any other solution to deal with this situation
810 * properly, so add work-around here.
812 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
818 /* Shared mappings always use reserves */
819 if (vma
->vm_flags
& VM_MAYSHARE
) {
821 * We know VM_NORESERVE is not set. Therefore, there SHOULD
822 * be a region map for all pages. The only situation where
823 * there is no region map is if a hole was punched via
824 * fallocate. In this case, there really are no reverves to
825 * use. This situation is indicated if chg != 0.
834 * Only the process that called mmap() has reserves for
837 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
839 * Like the shared case above, a hole punch or truncate
840 * could have been performed on the private mapping.
841 * Examine the value of chg to determine if reserves
842 * actually exist or were previously consumed.
843 * Very Subtle - The value of chg comes from a previous
844 * call to vma_needs_reserves(). The reserve map for
845 * private mappings has different (opposite) semantics
846 * than that of shared mappings. vma_needs_reserves()
847 * has already taken this difference in semantics into
848 * account. Therefore, the meaning of chg is the same
849 * as in the shared case above. Code could easily be
850 * combined, but keeping it separate draws attention to
851 * subtle differences.
862 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
864 int nid
= page_to_nid(page
);
865 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
866 h
->free_huge_pages
++;
867 h
->free_huge_pages_node
[nid
]++;
870 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
874 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
)
875 if (!PageHWPoison(page
))
878 * if 'non-isolated free hugepage' not found on the list,
879 * the allocation fails.
881 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
883 list_move(&page
->lru
, &h
->hugepage_activelist
);
884 set_page_refcounted(page
);
885 h
->free_huge_pages
--;
886 h
->free_huge_pages_node
[nid
]--;
890 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
893 unsigned int cpuset_mems_cookie
;
894 struct zonelist
*zonelist
;
899 zonelist
= node_zonelist(nid
, gfp_mask
);
902 cpuset_mems_cookie
= read_mems_allowed_begin();
903 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
906 if (!cpuset_zone_allowed(zone
, gfp_mask
))
909 * no need to ask again on the same node. Pool is node rather than
912 if (zone_to_nid(zone
) == node
)
914 node
= zone_to_nid(zone
);
916 page
= dequeue_huge_page_node_exact(h
, node
);
920 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
926 /* Movability of hugepages depends on migration support. */
927 static inline gfp_t
htlb_alloc_mask(struct hstate
*h
)
929 if (hugepages_treat_as_movable
|| hugepage_migration_supported(h
))
930 return GFP_HIGHUSER_MOVABLE
;
935 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
936 struct vm_area_struct
*vma
,
937 unsigned long address
, int avoid_reserve
,
941 struct mempolicy
*mpol
;
943 nodemask_t
*nodemask
;
947 * A child process with MAP_PRIVATE mappings created by their parent
948 * have no page reserves. This check ensures that reservations are
949 * not "stolen". The child may still get SIGKILLed
951 if (!vma_has_reserves(vma
, chg
) &&
952 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
955 /* If reserves cannot be used, ensure enough pages are in the pool */
956 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
959 gfp_mask
= htlb_alloc_mask(h
);
960 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
961 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
962 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
963 SetPagePrivate(page
);
964 h
->resv_huge_pages
--;
975 * common helper functions for hstate_next_node_to_{alloc|free}.
976 * We may have allocated or freed a huge page based on a different
977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978 * be outside of *nodes_allowed. Ensure that we use an allowed
979 * node for alloc or free.
981 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
983 nid
= next_node_in(nid
, *nodes_allowed
);
984 VM_BUG_ON(nid
>= MAX_NUMNODES
);
989 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
991 if (!node_isset(nid
, *nodes_allowed
))
992 nid
= next_node_allowed(nid
, nodes_allowed
);
997 * returns the previously saved node ["this node"] from which to
998 * allocate a persistent huge page for the pool and advance the
999 * next node from which to allocate, handling wrap at end of node
1002 static int hstate_next_node_to_alloc(struct hstate
*h
,
1003 nodemask_t
*nodes_allowed
)
1007 VM_BUG_ON(!nodes_allowed
);
1009 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1010 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1016 * helper for free_pool_huge_page() - return the previously saved
1017 * node ["this node"] from which to free a huge page. Advance the
1018 * next node id whether or not we find a free huge page to free so
1019 * that the next attempt to free addresses the next node.
1021 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1025 VM_BUG_ON(!nodes_allowed
);
1027 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1028 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1033 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1036 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1039 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1040 for (nr_nodes = nodes_weight(*mask); \
1042 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1045 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1046 static void destroy_compound_gigantic_page(struct page
*page
,
1050 int nr_pages
= 1 << order
;
1051 struct page
*p
= page
+ 1;
1053 atomic_set(compound_mapcount_ptr(page
), 0);
1054 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1055 clear_compound_head(p
);
1056 set_page_refcounted(p
);
1059 set_compound_order(page
, 0);
1060 __ClearPageHead(page
);
1063 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1065 free_contig_range(page_to_pfn(page
), 1 << order
);
1068 static int __alloc_gigantic_page(unsigned long start_pfn
,
1069 unsigned long nr_pages
, gfp_t gfp_mask
)
1071 unsigned long end_pfn
= start_pfn
+ nr_pages
;
1072 return alloc_contig_range(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
1076 static bool pfn_range_valid_gigantic(struct zone
*z
,
1077 unsigned long start_pfn
, unsigned long nr_pages
)
1079 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
1082 for (i
= start_pfn
; i
< end_pfn
; i
++) {
1086 page
= pfn_to_page(i
);
1088 if (page_zone(page
) != z
)
1091 if (PageReserved(page
))
1094 if (page_count(page
) > 0)
1104 static bool zone_spans_last_pfn(const struct zone
*zone
,
1105 unsigned long start_pfn
, unsigned long nr_pages
)
1107 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
1108 return zone_spans_pfn(zone
, last_pfn
);
1111 static struct page
*alloc_gigantic_page(int nid
, struct hstate
*h
)
1113 unsigned int order
= huge_page_order(h
);
1114 unsigned long nr_pages
= 1 << order
;
1115 unsigned long ret
, pfn
, flags
;
1116 struct zonelist
*zonelist
;
1121 gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1122 zonelist
= node_zonelist(nid
, gfp_mask
);
1123 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), NULL
) {
1124 spin_lock_irqsave(&zone
->lock
, flags
);
1126 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
1127 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
1128 if (pfn_range_valid_gigantic(zone
, pfn
, nr_pages
)) {
1130 * We release the zone lock here because
1131 * alloc_contig_range() will also lock the zone
1132 * at some point. If there's an allocation
1133 * spinning on this lock, it may win the race
1134 * and cause alloc_contig_range() to fail...
1136 spin_unlock_irqrestore(&zone
->lock
, flags
);
1137 ret
= __alloc_gigantic_page(pfn
, nr_pages
, gfp_mask
);
1139 return pfn_to_page(pfn
);
1140 spin_lock_irqsave(&zone
->lock
, flags
);
1145 spin_unlock_irqrestore(&zone
->lock
, flags
);
1151 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1152 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1154 static struct page
*alloc_fresh_gigantic_page_node(struct hstate
*h
, int nid
)
1158 page
= alloc_gigantic_page(nid
, h
);
1160 prep_compound_gigantic_page(page
, huge_page_order(h
));
1161 prep_new_huge_page(h
, page
, nid
);
1167 static int alloc_fresh_gigantic_page(struct hstate
*h
,
1168 nodemask_t
*nodes_allowed
)
1170 struct page
*page
= NULL
;
1173 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1174 page
= alloc_fresh_gigantic_page_node(h
, node
);
1182 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1183 static inline bool gigantic_page_supported(void) { return false; }
1184 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1185 static inline void destroy_compound_gigantic_page(struct page
*page
,
1186 unsigned int order
) { }
1187 static inline int alloc_fresh_gigantic_page(struct hstate
*h
,
1188 nodemask_t
*nodes_allowed
) { return 0; }
1191 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1195 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
1199 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1200 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1201 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1202 1 << PG_referenced
| 1 << PG_dirty
|
1203 1 << PG_active
| 1 << PG_private
|
1206 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1207 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1208 set_page_refcounted(page
);
1209 if (hstate_is_gigantic(h
)) {
1210 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1211 free_gigantic_page(page
, huge_page_order(h
));
1213 __free_pages(page
, huge_page_order(h
));
1217 struct hstate
*size_to_hstate(unsigned long size
)
1221 for_each_hstate(h
) {
1222 if (huge_page_size(h
) == size
)
1229 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1230 * to hstate->hugepage_activelist.)
1232 * This function can be called for tail pages, but never returns true for them.
1234 bool page_huge_active(struct page
*page
)
1236 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1237 return PageHead(page
) && PagePrivate(&page
[1]);
1240 /* never called for tail page */
1241 static void set_page_huge_active(struct page
*page
)
1243 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1244 SetPagePrivate(&page
[1]);
1247 static void clear_page_huge_active(struct page
*page
)
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1250 ClearPagePrivate(&page
[1]);
1253 void free_huge_page(struct page
*page
)
1256 * Can't pass hstate in here because it is called from the
1257 * compound page destructor.
1259 struct hstate
*h
= page_hstate(page
);
1260 int nid
= page_to_nid(page
);
1261 struct hugepage_subpool
*spool
=
1262 (struct hugepage_subpool
*)page_private(page
);
1263 bool restore_reserve
;
1265 set_page_private(page
, 0);
1266 page
->mapping
= NULL
;
1267 VM_BUG_ON_PAGE(page_count(page
), page
);
1268 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1269 restore_reserve
= PagePrivate(page
);
1270 ClearPagePrivate(page
);
1273 * A return code of zero implies that the subpool will be under its
1274 * minimum size if the reservation is not restored after page is free.
1275 * Therefore, force restore_reserve operation.
1277 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1278 restore_reserve
= true;
1280 spin_lock(&hugetlb_lock
);
1281 clear_page_huge_active(page
);
1282 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1283 pages_per_huge_page(h
), page
);
1284 if (restore_reserve
)
1285 h
->resv_huge_pages
++;
1287 if (h
->surplus_huge_pages_node
[nid
]) {
1288 /* remove the page from active list */
1289 list_del(&page
->lru
);
1290 update_and_free_page(h
, page
);
1291 h
->surplus_huge_pages
--;
1292 h
->surplus_huge_pages_node
[nid
]--;
1294 arch_clear_hugepage_flags(page
);
1295 enqueue_huge_page(h
, page
);
1297 spin_unlock(&hugetlb_lock
);
1300 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1302 INIT_LIST_HEAD(&page
->lru
);
1303 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1304 spin_lock(&hugetlb_lock
);
1305 set_hugetlb_cgroup(page
, NULL
);
1307 h
->nr_huge_pages_node
[nid
]++;
1308 spin_unlock(&hugetlb_lock
);
1309 put_page(page
); /* free it into the hugepage allocator */
1312 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1315 int nr_pages
= 1 << order
;
1316 struct page
*p
= page
+ 1;
1318 /* we rely on prep_new_huge_page to set the destructor */
1319 set_compound_order(page
, order
);
1320 __ClearPageReserved(page
);
1321 __SetPageHead(page
);
1322 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1324 * For gigantic hugepages allocated through bootmem at
1325 * boot, it's safer to be consistent with the not-gigantic
1326 * hugepages and clear the PG_reserved bit from all tail pages
1327 * too. Otherwse drivers using get_user_pages() to access tail
1328 * pages may get the reference counting wrong if they see
1329 * PG_reserved set on a tail page (despite the head page not
1330 * having PG_reserved set). Enforcing this consistency between
1331 * head and tail pages allows drivers to optimize away a check
1332 * on the head page when they need know if put_page() is needed
1333 * after get_user_pages().
1335 __ClearPageReserved(p
);
1336 set_page_count(p
, 0);
1337 set_compound_head(p
, page
);
1339 atomic_set(compound_mapcount_ptr(page
), -1);
1343 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1344 * transparent huge pages. See the PageTransHuge() documentation for more
1347 int PageHuge(struct page
*page
)
1349 if (!PageCompound(page
))
1352 page
= compound_head(page
);
1353 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1355 EXPORT_SYMBOL_GPL(PageHuge
);
1358 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1359 * normal or transparent huge pages.
1361 int PageHeadHuge(struct page
*page_head
)
1363 if (!PageHead(page_head
))
1366 return get_compound_page_dtor(page_head
) == free_huge_page
;
1369 pgoff_t
__basepage_index(struct page
*page
)
1371 struct page
*page_head
= compound_head(page
);
1372 pgoff_t index
= page_index(page_head
);
1373 unsigned long compound_idx
;
1375 if (!PageHuge(page_head
))
1376 return page_index(page
);
1378 if (compound_order(page_head
) >= MAX_ORDER
)
1379 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1381 compound_idx
= page
- page_head
;
1383 return (index
<< compound_order(page_head
)) + compound_idx
;
1386 static struct page
*alloc_fresh_huge_page_node(struct hstate
*h
, int nid
)
1390 page
= __alloc_pages_node(nid
,
1391 htlb_alloc_mask(h
)|__GFP_COMP
|__GFP_THISNODE
|
1392 __GFP_RETRY_MAYFAIL
|__GFP_NOWARN
,
1393 huge_page_order(h
));
1395 prep_new_huge_page(h
, page
, nid
);
1401 static int alloc_fresh_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1407 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1408 page
= alloc_fresh_huge_page_node(h
, node
);
1416 count_vm_event(HTLB_BUDDY_PGALLOC
);
1418 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1424 * Free huge page from pool from next node to free.
1425 * Attempt to keep persistent huge pages more or less
1426 * balanced over allowed nodes.
1427 * Called with hugetlb_lock locked.
1429 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1435 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1437 * If we're returning unused surplus pages, only examine
1438 * nodes with surplus pages.
1440 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1441 !list_empty(&h
->hugepage_freelists
[node
])) {
1443 list_entry(h
->hugepage_freelists
[node
].next
,
1445 list_del(&page
->lru
);
1446 h
->free_huge_pages
--;
1447 h
->free_huge_pages_node
[node
]--;
1449 h
->surplus_huge_pages
--;
1450 h
->surplus_huge_pages_node
[node
]--;
1452 update_and_free_page(h
, page
);
1462 * Dissolve a given free hugepage into free buddy pages. This function does
1463 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1464 * number of free hugepages would be reduced below the number of reserved
1467 int dissolve_free_huge_page(struct page
*page
)
1471 spin_lock(&hugetlb_lock
);
1472 if (PageHuge(page
) && !page_count(page
)) {
1473 struct page
*head
= compound_head(page
);
1474 struct hstate
*h
= page_hstate(head
);
1475 int nid
= page_to_nid(head
);
1476 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0) {
1481 * Move PageHWPoison flag from head page to the raw error page,
1482 * which makes any subpages rather than the error page reusable.
1484 if (PageHWPoison(head
) && page
!= head
) {
1485 SetPageHWPoison(page
);
1486 ClearPageHWPoison(head
);
1488 list_del(&head
->lru
);
1489 h
->free_huge_pages
--;
1490 h
->free_huge_pages_node
[nid
]--;
1491 h
->max_huge_pages
--;
1492 update_and_free_page(h
, head
);
1495 spin_unlock(&hugetlb_lock
);
1500 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1501 * make specified memory blocks removable from the system.
1502 * Note that this will dissolve a free gigantic hugepage completely, if any
1503 * part of it lies within the given range.
1504 * Also note that if dissolve_free_huge_page() returns with an error, all
1505 * free hugepages that were dissolved before that error are lost.
1507 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1513 if (!hugepages_supported())
1516 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1517 page
= pfn_to_page(pfn
);
1518 if (PageHuge(page
) && !page_count(page
)) {
1519 rc
= dissolve_free_huge_page(page
);
1528 static struct page
*__hugetlb_alloc_buddy_huge_page(struct hstate
*h
,
1529 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
)
1531 int order
= huge_page_order(h
);
1533 gfp_mask
|= __GFP_COMP
|__GFP_RETRY_MAYFAIL
|__GFP_NOWARN
;
1534 if (nid
== NUMA_NO_NODE
)
1535 nid
= numa_mem_id();
1536 return __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1539 static struct page
*__alloc_buddy_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1540 int nid
, nodemask_t
*nmask
)
1545 if (hstate_is_gigantic(h
))
1549 * Assume we will successfully allocate the surplus page to
1550 * prevent racing processes from causing the surplus to exceed
1553 * This however introduces a different race, where a process B
1554 * tries to grow the static hugepage pool while alloc_pages() is
1555 * called by process A. B will only examine the per-node
1556 * counters in determining if surplus huge pages can be
1557 * converted to normal huge pages in adjust_pool_surplus(). A
1558 * won't be able to increment the per-node counter, until the
1559 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1560 * no more huge pages can be converted from surplus to normal
1561 * state (and doesn't try to convert again). Thus, we have a
1562 * case where a surplus huge page exists, the pool is grown, and
1563 * the surplus huge page still exists after, even though it
1564 * should just have been converted to a normal huge page. This
1565 * does not leak memory, though, as the hugepage will be freed
1566 * once it is out of use. It also does not allow the counters to
1567 * go out of whack in adjust_pool_surplus() as we don't modify
1568 * the node values until we've gotten the hugepage and only the
1569 * per-node value is checked there.
1571 spin_lock(&hugetlb_lock
);
1572 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1573 spin_unlock(&hugetlb_lock
);
1577 h
->surplus_huge_pages
++;
1579 spin_unlock(&hugetlb_lock
);
1581 page
= __hugetlb_alloc_buddy_huge_page(h
, gfp_mask
, nid
, nmask
);
1583 spin_lock(&hugetlb_lock
);
1585 INIT_LIST_HEAD(&page
->lru
);
1586 r_nid
= page_to_nid(page
);
1587 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1588 set_hugetlb_cgroup(page
, NULL
);
1590 * We incremented the global counters already
1592 h
->nr_huge_pages_node
[r_nid
]++;
1593 h
->surplus_huge_pages_node
[r_nid
]++;
1594 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1597 h
->surplus_huge_pages
--;
1598 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1600 spin_unlock(&hugetlb_lock
);
1606 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1609 struct page
*__alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1610 struct vm_area_struct
*vma
, unsigned long addr
)
1613 struct mempolicy
*mpol
;
1614 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1616 nodemask_t
*nodemask
;
1618 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1619 page
= __alloc_buddy_huge_page(h
, gfp_mask
, nid
, nodemask
);
1620 mpol_cond_put(mpol
);
1626 * This allocation function is useful in the context where vma is irrelevant.
1627 * E.g. soft-offlining uses this function because it only cares physical
1628 * address of error page.
1630 struct page
*alloc_huge_page_node(struct hstate
*h
, int nid
)
1632 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1633 struct page
*page
= NULL
;
1635 if (nid
!= NUMA_NO_NODE
)
1636 gfp_mask
|= __GFP_THISNODE
;
1638 spin_lock(&hugetlb_lock
);
1639 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0)
1640 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, NULL
);
1641 spin_unlock(&hugetlb_lock
);
1644 page
= __alloc_buddy_huge_page(h
, gfp_mask
, nid
, NULL
);
1650 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1653 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1655 spin_lock(&hugetlb_lock
);
1656 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
1659 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
1661 spin_unlock(&hugetlb_lock
);
1665 spin_unlock(&hugetlb_lock
);
1667 /* No reservations, try to overcommit */
1669 return __alloc_buddy_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
1673 * Increase the hugetlb pool such that it can accommodate a reservation
1676 static int gather_surplus_pages(struct hstate
*h
, int delta
)
1678 struct list_head surplus_list
;
1679 struct page
*page
, *tmp
;
1681 int needed
, allocated
;
1682 bool alloc_ok
= true;
1684 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
1686 h
->resv_huge_pages
+= delta
;
1691 INIT_LIST_HEAD(&surplus_list
);
1695 spin_unlock(&hugetlb_lock
);
1696 for (i
= 0; i
< needed
; i
++) {
1697 page
= __alloc_buddy_huge_page(h
, htlb_alloc_mask(h
),
1698 NUMA_NO_NODE
, NULL
);
1703 list_add(&page
->lru
, &surplus_list
);
1709 * After retaking hugetlb_lock, we need to recalculate 'needed'
1710 * because either resv_huge_pages or free_huge_pages may have changed.
1712 spin_lock(&hugetlb_lock
);
1713 needed
= (h
->resv_huge_pages
+ delta
) -
1714 (h
->free_huge_pages
+ allocated
);
1719 * We were not able to allocate enough pages to
1720 * satisfy the entire reservation so we free what
1721 * we've allocated so far.
1726 * The surplus_list now contains _at_least_ the number of extra pages
1727 * needed to accommodate the reservation. Add the appropriate number
1728 * of pages to the hugetlb pool and free the extras back to the buddy
1729 * allocator. Commit the entire reservation here to prevent another
1730 * process from stealing the pages as they are added to the pool but
1731 * before they are reserved.
1733 needed
+= allocated
;
1734 h
->resv_huge_pages
+= delta
;
1737 /* Free the needed pages to the hugetlb pool */
1738 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
1742 * This page is now managed by the hugetlb allocator and has
1743 * no users -- drop the buddy allocator's reference.
1745 put_page_testzero(page
);
1746 VM_BUG_ON_PAGE(page_count(page
), page
);
1747 enqueue_huge_page(h
, page
);
1750 spin_unlock(&hugetlb_lock
);
1752 /* Free unnecessary surplus pages to the buddy allocator */
1753 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
1755 spin_lock(&hugetlb_lock
);
1761 * This routine has two main purposes:
1762 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1763 * in unused_resv_pages. This corresponds to the prior adjustments made
1764 * to the associated reservation map.
1765 * 2) Free any unused surplus pages that may have been allocated to satisfy
1766 * the reservation. As many as unused_resv_pages may be freed.
1768 * Called with hugetlb_lock held. However, the lock could be dropped (and
1769 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1770 * we must make sure nobody else can claim pages we are in the process of
1771 * freeing. Do this by ensuring resv_huge_page always is greater than the
1772 * number of huge pages we plan to free when dropping the lock.
1774 static void return_unused_surplus_pages(struct hstate
*h
,
1775 unsigned long unused_resv_pages
)
1777 unsigned long nr_pages
;
1779 /* Cannot return gigantic pages currently */
1780 if (hstate_is_gigantic(h
))
1784 * Part (or even all) of the reservation could have been backed
1785 * by pre-allocated pages. Only free surplus pages.
1787 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
1790 * We want to release as many surplus pages as possible, spread
1791 * evenly across all nodes with memory. Iterate across these nodes
1792 * until we can no longer free unreserved surplus pages. This occurs
1793 * when the nodes with surplus pages have no free pages.
1794 * free_pool_huge_page() will balance the the freed pages across the
1795 * on-line nodes with memory and will handle the hstate accounting.
1797 * Note that we decrement resv_huge_pages as we free the pages. If
1798 * we drop the lock, resv_huge_pages will still be sufficiently large
1799 * to cover subsequent pages we may free.
1801 while (nr_pages
--) {
1802 h
->resv_huge_pages
--;
1803 unused_resv_pages
--;
1804 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
1806 cond_resched_lock(&hugetlb_lock
);
1810 /* Fully uncommit the reservation */
1811 h
->resv_huge_pages
-= unused_resv_pages
;
1816 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1817 * are used by the huge page allocation routines to manage reservations.
1819 * vma_needs_reservation is called to determine if the huge page at addr
1820 * within the vma has an associated reservation. If a reservation is
1821 * needed, the value 1 is returned. The caller is then responsible for
1822 * managing the global reservation and subpool usage counts. After
1823 * the huge page has been allocated, vma_commit_reservation is called
1824 * to add the page to the reservation map. If the page allocation fails,
1825 * the reservation must be ended instead of committed. vma_end_reservation
1826 * is called in such cases.
1828 * In the normal case, vma_commit_reservation returns the same value
1829 * as the preceding vma_needs_reservation call. The only time this
1830 * is not the case is if a reserve map was changed between calls. It
1831 * is the responsibility of the caller to notice the difference and
1832 * take appropriate action.
1834 * vma_add_reservation is used in error paths where a reservation must
1835 * be restored when a newly allocated huge page must be freed. It is
1836 * to be called after calling vma_needs_reservation to determine if a
1837 * reservation exists.
1839 enum vma_resv_mode
{
1845 static long __vma_reservation_common(struct hstate
*h
,
1846 struct vm_area_struct
*vma
, unsigned long addr
,
1847 enum vma_resv_mode mode
)
1849 struct resv_map
*resv
;
1853 resv
= vma_resv_map(vma
);
1857 idx
= vma_hugecache_offset(h
, vma
, addr
);
1859 case VMA_NEEDS_RESV
:
1860 ret
= region_chg(resv
, idx
, idx
+ 1);
1862 case VMA_COMMIT_RESV
:
1863 ret
= region_add(resv
, idx
, idx
+ 1);
1866 region_abort(resv
, idx
, idx
+ 1);
1870 if (vma
->vm_flags
& VM_MAYSHARE
)
1871 ret
= region_add(resv
, idx
, idx
+ 1);
1873 region_abort(resv
, idx
, idx
+ 1);
1874 ret
= region_del(resv
, idx
, idx
+ 1);
1881 if (vma
->vm_flags
& VM_MAYSHARE
)
1883 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
1885 * In most cases, reserves always exist for private mappings.
1886 * However, a file associated with mapping could have been
1887 * hole punched or truncated after reserves were consumed.
1888 * As subsequent fault on such a range will not use reserves.
1889 * Subtle - The reserve map for private mappings has the
1890 * opposite meaning than that of shared mappings. If NO
1891 * entry is in the reserve map, it means a reservation exists.
1892 * If an entry exists in the reserve map, it means the
1893 * reservation has already been consumed. As a result, the
1894 * return value of this routine is the opposite of the
1895 * value returned from reserve map manipulation routines above.
1903 return ret
< 0 ? ret
: 0;
1906 static long vma_needs_reservation(struct hstate
*h
,
1907 struct vm_area_struct
*vma
, unsigned long addr
)
1909 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
1912 static long vma_commit_reservation(struct hstate
*h
,
1913 struct vm_area_struct
*vma
, unsigned long addr
)
1915 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
1918 static void vma_end_reservation(struct hstate
*h
,
1919 struct vm_area_struct
*vma
, unsigned long addr
)
1921 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
1924 static long vma_add_reservation(struct hstate
*h
,
1925 struct vm_area_struct
*vma
, unsigned long addr
)
1927 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
1931 * This routine is called to restore a reservation on error paths. In the
1932 * specific error paths, a huge page was allocated (via alloc_huge_page)
1933 * and is about to be freed. If a reservation for the page existed,
1934 * alloc_huge_page would have consumed the reservation and set PagePrivate
1935 * in the newly allocated page. When the page is freed via free_huge_page,
1936 * the global reservation count will be incremented if PagePrivate is set.
1937 * However, free_huge_page can not adjust the reserve map. Adjust the
1938 * reserve map here to be consistent with global reserve count adjustments
1939 * to be made by free_huge_page.
1941 static void restore_reserve_on_error(struct hstate
*h
,
1942 struct vm_area_struct
*vma
, unsigned long address
,
1945 if (unlikely(PagePrivate(page
))) {
1946 long rc
= vma_needs_reservation(h
, vma
, address
);
1948 if (unlikely(rc
< 0)) {
1950 * Rare out of memory condition in reserve map
1951 * manipulation. Clear PagePrivate so that
1952 * global reserve count will not be incremented
1953 * by free_huge_page. This will make it appear
1954 * as though the reservation for this page was
1955 * consumed. This may prevent the task from
1956 * faulting in the page at a later time. This
1957 * is better than inconsistent global huge page
1958 * accounting of reserve counts.
1960 ClearPagePrivate(page
);
1962 rc
= vma_add_reservation(h
, vma
, address
);
1963 if (unlikely(rc
< 0))
1965 * See above comment about rare out of
1968 ClearPagePrivate(page
);
1970 vma_end_reservation(h
, vma
, address
);
1974 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
1975 unsigned long addr
, int avoid_reserve
)
1977 struct hugepage_subpool
*spool
= subpool_vma(vma
);
1978 struct hstate
*h
= hstate_vma(vma
);
1980 long map_chg
, map_commit
;
1983 struct hugetlb_cgroup
*h_cg
;
1985 idx
= hstate_index(h
);
1987 * Examine the region/reserve map to determine if the process
1988 * has a reservation for the page to be allocated. A return
1989 * code of zero indicates a reservation exists (no change).
1991 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
1993 return ERR_PTR(-ENOMEM
);
1996 * Processes that did not create the mapping will have no
1997 * reserves as indicated by the region/reserve map. Check
1998 * that the allocation will not exceed the subpool limit.
1999 * Allocations for MAP_NORESERVE mappings also need to be
2000 * checked against any subpool limit.
2002 if (map_chg
|| avoid_reserve
) {
2003 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2005 vma_end_reservation(h
, vma
, addr
);
2006 return ERR_PTR(-ENOSPC
);
2010 * Even though there was no reservation in the region/reserve
2011 * map, there could be reservations associated with the
2012 * subpool that can be used. This would be indicated if the
2013 * return value of hugepage_subpool_get_pages() is zero.
2014 * However, if avoid_reserve is specified we still avoid even
2015 * the subpool reservations.
2021 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2023 goto out_subpool_put
;
2025 spin_lock(&hugetlb_lock
);
2027 * glb_chg is passed to indicate whether or not a page must be taken
2028 * from the global free pool (global change). gbl_chg == 0 indicates
2029 * a reservation exists for the allocation.
2031 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2033 spin_unlock(&hugetlb_lock
);
2034 page
= __alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2036 goto out_uncharge_cgroup
;
2037 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2038 SetPagePrivate(page
);
2039 h
->resv_huge_pages
--;
2041 spin_lock(&hugetlb_lock
);
2042 list_move(&page
->lru
, &h
->hugepage_activelist
);
2045 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2046 spin_unlock(&hugetlb_lock
);
2048 set_page_private(page
, (unsigned long)spool
);
2050 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2051 if (unlikely(map_chg
> map_commit
)) {
2053 * The page was added to the reservation map between
2054 * vma_needs_reservation and vma_commit_reservation.
2055 * This indicates a race with hugetlb_reserve_pages.
2056 * Adjust for the subpool count incremented above AND
2057 * in hugetlb_reserve_pages for the same page. Also,
2058 * the reservation count added in hugetlb_reserve_pages
2059 * no longer applies.
2063 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2064 hugetlb_acct_memory(h
, -rsv_adjust
);
2068 out_uncharge_cgroup
:
2069 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2071 if (map_chg
|| avoid_reserve
)
2072 hugepage_subpool_put_pages(spool
, 1);
2073 vma_end_reservation(h
, vma
, addr
);
2074 return ERR_PTR(-ENOSPC
);
2078 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2079 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2080 * where no ERR_VALUE is expected to be returned.
2082 struct page
*alloc_huge_page_noerr(struct vm_area_struct
*vma
,
2083 unsigned long addr
, int avoid_reserve
)
2085 struct page
*page
= alloc_huge_page(vma
, addr
, avoid_reserve
);
2091 int alloc_bootmem_huge_page(struct hstate
*h
)
2092 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2093 int __alloc_bootmem_huge_page(struct hstate
*h
)
2095 struct huge_bootmem_page
*m
;
2098 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2101 addr
= memblock_virt_alloc_try_nid_nopanic(
2102 huge_page_size(h
), huge_page_size(h
),
2103 0, BOOTMEM_ALLOC_ACCESSIBLE
, node
);
2106 * Use the beginning of the huge page to store the
2107 * huge_bootmem_page struct (until gather_bootmem
2108 * puts them into the mem_map).
2117 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2118 /* Put them into a private list first because mem_map is not up yet */
2119 list_add(&m
->list
, &huge_boot_pages
);
2124 static void __init
prep_compound_huge_page(struct page
*page
,
2127 if (unlikely(order
> (MAX_ORDER
- 1)))
2128 prep_compound_gigantic_page(page
, order
);
2130 prep_compound_page(page
, order
);
2133 /* Put bootmem huge pages into the standard lists after mem_map is up */
2134 static void __init
gather_bootmem_prealloc(void)
2136 struct huge_bootmem_page
*m
;
2138 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2139 struct hstate
*h
= m
->hstate
;
2142 #ifdef CONFIG_HIGHMEM
2143 page
= pfn_to_page(m
->phys
>> PAGE_SHIFT
);
2144 memblock_free_late(__pa(m
),
2145 sizeof(struct huge_bootmem_page
));
2147 page
= virt_to_page(m
);
2149 WARN_ON(page_count(page
) != 1);
2150 prep_compound_huge_page(page
, h
->order
);
2151 WARN_ON(PageReserved(page
));
2152 prep_new_huge_page(h
, page
, page_to_nid(page
));
2154 * If we had gigantic hugepages allocated at boot time, we need
2155 * to restore the 'stolen' pages to totalram_pages in order to
2156 * fix confusing memory reports from free(1) and another
2157 * side-effects, like CommitLimit going negative.
2159 if (hstate_is_gigantic(h
))
2160 adjust_managed_page_count(page
, 1 << h
->order
);
2164 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2168 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2169 if (hstate_is_gigantic(h
)) {
2170 if (!alloc_bootmem_huge_page(h
))
2172 } else if (!alloc_fresh_huge_page(h
,
2173 &node_states
[N_MEMORY
]))
2177 if (i
< h
->max_huge_pages
) {
2180 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2181 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2182 h
->max_huge_pages
, buf
, i
);
2183 h
->max_huge_pages
= i
;
2187 static void __init
hugetlb_init_hstates(void)
2191 for_each_hstate(h
) {
2192 if (minimum_order
> huge_page_order(h
))
2193 minimum_order
= huge_page_order(h
);
2195 /* oversize hugepages were init'ed in early boot */
2196 if (!hstate_is_gigantic(h
))
2197 hugetlb_hstate_alloc_pages(h
);
2199 VM_BUG_ON(minimum_order
== UINT_MAX
);
2202 static void __init
report_hugepages(void)
2206 for_each_hstate(h
) {
2209 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2210 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2211 buf
, h
->free_huge_pages
);
2215 #ifdef CONFIG_HIGHMEM
2216 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2217 nodemask_t
*nodes_allowed
)
2221 if (hstate_is_gigantic(h
))
2224 for_each_node_mask(i
, *nodes_allowed
) {
2225 struct page
*page
, *next
;
2226 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2227 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2228 if (count
>= h
->nr_huge_pages
)
2230 if (PageHighMem(page
))
2232 list_del(&page
->lru
);
2233 update_and_free_page(h
, page
);
2234 h
->free_huge_pages
--;
2235 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2240 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2241 nodemask_t
*nodes_allowed
)
2247 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2248 * balanced by operating on them in a round-robin fashion.
2249 * Returns 1 if an adjustment was made.
2251 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2256 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2259 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2260 if (h
->surplus_huge_pages_node
[node
])
2264 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2265 if (h
->surplus_huge_pages_node
[node
] <
2266 h
->nr_huge_pages_node
[node
])
2273 h
->surplus_huge_pages
+= delta
;
2274 h
->surplus_huge_pages_node
[node
] += delta
;
2278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2279 static unsigned long set_max_huge_pages(struct hstate
*h
, unsigned long count
,
2280 nodemask_t
*nodes_allowed
)
2282 unsigned long min_count
, ret
;
2284 if (hstate_is_gigantic(h
) && !gigantic_page_supported())
2285 return h
->max_huge_pages
;
2288 * Increase the pool size
2289 * First take pages out of surplus state. Then make up the
2290 * remaining difference by allocating fresh huge pages.
2292 * We might race with __alloc_buddy_huge_page() here and be unable
2293 * to convert a surplus huge page to a normal huge page. That is
2294 * not critical, though, it just means the overall size of the
2295 * pool might be one hugepage larger than it needs to be, but
2296 * within all the constraints specified by the sysctls.
2298 spin_lock(&hugetlb_lock
);
2299 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2300 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2304 while (count
> persistent_huge_pages(h
)) {
2306 * If this allocation races such that we no longer need the
2307 * page, free_huge_page will handle it by freeing the page
2308 * and reducing the surplus.
2310 spin_unlock(&hugetlb_lock
);
2312 /* yield cpu to avoid soft lockup */
2315 if (hstate_is_gigantic(h
))
2316 ret
= alloc_fresh_gigantic_page(h
, nodes_allowed
);
2318 ret
= alloc_fresh_huge_page(h
, nodes_allowed
);
2319 spin_lock(&hugetlb_lock
);
2323 /* Bail for signals. Probably ctrl-c from user */
2324 if (signal_pending(current
))
2329 * Decrease the pool size
2330 * First return free pages to the buddy allocator (being careful
2331 * to keep enough around to satisfy reservations). Then place
2332 * pages into surplus state as needed so the pool will shrink
2333 * to the desired size as pages become free.
2335 * By placing pages into the surplus state independent of the
2336 * overcommit value, we are allowing the surplus pool size to
2337 * exceed overcommit. There are few sane options here. Since
2338 * __alloc_buddy_huge_page() is checking the global counter,
2339 * though, we'll note that we're not allowed to exceed surplus
2340 * and won't grow the pool anywhere else. Not until one of the
2341 * sysctls are changed, or the surplus pages go out of use.
2343 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2344 min_count
= max(count
, min_count
);
2345 try_to_free_low(h
, min_count
, nodes_allowed
);
2346 while (min_count
< persistent_huge_pages(h
)) {
2347 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2349 cond_resched_lock(&hugetlb_lock
);
2351 while (count
< persistent_huge_pages(h
)) {
2352 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2356 ret
= persistent_huge_pages(h
);
2357 spin_unlock(&hugetlb_lock
);
2361 #define HSTATE_ATTR_RO(_name) \
2362 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2364 #define HSTATE_ATTR(_name) \
2365 static struct kobj_attribute _name##_attr = \
2366 __ATTR(_name, 0644, _name##_show, _name##_store)
2368 static struct kobject
*hugepages_kobj
;
2369 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2371 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2373 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2377 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2378 if (hstate_kobjs
[i
] == kobj
) {
2380 *nidp
= NUMA_NO_NODE
;
2384 return kobj_to_node_hstate(kobj
, nidp
);
2387 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2388 struct kobj_attribute
*attr
, char *buf
)
2391 unsigned long nr_huge_pages
;
2394 h
= kobj_to_hstate(kobj
, &nid
);
2395 if (nid
== NUMA_NO_NODE
)
2396 nr_huge_pages
= h
->nr_huge_pages
;
2398 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2400 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2403 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2404 struct hstate
*h
, int nid
,
2405 unsigned long count
, size_t len
)
2408 NODEMASK_ALLOC(nodemask_t
, nodes_allowed
, GFP_KERNEL
| __GFP_NORETRY
);
2410 if (hstate_is_gigantic(h
) && !gigantic_page_supported()) {
2415 if (nid
== NUMA_NO_NODE
) {
2417 * global hstate attribute
2419 if (!(obey_mempolicy
&&
2420 init_nodemask_of_mempolicy(nodes_allowed
))) {
2421 NODEMASK_FREE(nodes_allowed
);
2422 nodes_allowed
= &node_states
[N_MEMORY
];
2424 } else if (nodes_allowed
) {
2426 * per node hstate attribute: adjust count to global,
2427 * but restrict alloc/free to the specified node.
2429 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2430 init_nodemask_of_node(nodes_allowed
, nid
);
2432 nodes_allowed
= &node_states
[N_MEMORY
];
2434 h
->max_huge_pages
= set_max_huge_pages(h
, count
, nodes_allowed
);
2436 if (nodes_allowed
!= &node_states
[N_MEMORY
])
2437 NODEMASK_FREE(nodes_allowed
);
2441 NODEMASK_FREE(nodes_allowed
);
2445 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2446 struct kobject
*kobj
, const char *buf
,
2450 unsigned long count
;
2454 err
= kstrtoul(buf
, 10, &count
);
2458 h
= kobj_to_hstate(kobj
, &nid
);
2459 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2462 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2463 struct kobj_attribute
*attr
, char *buf
)
2465 return nr_hugepages_show_common(kobj
, attr
, buf
);
2468 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2469 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2471 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2473 HSTATE_ATTR(nr_hugepages
);
2478 * hstate attribute for optionally mempolicy-based constraint on persistent
2479 * huge page alloc/free.
2481 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2482 struct kobj_attribute
*attr
, char *buf
)
2484 return nr_hugepages_show_common(kobj
, attr
, buf
);
2487 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2488 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2490 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2492 HSTATE_ATTR(nr_hugepages_mempolicy
);
2496 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2497 struct kobj_attribute
*attr
, char *buf
)
2499 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2500 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2503 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2504 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2507 unsigned long input
;
2508 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2510 if (hstate_is_gigantic(h
))
2513 err
= kstrtoul(buf
, 10, &input
);
2517 spin_lock(&hugetlb_lock
);
2518 h
->nr_overcommit_huge_pages
= input
;
2519 spin_unlock(&hugetlb_lock
);
2523 HSTATE_ATTR(nr_overcommit_hugepages
);
2525 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2526 struct kobj_attribute
*attr
, char *buf
)
2529 unsigned long free_huge_pages
;
2532 h
= kobj_to_hstate(kobj
, &nid
);
2533 if (nid
== NUMA_NO_NODE
)
2534 free_huge_pages
= h
->free_huge_pages
;
2536 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2538 return sprintf(buf
, "%lu\n", free_huge_pages
);
2540 HSTATE_ATTR_RO(free_hugepages
);
2542 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2543 struct kobj_attribute
*attr
, char *buf
)
2545 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2546 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2548 HSTATE_ATTR_RO(resv_hugepages
);
2550 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2551 struct kobj_attribute
*attr
, char *buf
)
2554 unsigned long surplus_huge_pages
;
2557 h
= kobj_to_hstate(kobj
, &nid
);
2558 if (nid
== NUMA_NO_NODE
)
2559 surplus_huge_pages
= h
->surplus_huge_pages
;
2561 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
2563 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
2565 HSTATE_ATTR_RO(surplus_hugepages
);
2567 static struct attribute
*hstate_attrs
[] = {
2568 &nr_hugepages_attr
.attr
,
2569 &nr_overcommit_hugepages_attr
.attr
,
2570 &free_hugepages_attr
.attr
,
2571 &resv_hugepages_attr
.attr
,
2572 &surplus_hugepages_attr
.attr
,
2574 &nr_hugepages_mempolicy_attr
.attr
,
2579 static const struct attribute_group hstate_attr_group
= {
2580 .attrs
= hstate_attrs
,
2583 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
2584 struct kobject
**hstate_kobjs
,
2585 const struct attribute_group
*hstate_attr_group
)
2588 int hi
= hstate_index(h
);
2590 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
2591 if (!hstate_kobjs
[hi
])
2594 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
2596 kobject_put(hstate_kobjs
[hi
]);
2601 static void __init
hugetlb_sysfs_init(void)
2606 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
2607 if (!hugepages_kobj
)
2610 for_each_hstate(h
) {
2611 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
2612 hstate_kobjs
, &hstate_attr_group
);
2614 pr_err("Hugetlb: Unable to add hstate %s", h
->name
);
2621 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2622 * with node devices in node_devices[] using a parallel array. The array
2623 * index of a node device or _hstate == node id.
2624 * This is here to avoid any static dependency of the node device driver, in
2625 * the base kernel, on the hugetlb module.
2627 struct node_hstate
{
2628 struct kobject
*hugepages_kobj
;
2629 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2631 static struct node_hstate node_hstates
[MAX_NUMNODES
];
2634 * A subset of global hstate attributes for node devices
2636 static struct attribute
*per_node_hstate_attrs
[] = {
2637 &nr_hugepages_attr
.attr
,
2638 &free_hugepages_attr
.attr
,
2639 &surplus_hugepages_attr
.attr
,
2643 static const struct attribute_group per_node_hstate_attr_group
= {
2644 .attrs
= per_node_hstate_attrs
,
2648 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2649 * Returns node id via non-NULL nidp.
2651 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2655 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
2656 struct node_hstate
*nhs
= &node_hstates
[nid
];
2658 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2659 if (nhs
->hstate_kobjs
[i
] == kobj
) {
2671 * Unregister hstate attributes from a single node device.
2672 * No-op if no hstate attributes attached.
2674 static void hugetlb_unregister_node(struct node
*node
)
2677 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2679 if (!nhs
->hugepages_kobj
)
2680 return; /* no hstate attributes */
2682 for_each_hstate(h
) {
2683 int idx
= hstate_index(h
);
2684 if (nhs
->hstate_kobjs
[idx
]) {
2685 kobject_put(nhs
->hstate_kobjs
[idx
]);
2686 nhs
->hstate_kobjs
[idx
] = NULL
;
2690 kobject_put(nhs
->hugepages_kobj
);
2691 nhs
->hugepages_kobj
= NULL
;
2696 * Register hstate attributes for a single node device.
2697 * No-op if attributes already registered.
2699 static void hugetlb_register_node(struct node
*node
)
2702 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
2705 if (nhs
->hugepages_kobj
)
2706 return; /* already allocated */
2708 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
2710 if (!nhs
->hugepages_kobj
)
2713 for_each_hstate(h
) {
2714 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
2716 &per_node_hstate_attr_group
);
2718 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2719 h
->name
, node
->dev
.id
);
2720 hugetlb_unregister_node(node
);
2727 * hugetlb init time: register hstate attributes for all registered node
2728 * devices of nodes that have memory. All on-line nodes should have
2729 * registered their associated device by this time.
2731 static void __init
hugetlb_register_all_nodes(void)
2735 for_each_node_state(nid
, N_MEMORY
) {
2736 struct node
*node
= node_devices
[nid
];
2737 if (node
->dev
.id
== nid
)
2738 hugetlb_register_node(node
);
2742 * Let the node device driver know we're here so it can
2743 * [un]register hstate attributes on node hotplug.
2745 register_hugetlbfs_with_node(hugetlb_register_node
,
2746 hugetlb_unregister_node
);
2748 #else /* !CONFIG_NUMA */
2750 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
2758 static void hugetlb_register_all_nodes(void) { }
2762 static int __init
hugetlb_init(void)
2766 if (!hugepages_supported())
2769 if (!size_to_hstate(default_hstate_size
)) {
2770 if (default_hstate_size
!= 0) {
2771 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2772 default_hstate_size
, HPAGE_SIZE
);
2775 default_hstate_size
= HPAGE_SIZE
;
2776 if (!size_to_hstate(default_hstate_size
))
2777 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
2779 default_hstate_idx
= hstate_index(size_to_hstate(default_hstate_size
));
2780 if (default_hstate_max_huge_pages
) {
2781 if (!default_hstate
.max_huge_pages
)
2782 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
2785 hugetlb_init_hstates();
2786 gather_bootmem_prealloc();
2789 hugetlb_sysfs_init();
2790 hugetlb_register_all_nodes();
2791 hugetlb_cgroup_file_init();
2794 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
2796 num_fault_mutexes
= 1;
2798 hugetlb_fault_mutex_table
=
2799 kmalloc(sizeof(struct mutex
) * num_fault_mutexes
, GFP_KERNEL
);
2800 BUG_ON(!hugetlb_fault_mutex_table
);
2802 for (i
= 0; i
< num_fault_mutexes
; i
++)
2803 mutex_init(&hugetlb_fault_mutex_table
[i
]);
2806 subsys_initcall(hugetlb_init
);
2808 /* Should be called on processing a hugepagesz=... option */
2809 void __init
hugetlb_bad_size(void)
2811 parsed_valid_hugepagesz
= false;
2814 void __init
hugetlb_add_hstate(unsigned int order
)
2819 if (size_to_hstate(PAGE_SIZE
<< order
)) {
2820 pr_warn("hugepagesz= specified twice, ignoring\n");
2823 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
2825 h
= &hstates
[hugetlb_max_hstate
++];
2827 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
2828 h
->nr_huge_pages
= 0;
2829 h
->free_huge_pages
= 0;
2830 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
2831 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
2832 INIT_LIST_HEAD(&h
->hugepage_activelist
);
2833 h
->next_nid_to_alloc
= first_memory_node
;
2834 h
->next_nid_to_free
= first_memory_node
;
2835 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
2836 huge_page_size(h
)/1024);
2841 static int __init
hugetlb_nrpages_setup(char *s
)
2844 static unsigned long *last_mhp
;
2846 if (!parsed_valid_hugepagesz
) {
2847 pr_warn("hugepages = %s preceded by "
2848 "an unsupported hugepagesz, ignoring\n", s
);
2849 parsed_valid_hugepagesz
= true;
2853 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2854 * so this hugepages= parameter goes to the "default hstate".
2856 else if (!hugetlb_max_hstate
)
2857 mhp
= &default_hstate_max_huge_pages
;
2859 mhp
= &parsed_hstate
->max_huge_pages
;
2861 if (mhp
== last_mhp
) {
2862 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
2866 if (sscanf(s
, "%lu", mhp
) <= 0)
2870 * Global state is always initialized later in hugetlb_init.
2871 * But we need to allocate >= MAX_ORDER hstates here early to still
2872 * use the bootmem allocator.
2874 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
2875 hugetlb_hstate_alloc_pages(parsed_hstate
);
2881 __setup("hugepages=", hugetlb_nrpages_setup
);
2883 static int __init
hugetlb_default_setup(char *s
)
2885 default_hstate_size
= memparse(s
, &s
);
2888 __setup("default_hugepagesz=", hugetlb_default_setup
);
2890 static unsigned int cpuset_mems_nr(unsigned int *array
)
2893 unsigned int nr
= 0;
2895 for_each_node_mask(node
, cpuset_current_mems_allowed
)
2901 #ifdef CONFIG_SYSCTL
2902 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
2903 struct ctl_table
*table
, int write
,
2904 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2906 struct hstate
*h
= &default_hstate
;
2907 unsigned long tmp
= h
->max_huge_pages
;
2910 if (!hugepages_supported())
2914 table
->maxlen
= sizeof(unsigned long);
2915 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2920 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
2921 NUMA_NO_NODE
, tmp
, *length
);
2926 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
2927 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2930 return hugetlb_sysctl_handler_common(false, table
, write
,
2931 buffer
, length
, ppos
);
2935 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
2936 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
2938 return hugetlb_sysctl_handler_common(true, table
, write
,
2939 buffer
, length
, ppos
);
2941 #endif /* CONFIG_NUMA */
2943 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
2944 void __user
*buffer
,
2945 size_t *length
, loff_t
*ppos
)
2947 struct hstate
*h
= &default_hstate
;
2951 if (!hugepages_supported())
2954 tmp
= h
->nr_overcommit_huge_pages
;
2956 if (write
&& hstate_is_gigantic(h
))
2960 table
->maxlen
= sizeof(unsigned long);
2961 ret
= proc_doulongvec_minmax(table
, write
, buffer
, length
, ppos
);
2966 spin_lock(&hugetlb_lock
);
2967 h
->nr_overcommit_huge_pages
= tmp
;
2968 spin_unlock(&hugetlb_lock
);
2974 #endif /* CONFIG_SYSCTL */
2976 void hugetlb_report_meminfo(struct seq_file
*m
)
2978 struct hstate
*h
= &default_hstate
;
2979 if (!hugepages_supported())
2982 "HugePages_Total: %5lu\n"
2983 "HugePages_Free: %5lu\n"
2984 "HugePages_Rsvd: %5lu\n"
2985 "HugePages_Surp: %5lu\n"
2986 "Hugepagesize: %8lu kB\n",
2990 h
->surplus_huge_pages
,
2991 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
2994 int hugetlb_report_node_meminfo(int nid
, char *buf
)
2996 struct hstate
*h
= &default_hstate
;
2997 if (!hugepages_supported())
3000 "Node %d HugePages_Total: %5u\n"
3001 "Node %d HugePages_Free: %5u\n"
3002 "Node %d HugePages_Surp: %5u\n",
3003 nid
, h
->nr_huge_pages_node
[nid
],
3004 nid
, h
->free_huge_pages_node
[nid
],
3005 nid
, h
->surplus_huge_pages_node
[nid
]);
3008 void hugetlb_show_meminfo(void)
3013 if (!hugepages_supported())
3016 for_each_node_state(nid
, N_MEMORY
)
3018 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3020 h
->nr_huge_pages_node
[nid
],
3021 h
->free_huge_pages_node
[nid
],
3022 h
->surplus_huge_pages_node
[nid
],
3023 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3026 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3028 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3029 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3032 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3033 unsigned long hugetlb_total_pages(void)
3036 unsigned long nr_total_pages
= 0;
3039 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3040 return nr_total_pages
;
3043 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3047 spin_lock(&hugetlb_lock
);
3049 * When cpuset is configured, it breaks the strict hugetlb page
3050 * reservation as the accounting is done on a global variable. Such
3051 * reservation is completely rubbish in the presence of cpuset because
3052 * the reservation is not checked against page availability for the
3053 * current cpuset. Application can still potentially OOM'ed by kernel
3054 * with lack of free htlb page in cpuset that the task is in.
3055 * Attempt to enforce strict accounting with cpuset is almost
3056 * impossible (or too ugly) because cpuset is too fluid that
3057 * task or memory node can be dynamically moved between cpusets.
3059 * The change of semantics for shared hugetlb mapping with cpuset is
3060 * undesirable. However, in order to preserve some of the semantics,
3061 * we fall back to check against current free page availability as
3062 * a best attempt and hopefully to minimize the impact of changing
3063 * semantics that cpuset has.
3066 if (gather_surplus_pages(h
, delta
) < 0)
3069 if (delta
> cpuset_mems_nr(h
->free_huge_pages_node
)) {
3070 return_unused_surplus_pages(h
, delta
);
3077 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3080 spin_unlock(&hugetlb_lock
);
3084 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3086 struct resv_map
*resv
= vma_resv_map(vma
);
3089 * This new VMA should share its siblings reservation map if present.
3090 * The VMA will only ever have a valid reservation map pointer where
3091 * it is being copied for another still existing VMA. As that VMA
3092 * has a reference to the reservation map it cannot disappear until
3093 * after this open call completes. It is therefore safe to take a
3094 * new reference here without additional locking.
3096 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3097 kref_get(&resv
->refs
);
3100 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3102 struct hstate
*h
= hstate_vma(vma
);
3103 struct resv_map
*resv
= vma_resv_map(vma
);
3104 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3105 unsigned long reserve
, start
, end
;
3108 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3111 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3112 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3114 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3116 kref_put(&resv
->refs
, resv_map_release
);
3120 * Decrement reserve counts. The global reserve count may be
3121 * adjusted if the subpool has a minimum size.
3123 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3124 hugetlb_acct_memory(h
, -gbl_reserve
);
3129 * We cannot handle pagefaults against hugetlb pages at all. They cause
3130 * handle_mm_fault() to try to instantiate regular-sized pages in the
3131 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3134 static int hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3140 const struct vm_operations_struct hugetlb_vm_ops
= {
3141 .fault
= hugetlb_vm_op_fault
,
3142 .open
= hugetlb_vm_op_open
,
3143 .close
= hugetlb_vm_op_close
,
3146 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3152 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3153 vma
->vm_page_prot
)));
3155 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3156 vma
->vm_page_prot
));
3158 entry
= pte_mkyoung(entry
);
3159 entry
= pte_mkhuge(entry
);
3160 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3165 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3166 unsigned long address
, pte_t
*ptep
)
3170 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3171 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3172 update_mmu_cache(vma
, address
, ptep
);
3175 bool is_hugetlb_entry_migration(pte_t pte
)
3179 if (huge_pte_none(pte
) || pte_present(pte
))
3181 swp
= pte_to_swp_entry(pte
);
3182 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3188 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3192 if (huge_pte_none(pte
) || pte_present(pte
))
3194 swp
= pte_to_swp_entry(pte
);
3195 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3201 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3202 struct vm_area_struct
*vma
)
3204 pte_t
*src_pte
, *dst_pte
, entry
;
3205 struct page
*ptepage
;
3208 struct hstate
*h
= hstate_vma(vma
);
3209 unsigned long sz
= huge_page_size(h
);
3210 unsigned long mmun_start
; /* For mmu_notifiers */
3211 unsigned long mmun_end
; /* For mmu_notifiers */
3214 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3216 mmun_start
= vma
->vm_start
;
3217 mmun_end
= vma
->vm_end
;
3219 mmu_notifier_invalidate_range_start(src
, mmun_start
, mmun_end
);
3221 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3222 spinlock_t
*src_ptl
, *dst_ptl
;
3223 src_pte
= huge_pte_offset(src
, addr
, sz
);
3226 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3232 /* If the pagetables are shared don't copy or take references */
3233 if (dst_pte
== src_pte
)
3236 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3237 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3238 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3239 entry
= huge_ptep_get(src_pte
);
3240 if (huge_pte_none(entry
)) { /* skip none entry */
3242 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3243 is_hugetlb_entry_hwpoisoned(entry
))) {
3244 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3246 if (is_write_migration_entry(swp_entry
) && cow
) {
3248 * COW mappings require pages in both
3249 * parent and child to be set to read.
3251 make_migration_entry_read(&swp_entry
);
3252 entry
= swp_entry_to_pte(swp_entry
);
3253 set_huge_swap_pte_at(src
, addr
, src_pte
,
3256 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3259 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3260 mmu_notifier_invalidate_range(src
, mmun_start
,
3263 entry
= huge_ptep_get(src_pte
);
3264 ptepage
= pte_page(entry
);
3266 page_dup_rmap(ptepage
, true);
3267 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3268 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3270 spin_unlock(src_ptl
);
3271 spin_unlock(dst_ptl
);
3275 mmu_notifier_invalidate_range_end(src
, mmun_start
, mmun_end
);
3280 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3281 unsigned long start
, unsigned long end
,
3282 struct page
*ref_page
)
3284 struct mm_struct
*mm
= vma
->vm_mm
;
3285 unsigned long address
;
3290 struct hstate
*h
= hstate_vma(vma
);
3291 unsigned long sz
= huge_page_size(h
);
3292 const unsigned long mmun_start
= start
; /* For mmu_notifiers */
3293 const unsigned long mmun_end
= end
; /* For mmu_notifiers */
3295 WARN_ON(!is_vm_hugetlb_page(vma
));
3296 BUG_ON(start
& ~huge_page_mask(h
));
3297 BUG_ON(end
& ~huge_page_mask(h
));
3300 * This is a hugetlb vma, all the pte entries should point
3303 tlb_remove_check_page_size_change(tlb
, sz
);
3304 tlb_start_vma(tlb
, vma
);
3305 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3307 for (; address
< end
; address
+= sz
) {
3308 ptep
= huge_pte_offset(mm
, address
, sz
);
3312 ptl
= huge_pte_lock(h
, mm
, ptep
);
3313 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
3318 pte
= huge_ptep_get(ptep
);
3319 if (huge_pte_none(pte
)) {
3325 * Migrating hugepage or HWPoisoned hugepage is already
3326 * unmapped and its refcount is dropped, so just clear pte here.
3328 if (unlikely(!pte_present(pte
))) {
3329 huge_pte_clear(mm
, address
, ptep
, sz
);
3334 page
= pte_page(pte
);
3336 * If a reference page is supplied, it is because a specific
3337 * page is being unmapped, not a range. Ensure the page we
3338 * are about to unmap is the actual page of interest.
3341 if (page
!= ref_page
) {
3346 * Mark the VMA as having unmapped its page so that
3347 * future faults in this VMA will fail rather than
3348 * looking like data was lost
3350 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
3353 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
3354 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
3355 if (huge_pte_dirty(pte
))
3356 set_page_dirty(page
);
3358 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
3359 page_remove_rmap(page
, true);
3362 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
3364 * Bail out after unmapping reference page if supplied
3369 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3370 tlb_end_vma(tlb
, vma
);
3373 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
3374 struct vm_area_struct
*vma
, unsigned long start
,
3375 unsigned long end
, struct page
*ref_page
)
3377 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
3380 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3381 * test will fail on a vma being torn down, and not grab a page table
3382 * on its way out. We're lucky that the flag has such an appropriate
3383 * name, and can in fact be safely cleared here. We could clear it
3384 * before the __unmap_hugepage_range above, but all that's necessary
3385 * is to clear it before releasing the i_mmap_rwsem. This works
3386 * because in the context this is called, the VMA is about to be
3387 * destroyed and the i_mmap_rwsem is held.
3389 vma
->vm_flags
&= ~VM_MAYSHARE
;
3392 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
3393 unsigned long end
, struct page
*ref_page
)
3395 struct mm_struct
*mm
;
3396 struct mmu_gather tlb
;
3400 tlb_gather_mmu(&tlb
, mm
, start
, end
);
3401 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
3402 tlb_finish_mmu(&tlb
, start
, end
);
3406 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3407 * mappping it owns the reserve page for. The intention is to unmap the page
3408 * from other VMAs and let the children be SIGKILLed if they are faulting the
3411 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3412 struct page
*page
, unsigned long address
)
3414 struct hstate
*h
= hstate_vma(vma
);
3415 struct vm_area_struct
*iter_vma
;
3416 struct address_space
*mapping
;
3420 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3421 * from page cache lookup which is in HPAGE_SIZE units.
3423 address
= address
& huge_page_mask(h
);
3424 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
3426 mapping
= vma
->vm_file
->f_mapping
;
3429 * Take the mapping lock for the duration of the table walk. As
3430 * this mapping should be shared between all the VMAs,
3431 * __unmap_hugepage_range() is called as the lock is already held
3433 i_mmap_lock_write(mapping
);
3434 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
3435 /* Do not unmap the current VMA */
3436 if (iter_vma
== vma
)
3440 * Shared VMAs have their own reserves and do not affect
3441 * MAP_PRIVATE accounting but it is possible that a shared
3442 * VMA is using the same page so check and skip such VMAs.
3444 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
3448 * Unmap the page from other VMAs without their own reserves.
3449 * They get marked to be SIGKILLed if they fault in these
3450 * areas. This is because a future no-page fault on this VMA
3451 * could insert a zeroed page instead of the data existing
3452 * from the time of fork. This would look like data corruption
3454 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
3455 unmap_hugepage_range(iter_vma
, address
,
3456 address
+ huge_page_size(h
), page
);
3458 i_mmap_unlock_write(mapping
);
3462 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3463 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3464 * cannot race with other handlers or page migration.
3465 * Keep the pte_same checks anyway to make transition from the mutex easier.
3467 static int hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3468 unsigned long address
, pte_t
*ptep
,
3469 struct page
*pagecache_page
, spinlock_t
*ptl
)
3472 struct hstate
*h
= hstate_vma(vma
);
3473 struct page
*old_page
, *new_page
;
3474 int ret
= 0, outside_reserve
= 0;
3475 unsigned long mmun_start
; /* For mmu_notifiers */
3476 unsigned long mmun_end
; /* For mmu_notifiers */
3478 pte
= huge_ptep_get(ptep
);
3479 old_page
= pte_page(pte
);
3482 /* If no-one else is actually using this page, avoid the copy
3483 * and just make the page writable */
3484 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
3485 page_move_anon_rmap(old_page
, vma
);
3486 set_huge_ptep_writable(vma
, address
, ptep
);
3491 * If the process that created a MAP_PRIVATE mapping is about to
3492 * perform a COW due to a shared page count, attempt to satisfy
3493 * the allocation without using the existing reserves. The pagecache
3494 * page is used to determine if the reserve at this address was
3495 * consumed or not. If reserves were used, a partial faulted mapping
3496 * at the time of fork() could consume its reserves on COW instead
3497 * of the full address range.
3499 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
3500 old_page
!= pagecache_page
)
3501 outside_reserve
= 1;
3506 * Drop page table lock as buddy allocator may be called. It will
3507 * be acquired again before returning to the caller, as expected.
3510 new_page
= alloc_huge_page(vma
, address
, outside_reserve
);
3512 if (IS_ERR(new_page
)) {
3514 * If a process owning a MAP_PRIVATE mapping fails to COW,
3515 * it is due to references held by a child and an insufficient
3516 * huge page pool. To guarantee the original mappers
3517 * reliability, unmap the page from child processes. The child
3518 * may get SIGKILLed if it later faults.
3520 if (outside_reserve
) {
3522 BUG_ON(huge_pte_none(pte
));
3523 unmap_ref_private(mm
, vma
, old_page
, address
);
3524 BUG_ON(huge_pte_none(pte
));
3526 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
),
3529 pte_same(huge_ptep_get(ptep
), pte
)))
3530 goto retry_avoidcopy
;
3532 * race occurs while re-acquiring page table
3533 * lock, and our job is done.
3538 ret
= (PTR_ERR(new_page
) == -ENOMEM
) ?
3539 VM_FAULT_OOM
: VM_FAULT_SIGBUS
;
3540 goto out_release_old
;
3544 * When the original hugepage is shared one, it does not have
3545 * anon_vma prepared.
3547 if (unlikely(anon_vma_prepare(vma
))) {
3549 goto out_release_all
;
3552 copy_user_huge_page(new_page
, old_page
, address
, vma
,
3553 pages_per_huge_page(h
));
3554 __SetPageUptodate(new_page
);
3555 set_page_huge_active(new_page
);
3557 mmun_start
= address
& huge_page_mask(h
);
3558 mmun_end
= mmun_start
+ huge_page_size(h
);
3559 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
3562 * Retake the page table lock to check for racing updates
3563 * before the page tables are altered
3566 ptep
= huge_pte_offset(mm
, address
& huge_page_mask(h
),
3568 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
3569 ClearPagePrivate(new_page
);
3572 huge_ptep_clear_flush(vma
, address
, ptep
);
3573 mmu_notifier_invalidate_range(mm
, mmun_start
, mmun_end
);
3574 set_huge_pte_at(mm
, address
, ptep
,
3575 make_huge_pte(vma
, new_page
, 1));
3576 page_remove_rmap(old_page
, true);
3577 hugepage_add_new_anon_rmap(new_page
, vma
, address
);
3578 /* Make the old page be freed below */
3579 new_page
= old_page
;
3582 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
3584 restore_reserve_on_error(h
, vma
, address
, new_page
);
3589 spin_lock(ptl
); /* Caller expects lock to be held */
3593 /* Return the pagecache page at a given address within a VMA */
3594 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
3595 struct vm_area_struct
*vma
, unsigned long address
)
3597 struct address_space
*mapping
;
3600 mapping
= vma
->vm_file
->f_mapping
;
3601 idx
= vma_hugecache_offset(h
, vma
, address
);
3603 return find_lock_page(mapping
, idx
);
3607 * Return whether there is a pagecache page to back given address within VMA.
3608 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3610 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
3611 struct vm_area_struct
*vma
, unsigned long address
)
3613 struct address_space
*mapping
;
3617 mapping
= vma
->vm_file
->f_mapping
;
3618 idx
= vma_hugecache_offset(h
, vma
, address
);
3620 page
= find_get_page(mapping
, idx
);
3623 return page
!= NULL
;
3626 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
3629 struct inode
*inode
= mapping
->host
;
3630 struct hstate
*h
= hstate_inode(inode
);
3631 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
3635 ClearPagePrivate(page
);
3637 spin_lock(&inode
->i_lock
);
3638 inode
->i_blocks
+= blocks_per_huge_page(h
);
3639 spin_unlock(&inode
->i_lock
);
3643 static int hugetlb_no_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3644 struct address_space
*mapping
, pgoff_t idx
,
3645 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
3647 struct hstate
*h
= hstate_vma(vma
);
3648 int ret
= VM_FAULT_SIGBUS
;
3656 * Currently, we are forced to kill the process in the event the
3657 * original mapper has unmapped pages from the child due to a failed
3658 * COW. Warn that such a situation has occurred as it may not be obvious
3660 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
3661 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
3667 * Use page lock to guard against racing truncation
3668 * before we get page_table_lock.
3671 page
= find_lock_page(mapping
, idx
);
3673 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3678 * Check for page in userfault range
3680 if (userfaultfd_missing(vma
)) {
3682 struct vm_fault vmf
= {
3687 * Hard to debug if it ends up being
3688 * used by a callee that assumes
3689 * something about the other
3690 * uninitialized fields... same as in
3696 * hugetlb_fault_mutex must be dropped before
3697 * handling userfault. Reacquire after handling
3698 * fault to make calling code simpler.
3700 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
,
3702 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3703 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
3704 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3708 page
= alloc_huge_page(vma
, address
, 0);
3710 ret
= PTR_ERR(page
);
3714 ret
= VM_FAULT_SIGBUS
;
3717 clear_huge_page(page
, address
, pages_per_huge_page(h
));
3718 __SetPageUptodate(page
);
3719 set_page_huge_active(page
);
3721 if (vma
->vm_flags
& VM_MAYSHARE
) {
3722 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
3731 if (unlikely(anon_vma_prepare(vma
))) {
3733 goto backout_unlocked
;
3739 * If memory error occurs between mmap() and fault, some process
3740 * don't have hwpoisoned swap entry for errored virtual address.
3741 * So we need to block hugepage fault by PG_hwpoison bit check.
3743 if (unlikely(PageHWPoison(page
))) {
3744 ret
= VM_FAULT_HWPOISON
|
3745 VM_FAULT_SET_HINDEX(hstate_index(h
));
3746 goto backout_unlocked
;
3751 * If we are going to COW a private mapping later, we examine the
3752 * pending reservations for this page now. This will ensure that
3753 * any allocations necessary to record that reservation occur outside
3756 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3757 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3759 goto backout_unlocked
;
3761 /* Just decrements count, does not deallocate */
3762 vma_end_reservation(h
, vma
, address
);
3765 ptl
= huge_pte_lock(h
, mm
, ptep
);
3766 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
3771 if (!huge_pte_none(huge_ptep_get(ptep
)))
3775 ClearPagePrivate(page
);
3776 hugepage_add_new_anon_rmap(page
, vma
, address
);
3778 page_dup_rmap(page
, true);
3779 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
3780 && (vma
->vm_flags
& VM_SHARED
)));
3781 set_huge_pte_at(mm
, address
, ptep
, new_pte
);
3783 hugetlb_count_add(pages_per_huge_page(h
), mm
);
3784 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3785 /* Optimization, do the COW without a second fault */
3786 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
3798 restore_reserve_on_error(h
, vma
, address
, page
);
3804 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3805 struct vm_area_struct
*vma
,
3806 struct address_space
*mapping
,
3807 pgoff_t idx
, unsigned long address
)
3809 unsigned long key
[2];
3812 if (vma
->vm_flags
& VM_SHARED
) {
3813 key
[0] = (unsigned long) mapping
;
3816 key
[0] = (unsigned long) mm
;
3817 key
[1] = address
>> huge_page_shift(h
);
3820 hash
= jhash2((u32
*)&key
, sizeof(key
)/sizeof(u32
), 0);
3822 return hash
& (num_fault_mutexes
- 1);
3826 * For uniprocesor systems we always use a single mutex, so just
3827 * return 0 and avoid the hashing overhead.
3829 u32
hugetlb_fault_mutex_hash(struct hstate
*h
, struct mm_struct
*mm
,
3830 struct vm_area_struct
*vma
,
3831 struct address_space
*mapping
,
3832 pgoff_t idx
, unsigned long address
)
3838 int hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3839 unsigned long address
, unsigned int flags
)
3846 struct page
*page
= NULL
;
3847 struct page
*pagecache_page
= NULL
;
3848 struct hstate
*h
= hstate_vma(vma
);
3849 struct address_space
*mapping
;
3850 int need_wait_lock
= 0;
3852 address
&= huge_page_mask(h
);
3854 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
3856 entry
= huge_ptep_get(ptep
);
3857 if (unlikely(is_hugetlb_entry_migration(entry
))) {
3858 migration_entry_wait_huge(vma
, mm
, ptep
);
3860 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
3861 return VM_FAULT_HWPOISON_LARGE
|
3862 VM_FAULT_SET_HINDEX(hstate_index(h
));
3864 ptep
= huge_pte_alloc(mm
, address
, huge_page_size(h
));
3866 return VM_FAULT_OOM
;
3869 mapping
= vma
->vm_file
->f_mapping
;
3870 idx
= vma_hugecache_offset(h
, vma
, address
);
3873 * Serialize hugepage allocation and instantiation, so that we don't
3874 * get spurious allocation failures if two CPUs race to instantiate
3875 * the same page in the page cache.
3877 hash
= hugetlb_fault_mutex_hash(h
, mm
, vma
, mapping
, idx
, address
);
3878 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
3880 entry
= huge_ptep_get(ptep
);
3881 if (huge_pte_none(entry
)) {
3882 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
3889 * entry could be a migration/hwpoison entry at this point, so this
3890 * check prevents the kernel from going below assuming that we have
3891 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3892 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3895 if (!pte_present(entry
))
3899 * If we are going to COW the mapping later, we examine the pending
3900 * reservations for this page now. This will ensure that any
3901 * allocations necessary to record that reservation occur outside the
3902 * spinlock. For private mappings, we also lookup the pagecache
3903 * page now as it is used to determine if a reservation has been
3906 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
3907 if (vma_needs_reservation(h
, vma
, address
) < 0) {
3911 /* Just decrements count, does not deallocate */
3912 vma_end_reservation(h
, vma
, address
);
3914 if (!(vma
->vm_flags
& VM_MAYSHARE
))
3915 pagecache_page
= hugetlbfs_pagecache_page(h
,
3919 ptl
= huge_pte_lock(h
, mm
, ptep
);
3921 /* Check for a racing update before calling hugetlb_cow */
3922 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
3926 * hugetlb_cow() requires page locks of pte_page(entry) and
3927 * pagecache_page, so here we need take the former one
3928 * when page != pagecache_page or !pagecache_page.
3930 page
= pte_page(entry
);
3931 if (page
!= pagecache_page
)
3932 if (!trylock_page(page
)) {
3939 if (flags
& FAULT_FLAG_WRITE
) {
3940 if (!huge_pte_write(entry
)) {
3941 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
3942 pagecache_page
, ptl
);
3945 entry
= huge_pte_mkdirty(entry
);
3947 entry
= pte_mkyoung(entry
);
3948 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
,
3949 flags
& FAULT_FLAG_WRITE
))
3950 update_mmu_cache(vma
, address
, ptep
);
3952 if (page
!= pagecache_page
)
3958 if (pagecache_page
) {
3959 unlock_page(pagecache_page
);
3960 put_page(pagecache_page
);
3963 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
3965 * Generally it's safe to hold refcount during waiting page lock. But
3966 * here we just wait to defer the next page fault to avoid busy loop and
3967 * the page is not used after unlocked before returning from the current
3968 * page fault. So we are safe from accessing freed page, even if we wait
3969 * here without taking refcount.
3972 wait_on_page_locked(page
);
3977 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3978 * modifications for huge pages.
3980 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
3982 struct vm_area_struct
*dst_vma
,
3983 unsigned long dst_addr
,
3984 unsigned long src_addr
,
3985 struct page
**pagep
)
3987 struct address_space
*mapping
;
3990 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
3991 struct hstate
*h
= hstate_vma(dst_vma
);
3999 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4003 ret
= copy_huge_page_from_user(page
,
4004 (const void __user
*) src_addr
,
4005 pages_per_huge_page(h
), false);
4007 /* fallback to copy_from_user outside mmap_sem */
4008 if (unlikely(ret
)) {
4011 /* don't free the page */
4020 * The memory barrier inside __SetPageUptodate makes sure that
4021 * preceding stores to the page contents become visible before
4022 * the set_pte_at() write.
4024 __SetPageUptodate(page
);
4025 set_page_huge_active(page
);
4027 mapping
= dst_vma
->vm_file
->f_mapping
;
4028 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4031 * If shared, add to page cache
4034 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4037 goto out_release_nounlock
;
4040 * Serialization between remove_inode_hugepages() and
4041 * huge_add_to_page_cache() below happens through the
4042 * hugetlb_fault_mutex_table that here must be hold by
4045 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4047 goto out_release_nounlock
;
4050 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4054 * Recheck the i_size after holding PT lock to make sure not
4055 * to leave any page mapped (as page_mapped()) beyond the end
4056 * of the i_size (remove_inode_hugepages() is strict about
4057 * enforcing that). If we bail out here, we'll also leave a
4058 * page in the radix tree in the vm_shared case beyond the end
4059 * of the i_size, but remove_inode_hugepages() will take care
4060 * of it as soon as we drop the hugetlb_fault_mutex_table.
4062 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4065 goto out_release_unlock
;
4068 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4069 goto out_release_unlock
;
4072 page_dup_rmap(page
, true);
4074 ClearPagePrivate(page
);
4075 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4078 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4079 if (dst_vma
->vm_flags
& VM_WRITE
)
4080 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4081 _dst_pte
= pte_mkyoung(_dst_pte
);
4083 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4085 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4086 dst_vma
->vm_flags
& VM_WRITE
);
4087 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4089 /* No need to invalidate - it was non-present before */
4090 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4102 out_release_nounlock
:
4107 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4108 struct page
**pages
, struct vm_area_struct
**vmas
,
4109 unsigned long *position
, unsigned long *nr_pages
,
4110 long i
, unsigned int flags
, int *nonblocking
)
4112 unsigned long pfn_offset
;
4113 unsigned long vaddr
= *position
;
4114 unsigned long remainder
= *nr_pages
;
4115 struct hstate
*h
= hstate_vma(vma
);
4118 while (vaddr
< vma
->vm_end
&& remainder
) {
4120 spinlock_t
*ptl
= NULL
;
4125 * If we have a pending SIGKILL, don't keep faulting pages and
4126 * potentially allocating memory.
4128 if (unlikely(fatal_signal_pending(current
))) {
4134 * Some archs (sparc64, sh*) have multiple pte_ts to
4135 * each hugepage. We have to make sure we get the
4136 * first, for the page indexing below to work.
4138 * Note that page table lock is not held when pte is null.
4140 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4143 ptl
= huge_pte_lock(h
, mm
, pte
);
4144 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4147 * When coredumping, it suits get_dump_page if we just return
4148 * an error where there's an empty slot with no huge pagecache
4149 * to back it. This way, we avoid allocating a hugepage, and
4150 * the sparse dumpfile avoids allocating disk blocks, but its
4151 * huge holes still show up with zeroes where they need to be.
4153 if (absent
&& (flags
& FOLL_DUMP
) &&
4154 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4162 * We need call hugetlb_fault for both hugepages under migration
4163 * (in which case hugetlb_fault waits for the migration,) and
4164 * hwpoisoned hugepages (in which case we need to prevent the
4165 * caller from accessing to them.) In order to do this, we use
4166 * here is_swap_pte instead of is_hugetlb_entry_migration and
4167 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4168 * both cases, and because we can't follow correct pages
4169 * directly from any kind of swap entries.
4171 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4172 ((flags
& FOLL_WRITE
) &&
4173 !huge_pte_write(huge_ptep_get(pte
)))) {
4175 unsigned int fault_flags
= 0;
4179 if (flags
& FOLL_WRITE
)
4180 fault_flags
|= FAULT_FLAG_WRITE
;
4182 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
4183 if (flags
& FOLL_NOWAIT
)
4184 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4185 FAULT_FLAG_RETRY_NOWAIT
;
4186 if (flags
& FOLL_TRIED
) {
4187 VM_WARN_ON_ONCE(fault_flags
&
4188 FAULT_FLAG_ALLOW_RETRY
);
4189 fault_flags
|= FAULT_FLAG_TRIED
;
4191 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4192 if (ret
& VM_FAULT_ERROR
) {
4193 err
= vm_fault_to_errno(ret
, flags
);
4197 if (ret
& VM_FAULT_RETRY
) {
4202 * VM_FAULT_RETRY must not return an
4203 * error, it will return zero
4206 * No need to update "position" as the
4207 * caller will not check it after
4208 * *nr_pages is set to 0.
4215 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4216 page
= pte_page(huge_ptep_get(pte
));
4219 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4230 if (vaddr
< vma
->vm_end
&& remainder
&&
4231 pfn_offset
< pages_per_huge_page(h
)) {
4233 * We use pfn_offset to avoid touching the pageframes
4234 * of this compound page.
4240 *nr_pages
= remainder
;
4242 * setting position is actually required only if remainder is
4243 * not zero but it's faster not to add a "if (remainder)"
4251 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4253 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4256 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4259 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
4260 unsigned long address
, unsigned long end
, pgprot_t newprot
)
4262 struct mm_struct
*mm
= vma
->vm_mm
;
4263 unsigned long start
= address
;
4266 struct hstate
*h
= hstate_vma(vma
);
4267 unsigned long pages
= 0;
4269 BUG_ON(address
>= end
);
4270 flush_cache_range(vma
, address
, end
);
4272 mmu_notifier_invalidate_range_start(mm
, start
, end
);
4273 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
4274 for (; address
< end
; address
+= huge_page_size(h
)) {
4276 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
4279 ptl
= huge_pte_lock(h
, mm
, ptep
);
4280 if (huge_pmd_unshare(mm
, &address
, ptep
)) {
4285 pte
= huge_ptep_get(ptep
);
4286 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
4290 if (unlikely(is_hugetlb_entry_migration(pte
))) {
4291 swp_entry_t entry
= pte_to_swp_entry(pte
);
4293 if (is_write_migration_entry(entry
)) {
4296 make_migration_entry_read(&entry
);
4297 newpte
= swp_entry_to_pte(entry
);
4298 set_huge_swap_pte_at(mm
, address
, ptep
,
4299 newpte
, huge_page_size(h
));
4305 if (!huge_pte_none(pte
)) {
4306 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
4307 pte
= pte_mkhuge(huge_pte_modify(pte
, newprot
));
4308 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
4309 set_huge_pte_at(mm
, address
, ptep
, pte
);
4315 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4316 * may have cleared our pud entry and done put_page on the page table:
4317 * once we release i_mmap_rwsem, another task can do the final put_page
4318 * and that page table be reused and filled with junk.
4320 flush_hugetlb_tlb_range(vma
, start
, end
);
4321 mmu_notifier_invalidate_range(mm
, start
, end
);
4322 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
4323 mmu_notifier_invalidate_range_end(mm
, start
, end
);
4325 return pages
<< h
->order
;
4328 int hugetlb_reserve_pages(struct inode
*inode
,
4330 struct vm_area_struct
*vma
,
4331 vm_flags_t vm_flags
)
4334 struct hstate
*h
= hstate_inode(inode
);
4335 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4336 struct resv_map
*resv_map
;
4340 * Only apply hugepage reservation if asked. At fault time, an
4341 * attempt will be made for VM_NORESERVE to allocate a page
4342 * without using reserves
4344 if (vm_flags
& VM_NORESERVE
)
4348 * Shared mappings base their reservation on the number of pages that
4349 * are already allocated on behalf of the file. Private mappings need
4350 * to reserve the full area even if read-only as mprotect() may be
4351 * called to make the mapping read-write. Assume !vma is a shm mapping
4353 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4354 resv_map
= inode_resv_map(inode
);
4356 chg
= region_chg(resv_map
, from
, to
);
4359 resv_map
= resv_map_alloc();
4365 set_vma_resv_map(vma
, resv_map
);
4366 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
4375 * There must be enough pages in the subpool for the mapping. If
4376 * the subpool has a minimum size, there may be some global
4377 * reservations already in place (gbl_reserve).
4379 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
4380 if (gbl_reserve
< 0) {
4386 * Check enough hugepages are available for the reservation.
4387 * Hand the pages back to the subpool if there are not
4389 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
4391 /* put back original number of pages, chg */
4392 (void)hugepage_subpool_put_pages(spool
, chg
);
4397 * Account for the reservations made. Shared mappings record regions
4398 * that have reservations as they are shared by multiple VMAs.
4399 * When the last VMA disappears, the region map says how much
4400 * the reservation was and the page cache tells how much of
4401 * the reservation was consumed. Private mappings are per-VMA and
4402 * only the consumed reservations are tracked. When the VMA
4403 * disappears, the original reservation is the VMA size and the
4404 * consumed reservations are stored in the map. Hence, nothing
4405 * else has to be done for private mappings here
4407 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
4408 long add
= region_add(resv_map
, from
, to
);
4410 if (unlikely(chg
> add
)) {
4412 * pages in this range were added to the reserve
4413 * map between region_chg and region_add. This
4414 * indicates a race with alloc_huge_page. Adjust
4415 * the subpool and reserve counts modified above
4416 * based on the difference.
4420 rsv_adjust
= hugepage_subpool_put_pages(spool
,
4422 hugetlb_acct_memory(h
, -rsv_adjust
);
4427 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
4428 /* Don't call region_abort if region_chg failed */
4430 region_abort(resv_map
, from
, to
);
4431 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
4432 kref_put(&resv_map
->refs
, resv_map_release
);
4436 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
4439 struct hstate
*h
= hstate_inode(inode
);
4440 struct resv_map
*resv_map
= inode_resv_map(inode
);
4442 struct hugepage_subpool
*spool
= subpool_inode(inode
);
4446 chg
= region_del(resv_map
, start
, end
);
4448 * region_del() can fail in the rare case where a region
4449 * must be split and another region descriptor can not be
4450 * allocated. If end == LONG_MAX, it will not fail.
4456 spin_lock(&inode
->i_lock
);
4457 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
4458 spin_unlock(&inode
->i_lock
);
4461 * If the subpool has a minimum size, the number of global
4462 * reservations to be released may be adjusted.
4464 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
4465 hugetlb_acct_memory(h
, -gbl_reserve
);
4470 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4471 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
4472 struct vm_area_struct
*vma
,
4473 unsigned long addr
, pgoff_t idx
)
4475 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
4477 unsigned long sbase
= saddr
& PUD_MASK
;
4478 unsigned long s_end
= sbase
+ PUD_SIZE
;
4480 /* Allow segments to share if only one is marked locked */
4481 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4482 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
4485 * match the virtual addresses, permission and the alignment of the
4488 if (pmd_index(addr
) != pmd_index(saddr
) ||
4489 vm_flags
!= svm_flags
||
4490 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
4496 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
4498 unsigned long base
= addr
& PUD_MASK
;
4499 unsigned long end
= base
+ PUD_SIZE
;
4502 * check on proper vm_flags and page table alignment
4504 if (vma
->vm_flags
& VM_MAYSHARE
&&
4505 vma
->vm_start
<= base
&& end
<= vma
->vm_end
)
4511 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4512 * and returns the corresponding pte. While this is not necessary for the
4513 * !shared pmd case because we can allocate the pmd later as well, it makes the
4514 * code much cleaner. pmd allocation is essential for the shared case because
4515 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4516 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4517 * bad pmd for sharing.
4519 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4521 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
4522 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
4523 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
4525 struct vm_area_struct
*svma
;
4526 unsigned long saddr
;
4531 if (!vma_shareable(vma
, addr
))
4532 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4534 i_mmap_lock_write(mapping
);
4535 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
4539 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
4541 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
4542 vma_mmu_pagesize(svma
));
4544 get_page(virt_to_page(spte
));
4553 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
4554 if (pud_none(*pud
)) {
4555 pud_populate(mm
, pud
,
4556 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
4559 put_page(virt_to_page(spte
));
4563 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4564 i_mmap_unlock_write(mapping
);
4569 * unmap huge page backed by shared pte.
4571 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4572 * indicated by page_count > 1, unmap is achieved by clearing pud and
4573 * decrementing the ref count. If count == 1, the pte page is not shared.
4575 * called with page table lock held.
4577 * returns: 1 successfully unmapped a shared pte page
4578 * 0 the underlying pte page is not shared, or it is the last user
4580 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4582 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
4583 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
4584 pud_t
*pud
= pud_offset(p4d
, *addr
);
4586 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
4587 if (page_count(virt_to_page(ptep
)) == 1)
4591 put_page(virt_to_page(ptep
));
4593 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
4596 #define want_pmd_share() (1)
4597 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4598 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
4603 int huge_pmd_unshare(struct mm_struct
*mm
, unsigned long *addr
, pte_t
*ptep
)
4607 #define want_pmd_share() (0)
4608 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4610 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4611 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
4612 unsigned long addr
, unsigned long sz
)
4619 pgd
= pgd_offset(mm
, addr
);
4620 p4d
= p4d_offset(pgd
, addr
);
4621 pud
= pud_alloc(mm
, p4d
, addr
);
4623 if (sz
== PUD_SIZE
) {
4626 BUG_ON(sz
!= PMD_SIZE
);
4627 if (want_pmd_share() && pud_none(*pud
))
4628 pte
= huge_pmd_share(mm
, addr
, pud
);
4630 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
4633 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
4639 * huge_pte_offset() - Walk the page table to resolve the hugepage
4640 * entry at address @addr
4642 * Return: Pointer to page table or swap entry (PUD or PMD) for
4643 * address @addr, or NULL if a p*d_none() entry is encountered and the
4644 * size @sz doesn't match the hugepage size at this level of the page
4647 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
4648 unsigned long addr
, unsigned long sz
)
4655 pgd
= pgd_offset(mm
, addr
);
4656 if (!pgd_present(*pgd
))
4658 p4d
= p4d_offset(pgd
, addr
);
4659 if (!p4d_present(*p4d
))
4662 pud
= pud_offset(p4d
, addr
);
4663 if (sz
!= PUD_SIZE
&& pud_none(*pud
))
4665 /* hugepage or swap? */
4666 if (pud_huge(*pud
) || !pud_present(*pud
))
4667 return (pte_t
*)pud
;
4669 pmd
= pmd_offset(pud
, addr
);
4670 if (sz
!= PMD_SIZE
&& pmd_none(*pmd
))
4672 /* hugepage or swap? */
4673 if (pmd_huge(*pmd
) || !pmd_present(*pmd
))
4674 return (pte_t
*)pmd
;
4679 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4682 * These functions are overwritable if your architecture needs its own
4685 struct page
* __weak
4686 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
4689 return ERR_PTR(-EINVAL
);
4692 struct page
* __weak
4693 follow_huge_pd(struct vm_area_struct
*vma
,
4694 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
4696 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4700 struct page
* __weak
4701 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
4702 pmd_t
*pmd
, int flags
)
4704 struct page
*page
= NULL
;
4708 ptl
= pmd_lockptr(mm
, pmd
);
4711 * make sure that the address range covered by this pmd is not
4712 * unmapped from other threads.
4714 if (!pmd_huge(*pmd
))
4716 pte
= huge_ptep_get((pte_t
*)pmd
);
4717 if (pte_present(pte
)) {
4718 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
4719 if (flags
& FOLL_GET
)
4722 if (is_hugetlb_entry_migration(pte
)) {
4724 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
4728 * hwpoisoned entry is treated as no_page_table in
4729 * follow_page_mask().
4737 struct page
* __weak
4738 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
4739 pud_t
*pud
, int flags
)
4741 if (flags
& FOLL_GET
)
4744 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
4747 struct page
* __weak
4748 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
4750 if (flags
& FOLL_GET
)
4753 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
4756 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
4760 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4761 spin_lock(&hugetlb_lock
);
4762 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
4766 clear_page_huge_active(page
);
4767 list_move_tail(&page
->lru
, list
);
4769 spin_unlock(&hugetlb_lock
);
4773 void putback_active_hugepage(struct page
*page
)
4775 VM_BUG_ON_PAGE(!PageHead(page
), page
);
4776 spin_lock(&hugetlb_lock
);
4777 set_page_huge_active(page
);
4778 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
4779 spin_unlock(&hugetlb_lock
);